1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Bluetooth Software UART Qualcomm protocol 4 * 5 * HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management 6 * protocol extension to H4. 7 * 8 * Copyright (C) 2007 Texas Instruments, Inc. 9 * Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved. 10 * 11 * Acknowledgements: 12 * This file is based on hci_ll.c, which was... 13 * Written by Ohad Ben-Cohen <ohad@bencohen.org> 14 * which was in turn based on hci_h4.c, which was written 15 * by Maxim Krasnyansky and Marcel Holtmann. 16 */ 17 18 #include <linux/kernel.h> 19 #include <linux/clk.h> 20 #include <linux/completion.h> 21 #include <linux/debugfs.h> 22 #include <linux/delay.h> 23 #include <linux/devcoredump.h> 24 #include <linux/device.h> 25 #include <linux/gpio/consumer.h> 26 #include <linux/mod_devicetable.h> 27 #include <linux/module.h> 28 #include <linux/of_device.h> 29 #include <linux/acpi.h> 30 #include <linux/platform_device.h> 31 #include <linux/regulator/consumer.h> 32 #include <linux/serdev.h> 33 #include <linux/mutex.h> 34 #include <asm/unaligned.h> 35 36 #include <net/bluetooth/bluetooth.h> 37 #include <net/bluetooth/hci_core.h> 38 39 #include "hci_uart.h" 40 #include "btqca.h" 41 42 /* HCI_IBS protocol messages */ 43 #define HCI_IBS_SLEEP_IND 0xFE 44 #define HCI_IBS_WAKE_IND 0xFD 45 #define HCI_IBS_WAKE_ACK 0xFC 46 #define HCI_MAX_IBS_SIZE 10 47 48 #define IBS_WAKE_RETRANS_TIMEOUT_MS 100 49 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS 40 50 #define IBS_HOST_TX_IDLE_TIMEOUT_MS 2000 51 #define CMD_TRANS_TIMEOUT_MS 100 52 #define MEMDUMP_TIMEOUT_MS 8000 53 54 /* susclk rate */ 55 #define SUSCLK_RATE_32KHZ 32768 56 57 /* Controller debug log header */ 58 #define QCA_DEBUG_HANDLE 0x2EDC 59 60 /* max retry count when init fails */ 61 #define MAX_INIT_RETRIES 3 62 63 /* Controller dump header */ 64 #define QCA_SSR_DUMP_HANDLE 0x0108 65 #define QCA_DUMP_PACKET_SIZE 255 66 #define QCA_LAST_SEQUENCE_NUM 0xFFFF 67 #define QCA_CRASHBYTE_PACKET_LEN 1096 68 #define QCA_MEMDUMP_BYTE 0xFB 69 70 enum qca_flags { 71 QCA_IBS_ENABLED, 72 QCA_DROP_VENDOR_EVENT, 73 QCA_SUSPENDING, 74 QCA_MEMDUMP_COLLECTION, 75 QCA_HW_ERROR_EVENT 76 }; 77 78 79 /* HCI_IBS transmit side sleep protocol states */ 80 enum tx_ibs_states { 81 HCI_IBS_TX_ASLEEP, 82 HCI_IBS_TX_WAKING, 83 HCI_IBS_TX_AWAKE, 84 }; 85 86 /* HCI_IBS receive side sleep protocol states */ 87 enum rx_states { 88 HCI_IBS_RX_ASLEEP, 89 HCI_IBS_RX_AWAKE, 90 }; 91 92 /* HCI_IBS transmit and receive side clock state vote */ 93 enum hci_ibs_clock_state_vote { 94 HCI_IBS_VOTE_STATS_UPDATE, 95 HCI_IBS_TX_VOTE_CLOCK_ON, 96 HCI_IBS_TX_VOTE_CLOCK_OFF, 97 HCI_IBS_RX_VOTE_CLOCK_ON, 98 HCI_IBS_RX_VOTE_CLOCK_OFF, 99 }; 100 101 /* Controller memory dump states */ 102 enum qca_memdump_states { 103 QCA_MEMDUMP_IDLE, 104 QCA_MEMDUMP_COLLECTING, 105 QCA_MEMDUMP_COLLECTED, 106 QCA_MEMDUMP_TIMEOUT, 107 }; 108 109 struct qca_memdump_data { 110 char *memdump_buf_head; 111 char *memdump_buf_tail; 112 u32 current_seq_no; 113 u32 received_dump; 114 }; 115 116 struct qca_memdump_event_hdr { 117 __u8 evt; 118 __u8 plen; 119 __u16 opcode; 120 __u16 seq_no; 121 __u8 reserved; 122 } __packed; 123 124 125 struct qca_dump_size { 126 u32 dump_size; 127 } __packed; 128 129 struct qca_data { 130 struct hci_uart *hu; 131 struct sk_buff *rx_skb; 132 struct sk_buff_head txq; 133 struct sk_buff_head tx_wait_q; /* HCI_IBS wait queue */ 134 struct sk_buff_head rx_memdump_q; /* Memdump wait queue */ 135 spinlock_t hci_ibs_lock; /* HCI_IBS state lock */ 136 u8 tx_ibs_state; /* HCI_IBS transmit side power state*/ 137 u8 rx_ibs_state; /* HCI_IBS receive side power state */ 138 bool tx_vote; /* Clock must be on for TX */ 139 bool rx_vote; /* Clock must be on for RX */ 140 struct timer_list tx_idle_timer; 141 u32 tx_idle_delay; 142 struct timer_list wake_retrans_timer; 143 u32 wake_retrans; 144 struct workqueue_struct *workqueue; 145 struct work_struct ws_awake_rx; 146 struct work_struct ws_awake_device; 147 struct work_struct ws_rx_vote_off; 148 struct work_struct ws_tx_vote_off; 149 struct work_struct ctrl_memdump_evt; 150 struct delayed_work ctrl_memdump_timeout; 151 struct qca_memdump_data *qca_memdump; 152 unsigned long flags; 153 struct completion drop_ev_comp; 154 wait_queue_head_t suspend_wait_q; 155 enum qca_memdump_states memdump_state; 156 struct mutex hci_memdump_lock; 157 158 /* For debugging purpose */ 159 u64 ibs_sent_wacks; 160 u64 ibs_sent_slps; 161 u64 ibs_sent_wakes; 162 u64 ibs_recv_wacks; 163 u64 ibs_recv_slps; 164 u64 ibs_recv_wakes; 165 u64 vote_last_jif; 166 u32 vote_on_ms; 167 u32 vote_off_ms; 168 u64 tx_votes_on; 169 u64 rx_votes_on; 170 u64 tx_votes_off; 171 u64 rx_votes_off; 172 u64 votes_on; 173 u64 votes_off; 174 }; 175 176 enum qca_speed_type { 177 QCA_INIT_SPEED = 1, 178 QCA_OPER_SPEED 179 }; 180 181 /* 182 * Voltage regulator information required for configuring the 183 * QCA Bluetooth chipset 184 */ 185 struct qca_vreg { 186 const char *name; 187 unsigned int load_uA; 188 }; 189 190 struct qca_vreg_data { 191 enum qca_btsoc_type soc_type; 192 struct qca_vreg *vregs; 193 size_t num_vregs; 194 }; 195 196 /* 197 * Platform data for the QCA Bluetooth power driver. 198 */ 199 struct qca_power { 200 struct device *dev; 201 struct regulator_bulk_data *vreg_bulk; 202 int num_vregs; 203 bool vregs_on; 204 }; 205 206 struct qca_serdev { 207 struct hci_uart serdev_hu; 208 struct gpio_desc *bt_en; 209 struct clk *susclk; 210 enum qca_btsoc_type btsoc_type; 211 struct qca_power *bt_power; 212 u32 init_speed; 213 u32 oper_speed; 214 const char *firmware_name; 215 }; 216 217 static int qca_regulator_enable(struct qca_serdev *qcadev); 218 static void qca_regulator_disable(struct qca_serdev *qcadev); 219 static void qca_power_shutdown(struct hci_uart *hu); 220 static int qca_power_off(struct hci_dev *hdev); 221 static void qca_controller_memdump(struct work_struct *work); 222 223 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu) 224 { 225 enum qca_btsoc_type soc_type; 226 227 if (hu->serdev) { 228 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev); 229 230 soc_type = qsd->btsoc_type; 231 } else { 232 soc_type = QCA_ROME; 233 } 234 235 return soc_type; 236 } 237 238 static const char *qca_get_firmware_name(struct hci_uart *hu) 239 { 240 if (hu->serdev) { 241 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev); 242 243 return qsd->firmware_name; 244 } else { 245 return NULL; 246 } 247 } 248 249 static void __serial_clock_on(struct tty_struct *tty) 250 { 251 /* TODO: Some chipset requires to enable UART clock on client 252 * side to save power consumption or manual work is required. 253 * Please put your code to control UART clock here if needed 254 */ 255 } 256 257 static void __serial_clock_off(struct tty_struct *tty) 258 { 259 /* TODO: Some chipset requires to disable UART clock on client 260 * side to save power consumption or manual work is required. 