1 /* 2 * Bluetooth Software UART Qualcomm protocol 3 * 4 * HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management 5 * protocol extension to H4. 6 * 7 * Copyright (C) 2007 Texas Instruments, Inc. 8 * Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved. 9 * 10 * Acknowledgements: 11 * This file is based on hci_ll.c, which was... 12 * Written by Ohad Ben-Cohen <ohad@bencohen.org> 13 * which was in turn based on hci_h4.c, which was written 14 * by Maxim Krasnyansky and Marcel Holtmann. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License version 2 18 * as published by the Free Software Foundation 19 * 20 * This program is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 23 * GNU General Public License for more details. 24 * 25 * You should have received a copy of the GNU General Public License 26 * along with this program; if not, write to the Free Software 27 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 28 * 29 */ 30 31 #include <linux/kernel.h> 32 #include <linux/clk.h> 33 #include <linux/debugfs.h> 34 #include <linux/delay.h> 35 #include <linux/device.h> 36 #include <linux/gpio/consumer.h> 37 #include <linux/mod_devicetable.h> 38 #include <linux/module.h> 39 #include <linux/of_device.h> 40 #include <linux/platform_device.h> 41 #include <linux/regulator/consumer.h> 42 #include <linux/serdev.h> 43 44 #include <net/bluetooth/bluetooth.h> 45 #include <net/bluetooth/hci_core.h> 46 47 #include "hci_uart.h" 48 #include "btqca.h" 49 50 /* HCI_IBS protocol messages */ 51 #define HCI_IBS_SLEEP_IND 0xFE 52 #define HCI_IBS_WAKE_IND 0xFD 53 #define HCI_IBS_WAKE_ACK 0xFC 54 #define HCI_MAX_IBS_SIZE 10 55 56 /* Controller states */ 57 #define STATE_IN_BAND_SLEEP_ENABLED 1 58 59 #define IBS_WAKE_RETRANS_TIMEOUT_MS 100 60 #define IBS_TX_IDLE_TIMEOUT_MS 2000 61 #define BAUDRATE_SETTLE_TIMEOUT_MS 300 62 63 /* susclk rate */ 64 #define SUSCLK_RATE_32KHZ 32768 65 66 /* HCI_IBS transmit side sleep protocol states */ 67 enum tx_ibs_states { 68 HCI_IBS_TX_ASLEEP, 69 HCI_IBS_TX_WAKING, 70 HCI_IBS_TX_AWAKE, 71 }; 72 73 /* HCI_IBS receive side sleep protocol states */ 74 enum rx_states { 75 HCI_IBS_RX_ASLEEP, 76 HCI_IBS_RX_AWAKE, 77 }; 78 79 /* HCI_IBS transmit and receive side clock state vote */ 80 enum hci_ibs_clock_state_vote { 81 HCI_IBS_VOTE_STATS_UPDATE, 82 HCI_IBS_TX_VOTE_CLOCK_ON, 83 HCI_IBS_TX_VOTE_CLOCK_OFF, 84 HCI_IBS_RX_VOTE_CLOCK_ON, 85 HCI_IBS_RX_VOTE_CLOCK_OFF, 86 }; 87 88 struct qca_data { 89 struct hci_uart *hu; 90 struct sk_buff *rx_skb; 91 struct sk_buff_head txq; 92 struct sk_buff_head tx_wait_q; /* HCI_IBS wait queue */ 93 spinlock_t hci_ibs_lock; /* HCI_IBS state lock */ 94 u8 tx_ibs_state; /* HCI_IBS transmit side power state*/ 95 u8 rx_ibs_state; /* HCI_IBS receive side power state */ 96 bool tx_vote; /* Clock must be on for TX */ 97 bool rx_vote; /* Clock must be on for RX */ 98 struct timer_list tx_idle_timer; 99 u32 tx_idle_delay; 100 struct timer_list wake_retrans_timer; 101 u32 wake_retrans; 102 struct workqueue_struct *workqueue; 103 struct work_struct ws_awake_rx; 104 struct work_struct ws_awake_device; 105 struct work_struct ws_rx_vote_off; 106 struct work_struct ws_tx_vote_off; 107 unsigned long flags; 108 109 /* For debugging purpose */ 110 u64 ibs_sent_wacks; 111 u64 ibs_sent_slps; 112 u64 ibs_sent_wakes; 113 u64 ibs_recv_wacks; 114 u64 ibs_recv_slps; 115 u64 ibs_recv_wakes; 116 u64 vote_last_jif; 117 u32 vote_on_ms; 118 u32 vote_off_ms; 119 u64 tx_votes_on; 120 u64 rx_votes_on; 121 u64 tx_votes_off; 122 u64 rx_votes_off; 123 u64 votes_on; 124 u64 votes_off; 125 }; 126 127 enum qca_speed_type { 128 QCA_INIT_SPEED = 1, 129 QCA_OPER_SPEED 130 }; 131 132 /* 133 * Voltage regulator information required for configuring the 134 * QCA Bluetooth chipset 135 */ 136 struct qca_vreg { 137 const char *name; 138 unsigned int min_uV; 139 unsigned int max_uV; 140 unsigned int load_uA; 141 }; 142 143 struct qca_vreg_data { 144 enum qca_btsoc_type soc_type; 145 struct qca_vreg *vregs; 146 size_t num_vregs; 147 }; 148 149 /* 150 * Platform data for the QCA Bluetooth power driver. 151 */ 152 struct qca_power { 153 struct device *dev; 154 const struct qca_vreg_data *vreg_data; 155 struct regulator_bulk_data *vreg_bulk; 156 bool vregs_on; 157 }; 158 159 struct qca_serdev { 160 struct hci_uart serdev_hu; 161 struct gpio_desc *bt_en; 162 struct clk *susclk; 163 enum qca_btsoc_type btsoc_type; 164 struct qca_power *bt_power; 165 u32 init_speed; 166 u32 oper_speed; 167 }; 168 169 static int qca_power_setup(struct hci_uart *hu, bool on); 170 static void qca_power_shutdown(struct hci_uart *hu); 171 static int qca_power_off(struct hci_dev *hdev); 172 173 static void __serial_clock_on(struct tty_struct *tty) 174 { 175 /* TODO: Some chipset requires to enable UART clock on client 176 * side to save power consumption or manual work is required. 177 * Please put your code to control UART clock here if needed 178 */ 179 } 180 181 static void __serial_clock_off(struct tty_struct *tty) 182 { 183 /* TODO: Some chipset requires to disable UART clock on client 184 * side to save power consumption or manual work is required. 