xref: /linux/drivers/bluetooth/hci_qca.c (revision 05ee19c18c2bb3dea69e29219017367c4a77e65a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Bluetooth Software UART Qualcomm protocol
4  *
5  *  HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
6  *  protocol extension to H4.
7  *
8  *  Copyright (C) 2007 Texas Instruments, Inc.
9  *  Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
10  *
11  *  Acknowledgements:
12  *  This file is based on hci_ll.c, which was...
13  *  Written by Ohad Ben-Cohen <ohad@bencohen.org>
14  *  which was in turn based on hci_h4.c, which was written
15  *  by Maxim Krasnyansky and Marcel Holtmann.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/debugfs.h>
22 #include <linux/delay.h>
23 #include <linux/devcoredump.h>
24 #include <linux/device.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/acpi.h>
30 #include <linux/platform_device.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/serdev.h>
33 #include <linux/mutex.h>
34 #include <asm/unaligned.h>
35 
36 #include <net/bluetooth/bluetooth.h>
37 #include <net/bluetooth/hci_core.h>
38 
39 #include "hci_uart.h"
40 #include "btqca.h"
41 
42 /* HCI_IBS protocol messages */
43 #define HCI_IBS_SLEEP_IND	0xFE
44 #define HCI_IBS_WAKE_IND	0xFD
45 #define HCI_IBS_WAKE_ACK	0xFC
46 #define HCI_MAX_IBS_SIZE	10
47 
48 #define IBS_WAKE_RETRANS_TIMEOUT_MS	100
49 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS	40
50 #define IBS_HOST_TX_IDLE_TIMEOUT_MS	2000
51 #define CMD_TRANS_TIMEOUT_MS		100
52 #define MEMDUMP_TIMEOUT_MS		8000
53 
54 /* susclk rate */
55 #define SUSCLK_RATE_32KHZ	32768
56 
57 /* Controller debug log header */
58 #define QCA_DEBUG_HANDLE	0x2EDC
59 
60 /* max retry count when init fails */
61 #define MAX_INIT_RETRIES 3
62 
63 /* Controller dump header */
64 #define QCA_SSR_DUMP_HANDLE		0x0108
65 #define QCA_DUMP_PACKET_SIZE		255
66 #define QCA_LAST_SEQUENCE_NUM		0xFFFF
67 #define QCA_CRASHBYTE_PACKET_LEN	1096
68 #define QCA_MEMDUMP_BYTE		0xFB
69 
70 enum qca_flags {
71 	QCA_IBS_ENABLED,
72 	QCA_DROP_VENDOR_EVENT,
73 	QCA_SUSPENDING,
74 	QCA_MEMDUMP_COLLECTION,
75 	QCA_HW_ERROR_EVENT
76 };
77 
78 
79 /* HCI_IBS transmit side sleep protocol states */
80 enum tx_ibs_states {
81 	HCI_IBS_TX_ASLEEP,
82 	HCI_IBS_TX_WAKING,
83 	HCI_IBS_TX_AWAKE,
84 };
85 
86 /* HCI_IBS receive side sleep protocol states */
87 enum rx_states {
88 	HCI_IBS_RX_ASLEEP,
89 	HCI_IBS_RX_AWAKE,
90 };
91 
92 /* HCI_IBS transmit and receive side clock state vote */
93 enum hci_ibs_clock_state_vote {
94 	HCI_IBS_VOTE_STATS_UPDATE,
95 	HCI_IBS_TX_VOTE_CLOCK_ON,
96 	HCI_IBS_TX_VOTE_CLOCK_OFF,
97 	HCI_IBS_RX_VOTE_CLOCK_ON,
98 	HCI_IBS_RX_VOTE_CLOCK_OFF,
99 };
100 
101 /* Controller memory dump states */
102 enum qca_memdump_states {
103 	QCA_MEMDUMP_IDLE,
104 	QCA_MEMDUMP_COLLECTING,
105 	QCA_MEMDUMP_COLLECTED,
106 	QCA_MEMDUMP_TIMEOUT,
107 };
108 
109 struct qca_memdump_data {
110 	char *memdump_buf_head;
111 	char *memdump_buf_tail;
112 	u32 current_seq_no;
113 	u32 received_dump;
114 };
115 
116 struct qca_memdump_event_hdr {
117 	__u8    evt;
118 	__u8    plen;
119 	__u16   opcode;
120 	__u16   seq_no;
121 	__u8    reserved;
122 } __packed;
123 
124 
125 struct qca_dump_size {
126 	u32 dump_size;
127 } __packed;
128 
129 struct qca_data {
130 	struct hci_uart *hu;
131 	struct sk_buff *rx_skb;
132 	struct sk_buff_head txq;
133 	struct sk_buff_head tx_wait_q;	/* HCI_IBS wait queue	*/
134 	struct sk_buff_head rx_memdump_q;	/* Memdump wait queue	*/
135 	spinlock_t hci_ibs_lock;	/* HCI_IBS state lock	*/
136 	u8 tx_ibs_state;	/* HCI_IBS transmit side power state*/
137 	u8 rx_ibs_state;	/* HCI_IBS receive side power state */
138 	bool tx_vote;		/* Clock must be on for TX */
139 	bool rx_vote;		/* Clock must be on for RX */
140 	struct timer_list tx_idle_timer;
141 	u32 tx_idle_delay;
142 	struct timer_list wake_retrans_timer;
143 	u32 wake_retrans;
144 	struct workqueue_struct *workqueue;
145 	struct work_struct ws_awake_rx;
146 	struct work_struct ws_awake_device;
147 	struct work_struct ws_rx_vote_off;
148 	struct work_struct ws_tx_vote_off;
149 	struct work_struct ctrl_memdump_evt;
150 	struct delayed_work ctrl_memdump_timeout;
151 	struct qca_memdump_data *qca_memdump;
152 	unsigned long flags;
153 	struct completion drop_ev_comp;
154 	wait_queue_head_t suspend_wait_q;
155 	enum qca_memdump_states memdump_state;
156 	struct mutex hci_memdump_lock;
157 
158 	/* For debugging purpose */
159 	u64 ibs_sent_wacks;
160 	u64 ibs_sent_slps;
161 	u64 ibs_sent_wakes;
162 	u64 ibs_recv_wacks;
163 	u64 ibs_recv_slps;
164 	u64 ibs_recv_wakes;
165 	u64 vote_last_jif;
166 	u32 vote_on_ms;
167 	u32 vote_off_ms;
168 	u64 tx_votes_on;
169 	u64 rx_votes_on;
170 	u64 tx_votes_off;
171 	u64 rx_votes_off;
172 	u64 votes_on;
173 	u64 votes_off;
174 };
175 
176 enum qca_speed_type {
177 	QCA_INIT_SPEED = 1,
178 	QCA_OPER_SPEED
179 };
180 
181 /*
182  * Voltage regulator information required for configuring the
183  * QCA Bluetooth chipset
184  */
185 struct qca_vreg {
186 	const char *name;
187 	unsigned int load_uA;
188 };
189 
190 struct qca_vreg_data {
191 	enum qca_btsoc_type soc_type;
192 	struct qca_vreg *vregs;
193 	size_t num_vregs;
194 };
195 
196 /*
197  * Platform data for the QCA Bluetooth power driver.
198  */
199 struct qca_power {
200 	struct device *dev;
201 	struct regulator_bulk_data *vreg_bulk;
202 	int num_vregs;
203 	bool vregs_on;
204 };
205 
206 struct qca_serdev {
207 	struct hci_uart	 serdev_hu;
208 	struct gpio_desc *bt_en;
209 	struct clk	 *susclk;
210 	enum qca_btsoc_type btsoc_type;
211 	struct qca_power *bt_power;
212 	u32 init_speed;
213 	u32 oper_speed;
214 	const char *firmware_name;
215 };
216 
217 static int qca_regulator_enable(struct qca_serdev *qcadev);
218 static void qca_regulator_disable(struct qca_serdev *qcadev);
219 static void qca_power_shutdown(struct hci_uart *hu);
220 static int qca_power_off(struct hci_dev *hdev);
221 static void qca_controller_memdump(struct work_struct *work);
222 
223 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
224 {
225 	enum qca_btsoc_type soc_type;
226 
227 	if (hu->serdev) {
228 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
229 
230 		soc_type = qsd->btsoc_type;
231 	} else {
232 		soc_type = QCA_ROME;
233 	}
234 
235 	return soc_type;
236 }
237 
238 static const char *qca_get_firmware_name(struct hci_uart *hu)
239 {
240 	if (hu->serdev) {
241 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
242 
243 		return qsd->firmware_name;
244 	} else {
245 		return NULL;
246 	}
247 }
248 
249 static void __serial_clock_on(struct tty_struct *tty)
250 {
251 	/* TODO: Some chipset requires to enable UART clock on client
252 	 * side to save power consumption or manual work is required.
