1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Bluetooth Software UART Qualcomm protocol 4 * 5 * HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management 6 * protocol extension to H4. 7 * 8 * Copyright (C) 2007 Texas Instruments, Inc. 9 * Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved. 10 * 11 * Acknowledgements: 12 * This file is based on hci_ll.c, which was... 13 * Written by Ohad Ben-Cohen <ohad@bencohen.org> 14 * which was in turn based on hci_h4.c, which was written 15 * by Maxim Krasnyansky and Marcel Holtmann. 16 */ 17 18 #include <linux/kernel.h> 19 #include <linux/clk.h> 20 #include <linux/completion.h> 21 #include <linux/debugfs.h> 22 #include <linux/delay.h> 23 #include <linux/devcoredump.h> 24 #include <linux/device.h> 25 #include <linux/gpio/consumer.h> 26 #include <linux/mod_devicetable.h> 27 #include <linux/module.h> 28 #include <linux/of.h> 29 #include <linux/acpi.h> 30 #include <linux/platform_device.h> 31 #include <linux/pwrseq/consumer.h> 32 #include <linux/regulator/consumer.h> 33 #include <linux/serdev.h> 34 #include <linux/mutex.h> 35 #include <asm/unaligned.h> 36 37 #include <net/bluetooth/bluetooth.h> 38 #include <net/bluetooth/hci_core.h> 39 40 #include "hci_uart.h" 41 #include "btqca.h" 42 43 /* HCI_IBS protocol messages */ 44 #define HCI_IBS_SLEEP_IND 0xFE 45 #define HCI_IBS_WAKE_IND 0xFD 46 #define HCI_IBS_WAKE_ACK 0xFC 47 #define HCI_MAX_IBS_SIZE 10 48 49 #define IBS_WAKE_RETRANS_TIMEOUT_MS 100 50 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS 200 51 #define IBS_HOST_TX_IDLE_TIMEOUT_MS 2000 52 #define CMD_TRANS_TIMEOUT_MS 100 53 #define MEMDUMP_TIMEOUT_MS 8000 54 #define IBS_DISABLE_SSR_TIMEOUT_MS \ 55 (MEMDUMP_TIMEOUT_MS + FW_DOWNLOAD_TIMEOUT_MS) 56 #define FW_DOWNLOAD_TIMEOUT_MS 3000 57 58 /* susclk rate */ 59 #define SUSCLK_RATE_32KHZ 32768 60 61 /* Controller debug log header */ 62 #define QCA_DEBUG_HANDLE 0x2EDC 63 64 /* max retry count when init fails */ 65 #define MAX_INIT_RETRIES 3 66 67 /* Controller dump header */ 68 #define QCA_SSR_DUMP_HANDLE 0x0108 69 #define QCA_DUMP_PACKET_SIZE 255 70 #define QCA_LAST_SEQUENCE_NUM 0xFFFF 71 #define QCA_CRASHBYTE_PACKET_LEN 1096 72 #define QCA_MEMDUMP_BYTE 0xFB 73 74 enum qca_flags { 75 QCA_IBS_DISABLED, 76 QCA_DROP_VENDOR_EVENT, 77 QCA_SUSPENDING, 78 QCA_MEMDUMP_COLLECTION, 79 QCA_HW_ERROR_EVENT, 80 QCA_SSR_TRIGGERED, 81 QCA_BT_OFF, 82 QCA_ROM_FW, 83 QCA_DEBUGFS_CREATED, 84 }; 85 86 enum qca_capabilities { 87 QCA_CAP_WIDEBAND_SPEECH = BIT(0), 88 QCA_CAP_VALID_LE_STATES = BIT(1), 89 }; 90 91 /* HCI_IBS transmit side sleep protocol states */ 92 enum tx_ibs_states { 93 HCI_IBS_TX_ASLEEP, 94 HCI_IBS_TX_WAKING, 95 HCI_IBS_TX_AWAKE, 96 }; 97 98 /* HCI_IBS receive side sleep protocol states */ 99 enum rx_states { 100 HCI_IBS_RX_ASLEEP, 101 HCI_IBS_RX_AWAKE, 102 }; 103 104 /* HCI_IBS transmit and receive side clock state vote */ 105 enum hci_ibs_clock_state_vote { 106 HCI_IBS_VOTE_STATS_UPDATE, 107 HCI_IBS_TX_VOTE_CLOCK_ON, 108 HCI_IBS_TX_VOTE_CLOCK_OFF, 109 HCI_IBS_RX_VOTE_CLOCK_ON, 110 HCI_IBS_RX_VOTE_CLOCK_OFF, 111 }; 112 113 /* Controller memory dump states */ 114 enum qca_memdump_states { 115 QCA_MEMDUMP_IDLE, 116 QCA_MEMDUMP_COLLECTING, 117 QCA_MEMDUMP_COLLECTED, 118 QCA_MEMDUMP_TIMEOUT, 119 }; 120 121 struct qca_memdump_info { 122 u32 current_seq_no; 123 u32 received_dump; 124 u32 ram_dump_size; 125 }; 126 127 struct qca_memdump_event_hdr { 128 __u8 evt; 129 __u8 plen; 130 __u16 opcode; 131 __le16 seq_no; 132 __u8 reserved; 133 } __packed; 134 135 136 struct qca_dump_size { 137 __le32 dump_size; 138 } __packed; 139 140 struct qca_data { 141 struct hci_uart *hu; 142 struct sk_buff *rx_skb; 143 struct sk_buff_head txq; 144 struct sk_buff_head tx_wait_q; /* HCI_IBS wait queue */ 145 struct sk_buff_head rx_memdump_q; /* Memdump wait queue */ 146 spinlock_t hci_ibs_lock; /* HCI_IBS state lock */ 147 u8 tx_ibs_state; /* HCI_IBS transmit side power state*/ 148 u8 rx_ibs_state; /* HCI_IBS receive side power state */ 149 bool tx_vote; /* Clock must be on for TX */ 150 bool rx_vote; /* Clock must be on for RX */ 151 struct timer_list tx_idle_timer; 152 u32 tx_idle_delay; 153 struct timer_list wake_retrans_timer; 154 u32 wake_retrans; 155 struct workqueue_struct *workqueue; 156 struct work_struct ws_awake_rx; 157 struct work_struct ws_awake_device; 158 struct work_struct ws_rx_vote_off; 159 struct work_struct ws_tx_vote_off; 160 struct work_struct ctrl_memdump_evt; 161 struct delayed_work ctrl_memdump_timeout; 162 struct qca_memdump_info *qca_memdump; 163 unsigned long flags; 164 struct completion drop_ev_comp; 165 wait_queue_head_t suspend_wait_q; 166 enum qca_memdump_states memdump_state; 167 struct mutex hci_memdump_lock; 168 169 u16 fw_version; 170 u16 controller_id; 171 /* For debugging purpose */ 172 u64 ibs_sent_wacks; 173 u64 ibs_sent_slps; 174 u64 ibs_sent_wakes; 175 u64 ibs_recv_wacks; 176 u64 ibs_recv_slps; 177 u64 ibs_recv_wakes; 178 u64 vote_last_jif; 179 u32 vote_on_ms; 180 u32 vote_off_ms; 181 u64 tx_votes_on; 182 u64 rx_votes_on; 183 u64 tx_votes_off; 184 u64 rx_votes_off; 185 u64 votes_on; 186 u64 votes_off; 187 }; 188 189 enum qca_speed_type { 190 QCA_INIT_SPEED = 1, 191 QCA_OPER_SPEED 192 }; 193 194 /* 195 * Voltage regulator information required for configuring the 196 * QCA Bluetooth chipset 197 */ 198 struct qca_vreg { 199 const char *name; 200 unsigned int load_uA; 201 }; 202 203 struct qca_device_data { 204 enum qca_btsoc_type soc_type; 205 struct qca_vreg *vregs; 206 size_t num_vregs; 207 uint32_t capabilities; 208 }; 209 210 /* 211 * Platform data for the QCA Bluetooth power driver. 212 */ 213 struct qca_power { 214 struct device *dev; 215 struct regulator_bulk_data *vreg_bulk; 216 int num_vregs; 217 bool vregs_on; 218 struct pwrseq_desc *pwrseq; 219 }; 220 221 struct qca_serdev { 222 struct hci_uart serdev_hu; 223 struct gpio_desc *bt_en; 224 struct gpio_desc *sw_ctrl; 225 struct clk *susclk; 226 enum qca_btsoc_type btsoc_type; 227 struct qca_power *bt_power; 228 u32 init_speed; 229 u32 oper_speed; 230 bool bdaddr_property_broken; 231 const char *firmware_name; 232 }; 233 234 static int qca_regulator_enable(struct qca_serdev *qcadev); 235 static void qca_regulator_disable(struct qca_serdev *qcadev); 236 static void qca_power_shutdown(struct hci_uart *hu); 237 static int qca_power_off(struct hci_dev *hdev); 238 static void qca_controller_memdump(struct work_struct *work); 239 static void qca_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb); 240 241 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu) 242 { 243 enum qca_btsoc_type soc_type; 244 245 if (hu->serdev) { 246 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev); 247 248 soc_type = qsd->btsoc_type; 249 } else { 250 soc_type = QCA_ROME; 251 } 252 253 return soc_type; 254 } 255 256 static const char *qca_get_firmware_name(struct hci_uart *hu) 257 { 258 if (hu->serdev) { 259 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev); 260 261 return qsd->firmware_name; 262 } else { 263 return NULL; 264 } 265 } 266 267 static void __serial_clock_on(struct tty_struct *tty) 268 { 269 /* TODO: Some chipset requires to enable UART clock on client 270 * side to save power consumption or manual work is required. 271 * Please put your code to control UART clock here if needed 272 */ 273 } 274 275 static void __serial_clock_off(struct tty_struct *tty) 276 { 277 /* TODO: Some chipset requires to disable UART clock on client 278 * side to save power consumption or manual work is required. 279 * Please put your code to control UART clock off here if needed 280 */ 281 } 282 283 /* serial_clock_vote needs to be called with the ibs lock held */ 284 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu) 285 { 286 struct qca_data *qca = hu->priv; 287 unsigned int diff; 288 289 bool old_vote = (qca->tx_vote | qca->rx_vote); 290 bool new_vote; 291 292 switch (vote) { 293 case HCI_IBS_VOTE_STATS_UPDATE: 294 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif); 295 296 if (old_vote) 297 qca->vote_off_ms += diff; 298 else 299 qca->vote_on_ms += diff; 300 return; 301 302 case HCI_IBS_TX_VOTE_CLOCK_ON: 303 qca->tx_vote = true; 304 qca->tx_votes_on++; 305 break; 306 307 case HCI_IBS_RX_VOTE_CLOCK_ON: 308 qca->rx_vote = true; 309 qca->rx_votes_on++; 310 break; 311 312 case HCI_IBS_TX_VOTE_CLOCK_OFF: 313 qca->tx_vote = false; 314 qca->tx_votes_off++; 315 break; 316 317 case HCI_IBS_RX_VOTE_CLOCK_OFF: 318 qca->rx_vote = false; 319 qca->rx_votes_off++; 320 break; 321 322 default: 323 BT_ERR("Voting irregularity"); 324 return; 325 } 326 327 new_vote = qca->rx_vote | qca->tx_vote; 328 329 if (new_vote != old_vote) { 330 if (new_vote) 331 __serial_clock_on(hu->tty); 332 else 333 __serial_clock_off(hu->tty); 334 335 BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false", 336 vote ? "true" : "false"); 337 338 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif); 339 340 if (new_vote) { 341 qca->votes_on++; 342 qca->vote_off_ms += diff; 343 } else { 344 qca->votes_off++; 345 qca->vote_on_ms += diff; 346 } 347 qca->vote_last_jif = jiffies; 348 } 349 } 350 351 /* Builds and sends an HCI_IBS command packet. 