185 * Please put your code to control UART clock off here if needed 186 */ 187 } 188 189 /* serial_clock_vote needs to be called with the ibs lock held */ 190 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu) 191 { 192 struct qca_data *qca = hu->priv; 193 unsigned int diff; 194 195 bool old_vote = (qca->tx_vote | qca->rx_vote); 196 bool new_vote; 197 198 switch (vote) { 199 case HCI_IBS_VOTE_STATS_UPDATE: 200 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif); 201 202 if (old_vote) 203 qca->vote_off_ms += diff; 204 else 205 qca->vote_on_ms += diff; 206 return; 207 208 case HCI_IBS_TX_VOTE_CLOCK_ON: 209 qca->tx_vote = true; 210 qca->tx_votes_on++; 211 new_vote = true; 212 break; 213 214 case HCI_IBS_RX_VOTE_CLOCK_ON: 215 qca->rx_vote = true; 216 qca->rx_votes_on++; 217 new_vote = true; 218 break; 219 220 case HCI_IBS_TX_VOTE_CLOCK_OFF: 221 qca->tx_vote = false; 222 qca->tx_votes_off++; 223 new_vote = qca->rx_vote | qca->tx_vote; 224 break; 225 226 case HCI_IBS_RX_VOTE_CLOCK_OFF: 227 qca->rx_vote = false; 228 qca->rx_votes_off++; 229 new_vote = qca->rx_vote | qca->tx_vote; 230 break; 231 232 default: 233 BT_ERR("Voting irregularity"); 234 return; 235 } 236 237 if (new_vote != old_vote) { 238 if (new_vote) 239 __serial_clock_on(hu->tty); 240 else 241 __serial_clock_off(hu->tty); 242 243 BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false", 244 vote ? "true" : "false"); 245 246 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif); 247 248 if (new_vote) { 249 qca->votes_on++; 250 qca->vote_off_ms += diff; 251 } else { 252 qca->votes_off++; 253 qca->vote_on_ms += diff; 254 } 255 qca->vote_last_jif = jiffies; 256 } 257 } 258 259 /* Builds and sends an HCI_IBS command packet. 260 * These are very simple packets with only 1 cmd byte. 261 */ 262 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu) 263 { 264 int err = 0; 265 struct sk_buff *skb = NULL; 266 struct qca_data *qca = hu->priv; 267 268 BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd); 269 270 skb = bt_skb_alloc(1, GFP_ATOMIC); 271 if (!skb) { 272 BT_ERR("Failed to allocate memory for HCI_IBS packet"); 273 return -ENOMEM; 274 } 275 276 /* Assign HCI_IBS type */ 277 skb_put_u8(skb, cmd); 278 279 skb_queue_tail(&qca->txq, skb); 280 281 return err; 282 } 283 284 static void qca_wq_awake_device(struct work_struct *work) 285 { 286 struct qca_data *qca = container_of(work, struct qca_data, 287 ws_awake_device); 288 struct hci_uart *hu = qca->hu; 289 unsigned long retrans_delay; 290 291 BT_DBG("hu %p wq awake device", hu); 292 293 /* Vote for serial clock */ 294 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu); 295 296 spin_lock(&qca->hci_ibs_lock); 297 298 /* Send wake indication to device */ 299 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) 300 BT_ERR("Failed to send WAKE to device"); 301 302 qca->ibs_sent_wakes++; 303 304 /* Start retransmit timer */ 305 retrans_delay = msecs_to_jiffies(qca->wake_retrans); 306 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay); 307 308 spin_unlock(&qca->hci_ibs_lock); 309 310 /* Actually send the packets */ 311 hci_uart_tx_wakeup(hu); 312 } 313 314 static void qca_wq_awake_rx(struct work_struct *work) 315 { 316 struct qca_data *qca = container_of(work, struct qca_data, 317 ws_awake_rx); 318 struct hci_uart *hu = qca->hu; 319 320 BT_DBG("hu %p wq awake rx", hu); 321 322 serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu); 323 324 spin_lock(&qca->hci_ibs_lock); 325 qca->rx_ibs_state = HCI_IBS_RX_AWAKE; 326 327 /* Always acknowledge device wake up, 328 * sending IBS message doesn't count as TX ON. 329 */ 330 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) 331 BT_ERR("Failed to acknowledge device wake up"); 332 333 qca->ibs_sent_wacks++; 334 335 spin_unlock(&qca->hci_ibs_lock); 336 337 /* Actually send the packets */ 338 hci_uart_tx_wakeup(hu); 339 } 340 341 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work) 342 { 343 struct qca_data *qca = container_of(work, struct qca_data, 344 ws_rx_vote_off); 345 struct hci_uart *hu = qca->hu; 346 347 BT_DBG("hu %p rx clock vote off", hu); 348 349 serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu); 350 } 351 352 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work) 353 { 354 struct qca_data *qca = container_of(work, struct qca_data, 355 ws_tx_vote_off); 356 struct hci_uart *hu = qca->hu; 357 358 BT_DBG("hu %p tx clock vote off", hu); 359 360 /* Run HCI tx handling unlocked */ 361 hci_uart_tx_wakeup(hu); 362 363 /* Now that message queued to tty driver, vote for tty clocks off. 364 * It is up to the tty driver to pend the clocks off until tx done. 365 */ 366 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu); 367 } 368 369 static void hci_ibs_tx_idle_timeout(struct timer_list *t) 370 { 371 struct qca_data *qca = from_timer(qca, t, tx_idle_timer); 372 struct hci_uart *hu = qca->hu; 373 unsigned long flags; 374 375 BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state); 376 377 spin_lock_irqsave_nested(&qca->hci_ibs_lock, 378 flags, SINGLE_DEPTH_NESTING); 379 380 switch (qca->tx_ibs_state) { 381 case HCI_IBS_TX_AWAKE: 382 /* TX_IDLE, go to SLEEP */ 383 