253 	 * Please put your code to control UART clock here if needed
254 	 */
255 }
256 
257 static void __serial_clock_off(struct tty_struct *tty)
258 {
259 	/* TODO: Some chipset requires to disable UART clock on client
260 	 * side to save power consumption or manual work is required.
261 	 * Please put your code to control UART clock off here if needed
262 	 */
263 }
264 
265 /* serial_clock_vote needs to be called with the ibs lock held */
266 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
267 {
268 	struct qca_data *qca = hu->priv;
269 	unsigned int diff;
270 
271 	bool old_vote = (qca->tx_vote | qca->rx_vote);
272 	bool new_vote;
273 
274 	switch (vote) {
275 	case HCI_IBS_VOTE_STATS_UPDATE:
276 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
277 
278 		if (old_vote)
279 			qca->vote_off_ms += diff;
280 		else
281 			qca->vote_on_ms += diff;
282 		return;
283 
284 	case HCI_IBS_TX_VOTE_CLOCK_ON:
285 		qca->tx_vote = true;
286 		qca->tx_votes_on++;
287 		new_vote = true;
288 		break;
289 
290 	case HCI_IBS_RX_VOTE_CLOCK_ON:
291 		qca->rx_vote = true;
292 		qca->rx_votes_on++;
293 		new_vote = true;
294 		break;
295 
296 	case HCI_IBS_TX_VOTE_CLOCK_OFF:
297 		qca->tx_vote = false;
298 		qca->tx_votes_off++;
299 		new_vote = qca->rx_vote | qca->tx_vote;
300 		break;
301 
302 	case HCI_IBS_RX_VOTE_CLOCK_OFF:
303 		qca->rx_vote = false;
304 		qca->rx_votes_off++;
305 		new_vote = qca->rx_vote | qca->tx_vote;
306 		break;
307 
308 	default:
309 		BT_ERR("Voting irregularity");
310 		return;
311 	}
312 
313 	if (new_vote != old_vote) {
314 		if (new_vote)
315 			__serial_clock_on(hu->tty);
316 		else
317 			__serial_clock_off(hu->tty);
318 
319 		BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
320 		       vote ? "true" : "false");
321 
322 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
323 
324 		if (new_vote) {
325 			qca->votes_on++;
326 			qca->vote_off_ms += diff;
327 		} else {
328 			qca->votes_off++;
329 			qca->vote_on_ms += diff;
330 		}
331 		qca->vote_last_jif = jiffies;
332 	}
333 }
334 
335 /* Builds and sends an HCI_IBS command packet.
336  * These are very simple packets with only 1 cmd byte.
337  */
338 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
339 {
340 	int err = 0;
341 	struct sk_buff *skb = NULL;
342 	struct qca_data *qca = hu->priv;
343 
344 	BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
345 
346 	skb = bt_skb_alloc(1, GFP_ATOMIC);
347 	if (!skb) {
348 		BT_ERR("Failed to allocate memory for HCI_IBS packet");
349 		return -ENOMEM;
350 	}
351 
352 	/* Assign HCI_IBS type */
353 	skb_put_u8(skb, cmd);
354 
355 	skb_queue_tail(&qca->txq, skb);
356 
357 	return err;
358 }
359 
360 static void qca_wq_awake_device(struct work_struct *work)
361 {
362 	struct qca_data *qca = container_of(work, struct qca_data,
363 					    ws_awake_device);
364 	struct hci_uart *hu = qca->hu;
365 	unsigned long retrans_delay;
366 	unsigned long flags;
367 
368 	BT_DBG("hu %p wq awake device", hu);
369 
370 	/* Vote for serial clock */
371 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
372 
373 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
374 
375 	/* Send wake indication to device */
376 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
377 		BT_ERR("Failed to send WAKE to device");
378 
379 	qca->ibs_sent_wakes++;
380 
381 	/* Start retransmit timer */
382 	retrans_delay = msecs_to_jiffies(qca->wake_retrans);
383 	mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
384 
385 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
386 
387 	/* Actually send the packets */
388 	hci_uart_tx_wakeup(hu);
389 }
390 
391 static void qca_wq_awake_rx(struct work_struct *work)
392 {
393 	struct qca_data *qca = container_of(work, struct qca_data,
394 					    ws_awake_rx);
395 	struct hci_uart *hu = qca->hu;
396 	unsigned long flags;
397 
398 	BT_DBG("hu %p wq awake rx", hu);
399 
400 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
401 
402 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
403 	qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
404 
405 	/* Always acknowledge device wake up,
406 	 * sending IBS message doesn't count as TX ON.
407 	 */
408 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
409 		BT_ERR("Failed to acknowledge device wake up");
410 
411 	qca->ibs_sent_wacks++;
412 
413 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
414 
415 	/* Actually send the packets */
416 	hci_uart_tx_wakeup(hu);
417 }
418 
419 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
420 {
421 	struct qca_data *qca = container_of(work, struct qca_data,
422 					    ws_rx_vote_off);
423 	struct hci_uart *hu = qca->hu;
424 
425 	BT_DBG("hu %p rx clock vote off", hu);
426 
427 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
428 }
429 
430 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
431 {
432 	struct qca_data *qca = container_of(work, struct qca_data,
433 					    ws_tx_vote_off);
434 	struct hci_uart *hu = qca->hu;
435 
436 	BT_DBG("hu %p tx clock vote off", hu);
437 
438 	/* Run HCI tx handling unlocked */
439 	hci_uart_tx_wakeup(hu);
440 
441 	/* Now that message queued to tty driver, vote for tty clocks off.
442 	 * It is up to the tty driver to pend the clocks off until tx done.
443 	 */
444 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
445 }
446 
447 static void hci_ibs_tx_idle_timeout(struct timer_list *t)
448 {
449 	struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
450 	struct hci_uart *hu = qca->hu;
451 	unsigned long flags;
452 
453 	BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
454 
455 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
456 				 flags, SINGLE_DEPTH_NESTING);
457 
458 	switch (qca->tx_ibs_state) {
459 	case HCI_IBS_TX_AWAKE:
460 		/* TX_IDLE, go to SLEEP */
461 		if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
462 			BT_ERR("Failed to send SLEEP to device");
463 			break;
464 		}
465 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
466 		qca->ibs_sent_slps++;
467 		queue_work(qca->workqueue, &qca->ws_tx_vote_off);
468 		break;
469 
470 	case HCI_IBS_TX_ASLEEP:
471 	case HCI_IBS_TX_WAKING:
472 		/* Fall through */
473 
474 	default:
475 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
476 		break;
477 	}
478 
479 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
480 }
481 
482 static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
483 {
484 	struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
485 	struct hci_uart *hu = qca->hu;
486 	unsigned long flags, retrans_delay;
487 	bool retransmit = false;
488 
489 	BT_DBG("hu %p wake retransmit timeout in %d state",
490 		hu, qca->tx_ibs_state);
491 
492 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
493 				 flags, SINGLE_DEPTH_NESTING);
494 
495 	/* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
496 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
497 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
498 		return;
499 	}
500 
501 	switch (qca->tx_ibs_state) {
502 	case HCI_IBS_TX_WAKING:
503 		/* No WAKE_ACK, retransmit WAKE */
504 		retransmit = true;
505 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
506 			BT_ERR("Failed to acknowledge device wake up");
507 			break;
508 		}
509 		qca->ibs_sent_wakes++;
510 		retrans_delay = msecs_to_jiffies(qca->wake_retrans);
511 		mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
512 		break;
513 
514 	case HCI_IBS_TX_ASLEEP:
515 	case HCI_IBS_TX_AWAKE:
516 		/* Fall through */
517 
518 	default:
519 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
520 		break;
521 	}
522 
523 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
524 
525 	if (retransmit)
526 		hci_uart_tx_wakeup(hu);
527 }
528 
529 
530 static void qca_controller_memdump_timeout(struct work_struct *work)
531 {
532 	struct qca_data *qca = container_of(work, struct qca_data,
533 					ctrl_memdump_timeout.work);
534 	struct hci_uart *hu = qca->hu;
535 
536 	mutex_lock(&qca->hci_memdump_lock);
537 	if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
538 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
539 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
540 			/* Inject hw error event to reset the device
541 			 * and driver.