352 * These are very simple packets with only 1 cmd byte. 353 */ 354 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu) 355 { 356 int err = 0; 357 struct sk_buff *skb = NULL; 358 struct qca_data *qca = hu->priv; 359 360 BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd); 361 362 skb = bt_skb_alloc(1, GFP_ATOMIC); 363 if (!skb) { 364 BT_ERR("Failed to allocate memory for HCI_IBS packet"); 365 return -ENOMEM; 366 } 367 368 /* Assign HCI_IBS type */ 369 skb_put_u8(skb, cmd); 370 371 skb_queue_tail(&qca->txq, skb); 372 373 return err; 374 } 375 376 static void qca_wq_awake_device(struct work_struct *work) 377 { 378 struct qca_data *qca = container_of(work, struct qca_data, 379 ws_awake_device); 380 struct hci_uart *hu = qca->hu; 381 unsigned long retrans_delay; 382 unsigned long flags; 383 384 BT_DBG("hu %p wq awake device", hu); 385 386 /* Vote for serial clock */ 387 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu); 388 389 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 390 391 /* Send wake indication to device */ 392 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) 393 BT_ERR("Failed to send WAKE to device"); 394 395 qca->ibs_sent_wakes++; 396 397 /* Start retransmit timer */ 398 retrans_delay = msecs_to_jiffies(qca->wake_retrans); 399 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay); 400 401 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 402 403 /* Actually send the packets */ 404 hci_uart_tx_wakeup(hu); 405 } 406 407 static void qca_wq_awake_rx(struct work_struct *work) 408 { 409 struct qca_data *qca = container_of(work, struct qca_data, 410 ws_awake_rx); 411 struct hci_uart *hu = qca->hu; 412 unsigned long flags; 413 414 BT_DBG("hu %p wq awake rx", hu); 415 416 serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu); 417 418 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 419 qca->rx_ibs_state = HCI_IBS_RX_AWAKE; 420 421 /* Always acknowledge device wake up, 422 * sending IBS message doesn't count as TX ON. 423 */ 424 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) 425 BT_ERR("Failed to acknowledge device wake up"); 426 427 qca->ibs_sent_wacks++; 428 429 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 430 431 /* Actually send the packets */ 432 hci_uart_tx_wakeup(hu); 433 } 434 435 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work) 436 { 437 struct qca_data *qca = container_of(work, struct qca_data, 438 ws_rx_vote_off); 439 struct hci_uart *hu = qca->hu; 440 441 BT_DBG("hu %p rx clock vote off", hu); 442 443 serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu); 444 } 445 446 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work) 447 { 448 struct qca_data *qca = container_of(work, struct qca_data, 449 ws_tx_vote_off); 450 struct hci_uart *hu = qca->hu; 451 452 BT_DBG("hu %p tx clock vote off", hu); 453 454 /* Run HCI tx handling unlocked */ 455 hci_uart_tx_wakeup(hu); 456 457 /* Now that message queued to tty driver, vote for tty clocks off. 458 * It is up to the tty driver to pend the clocks off until tx done. 459 */ 460 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu); 461 } 462 463 static void hci_ibs_tx_idle_timeout(struct timer_list *t) 464 { 465 struct qca_data *qca = from_timer(qca, t, tx_idle_timer); 466 struct hci_uart *hu = qca->hu; 467 unsigned long flags; 468 469 BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state); 470 471 spin_lock_irqsave_nested(&qca->hci_ibs_lock, 472 flags, SINGLE_DEPTH_NESTING); 473 474 switch (qca->tx_ibs_state) { 475 case HCI_IBS_TX_AWAKE: 476 /* TX_IDLE, go to SLEEP */ 477 if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) { 478 BT_ERR("Failed to send SLEEP to device"); 479 break; 480 } 481 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP; 482 qca->ibs_sent_slps++; 483 queue_work(qca->workqueue, &qca->ws_tx_vote_off); 484 break; 485 486 case HCI_IBS_TX_ASLEEP: 487 case HCI_IBS_TX_WAKING: 488 default: 489 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state); 490 break; 491 } 492 493 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 494 } 495 496 static void hci_ibs_wake_retrans_timeout(struct timer_list *t) 497 { 498 struct qca_data *qca = from_timer(qca, t, wake_retrans_timer); 499 struct hci_uart *hu = qca->hu; 500 unsigned long flags, retrans_delay; 501 bool retransmit = false; 502 503 BT_DBG("hu %p wake retransmit timeout in %d state", 504 hu, qca->tx_ibs_state); 505 506 spin_lock_irqsave_nested(&qca->hci_ibs_lock, 507 flags, SINGLE_DEPTH_NESTING); 508 509 /* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */ 510 if (test_bit(QCA_SUSPENDING, &qca->flags)) { 511 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 512 return; 513 } 514 515 switch (qca->tx_ibs_state) { 516 case HCI_IBS_TX_WAKING: 517 /* No WAKE_ACK, retransmit WAKE */ 518 retransmit = true; 519 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) { 520 BT_ERR("Failed to acknowledge device wake up"); 521 break; 522 } 523 qca->ibs_sent_wakes++; 524 retrans_delay = msecs_to_jiffies(qca->wake_retrans); 525 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay); 526 break; 527 528 case HCI_IBS_TX_ASLEEP: 529 case HCI_IBS_TX_AWAKE: 530 default: 531 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state); 532 break; 533 } 534 535 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 536 537 if (retransmit) 538 hci_uart_tx_wakeup(hu); 539 } 540 541 542 static void qca_controller_memdump_timeout(struct work_struct *work) 543 { 544 struct qca_data *qca = container_of(work, struct qca_data, 545 ctrl_memdump_timeout.work); 546 struct hci_uart *hu = qca->hu; 547 548 mutex_lock(&qca->hci_memdump_lock); 549 if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) { 550 qca->memdump_state = QCA_MEMDUMP_TIMEOUT; 551 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) { 552 /* Inject hw error event to reset the device 553 * and driver. 554 */ 555 hci_reset_dev(hu->hdev); 556 } 557 } 558 559 mutex_unlock(&qca->hci_memdump_lock); 560 } 561 562 563 /* Initialize protocol */ 564 static int qca_open(struct hci_uart *hu) 565 { 566 struct qca_serdev *qcadev; 567 struct qca_data *qca; 568 569 BT_DBG("hu %p qca_open", hu); 570 571 if (!hci_uart_has_flow_control(hu)) 572 return -EOPNOTSUPP; 573 574 qca = kzalloc(sizeof(*qca), GFP_KERNEL); 575 if (!qca) 576 return -ENOMEM; 577 578 skb_queue_head_init(&qca->txq); 579 skb_queue_head_init(&qca->tx_wait_q); 580 skb_queue_head_init(&qca->rx_memdump_q); 581 spin_lock_init(&qca->hci_ibs_lock); 582 mutex_init(&qca->hci_memdump_lock); 583 qca->workqueue = alloc_ordered_workqueue("qca_wq", 0); 584 if (!qca->workqueue) { 585 BT_ERR("QCA Workqueue not initialized properly"); 586 kfree(qca); 587 return -ENOMEM; 588 } 589 590 INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx); 591 INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device); 592 INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off); 593 INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off); 594 INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump); 595 INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout, 596 qca_controller_memdump_timeout); 597 init_waitqueue_head(&qca->suspend_wait_q); 598 599 qca->hu = hu; 600 init_completion(&qca->drop_ev_comp); 601 602 /* Assume we start with both sides asleep -- extra wakes OK */ 603 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP; 604 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP; 605 606 qca->vote_last_jif = jiffies; 607 608 hu->priv = qca; 609 610 if (hu->serdev) { 611 qcadev = serdev_device_get_drvdata(hu->serdev); 612 613 switch (qcadev->btsoc_type) { 614 case QCA_WCN3988: 615 case QCA_WCN3990: 616 case QCA_WCN3991: 617 case QCA_WCN3998: 618 case QCA_WCN6750: 619 hu->init_speed = qcadev->init_speed; 620 break; 621 622 default: 623 break; 624 } 625 626 if (qcadev->oper_speed) 627 hu->oper_speed = qcadev->oper_speed; 628 } 629 630 timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0); 631 qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS; 632 633 timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0); 634 qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS; 635 636 BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u", 637 qca->tx_idle_delay, qca->wake_retrans); 638 639 return 0; 640 } 641 642 static void qca_debugfs_init(struct hci_dev *hdev) 643 { 644 struct hci_uart *hu = hci_get_drvdata(hdev); 645 struct qca_data *qca = hu->priv; 646 struct dentry *ibs_dir; 647 umode_t mode; 648 649 if (!hdev->debugfs) 650 return; 651 652 if (test_and_set_bit(QCA_DEBUGFS_CREATED, &qca->flags)) 653 return; 654 655 ibs_dir = debugfs_create_dir("ibs", hdev->debugfs); 656 657 /* read only */ 658 mode = 0444; 659 debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state); 660 debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state); 661 debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir, 662 &qca->ibs_sent_slps); 663 debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir, 664 &qca->ibs_sent_wakes); 665 debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir, 666 &qca->ibs_sent_wacks); 667 debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir, 668 &qca->ibs_recv_slps); 669 debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir, 670 &qca->ibs_recv_wakes); 671 debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir, 672 &qca->ibs_recv_wacks); 673 debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote); 674 debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on); 675 debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off); 676 debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote); 677 debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on); 678 debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off); 679 debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on); 680 debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off); 681 debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms); 682 debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms); 683 684 /* read/write */ 685 mode = 0644; 686 debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans); 687 debugfs_create_u32("tx_idle_delay", mode, ibs_dir, 688 &qca->tx_idle_delay); 689 } 690 691 /* Flush protocol data */ 692 static int qca_flush(struct hci_uart *hu) 693 { 694 struct qca_data *qca = hu->priv; 695 696 BT_DBG("hu %p qca flush", hu); 697 698 skb_queue_purge(&qca->tx_wait_q); 699 skb_queue_purge(&qca->txq); 700 701 return 0; 702 } 703 704 /* Close protocol */ 705 static int qca_close(struct hci_uart *hu) 706 { 707 struct qca_data *qca = hu->priv; 708 709 BT_DBG("hu %p qca close", hu); 710 711 serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu); 712 713 skb_queue_purge(&qca->tx_wait_q); 714 skb_queue_purge(&qca->txq); 715 skb_queue_purge(&qca->rx_memdump_q); 716 /* 717 * Shut the timers down so they can't be rearmed when 718 * destroy_workqueue() drains pending work which in turn might try 719 * to arm a timer. After shutdown rearm attempts are silently 720 * ignored by the timer core code. 721 */ 722 timer_shutdown_sync(&qca->tx_idle_timer); 723 timer_shutdown_sync(&qca->wake_retrans_timer); 724 destroy_workqueue(qca->workqueue); 725 qca->hu = NULL; 726 727 kfree_skb(qca->rx_skb); 728 729 hu->priv = NULL; 730 731 kfree(qca); 732 733 return 0; 734 } 735 736 /* Called upon a wake-up-indication from the device. 