if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) { 384 BT_ERR("Failed to send SLEEP to device"); 385 break; 386 } 387 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP; 388 qca->ibs_sent_slps++; 389 queue_work(qca->workqueue, &qca->ws_tx_vote_off); 390 break; 391 392 case HCI_IBS_TX_ASLEEP: 393 case HCI_IBS_TX_WAKING: 394 /* Fall through */ 395 396 default: 397 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state); 398 break; 399 } 400 401 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 402 } 403 404 static void hci_ibs_wake_retrans_timeout(struct timer_list *t) 405 { 406 struct qca_data *qca = from_timer(qca, t, wake_retrans_timer); 407 struct hci_uart *hu = qca->hu; 408 unsigned long flags, retrans_delay; 409 bool retransmit = false; 410 411 BT_DBG("hu %p wake retransmit timeout in %d state", 412 hu, qca->tx_ibs_state); 413 414 spin_lock_irqsave_nested(&qca->hci_ibs_lock, 415 flags, SINGLE_DEPTH_NESTING); 416 417 switch (qca->tx_ibs_state) { 418 case HCI_IBS_TX_WAKING: 419 /* No WAKE_ACK, retransmit WAKE */ 420 retransmit = true; 421 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) { 422 BT_ERR("Failed to acknowledge device wake up"); 423 break; 424 } 425 qca->ibs_sent_wakes++; 426 retrans_delay = msecs_to_jiffies(qca->wake_retrans); 427 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay); 428 break; 429 430 case HCI_IBS_TX_ASLEEP: 431 case HCI_IBS_TX_AWAKE: 432 /* Fall through */ 433 434 default: 435 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state); 436 break; 437 } 438 439 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 440 441 if (retransmit) 442 hci_uart_tx_wakeup(hu); 443 } 444 445 /* Initialize protocol */ 446 static int qca_open(struct hci_uart *hu) 447 { 448 struct qca_serdev *qcadev; 449 struct qca_data *qca; 450 int ret; 451 452 BT_DBG("hu %p qca_open", hu); 453 454 qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL); 455 if (!qca) 456 return -ENOMEM; 457 458 skb_queue_head_init(&qca->txq); 459 skb_queue_head_init(&qca->tx_wait_q); 460 spin_lock_init(&qca->hci_ibs_lock); 461 qca->workqueue = alloc_ordered_workqueue("qca_wq", 0); 462 if (!qca->workqueue) { 463 BT_ERR("QCA Workqueue not initialized properly"); 464 kfree(qca); 465 return -ENOMEM; 466 } 467 468 INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx); 469 INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device); 470 INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off); 471 INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off); 472 473 qca->hu = hu; 474 475 /* Assume we start with both sides asleep -- extra wakes OK */ 476 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP; 477 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP; 478 479 /* clocks actually on, but we start votes off */ 480 qca->tx_vote = false; 481 qca->rx_vote = false; 482 qca->flags = 0; 483 484 qca->ibs_sent_wacks = 0; 485 qca->ibs_sent_slps = 0; 486 qca->ibs_sent_wakes = 0; 487 qca->ibs_recv_wacks = 0; 488 qca->ibs_recv_slps = 0; 489 qca->ibs_recv_wakes = 0; 490 qca->vote_last_jif = jiffies; 491 qca->vote_on_ms = 0; 492 qca->vote_off_ms = 0; 493 qca->votes_on = 0; 494 qca->votes_off = 0; 495 qca->tx_votes_on = 0; 496 qca->tx_votes_off = 0; 497 qca->rx_votes_on = 0; 498 qca->rx_votes_off = 0; 499 500 hu->priv = qca; 501 502 if (hu->serdev) { 503 504 qcadev = serdev_device_get_drvdata(hu->serdev); 505 if (qcadev->btsoc_type != QCA_WCN3990) { 506 gpiod_set_value_cansleep(qcadev->bt_en, 1); 507 } else { 508 hu->init_speed = qcadev->init_speed; 509 hu->oper_speed = qcadev->oper_speed; 510 ret = qca_power_setup(hu, true); 511 if (ret) { 512 destroy_workqueue(qca->workqueue); 513 kfree_skb(qca->rx_skb); 514 hu->priv = NULL; 515 kfree(qca); 516 return ret; 517 } 518 } 519 } 520 521 timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0); 522 qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS; 523 524 timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0); 525 qca->tx_idle_delay = IBS_TX_IDLE_TIMEOUT_MS; 526 527 BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u", 528 qca->tx_idle_delay, qca->wake_retrans); 529 530 return 0; 531 } 532 533 static void qca_debugfs_init(struct hci_dev *hdev) 534 { 535 struct hci_uart *hu = hci_get_drvdata(hdev); 536 struct qca_data *qca = hu->priv; 537 struct dentry *ibs_dir; 538 umode_t mode; 539 540 if (!hdev->debugfs) 541 return; 542 543 ibs_dir = debugfs_create_dir("ibs", hdev->debugfs); 544 545 /* read only */ 546 mode = S_IRUGO; 547 debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state); 548 debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state); 549 debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir, 550 &qca->ibs_sent_slps); 551 debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir, 552 &qca->ibs_sent_wakes); 553 debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir, 554 &qca->ibs_sent_wacks); 555 debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir, 556 &qca->ibs_recv_slps); 557 debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir, 558 &qca->ibs_recv_wakes); 559 debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir, 560 &qca->ibs_recv_wacks); 561 debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote); 562 debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on); 563 debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off); 564 debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote); 565 debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on); 566 debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off); 567 debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on); 568 debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off); 569 debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms); 570 debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms); 571 572 /* read/write */ 573 mode = S_IRUGO | S_IWUSR; 574 debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans); 575 debugfs_create_u32("tx_idle_delay", mode, ibs_dir, 576 &qca->tx_idle_delay); 577 } 578 579 /* Flush protocol data */ 580 static int qca_flush(struct hci_uart *hu) 581 { 582 struct qca_data *qca = hu->priv; 583 584 BT_DBG("hu %p qca flush", hu); 585 586 skb_queue_purge(&qca->tx_wait_q); 587 skb_queue_purge(&qca->txq); 588 589 return 0; 590 } 591 592 /* Close protocol */ 593 static int qca_close(struct hci_uart *hu) 594 { 595 struct qca_serdev *qcadev; 596 struct qca_data *qca = hu->priv; 597 598 BT_DBG("hu %p qca close", hu); 599 600 serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu); 601 602 skb_queue_purge(&qca->tx_wait_q); 603 skb_queue_purge(&qca->txq); 604 del_timer(&qca->tx_idle_timer); 605 del_timer(&qca->wake_retrans_timer); 606 destroy_workqueue(qca->workqueue); 607 qca->hu = NULL; 608 609 if (hu->serdev) { 610 qcadev = serdev_device_get_drvdata(hu->serdev); 611 if (qcadev->btsoc_type == QCA_WCN3990) 612 qca_power_shutdown(hu); 613 else 614 gpiod_set_value_cansleep(qcadev->bt_en, 0); 615 616 } 617 618 kfree_skb(qca->rx_skb); 619 620 hu->priv = NULL; 621 622 kfree(qca); 623 624 return 0; 625 } 626 627 /* Called upon a wake-up-indication from the device. 628 */ 629 static void device_want_to_wakeup(struct hci_uart *hu) 630 { 631 unsigned long flags; 632 struct qca_data *qca = hu->priv; 633 634 BT_DBG("hu %p want to wake up", hu); 635 636 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 637 638 qca->ibs_recv_wakes++; 639 640 switch (qca->rx_ibs_state) { 641 case HCI_IBS_RX_ASLEEP: 642 /* Make sure clock is on - we may have turned clock off since 643 * receiving the wake up indicator awake rx clock. 644 */ 645 queue_work(qca->workqueue, &qca->ws_awake_rx); 646 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 647 return; 648 649 case HCI_IBS_RX_AWAKE: 650 /* Always acknowledge device wake up, 651 * sending IBS message doesn't count as TX ON. 652 */ 653 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) { 654 BT_ERR("Failed to acknowledge device wake up"); 655 break; 656 } 657 qca->ibs_sent_wacks++; 658 break; 659 660 default: 661 /* Any other state is illegal */ 662 BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d", 663 qca->rx_ibs_state); 664 break; 665 } 666 667 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 668 669 /* Actually send the packets */ 670 hci_uart_tx_wakeup(hu); 671 } 672 673 /* Called upon a sleep-indication from the device. 674 */ 675 static void device_want_to_sleep(struct hci_uart *hu) 676 { 677 unsigned long flags; 678 struct qca_data *qca = hu->priv; 679 680 BT_DBG("hu %p want to sleep", hu); 681 682 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 683 684 qca->ibs_recv_slps++; 685 686 switch (qca->rx_ibs_state) { 687 case HCI_IBS_RX_AWAKE: 688 /* Update state */ 689 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP; 690 /* Vote off rx clock under workqueue */ 691 queue_work(qca->workqueue, &qca->ws_rx_vote_off); 692 break; 693 694 case HCI_IBS_RX_ASLEEP: 695 /* Fall through */ 696 697 default: 698 /* Any other state is illegal */ 699 BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d", 700 qca->rx_ibs_state); 701 break; 702 } 703 704 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 705 } 706 707 /* Called upon wake-up-acknowledgement from the device 708 */ 709 static void device_woke_up(struct hci_uart *hu) 710 { 711 unsigned long flags, idle_delay; 712 struct qca_data *qca = hu->priv; 713 struct sk_buff *skb = NULL; 714 715 BT_DBG("hu %p woke up", hu); 716 717 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 718 719 qca->ibs_recv_wacks++; 720 721 switch (qca->tx_ibs_state) { 722 case HCI_IBS_TX_AWAKE: 723 /* Expect one if we send 2 WAKEs */ 724 BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d", 725 qca->tx_ibs_state); 726 break; 727 728 case HCI_IBS_TX_WAKING: 729 /* Send pending packets */ 730 while ((skb = skb_dequeue(&qca->tx_wait_q))) 731 skb_queue_tail(&qca->txq, skb); 732 733 /* Switch timers and change state to HCI_IBS_TX_AWAKE */ 734 del_timer(&qca->wake_retrans_timer); 735 idle_delay = msecs_to_jiffies(qca->tx_idle_delay); 736 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay); 737 qca->tx_ibs_state = HCI_IBS_TX_AWAKE; 738 break; 739 740 case HCI_IBS_TX_ASLEEP: 741 /* Fall through */ 742 743 default: 744 BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d", 745 qca->tx_ibs_state); 746 break; 747 } 748 749 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 750 751 /* Actually send the packets */ 752 hci_uart_tx_wakeup(hu); 753 } 754 755 /* Enqueue frame for transmittion (padding, crc, etc) may be called from 756 * two simultaneous tasklets. 