542 			 */
543 			hci_reset_dev(hu->hdev);
544 		}
545 	}
546 
547 	mutex_unlock(&qca->hci_memdump_lock);
548 }
549 
550 
551 /* Initialize protocol */
552 static int qca_open(struct hci_uart *hu)
553 {
554 	struct qca_serdev *qcadev;
555 	struct qca_data *qca;
556 
557 	BT_DBG("hu %p qca_open", hu);
558 
559 	if (!hci_uart_has_flow_control(hu))
560 		return -EOPNOTSUPP;
561 
562 	qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
563 	if (!qca)
564 		return -ENOMEM;
565 
566 	skb_queue_head_init(&qca->txq);
567 	skb_queue_head_init(&qca->tx_wait_q);
568 	skb_queue_head_init(&qca->rx_memdump_q);
569 	spin_lock_init(&qca->hci_ibs_lock);
570 	mutex_init(&qca->hci_memdump_lock);
571 	qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
572 	if (!qca->workqueue) {
573 		BT_ERR("QCA Workqueue not initialized properly");
574 		kfree(qca);
575 		return -ENOMEM;
576 	}
577 
578 	INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
579 	INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
580 	INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
581 	INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
582 	INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
583 	INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
584 			  qca_controller_memdump_timeout);
585 	init_waitqueue_head(&qca->suspend_wait_q);
586 
587 	qca->hu = hu;
588 	init_completion(&qca->drop_ev_comp);
589 
590 	/* Assume we start with both sides asleep -- extra wakes OK */
591 	qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
592 	qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
593 
594 	qca->vote_last_jif = jiffies;
595 
596 	hu->priv = qca;
597 
598 	if (hu->serdev) {
599 		qcadev = serdev_device_get_drvdata(hu->serdev);
600 
601 		if (qca_is_wcn399x(qcadev->btsoc_type))
602 			hu->init_speed = qcadev->init_speed;
603 
604 		if (qcadev->oper_speed)
605 			hu->oper_speed = qcadev->oper_speed;
606 	}
607 
608 	timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
609 	qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
610 
611 	timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
612 	qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
613 
614 	BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
615 	       qca->tx_idle_delay, qca->wake_retrans);
616 
617 	return 0;
618 }
619 
620 static void qca_debugfs_init(struct hci_dev *hdev)
621 {
622 	struct hci_uart *hu = hci_get_drvdata(hdev);
623 	struct qca_data *qca = hu->priv;
624 	struct dentry *ibs_dir;
625 	umode_t mode;
626 
627 	if (!hdev->debugfs)
628 		return;
629 
630 	ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
631 
632 	/* read only */
633 	mode = S_IRUGO;
634 	debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
635 	debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
636 	debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
637 			   &qca->ibs_sent_slps);
638 	debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
639 			   &qca->ibs_sent_wakes);
640 	debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
641 			   &qca->ibs_sent_wacks);
642 	debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
643 			   &qca->ibs_recv_slps);
644 	debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
645 			   &qca->ibs_recv_wakes);
646 	debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
647 			   &qca->ibs_recv_wacks);
648 	debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
649 	debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
650 	debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
651 	debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
652 	debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
653 	debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
654 	debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
655 	debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
656 	debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
657 	debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
658 
659 	/* read/write */
660 	mode = S_IRUGO | S_IWUSR;
661 	debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
662 	debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
663 			   &qca->tx_idle_delay);
664 }
665 
666 /* Flush protocol data */
667 static int qca_flush(struct hci_uart *hu)
668 {
669 	struct qca_data *qca = hu->priv;
670 
671 	BT_DBG("hu %p qca flush", hu);
672 
673 	skb_queue_purge(&qca->tx_wait_q);
674 	skb_queue_purge(&qca->txq);
675 
676 	return 0;
677 }
678 
679 /* Close protocol */
680 static int qca_close(struct hci_uart *hu)
681 {
682 	struct qca_data *qca = hu->priv;
683 
684 	BT_DBG("hu %p qca close", hu);
685 
686 	serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
687 
688 	skb_queue_purge(&qca->tx_wait_q);
689 	skb_queue_purge(&qca->txq);
690 	skb_queue_purge(&qca->rx_memdump_q);
691 	del_timer(&qca->tx_idle_timer);
692 	del_timer(&qca->wake_retrans_timer);
693 	destroy_workqueue(qca->workqueue);
694 	qca->hu = NULL;
695 
696 	qca_power_shutdown(hu);
697 
698 	kfree_skb(qca->rx_skb);
699 
700 	hu->priv = NULL;
701 
702 	kfree(qca);
703 
704 	return 0;
705 }
706 
707 /* Called upon a wake-up-indication from the device.
708  */
709 static void device_want_to_wakeup(struct hci_uart *hu)
710 {
711 	unsigned long flags;
712 	struct qca_data *qca = hu->priv;
713 
714 	BT_DBG("hu %p want to wake up", hu);
715 
716 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
717 
718 	qca->ibs_recv_wakes++;
719 
720 	/* Don't wake the rx up when suspending. */
721 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
722 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
723 		return;
724 	}
725 
726 	switch (qca->rx_ibs_state) {
727 	case HCI_IBS_RX_ASLEEP:
728 		/* Make sure clock is on - we may have turned clock off since
729 		 * receiving the wake up indicator awake rx clock.
730 		 */
731 		queue_work(qca->workqueue, &qca->ws_awake_rx);
732 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
733 		return;
734 
735 	case HCI_IBS_RX_AWAKE:
736 		/* Always acknowledge device wake up,
737 		 * sending IBS message doesn't count as TX ON.
738 		 */
739 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
740 			BT_ERR("Failed to acknowledge device wake up");
741 			break;
742 		}
743 		qca->ibs_sent_wacks++;
744 		break;
745 
746 	default:
747 		/* Any other state is illegal */
748 		BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
749 		       qca->rx_ibs_state);
750 		break;
751 	}
752 
753 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
754 
755 	/* Actually send the packets */
756 	hci_uart_tx_wakeup(hu);
757 }
758 
759 /* Called upon a sleep-indication from the device.
760  */
761 static void device_want_to_sleep(struct hci_uart *hu)
762 {
763 	unsigned long flags;
764 	struct qca_data *qca = hu->priv;
765 
766 	BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
767 
768 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
769 
770 	qca->ibs_recv_slps++;
771 
772 	switch (qca->rx_ibs_state) {
773 	case HCI_IBS_RX_AWAKE:
774 		/* Update state */
775 		qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
776 		/* Vote off rx clock under workqueue */
777 		queue_work(qca->workqueue, &qca->ws_rx_vote_off);
778 		break;
779 
780 	case HCI_IBS_RX_ASLEEP:
781 		break;
782 
783 	default:
784 		/* Any other state is illegal */
785 		BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
786 		       qca->rx_ibs_state);
787 		break;
788 	}
789 
790 	wake_up_interruptible(&qca->suspend_wait_q);
791 
792 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
793 }
794 
795 /* Called upon wake-up-acknowledgement from the device
796  */
797 static void device_woke_up(struct hci_uart *hu)
798 {
799 	unsigned long flags, idle_delay;
800 	struct qca_data *qca = hu->priv;
801 	struct sk_buff *skb = NULL;
802 
803 	BT_DBG("hu %p woke up", hu);
804 
805 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
806 
807 	qca->ibs_recv_wacks++;
808 
809 	/* Don't react to the wake-up-acknowledgment when suspending. */
810 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
811 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
812 		return;
813 	}
814 
815 	switch (qca->tx_ibs_state) {
816 	case HCI_IBS_TX_AWAKE:
817 		/* Expect one if we send 2 WAKEs */
818 		BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
819 		       qca->tx_ibs_state);
820 		break;
821 
822 	case HCI_IBS_TX_WAKING:
823 		/* Send pending packets */
824 		while ((skb = skb_dequeue(&qca->tx_wait_q)))
825 			skb_queue_tail(&qca->txq, skb);
826 
827 		/* Switch timers and change state to HCI_IBS_TX_AWAKE */
828 		del_timer(&qca->wake_retrans_timer);
829 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
830 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
831 		qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
832 		break;
833 
834 	case HCI_IBS_TX_ASLEEP:
835 		/* Fall through */
836 
837 	default:
838 		BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
839 		       qca->tx_ibs_state);
840 		break;
841 	}
842 
843 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
844 
845 	/* Actually send the packets */
846 	hci_uart_tx_wakeup(hu);
847 }
848 
849 /* Enqueue frame for transmittion (padding, crc, etc) may be called from
850  * two simultaneous tasklets.