261 * Please put your code to control UART clock off here if needed 262 */ 263 } 264 265 /* serial_clock_vote needs to be called with the ibs lock held */ 266 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu) 267 { 268 struct qca_data *qca = hu->priv; 269 unsigned int diff; 270 271 bool old_vote = (qca->tx_vote | qca->rx_vote); 272 bool new_vote; 273 274 switch (vote) { 275 case HCI_IBS_VOTE_STATS_UPDATE: 276 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif); 277 278 if (old_vote) 279 qca->vote_off_ms += diff; 280 else 281 qca->vote_on_ms += diff; 282 return; 283 284 case HCI_IBS_TX_VOTE_CLOCK_ON: 285 qca->tx_vote = true; 286 qca->tx_votes_on++; 287 new_vote = true; 288 break; 289 290 case HCI_IBS_RX_VOTE_CLOCK_ON: 291 qca->rx_vote = true; 292 qca->rx_votes_on++; 293 new_vote = true; 294 break; 295 296 case HCI_IBS_TX_VOTE_CLOCK_OFF: 297 qca->tx_vote = false; 298 qca->tx_votes_off++; 299 new_vote = qca->rx_vote | qca->tx_vote; 300 break; 301 302 case HCI_IBS_RX_VOTE_CLOCK_OFF: 303 qca->rx_vote = false; 304 qca->rx_votes_off++; 305 new_vote = qca->rx_vote | qca->tx_vote; 306 break; 307 308 default: 309 BT_ERR("Voting irregularity"); 310 return; 311 } 312 313 if (new_vote != old_vote) { 314 if (new_vote) 315 __serial_clock_on(hu->tty); 316 else 317 __serial_clock_off(hu->tty); 318 319 BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false", 320 vote ? "true" : "false"); 321 322 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif); 323 324 if (new_vote) { 325 qca->votes_on++; 326 qca->vote_off_ms += diff; 327 } else { 328 qca->votes_off++; 329 qca->vote_on_ms += diff; 330 } 331 qca->vote_last_jif = jiffies; 332 } 333 } 334 335 /* Builds and sends an HCI_IBS command packet. 336 * These are very simple packets with only 1 cmd byte. 337 */ 338 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu) 339 { 340 int err = 0; 341 struct sk_buff *skb = NULL; 342 struct qca_data *qca = hu->priv; 343 344 BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd); 345 346 skb = bt_skb_alloc(1, GFP_ATOMIC); 347 if (!skb) { 348 BT_ERR("Failed to allocate memory for HCI_IBS packet"); 349 return -ENOMEM; 350 } 351 352 /* Assign HCI_IBS type */ 353 skb_put_u8(skb, cmd); 354 355 skb_queue_tail(&qca->txq, skb); 356 357 return err; 358 } 359 360 static void qca_wq_awake_device(struct work_struct *work) 361 { 362 struct qca_data *qca = container_of(work, struct qca_data, 363 ws_awake_device); 364 struct hci_uart *hu = qca->hu; 365 unsigned long retrans_delay; 366 unsigned long flags; 367 368 BT_DBG("hu %p wq awake device", hu); 369 370 /* Vote for serial clock */ 371 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu); 372 373 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 374 375 /* Send wake indication to device */ 376 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) 377 BT_ERR("Failed to send WAKE to device"); 378 379 qca->ibs_sent_wakes++; 380 381 /* Start retransmit timer */ 382 retrans_delay = msecs_to_jiffies(qca->wake_retrans); 383 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay); 384 385 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 386 387 /* Actually send the packets */ 388 hci_uart_tx_wakeup(hu); 389 } 390 391 static void qca_wq_awake_rx(struct work_struct *work) 392 { 393 struct qca_data *qca = container_of(work, struct qca_data, 394 ws_awake_rx); 395 struct hci_uart *hu = qca->hu; 396 unsigned long flags; 397 398 BT_DBG("hu %p wq awake rx", hu); 399 400 serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu); 401 402 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 403 qca->rx_ibs_state = HCI_IBS_RX_AWAKE; 404 405 /* Always acknowledge device wake up, 406 * sending IBS message doesn't count as TX ON. 407 */ 408 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) 409 BT_ERR("Failed to acknowledge device wake up"); 410 411 qca->ibs_sent_wacks++; 412 413 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 414 415 /* Actually send the packets */ 416 hci_uart_tx_wakeup(hu); 417 } 418 419 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work) 420 { 421 struct qca_data *qca = container_of(work, struct qca_data, 422 ws_rx_vote_off); 423 struct hci_uart *hu = qca->hu; 424 425 BT_DBG("hu %p rx clock vote off", hu); 426 427 serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu); 428 } 429 430 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work) 431 { 432 struct qca_data *qca = container_of(work, struct qca_data, 433 ws_tx_vote_off); 434 struct hci_uart *hu = qca->hu; 435 436 BT_DBG("hu %p tx clock vote off", hu); 437 438 /* Run HCI tx handling unlocked */ 439 hci_uart_tx_wakeup(hu); 440 441 /* Now that message queued to tty driver, vote for tty clocks off. 442 * It is up to the tty driver to pend the clocks off until tx done. 443 */ 444 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu); 445 } 446 447 static void hci_ibs_tx_idle_timeout(struct timer_list *t) 448 { 449 struct qca_data *qca = from_timer(qca, t, tx_idle_timer); 450 struct hci_uart *hu = qca->hu; 451 unsigned long flags; 452 453 BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state); 454 455 spin_lock_irqsave_nested(&qca->hci_ibs_lock, 456 flags, SINGLE_DEPTH_NESTING); 457 458 switch (qca->tx_ibs_state) { 459 case HCI_IBS_TX_AWAKE: 460 /* TX_IDLE, go to SLEEP */ 461 if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) { 462 BT_ERR("Failed to send SLEEP to device"); 463 break; 464 } 465 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP; 466 qca->ibs_sent_slps++; 467 queue_work(qca->workqueue, &qca->ws_tx_vote_off); 468 break; 469 470 case HCI_IBS_TX_ASLEEP: 471 case HCI_IBS_TX_WAKING: 472 /* Fall through */ 473 474 default: 475 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state); 476 break; 477 } 478 479 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 480 } 481 482 static void hci_ibs_wake_retrans_timeout(struct timer_list *t) 483 { 484 struct qca_data *qca = from_timer(qca, t, wake_retrans_timer); 485 struct hci_uart *hu = qca->hu; 486 unsigned long flags, retrans_delay; 487 bool retransmit = false; 488 489 BT_DBG("hu %p wake retransmit timeout in %d state", 490 hu, qca->tx_ibs_state); 491 492 spin_lock_irqsave_nested(&qca->hci_ibs_lock, 493 flags, SINGLE_DEPTH_NESTING); 494 495 /* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */ 496 if (test_bit(QCA_SUSPENDING, &qca->flags)) { 497 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 498 return; 499 } 500 501 switch (qca->tx_ibs_state) { 502 case HCI_IBS_TX_WAKING: 503 /* No WAKE_ACK, retransmit WAKE */ 504 retransmit = true; 505 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) { 506 BT_ERR("Failed to acknowledge device wake up"); 507 break; 508 } 509 qca->ibs_sent_wakes++; 510 retrans_delay = msecs_to_jiffies(qca->wake_retrans); 511 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay); 512 break; 513 514 case HCI_IBS_TX_ASLEEP: 515 case HCI_IBS_TX_AWAKE: 516 /* Fall through */ 517 518 default: 519 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state); 520 break; 521 } 522 523 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 524 525 if (retransmit) 526 hci_uart_tx_wakeup(hu); 527 } 528 529 530 static void qca_controller_memdump_timeout(struct work_struct *work) 531 { 532 struct qca_data *qca = container_of(work, struct qca_data, 533 ctrl_memdump_timeout.work); 534 struct hci_uart *hu = qca->hu; 535 536 mutex_lock(&qca->hci_memdump_lock); 537 if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) { 538 qca->memdump_state = QCA_MEMDUMP_TIMEOUT; 539 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) { 540 /* Inject hw error event to reset the device 541 * and driver. 