1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Texas Instruments' Bluetooth HCILL UART protocol 4 * 5 * HCILL (HCI Low Level) is a Texas Instruments' power management 6 * protocol extension to H4. 7 * 8 * Copyright (C) 2007 Texas Instruments, Inc. 9 * 10 * Written by Ohad Ben-Cohen <ohad@bencohen.org> 11 * 12 * Acknowledgements: 13 * This file is based on hci_h4.c, which was written 14 * by Maxim Krasnyansky and Marcel Holtmann. 15 */ 16 17 #include <linux/module.h> 18 #include <linux/kernel.h> 19 20 #include <linux/init.h> 21 #include <linux/sched.h> 22 #include <linux/types.h> 23 #include <linux/fcntl.h> 24 #include <linux/firmware.h> 25 #include <linux/interrupt.h> 26 #include <linux/ptrace.h> 27 #include <linux/poll.h> 28 29 #include <linux/slab.h> 30 #include <linux/errno.h> 31 #include <linux/string.h> 32 #include <linux/signal.h> 33 #include <linux/ioctl.h> 34 #include <linux/of.h> 35 #include <linux/serdev.h> 36 #include <linux/skbuff.h> 37 #include <linux/ti_wilink_st.h> 38 #include <linux/clk.h> 39 40 #include <net/bluetooth/bluetooth.h> 41 #include <net/bluetooth/hci_core.h> 42 #include <linux/gpio/consumer.h> 43 #include <linux/nvmem-consumer.h> 44 45 #include "hci_uart.h" 46 47 /* Vendor-specific HCI commands */ 48 #define HCI_VS_WRITE_BD_ADDR 0xfc06 49 #define HCI_VS_UPDATE_UART_HCI_BAUDRATE 0xff36 50 51 /* HCILL commands */ 52 #define HCILL_GO_TO_SLEEP_IND 0x30 53 #define HCILL_GO_TO_SLEEP_ACK 0x31 54 #define HCILL_WAKE_UP_IND 0x32 55 #define HCILL_WAKE_UP_ACK 0x33 56 57 /* HCILL states */ 58 enum hcill_states_e { 59 HCILL_ASLEEP, 60 HCILL_ASLEEP_TO_AWAKE, 61 HCILL_AWAKE, 62 HCILL_AWAKE_TO_ASLEEP 63 }; 64 65 struct ll_device { 66 struct hci_uart hu; 67 struct serdev_device *serdev; 68 struct gpio_desc *enable_gpio; 69 struct clk *ext_clk; 70 bdaddr_t bdaddr; 71 }; 72 73 struct ll_struct { 74 struct sk_buff *rx_skb; 75 struct sk_buff_head txq; 76 spinlock_t hcill_lock; /* HCILL state lock */ 77 unsigned long hcill_state; /* HCILL power state */ 78 struct sk_buff_head tx_wait_q; /* HCILL wait queue */ 79 }; 80 81 /* 82 * Builds and sends an HCILL command packet. 83 * These are very simple packets with only 1 cmd byte 84 */ 85 static int send_hcill_cmd(u8 cmd, struct hci_uart *hu) 86 { 87 int err = 0; 88 struct sk_buff *skb = NULL; 89 struct ll_struct *ll = hu->priv; 90 91 BT_DBG("hu %p cmd 0x%x", hu, cmd); 92 93 /* allocate packet */ 94 skb = bt_skb_alloc(1, GFP_ATOMIC); 95 if (!skb) { 96 BT_ERR("cannot allocate memory for HCILL packet"); 97 err = -ENOMEM; 98 goto out; 99 } 100 101 /* prepare packet */ 102 skb_put_u8(skb, cmd); 103 104 /* send packet */ 105 skb_queue_tail(&ll->txq, skb); 106 out: 107 return err; 108 } 109 110 /* Initialize protocol */ 111 static int ll_open(struct hci_uart *hu) 112 { 113 struct ll_struct *ll; 114 115 BT_DBG("hu %p", hu); 116 117 ll = kzalloc(sizeof(*ll), GFP_KERNEL); 118 if (!ll) 119 return -ENOMEM; 120 121 skb_queue_head_init(&ll->txq); 122 skb_queue_head_init(&ll->tx_wait_q); 123 spin_lock_init(&ll->hcill_lock); 124 125 ll->hcill_state = HCILL_AWAKE; 126 127 hu->priv = ll; 128 129 if (hu->serdev) { 