851  */
852 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
853 {
854 	unsigned long flags = 0, idle_delay;
855 	struct qca_data *qca = hu->priv;
856 
857 	BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
858 	       qca->tx_ibs_state);
859 
860 	/* Prepend skb with frame type */
861 	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
862 
863 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
864 
865 	/* Don't go to sleep in middle of patch download or
866 	 * Out-Of-Band(GPIOs control) sleep is selected.
867 	 * Don't wake the device up when suspending.
868 	 */
869 	if (!test_bit(QCA_IBS_ENABLED, &qca->flags) ||
870 	    test_bit(QCA_SUSPENDING, &qca->flags)) {
871 		skb_queue_tail(&qca->txq, skb);
872 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
873 		return 0;
874 	}
875 
876 	/* Act according to current state */
877 	switch (qca->tx_ibs_state) {
878 	case HCI_IBS_TX_AWAKE:
879 		BT_DBG("Device awake, sending normally");
880 		skb_queue_tail(&qca->txq, skb);
881 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
882 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
883 		break;
884 
885 	case HCI_IBS_TX_ASLEEP:
886 		BT_DBG("Device asleep, waking up and queueing packet");
887 		/* Save packet for later */
888 		skb_queue_tail(&qca->tx_wait_q, skb);
889 
890 		qca->tx_ibs_state = HCI_IBS_TX_WAKING;
891 		/* Schedule a work queue to wake up device */
892 		queue_work(qca->workqueue, &qca->ws_awake_device);
893 		break;
894 
895 	case HCI_IBS_TX_WAKING:
896 		BT_DBG("Device waking up, queueing packet");
897 		/* Transient state; just keep packet for later */
898 		skb_queue_tail(&qca->tx_wait_q, skb);
899 		break;
900 
901 	default:
902 		BT_ERR("Illegal tx state: %d (losing packet)",
903 		       qca->tx_ibs_state);
904 		kfree_skb(skb);
905 		break;
906 	}
907 
908 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
909 
910 	return 0;
911 }
912 
913 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
914 {
915 	struct hci_uart *hu = hci_get_drvdata(hdev);
916 
917 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
918 
919 	device_want_to_sleep(hu);
920 
921 	kfree_skb(skb);
922 	return 0;
923 }
924 
925 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
926 {
927 	struct hci_uart *hu = hci_get_drvdata(hdev);
928 
929 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
930 
931 	device_want_to_wakeup(hu);
932 
933 	kfree_skb(skb);
934 	return 0;
935 }
936 
937 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
938 {
939 	struct hci_uart *hu = hci_get_drvdata(hdev);
940 
941 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
942 
943 	device_woke_up(hu);
944 
945 	kfree_skb(skb);
946 	return 0;
947 }
948 
949 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
950 {
951 	/* We receive debug logs from chip as an ACL packets.
952 	 * Instead of sending the data to ACL to decode the
953 	 * received data, we are pushing them to the above layers
954 	 * as a diagnostic packet.
955 	 */
956 	if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
957 		return hci_recv_diag(hdev, skb);
958 
959 	return hci_recv_frame(hdev, skb);
960 }
961 
962 static void qca_controller_memdump(struct work_struct *work)
963 {
964 	struct qca_data *qca = container_of(work, struct qca_data,
965 					    ctrl_memdump_evt);
966 	struct hci_uart *hu = qca->hu;
967 	struct sk_buff *skb;
968 	struct qca_memdump_event_hdr *cmd_hdr;
969 	struct qca_memdump_data *qca_memdump = qca->qca_memdump;
970 	struct qca_dump_size *dump;
971 	char *memdump_buf;
972 	char nullBuff[QCA_DUMP_PACKET_SIZE] = { 0 };
973 	u16 seq_no;
974 	u32 dump_size;
975 
976 	while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
977 
978 		mutex_lock(&qca->hci_memdump_lock);
979 		/* Skip processing the received packets if timeout detected. */
980 		if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT) {
981 			mutex_unlock(&qca->hci_memdump_lock);
982 			return;
983 		}
984 
985 		if (!qca_memdump) {
986 			qca_memdump = kzalloc(sizeof(struct qca_memdump_data),
987 					      GFP_ATOMIC);
988 			if (!qca_memdump) {
989 				mutex_unlock(&qca->hci_memdump_lock);
990 				return;
991 			}
992 
993 			qca->qca_memdump = qca_memdump;
994 		}
995 
996 		qca->memdump_state = QCA_MEMDUMP_COLLECTING;
997 		cmd_hdr = (void *) skb->data;
998 		seq_no = __le16_to_cpu(cmd_hdr->seq_no);
999 		skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
1000 
1001 		if (!seq_no) {
1002 
1003 			/* This is the first frame of memdump packet from
1004 			 * the controller, Disable IBS to recevie dump
1005 			 * with out any interruption, ideally time required for
1006 			 * the controller to send the dump is 8 seconds. let us
1007 			 * start timer to handle this asynchronous activity.
1008 			 */
1009 			clear_bit(QCA_IBS_ENABLED, &qca->flags);
1010 			set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1011 			dump = (void *) skb->data;
1012 			dump_size = __le32_to_cpu(dump->dump_size);
1013 			if (!(dump_size)) {
1014 				bt_dev_err(hu->hdev, "Rx invalid memdump size");
1015 				kfree_skb(skb);
1016 				mutex_unlock(&qca->hci_memdump_lock);
1017 				return;
1018 			}
1019 
1020 			bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
1021 				    dump_size);
1022 			queue_delayed_work(qca->workqueue,
1023 					   &qca->ctrl_memdump_timeout,
1024 					msecs_to_jiffies(MEMDUMP_TIMEOUT_MS));
1025 
1026 			skb_pull(skb, sizeof(dump_size));
1027 			memdump_buf = vmalloc(dump_size);
1028 			qca_memdump->memdump_buf_head = memdump_buf;
1029 			qca_memdump->memdump_buf_tail = memdump_buf;
1030 		}
1031 
1032 		memdump_buf = qca_memdump->memdump_buf_tail;
1033 
1034 		/* If sequence no 0 is missed then there is no point in
1035 		 * accepting the other sequences.
1036 		 */
1037 		if (!memdump_buf) {
1038 			bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1039 			kfree(qca_memdump);
1040 			kfree_skb(skb);
1041 			qca->qca_memdump = NULL;
1042 			mutex_unlock(&qca->hci_memdump_lock);
1043 			return;
1044 		}
1045 
1046 		/* There could be chance of missing some packets from
1047 		 * the controller. In such cases let us store the dummy
1048 		 * packets in the buffer.
1049 		 */
1050 		while ((seq_no > qca_memdump->current_seq_no + 1) &&
1051 			seq_no != QCA_LAST_SEQUENCE_NUM) {
1052 			bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1053 				   qca_memdump->current_seq_no);
1054 			memcpy(memdump_buf, nullBuff, QCA_DUMP_PACKET_SIZE);
1055 			memdump_buf = memdump_buf + QCA_DUMP_PACKET_SIZE;
1056 			qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1057 			qca_memdump->current_seq_no++;
1058 		}
1059 
1060 		memcpy(memdump_buf, (unsigned char *) skb->data, skb->len);
1061 		memdump_buf = memdump_buf + skb->len;
1062 		qca_memdump->memdump_buf_tail = memdump_buf;
1063 		qca_memdump->current_seq_no = seq_no + 1;
1064 		qca_memdump->received_dump += skb->len;
1065 		qca->qca_memdump = qca_memdump;
1066 		kfree_skb(skb);
1067 		if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1068 			bt_dev_info(hu->hdev, "QCA writing crash dump of size %d bytes",
1069 				   qca_memdump->received_dump);
1070 			memdump_buf = qca_memdump->memdump_buf_head;
1071 			dev_coredumpv(&hu->serdev->dev, memdump_buf,
1072 				      qca_memdump->received_dump, GFP_KERNEL);
1073 			cancel_delayed_work(&qca->ctrl_memdump_timeout);
1074 			kfree(qca->qca_memdump);
1075 			qca->qca_memdump = NULL;
1076 			qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1077 			clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1078 		}
1079 
1080 		mutex_unlock(&qca->hci_memdump_lock);
1081 	}
1082 
1083 }
1084 
1085 static int qca_controller_memdump_event(struct hci_dev *hdev,
1086 					struct sk_buff *skb)
1087 {
1088 	struct hci_uart *hu = hci_get_drvdata(hdev);
1089 	struct qca_data *qca = hu->priv;
1090 
1091 	skb_queue_tail(&qca->rx_memdump_q, skb);
1092 	queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1093 
1094 	return 0;
1095 }
1096 
1097 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1098 {
1099 	struct hci_uart *hu = hci_get_drvdata(hdev);
1100 	struct qca_data *qca = hu->priv;
1101 
1102 	if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1103 		struct hci_event_hdr *hdr = (void *)skb->data;
1104 
1105 		/* For the WCN3990 the vendor command for a baudrate change
1106 		 * isn't sent as synchronous HCI command, because the
1107 		 * controller sends the corresponding vendor event with the
1108 		 * new baudrate. The event is received and properly decoded
1109 		 * after changing the baudrate of the host port. It needs to
1110 		 * be dropped, otherwise it can be misinterpreted as
1111 		 * response to a later firmware download command (also a
1112 		 * vendor command).