542 */ 543 hci_reset_dev(hu->hdev); 544 } 545 } 546 547 mutex_unlock(&qca->hci_memdump_lock); 548 } 549 550 551 /* Initialize protocol */ 552 static int qca_open(struct hci_uart *hu) 553 { 554 struct qca_serdev *qcadev; 555 struct qca_data *qca; 556 557 BT_DBG("hu %p qca_open", hu); 558 559 if (!hci_uart_has_flow_control(hu)) 560 return -EOPNOTSUPP; 561 562 qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL); 563 if (!qca) 564 return -ENOMEM; 565 566 skb_queue_head_init(&qca->txq); 567 skb_queue_head_init(&qca->tx_wait_q); 568 skb_queue_head_init(&qca->rx_memdump_q); 569 spin_lock_init(&qca->hci_ibs_lock); 570 mutex_init(&qca->hci_memdump_lock); 571 qca->workqueue = alloc_ordered_workqueue("qca_wq", 0); 572 if (!qca->workqueue) { 573 BT_ERR("QCA Workqueue not initialized properly"); 574 kfree(qca); 575 return -ENOMEM; 576 } 577 578 INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx); 579 INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device); 580 INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off); 581 INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off); 582 INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump); 583 INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout, 584 qca_controller_memdump_timeout); 585 init_waitqueue_head(&qca->suspend_wait_q); 586 587 qca->hu = hu; 588 init_completion(&qca->drop_ev_comp); 589 590 /* Assume we start with both sides asleep -- extra wakes OK */ 591 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP; 592 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP; 593 594 qca->vote_last_jif = jiffies; 595 596 hu->priv = qca; 597 598 if (hu->serdev) { 599 qcadev = serdev_device_get_drvdata(hu->serdev); 600 if (qca_is_wcn399x(qcadev->btsoc_type)) { 601 hu->init_speed = qcadev->init_speed; 602 hu->oper_speed = qcadev->oper_speed; 603 } 604 } 605 606 timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0); 607 qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS; 608 609 timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0); 610 qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS; 611 612 BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u", 613 qca->tx_idle_delay, qca->wake_retrans); 614 615 return 0; 616 } 617 618 static void qca_debugfs_init(struct hci_dev *hdev) 619 { 620 struct hci_uart *hu = hci_get_drvdata(hdev); 621 struct qca_data *qca = hu->priv; 622 struct dentry *ibs_dir; 623 umode_t mode; 624 625 if (!hdev->debugfs) 626 return; 627 628 ibs_dir = debugfs_create_dir("ibs", hdev->debugfs); 629 630 /* read only */ 631 mode = S_IRUGO; 632 debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state); 633 debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state); 634 debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir, 635 &qca->ibs_sent_slps); 636 debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir, 637 &qca->ibs_sent_wakes); 638 debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir, 639 &qca->ibs_sent_wacks); 640 debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir, 641 &qca->ibs_recv_slps); 642 debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir, 643 &qca->ibs_recv_wakes); 644 debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir, 645 &qca->ibs_recv_wacks); 646 debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote); 647 debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on); 648 debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off); 649 debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote); 650 debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on); 651 debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off); 652 debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on); 653 debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off); 654 debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms); 655 debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms); 656 657 /* read/write */ 658 mode = S_IRUGO | S_IWUSR; 659 debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans); 660 debugfs_create_u32("tx_idle_delay", mode, ibs_dir, 661 &qca->tx_idle_delay); 662 } 663 664 /* Flush protocol data */ 665 static int qca_flush(struct hci_uart *hu) 666 { 667 struct qca_data *qca = hu->priv; 668 669 BT_DBG("hu %p qca flush", hu); 670 671 skb_queue_purge(&qca->tx_wait_q); 672 skb_queue_purge(&qca->txq); 673 674 return 0; 675 } 676 677 /* Close protocol */ 678 static int qca_close(struct hci_uart *hu) 679 { 680 struct qca_data *qca = hu->priv; 681 682 BT_DBG("hu %p qca close", hu); 683 684 serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu); 685 686 skb_queue_purge(&qca->tx_wait_q); 687 skb_queue_purge(&qca->txq); 688 skb_queue_purge(&qca->rx_memdump_q); 689 del_timer(&qca->tx_idle_timer); 690 del_timer(&qca->wake_retrans_timer); 691 destroy_workqueue(qca->workqueue); 692 qca->hu = NULL; 693 694 qca_power_shutdown(hu); 695 696 kfree_skb(qca->rx_skb); 697 698 hu->priv = NULL; 699 700 kfree(qca); 701 702 return 0; 703 } 704 705 /* Called upon a wake-up-indication from the device. 706 */ 707 static void device_want_to_wakeup(struct hci_uart *hu) 708 { 709 unsigned long flags; 710 struct qca_data *qca = hu->priv; 711 712 BT_DBG("hu %p want to wake up", hu); 713 714 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 715 716 qca->ibs_recv_wakes++; 717 718 /* Don't wake the rx up when suspending. */ 719 if (test_bit(QCA_SUSPENDING, &qca->flags)) { 720 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 721 return; 722 } 723 724 switch (qca->rx_ibs_state) { 725 case HCI_IBS_RX_ASLEEP: 726 /* Make sure clock is on - we may have turned clock off since 727 * receiving the wake up indicator awake rx clock. 728 */ 729 queue_work(qca->workqueue, &qca->ws_awake_rx); 730 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 731 return; 732 733 case HCI_IBS_RX_AWAKE: 734 /* Always acknowledge device wake up, 735 * sending IBS message doesn't count as TX ON. 736 */ 737 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) { 738 BT_ERR("Failed to acknowledge device wake up"); 739 break; 740 } 741 qca->ibs_sent_wacks++; 742 break; 743 744 default: 745 /* Any other state is illegal */ 746 BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d", 747 qca->rx_ibs_state); 748 break; 749 } 750 751 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 752 753 /* Actually send the packets */ 754 hci_uart_tx_wakeup(hu); 755 } 756 757 /* Called upon a sleep-indication from the device. 758 */ 759 static void device_want_to_sleep(struct hci_uart *hu) 760 { 761 unsigned long flags; 762 struct qca_data *qca = hu->priv; 763 764 BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state); 765 766 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 767 768 qca->ibs_recv_slps++; 769 770 switch (qca->rx_ibs_state) { 771 case HCI_IBS_RX_AWAKE: 772 /* Update state */ 773 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP; 774 /* Vote off rx clock under workqueue */ 775 queue_work(qca->workqueue, &qca->ws_rx_vote_off); 776 break; 777 778 case HCI_IBS_RX_ASLEEP: 779 break; 780 781 default: 782 /* Any other state is illegal */ 783 BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d", 784 qca->rx_ibs_state); 785 break; 786 } 787 788 wake_up_interruptible(&qca->suspend_wait_q); 789 790 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 791 } 792 793 /* Called upon wake-up-acknowledgement from the device 794 */ 795 static void device_woke_up(struct hci_uart *hu) 796 { 797 unsigned long flags, idle_delay; 798 struct qca_data *qca = hu->priv; 799 struct sk_buff *skb = NULL; 800 801 BT_DBG("hu %p woke up", hu); 802 803 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 804 805 qca->ibs_recv_wacks++; 806 807 /* Don't react to the wake-up-acknowledgment when suspending. */ 808 if (test_bit(QCA_SUSPENDING, &qca->flags)) { 809 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 810 return; 811 } 812 813 switch (qca->tx_ibs_state) { 814 case HCI_IBS_TX_AWAKE: 815 /* Expect one if we send 2 WAKEs */ 816 BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d", 817 qca->tx_ibs_state); 818 break; 819 820 case HCI_IBS_TX_WAKING: 821 /* Send pending packets */ 822 while ((skb = skb_dequeue(&qca->tx_wait_q))) 823 skb_queue_tail(&qca->txq, skb); 824 825 /* Switch timers and change state to HCI_IBS_TX_AWAKE */ 826 del_timer(&qca->wake_retrans_timer); 827 idle_delay = msecs_to_jiffies(qca->tx_idle_delay); 828 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay); 829 qca->tx_ibs_state = HCI_IBS_TX_AWAKE; 830 break; 831 832 case HCI_IBS_TX_ASLEEP: 833 /* Fall through */ 834 835 default: 836 BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d", 837 qca->tx_ibs_state); 838 break; 839 } 840 841 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 842 843 /* Actually send the packets */ 844 hci_uart_tx_wakeup(hu); 845 } 846 847 /* Enqueue frame for transmittion (padding, crc, etc) may be called from 848 * two simultaneous tasklets. 