130 struct ll_device *lldev = serdev_device_get_drvdata(hu->serdev); 131 132 if (!IS_ERR(lldev->ext_clk)) 133 clk_prepare_enable(lldev->ext_clk); 134 } 135 136 return 0; 137 } 138 139 /* Flush protocol data */ 140 static int ll_flush(struct hci_uart *hu) 141 { 142 struct ll_struct *ll = hu->priv; 143 144 BT_DBG("hu %p", hu); 145 146 skb_queue_purge(&ll->tx_wait_q); 147 skb_queue_purge(&ll->txq); 148 149 return 0; 150 } 151 152 /* Close protocol */ 153 static int ll_close(struct hci_uart *hu) 154 { 155 struct ll_struct *ll = hu->priv; 156 157 BT_DBG("hu %p", hu); 158 159 skb_queue_purge(&ll->tx_wait_q); 160 skb_queue_purge(&ll->txq); 161 162 kfree_skb(ll->rx_skb); 163 164 if (hu->serdev) { 165 struct ll_device *lldev = serdev_device_get_drvdata(hu->serdev); 166 167 gpiod_set_value_cansleep(lldev->enable_gpio, 0); 168 169 clk_disable_unprepare(lldev->ext_clk); 170 } 171 172 hu->priv = NULL; 173 174 kfree(ll); 175 176 return 0; 177 } 178 179 /* 180 * internal function, which does common work of the device wake up process: 181 * 1. places all pending packets (waiting in tx_wait_q list) in txq list. 182 * 2. changes internal state to HCILL_AWAKE. 183 * Note: assumes that hcill_lock spinlock is taken, 184 * shouldn't be called otherwise! 185 */ 186 static void __ll_do_awake(struct ll_struct *ll) 187 { 188 struct sk_buff *skb = NULL; 189 190 while ((skb = skb_dequeue(&ll->tx_wait_q))) 191 skb_queue_tail(&ll->txq, skb); 192 193 ll->hcill_state = HCILL_AWAKE; 194 } 195 196 /* 197 * Called upon a wake-up-indication from the device 198 */ 199 static void ll_device_want_to_wakeup(struct hci_uart *hu) 200 { 201 unsigned long flags; 202 struct ll_struct *ll = hu->priv; 203 204 BT_DBG("hu %p", hu); 205 206 /* lock hcill state */ 207 spin_lock_irqsave(&ll->hcill_lock, flags); 208 209 switch (ll->hcill_state) { 210 case HCILL_ASLEEP_TO_AWAKE: 211 /* 212 * This state means that both the host and the BRF chip 213 * have simultaneously sent a wake-up-indication packet. 214 * Traditionally, in this case, receiving a wake-up-indication 215 * was enough and an additional wake-up-ack wasn't needed. 216 * This has changed with the BRF6350, which does require an 217 * explicit wake-up-ack. Other BRF versions, which do not 218 * require an explicit ack here, do accept it, thus it is 219 * perfectly safe to always send one. 220 */ 221 BT_DBG("dual wake-up-indication"); 222 fallthrough; 223 case HCILL_ASLEEP: 224 /* acknowledge device wake up */ 225 if (send_hcill_cmd(HCILL_WAKE_UP_ACK, hu) < 0) { 226 BT_ERR("cannot acknowledge device wake up"); 227 goto out; 228 } 229 break; 230 default: 231 /* any other state is illegal */ 232 BT_ERR("received HCILL_WAKE_UP_IND in state %ld", 233 ll->hcill_state); 234 break; 235 } 236 237 /* send pending packets and change state to HCILL_AWAKE */ 238 __ll_do_awake(ll); 239 240 out: 241 spin_unlock_irqrestore(&ll->hcill_lock, flags); 242 243 /* actually send the packets */ 244 hci_uart_tx_wakeup(hu); 245 } 246 247 /* 248 * Called upon a sleep-indication from the device 249 */ 250 static void ll_device_want_to_sleep(struct hci_uart *hu) 251 { 252 unsigned