1113 		 */
1114 
1115 		if (hdr->evt == HCI_EV_VENDOR)
1116 			complete(&qca->drop_ev_comp);
1117 
1118 		kfree_skb(skb);
1119 
1120 		return 0;
1121 	}
1122 	/* We receive chip memory dump as an event packet, With a dedicated
1123 	 * handler followed by a hardware error event. When this event is
1124 	 * received we store dump into a file before closing hci. This
1125 	 * dump will help in triaging the issues.
1126 	 */
1127 	if ((skb->data[0] == HCI_VENDOR_PKT) &&
1128 	    (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1129 		return qca_controller_memdump_event(hdev, skb);
1130 
1131 	return hci_recv_frame(hdev, skb);
1132 }
1133 
1134 #define QCA_IBS_SLEEP_IND_EVENT \
1135 	.type = HCI_IBS_SLEEP_IND, \
1136 	.hlen = 0, \
1137 	.loff = 0, \
1138 	.lsize = 0, \
1139 	.maxlen = HCI_MAX_IBS_SIZE
1140 
1141 #define QCA_IBS_WAKE_IND_EVENT \
1142 	.type = HCI_IBS_WAKE_IND, \
1143 	.hlen = 0, \
1144 	.loff = 0, \
1145 	.lsize = 0, \
1146 	.maxlen = HCI_MAX_IBS_SIZE
1147 
1148 #define QCA_IBS_WAKE_ACK_EVENT \
1149 	.type = HCI_IBS_WAKE_ACK, \
1150 	.hlen = 0, \
1151 	.loff = 0, \
1152 	.lsize = 0, \
1153 	.maxlen = HCI_MAX_IBS_SIZE
1154 
1155 static const struct h4_recv_pkt qca_recv_pkts[] = {
1156 	{ H4_RECV_ACL,             .recv = qca_recv_acl_data },
1157 	{ H4_RECV_SCO,             .recv = hci_recv_frame    },
1158 	{ H4_RECV_EVENT,           .recv = qca_recv_event    },
1159 	{ QCA_IBS_WAKE_IND_EVENT,  .recv = qca_ibs_wake_ind  },
1160 	{ QCA_IBS_WAKE_ACK_EVENT,  .recv = qca_ibs_wake_ack  },
1161 	{ QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1162 };
1163 
1164 static int qca_recv(struct hci_uart *hu, const void *data, int count)
1165 {
1166 	struct qca_data *qca = hu->priv;
1167 
1168 	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1169 		return -EUNATCH;
1170 
1171 	qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
1172 				  qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1173 	if (IS_ERR(qca->rx_skb)) {
1174 		int err = PTR_ERR(qca->rx_skb);
1175 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1176 		qca->rx_skb = NULL;
1177 		return err;
1178 	}
1179 
1180 	return count;
1181 }
1182 
1183 static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1184 {
1185 	struct qca_data *qca = hu->priv;
1186 
1187 	return skb_dequeue(&qca->txq);
1188 }
1189 
1190 static uint8_t qca_get_baudrate_value(int speed)
1191 {
1192 	switch (speed) {
1193 	case 9600:
1194 		return QCA_BAUDRATE_9600;
1195 	case 19200:
1196 		return QCA_BAUDRATE_19200;
1197 	case 38400:
1198 		return QCA_BAUDRATE_38400;
1199 	case 57600:
1200 		return QCA_BAUDRATE_57600;
1201 	case 115200:
1202 		return QCA_BAUDRATE_115200;
1203 	case 230400:
1204 		return QCA_BAUDRATE_230400;
1205 	case 460800:
1206 		return QCA_BAUDRATE_460800;
1207 	case 500000:
1208 		return QCA_BAUDRATE_500000;
1209 	case 921600:
1210 		return QCA_BAUDRATE_921600;
1211 	case 1000000:
1212 		return QCA_BAUDRATE_1000000;
1213 	case 2000000:
1214 		return QCA_BAUDRATE_2000000;
1215 	case 3000000:
1216 		return QCA_BAUDRATE_3000000;
1217 	case 3200000:
1218 		return QCA_BAUDRATE_3200000;
1219 	case 3500000:
1220 		return QCA_BAUDRATE_3500000;
1221 	default:
1222 		return QCA_BAUDRATE_115200;
1223 	}
1224 }
1225 
1226 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1227 {
1228 	struct hci_uart *hu = hci_get_drvdata(hdev);
1229 	struct qca_data *qca = hu->priv;
1230 	struct sk_buff *skb;
1231 	u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1232 
1233 	if (baudrate > QCA_BAUDRATE_3200000)
1234 		return -EINVAL;
1235 
1236 	cmd[4] = baudrate;
1237 
1238 	skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1239 	if (!skb) {
1240 		bt_dev_err(hdev, "Failed to allocate baudrate packet");
1241 		return -ENOMEM;
1242 	}
1243 
1244 	/* Assign commands to change baudrate and packet type. */
1245 	skb_put_data(skb, cmd, sizeof(cmd));
1246 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1247 
1248 	skb_queue_tail(&qca->txq, skb);
1249 	hci_uart_tx_wakeup(hu);
1250 
1251 	/* Wait for the baudrate change request to be sent */
1252 
1253 	while (!skb_queue_empty(&qca->txq))
1254 		usleep_range(100, 200);
1255 
1256 	if (hu->serdev)
1257 		serdev_device_wait_until_sent(hu->serdev,
1258 		      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1259 
1260 	/* Give the controller time to process the request */
1261 	if (qca_is_wcn399x(qca_soc_type(hu)))
1262 		msleep(10);
1263 	else
1264 		msleep(300);
1265 
1266 	return 0;
1267 }
1268 
1269 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1270 {
1271 	if (hu->serdev)
1272 		serdev_device_set_baudrate(hu->serdev, speed);
1273 	else
1274 		hci_uart_set_baudrate(hu, speed);
1275 }
1276 
1277 static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1278 {
1279 	int ret;
1280 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1281 	u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1282 
1283 	/* These power pulses are single byte command which are sent
1284 	 * at required baudrate to wcn3990. On wcn3990, we have an external
1285 	 * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1286 	 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1287 	 * and also we use the same power inputs to turn on and off for
1288 	 * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1289 	 * we send a power on pulse at 115200 bps. This algorithm will help to
1290 	 * save power. Disabling hardware flow control is mandatory while
1291 	 * sending power pulses to SoC.
1292 	 */
1293 	bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1294 
1295 	serdev_device_write_flush(hu->serdev);
1296 	hci_uart_set_flow_control(hu, true);
1297 	ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1298 	if (ret < 0) {
1299 		bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1300 		return ret;
1301 	}
1302 
1303 	serdev_device_wait_until_sent(hu->serdev, timeout);
1304 	hci_uart_set_flow_control(hu, false);
1305 
1306 	/* Give to controller time to boot/shutdown */
1307 	if (on)
1308 		msleep(100);
1309 	else
1310 		msleep(10);
1311 
1312 	return 0;
1313 }
1314 
1315 static unsigned int qca_get_speed(struct hci_uart *hu,
1316 				  enum qca_speed_type speed_type)
1317 {
1318 	unsigned int speed = 0;
1319 
1320 	if (speed_type == QCA_INIT_SPEED) {
1321 		if (hu->init_speed)
1322 			speed = hu->init_speed;
1323 		else if (hu->proto->init_speed)
1324 			speed = hu->proto->init_speed;
1325 	} else {
1326 		if (hu->oper_speed)
1327 			speed = hu->oper_speed;
1328 		else if (hu->proto->oper_speed)
1329 			speed = hu->proto->oper_speed;
1330 	}
1331 
1332 	return speed;
1333 }
1334 
1335 static int qca_check_speeds(struct hci_uart *hu)
1336 {
1337 	if (qca_is_wcn399x(qca_soc_type(hu))) {
1338 		if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1339 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1340 			return -EINVAL;
1341 	} else {
1342 		if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1343 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1344 			return -EINVAL;
1345 	}
1346 
1347 	return 0;
1348 }
1349 
1350 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1351 {
1352 	unsigned int speed, qca_baudrate;
1353 	struct qca_data *qca = hu->priv;
1354 	int ret = 0;
1355 
1356 	if (speed_type == QCA_INIT_SPEED) {
1357 		speed = qca_get_speed(hu, QCA_INIT_SPEED);
1358 		if (speed)
1359 			host_set_baudrate(hu, speed);
1360 	} else {
1361 		enum qca_btsoc_type soc_type = qca_soc_type(hu);
1362 
1363 		speed = qca_get_speed(hu, QCA_OPER_SPEED);
1364 		if (!speed)
1365 			return 0;
1366 
1367 		/* Disable flow control for wcn3990 to deassert RTS while
1368 		 * changing the baudrate of chip and host.