849 */ 850 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb) 851 { 852 unsigned long flags = 0, idle_delay; 853 struct qca_data *qca = hu->priv; 854 855 BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb, 856 qca->tx_ibs_state); 857 858 /* Prepend skb with frame type */ 859 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1); 860 861 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 862 863 /* Don't go to sleep in middle of patch download or 864 * Out-Of-Band(GPIOs control) sleep is selected. 865 * Don't wake the device up when suspending. 866 */ 867 if (!test_bit(QCA_IBS_ENABLED, &qca->flags) || 868 test_bit(QCA_SUSPENDING, &qca->flags)) { 869 skb_queue_tail(&qca->txq, skb); 870 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 871 return 0; 872 } 873 874 /* Act according to current state */ 875 switch (qca->tx_ibs_state) { 876 case HCI_IBS_TX_AWAKE: 877 BT_DBG("Device awake, sending normally"); 878 skb_queue_tail(&qca->txq, skb); 879 idle_delay = msecs_to_jiffies(qca->tx_idle_delay); 880 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay); 881 break; 882 883 case HCI_IBS_TX_ASLEEP: 884 BT_DBG("Device asleep, waking up and queueing packet"); 885 /* Save packet for later */ 886 skb_queue_tail(&qca->tx_wait_q, skb); 887 888 qca->tx_ibs_state = HCI_IBS_TX_WAKING; 889 /* Schedule a work queue to wake up device */ 890 queue_work(qca->workqueue, &qca->ws_awake_device); 891 break; 892 893 case HCI_IBS_TX_WAKING: 894 BT_DBG("Device waking up, queueing packet"); 895 /* Transient state; just keep packet for later */ 896 skb_queue_tail(&qca->tx_wait_q, skb); 897 break; 898 899 default: 900 BT_ERR("Illegal tx state: %d (losing packet)", 901 qca->tx_ibs_state); 902 kfree_skb(skb); 903 break; 904 } 905 906 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 907 908 return 0; 909 } 910 911 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb) 912 { 913 struct hci_uart *hu = hci_get_drvdata(hdev); 914 915 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND); 916 917 device_want_to_sleep(hu); 918 919 kfree_skb(skb); 920 return 0; 921 } 922 923 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb) 924 { 925 struct hci_uart *hu = hci_get_drvdata(hdev); 926 927 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND); 928 929 device_want_to_wakeup(hu); 930 931 kfree_skb(skb); 932 return 0; 933 } 934 935 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb) 936 { 937 struct hci_uart *hu = hci_get_drvdata(hdev); 938 939 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK); 940 941 device_woke_up(hu); 942 943 kfree_skb(skb); 944 return 0; 945 } 946 947 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb) 948 { 949 /* We receive debug logs from chip as an ACL packets. 950 * Instead of sending the data to ACL to decode the 951 * received data, we are pushing them to the above layers 952 * as a diagnostic packet. 953 */ 954 if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE) 955 return hci_recv_diag(hdev, skb); 956 957 return hci_recv_frame(hdev, skb); 958 } 959 960 static void qca_controller_memdump(struct work_struct *work) 961 { 962 struct qca_data *qca = container_of(work, struct qca_data, 963 ctrl_memdump_evt); 964 struct hci_uart *hu = qca->hu; 965 struct sk_buff *skb; 966 struct qca_memdump_event_hdr *cmd_hdr; 967 struct qca_memdump_data *qca_memdump = qca->qca_memdump; 968 struct qca_dump_size *dump; 969 char *memdump_buf; 970 char nullBuff[QCA_DUMP_PACKET_SIZE] = { 0 }; 971 u16 seq_no; 972 u32 dump_size; 973 974 while ((skb = skb_dequeue(&qca->rx_memdump_q))) { 975 976 mutex_lock(&qca->hci_memdump_lock); 977 /* Skip processing the received packets if timeout detected. */ 978 if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT) { 979 mutex_unlock(&qca->hci_memdump_lock); 980 return; 981 } 982 983 if (!qca_memdump) { 984 qca_memdump = kzalloc(sizeof(struct qca_memdump_data), 985 GFP_ATOMIC); 986 if (!qca_memdump) { 987 mutex_unlock(&qca->hci_memdump_lock); 988 return; 989 } 990 991 qca->qca_memdump = qca_memdump; 992 } 993 994 qca->memdump_state = QCA_MEMDUMP_COLLECTING; 995 cmd_hdr = (void *) skb->data; 996 seq_no = __le16_to_cpu(cmd_hdr->seq_no); 997 skb_pull(skb, sizeof(struct qca_memdump_event_hdr)); 998 999 if (!seq_no) { 1000 1001 /* This is the first frame of memdump packet from 1002 * the controller, Disable IBS to recevie dump 1003 * with out any interruption, ideally time required for 1004 * the controller to send the dump is 8 seconds. let us 1005 * start timer to handle this asynchronous activity. 1006 */ 1007 clear_bit(QCA_IBS_ENABLED, &qca->flags); 1008 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); 1009 dump = (void *) skb->data; 1010 dump_size = __le32_to_cpu(dump->dump_size); 1011 if (!(dump_size)) { 1012 bt_dev_err(hu->hdev, "Rx invalid memdump size"); 1013 kfree_skb(skb); 1014 mutex_unlock(&qca->hci_memdump_lock); 1015 return; 1016 } 1017 1018 bt_dev_info(hu->hdev, "QCA collecting dump of size:%u", 1019 dump_size); 1020 queue_delayed_work(qca->workqueue, 1021 &qca->ctrl_memdump_timeout, 1022 msecs_to_jiffies(MEMDUMP_TIMEOUT_MS)); 1023 1024 skb_pull(skb, sizeof(dump_size)); 1025 memdump_buf = vmalloc(dump_size); 1026 qca_memdump->memdump_buf_head = memdump_buf; 1027 qca_memdump->memdump_buf_tail = memdump_buf; 1028 } 1029 1030 memdump_buf = qca_memdump->memdump_buf_tail; 1031 1032 /* If sequence no 0 is missed then there is no point in 1033 * accepting the other sequences. 1034 */ 1035 if (!memdump_buf) { 1036 bt_dev_err(hu->hdev, "QCA: Discarding other packets"); 1037 kfree(qca_memdump); 1038 kfree_skb(skb); 1039 qca->qca_memdump = NULL; 1040 mutex_unlock(&qca->hci_memdump_lock); 1041 return; 1042 } 1043 1044 /* There could be chance of missing some packets from 1045 * the controller. In such cases let us store the dummy 1046 * packets in the buffer. 