long flags; 253 struct ll_struct *ll = hu->priv; 254 255 BT_DBG("hu %p", hu); 256 257 /* lock hcill state */ 258 spin_lock_irqsave(&ll->hcill_lock, flags); 259 260 /* sanity check */ 261 if (ll->hcill_state != HCILL_AWAKE) 262 BT_ERR("ERR: HCILL_GO_TO_SLEEP_IND in state %ld", 263 ll->hcill_state); 264 265 /* acknowledge device sleep */ 266 if (send_hcill_cmd(HCILL_GO_TO_SLEEP_ACK, hu) < 0) { 267 BT_ERR("cannot acknowledge device sleep"); 268 goto out; 269 } 270 271 /* update state */ 272 ll->hcill_state = HCILL_ASLEEP; 273 274 out: 275 spin_unlock_irqrestore(&ll->hcill_lock, flags); 276 277 /* actually send the sleep ack packet */ 278 hci_uart_tx_wakeup(hu); 279 } 280 281 /* 282 * Called upon wake-up-acknowledgement from the device 283 */ 284 static void ll_device_woke_up(struct hci_uart *hu) 285 { 286 unsigned long flags; 287 struct ll_struct *ll = hu->priv; 288 289 BT_DBG("hu %p", hu); 290 291 /* lock hcill state */ 292 spin_lock_irqsave(&ll->hcill_lock, flags); 293 294 /* sanity check */ 295 if (ll->hcill_state != HCILL_ASLEEP_TO_AWAKE) 296 BT_ERR("received HCILL_WAKE_UP_ACK in state %ld", 297 ll->hcill_state); 298 299 /* send pending packets and change state to HCILL_AWAKE */ 300 __ll_do_awake(ll); 301 302 spin_unlock_irqrestore(&ll->hcill_lock, flags); 303 304 /* actually send the packets */ 305 hci_uart_tx_wakeup(hu); 306 } 307 308 /* Enqueue frame for transmission (padding, crc, etc) */ 309 /* may be called from two simultaneous tasklets */ 310 static int ll_enqueue(struct hci_uart *hu, struct sk_buff *skb) 311 { 312 unsigned long flags = 0; 313 struct ll_struct *ll = hu->priv; 314 315 BT_DBG("hu %p skb %p", hu, skb); 316 317 /* Prepend skb with frame type */ 318 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1); 319 320 /* lock hcill state */ 321 spin_lock_irqsave(&ll->hcill_lock, flags); 322 323 /* act according to current state */ 324 switch (ll->hcill_state) { 325 case HCILL_AWAKE: 326 BT_DBG("device awake, sending normally"); 327 skb_queue_tail(&ll->txq, skb); 328 break; 329 case HCILL_ASLEEP: 330 BT_DBG("device asleep, waking up and queueing packet"); 331 /* save packet for later */ 332 skb_queue_tail(&ll->tx_wait_q, skb); 333 /* awake device */ 334 if (send_hcill_cmd(HCILL_WAKE_UP_IND, hu) < 0) { 335 BT_ERR("cannot wake up device"); 336 break; 337 } 338 ll->hcill_state = HCILL_ASLEEP_TO_AWAKE; 339 break; 340 case HCILL_ASLEEP_TO_AWAKE: 341 BT_DBG("device waking up, queueing packet"); 342 /* transient state; just keep packet for later */ 343 skb_queue_tail(&ll->tx_wait_q, skb); 344 break; 345 default: 346 BT_ERR("illegal hcill state: %ld (losing packet)", 347 ll->hcill_state); 348 dev_kfree_skb_irq(skb); 349 break; 350 } 351 352 spin_unlock_irqrestore(&ll->hcill_lock, flags); 353 354 return 0; 355 } 356 357 static int ll_recv_frame(struct hci_dev *hdev, struct sk_buff *skb) 358 { 359 struct hci_uart *hu = hci_get_drvdata(hdev); 360 struct ll_struct *ll = hu->priv; 361 362 switch (hci_skb_pkt_type(skb)) { 363 case HCILL_GO_TO_SLEEP_IND: 364 BT_DBG("HCILL_GO_TO_SLEEP_IND packet"); 365 ll_device_want_to_sleep(hu); 366 break; 367 case