1369 		 */
1370 		if (qca_is_wcn399x(soc_type))
1371 			hci_uart_set_flow_control(hu, true);
1372 
1373 		if (soc_type == QCA_WCN3990) {
1374 			reinit_completion(&qca->drop_ev_comp);
1375 			set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1376 		}
1377 
1378 		qca_baudrate = qca_get_baudrate_value(speed);
1379 		bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1380 		ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1381 		if (ret)
1382 			goto error;
1383 
1384 		host_set_baudrate(hu, speed);
1385 
1386 error:
1387 		if (qca_is_wcn399x(soc_type))
1388 			hci_uart_set_flow_control(hu, false);
1389 
1390 		if (soc_type == QCA_WCN3990) {
1391 			/* Wait for the controller to send the vendor event
1392 			 * for the baudrate change command.
1393 			 */
1394 			if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1395 						 msecs_to_jiffies(100))) {
1396 				bt_dev_err(hu->hdev,
1397 					   "Failed to change controller baudrate\n");
1398 				ret = -ETIMEDOUT;
1399 			}
1400 
1401 			clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1402 		}
1403 	}
1404 
1405 	return ret;
1406 }
1407 
1408 static int qca_send_crashbuffer(struct hci_uart *hu)
1409 {
1410 	struct qca_data *qca = hu->priv;
1411 	struct sk_buff *skb;
1412 
1413 	skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1414 	if (!skb) {
1415 		bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1416 		return -ENOMEM;
1417 	}
1418 
1419 	/* We forcefully crash the controller, by sending 0xfb byte for
1420 	 * 1024 times. We also might have chance of losing data, To be
1421 	 * on safer side we send 1096 bytes to the SoC.
1422 	 */
1423 	memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1424 	       QCA_CRASHBYTE_PACKET_LEN);
1425 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1426 	bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1427 	skb_queue_tail(&qca->txq, skb);
1428 	hci_uart_tx_wakeup(hu);
1429 
1430 	return 0;
1431 }
1432 
1433 static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1434 {
1435 	struct hci_uart *hu = hci_get_drvdata(hdev);
1436 	struct qca_data *qca = hu->priv;
1437 
1438 	wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1439 			    TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1440 
1441 	clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1442 }
1443 
1444 static void qca_hw_error(struct hci_dev *hdev, u8 code)
1445 {
1446 	struct hci_uart *hu = hci_get_drvdata(hdev);
1447 	struct qca_data *qca = hu->priv;
1448 	struct qca_memdump_data *qca_memdump = qca->qca_memdump;
1449 	char *memdump_buf = NULL;
1450 
1451 	set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1452 	bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1453 
1454 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1455 		/* If hardware error event received for other than QCA
1456 		 * soc memory dump event, then we need to crash the SOC
1457 		 * and wait here for 8 seconds to get the dump packets.
1458 		 * This will block main thread to be on hold until we
1459 		 * collect dump.
1460 		 */
1461 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1462 		qca_send_crashbuffer(hu);
1463 		qca_wait_for_dump_collection(hdev);
1464 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1465 		/* Let us wait here until memory dump collected or
1466 		 * memory dump timer expired.
1467 		 */
1468 		bt_dev_info(hdev, "waiting for dump to complete");
1469 		qca_wait_for_dump_collection(hdev);
1470 	}
1471 
1472 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1473 		bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
1474 		mutex_lock(&qca->hci_memdump_lock);
1475 		if (qca_memdump)
1476 			memdump_buf = qca_memdump->memdump_buf_head;
1477 		vfree(memdump_buf);
1478 		kfree(qca_memdump);
1479 		qca->qca_memdump = NULL;
1480 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1481 		cancel_delayed_work(&qca->ctrl_memdump_timeout);
1482 		skb_queue_purge(&qca->rx_memdump_q);
1483 		mutex_unlock(&qca->hci_memdump_lock);
1484 		cancel_work_sync(&qca->ctrl_memdump_evt);
1485 	}
1486 
1487 	clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1488 }
1489 
1490 static void qca_cmd_timeout(struct hci_dev *hdev)
1491 {
1492 	struct hci_uart *hu = hci_get_drvdata(hdev);
1493 	struct qca_data *qca = hu->priv;
1494 
1495 	if (qca->memdump_state == QCA_MEMDUMP_IDLE)
1496 		qca_send_crashbuffer(hu);
1497 	else
1498 		bt_dev_info(hdev, "Dump collection is in process");
1499 }
1500 
1501 static int qca_wcn3990_init(struct hci_uart *hu)
1502 {
1503 	struct qca_serdev *qcadev;
1504 	int ret;
1505 
1506 	/* Check for vregs status, may be hci down has turned
1507 	 * off the voltage regulator.
1508 	 */
1509 	qcadev = serdev_device_get_drvdata(hu->serdev);
1510 	if (!qcadev->bt_power->vregs_on) {
1511 		serdev_device_close(hu->serdev);
1512 		ret = qca_regulator_enable(qcadev);
1513 		if (ret)
1514 			return ret;
1515 
1516 		ret = serdev_device_open(hu->serdev);
1517 		if (ret) {
1518 			bt_dev_err(hu->hdev, "failed to open port");
1519 			return ret;
1520 		}
1521 	}
1522 
1523 	/* Forcefully enable wcn3990 to enter in to boot mode. */
1524 	host_set_baudrate(hu, 2400);
1525 	ret = qca_send_power_pulse(hu, false);
1526 	if (ret)
1527 		return ret;
1528 
1529 	qca_set_speed(hu, QCA_INIT_SPEED);
1530 	ret = qca_send_power_pulse(hu, true);
1531 	if (ret)
1532 		return ret;
1533 
1534 	/* Now the device is in ready state to communicate with host.
1535 	 * To sync host with device we need to reopen port.
1536 	 * Without this, we will have RTS and CTS synchronization
1537 	 * issues.
1538 	 */
1539 	serdev_device_close(hu->serdev);
1540 	ret = serdev_device_open(hu->serdev);
1541 	if (ret) {
1542 		bt_dev_err(hu->hdev, "failed to open port");
1543 		return ret;
1544 	}
1545 
1546 	hci_uart_set_flow_control(hu, false);
1547 
1548 	return 0;
1549 }
1550 
1551 static int qca_power_on(struct hci_dev *hdev)
1552 {
1553 	struct hci_uart *hu = hci_get_drvdata(hdev);
1554 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1555 	struct qca_serdev *qcadev;
1556 	int ret = 0;
1557 
1558 	/* Non-serdev device usually is powered by external power
1559 	 * and don't need additional action in driver for power on
1560 	 */
1561 	if (!hu->serdev)
1562 		return 0;
1563 
1564 	if (qca_is_wcn399x(soc_type)) {
1565 		ret = qca_wcn3990_init(hu);
1566 	} else {
1567 		qcadev = serdev_device_get_drvdata(hu->serdev);
1568 		if (qcadev->bt_en) {
1569 			gpiod_set_value_cansleep(qcadev->bt_en, 1);
1570 			/* Controller needs time to bootup. */
1571 			msleep(150);
1572 		}
1573 	}
1574 
1575 	return ret;
1576 }
1577 
1578 static int qca_setup(struct hci_uart *hu)
1579 {
1580 	struct hci_dev *hdev = hu->hdev;
1581 	struct qca_data *qca = hu->priv;
1582 	unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1583 	unsigned int retries = 0;
1584 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1585 	const char *firmware_name = qca_get_firmware_name(hu);
1586 	int ret;
1587 	int soc_ver = 0;
1588 
1589 	ret = qca_check_speeds(hu);
1590 	if (ret)
1591 		return ret;
1592 
1593 	/* Patch downloading has to be done without IBS mode */
1594 	clear_bit(QCA_IBS_ENABLED, &qca->flags);
1595 
1596 	/* Enable controller to do both LE scan and BR/EDR inquiry
1597 	 * simultaneously.