1047 */ 1048 while ((seq_no > qca_memdump->current_seq_no + 1) && 1049 seq_no != QCA_LAST_SEQUENCE_NUM) { 1050 bt_dev_err(hu->hdev, "QCA controller missed packet:%d", 1051 qca_memdump->current_seq_no); 1052 memcpy(memdump_buf, nullBuff, QCA_DUMP_PACKET_SIZE); 1053 memdump_buf = memdump_buf + QCA_DUMP_PACKET_SIZE; 1054 qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE; 1055 qca_memdump->current_seq_no++; 1056 } 1057 1058 memcpy(memdump_buf, (unsigned char *) skb->data, skb->len); 1059 memdump_buf = memdump_buf + skb->len; 1060 qca_memdump->memdump_buf_tail = memdump_buf; 1061 qca_memdump->current_seq_no = seq_no + 1; 1062 qca_memdump->received_dump += skb->len; 1063 qca->qca_memdump = qca_memdump; 1064 kfree_skb(skb); 1065 if (seq_no == QCA_LAST_SEQUENCE_NUM) { 1066 bt_dev_info(hu->hdev, "QCA writing crash dump of size %d bytes", 1067 qca_memdump->received_dump); 1068 memdump_buf = qca_memdump->memdump_buf_head; 1069 dev_coredumpv(&hu->serdev->dev, memdump_buf, 1070 qca_memdump->received_dump, GFP_KERNEL); 1071 cancel_delayed_work(&qca->ctrl_memdump_timeout); 1072 kfree(qca->qca_memdump); 1073 qca->qca_memdump = NULL; 1074 qca->memdump_state = QCA_MEMDUMP_COLLECTED; 1075 clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); 1076 } 1077 1078 mutex_unlock(&qca->hci_memdump_lock); 1079 } 1080 1081 } 1082 1083 static int qca_controller_memdump_event(struct hci_dev *hdev, 1084 struct sk_buff *skb) 1085 { 1086 struct hci_uart *hu = hci_get_drvdata(hdev); 1087 struct qca_data *qca = hu->priv; 1088 1089 skb_queue_tail(&qca->rx_memdump_q, skb); 1090 queue_work(qca->workqueue, &qca->ctrl_memdump_evt); 1091 1092 return 0; 1093 } 1094 1095 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb) 1096 { 1097 struct hci_uart *hu = hci_get_drvdata(hdev); 1098 struct qca_data *qca = hu->priv; 1099 1100 if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) { 1101 struct hci_event_hdr *hdr = (void *)skb->data; 1102 1103 /* For the WCN3990 the vendor command for a baudrate change 1104 * isn't sent as synchronous HCI command, because the 1105 * controller sends the corresponding vendor event with the 1106 * new baudrate. The event is received and properly decoded 1107 * after changing the baudrate of the host port. It needs to 1108 * be dropped, otherwise it can be misinterpreted as 1109 * response to a later firmware download command (also a 1110 * vendor command). 1111 */ 1112 1113 if (hdr->evt == HCI_EV_VENDOR) 1114 complete(&qca->drop_ev_comp); 1115 1116 kfree_skb(skb); 1117 1118 return 0; 1119 } 1120 /* We receive chip memory dump as an event packet, With a dedicated 1121 * handler followed by a hardware error event. When this event is 1122 * received we store dump into a file before closing hci. This 1123 * dump will help in triaging the issues. 1124 */ 1125 if ((skb->data[0] == HCI_VENDOR_PKT) && 1126 (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE)) 1127 return qca_controller_memdump_event(hdev, skb); 1128 1129 return hci_recv_frame(hdev, skb); 1130 } 1131 1132 #define QCA_IBS_SLEEP_IND_EVENT \ 1133 .type = HCI_IBS_SLEEP_IND, \ 1134 .hlen = 0, \ 1135 .loff = 0, \ 1136 .lsize = 0, \ 1137 .maxlen = HCI_MAX_IBS_SIZE 1138 1139 #define QCA_IBS_WAKE_IND_EVENT \ 1140 .type = HCI_IBS_WAKE_IND, \ 1141 .hlen = 0, \ 1142 .loff = 0, \ 1143 .lsize = 0, \ 1144 .maxlen = HCI_MAX_IBS_SIZE 1145 1146 #define QCA_IBS_WAKE_ACK_EVENT \ 1147 .type = HCI_IBS_WAKE_ACK, \ 1148 .hlen = 0, \ 1149 .loff = 0, \ 1150 .lsize = 0, \ 1151 .maxlen = HCI_MAX_IBS_SIZE 1152 1153 static const struct h4_recv_pkt qca_recv_pkts[] = { 1154 { H4_RECV_ACL, .recv = qca_recv_acl_data }, 1155 { H4_RECV_SCO, .recv = hci_recv_frame }, 1156 { H4_RECV_EVENT, .recv = qca_recv_event }, 1157 { QCA_IBS_WAKE_IND_EVENT, .recv = qca_ibs_wake_ind }, 1158 { QCA_IBS_WAKE_ACK_EVENT, .recv = qca_ibs_wake_ack }, 1159 { QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind }, 1160 }; 1161 1162 static int qca_recv(struct hci_uart *hu, const void *data, int count) 1163 { 1164 struct qca_data *qca = hu->priv; 1165 1166 if (!test_bit(HCI_UART_REGISTERED, &hu->flags)) 1167 return -EUNATCH; 1168 1169 qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count, 1170 qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts)); 1171 if (IS_ERR(qca->rx_skb)) { 1172 int err = PTR_ERR(qca->rx_skb); 1173 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err); 1174 qca->rx_skb = NULL; 1175 return err; 1176 } 1177 1178 return count; 1179 } 1180 1181 static struct sk_buff *qca_dequeue(struct hci_uart *hu) 1182 { 1183 struct qca_data *qca = hu->priv; 1184 1185 return skb_dequeue(&qca->txq); 1186 } 1187 1188 static uint8_t qca_get_baudrate_value(int speed) 1189 { 1190 switch (speed) { 1191 case 9600: 1192 return QCA_BAUDRATE_9600; 1193 case 19200: 1194 return QCA_BAUDRATE_19200; 1195 case 38400: 1196 return QCA_BAUDRATE_38400; 1197 case 57600: 1198 return QCA_BAUDRATE_57600; 1199 case 115200: 1200 return QCA_BAUDRATE_115200; 1201 case 230400: 1202 return QCA_BAUDRATE_230400; 1203 case 460800: 1204 return QCA_BAUDRATE_460800; 1205 case 500000: 1206 return QCA_BAUDRATE_500000; 1207 case 921600: 1208 return QCA_BAUDRATE_921600; 1209 case 1000000: 1210 return QCA_BAUDRATE_1000000; 1211 case 2000000: 1212 return QCA_BAUDRATE_2000000; 1213 case 3000000: 1214 return QCA_BAUDRATE_3000000; 1215 case 3200000: 1216 return QCA_BAUDRATE_3200000; 1217 case 3500000: 1218 return QCA_BAUDRATE_3500000; 1219 default: 1220 return QCA_BAUDRATE_115200; 1221 } 1222 } 1223 1224 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate) 1225 { 1226 struct hci_uart *hu = hci_get_drvdata(hdev); 1227 struct qca_data *qca = hu->priv; 1228 struct sk_buff *skb; 1229 u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 }; 1230 1231 if (baudrate > QCA_BAUDRATE_3200000) 1232 return -EINVAL; 1233 1234 cmd[4] = baudrate; 1235 1236 skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL); 1237 if (!skb) { 1238 bt_dev_err(hdev, "Failed to allocate baudrate packet"); 1239 return -ENOMEM; 1240 } 1241 1242 /* Assign commands to change baudrate and packet type. */ 1243 skb_put_data(skb, cmd, sizeof(cmd)); 1244 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 1245 1246 skb_queue_tail(&qca->txq, skb); 1247 hci_uart_tx_wakeup(hu); 1248 1249 /* Wait for the baudrate change request to be sent */ 1250 1251 while (!skb_queue_empty(&qca->txq)) 1252 usleep_range(100, 200); 1253 1254 if (hu->serdev) 1255 serdev_device_wait_until_sent(hu->serdev, 1256 msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS)); 1257 1258 /* Give the controller time to process the request */ 1259 if (qca_is_wcn399x(qca_soc_type(hu))) 1260 msleep(10); 1261 else 1262 msleep(300); 1263 1264 return 0; 1265 } 1266 1267 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed) 1268 { 1269 if (hu->serdev) 1270 serdev_device_set_baudrate(hu->serdev, speed); 1271 else 1272 hci_uart_set_baudrate(hu, speed); 1273 } 1274 1275 static int qca_send_power_pulse(struct hci_uart *hu, bool on) 1276 { 1277 int ret; 1278 int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS); 1279 u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE; 1280 1281 /* These power pulses are single byte command which are sent 1282 * at required baudrate to wcn3990. On wcn3990, we have an external 1283 * circuit at Tx pin which decodes the pulse sent at specific baudrate. 