757 */ 758 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb) 759 { 760 unsigned long flags = 0, idle_delay; 761 struct qca_data *qca = hu->priv; 762 763 BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb, 764 qca->tx_ibs_state); 765 766 /* Prepend skb with frame type */ 767 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1); 768 769 /* Don't go to sleep in middle of patch download or 770 * Out-Of-Band(GPIOs control) sleep is selected. 771 */ 772 if (!test_bit(STATE_IN_BAND_SLEEP_ENABLED, &qca->flags)) { 773 skb_queue_tail(&qca->txq, skb); 774 return 0; 775 } 776 777 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 778 779 /* Act according to current state */ 780 switch (qca->tx_ibs_state) { 781 case HCI_IBS_TX_AWAKE: 782 BT_DBG("Device awake, sending normally"); 783 skb_queue_tail(&qca->txq, skb); 784 idle_delay = msecs_to_jiffies(qca->tx_idle_delay); 785 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay); 786 break; 787 788 case HCI_IBS_TX_ASLEEP: 789 BT_DBG("Device asleep, waking up and queueing packet"); 790 /* Save packet for later */ 791 skb_queue_tail(&qca->tx_wait_q, skb); 792 793 qca->tx_ibs_state = HCI_IBS_TX_WAKING; 794 /* Schedule a work queue to wake up device */ 795 queue_work(qca->workqueue, &qca->ws_awake_device); 796 break; 797 798 case HCI_IBS_TX_WAKING: 799 BT_DBG("Device waking up, queueing packet"); 800 /* Transient state; just keep packet for later */ 801 skb_queue_tail(&qca->tx_wait_q, skb); 802 break; 803 804 default: 805 BT_ERR("Illegal tx state: %d (losing packet)", 806 qca->tx_ibs_state); 807 kfree_skb(skb); 808 break; 809 } 810 811 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 812 813 return 0; 814 } 815 816 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb) 817 { 818 struct hci_uart *hu = hci_get_drvdata(hdev); 819 820 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND); 821 822 device_want_to_sleep(hu); 823 824 kfree_skb(skb); 825 return 0; 826 } 827 828 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb) 829 { 830 struct hci_uart *hu = hci_get_drvdata(hdev); 831 832 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND); 833 834 device_want_to_wakeup(hu); 835 836 kfree_skb(skb); 837 return 0; 838 } 839 840 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb) 841 { 842 struct hci_uart *hu = hci_get_drvdata(hdev); 843 844 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK); 845 846 device_woke_up(hu); 847 848 kfree_skb(skb); 849 return 0; 850 } 851 852 #define QCA_IBS_SLEEP_IND_EVENT \ 853 .type = HCI_IBS_SLEEP_IND, \ 854 .hlen = 0, \ 855 .loff = 0, \ 856 .lsize = 0, \ 857 .maxlen = HCI_MAX_IBS_SIZE 858 859 #define QCA_IBS_WAKE_IND_EVENT \ 860 .type = HCI_IBS_WAKE_IND, \ 861 .hlen = 0, \ 862 .loff = 0, \ 863 .lsize = 0, \ 864 .maxlen = HCI_MAX_IBS_SIZE 865 866 #define QCA_IBS_WAKE_ACK_EVENT \ 867 .type = HCI_IBS_WAKE_ACK, \ 868 .hlen = 0, \ 869 .loff = 0, \ 870 .lsize = 0, \ 871 .maxlen = HCI_MAX_IBS_SIZE 872 873 static const struct h4_recv_pkt qca_recv_pkts[] = { 874 { H4_RECV_ACL, .recv = hci_recv_frame }, 875 { H4_RECV_SCO, .recv = hci_recv_frame }, 876 { H4_RECV_EVENT, .recv = hci_recv_frame }, 877 { QCA_IBS_WAKE_IND_EVENT, .recv = qca_ibs_wake_ind }, 878 { QCA_IBS_WAKE_ACK_EVENT, .recv = qca_ibs_wake_ack }, 879 { QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind }, 880 }; 881 882 static int qca_recv(struct hci_uart *hu, const void *data, int count) 883 { 884 struct qca_data *qca = hu->priv; 885 886 if (!test_bit(HCI_UART_REGISTERED, &hu->flags)) 887 return -EUNATCH; 888 889 qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count, 890 qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts)); 891 if (IS_ERR(qca->rx_skb)) { 892 int err = PTR_ERR(qca->rx_skb); 893 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err); 894 qca->rx_skb = NULL; 895 return err; 896 } 897 898 return count; 899 } 900 901 static struct sk_buff *qca_dequeue(struct hci_uart *hu) 902 { 903 struct qca_data *qca = hu->priv; 904 905 return skb_dequeue(&qca->txq); 906 } 907 908 static uint8_t qca_get_baudrate_value(int speed) 909 { 910 switch (speed) { 911 case 9600: 912 return QCA_BAUDRATE_9600; 913 case 19200: 914 return QCA_BAUDRATE_19200; 915 case 38400: 916 return QCA_BAUDRATE_38400; 917 case 57600: 918 return QCA_BAUDRATE_57600; 919 case 115200: 920 return QCA_BAUDRATE_115200; 921 case 230400: 922 return QCA_BAUDRATE_230400; 923 case 460800: 924 return QCA_BAUDRATE_460800; 925 case 500000: 926 return QCA_BAUDRATE_500000; 927 case 921600: 928 return QCA_BAUDRATE_921600; 929 case 1000000: 930 return QCA_BAUDRATE_1000000; 931 case 2000000: 932 return QCA_BAUDRATE_2000000; 933 case 3000000: 934 return QCA_BAUDRATE_3000000; 935 case 3200000: 936 return QCA_BAUDRATE_3200000; 937 case 3500000: 938 return QCA_BAUDRATE_3500000; 939 default: 940 return QCA_BAUDRATE_115200; 941 } 942 } 943 944 