1598 	 */
1599 	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1600 
1601 	bt_dev_info(hdev, "setting up %s",
1602 		qca_is_wcn399x(soc_type) ? "wcn399x" : "ROME/QCA6390");
1603 
1604 retry:
1605 	ret = qca_power_on(hdev);
1606 	if (ret)
1607 		return ret;
1608 
1609 	if (qca_is_wcn399x(soc_type)) {
1610 		set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
1611 
1612 		ret = qca_read_soc_version(hdev, &soc_ver, soc_type);
1613 		if (ret)
1614 			return ret;
1615 	} else {
1616 		qca_set_speed(hu, QCA_INIT_SPEED);
1617 	}
1618 
1619 	/* Setup user speed if needed */
1620 	speed = qca_get_speed(hu, QCA_OPER_SPEED);
1621 	if (speed) {
1622 		ret = qca_set_speed(hu, QCA_OPER_SPEED);
1623 		if (ret)
1624 			return ret;
1625 
1626 		qca_baudrate = qca_get_baudrate_value(speed);
1627 	}
1628 
1629 	if (!qca_is_wcn399x(soc_type)) {
1630 		/* Get QCA version information */
1631 		ret = qca_read_soc_version(hdev, &soc_ver, soc_type);
1632 		if (ret)
1633 			return ret;
1634 	}
1635 
1636 	bt_dev_info(hdev, "QCA controller version 0x%08x", soc_ver);
1637 	/* Setup patch / NVM configurations */
1638 	ret = qca_uart_setup(hdev, qca_baudrate, soc_type, soc_ver,
1639 			firmware_name);
1640 	if (!ret) {
1641 		set_bit(QCA_IBS_ENABLED, &qca->flags);
1642 		qca_debugfs_init(hdev);
1643 		hu->hdev->hw_error = qca_hw_error;
1644 		hu->hdev->cmd_timeout = qca_cmd_timeout;
1645 	} else if (ret == -ENOENT) {
1646 		/* No patch/nvm-config found, run with original fw/config */
1647 		ret = 0;
1648 	} else if (ret == -EAGAIN) {
1649 		/*
1650 		 * Userspace firmware loader will return -EAGAIN in case no
1651 		 * patch/nvm-config is found, so run with original fw/config.
1652 		 */
1653 		ret = 0;
1654 	} else {
1655 		if (retries < MAX_INIT_RETRIES) {
1656 			qca_power_shutdown(hu);
1657 			if (hu->serdev) {
1658 				serdev_device_close(hu->serdev);
1659 				ret = serdev_device_open(hu->serdev);
1660 				if (ret) {
1661 					bt_dev_err(hdev, "failed to open port");
1662 					return ret;
1663 				}
1664 			}
1665 			retries++;
1666 			goto retry;
1667 		}
1668 	}
1669 
1670 	/* Setup bdaddr */
1671 	if (soc_type == QCA_ROME)
1672 		hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
1673 	else
1674 		hu->hdev->set_bdaddr = qca_set_bdaddr;
1675 
1676 	return ret;
1677 }
1678 
1679 static const struct hci_uart_proto qca_proto = {
1680 	.id		= HCI_UART_QCA,
1681 	.name		= "QCA",
1682 	.manufacturer	= 29,
1683 	.init_speed	= 115200,
1684 	.oper_speed	= 3000000,
1685 	.open		= qca_open,
1686 	.close		= qca_close,
1687 	.flush		= qca_flush,
1688 	.setup		= qca_setup,
1689 	.recv		= qca_recv,
1690 	.enqueue	= qca_enqueue,
1691 	.dequeue	= qca_dequeue,
1692 };
1693 
1694 static const struct qca_vreg_data qca_soc_data_wcn3990 = {
1695 	.soc_type = QCA_WCN3990,
1696 	.vregs = (struct qca_vreg []) {
1697 		{ "vddio", 15000  },
1698 		{ "vddxo", 80000  },
1699 		{ "vddrf", 300000 },
1700 		{ "vddch0", 450000 },
1701 	},
1702 	.num_vregs = 4,
1703 };
1704 
1705 static const struct qca_vreg_data qca_soc_data_wcn3991 = {
1706 	.soc_type = QCA_WCN3991,
1707 	.vregs = (struct qca_vreg []) {
1708 		{ "vddio", 15000  },
1709 		{ "vddxo", 80000  },
1710 		{ "vddrf", 300000 },
1711 		{ "vddch0", 450000 },
1712 	},
1713 	.num_vregs = 4,
1714 };
1715 
1716 static const struct qca_vreg_data qca_soc_data_wcn3998 = {
1717 	.soc_type = QCA_WCN3998,
1718 	.vregs = (struct qca_vreg []) {
1719 		{ "vddio", 10000  },
1720 		{ "vddxo", 80000  },
1721 		{ "vddrf", 300000 },
1722 		{ "vddch0", 450000 },
1723 	},
1724 	.num_vregs = 4,
1725 };
1726 
1727 static const struct qca_vreg_data qca_soc_data_qca6390 = {
1728 	.soc_type = QCA_QCA6390,
1729 	.num_vregs = 0,
1730 };
1731 
1732 static void qca_power_shutdown(struct hci_uart *hu)
1733 {
1734 	struct qca_serdev *qcadev;
1735 	struct qca_data *qca = hu->priv;
1736 	unsigned long flags;
1737 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1738 
1739 	qcadev = serdev_device_get_drvdata(hu->serdev);
1740 
1741 	/* From this point we go into power off state. But serial port is
1742 	 * still open, stop queueing the IBS data and flush all the buffered
1743 	 * data in skb's.
1744 	 */
1745 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
1746 	clear_bit(QCA_IBS_ENABLED, &qca->flags);
1747 	qca_flush(hu);
1748 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
1749 
1750 	hu->hdev->hw_error = NULL;
1751 	hu->hdev->cmd_timeout = NULL;
1752 
1753 	/* Non-serdev device usually is powered by external power
1754 	 * and don't need additional action in driver for power down
1755 	 */
1756 	if (!hu->serdev)
1757 		return;
1758 
1759 	if (qca_is_wcn399x(soc_type)) {
1760 		host_set_baudrate(hu, 2400);
1761 		qca_send_power_pulse(hu, false);
1762 		qca_regulator_disable(qcadev);
1763 	} else if (qcadev->bt_en) {
1764 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
1765 	}
1766 }
1767 
1768 static int qca_power_off(struct hci_dev *hdev)
1769 {
1770 	struct hci_uart *hu = hci_get_drvdata(hdev);
1771 	struct qca_data *qca = hu->priv;
1772 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1773 
1774 	/* Stop sending shutdown command if soc crashes. */
1775 	if (soc_type != QCA_ROME
1776 		&& qca->memdump_state == QCA_MEMDUMP_IDLE) {
1777 		qca_send_pre_shutdown_cmd(hdev);
1778 		usleep_range(8000, 10000);
1779 	}
1780 
1781 	qca->memdump_state = QCA_MEMDUMP_IDLE;
1782 	qca_power_shutdown(hu);
1783 	return 0;
1784 }
1785 
1786 static int qca_regulator_enable(struct qca_serdev *qcadev)
1787 {
1788 	struct qca_power *power = qcadev->bt_power;
1789 	int ret;
1790 
1791 	/* Already enabled */
1792 	if (power->vregs_on)
1793 		return 0;
1794 
1795 	BT_DBG("enabling %d regulators)", power->num_vregs);
1796 
1797 	ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
1798 	if (ret)
1799 		return ret;
1800 
1801 	power->vregs_on = true;
1802 
1803 	ret = clk_prepare_enable(qcadev->susclk);
1804 	if (ret)
1805 		qca_regulator_disable(qcadev);
1806 
1807 	return ret;
1808 }
1809 
1810 static void qca_regulator_disable(struct qca_serdev *qcadev)
1811 {
1812 	struct qca_power *power;
1813 
1814 	if (!qcadev)
1815 		return;
1816 
1817 	power = qcadev->bt_power;
1818 
1819 	/* Already disabled? */
1820 	if (!power->vregs_on)
1821 		return;
1822 
1823 	regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
1824 	power->vregs_on = false;
1825 
1826 	clk_disable_unprepare(qcadev->susclk);
1827 }
1828 
1829 static int qca_init_regulators(struct qca_power *qca,
1830 				const struct qca_vreg *vregs, size_t num_vregs)
1831 {
1832 	struct regulator_bulk_data *bulk;
1833 	int ret;
1834 	int i;
1835 
1836 	bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
1837 	if (!bulk)
1838 		return -ENOMEM;
1839 
1840 	for (i = 0; i < num_vregs; i++)
1841 		bulk[i].supply = vregs[i].name;
1842 
1843 	ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
1844 	if (ret < 0)
1845 		return ret;
1846 
1847 	for (i = 0; i < num_vregs; i++) {
1848 		ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
1849 		if (ret)
1850 			return ret;
1851 	}
1852 
1853 	qca->vreg_bulk = bulk;
1854 	qca->num_vregs = num_vregs;
1855 
1856 	return 0;
1857 }
1858 
1859 static int qca_serdev_probe(struct serdev_device *serdev)
1860 {
1861 	struct qca_serdev *qcadev;
1862 	struct hci_dev *hdev;
1863 	const struct qca_vreg_data *data;
1864 	int err;
1865 	bool power_ctrl_enabled = true;