737 */ 738 static void device_want_to_wakeup(struct hci_uart *hu) 739 { 740 unsigned long flags; 741 struct qca_data *qca = hu->priv; 742 743 BT_DBG("hu %p want to wake up", hu); 744 745 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 746 747 qca->ibs_recv_wakes++; 748 749 /* Don't wake the rx up when suspending. */ 750 if (test_bit(QCA_SUSPENDING, &qca->flags)) { 751 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 752 return; 753 } 754 755 switch (qca->rx_ibs_state) { 756 case HCI_IBS_RX_ASLEEP: 757 /* Make sure clock is on - we may have turned clock off since 758 * receiving the wake up indicator awake rx clock. 759 */ 760 queue_work(qca->workqueue, &qca->ws_awake_rx); 761 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 762 return; 763 764 case HCI_IBS_RX_AWAKE: 765 /* Always acknowledge device wake up, 766 * sending IBS message doesn't count as TX ON. 767 */ 768 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) { 769 BT_ERR("Failed to acknowledge device wake up"); 770 break; 771 } 772 qca->ibs_sent_wacks++; 773 break; 774 775 default: 776 /* Any other state is illegal */ 777 BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d", 778 qca->rx_ibs_state); 779 break; 780 } 781 782 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 783 784 /* Actually send the packets */ 785 hci_uart_tx_wakeup(hu); 786 } 787 788 /* Called upon a sleep-indication from the device. 789 */ 790 static void device_want_to_sleep(struct hci_uart *hu) 791 { 792 unsigned long flags; 793 struct qca_data *qca = hu->priv; 794 795 BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state); 796 797 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 798 799 qca->ibs_recv_slps++; 800 801 switch (qca->rx_ibs_state) { 802 case HCI_IBS_RX_AWAKE: 803 /* Update state */ 804 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP; 805 /* Vote off rx clock under workqueue */ 806 queue_work(qca->workqueue, &qca->ws_rx_vote_off); 807 break; 808 809 case HCI_IBS_RX_ASLEEP: 810 break; 811 812 default: 813 /* Any other state is illegal */ 814 BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d", 815 qca->rx_ibs_state); 816 break; 817 } 818 819 wake_up_interruptible(&qca->suspend_wait_q); 820 821 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 822 } 823 824 /* Called upon wake-up-acknowledgement from the device 825 */ 826 static void device_woke_up(struct hci_uart *hu) 827 { 828 unsigned long flags, idle_delay; 829 struct qca_data *qca = hu->priv; 830 struct sk_buff *skb = NULL; 831 832 BT_DBG("hu %p woke up", hu); 833 834 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 835 836 qca->ibs_recv_wacks++; 837 838 /* Don't react to the wake-up-acknowledgment when suspending. */ 839 if (test_bit(QCA_SUSPENDING, &qca->flags)) { 840 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 841 return; 842 } 843 844 switch (qca->tx_ibs_state) { 845 case HCI_IBS_TX_AWAKE: 846 /* Expect one if we send 2 WAKEs */ 847 BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d", 848 qca->tx_ibs_state); 849 break; 850 851 case HCI_IBS_TX_WAKING: 852 /* Send pending packets */ 853 while ((skb = skb_dequeue(&qca->tx_wait_q))) 854 skb_queue_tail(&qca->txq, skb); 855 856 /* Switch timers and change state to HCI_IBS_TX_AWAKE */ 857 del_timer(&qca->wake_retrans_timer); 858 idle_delay = msecs_to_jiffies(qca->tx_idle_delay); 859 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay); 860 qca->tx_ibs_state = HCI_IBS_TX_AWAKE; 861 break; 862 863 case HCI_IBS_TX_ASLEEP: 864 default: 865 BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d", 866 qca->tx_ibs_state); 867 break; 868 } 869 870 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 871 872 /* Actually send the packets */ 873 hci_uart_tx_wakeup(hu); 874 } 875 876 /* Enqueue frame for transmittion (padding, crc, etc) may be called from 877 * two simultaneous tasklets. 878 */ 879 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb) 880 { 881 unsigned long flags = 0, idle_delay; 882 struct qca_data *qca = hu->priv; 883 884 BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb, 885 qca->tx_ibs_state); 886 887 if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) { 888 /* As SSR is in progress, ignore the packets */ 889 bt_dev_dbg(hu->hdev, "SSR is in progress"); 890 kfree_skb(skb); 891 return 0; 892 } 893 894 /* Prepend skb with frame type */ 895 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1); 896 897 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 898 899 /* Don't go to sleep in middle of patch download or 900 * Out-Of-Band(GPIOs control) sleep is selected. 901 * Don't wake the device up when suspending. 902 */ 903 if (test_bit(QCA_IBS_DISABLED, &qca->flags) || 904 test_bit(QCA_SUSPENDING, &qca->flags)) { 905 skb_queue_tail(&qca->txq, skb); 906 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 907 return 0; 908 } 909 910 /* Act according to current state */ 911 switch (qca->tx_ibs_state) { 912 case HCI_IBS_TX_AWAKE: 913 BT_DBG("Device awake, sending normally"); 914 skb_queue_tail(&qca->txq, skb); 915 idle_delay = msecs_to_jiffies(qca->tx_idle_delay); 916 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay); 917 break; 918 919 case HCI_IBS_TX_ASLEEP: 920 BT_DBG("Device asleep, waking up and queueing packet"); 921 /* Save packet for later */ 922 skb_queue_tail(&qca->tx_wait_q, skb); 923 924 qca->tx_ibs_state = HCI_IBS_TX_WAKING; 925 /* Schedule a work queue to wake up device */ 926 queue_work(qca->workqueue, &qca->ws_awake_device); 927 break; 928 929 case HCI_IBS_TX_WAKING: 930 BT_DBG("Device waking up, queueing packet"); 931 /* Transient state; just keep packet for later */ 932 skb_queue_tail(&qca->tx_wait_q, skb); 933 break; 934 935 default: 936 BT_ERR("Illegal tx state: %d (losing packet)", 937 qca->tx_ibs_state); 938 dev_kfree_skb_irq(skb); 939 break; 940 } 941 942 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 943 944 return 0; 945 } 946 947 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb) 948 { 949 struct hci_uart *hu = hci_get_drvdata(hdev); 950 951 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND); 952 953 device_want_to_sleep(hu); 954 955 kfree_skb(skb); 956 return 0; 957 } 958 959 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb) 960 { 961 struct hci_uart *hu = hci_get_drvdata(hdev); 962 963 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND); 964 965 device_want_to_wakeup(hu); 966 967 kfree_skb(skb); 968 return 0; 969 } 970 971 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb) 972 { 973 struct hci_uart *hu = hci_get_drvdata(hdev); 974 975 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK); 976 977 device_woke_up(hu); 978 979 kfree_skb(skb); 980 return 0; 981 } 982 983 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb) 984 { 985 /* We receive debug logs from chip as an ACL packets. 986 * Instead of sending the data to ACL to decode the 987 * received data, we are pushing them to the above layers 988 * as a diagnostic packet. 989 */ 990 if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE) 991 return hci_recv_diag(hdev, skb); 992 993 return hci_recv_frame(hdev, skb); 994 } 995 996 static void qca_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb) 997 { 998 struct hci_uart *hu = hci_get_drvdata(hdev); 999 struct qca_data *qca = hu->priv; 1000 char buf[80]; 1001 1002 snprintf(buf, sizeof(buf), "Controller Name: 0x%x\n", 1003 qca->controller_id); 1004 skb_put_data(skb, buf, strlen(buf)); 1005 1006 snprintf(buf, sizeof(buf), "Firmware Version: 0x%x\n", 1007 qca->fw_version); 1008 skb_put_data(skb, buf, strlen(buf)); 1009 1010 snprintf(buf, sizeof(buf), "Vendor:Qualcomm\n"); 1011 skb_put_data(skb, buf, strlen(buf)); 1012 1013 snprintf(buf, sizeof(buf), "Driver: %s\n", 1014 hu->serdev->dev.driver->name); 1015 skb_put_data(skb, buf, strlen(buf)); 1016 } 1017 1018 static void qca_controller_memdump(struct work_struct *work) 1019 { 1020 struct qca_data *qca = container_of(work, struct qca_data, 1021 ctrl_memdump_evt); 1022 struct hci_uart *hu = qca->hu; 1023 struct sk_buff *skb; 1024 struct qca_memdump_event_hdr *cmd_hdr; 1025 struct qca_memdump_info *qca_memdump = qca->qca_memdump; 1026 struct qca_dump_size *dump; 1027 u16 seq_no; 1028 u32 rx_size; 1029 int ret = 0; 1030 enum qca_btsoc_type soc_type = qca_soc_type(hu); 1031 1032 while ((skb = skb_dequeue(&qca->rx_memdump_q))) { 1033 1034 mutex_lock(&qca->hci_memdump_lock); 1035 /* Skip processing the received packets if timeout detected 1036 * or memdump collection completed. 1037 */ 1038 if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT || 1039 qca->memdump_state == QCA_MEMDUMP_COLLECTED) { 1040 mutex_unlock(&qca->hci_memdump_lock); 1041 return; 1042 } 1043 1044 if (!qca_memdump) { 1045 qca_memdump = kzalloc(sizeof(*qca_memdump), GFP_ATOMIC); 1046 if (!qca_memdump) { 1047 mutex_unlock(&qca->hci_memdump_lock); 1048 return; 1049 } 1050 1051 qca->qca_memdump = qca_memdump; 1052 } 1053 1054 qca->memdump_state = QCA_MEMDUMP_COLLECTING; 1055 cmd_hdr = (void *) skb->data; 1056 seq_no = __le16_to_cpu(cmd_hdr->seq_no); 1057 skb_pull(skb, sizeof(struct qca_memdump_event_hdr)); 1058 1059 if (!seq_no) { 1060 1061 /* This is the first frame of memdump packet from 1062 * the controller, Disable IBS to recevie dump 1063 * with out any interruption, ideally time required for 1064 * the controller to send the dump is 8 seconds. let us 1065 * start timer to handle this asynchronous activity. 