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate) 945 { 946 struct hci_uart *hu = hci_get_drvdata(hdev); 947 struct qca_data *qca = hu->priv; 948 struct sk_buff *skb; 949 struct qca_serdev *qcadev; 950 u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 }; 951 952 if (baudrate > QCA_BAUDRATE_3200000) 953 return -EINVAL; 954 955 cmd[4] = baudrate; 956 957 skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL); 958 if (!skb) { 959 bt_dev_err(hdev, "Failed to allocate baudrate packet"); 960 return -ENOMEM; 961 } 962 963 /* Disabling hardware flow control is mandatory while 964 * sending change baudrate request to wcn3990 SoC. 965 */ 966 qcadev = serdev_device_get_drvdata(hu->serdev); 967 if (qcadev->btsoc_type == QCA_WCN3990) 968 hci_uart_set_flow_control(hu, true); 969 970 /* Assign commands to change baudrate and packet type. */ 971 skb_put_data(skb, cmd, sizeof(cmd)); 972 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 973 974 skb_queue_tail(&qca->txq, skb); 975 hci_uart_tx_wakeup(hu); 976 977 /* wait 300ms to change new baudrate on controller side 978 * controller will come back after they receive this HCI command 979 * then host can communicate with new baudrate to controller 980 */ 981 set_current_state(TASK_UNINTERRUPTIBLE); 982 schedule_timeout(msecs_to_jiffies(BAUDRATE_SETTLE_TIMEOUT_MS)); 983 set_current_state(TASK_RUNNING); 984 985 if (qcadev->btsoc_type == QCA_WCN3990) 986 hci_uart_set_flow_control(hu, false); 987 988 return 0; 989 } 990 991 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed) 992 { 993 if (hu->serdev) 994 serdev_device_set_baudrate(hu->serdev, speed); 995 else 996 hci_uart_set_baudrate(hu, speed); 997 } 998 999 static int qca_send_power_pulse(struct hci_dev *hdev, u8 cmd) 1000 { 1001 struct hci_uart *hu = hci_get_drvdata(hdev); 1002 struct qca_data *qca = hu->priv; 1003 struct sk_buff *skb; 1004 1005 /* These power pulses are single byte command which are sent 1006 * at required baudrate to wcn3990. On wcn3990, we have an external 1007 * circuit at Tx pin which decodes the pulse sent at specific baudrate. 1008 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT 1009 * and also we use the same power inputs to turn on and off for 1010 * Wi-Fi/BT. Powering up the power sources will not enable BT, until 1011 * we send a power on pulse at 115200 bps. This algorithm will help to 1012 * save power. Disabling hardware flow control is mandatory while 1013 * sending power pulses to SoC. 1014 */ 1015 bt_dev_dbg(hdev, "sending power pulse %02x to SoC", cmd); 1016 1017 skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL); 1018 if (!skb) 1019 return -ENOMEM; 1020 1021 hci_uart_set_flow_control(hu, true); 1022 1023 skb_put_u8(skb, cmd); 1024 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 1025 1026 skb_queue_tail(&qca->txq, skb); 1027 hci_uart_tx_wakeup(hu); 1028 1029 /* Wait for 100 uS for SoC to settle down */ 1030 usleep_range(100, 200); 1031 hci_uart_set_flow_control(hu, false); 1032 1033 return 0; 1034 } 1035 1036 static unsigned int qca_get_speed(struct hci_uart *hu, 1037 enum qca_speed_type speed_type) 1038 { 1039 unsigned int speed = 0; 1040 1041 if (speed_type == QCA_INIT_SPEED) { 1042 if (hu->init_speed) 1043 speed = hu->init_speed; 1044 else if (hu->proto->init_speed) 1045 speed = hu->proto->init_speed; 1046 } else { 1047 if (hu->oper_speed) 1048 speed = hu->oper_speed; 1049 else if (hu->proto->oper_speed) 1050 speed = hu->proto->oper_speed; 1051 } 1052 1053 return speed; 1054 } 1055 1056 static int qca_check_speeds(struct hci_uart *hu) 1057 { 1058 struct qca_serdev *qcadev; 1059 1060 qcadev = serdev_device_get_drvdata(hu->serdev); 1061 if (qcadev->btsoc_type == QCA_WCN3990) { 1062 if (!qca_get_speed(hu, QCA_INIT_SPEED) && 1063 !qca_get_speed(hu, QCA_OPER_SPEED)) 1064 return -EINVAL; 1065 } else { 1066 if (!qca_get_speed(hu, QCA_INIT_SPEED) || 1067 !qca_get_speed(hu, QCA_OPER_SPEED)) 1068 return -EINVAL; 1069 } 1070 1071 return 0; 1072 } 1073 1074 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type) 1075 { 1076 unsigned int speed, qca_baudrate; 1077 int ret; 1078 1079 if (speed_type == QCA_INIT_SPEED) { 1080 speed = qca_get_speed(hu, QCA_INIT_SPEED); 1081 if (speed) 1082 host_set_baudrate(hu, speed); 1083 } else { 1084 speed = qca_get_speed(hu, QCA_OPER_SPEED); 1085 if (!speed) 1086 return 0; 1087 1088 qca_baudrate = qca_get_baudrate_value(speed); 1089 bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed); 1090 ret = qca_set_baudrate(hu->hdev, qca_baudrate); 1091 if (ret) 1092 return ret; 1093 1094 host_set_baudrate(hu, speed); 1095 } 1096 1097 return 0; 1098 } 1099 1100 static int qca_wcn3990_init(struct hci_uart *hu) 1101 { 1102 struct hci_dev *hdev = hu->hdev; 1103 struct qca_serdev *qcadev; 1104 int ret; 1105 1106 /* Check for vregs status, may be hci down has turned 1107 * off the voltage regulator. 