HCILL_GO_TO_SLEEP_ACK: 368 /* shouldn't happen */ 369 bt_dev_err(hdev, "received HCILL_GO_TO_SLEEP_ACK in state %ld", 370 ll->hcill_state); 371 break; 372 case HCILL_WAKE_UP_IND: 373 BT_DBG("HCILL_WAKE_UP_IND packet"); 374 ll_device_want_to_wakeup(hu); 375 break; 376 case HCILL_WAKE_UP_ACK: 377 BT_DBG("HCILL_WAKE_UP_ACK packet"); 378 ll_device_woke_up(hu); 379 break; 380 } 381 382 kfree_skb(skb); 383 return 0; 384 } 385 386 #define LL_RECV_SLEEP_IND \ 387 .type = HCILL_GO_TO_SLEEP_IND, \ 388 .hlen = 0, \ 389 .loff = 0, \ 390 .lsize = 0, \ 391 .maxlen = 0 392 393 #define LL_RECV_SLEEP_ACK \ 394 .type = HCILL_GO_TO_SLEEP_ACK, \ 395 .hlen = 0, \ 396 .loff = 0, \ 397 .lsize = 0, \ 398 .maxlen = 0 399 400 #define LL_RECV_WAKE_IND \ 401 .type = HCILL_WAKE_UP_IND, \ 402 .hlen = 0, \ 403 .loff = 0, \ 404 .lsize = 0, \ 405 .maxlen = 0 406 407 #define LL_RECV_WAKE_ACK \ 408 .type = HCILL_WAKE_UP_ACK, \ 409 .hlen = 0, \ 410 .loff = 0, \ 411 .lsize = 0, \ 412 .maxlen = 0 413 414 static const struct h4_recv_pkt ll_recv_pkts[] = { 415 { H4_RECV_ACL, .recv = hci_recv_frame }, 416 { H4_RECV_SCO, .recv = hci_recv_frame }, 417 { H4_RECV_EVENT, .recv = hci_recv_frame }, 418 { LL_RECV_SLEEP_IND, .recv = ll_recv_frame }, 419 { LL_RECV_SLEEP_ACK, .recv = ll_recv_frame }, 420 { LL_RECV_WAKE_IND, .recv = ll_recv_frame }, 421 { LL_RECV_WAKE_ACK, .recv = ll_recv_frame }, 422 }; 423 424 /* Recv data */ 425 static int ll_recv(struct hci_uart *hu, const void *data, int count) 426 { 427 struct ll_struct *ll = hu->priv; 428 429 if (!test_bit(HCI_UART_REGISTERED, &hu->flags)) 430 return -EUNATCH; 431 432 ll->rx_skb = h4_recv_buf(hu->hdev, ll->rx_skb, data, count, 433 ll_recv_pkts, ARRAY_SIZE(ll_recv_pkts)); 434 if (IS_ERR(ll->rx_skb)) { 435 int err = PTR_ERR(ll->rx_skb); 436 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err); 437 ll->rx_skb = NULL; 438 return err; 439 } 440 441 return count; 442 } 443 444 static struct sk_buff *ll_dequeue(struct hci_uart *hu) 445 { 446 struct ll_struct *ll = hu->priv; 447 448 return skb_dequeue(&ll->txq); 449 } 450 451 #if IS_ENABLED(CONFIG_SERIAL_DEV_BUS) 452 static int read_local_version(struct hci_dev *hdev) 453 { 454 int err = 0; 455 unsigned short version = 0; 456 struct sk_buff *skb; 457 struct hci_rp_read_local_version *ver; 458 459 skb = __hci_cmd_sync(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL, 460 HCI_INIT_TIMEOUT); 461 if (IS_ERR(skb)) { 462 bt_dev_err(hdev, "Reading TI version information failed (%ld)", 463 PTR_ERR(skb)); 464 return PTR_ERR(skb); 465 } 466 if (skb->len != sizeof(*ver)) { 467 err = -EILSEQ; 468 goto out; 469 } 470 471 ver = (struct hci_rp_read_local_version *)skb->data; 472 if (le16_to_cpu(ver->manufacturer) != 13) { 473 err = -ENODEV; 474 goto out; 475 } 476 477 version = le16_to_cpu(ver->lmp_subver); 478 479 out: 480 if (err) 481 bt_dev_err(hdev, "Failed to read TI version info: %d", err); 482 kfree_skb(skb); 483 return err ? err : version; 484 } 485 486 static int send_command_from_firmware(struct ll_device *lldev, 487 struct hci_command *cmd) 488 { 489 struct sk_buff *skb; 490 491 if (cmd->opcode == HCI_VS_UPDATE_UART_HCI_BAUDRATE) { 492 /* ignore remote change 493 * baud rate HCI VS command 494 */ 495 bt_dev_warn(lldev->hu.hdev, 496 "change remote baud rate command in firmware"); 497 return 0; 498 } 499 if (cmd->prefix != 1) 500 bt_dev_dbg(lldev->hu.hdev, "command type %d", cmd->prefix); 501 502 skb = __hci_cmd_sync(lldev->hu.hdev, cmd->opcode, cmd->plen, 503 &cmd->speed, HCI_INIT_TIMEOUT); 504 if (IS_ERR(skb)) { 505 bt_dev_err(lldev->hu.hdev, "send command failed"); 506 return PTR_ERR(skb); 507 } 508 kfree_skb(skb); 509 return 0; 510 } 511 512 /* 513 * download_firmware - 514 * internal function which parses through the .bts firmware 515 * script file intreprets SEND, DELAY actions only as of now 516 */ 517 static int download_firmware(struct ll_device *lldev) 518 { 519 unsigned short chip, min_ver, maj_ver; 520 int version, err, len; 521 unsigned char *ptr, *action_ptr; 522 unsigned char bts_scr_name[40]; /* 40 char long bts scr name? */ 523 const struct firmware *fw; 524 struct hci_command *cmd; 525 526 version = read_local_version(lldev->hu.hdev); 527 if (version < 0) 528 return version; 529 530 chip = (version & 0x7C00) >> 10; 531 min_ver = (version & 0x007F); 532 maj_ver = (version & 0x0380) >> 7; 533 if (version & 0x8000) 534 maj_ver |= 0x0008; 535 536 snprintf(bts_scr_name, sizeof(bts_scr_name), 537 "ti-connectivity/TIInit_%d.%d.%d.bts", 538 chip, maj_ver, min_ver); 539 540 err = request_firmware(&fw, bts_scr_name, &lldev->serdev->dev); 541 if (err || !fw->data || !fw->size) { 542 bt_dev_err(lldev->hu.hdev, "request_firmware failed(errno %d) for %s", 543 err, bts_scr_name); 544 return -EINVAL; 545 } 546 ptr = (void *)fw->data; 547 len = fw->size; 548 /* bts_header to remove out magic number and 549 * version 550 */ 551 ptr += sizeof(struct bts_header); 552 len -= sizeof(struct bts_header); 553 554 while (len > 0 && ptr) { 555 bt_dev_dbg(lldev->hu.hdev, " action size %d, type %d ", 556 ((struct bts_action *)ptr)->size, 557 ((struct bts_action *)ptr)->type); 558 559 action_ptr = &(((struct bts_action *)ptr)->data[0]); 560 561 switch (((struct bts_action *)ptr)->type) { 562 case ACTION_SEND_COMMAND: /* action send */ 563 bt_dev_dbg(lldev->hu.hdev, "S"); 564 cmd = (struct hci_command *)action_ptr; 565 err = send_command_from_firmware(lldev, cmd); 566 if (err) 567 goto out_rel_fw; 568 break; 569 case ACTION_WAIT_EVENT: /* wait */ 570 /* no need to wait as command was synchronous */ 571 bt_dev_dbg(lldev->hu.hdev, "W"); 572 break; 573 case ACTION_DELAY: /* sleep */ 574 bt_dev_info(lldev->hu.hdev, "sleep command in scr"); 575 msleep(((struct bts_action_delay *)action_ptr)->msec); 576 break; 577 } 578 len -= (sizeof(struct bts_action) + 579 ((struct bts_action *)ptr)->size); 580 ptr += sizeof(struct bts_action) + 581 ((struct bts_action *)ptr)->size; 582 } 583 584 out_rel_fw: 585 /* fw download complete */ 586 release_firmware(fw); 587 return err; 588 } 589 590 static int ll_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr) 591 { 592 bdaddr_t bdaddr_swapped; 593 struct sk_buff *skb; 594 595 /* HCI_VS_WRITE_BD_ADDR (at least on a CC2560A chip) expects the BD 596 * address to be MSB first, but bdaddr_t has the convention of being 597 * LSB first. 