1066 */ 1067 set_bit(QCA_IBS_DISABLED, &qca->flags); 1068 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); 1069 dump = (void *) skb->data; 1070 qca_memdump->ram_dump_size = __le32_to_cpu(dump->dump_size); 1071 if (!(qca_memdump->ram_dump_size)) { 1072 bt_dev_err(hu->hdev, "Rx invalid memdump size"); 1073 kfree(qca_memdump); 1074 kfree_skb(skb); 1075 mutex_unlock(&qca->hci_memdump_lock); 1076 return; 1077 } 1078 1079 queue_delayed_work(qca->workqueue, 1080 &qca->ctrl_memdump_timeout, 1081 msecs_to_jiffies(MEMDUMP_TIMEOUT_MS)); 1082 skb_pull(skb, sizeof(qca_memdump->ram_dump_size)); 1083 qca_memdump->current_seq_no = 0; 1084 qca_memdump->received_dump = 0; 1085 ret = hci_devcd_init(hu->hdev, qca_memdump->ram_dump_size); 1086 bt_dev_info(hu->hdev, "hci_devcd_init Return:%d", 1087 ret); 1088 if (ret < 0) { 1089 kfree(qca->qca_memdump); 1090 qca->qca_memdump = NULL; 1091 qca->memdump_state = QCA_MEMDUMP_COLLECTED; 1092 cancel_delayed_work(&qca->ctrl_memdump_timeout); 1093 clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); 1094 mutex_unlock(&qca->hci_memdump_lock); 1095 return; 1096 } 1097 1098 bt_dev_info(hu->hdev, "QCA collecting dump of size:%u", 1099 qca_memdump->ram_dump_size); 1100 1101 } 1102 1103 /* If sequence no 0 is missed then there is no point in 1104 * accepting the other sequences. 1105 */ 1106 if (!test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) { 1107 bt_dev_err(hu->hdev, "QCA: Discarding other packets"); 1108 kfree(qca_memdump); 1109 kfree_skb(skb); 1110 mutex_unlock(&qca->hci_memdump_lock); 1111 return; 1112 } 1113 /* There could be chance of missing some packets from 1114 * the controller. In such cases let us store the dummy 1115 * packets in the buffer. 1116 */ 1117 /* For QCA6390, controller does not lost packets but 1118 * sequence number field of packet sometimes has error 1119 * bits, so skip this checking for missing packet. 1120 */ 1121 while ((seq_no > qca_memdump->current_seq_no + 1) && 1122 (soc_type != QCA_QCA6390) && 1123 seq_no != QCA_LAST_SEQUENCE_NUM) { 1124 bt_dev_err(hu->hdev, "QCA controller missed packet:%d", 1125 qca_memdump->current_seq_no); 1126 rx_size = qca_memdump->received_dump; 1127 rx_size += QCA_DUMP_PACKET_SIZE; 1128 if (rx_size > qca_memdump->ram_dump_size) { 1129 bt_dev_err(hu->hdev, 1130 "QCA memdump received %d, no space for missed packet", 1131 qca_memdump->received_dump); 1132 break; 1133 } 1134 hci_devcd_append_pattern(hu->hdev, 0x00, 1135 QCA_DUMP_PACKET_SIZE); 1136 qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE; 1137 qca_memdump->current_seq_no++; 1138 } 1139 1140 rx_size = qca_memdump->received_dump + skb->len; 1141 if (rx_size <= qca_memdump->ram_dump_size) { 1142 if ((seq_no != QCA_LAST_SEQUENCE_NUM) && 1143 (seq_no != qca_memdump->current_seq_no)) { 1144 bt_dev_err(hu->hdev, 1145 "QCA memdump unexpected packet %d", 1146 seq_no); 1147 } 1148 bt_dev_dbg(hu->hdev, 1149 "QCA memdump packet %d with length %d", 1150 seq_no, skb->len); 1151 hci_devcd_append(hu->hdev, skb); 1152 qca_memdump->current_seq_no += 1; 1153 qca_memdump->received_dump = rx_size; 1154 } else { 1155 bt_dev_err(hu->hdev, 1156 "QCA memdump received no space for packet %d", 1157 qca_memdump->current_seq_no); 1158 } 1159 1160 if (seq_no == QCA_LAST_SEQUENCE_NUM) { 1161 bt_dev_info(hu->hdev, 1162 "QCA memdump Done, received %d, total %d", 1163 qca_memdump->received_dump, 1164 qca_memdump->ram_dump_size); 1165 hci_devcd_complete(hu->hdev); 1166 cancel_delayed_work(&qca->ctrl_memdump_timeout); 1167 kfree(qca->qca_memdump); 1168 qca->qca_memdump = NULL; 1169 qca->memdump_state = QCA_MEMDUMP_COLLECTED; 1170 clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); 1171 } 1172 1173 mutex_unlock(&qca->hci_memdump_lock); 1174 } 1175 1176 } 1177 1178 static int qca_controller_memdump_event(struct hci_dev *hdev, 1179 struct sk_buff *skb) 1180 { 1181 struct hci_uart *hu = hci_get_drvdata(hdev); 1182 struct qca_data *qca = hu->priv; 1183 1184 set_bit(QCA_SSR_TRIGGERED, &qca->flags); 1185 skb_queue_tail(&qca->rx_memdump_q, skb); 1186 queue_work(qca->workqueue, &qca->ctrl_memdump_evt); 1187 1188 return 0; 1189 } 1190 1191 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb) 1192 { 1193 struct hci_uart *hu = hci_get_drvdata(hdev); 1194 struct qca_data *qca = hu->priv; 1195 1196 if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) { 1197 struct hci_event_hdr *hdr = (void *)skb->data; 1198 1199 /* For the WCN3990 the vendor command for a baudrate change 1200 * isn't sent as synchronous HCI command, because the 1201 * controller sends the corresponding vendor event with the 1202 * new baudrate. The event is received and properly decoded 1203 * after changing the baudrate of the host port. It needs to 1204 * be dropped, otherwise it can be misinterpreted as 1205 * response to a later firmware download command (also a 1206 * vendor command). 1207 */ 1208 1209 if (hdr->evt == HCI_EV_VENDOR) 1210 complete(&qca->drop_ev_comp); 1211 1212 kfree_skb(skb); 1213 1214 return 0; 1215 } 1216 /* We receive chip memory dump as an event packet, With a dedicated 1217 * handler followed by a hardware error event. When this event is 1218 * received we store dump into a file before closing hci. This 1219 * dump will help in triaging the issues. 1220 */ 1221 if ((skb->data[0] == HCI_VENDOR_PKT) && 1222 (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE)) 1223 return qca_controller_memdump_event(hdev, skb); 1224 1225 return hci_recv_frame(hdev, skb); 1226 } 1227 1228 #define QCA_IBS_SLEEP_IND_EVENT \ 1229 .type = HCI_IBS_SLEEP_IND, \ 1230 .hlen = 0, \ 1231 .loff = 0, \ 1232 .lsize = 0, \ 1233 .maxlen = HCI_MAX_IBS_SIZE 1234 1235 #define QCA_IBS_WAKE_IND_EVENT \ 1236 .type = HCI_IBS_WAKE_IND, \ 1237 .hlen = 0, \ 1238 .loff = 0, \ 1239 .lsize = 0, \ 1240 .maxlen = HCI_MAX_IBS_SIZE 1241 1242 #define QCA_IBS_WAKE_ACK_EVENT \ 1243 .type = HCI_IBS_WAKE_ACK, \ 1244 .hlen = 0, \ 1245 .loff = 0, \ 1246 .lsize = 0, \ 1247 .maxlen = HCI_MAX_IBS_SIZE 1248 1249 static const struct h4_recv_pkt qca_recv_pkts[] = { 1250 { H4_RECV_ACL, .recv = qca_recv_acl_data }, 1251 { H4_RECV_SCO, .recv = hci_recv_frame }, 1252 { H4_RECV_EVENT, .recv = qca_recv_event }, 1253 { QCA_IBS_WAKE_IND_EVENT, .recv = qca_ibs_wake_ind }, 1254 { QCA_IBS_WAKE_ACK_EVENT, .recv = qca_ibs_wake_ack }, 1255 { QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind }, 1256 }; 1257 1258 static int qca_recv(struct hci_uart *hu, const void *data, int count) 1259 { 1260 struct qca_data *qca = hu->priv; 1261 1262 if (!test_bit(HCI_UART_REGISTERED, &hu->flags)) 1263 return -EUNATCH; 1264 1265 qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count, 1266 qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts)); 1267 if (IS_ERR(qca->rx_skb)) { 1268 int err = PTR_ERR(qca->rx_skb); 1269 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err); 1270 qca->rx_skb = NULL; 1271 return err; 1272 } 1273 1274 return count; 1275 } 1276 1277 static struct sk_buff *qca_dequeue(struct hci_uart *hu) 1278 { 1279 struct qca_data *qca = hu->priv; 1280 1281 return skb_dequeue(&qca->txq); 1282 } 1283 1284 static uint8_t qca_get_baudrate_value(int speed) 1285 { 1286 switch (speed) { 1287 case 9600: 1288 return QCA_BAUDRATE_9600; 1289 case 19200: 1290 return QCA_BAUDRATE_19200; 1291 case 38400: 1292 return QCA_BAUDRATE_38400; 1293 case 57600: 1294 return QCA_BAUDRATE_57600; 1295 case 115200: 1296 return QCA_BAUDRATE_115200; 1297 case 230400: 1298 return QCA_BAUDRATE_230400; 1299 case 460800: 1300 return QCA_BAUDRATE_460800; 1301 case 500000: 1302 return QCA_BAUDRATE_500000; 1303 case 921600: 1304 return QCA_BAUDRATE_921600; 1305 case 1000000: 1306 return QCA_BAUDRATE_1000000; 1307 case 2000000: 1308 return QCA_BAUDRATE_2000000; 1309 case 3000000: 1310 return QCA_BAUDRATE_3000000; 1311 case 3200000: 1312 return QCA_BAUDRATE_3200000; 1313 case 3500000: 1314 return QCA_BAUDRATE_3500000; 1315 default: 1316 return QCA_BAUDRATE_115200; 1317 } 1318 } 1319 1320 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate) 1321 { 1322 struct hci_uart *hu = hci_get_drvdata(hdev); 1323 struct qca_data *qca = hu->priv; 1324 struct sk_buff *skb; 1325 u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 }; 1326 1327 if (baudrate > QCA_BAUDRATE_3200000) 1328 return -EINVAL; 1329 1330 cmd[4] = baudrate; 1331 1332 skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL); 1333 if (!skb) { 1334 bt_dev_err(hdev, "Failed to allocate baudrate packet"); 1335 return -ENOMEM; 1336 } 1337 1338 /* Assign commands to change baudrate and packet type. */ 1339 skb_put_data(skb, cmd, sizeof(cmd)); 1340 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 1341 1342 skb_queue_tail(&qca->txq, skb); 1343 hci_uart_tx_wakeup(hu); 1344 1345 /* Wait for the baudrate change request to be sent */ 1346 1347 while (!skb_queue_empty(&qca->txq)) 1348 usleep_range(100, 200); 1349 1350 if (hu->serdev) 1351 serdev_device_wait_until_sent(hu->serdev, 1352 msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS)); 1353 1354 /* Give the controller time to process the request */ 1355 switch (qca_soc_type(hu)) { 1356 case QCA_WCN3988: 1357 case QCA_WCN3990: 1358 case QCA_WCN3991: 1359 case QCA_WCN3998: 1360 case QCA_WCN6750: 1361 case QCA_WCN6855: 1362 case QCA_WCN7850: 1363 usleep_range(1000, 10000); 1364 break; 1365 1366 default: 1367 msleep(300); 1368 } 1369 1370 return 0; 1371 } 1372 1373 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed) 1374 { 1375 if (hu->serdev) 1376 serdev_device_set_baudrate(hu->serdev, speed); 1377 else 1378 hci_uart_set_baudrate(hu, speed); 1379 } 1380 1381 static int qca_send_power_pulse(struct hci_uart *hu, bool on) 1382 { 1383 int ret; 1384 int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS); 1385 u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE; 1386 1387 /* These power pulses are single byte command which are sent 1388 * at required baudrate to wcn3990. On wcn3990, we have an external 1389 * circuit at Tx pin which decodes the pulse sent at specific baudrate. 