1108 */ 1109 qcadev = serdev_device_get_drvdata(hu->serdev); 1110 if (!qcadev->bt_power->vregs_on) { 1111 serdev_device_close(hu->serdev); 1112 ret = qca_power_setup(hu, true); 1113 if (ret) 1114 return ret; 1115 1116 ret = serdev_device_open(hu->serdev); 1117 if (ret) { 1118 bt_dev_err(hu->hdev, "failed to open port"); 1119 return ret; 1120 } 1121 } 1122 1123 /* Forcefully enable wcn3990 to enter in to boot mode. */ 1124 host_set_baudrate(hu, 2400); 1125 ret = qca_send_power_pulse(hdev, QCA_WCN3990_POWEROFF_PULSE); 1126 if (ret) 1127 return ret; 1128 1129 qca_set_speed(hu, QCA_INIT_SPEED); 1130 ret = qca_send_power_pulse(hdev, QCA_WCN3990_POWERON_PULSE); 1131 if (ret) 1132 return ret; 1133 1134 /* Wait for 100 ms for SoC to boot */ 1135 msleep(100); 1136 1137 /* Now the device is in ready state to communicate with host. 1138 * To sync host with device we need to reopen port. 1139 * Without this, we will have RTS and CTS synchronization 1140 * issues. 1141 */ 1142 serdev_device_close(hu->serdev); 1143 ret = serdev_device_open(hu->serdev); 1144 if (ret) { 1145 bt_dev_err(hu->hdev, "failed to open port"); 1146 return ret; 1147 } 1148 1149 hci_uart_set_flow_control(hu, false); 1150 1151 return 0; 1152 } 1153 1154 static int qca_setup(struct hci_uart *hu) 1155 { 1156 struct hci_dev *hdev = hu->hdev; 1157 struct qca_data *qca = hu->priv; 1158 unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200; 1159 struct qca_serdev *qcadev; 1160 int ret; 1161 int soc_ver = 0; 1162 1163 qcadev = serdev_device_get_drvdata(hu->serdev); 1164 1165 ret = qca_check_speeds(hu); 1166 if (ret) 1167 return ret; 1168 1169 /* Patch downloading has to be done without IBS mode */ 1170 clear_bit(STATE_IN_BAND_SLEEP_ENABLED, &qca->flags); 1171 1172 if (qcadev->btsoc_type == QCA_WCN3990) { 1173 bt_dev_info(hdev, "setting up wcn3990"); 1174 1175 /* Enable NON_PERSISTENT_SETUP QUIRK to ensure to execute 1176 * setup for every hci up. 1177 */ 1178 set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks); 1179 hu->hdev->shutdown = qca_power_off; 1180 ret = qca_wcn3990_init(hu); 1181 if (ret) 1182 return ret; 1183 1184 ret = qca_read_soc_version(hdev, &soc_ver); 1185 if (ret) 1186 return ret; 1187 } else { 1188 bt_dev_info(hdev, "ROME setup"); 1189 qca_set_speed(hu, QCA_INIT_SPEED); 1190 } 1191 1192 /* Setup user speed if needed */ 1193 speed = qca_get_speed(hu, QCA_OPER_SPEED); 1194 if (speed) { 1195 ret = qca_set_speed(hu, QCA_OPER_SPEED); 1196 if (ret) 1197 return ret; 1198 1199 qca_baudrate = qca_get_baudrate_value(speed); 1200 } 1201 1202 if (qcadev->btsoc_type != QCA_WCN3990) { 1203 /* Get QCA version information */ 1204 ret = qca_read_soc_version(hdev, &soc_ver); 1205 if (ret) 1206 return ret; 1207 } 1208 1209 bt_dev_info(hdev, "QCA controller version 0x%08x", soc_ver); 1210 /* Setup patch / NVM configurations */ 1211 ret = qca_uart_setup(hdev, qca_baudrate, qcadev->btsoc_type, soc_ver); 1212 if (!ret) { 1213 set_bit(STATE_IN_BAND_SLEEP_ENABLED, &qca->flags); 1214 qca_debugfs_init(hdev); 1215 } else if (ret == -ENOENT) { 1216 /* No patch/nvm-config found, run with original fw/config */ 1217 ret = 0; 1218 } else if (ret == -EAGAIN) { 1219 /* 1220 * Userspace firmware loader will return -EAGAIN in case no 1221 * patch/nvm-config is found, so run with original fw/config. 1222 */ 1223 ret = 0; 1224 } 1225 1226 /* Setup bdaddr */ 1227 hu->hdev->set_bdaddr = qca_set_bdaddr_rome; 1228 1229 return ret; 1230 } 1231 1232 static struct hci_uart_proto qca_proto = { 1233 .id = HCI_UART_QCA, 1234 .name = "QCA", 1235 .manufacturer = 29, 1236 .init_speed = 115200, 1237 .oper_speed = 3000000, 1238 .open = qca_open, 1239 .close = qca_close, 1240 .flush = qca_flush, 1241 .setup = qca_setup, 1242 .recv = qca_recv, 1243 .enqueue = qca_enqueue, 1244 .dequeue = qca_dequeue, 1245 }; 1246 1247 static const struct qca_vreg_data qca_soc_data = { 1248 .soc_type = QCA_WCN3990, 1249 .vregs = (struct qca_vreg []) { 1250 { "vddio", 1800000, 1900000, 15000 }, 1251 { "vddxo", 1800000, 1900000, 80000 }, 1252 { "vddrf", 1300000, 1350000, 300000 }, 1253 { "vddch0", 3300000, 3400000, 450000 }, 1254 }, 1255 .num_vregs = 4, 1256 }; 1257 1258 static void qca_power_shutdown(struct hci_uart *hu) 1259 { 1260 struct serdev_device *serdev = hu->serdev; 1261 unsigned char cmd = QCA_WCN3990_POWEROFF_PULSE; 1262 1263 host_set_baudrate(hu, 2400); 1264 hci_uart_set_flow_control(hu, true); 1265 serdev_device_write_buf(serdev, &cmd, sizeof(cmd)); 1266 hci_uart_set_flow_control(hu, false); 1267 qca_power_setup(hu, false); 1268 } 1269 1270 static int qca_power_off(struct hci_dev *hdev) 1271 { 1272 struct hci_uart *hu = hci_get_drvdata(hdev); 1273 1274 qca_power_shutdown(hu); 1275 return 0; 1276 } 1277 1278 static int qca_enable_regulator(struct qca_vreg vregs, 1279 struct regulator *regulator) 1280 { 1281 int ret; 1282 1283 ret = regulator_set_voltage(regulator, vregs.min_uV, 1284 vregs.max_uV); 1285 if (ret) 1286 return ret; 1287 1288 if (vregs.load_uA) 1289 ret = regulator_set_load(regulator, 1290 vregs.load_uA); 1291 1292 if (ret) 1293 return ret; 1294 1295 return regulator_enable(regulator); 1296 1297 } 1298 1299 static void qca_disable_regulator(struct qca_vreg vregs, 1300 struct regulator *regulator) 1301 { 1302 regulator_disable(regulator); 1303 regulator_set_voltage(regulator, 0, vregs.max_uV); 1304 if (vregs.load_uA) 1305 regulator_set_load(regulator, 0); 1306 1307 } 1308 1309 static int qca_power_setup(struct