1284 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT 1285 * and also we use the same power inputs to turn on and off for 1286 * Wi-Fi/BT. Powering up the power sources will not enable BT, until 1287 * we send a power on pulse at 115200 bps. This algorithm will help to 1288 * save power. Disabling hardware flow control is mandatory while 1289 * sending power pulses to SoC. 1290 */ 1291 bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd); 1292 1293 serdev_device_write_flush(hu->serdev); 1294 hci_uart_set_flow_control(hu, true); 1295 ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd)); 1296 if (ret < 0) { 1297 bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd); 1298 return ret; 1299 } 1300 1301 serdev_device_wait_until_sent(hu->serdev, timeout); 1302 hci_uart_set_flow_control(hu, false); 1303 1304 /* Give to controller time to boot/shutdown */ 1305 if (on) 1306 msleep(100); 1307 else 1308 msleep(10); 1309 1310 return 0; 1311 } 1312 1313 static unsigned int qca_get_speed(struct hci_uart *hu, 1314 enum qca_speed_type speed_type) 1315 { 1316 unsigned int speed = 0; 1317 1318 if (speed_type == QCA_INIT_SPEED) { 1319 if (hu->init_speed) 1320 speed = hu->init_speed; 1321 else if (hu->proto->init_speed) 1322 speed = hu->proto->init_speed; 1323 } else { 1324 if (hu->oper_speed) 1325 speed = hu->oper_speed; 1326 else if (hu->proto->oper_speed) 1327 speed = hu->proto->oper_speed; 1328 } 1329 1330 return speed; 1331 } 1332 1333 static int qca_check_speeds(struct hci_uart *hu) 1334 { 1335 if (qca_is_wcn399x(qca_soc_type(hu))) { 1336 if (!qca_get_speed(hu, QCA_INIT_SPEED) && 1337 !qca_get_speed(hu, QCA_OPER_SPEED)) 1338 return -EINVAL; 1339 } else { 1340 if (!qca_get_speed(hu, QCA_INIT_SPEED) || 1341 !qca_get_speed(hu, QCA_OPER_SPEED)) 1342 return -EINVAL; 1343 } 1344 1345 return 0; 1346 } 1347 1348 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type) 1349 { 1350 unsigned int speed, qca_baudrate; 1351 struct qca_data *qca = hu->priv; 1352 int ret = 0; 1353 1354 if (speed_type == QCA_INIT_SPEED) { 1355 speed = qca_get_speed(hu, QCA_INIT_SPEED); 1356 if (speed) 1357 host_set_baudrate(hu, speed); 1358 } else { 1359 enum qca_btsoc_type soc_type = qca_soc_type(hu); 1360 1361 speed = qca_get_speed(hu, QCA_OPER_SPEED); 1362 if (!speed) 1363 return 0; 1364 1365 /* Disable flow control for wcn3990 to deassert RTS while 1366 * changing the baudrate of chip and host. 1367 */ 1368 if (qca_is_wcn399x(soc_type)) 1369 hci_uart_set_flow_control(hu, true); 1370 1371 if (soc_type == QCA_WCN3990) { 1372 reinit_completion(&qca->drop_ev_comp); 1373 set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags); 1374 } 1375 1376 qca_baudrate = qca_get_baudrate_value(speed); 1377 bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed); 1378 ret = qca_set_baudrate(hu->hdev, qca_baudrate); 1379 if (ret) 1380 goto error; 1381 1382 host_set_baudrate(hu, speed); 1383 1384 error: 1385 if (qca_is_wcn399x(soc_type)) 1386 hci_uart_set_flow_control(hu, false); 1387 1388 if (soc_type == QCA_WCN3990) { 1389 /* Wait for the controller to send the vendor event 1390 * for the baudrate change command. 1391 */ 1392 if (!wait_for_completion_timeout(&qca->drop_ev_comp, 1393 msecs_to_jiffies(100))) { 1394 bt_dev_err(hu->hdev, 1395 "Failed to change controller baudrate\n"); 1396 ret = -ETIMEDOUT; 1397 } 1398 1399 clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags); 1400 } 1401 } 1402 1403 return ret; 1404 } 1405 1406 static int qca_send_crashbuffer(struct hci_uart *hu) 1407 { 1408 struct qca_data *qca = hu->priv; 1409 struct sk_buff *skb; 1410 1411 skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL); 1412 if (!skb) { 1413 bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet"); 1414 return -ENOMEM; 1415 } 1416 1417 /* We forcefully crash the controller, by sending 0xfb byte for 1418 * 1024 times. We also might have chance of losing data, To be 1419 * on safer side we send 1096 bytes to the SoC. 1420 */ 1421 memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE, 1422 QCA_CRASHBYTE_PACKET_LEN); 1423 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 1424 bt_dev_info(hu->hdev, "crash the soc to collect controller dump"); 1425 skb_queue_tail(&qca->txq, skb); 1426 hci_uart_tx_wakeup(hu); 1427 1428 return 0; 1429 } 1430 1431 static void qca_wait_for_dump_collection(struct hci_dev *hdev) 1432 { 1433 struct hci_uart *hu = hci_get_drvdata(hdev); 1434 struct qca_data *qca = hu->priv; 1435 1436 wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION, 1437 TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS); 1438 1439 clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); 1440 } 1441 1442 static void qca_hw_error(struct hci_dev *hdev, u8 code) 1443 { 1444 struct hci_uart *hu = hci_get_drvdata(hdev); 1445 struct qca_data *qca = hu->priv; 1446 struct qca_memdump_data *qca_memdump = qca->qca_memdump; 1447 char *memdump_buf = NULL; 1448 1449 set_bit(QCA_HW_ERROR_EVENT, &qca->flags); 1450 bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state); 1451 1452 if (qca->memdump_state == QCA_MEMDUMP_IDLE) { 1453 /* If hardware error event received for other than QCA 1454 * soc memory dump event, then we need to crash the SOC 1455 * and wait here for 8 seconds to get the dump packets. 1456 * This will block main thread to be on hold until we 1457 * collect dump. 1458 */ 1459 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); 1460 qca_send_crashbuffer(hu); 1461 qca_wait_for_dump_collection(hdev); 1462 } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) { 1463 /* Let us wait here until memory dump collected or 1464 * memory dump timer expired. 1465 */ 1466 bt_dev_info(hdev, "waiting for dump to complete"); 1467 qca_wait_for_dump_collection(hdev); 1468 } 1469 1470 if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) { 1471 bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout"); 1472 mutex_lock(&qca->hci_memdump_lock); 1473 if (qca_memdump) 1474 memdump_buf = qca_memdump->memdump_buf_head; 1475 vfree(memdump_buf); 1476 kfree(qca_memdump); 1477 qca->qca_memdump = NULL; 1478 qca->memdump_state = QCA_MEMDUMP_TIMEOUT; 1479 cancel_delayed_work(&qca->ctrl_memdump_timeout); 1480 skb_queue_purge(&qca->rx_memdump_q); 1481 mutex_unlock(&qca->hci_memdump_lock); 1482 cancel_work_sync(&qca->ctrl_memdump_evt); 1483 } 1484 1485 clear_bit(QCA_HW_ERROR_EVENT, &qca->flags); 1486 } 1487 1488 static void qca_cmd_timeout(struct hci_dev *hdev) 1489 { 1490 struct hci_uart *hu = hci_get_drvdata(hdev); 1491 struct qca_data *qca = hu->priv; 1492 1493 if (qca->memdump_state == QCA_MEMDUMP_IDLE) 1494 qca_send_crashbuffer(hu); 1495 else 1496 bt_dev_info(hdev, "Dump collection is in process"); 1497 } 1498 1499 static int qca_wcn3990_init(struct hci_uart *hu) 1500 { 1501 struct qca_serdev *qcadev; 1502 int ret; 1503 1504 /* Check for vregs status, may be hci down has turned 1505 * off the voltage regulator. 1506 */ 1507 qcadev = serdev_device_get_drvdata(hu->serdev); 1508 if (!qcadev->bt_power->vregs_on) { 1509 serdev_device_close(hu->serdev); 1510 ret = qca_regulator_enable(qcadev); 1511 if (ret) 1512 return ret; 1513 1514 ret = serdev_device_open(hu->serdev); 1515 if (ret) { 1516 bt_dev_err(hu->hdev, "failed to open port"); 1517 return ret; 1518 } 1519 } 1520 1521 /* Forcefully enable wcn3990 to enter in to boot mode. */ 1522 host_set_baudrate(hu, 2400); 1523 ret = qca_send_power_pulse(hu, false); 1524 if (ret) 1525 return ret; 1526 1527 qca_set_speed(hu, QCA_INIT_SPEED); 1528 ret = qca_send_power_pulse(hu, true); 1529 if (ret) 1530 return ret; 1531 1532 /* Now the device is in ready state to communicate with host. 1533 * To sync host with device we need to reopen port. 1534 * Without this, we will have RTS and CTS synchronization 1535 * issues. 