1390 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT 1391 * and also we use the same power inputs to turn on and off for 1392 * Wi-Fi/BT. Powering up the power sources will not enable BT, until 1393 * we send a power on pulse at 115200 bps. This algorithm will help to 1394 * save power. Disabling hardware flow control is mandatory while 1395 * sending power pulses to SoC. 1396 */ 1397 bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd); 1398 1399 serdev_device_write_flush(hu->serdev); 1400 hci_uart_set_flow_control(hu, true); 1401 ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd)); 1402 if (ret < 0) { 1403 bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd); 1404 return ret; 1405 } 1406 1407 serdev_device_wait_until_sent(hu->serdev, timeout); 1408 hci_uart_set_flow_control(hu, false); 1409 1410 /* Give to controller time to boot/shutdown */ 1411 if (on) 1412 msleep(100); 1413 else 1414 usleep_range(1000, 10000); 1415 1416 return 0; 1417 } 1418 1419 static unsigned int qca_get_speed(struct hci_uart *hu, 1420 enum qca_speed_type speed_type) 1421 { 1422 unsigned int speed = 0; 1423 1424 if (speed_type == QCA_INIT_SPEED) { 1425 if (hu->init_speed) 1426 speed = hu->init_speed; 1427 else if (hu->proto->init_speed) 1428 speed = hu->proto->init_speed; 1429 } else { 1430 if (hu->oper_speed) 1431 speed = hu->oper_speed; 1432 else if (hu->proto->oper_speed) 1433 speed = hu->proto->oper_speed; 1434 } 1435 1436 return speed; 1437 } 1438 1439 static int qca_check_speeds(struct hci_uart *hu) 1440 { 1441 switch (qca_soc_type(hu)) { 1442 case QCA_WCN3988: 1443 case QCA_WCN3990: 1444 case QCA_WCN3991: 1445 case QCA_WCN3998: 1446 case QCA_WCN6750: 1447 case QCA_WCN6855: 1448 case QCA_WCN7850: 1449 if (!qca_get_speed(hu, QCA_INIT_SPEED) && 1450 !qca_get_speed(hu, QCA_OPER_SPEED)) 1451 return -EINVAL; 1452 break; 1453 1454 default: 1455 if (!qca_get_speed(hu, QCA_INIT_SPEED) || 1456 !qca_get_speed(hu, QCA_OPER_SPEED)) 1457 return -EINVAL; 1458 } 1459 1460 return 0; 1461 } 1462 1463 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type) 1464 { 1465 unsigned int speed, qca_baudrate; 1466 struct qca_data *qca = hu->priv; 1467 int ret = 0; 1468 1469 if (speed_type == QCA_INIT_SPEED) { 1470 speed = qca_get_speed(hu, QCA_INIT_SPEED); 1471 if (speed) 1472 host_set_baudrate(hu, speed); 1473 } else { 1474 enum qca_btsoc_type soc_type = qca_soc_type(hu); 1475 1476 speed = qca_get_speed(hu, QCA_OPER_SPEED); 1477 if (!speed) 1478 return 0; 1479 1480 /* Disable flow control for wcn3990 to deassert RTS while 1481 * changing the baudrate of chip and host. 1482 */ 1483 switch (soc_type) { 1484 case QCA_WCN3988: 1485 case QCA_WCN3990: 1486 case QCA_WCN3991: 1487 case QCA_WCN3998: 1488 case QCA_WCN6750: 1489 case QCA_WCN6855: 1490 case QCA_WCN7850: 1491 hci_uart_set_flow_control(hu, true); 1492 break; 1493 1494 default: 1495 break; 1496 } 1497 1498 switch (soc_type) { 1499 case QCA_WCN3990: 1500 reinit_completion(&qca->drop_ev_comp); 1501 set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags); 1502 break; 1503 1504 default: 1505 break; 1506 } 1507 1508 qca_baudrate = qca_get_baudrate_value(speed); 1509 bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed); 1510 ret = qca_set_baudrate(hu->hdev, qca_baudrate); 1511 if (ret) 1512 goto error; 1513 1514 host_set_baudrate(hu, speed); 1515 1516 error: 1517 switch (soc_type) { 1518 case QCA_WCN3988: 1519 case QCA_WCN3990: 1520 case QCA_WCN3991: 1521 case QCA_WCN3998: 1522 case QCA_WCN6750: 1523 case QCA_WCN6855: 1524 case QCA_WCN7850: 1525 hci_uart_set_flow_control(hu, false); 1526 break; 1527 1528 default: 1529 break; 1530 } 1531 1532 switch (soc_type) { 1533 case QCA_WCN3990: 1534 /* Wait for the controller to send the vendor event 1535 * for the baudrate change command. 1536 */ 1537 if (!wait_for_completion_timeout(&qca->drop_ev_comp, 1538 msecs_to_jiffies(100))) { 1539 bt_dev_err(hu->hdev, 1540 "Failed to change controller baudrate\n"); 1541 ret = -ETIMEDOUT; 1542 } 1543 1544 clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags); 1545 break; 1546 1547 default: 1548 break; 1549 } 1550 } 1551 1552 return ret; 1553 } 1554 1555 static int qca_send_crashbuffer(struct hci_uart *hu) 1556 { 1557 struct qca_data *qca = hu->priv; 1558 struct sk_buff *skb; 1559 1560 skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL); 1561 if (!skb) { 1562 bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet"); 1563 return -ENOMEM; 1564 } 1565 1566 /* We forcefully crash the controller, by sending 0xfb byte for 1567 * 1024 times. We also might have chance of losing data, To be 1568 * on safer side we send 1096 bytes to the SoC. 1569 */ 1570 memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE, 1571 QCA_CRASHBYTE_PACKET_LEN); 1572 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 1573 bt_dev_info(hu->hdev, "crash the soc to collect controller dump"); 1574 skb_queue_tail(&qca->txq, skb); 1575 hci_uart_tx_wakeup(hu); 1576 1577 return 0; 1578 } 1579 1580 static void qca_wait_for_dump_collection(struct hci_dev *hdev) 1581 { 1582 struct hci_uart *hu = hci_get_drvdata(hdev); 1583 struct qca_data *qca = hu->priv; 1584 1585 wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION, 1586 TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS); 1587 1588 clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); 1589 } 1590 1591 static void qca_hw_error(struct hci_dev *hdev, u8 code) 1592 { 1593 struct hci_uart *hu = hci_get_drvdata(hdev); 1594 struct qca_data *qca = hu->priv; 1595 1596 set_bit(QCA_SSR_TRIGGERED, &qca->flags); 1597 set_bit(QCA_HW_ERROR_EVENT, &qca->flags); 1598 bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state); 1599 1600 if (qca->memdump_state == QCA_MEMDUMP_IDLE) { 1601 /* If hardware error event received for other than QCA 1602 * soc memory dump event, then we need to crash the SOC 1603 * and wait here for 8 seconds to get the dump packets. 1604 * This will block main thread to be on hold until we 1605 * collect dump. 1606 */ 1607 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); 1608 qca_send_crashbuffer(hu); 1609 qca_wait_for_dump_collection(hdev); 1610 } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) { 1611 /* Let us wait here until memory dump collected or 1612 * memory dump timer expired. 1613 */ 1614 bt_dev_info(hdev, "waiting for dump to complete"); 1615 qca_wait_for_dump_collection(hdev); 1616 } 1617 1618 mutex_lock(&qca->hci_memdump_lock); 1619 if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) { 1620 bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout"); 1621 hci_devcd_abort(hu->hdev); 1622 if (qca->qca_memdump) { 1623 kfree(qca->qca_memdump); 1624 qca->qca_memdump = NULL; 1625 } 1626 qca->memdump_state = QCA_MEMDUMP_TIMEOUT; 1627 cancel_delayed_work(&qca->ctrl_memdump_timeout); 1628 } 1629 mutex_unlock(&qca->hci_memdump_lock); 1630 1631 if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT || 1632 qca->memdump_state == QCA_MEMDUMP_COLLECTED) { 1633 cancel_work_sync(&qca->ctrl_memdump_evt); 1634 skb_queue_purge(&qca->rx_memdump_q); 1635 } 1636 1637 clear_bit(QCA_HW_ERROR_EVENT, &qca->flags); 1638 } 1639 1640 static void qca_cmd_timeout(struct hci_dev *hdev) 1641 { 1642 struct hci_uart *hu = hci_get_drvdata(hdev); 1643 struct qca_data *qca = hu->priv; 1644 1645 set_bit(QCA_SSR_TRIGGERED, &qca->flags); 1646 if (qca->memdump_state == QCA_MEMDUMP_IDLE) { 1647 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); 1648 qca_send_crashbuffer(hu); 1649 qca_wait_for_dump_collection(hdev); 1650 } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) { 1651 /* Let us wait here until memory dump collected or 1652 * memory dump timer expired. 1653 */ 1654 bt_dev_info(hdev, "waiting for dump to complete"); 1655 qca_wait_for_dump_collection(hdev); 1656 } 1657 1658 mutex_lock(&qca->hci_memdump_lock); 1659 if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) { 1660 qca->memdump_state = QCA_MEMDUMP_TIMEOUT; 1661 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) { 1662 /* Inject hw error event to reset the device 1663 * and driver. 1664 */ 1665 hci_reset_dev(hu->hdev); 1666 } 1667 } 1668 mutex_unlock(&qca->hci_memdump_lock); 1669 } 1670 1671 static bool qca_wakeup(struct hci_dev *hdev) 1672 { 1673 struct hci_uart *hu = hci_get_drvdata(hdev); 1674 bool wakeup; 1675 1676 if (!hu->serdev) 1677 return true; 1678 1679 /* BT SoC attached through the serial bus is handled by the serdev driver. 1680 * So we need to use the device handle of the serdev driver to get the 1681 * status of device may wakeup. 1682 */ 1683 wakeup = device_may_wakeup(&hu->serdev->ctrl->dev); 1684 bt_dev_dbg(hu->hdev, "wakeup status : %d", wakeup); 1685 1686 return wakeup; 1687 } 1688 1689 static int qca_port_reopen(struct hci_uart *hu) 1690 { 1691 int ret; 1692 1693 /* Now the device is in ready state to communicate with host. 1694 * To sync host with device we need to reopen port. 1695 * Without this, we will have RTS and CTS synchronization 1696 * issues. 1697 */ 1698 serdev_device_close(hu->serdev); 1699 ret = serdev_device_open(hu->serdev); 1700 if (ret) { 1701 bt_dev_err(hu->hdev, "failed to open port"); 1702 return ret; 1703 } 1704 1705 hci_uart_set_flow_control(hu, false); 1706 1707 return 0; 1708 } 1709 1710 static int qca_regulator_init(struct hci_uart *hu) 1711 { 1712 enum qca_btsoc_type soc_type = qca_soc_type(hu); 1713 struct qca_serdev *qcadev; 1714 int ret; 1715 bool sw_ctrl_state; 1716 1717 /* Check for vregs status, may be hci down has turned 1718 * off the voltage regulator. 