hci_uart *hu, bool on) 1310 { 1311 struct qca_vreg *vregs; 1312 struct regulator_bulk_data *vreg_bulk; 1313 struct qca_serdev *qcadev; 1314 int i, num_vregs, ret = 0; 1315 1316 qcadev = serdev_device_get_drvdata(hu->serdev); 1317 if (!qcadev || !qcadev->bt_power || !qcadev->bt_power->vreg_data || 1318 !qcadev->bt_power->vreg_bulk) 1319 return -EINVAL; 1320 1321 vregs = qcadev->bt_power->vreg_data->vregs; 1322 vreg_bulk = qcadev->bt_power->vreg_bulk; 1323 num_vregs = qcadev->bt_power->vreg_data->num_vregs; 1324 BT_DBG("on: %d", on); 1325 if (on && !qcadev->bt_power->vregs_on) { 1326 for (i = 0; i < num_vregs; i++) { 1327 ret = qca_enable_regulator(vregs[i], 1328 vreg_bulk[i].consumer); 1329 if (ret) 1330 break; 1331 } 1332 1333 if (ret) { 1334 BT_ERR("failed to enable regulator:%s", vregs[i].name); 1335 /* turn off regulators which are enabled */ 1336 for (i = i - 1; i >= 0; i--) 1337 qca_disable_regulator(vregs[i], 1338 vreg_bulk[i].consumer); 1339 } else { 1340 qcadev->bt_power->vregs_on = true; 1341 } 1342 } else if (!on && qcadev->bt_power->vregs_on) { 1343 /* turn off regulator in reverse order */ 1344 i = qcadev->bt_power->vreg_data->num_vregs - 1; 1345 for ( ; i >= 0; i--) 1346 qca_disable_regulator(vregs[i], vreg_bulk[i].consumer); 1347 1348 qcadev->bt_power->vregs_on = false; 1349 } 1350 1351 return ret; 1352 } 1353 1354 static int qca_init_regulators(struct qca_power *qca, 1355 const struct qca_vreg *vregs, size_t num_vregs) 1356 { 1357 int i; 1358 1359 qca->vreg_bulk = devm_kzalloc(qca->dev, num_vregs * 1360 sizeof(struct regulator_bulk_data), 1361 GFP_KERNEL); 1362 if (!qca->vreg_bulk) 1363 return -ENOMEM; 1364 1365 for (i = 0; i < num_vregs; i++) 1366 qca->vreg_bulk[i].supply = vregs[i].name; 1367 1368 return devm_regulator_bulk_get(qca->dev, num_vregs, qca->vreg_bulk); 1369 } 1370 1371 static int qca_serdev_probe(struct serdev_device *serdev) 1372 { 1373 struct qca_serdev *qcadev; 1374 const struct qca_vreg_data *data; 1375 int err; 1376 1377 qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL); 1378 if (!qcadev) 1379 return -ENOMEM; 1380 1381 qcadev->serdev_hu.serdev = serdev; 1382 data = of_device_get_match_data(&serdev->dev); 1383 serdev_device_set_drvdata(serdev, qcadev); 1384 if (data && data->soc_type == QCA_WCN3990) { 1385 qcadev->btsoc_type = QCA_WCN3990; 1386 qcadev->bt_power = devm_kzalloc(&serdev->dev, 1387 sizeof(struct qca_power), 1388 GFP_KERNEL); 1389 if (!qcadev->bt_power) 1390 return -ENOMEM; 1391 1392 qcadev->bt_power->dev = &serdev->dev; 1393 qcadev->bt_power->vreg_data = data; 1394 err = qca_init_regulators(qcadev->bt_power, data->vregs, 1395 data->num_vregs); 1396 if (err) { 1397 BT_ERR("Failed to init regulators:%d", err); 1398 goto out; 1399 } 1400 1401 qcadev->bt_power->vregs_on = false; 1402 1403 device_property_read_u32(&serdev->dev, "max-speed", 1404 &qcadev->oper_speed); 1405 if (!qcadev->oper_speed) 1406 BT_DBG("UART will pick default operating speed"); 1407 1408 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto); 1409 if (err) { 1410 BT_ERR("wcn3990 serdev registration failed"); 1411 goto out; 1412 } 1413 } else { 1414 qcadev->btsoc_type = QCA_ROME; 1415 qcadev->bt_en = devm_gpiod_get(&serdev->dev, "enable", 1416 GPIOD_OUT_LOW); 1417 if (IS_ERR(qcadev->bt_en)) { 1418 dev_err(&serdev->dev, "failed to acquire enable gpio\n"); 1419 return PTR_ERR(qcadev->bt_en); 1420 } 1421 1422 qcadev->susclk = devm_clk_get(&serdev->dev, NULL); 1423 if (IS_ERR(qcadev->susclk)) { 1424 dev_err(&serdev->dev, "failed to acquire clk\n"); 1425 return PTR_ERR(qcadev->susclk); 1426 } 1427 1428 err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ); 1429 if (err) 1430 return err; 1431 1432 err = clk_prepare_enable(qcadev->susclk); 1433 if (err) 1434 return err; 1435 1436 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto); 1437 if (err) 1438 clk_disable_unprepare(qcadev->susclk); 1439 } 1440 1441 out: return err; 1442 1443 } 1444 1445 static void qca_serdev_remove(struct serdev_device *serdev) 1446 { 1447 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev); 1448 1449 if (qcadev->btsoc_type == QCA_WCN3990) 1450 qca_power_shutdown(&qcadev->serdev_hu); 1451 else 1452 clk_disable_unprepare(qcadev->susclk); 1453 1454 hci_uart_unregister_device(&qcadev->serdev_hu); 1455 } 1456 1457 static const struct of_device_id qca_bluetooth_of_match[] = { 1458 { .compatible = "qcom,qca6174-bt" }, 1459 { .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data}, 1460 { /* sentinel */ } 1461 }; 1462 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match); 1463 1464 static struct serdev_device_driver qca_serdev_driver = { 1465 .probe = qca_serdev_probe, 1466 .remove = qca_serdev_remove, 1467 .driver = { 1468 .name = "hci_uart_qca", 1469 .of_match_table = qca_bluetooth_of_match, 1470 }, 1471 }; 1472 1473 int __init qca_init(void) 1474 { 1475 serdev_device_driver_register(&qca_serdev_driver); 1476 1477 return hci_uart_register_proto(&qca_proto); 1478 } 1479 1480 int __exit qca_deinit(void) 1481 { 1482 serdev_device_driver_unregister(&qca_serdev_driver); 1483 1484 return hci_uart_unregister_proto(&qca_proto); 1485 } 1486