598 */ 599 baswap(&bdaddr_swapped, bdaddr); 600 skb = __hci_cmd_sync(hdev, HCI_VS_WRITE_BD_ADDR, sizeof(bdaddr_t), 601 &bdaddr_swapped, HCI_INIT_TIMEOUT); 602 if (!IS_ERR(skb)) 603 kfree_skb(skb); 604 605 return PTR_ERR_OR_ZERO(skb); 606 } 607 608 static int ll_setup(struct hci_uart *hu) 609 { 610 int err, retry = 3; 611 struct ll_device *lldev; 612 struct serdev_device *serdev = hu->serdev; 613 u32 speed; 614 615 if (!serdev) 616 return 0; 617 618 lldev = serdev_device_get_drvdata(serdev); 619 620 hu->hdev->set_bdaddr = ll_set_bdaddr; 621 622 serdev_device_set_flow_control(serdev, true); 623 624 do { 625 /* Reset the Bluetooth device */ 626 gpiod_set_value_cansleep(lldev->enable_gpio, 0); 627 msleep(5); 628 gpiod_set_value_cansleep(lldev->enable_gpio, 1); 629 mdelay(100); 630 err = serdev_device_wait_for_cts(serdev, true, 200); 631 if (err) { 632 bt_dev_err(hu->hdev, "Failed to get CTS"); 633 return err; 634 } 635 636 err = download_firmware(lldev); 637 if (!err) 638 break; 639 640 /* Toggle BT_EN and retry */ 641 bt_dev_err(hu->hdev, "download firmware failed, retrying..."); 642 } while (retry--); 643 644 if (err) 645 return err; 646 647 /* Set BD address if one was specified at probe */ 648 if (!bacmp(&lldev->bdaddr, BDADDR_NONE)) { 649 /* This means that there was an error getting the BD address 650 * during probe, so mark the device as having a bad address. 651 */ 652 set_bit(HCI_QUIRK_INVALID_BDADDR, &hu->hdev->quirks); 653 } else if (bacmp(&lldev->bdaddr, BDADDR_ANY)) { 654 err = ll_set_bdaddr(hu->hdev, &lldev->bdaddr); 655 if (err) 656 set_bit(HCI_QUIRK_INVALID_BDADDR, &hu->hdev->quirks); 657 } 658 659 /* Operational speed if any */ 660 if (hu->oper_speed) 661 speed = hu->oper_speed; 662 else if (hu->proto->oper_speed) 663 speed = hu->proto->oper_speed; 664 else 665 speed = 0; 666 667 if (speed) { 668 __le32 speed_le = cpu_to_le32(speed); 669 struct sk_buff *skb; 670 671 skb = __hci_cmd_sync(hu->hdev, HCI_VS_UPDATE_UART_HCI_BAUDRATE, 672 sizeof(speed_le), &speed_le, 673 HCI_INIT_TIMEOUT); 674 if (!IS_ERR(skb)) { 675 kfree_skb(skb); 676 serdev_device_set_baudrate(serdev, speed); 677 } 678 } 679 680 return 0; 681 } 682 683 static const struct hci_uart_proto llp; 684 685 static int hci_ti_probe(struct serdev_device *serdev) 686 { 687 struct hci_uart *hu; 688 struct ll_device *lldev; 689 struct nvmem_cell *bdaddr_cell; 690 u32 max_speed = 3000000; 691 692 lldev = devm_kzalloc(&serdev->dev, sizeof(struct ll_device), GFP_KERNEL); 693 if (!lldev) 694 return -ENOMEM; 695 hu = &lldev->hu; 696 697 serdev_device_set_drvdata(serdev, lldev); 698 lldev->serdev = hu->serdev = serdev; 699 700 lldev->enable_gpio = devm_gpiod_get_optional(&serdev->dev, 701 "enable", 702 GPIOD_OUT_LOW); 703 if (IS_ERR(lldev->enable_gpio)) 704 return PTR_ERR(lldev->enable_gpio); 705 706 lldev->ext_clk = devm_clk_get(&serdev->dev, "ext_clock"); 707 if (IS_ERR(lldev->ext_clk) && PTR_ERR(lldev->ext_clk) != -ENOENT) 708 return PTR_ERR(lldev->ext_clk); 709 710 of_property_read_u32(serdev->dev.of_node, "max-speed", &max_speed); 711 hci_uart_set_speeds(hu, 115200, max_speed); 712 713 /* optional BD address from nvram */ 714 bdaddr_cell = nvmem_cell_get(&serdev->dev, "bd-address"); 715 if (IS_ERR(bdaddr_cell)) { 716 int err = PTR_ERR(bdaddr_cell); 717 718 if (err == -EPROBE_DEFER) 719 return err; 720 721 /* ENOENT means there is no matching nvmem cell and ENOSYS 722 * means that nvmem is not enabled in the kernel configuration. 