1719 */ 1720 qcadev = serdev_device_get_drvdata(hu->serdev); 1721 1722 if (!qcadev->bt_power->vregs_on) { 1723 serdev_device_close(hu->serdev); 1724 ret = qca_regulator_enable(qcadev); 1725 if (ret) 1726 return ret; 1727 1728 ret = serdev_device_open(hu->serdev); 1729 if (ret) { 1730 bt_dev_err(hu->hdev, "failed to open port"); 1731 return ret; 1732 } 1733 } 1734 1735 switch (soc_type) { 1736 case QCA_WCN3988: 1737 case QCA_WCN3990: 1738 case QCA_WCN3991: 1739 case QCA_WCN3998: 1740 /* Forcefully enable wcn399x to enter in to boot mode. */ 1741 host_set_baudrate(hu, 2400); 1742 ret = qca_send_power_pulse(hu, false); 1743 if (ret) 1744 return ret; 1745 break; 1746 1747 default: 1748 break; 1749 } 1750 1751 /* For wcn6750 need to enable gpio bt_en */ 1752 if (qcadev->bt_en) { 1753 gpiod_set_value_cansleep(qcadev->bt_en, 0); 1754 msleep(50); 1755 gpiod_set_value_cansleep(qcadev->bt_en, 1); 1756 msleep(50); 1757 if (qcadev->sw_ctrl) { 1758 sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl); 1759 bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state); 1760 } 1761 } 1762 1763 qca_set_speed(hu, QCA_INIT_SPEED); 1764 1765 switch (soc_type) { 1766 case QCA_WCN3988: 1767 case QCA_WCN3990: 1768 case QCA_WCN3991: 1769 case QCA_WCN3998: 1770 ret = qca_send_power_pulse(hu, true); 1771 if (ret) 1772 return ret; 1773 break; 1774 1775 default: 1776 break; 1777 } 1778 1779 return qca_port_reopen(hu); 1780 } 1781 1782 static int qca_power_on(struct hci_dev *hdev) 1783 { 1784 struct hci_uart *hu = hci_get_drvdata(hdev); 1785 enum qca_btsoc_type soc_type = qca_soc_type(hu); 1786 struct qca_serdev *qcadev; 1787 struct qca_data *qca = hu->priv; 1788 int ret = 0; 1789 1790 /* Non-serdev device usually is powered by external power 1791 * and don't need additional action in driver for power on 1792 */ 1793 if (!hu->serdev) 1794 return 0; 1795 1796 switch (soc_type) { 1797 case QCA_WCN3988: 1798 case QCA_WCN3990: 1799 case QCA_WCN3991: 1800 case QCA_WCN3998: 1801 case QCA_WCN6750: 1802 case QCA_WCN6855: 1803 case QCA_WCN7850: 1804 case QCA_QCA6390: 1805 ret = qca_regulator_init(hu); 1806 break; 1807 1808 default: 1809 qcadev = serdev_device_get_drvdata(hu->serdev); 1810 if (qcadev->bt_en) { 1811 gpiod_set_value_cansleep(qcadev->bt_en, 1); 1812 /* Controller needs time to bootup. */ 1813 msleep(150); 1814 } 1815 } 1816 1817 clear_bit(QCA_BT_OFF, &qca->flags); 1818 return ret; 1819 } 1820 1821 static void hci_coredump_qca(struct hci_dev *hdev) 1822 { 1823 int err; 1824 static const u8 param[] = { 0x26 }; 1825 1826 err = __hci_cmd_send(hdev, 0xfc0c, 1, param); 1827 if (err < 0) 1828 bt_dev_err(hdev, "%s: trigger crash failed (%d)", __func__, err); 1829 } 1830 1831 static int qca_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id) 1832 { 1833 /* QCA uses 1 as non-HCI data path id for HFP */ 1834 *data_path_id = 1; 1835 return 0; 1836 } 1837 1838 static int qca_configure_hfp_offload(struct hci_dev *hdev) 1839 { 1840 bt_dev_info(hdev, "HFP non-HCI data transport is supported"); 1841 hdev->get_data_path_id = qca_get_data_path_id; 1842 /* Do not need to send HCI_Configure_Data_Path to configure non-HCI 1843 * data transport path for QCA controllers, so set below field as NULL. 1844 */ 1845 hdev->get_codec_config_data = NULL; 1846 return 0; 1847 } 1848 1849 static int qca_setup(struct hci_uart *hu) 1850 { 1851 struct hci_dev *hdev = hu->hdev; 1852 struct qca_data *qca = hu->priv; 1853 unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200; 1854 unsigned int retries = 0; 1855 enum qca_btsoc_type soc_type = qca_soc_type(hu); 1856 const char *firmware_name = qca_get_firmware_name(hu); 1857 int ret; 1858 struct qca_btsoc_version ver; 1859 struct qca_serdev *qcadev; 1860 const char *soc_name; 1861 1862 ret = qca_check_speeds(hu); 1863 if (ret) 1864 return ret; 1865 1866 clear_bit(QCA_ROM_FW, &qca->flags); 1867 /* Patch downloading has to be done without IBS mode */ 1868 set_bit(QCA_IBS_DISABLED, &qca->flags); 1869 1870 /* Enable controller to do both LE scan and BR/EDR inquiry 1871 * simultaneously. 1872 */ 1873 set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks); 1874 1875 switch (soc_type) { 1876 case QCA_QCA2066: 1877 soc_name = "qca2066"; 1878 break; 1879 1880 case QCA_WCN3988: 1881 case QCA_WCN3990: 1882 case QCA_WCN3991: 1883 case QCA_WCN3998: 1884 soc_name = "wcn399x"; 1885 break; 1886 1887 case QCA_WCN6750: 1888 soc_name = "wcn6750"; 1889 break; 1890 1891 case QCA_WCN6855: 1892 soc_name = "wcn6855"; 1893 break; 1894 1895 case QCA_WCN7850: 1896 soc_name = "wcn7850"; 1897 break; 1898 1899 default: 1900 soc_name = "ROME/QCA6390"; 1901 } 1902 bt_dev_info(hdev, "setting up %s", soc_name); 1903 1904 qca->memdump_state = QCA_MEMDUMP_IDLE; 1905 1906 retry: 1907 ret = qca_power_on(hdev); 1908 if (ret) 1909 goto out; 1910 1911 clear_bit(QCA_SSR_TRIGGERED, &qca->flags); 1912 1913 switch (soc_type) { 1914 case QCA_WCN3988: 1915 case QCA_WCN3990: 1916 case QCA_WCN3991: 1917 case QCA_WCN3998: 1918 case QCA_WCN6750: 1919 case QCA_WCN6855: 1920 case QCA_WCN7850: 1921 qcadev = serdev_device_get_drvdata(hu->serdev); 1922 if (qcadev->bdaddr_property_broken) 1923 set_bit(HCI_QUIRK_BDADDR_PROPERTY_BROKEN, &hdev->quirks); 1924 1925 hci_set_aosp_capable(hdev); 1926 1927 ret = qca_read_soc_version(hdev, &ver, soc_type); 1928 if (ret) 1929 goto out; 1930 break; 1931 1932 default: 1933 qca_set_speed(hu, QCA_INIT_SPEED); 1934 } 1935 1936 /* Setup user speed if needed */ 1937 speed = qca_get_speed(hu, QCA_OPER_SPEED); 1938 if (speed) { 1939 ret = qca_set_speed(hu, QCA_OPER_SPEED); 1940 if (ret) 1941 goto out; 1942 1943 qca_baudrate = qca_get_baudrate_value(speed); 1944 } 1945 1946 switch (soc_type) { 1947 case QCA_WCN3988: 1948 case QCA_WCN3990: 1949 case QCA_WCN3991: 1950 case QCA_WCN3998: 1951 case QCA_WCN6750: 1952 case QCA_WCN6855: 1953 case QCA_WCN7850: 1954 break; 1955 1956 default: 1957 /* Get QCA version information */ 1958 ret = qca_read_soc_version(hdev, &ver, soc_type); 1959 if (ret) 1960 goto out; 1961 } 1962 1963 /* Setup patch / NVM configurations */ 1964 ret = qca_uart_setup(hdev, qca_baudrate, soc_type, ver, 1965 firmware_name); 1966 if (!ret) { 1967 clear_bit(QCA_IBS_DISABLED, &qca->flags); 1968 qca_debugfs_init(hdev); 1969 hu->hdev->hw_error = qca_hw_error; 1970 hu->hdev->cmd_timeout = qca_cmd_timeout; 1971 if (hu->serdev) { 1972 if (device_can_wakeup(hu->serdev->ctrl->dev.parent)) 1973 hu->hdev->wakeup = qca_wakeup; 1974 } 1975 } else if (ret == -ENOENT) { 1976 /* No patch/nvm-config found, run with original fw/config */ 1977 set_bit(QCA_ROM_FW, &qca->flags); 1978 ret = 0; 1979 } else if (ret == -EAGAIN) { 1980 /* 1981 * Userspace firmware loader will return -EAGAIN in case no 1982 * patch/nvm-config is found, so run with original fw/config. 1983 */ 1984 set_bit(QCA_ROM_FW, &qca->flags); 1985 ret = 0; 1986 } 1987 1988 out: 1989 if (ret && retries < MAX_INIT_RETRIES) { 1990 bt_dev_warn(hdev, "Retry BT power ON:%d", retries); 1991 qca_power_shutdown(hu); 1992 if (hu->serdev) { 1993 serdev_device_close(hu->serdev); 1994 ret = serdev_device_open(hu->serdev); 1995 if (ret) { 1996 bt_dev_err(hdev, "failed to open port"); 1997 return ret; 1998 } 1999 } 2000 retries++; 2001 goto retry; 2002 } 2003 2004 /* Setup bdaddr */ 2005 if (soc_type == QCA_ROME) 2006 hu->hdev->set_bdaddr = qca_set_bdaddr_rome; 2007 else 2008 hu->hdev->set_bdaddr = qca_set_bdaddr; 2009 2010 if (soc_type == QCA_QCA2066) 2011 qca_configure_hfp_offload(hdev); 2012 2013 qca->fw_version = le16_to_cpu(ver.patch_ver); 2014 qca->controller_id = le16_to_cpu(ver.rom_ver); 2015 hci_devcd_register(hdev, hci_coredump_qca, qca_dmp_hdr, NULL); 2016 2017 return ret; 2018 } 2019 2020 static const struct hci_uart_proto qca_proto = { 2021 .id = HCI_UART_QCA, 2022 .name = "QCA", 2023 .manufacturer = 29, 2024 .init_speed = 115200, 2025 .oper_speed = 3000000, 2026 .open = qca_open, 2027 .close = qca_close, 2028 .flush = qca_flush, 2029 .setup = qca_setup, 2030 .recv = qca_recv, 2031 .enqueue = qca_enqueue, 2032 .dequeue = qca_dequeue, 2033 }; 2034 2035 static const struct qca_device_data qca_soc_data_wcn3988 __maybe_unused = { 2036 .soc_type = QCA_WCN3988, 2037 .vregs = (struct qca_vreg []) { 2038 { "vddio", 15000 }, 2039 { "vddxo", 80000 }, 2040 { "vddrf", 300000 }, 2041 { "vddch0", 450000 }, 2042 }, 2043 .num_vregs = 4, 2044 }; 2045 2046 static const struct qca_device_data qca_soc_data_wcn3990 __maybe_unused = { 2047 .soc_type = QCA_WCN3990, 2048 .vregs = (struct qca_vreg []) { 2049 { "vddio", 15000 }, 2050 { "vddxo", 80000 }, 2051 { "vddrf", 300000 }, 2052 { "vddch0", 450000 }, 2053 }, 2054 .num_vregs = 4, 2055 }; 2056 2057 static const struct qca_device_data qca_soc_data_wcn3991 __maybe_unused = { 2058 .soc_type = QCA_WCN3991, 2059 .vregs = (struct qca_vreg []) { 2060 { "vddio", 15000 }, 2061 { "vddxo", 80000 }, 2062 { "vddrf", 300000 }, 2063 { "vddch0", 450000 }, 2064 }, 2065 .num_vregs = 4, 2066 .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES, 2067 }; 2068 2069 static const struct qca_device_data qca_soc_data_wcn3998 __maybe_unused = { 2070 .soc_type = QCA_WCN3998, 2071 .vregs = (struct qca_vreg []) { 2072 { "vddio", 10000 }, 2073 { "vddxo", 80000 }, 2074 { "vddrf", 300000 }, 2075 { "vddch0", 450000 }, 2076 }, 2077 .num_vregs = 4, 2078 }; 2079 2080 static const struct qca_device_data qca_soc_data_qca2066 __maybe_unused = { 2081 .soc_type = QCA_QCA2066, 2082 .num_vregs = 0, 2083 .