1536 */ 1537 serdev_device_close(hu->serdev); 1538 ret = serdev_device_open(hu->serdev); 1539 if (ret) { 1540 bt_dev_err(hu->hdev, "failed to open port"); 1541 return ret; 1542 } 1543 1544 hci_uart_set_flow_control(hu, false); 1545 1546 return 0; 1547 } 1548 1549 static int qca_power_on(struct hci_dev *hdev) 1550 { 1551 struct hci_uart *hu = hci_get_drvdata(hdev); 1552 enum qca_btsoc_type soc_type = qca_soc_type(hu); 1553 struct qca_serdev *qcadev; 1554 int ret = 0; 1555 1556 /* Non-serdev device usually is powered by external power 1557 * and don't need additional action in driver for power on 1558 */ 1559 if (!hu->serdev) 1560 return 0; 1561 1562 if (qca_is_wcn399x(soc_type)) { 1563 ret = qca_wcn3990_init(hu); 1564 } else { 1565 qcadev = serdev_device_get_drvdata(hu->serdev); 1566 if (qcadev->bt_en) { 1567 gpiod_set_value_cansleep(qcadev->bt_en, 1); 1568 /* Controller needs time to bootup. */ 1569 msleep(150); 1570 } 1571 } 1572 1573 return ret; 1574 } 1575 1576 static int qca_setup(struct hci_uart *hu) 1577 { 1578 struct hci_dev *hdev = hu->hdev; 1579 struct qca_data *qca = hu->priv; 1580 unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200; 1581 unsigned int retries = 0; 1582 enum qca_btsoc_type soc_type = qca_soc_type(hu); 1583 const char *firmware_name = qca_get_firmware_name(hu); 1584 int ret; 1585 int soc_ver = 0; 1586 1587 ret = qca_check_speeds(hu); 1588 if (ret) 1589 return ret; 1590 1591 /* Patch downloading has to be done without IBS mode */ 1592 clear_bit(QCA_IBS_ENABLED, &qca->flags); 1593 1594 /* Enable controller to do both LE scan and BR/EDR inquiry 1595 * simultaneously. 1596 */ 1597 set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks); 1598 1599 bt_dev_info(hdev, "setting up %s", 1600 qca_is_wcn399x(soc_type) ? "wcn399x" : "ROME/QCA6390"); 1601 1602 retry: 1603 ret = qca_power_on(hdev); 1604 if (ret) 1605 return ret; 1606 1607 if (qca_is_wcn399x(soc_type)) { 1608 set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks); 1609 1610 ret = qca_read_soc_version(hdev, &soc_ver, soc_type); 1611 if (ret) 1612 return ret; 1613 } else { 1614 qca_set_speed(hu, QCA_INIT_SPEED); 1615 } 1616 1617 /* Setup user speed if needed */ 1618 speed = qca_get_speed(hu, QCA_OPER_SPEED); 1619 if (speed) { 1620 ret = qca_set_speed(hu, QCA_OPER_SPEED); 1621 if (ret) 1622 return ret; 1623 1624 qca_baudrate = qca_get_baudrate_value(speed); 1625 } 1626 1627 if (!qca_is_wcn399x(soc_type)) { 1628 /* Get QCA version information */ 1629 ret = qca_read_soc_version(hdev, &soc_ver, soc_type); 1630 if (ret) 1631 return ret; 1632 } 1633 1634 bt_dev_info(hdev, "QCA controller version 0x%08x", soc_ver); 1635 /* Setup patch / NVM configurations */ 1636 ret = qca_uart_setup(hdev, qca_baudrate, soc_type, soc_ver, 1637 firmware_name); 1638 if (!ret) { 1639 set_bit(QCA_IBS_ENABLED, &qca->flags); 1640 qca_debugfs_init(hdev); 1641 hu->hdev->hw_error = qca_hw_error; 1642 hu->hdev->cmd_timeout = qca_cmd_timeout; 1643 } else if (ret == -ENOENT) { 1644 /* No patch/nvm-config found, run with original fw/config */ 1645 ret = 0; 1646 } else if (ret == -EAGAIN) { 1647 /* 1648 * Userspace firmware loader will return -EAGAIN in case no 1649 * patch/nvm-config is found, so run with original fw/config. 1650 */ 1651 ret = 0; 1652 } else { 1653 if (retries < MAX_INIT_RETRIES) { 1654 qca_power_shutdown(hu); 1655 if (hu->serdev) { 1656 serdev_device_close(hu->serdev); 1657 ret = serdev_device_open(hu->serdev); 1658 if (ret) { 1659 bt_dev_err(hdev, "failed to open port"); 1660 return ret; 1661 } 1662 } 1663 retries++; 1664 goto retry; 1665 } 1666 } 1667 1668 /* Setup bdaddr */ 1669 if (soc_type == QCA_ROME) 1670 hu->hdev->set_bdaddr = qca_set_bdaddr_rome; 1671 else 1672 hu->hdev->set_bdaddr = qca_set_bdaddr; 1673 1674 return ret; 1675 } 1676 1677 static const struct hci_uart_proto qca_proto = { 1678 .id = HCI_UART_QCA, 1679 .name = "QCA", 1680 .manufacturer = 29, 1681 .init_speed = 115200, 1682 .oper_speed = 3000000, 1683 .open = qca_open, 1684 .close = qca_close, 1685 .flush = qca_flush, 1686 .setup = qca_setup, 1687 .recv = qca_recv, 1688 .enqueue = qca_enqueue, 1689 .dequeue = qca_dequeue, 1690 }; 1691 1692 static const struct qca_vreg_data qca_soc_data_wcn3990 = { 1693 .soc_type = QCA_WCN3990, 1694 .vregs = (struct qca_vreg []) { 1695 { "vddio", 15000 }, 1696 { "vddxo", 80000 }, 1697 { "vddrf", 300000 }, 1698 { "vddch0", 450000 }, 1699 }, 1700 .num_vregs = 4, 1701 }; 1702 1703 static const struct qca_vreg_data qca_soc_data_wcn3991 = { 1704 .soc_type = QCA_WCN3991, 1705 .vregs = (struct qca_vreg []) { 1706 { "vddio", 15000 }, 1707 { "vddxo", 80000 }, 1708 { "vddrf", 300000 }, 1709 { "vddch0", 450000 }, 1710 }, 1711 .num_vregs = 4, 1712 }; 1713 1714 static const struct qca_vreg_data qca_soc_data_wcn3998 = { 1715 .soc_type = QCA_WCN3998, 1716 .vregs = (struct qca_vreg []) { 1717 { "vddio", 10000 }, 1718 { "vddxo", 80000 }, 1719 { "vddrf", 300000 }, 1720 { "vddch0", 450000 }, 1721 }, 1722 .num_vregs = 4, 1723 }; 1724 1725 static const struct qca_vreg_data qca_soc_data_qca6390 = { 1726 .soc_type = QCA_QCA6390, 1727 .num_vregs = 0, 1728 }; 1729 1730 static void qca_power_shutdown(struct hci_uart *hu) 1731 { 1732 struct qca_serdev *qcadev; 1733 struct qca_data *qca = hu->priv; 1734 unsigned long flags; 1735 enum qca_btsoc_type soc_type = qca_soc_type(hu); 1736 1737 qcadev = serdev_device_get_drvdata(hu->serdev); 1738 1739 /* From this point we go into power off state. But serial port is 1740 * still open, stop queueing the IBS data and flush all the buffered 1741 * data in skb's. 1742 */ 1743 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 1744 clear_bit(QCA_IBS_ENABLED, &qca->flags); 1745 qca_flush(hu); 1746 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 1747 1748 hu->hdev->hw_error = NULL; 1749 hu->hdev->cmd_timeout = NULL; 1750 1751 /* Non-serdev device usually is powered by external power 1752 * and don't need additional action in driver for power down 1753 */ 1754 if (!hu->serdev) 1755 return; 1756 1757 if (qca_is_wcn399x(soc_type)) { 1758 host_set_baudrate(hu, 2400); 1759 qca_send_power_pulse(hu, false); 1760 qca_regulator_disable(qcadev); 1761 } else if (qcadev->bt_en) { 1762 gpiod_set_value_cansleep(qcadev->bt_en, 0); 1763 } 1764 } 1765 1766 static int qca_power_off(struct hci_dev *hdev) 1767 { 1768 struct hci_uart *hu = hci_get_drvdata(hdev); 1769 struct qca_data *qca = hu->priv; 1770 enum qca_btsoc_type soc_type = qca_soc_type(hu); 1771 1772 /* Stop sending shutdown command if soc crashes. */ 1773 if (soc_type != QCA_ROME 1774 && qca->memdump_state == QCA_MEMDUMP_IDLE) { 1775 qca_send_pre_shutdown_cmd(hdev); 1776 usleep_range(8000, 10000); 1777 } 1778 1779 qca->memdump_state = QCA_MEMDUMP_IDLE; 1780 qca_power_shutdown(hu); 1781 return 0; 1782 } 1783 1784 static int qca_regulator_enable(struct qca_serdev *qcadev) 1785 { 1786 struct qca_power *power = qcadev->bt_power; 1787 int ret; 1788 1789 /* Already enabled */ 1790 if (power->vregs_on) 1791 return 0; 1792 1793 BT_DBG("enabling %d regulators)", power->num_vregs); 1794 1795 ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk); 1796 if (ret) 1797 return ret; 1798 1799 power->vregs_on = true; 1800 1801 ret = clk_prepare_enable(qcadev->susclk); 1802 if (ret) 1803 qca_regulator_disable(qcadev); 1804 1805 return ret; 1806 } 1807 1808 static void qca_regulator_disable(struct qca_serdev *qcadev) 1809 { 1810 struct qca_power *power; 1811 1812 if (!qcadev) 1813 return; 1814 1815 power = qcadev->bt_power; 1816 1817 /* Already disabled? */ 1818 if (!power->vregs_on) 1819 return; 1820 1821 regulator_bulk_disable(power->num_vregs, power->vreg_bulk); 1822 power->vregs_on = false; 1823 1824 clk_disable_unprepare(qcadev->susclk); 1825 } 1826 1827 static int qca_init_regulators(struct qca_power *qca, 1828 const struct qca_vreg *vregs, size_t num_vregs) 1829 { 1830 struct regulator_bulk_data *bulk; 1831 int ret; 1832 int i; 1833 1834 bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL); 1835 if (!bulk) 1836 return -ENOMEM; 1837 1838 for (i = 0; i < num_vregs; i++) 1839 bulk[i].supply = vregs[i].name; 1840 1841 ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk); 1842 if (ret < 0) 1843 return ret; 1844 1845 