723 */ 724 if (err != -ENOENT && err != -ENOSYS) { 725 /* If there was some other error, give userspace a 726 * chance to fix the problem instead of failing to load 727 * the driver. Using BDADDR_NONE as a flag that is 728 * tested later in the setup function. 729 */ 730 dev_warn(&serdev->dev, 731 "Failed to get \"bd-address\" nvmem cell (%d)\n", 732 err); 733 bacpy(&lldev->bdaddr, BDADDR_NONE); 734 } 735 } else { 736 bdaddr_t *bdaddr; 737 size_t len; 738 739 bdaddr = nvmem_cell_read(bdaddr_cell, &len); 740 nvmem_cell_put(bdaddr_cell); 741 if (IS_ERR(bdaddr)) { 742 dev_err(&serdev->dev, "Failed to read nvmem bd-address\n"); 743 return PTR_ERR(bdaddr); 744 } 745 if (len != sizeof(bdaddr_t)) { 746 dev_err(&serdev->dev, "Invalid nvmem bd-address length\n"); 747 kfree(bdaddr); 748 return -EINVAL; 749 } 750 751 /* As per the device tree bindings, the value from nvmem is 752 * expected to be MSB first, but in the kernel it is expected 753 * that bdaddr_t is LSB first. 754 */ 755 baswap(&lldev->bdaddr, bdaddr); 756 kfree(bdaddr); 757 } 758 759 return hci_uart_register_device(hu, &llp); 760 } 761 762 static void hci_ti_remove(struct serdev_device *serdev) 763 { 764 struct ll_device *lldev = serdev_device_get_drvdata(serdev); 765 766 hci_uart_unregister_device(&lldev->hu); 767 } 768 769 static const struct of_device_id hci_ti_of_match[] = { 770 { .compatible = "ti,cc2560" }, 771 { .compatible = "ti,wl1271-st" }, 772 { .compatible = "ti,wl1273-st" }, 773 { .compatible = "ti,wl1281-st" }, 774 { .compatible = "ti,wl1283-st" }, 775 { .compatible = "ti,wl1285-st" }, 776 { .compatible = "ti,wl1801-st" }, 777 { .compatible = "ti,wl1805-st" }, 778 { .compatible = "ti,wl1807-st" }, 779 { .compatible = "ti,wl1831-st" }, 780 { .compatible = "ti,wl1835-st" }, 781 { .compatible = "ti,wl1837-st" }, 782 {}, 783 }; 784 MODULE_DEVICE_TABLE(of, hci_ti_of_match); 785 786 static struct serdev_device_driver hci_ti_drv = { 787 .driver = { 788 .name = "hci-ti", 789 .of_match_table = hci_ti_of_match, 790 }, 791 .probe = hci_ti_probe, 792 .remove = hci_ti_remove, 793 }; 794 #else 795 #define ll_setup NULL 796 #endif 797 798 static const struct hci_uart_proto llp = { 799 .id = HCI_UART_LL, 800 .name = "LL", 801 .setup = ll_setup, 802 .open = ll_open, 803 .close = ll_close, 804 .recv = ll_recv, 805 .enqueue = ll_enqueue, 806 .dequeue = ll_dequeue, 807 .flush = ll_flush, 808 }; 809 810 int __init ll_init(void) 811 { 812 serdev_device_driver_register(&hci_ti_drv); 813 814 return hci_uart_register_proto(&llp); 815 } 816 817 int __exit ll_deinit(void) 818 { 819 serdev_device_driver_unregister(&hci_ti_drv); 820 821 return hci_uart_unregister_proto(&llp); 822 } 823