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES, 2084 }; 2085 2086 static const struct qca_device_data qca_soc_data_qca6390 __maybe_unused = { 2087 .soc_type = QCA_QCA6390, 2088 .num_vregs = 0, 2089 }; 2090 2091 static const struct qca_device_data qca_soc_data_wcn6750 __maybe_unused = { 2092 .soc_type = QCA_WCN6750, 2093 .vregs = (struct qca_vreg []) { 2094 { "vddio", 5000 }, 2095 { "vddaon", 26000 }, 2096 { "vddbtcxmx", 126000 }, 2097 { "vddrfacmn", 12500 }, 2098 { "vddrfa0p8", 102000 }, 2099 { "vddrfa1p7", 302000 }, 2100 { "vddrfa1p2", 257000 }, 2101 { "vddrfa2p2", 1700000 }, 2102 { "vddasd", 200 }, 2103 }, 2104 .num_vregs = 9, 2105 .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES, 2106 }; 2107 2108 static const struct qca_device_data qca_soc_data_wcn6855 __maybe_unused = { 2109 .soc_type = QCA_WCN6855, 2110 .vregs = (struct qca_vreg []) { 2111 { "vddio", 5000 }, 2112 { "vddbtcxmx", 126000 }, 2113 { "vddrfacmn", 12500 }, 2114 { "vddrfa0p8", 102000 }, 2115 { "vddrfa1p7", 302000 }, 2116 { "vddrfa1p2", 257000 }, 2117 }, 2118 .num_vregs = 6, 2119 .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES, 2120 }; 2121 2122 static const struct qca_device_data qca_soc_data_wcn7850 __maybe_unused = { 2123 .soc_type = QCA_WCN7850, 2124 .vregs = (struct qca_vreg []) { 2125 { "vddio", 5000 }, 2126 { "vddaon", 26000 }, 2127 { "vdddig", 126000 }, 2128 { "vddrfa0p8", 102000 }, 2129 { "vddrfa1p2", 257000 }, 2130 { "vddrfa1p9", 302000 }, 2131 }, 2132 .num_vregs = 6, 2133 .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES, 2134 }; 2135 2136 static void qca_power_shutdown(struct hci_uart *hu) 2137 { 2138 struct qca_serdev *qcadev; 2139 struct qca_data *qca = hu->priv; 2140 unsigned long flags; 2141 enum qca_btsoc_type soc_type = qca_soc_type(hu); 2142 bool sw_ctrl_state; 2143 struct qca_power *power; 2144 2145 /* From this point we go into power off state. But serial port is 2146 * still open, stop queueing the IBS data and flush all the buffered 2147 * data in skb's. 2148 */ 2149 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 2150 set_bit(QCA_IBS_DISABLED, &qca->flags); 2151 qca_flush(hu); 2152 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 2153 2154 /* Non-serdev device usually is powered by external power 2155 * and don't need additional action in driver for power down 2156 */ 2157 if (!hu->serdev) 2158 return; 2159 2160 qcadev = serdev_device_get_drvdata(hu->serdev); 2161 power = qcadev->bt_power; 2162 2163 if (power && power->pwrseq) { 2164 pwrseq_power_off(power->pwrseq); 2165 set_bit(QCA_BT_OFF, &qca->flags); 2166 return; 2167 } 2168 2169 switch (soc_type) { 2170 case QCA_WCN3988: 2171 case QCA_WCN3990: 2172 case QCA_WCN3991: 2173 case QCA_WCN3998: 2174 host_set_baudrate(hu, 2400); 2175 qca_send_power_pulse(hu, false); 2176 qca_regulator_disable(qcadev); 2177 break; 2178 2179 case QCA_WCN6750: 2180 case QCA_WCN6855: 2181 gpiod_set_value_cansleep(qcadev->bt_en, 0); 2182 msleep(100); 2183 qca_regulator_disable(qcadev); 2184 if (qcadev->sw_ctrl) { 2185 sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl); 2186 bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state); 2187 } 2188 break; 2189 2190 default: 2191 gpiod_set_value_cansleep(qcadev->bt_en, 0); 2192 } 2193 2194 set_bit(QCA_BT_OFF, &qca->flags); 2195 } 2196 2197 static int qca_power_off(struct hci_dev *hdev) 2198 { 2199 struct hci_uart *hu = hci_get_drvdata(hdev); 2200 struct qca_data *qca = hu->priv; 2201 enum qca_btsoc_type soc_type = qca_soc_type(hu); 2202 2203 hu->hdev->hw_error = NULL; 2204 hu->hdev->cmd_timeout = NULL; 2205 2206 del_timer_sync(&qca->wake_retrans_timer); 2207 del_timer_sync(&qca->tx_idle_timer); 2208 2209 /* Stop sending shutdown command if soc crashes. */ 2210 if (soc_type != QCA_ROME 2211 && qca->memdump_state == QCA_MEMDUMP_IDLE) { 2212 qca_send_pre_shutdown_cmd(hdev); 2213 usleep_range(8000, 10000); 2214 } 2215 2216 qca_power_shutdown(hu); 2217 return 0; 2218 } 2219 2220 static int qca_regulator_enable(struct qca_serdev *qcadev) 2221 { 2222 struct qca_power *power = qcadev->bt_power; 2223 int ret; 2224 2225 if (power->pwrseq) 2226 return pwrseq_power_on(power->pwrseq); 2227 2228 /* Already enabled */ 2229 if (power->vregs_on) 2230 return 0; 2231 2232 BT_DBG("enabling %d regulators)", power->num_vregs); 2233 2234 ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk); 2235 if (ret) 2236 return ret; 2237 2238 power->vregs_on = true; 2239 2240 ret = clk_prepare_enable(qcadev->susclk); 2241 if (ret) 2242 qca_regulator_disable(qcadev); 2243 2244 return ret; 2245 } 2246 2247 static void qca_regulator_disable(struct qca_serdev *qcadev) 2248 { 2249 struct qca_power *power; 2250 2251 if (!qcadev) 2252 return; 2253 2254 power = qcadev->bt_power; 2255 2256 /* Already disabled? */ 2257 if (!power->vregs_on) 2258 return; 2259 2260 regulator_bulk_disable(power->num_vregs, power->vreg_bulk); 2261 power->vregs_on = false; 2262 2263 clk_disable_unprepare(qcadev->susclk); 2264 } 2265 2266 static int qca_init_regulators(struct qca_power *qca, 2267 const struct qca_vreg *vregs, size_t num_vregs) 2268 { 2269 struct regulator_bulk_data *bulk; 2270 int ret; 2271 int i; 2272 2273 bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL); 2274 if (!bulk) 2275 return -ENOMEM; 2276 2277 for (i = 0; i < num_vregs; i++) 2278 bulk[i].supply = vregs[i].name; 2279 2280 ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk); 2281 if (ret < 0) 2282 return ret; 2283 2284 for (i = 0; i < num_vregs; i++) { 2285 ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA); 2286 if (ret) 2287 return ret; 2288 } 2289 2290 qca->vreg_bulk = bulk; 2291 qca->num_vregs = num_vregs; 2292 2293 return 0; 2294 } 2295 2296 static void qca_clk_disable_unprepare(void *data) 2297 { 2298 struct clk *clk = data; 2299 2300 clk_disable_unprepare(clk); 2301 } 2302 2303 static int qca_serdev_probe(struct serdev_device *serdev) 2304 { 2305 struct qca_serdev *qcadev; 2306 struct hci_dev *hdev; 2307 const struct qca_device_data *data; 2308 int err; 2309 bool power_ctrl_enabled = true; 2310 2311 qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL); 2312 if (!qcadev) 2313 return -ENOMEM; 2314 2315 qcadev->serdev_hu.serdev = serdev; 2316 data = device_get_match_data(&serdev->dev); 2317 serdev_device_set_drvdata(serdev, qcadev); 2318 device_property_read_string(&serdev->dev, "firmware-name", 2319 &qcadev->firmware_name); 2320 device_property_read_u32(&serdev->dev, "max-speed", 2321 &qcadev->oper_speed); 2322 if (!qcadev->oper_speed) 2323 BT_DBG("UART will pick default operating speed"); 2324 2325 qcadev->bdaddr_property_broken = device_property_read_bool(&serdev->dev, 2326 "qcom,local-bd-address-broken"); 2327 2328 if (data) 2329 qcadev->btsoc_type = data->soc_type; 2330 else 2331 qcadev->btsoc_type = QCA_ROME; 2332 2333 switch (qcadev->btsoc_type) { 2334 case QCA_WCN3988: 2335 case QCA_WCN3990: 2336 case QCA_WCN3991: 2337 case QCA_WCN3998: 2338 case QCA_WCN6750: 2339 case QCA_WCN6855: 2340 case QCA_WCN7850: 2341 case QCA_QCA6390: 2342 qcadev->bt_power = devm_kzalloc(&serdev->dev, 2343 sizeof(struct qca_power), 2344 GFP_KERNEL); 2345 if (!qcadev->bt_power) 2346 return -ENOMEM; 2347 break; 2348 default: 2349 break; 2350 } 2351 2352 switch (qcadev->btsoc_type) { 2353 case QCA_WCN6855: 2354 case QCA_WCN7850: 2355 if (!device_property_present(&serdev->dev, "enable-gpios")) { 2356 /* 2357 * Backward compatibility with old DT sources. If the 2358 * node doesn't have the 'enable-gpios' property then 2359 * let's use the power sequencer. Otherwise, let's 2360 * drive everything outselves. 2361 */ 2362 qcadev->bt_power->pwrseq = devm_pwrseq_get(&serdev->dev, 2363 "bluetooth"); 2364 if (IS_ERR(qcadev->bt_power->pwrseq)) 2365 return PTR_ERR(qcadev->bt_power->pwrseq); 2366 2367 break; 2368 } 2369 fallthrough; 2370 case QCA_WCN3988: 2371 case QCA_WCN3990: 2372 case QCA_WCN3991: 2373 case QCA_WCN3998: 2374 case QCA_WCN6750: 2375 qcadev->bt_power->dev = &serdev->dev; 2376 err = qca_init_regulators(qcadev->bt_power, data->vregs, 2377 data->num_vregs); 2378 if (err) { 2379 BT_ERR("Failed to init regulators:%d", err); 2380 return err; 2381 } 2382 2383 qcadev->bt_power->vregs_on = false; 2384 2385 qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable", 2386 GPIOD_OUT_LOW); 2387 if (IS_ERR(qcadev->bt_en) && 2388 (data->soc_type == QCA_WCN6750 || 2389 data->soc_type == QCA_WCN6855)) { 2390 dev_err(&serdev->dev, "failed to acquire BT_EN gpio\n"); 2391 return PTR_ERR(qcadev->bt_en); 2392 } 2393 2394 if (!qcadev->bt_en) 2395 power_ctrl_enabled = false; 2396 2397 qcadev->sw_ctrl = devm_gpiod_get_optional(&serdev->dev, "swctrl", 2398 GPIOD_IN); 2399 if (IS_ERR(qcadev->sw_ctrl) && 2400 (data->soc_type == QCA_WCN6750 || 2401 data->soc_type == QCA_WCN6855 || 2402 data->soc_type == QCA_WCN7850)) { 2403 dev_err(&serdev->dev, "failed to acquire SW_CTRL gpio\n"); 2404 return PTR_ERR(qcadev->sw_ctrl); 2405 } 2406 2407 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL); 2408 if (IS_ERR(qcadev->susclk)) { 2409 dev_err(&serdev->dev, "failed to acquire clk\n"); 2410 return PTR_ERR(qcadev->susclk); 2411 } 2412 break; 2413 2414 case QCA_QCA6390: 2415 if (dev_of_node(&serdev->dev)) { 2416 qcadev->bt_power->pwrseq = devm_pwrseq_get(&serdev->dev, 2417 "bluetooth"); 2418 if (IS_ERR(qcadev->bt_power->pwrseq)) 2419 return PTR_ERR(qcadev->bt_power->pwrseq); 2420 break; 2421 } 2422 fallthrough; 2423 2424 default: 2425 qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable", 2426 GPIOD_OUT_LOW); 2427 if (IS_ERR(qcadev->bt_en)) { 2428 dev_err(&serdev->dev, "failed to acquire enable gpio\n"); 2429 return PTR_ERR(qcadev->bt_en); 2430 } 2431 2432 if (!qcadev->bt_en) 2433 power_ctrl_enabled = false; 2434 2435 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL); 2436 if (IS_ERR(qcadev->susclk)) { 2437 dev_warn(&serdev->dev, "failed to acquire clk\n"); 2438 return PTR_ERR(qcadev->susclk); 2439 } 2440 err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ); 2441 if (err) 2442 return err; 2443 2444 err = clk_prepare_enable(qcadev->susclk); 2445 if (err) 2446 return err; 2447 2448 err = devm_add_action_or_reset(&serdev->dev, 2449 qca_clk_disable_unprepare, 2450 qcadev->susclk); 2451 if (err) 2452 return err; 2453 2454 } 2455 2456 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto); 2457 if (err) { 2458 BT_ERR("serdev registration failed"); 2459 return err; 2460 } 2461 2462 hdev = qcadev->serdev_hu.hdev; 2463 2464 if (power_ctrl_enabled) { 2465 set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks); 2466 hdev->shutdown = qca_power_off; 2467 } 2468 2469 if (data) { 2470 /* Wideband speech support must be set per driver since it can't 2471 * be queried via hci. Same with the valid le states quirk. 