1866 
1867 	qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
1868 	if (!qcadev)
1869 		return -ENOMEM;
1870 
1871 	qcadev->serdev_hu.serdev = serdev;
1872 	data = device_get_match_data(&serdev->dev);
1873 	serdev_device_set_drvdata(serdev, qcadev);
1874 	device_property_read_string(&serdev->dev, "firmware-name",
1875 					 &qcadev->firmware_name);
1876 	device_property_read_u32(&serdev->dev, "max-speed",
1877 				 &qcadev->oper_speed);
1878 	if (!qcadev->oper_speed)
1879 		BT_DBG("UART will pick default operating speed");
1880 
1881 	if (data && qca_is_wcn399x(data->soc_type)) {
1882 		qcadev->btsoc_type = data->soc_type;
1883 		qcadev->bt_power = devm_kzalloc(&serdev->dev,
1884 						sizeof(struct qca_power),
1885 						GFP_KERNEL);
1886 		if (!qcadev->bt_power)
1887 			return -ENOMEM;
1888 
1889 		qcadev->bt_power->dev = &serdev->dev;
1890 		err = qca_init_regulators(qcadev->bt_power, data->vregs,
1891 					  data->num_vregs);
1892 		if (err) {
1893 			BT_ERR("Failed to init regulators:%d", err);
1894 			return err;
1895 		}
1896 
1897 		qcadev->bt_power->vregs_on = false;
1898 
1899 		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
1900 		if (IS_ERR(qcadev->susclk)) {
1901 			dev_err(&serdev->dev, "failed to acquire clk\n");
1902 			return PTR_ERR(qcadev->susclk);
1903 		}
1904 
1905 		err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
1906 		if (err) {
1907 			BT_ERR("wcn3990 serdev registration failed");
1908 			return err;
1909 		}
1910 	} else {
1911 		if (data)
1912 			qcadev->btsoc_type = data->soc_type;
1913 		else
1914 			qcadev->btsoc_type = QCA_ROME;
1915 
1916 		qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
1917 					       GPIOD_OUT_LOW);
1918 		if (!qcadev->bt_en) {
1919 			dev_warn(&serdev->dev, "failed to acquire enable gpio\n");
1920 			power_ctrl_enabled = false;
1921 		}
1922 
1923 		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
1924 		if (!qcadev->susclk) {
1925 			dev_warn(&serdev->dev, "failed to acquire clk\n");
1926 		} else {
1927 			err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
1928 			if (err)
1929 				return err;
1930 
1931 			err = clk_prepare_enable(qcadev->susclk);
1932 			if (err)
1933 				return err;
1934 		}
1935 
1936 		err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
1937 		if (err) {
1938 			BT_ERR("Rome serdev registration failed");
1939 			if (qcadev->susclk)
1940 				clk_disable_unprepare(qcadev->susclk);
1941 			return err;
1942 		}
1943 	}
1944 
1945 	if (power_ctrl_enabled) {
1946 		hdev = qcadev->serdev_hu.hdev;
1947 		set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
1948 		hdev->shutdown = qca_power_off;
1949 	}
1950 
1951 	return 0;
1952 }
1953 
1954 static void qca_serdev_remove(struct serdev_device *serdev)
1955 {
1956 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
1957 
1958 	if (qca_is_wcn399x(qcadev->btsoc_type))
1959 		qca_power_shutdown(&qcadev->serdev_hu);
1960 	else if (qcadev->susclk)
1961 		clk_disable_unprepare(qcadev->susclk);
1962 
1963 	hci_uart_unregister_device(&qcadev->serdev_hu);
1964 }
1965 
1966 static int __maybe_unused qca_suspend(struct device *dev)
1967 {
1968 	struct hci_dev *hdev = container_of(dev, struct hci_dev, dev);
1969 	struct hci_uart *hu = hci_get_drvdata(hdev);
1970 	struct qca_data *qca = hu->priv;
1971 	unsigned long flags;
1972 	int ret = 0;
1973 	u8 cmd;
1974 
1975 	set_bit(QCA_SUSPENDING, &qca->flags);
1976 
1977 	/* Device is downloading patch or doesn't support in-band sleep. */
1978 	if (!test_bit(QCA_IBS_ENABLED, &qca->flags))
1979 		return 0;
1980 
1981 	cancel_work_sync(&qca->ws_awake_device);
1982 	cancel_work_sync(&qca->ws_awake_rx);
1983 
1984 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
1985 				 flags, SINGLE_DEPTH_NESTING);
1986 
1987 	switch (qca->tx_ibs_state) {
1988 	case HCI_IBS_TX_WAKING:
1989 		del_timer(&qca->wake_retrans_timer);
1990 		/* Fall through */
1991 	case HCI_IBS_TX_AWAKE:
1992 		del_timer(&qca->tx_idle_timer);
1993 
1994 		serdev_device_write_flush(hu->serdev);
1995 		cmd = HCI_IBS_SLEEP_IND;
1996 		ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1997 
1998 		if (ret < 0) {
1999 			BT_ERR("Failed to send SLEEP to device");
2000 			break;
2001 		}
2002 
2003 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
2004 		qca->ibs_sent_slps++;
2005 
2006 		qca_wq_serial_tx_clock_vote_off(&qca->ws_tx_vote_off);
2007 		break;
2008 
2009 	case HCI_IBS_TX_ASLEEP:
2010 		break;
2011 
2012 	default:
2013 		BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
2014 		ret = -EINVAL;
2015 		break;
2016 	}
2017 
2018 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2019 
2020 	if (ret < 0)
2021 		goto error;
2022 
2023 	serdev_device_wait_until_sent(hu->serdev,
2024 				      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
2025 
2026 	/* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
2027 	 * to sleep, so that the packet does not wake the system later.
2028 	 */
2029 
2030 	ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
2031 			qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
2032 			msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
2033 
2034 	if (ret > 0)
2035 		return 0;
2036 
2037 	if (ret == 0)
2038 		ret = -ETIMEDOUT;
2039 
2040 error:
2041 	clear_bit(QCA_SUSPENDING, &qca->flags);
2042 
2043 	return ret;
2044 }
2045 
2046 static int __maybe_unused qca_resume(struct device *dev)
2047 {
2048 	struct hci_dev *hdev = container_of(dev, struct hci_dev, dev);
2049 	struct hci_uart *hu = hci_get_drvdata(hdev);
2050 	struct qca_data *qca = hu->priv;
2051 
2052 	clear_bit(QCA_SUSPENDING, &qca->flags);
2053 
2054 	return 0;
2055 }
2056 
2057 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
2058 
2059 #ifdef CONFIG_OF
2060 static const struct of_device_id qca_bluetooth_of_match[] = {
2061 	{ .compatible = "qcom,qca6174-bt" },
2062 	{ .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
2063 	{ .compatible = "qcom,qca9377-bt" },
2064 	{ .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
2065 	{ .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
2066 	{ .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
2067 	{ /* sentinel */ }
2068 };
2069 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2070 #endif
2071 
2072 #ifdef CONFIG_ACPI
2073 static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
2074 	{ "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2075 	{ "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2076 	{ "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2077 	{ "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2078 	{ },
2079 };
2080 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
2081 #endif
2082 
2083 
2084 static struct serdev_device_driver qca_serdev_driver = {
2085 	.probe = qca_serdev_probe,
2086 	.remove = qca_serdev_remove,
2087 	.driver = {
2088 		.name = "hci_uart_qca",
2089 		.of_match_table = of_match_ptr(qca_bluetooth_of_match),
2090 		.acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
2091 		.pm = &qca_pm_ops,
2092 	},
2093 };
2094 
2095 int __init qca_init(void)
2096 {
2097 	serdev_device_driver_register(&qca_serdev_driver);
2098 
2099 	return hci_uart_register_proto(&qca_proto);
2100 }
2101 
2102 int __exit qca_deinit(void)
2103 {
2104 	serdev_device_driver_unregister(&qca_serdev_driver);
2105 
2106 	return hci_uart_unregister_proto(&qca_proto);
2107 }
2108