for (i = 0; i < num_vregs; i++) { 1846 ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA); 1847 if (ret) 1848 return ret; 1849 } 1850 1851 qca->vreg_bulk = bulk; 1852 qca->num_vregs = num_vregs; 1853 1854 return 0; 1855 } 1856 1857 static int qca_serdev_probe(struct serdev_device *serdev) 1858 { 1859 struct qca_serdev *qcadev; 1860 struct hci_dev *hdev; 1861 const struct qca_vreg_data *data; 1862 int err; 1863 bool power_ctrl_enabled = true; 1864 1865 qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL); 1866 if (!qcadev) 1867 return -ENOMEM; 1868 1869 qcadev->serdev_hu.serdev = serdev; 1870 data = device_get_match_data(&serdev->dev); 1871 serdev_device_set_drvdata(serdev, qcadev); 1872 device_property_read_string(&serdev->dev, "firmware-name", 1873 &qcadev->firmware_name); 1874 if (data && qca_is_wcn399x(data->soc_type)) { 1875 qcadev->btsoc_type = data->soc_type; 1876 qcadev->bt_power = devm_kzalloc(&serdev->dev, 1877 sizeof(struct qca_power), 1878 GFP_KERNEL); 1879 if (!qcadev->bt_power) 1880 return -ENOMEM; 1881 1882 qcadev->bt_power->dev = &serdev->dev; 1883 err = qca_init_regulators(qcadev->bt_power, data->vregs, 1884 data->num_vregs); 1885 if (err) { 1886 BT_ERR("Failed to init regulators:%d", err); 1887 return err; 1888 } 1889 1890 qcadev->bt_power->vregs_on = false; 1891 1892 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL); 1893 if (IS_ERR(qcadev->susclk)) { 1894 dev_err(&serdev->dev, "failed to acquire clk\n"); 1895 return PTR_ERR(qcadev->susclk); 1896 } 1897 1898 device_property_read_u32(&serdev->dev, "max-speed", 1899 &qcadev->oper_speed); 1900 if (!qcadev->oper_speed) 1901 BT_DBG("UART will pick default operating speed"); 1902 1903 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto); 1904 if (err) { 1905 BT_ERR("wcn3990 serdev registration failed"); 1906 return err; 1907 } 1908 } else { 1909 if (data) 1910 qcadev->btsoc_type = data->soc_type; 1911 else 1912 qcadev->btsoc_type = QCA_ROME; 1913 1914 qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable", 1915 GPIOD_OUT_LOW); 1916 if (!qcadev->bt_en) { 1917 dev_warn(&serdev->dev, "failed to acquire enable gpio\n"); 1918 power_ctrl_enabled = false; 1919 } 1920 1921 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL); 1922 if (!qcadev->susclk) { 1923 dev_warn(&serdev->dev, "failed to acquire clk\n"); 1924 } else { 1925 err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ); 1926 if (err) 1927 return err; 1928 1929 err = clk_prepare_enable(qcadev->susclk); 1930 if (err) 1931 return err; 1932 } 1933 1934 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto); 1935 if (err) { 1936 BT_ERR("Rome serdev registration failed"); 1937 if (qcadev->susclk) 1938 clk_disable_unprepare(qcadev->susclk); 1939 return err; 1940 } 1941 } 1942 1943 if (power_ctrl_enabled) { 1944 hdev = qcadev->serdev_hu.hdev; 1945 set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks); 1946 hdev->shutdown = qca_power_off; 1947 } 1948 1949 return 0; 1950 } 1951 1952 static void qca_serdev_remove(struct serdev_device *serdev) 1953 { 1954 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev); 1955 1956 if (qca_is_wcn399x(qcadev->btsoc_type)) 1957 qca_power_shutdown(&qcadev->serdev_hu); 1958 else if (qcadev->susclk) 1959 clk_disable_unprepare(qcadev->susclk); 1960 1961 hci_uart_unregister_device(&qcadev->serdev_hu); 1962 } 1963 1964 static int __maybe_unused qca_suspend(struct device *dev) 1965 { 1966 struct hci_dev *hdev = container_of(dev, struct hci_dev, dev); 1967 struct hci_uart *hu = hci_get_drvdata(hdev); 1968 struct qca_data *qca = hu->priv; 1969 unsigned long flags; 1970 int ret = 0; 1971 u8 cmd; 1972 1973 set_bit(QCA_SUSPENDING, &qca->flags); 1974 1975 /* Device is downloading patch or doesn't support in-band sleep. */ 1976 if (!test_bit(QCA_IBS_ENABLED, &qca->flags)) 1977 return 0; 1978 1979 cancel_work_sync(&qca->ws_awake_device); 1980 cancel_work_sync(&qca->ws_awake_rx); 1981 1982 spin_lock_irqsave_nested(&qca->hci_ibs_lock, 1983 flags, SINGLE_DEPTH_NESTING); 1984 1985 switch (qca->tx_ibs_state) { 1986 case HCI_IBS_TX_WAKING: 1987 del_timer(&qca->wake_retrans_timer); 1988 /* Fall through */ 1989 case HCI_IBS_TX_AWAKE: 1990 del_timer(&qca->tx_idle_timer); 1991 1992 serdev_device_write_flush(hu->serdev); 1993 cmd = HCI_IBS_SLEEP_IND; 1994 ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd)); 1995 1996 if (ret < 0) { 1997 BT_ERR("Failed to send SLEEP to device"); 1998 break; 1999 } 2000 2001 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP; 2002 qca->ibs_sent_slps++; 2003 2004 qca_wq_serial_tx_clock_vote_off(&qca->ws_tx_vote_off); 2005 break; 2006 2007 case HCI_IBS_TX_ASLEEP: 2008 break; 2009 2010 default: 2011 BT_ERR("Spurious tx state %d", qca->tx_ibs_state); 2012 ret = -EINVAL; 2013 break; 2014 } 2015 2016 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 2017 2018 if (ret < 0) 2019 goto error; 2020 2021 serdev_device_wait_until_sent(hu->serdev, 2022 msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS)); 2023 2024 /* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going 2025 * to sleep, so that the packet does not wake the system later. 2026 */ 2027 2028 ret = wait_event_interruptible_timeout(qca->suspend_wait_q, 2029 qca->rx_ibs_state == HCI_IBS_RX_ASLEEP, 2030 msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS)); 2031 2032 if (ret > 0) 2033 return 0; 2034 2035 if (ret == 0) 2036 ret = -ETIMEDOUT; 2037 2038 error: 2039 clear_bit(QCA_SUSPENDING, &qca->flags); 2040 2041 return ret; 2042 } 2043 2044 static int __maybe_unused qca_resume(struct device *dev) 2045 { 2046 struct hci_dev *hdev = container_of(dev, struct hci_dev, dev); 2047 struct hci_uart *hu = hci_get_drvdata(hdev); 2048 struct qca_data *qca = hu->priv; 2049 2050 clear_bit(QCA_SUSPENDING, &qca->flags); 2051 2052 return 0; 2053 } 2054 2055 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume); 2056 2057 #ifdef CONFIG_OF 2058 static const struct of_device_id qca_bluetooth_of_match[] = { 2059 { .compatible = "qcom,qca6174-bt" }, 2060 { .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390}, 2061 { .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990}, 2062 { .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991}, 2063 { .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998}, 2064 { /* sentinel */ } 2065 }; 2066 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match); 2067 #endif 2068 2069 #ifdef CONFIG_ACPI 2070 static const struct acpi_device_id qca_bluetooth_acpi_match[] = { 2071 { "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 }, 2072 { "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 }, 2073 { "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 }, 2074 { "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 }, 2075 { }, 2076 }; 2077 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match); 2078 #endif 2079 2080 2081 static struct serdev_device_driver qca_serdev_driver = { 2082 .probe = qca_serdev_probe, 2083 .remove = qca_serdev_remove, 2084 .driver = { 2085 .name = "hci_uart_qca", 2086 .of_match_table = of_match_ptr(qca_bluetooth_of_match), 2087 .acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match), 2088 .pm = &qca_pm_ops, 2089 }, 2090 }; 2091 2092 int __init qca_init(void) 2093 { 2094 serdev_device_driver_register(&qca_serdev_driver); 2095 2096 return hci_uart_register_proto(&qca_proto); 2097 } 2098 2099 int __exit qca_deinit(void) 2100 { 2101 serdev_device_driver_unregister(&qca_serdev_driver); 2102 2103 return hci_uart_unregister_proto(&qca_proto); 2104 } 2105