2472 */ 2473 if (data->capabilities & QCA_CAP_WIDEBAND_SPEECH) 2474 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, 2475 &hdev->quirks); 2476 2477 if (!(data->capabilities & QCA_CAP_VALID_LE_STATES)) 2478 set_bit(HCI_QUIRK_BROKEN_LE_STATES, &hdev->quirks); 2479 } 2480 2481 return 0; 2482 } 2483 2484 static void qca_serdev_remove(struct serdev_device *serdev) 2485 { 2486 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev); 2487 struct qca_power *power = qcadev->bt_power; 2488 2489 switch (qcadev->btsoc_type) { 2490 case QCA_WCN3988: 2491 case QCA_WCN3990: 2492 case QCA_WCN3991: 2493 case QCA_WCN3998: 2494 case QCA_WCN6750: 2495 case QCA_WCN6855: 2496 case QCA_WCN7850: 2497 if (power->vregs_on) 2498 qca_power_shutdown(&qcadev->serdev_hu); 2499 break; 2500 default: 2501 break; 2502 } 2503 2504 hci_uart_unregister_device(&qcadev->serdev_hu); 2505 } 2506 2507 static void qca_serdev_shutdown(struct device *dev) 2508 { 2509 int ret; 2510 int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS); 2511 struct serdev_device *serdev = to_serdev_device(dev); 2512 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev); 2513 struct hci_uart *hu = &qcadev->serdev_hu; 2514 struct hci_dev *hdev = hu->hdev; 2515 const u8 ibs_wake_cmd[] = { 0xFD }; 2516 const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 }; 2517 2518 if (qcadev->btsoc_type == QCA_QCA6390) { 2519 /* The purpose of sending the VSC is to reset SOC into a initial 2520 * state and the state will ensure next hdev->setup() success. 2521 * if HCI_QUIRK_NON_PERSISTENT_SETUP is set, it means that 2522 * hdev->setup() can do its job regardless of SoC state, so 2523 * don't need to send the VSC. 2524 * if HCI_SETUP is set, it means that hdev->setup() was never 2525 * invoked and the SOC is already in the initial state, so 2526 * don't also need to send the VSC. 2527 */ 2528 if (test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks) || 2529 hci_dev_test_flag(hdev, HCI_SETUP)) 2530 return; 2531 2532 /* The serdev must be in open state when conrol logic arrives 2533 * here, so also fix the use-after-free issue caused by that 2534 * the serdev is flushed or wrote after it is closed. 2535 */ 2536 serdev_device_write_flush(serdev); 2537 ret = serdev_device_write_buf(serdev, ibs_wake_cmd, 2538 sizeof(ibs_wake_cmd)); 2539 if (ret < 0) { 2540 BT_ERR("QCA send IBS_WAKE_IND error: %d", ret); 2541 return; 2542 } 2543 serdev_device_wait_until_sent(serdev, timeout); 2544 usleep_range(8000, 10000); 2545 2546 serdev_device_write_flush(serdev); 2547 ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd, 2548 sizeof(edl_reset_soc_cmd)); 2549 if (ret < 0) { 2550 BT_ERR("QCA send EDL_RESET_REQ error: %d", ret); 2551 return; 2552 } 2553 serdev_device_wait_until_sent(serdev, timeout); 2554 usleep_range(8000, 10000); 2555 } 2556 } 2557 2558 static int __maybe_unused qca_suspend(struct device *dev) 2559 { 2560 struct serdev_device *serdev = to_serdev_device(dev); 2561 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev); 2562 struct hci_uart *hu = &qcadev->serdev_hu; 2563 struct qca_data *qca = hu->priv; 2564 unsigned long flags; 2565 bool tx_pending = false; 2566 int ret = 0; 2567 u8 cmd; 2568 u32 wait_timeout = 0; 2569 2570 set_bit(QCA_SUSPENDING, &qca->flags); 2571 2572 /* if BT SoC is running with default firmware then it does not 2573 * support in-band sleep 2574 */ 2575 if (test_bit(QCA_ROM_FW, &qca->flags)) 2576 return 0; 2577 2578 /* During SSR after memory dump collection, controller will be 2579 * powered off and then powered on.If controller is powered off 2580 * during SSR then we should wait until SSR is completed. 2581 */ 2582 if (test_bit(QCA_BT_OFF, &qca->flags) && 2583 !test_bit(QCA_SSR_TRIGGERED, &qca->flags)) 2584 return 0; 2585 2586 if (test_bit(QCA_IBS_DISABLED, &qca->flags) || 2587 test_bit(QCA_SSR_TRIGGERED, &qca->flags)) { 2588 wait_timeout = test_bit(QCA_SSR_TRIGGERED, &qca->flags) ? 2589 IBS_DISABLE_SSR_TIMEOUT_MS : 2590 FW_DOWNLOAD_TIMEOUT_MS; 2591 2592 /* QCA_IBS_DISABLED flag is set to true, During FW download 2593 * and during memory dump collection. It is reset to false, 2594 * After FW download complete. 2595 */ 2596 wait_on_bit_timeout(&qca->flags, QCA_IBS_DISABLED, 2597 TASK_UNINTERRUPTIBLE, msecs_to_jiffies(wait_timeout)); 2598 2599 if (test_bit(QCA_IBS_DISABLED, &qca->flags)) { 2600 bt_dev_err(hu->hdev, "SSR or FW download time out"); 2601 ret = -ETIMEDOUT; 2602 goto error; 2603 } 2604 } 2605 2606 cancel_work_sync(&qca->ws_awake_device); 2607 cancel_work_sync(&qca->ws_awake_rx); 2608 2609 spin_lock_irqsave_nested(&qca->hci_ibs_lock, 2610 flags, SINGLE_DEPTH_NESTING); 2611 2612 switch (qca->tx_ibs_state) { 2613 case HCI_IBS_TX_WAKING: 2614 del_timer(&qca->wake_retrans_timer); 2615 fallthrough; 2616 case HCI_IBS_TX_AWAKE: 2617 del_timer(&qca->tx_idle_timer); 2618 2619 serdev_device_write_flush(hu->serdev); 2620 cmd = HCI_IBS_SLEEP_IND; 2621 ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd)); 2622 2623 if (ret < 0) { 2624 BT_ERR("Failed to send SLEEP to device"); 2625 break; 2626 } 2627 2628 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP; 2629 qca->ibs_sent_slps++; 2630 tx_pending = true; 2631 break; 2632 2633 case HCI_IBS_TX_ASLEEP: 2634 break; 2635 2636 default: 2637 BT_ERR("Spurious tx state %d", qca->tx_ibs_state); 2638 ret = -EINVAL; 2639 break; 2640 } 2641 2642 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 2643 2644 if (ret < 0) 2645 goto error; 2646 2647 if (tx_pending) { 2648 serdev_device_wait_until_sent(hu->serdev, 2649 msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS)); 2650 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu); 2651 } 2652 2653 /* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going 2654 * to sleep, so that the packet does not wake the system later. 2655 */ 2656 ret = wait_event_interruptible_timeout(qca->suspend_wait_q, 2657 qca->rx_ibs_state == HCI_IBS_RX_ASLEEP, 2658 msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS)); 2659 if (ret == 0) { 2660 ret = -ETIMEDOUT; 2661 goto error; 2662 } 2663 2664 return 0; 2665 2666 error: 2667 clear_bit(QCA_SUSPENDING, &qca->flags); 2668 2669 return ret; 2670 } 2671 2672 static int __maybe_unused qca_resume(struct device *dev) 2673 { 2674 struct serdev_device *serdev = to_serdev_device(dev); 2675 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev); 2676 struct hci_uart *hu = &qcadev->serdev_hu; 2677 struct qca_data *qca = hu->priv; 2678 2679 clear_bit(QCA_SUSPENDING, &qca->flags); 2680 2681 return 0; 2682 } 2683 2684 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume); 2685 2686 #ifdef CONFIG_OF 2687 static const struct of_device_id qca_bluetooth_of_match[] = { 2688 { .compatible = "qcom,qca2066-bt", .data = &qca_soc_data_qca2066}, 2689 { .compatible = "qcom,qca6174-bt" }, 2690 { .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390}, 2691 { .compatible = "qcom,qca9377-bt" }, 2692 { .compatible = "qcom,wcn3988-bt", .data = &qca_soc_data_wcn3988}, 2693 { .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990}, 2694 { .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991}, 2695 { .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998}, 2696 { .compatible = "qcom,wcn6750-bt", .data = &qca_soc_data_wcn6750}, 2697 { .compatible = "qcom,wcn6855-bt", .data = &qca_soc_data_wcn6855}, 2698 { .compatible = "qcom,wcn7850-bt", .data = &qca_soc_data_wcn7850}, 2699 { /* sentinel */ } 2700 }; 2701 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match); 2702 #endif 2703 2704 #ifdef CONFIG_ACPI 2705 static const struct acpi_device_id qca_bluetooth_acpi_match[] = { 2706 { "QCOM2066", (kernel_ulong_t)&qca_soc_data_qca2066 }, 2707 { "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 }, 2708 { "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 }, 2709 { "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 }, 2710 { "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 }, 2711 { }, 2712 }; 2713 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match); 2714 #endif 2715 2716 #ifdef CONFIG_DEV_COREDUMP 2717 static void hciqca_coredump(struct device *dev) 2718 { 2719 struct serdev_device *serdev = to_serdev_device(dev); 2720 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev); 2721 struct hci_uart *hu = &qcadev->serdev_hu; 2722 struct hci_dev *hdev = hu->hdev; 2723 2724 if (hdev->dump.coredump) 2725 hdev->dump.coredump(hdev); 2726 } 2727 #endif 2728 2729 static struct serdev_device_driver qca_serdev_driver = { 2730 .probe = qca_serdev_probe, 2731 .remove = qca_serdev_remove, 2732 .driver = { 2733 .name = "hci_uart_qca", 2734 .of_match_table = of_match_ptr(qca_bluetooth_of_match), 2735 .acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match), 2736 .shutdown = qca_serdev_shutdown, 2737 .pm = &qca_pm_ops, 2738 #ifdef CONFIG_DEV_COREDUMP 2739 .coredump = hciqca_coredump, 2740 #endif 2741 }, 2742 }; 2743 2744 int __init qca_init(void) 2745 { 2746 serdev_device_driver_register(&qca_serdev_driver); 2747 2748 return hci_uart_register_proto(&qca_proto); 2749 } 2750 2751 int __exit qca_deinit(void) 2752 { 2753 serdev_device_driver_unregister(&qca_serdev_driver); 2754 2755 return hci_uart_unregister_proto(&qca_proto); 2756 } 2757