1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Bluetooth HCI UART driver 5 * 6 * Copyright (C) 2000-2001 Qualcomm Incorporated 7 * Copyright (C) 2002-2003 Maxim Krasnyansky <maxk@qualcomm.com> 8 * Copyright (C) 2004-2005 Marcel Holtmann <marcel@holtmann.org> 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/kernel.h> 14 #include <linux/init.h> 15 #include <linux/types.h> 16 #include <linux/fcntl.h> 17 #include <linux/interrupt.h> 18 #include <linux/ptrace.h> 19 #include <linux/poll.h> 20 21 #include <linux/slab.h> 22 #include <linux/tty.h> 23 #include <linux/errno.h> 24 #include <linux/string.h> 25 #include <linux/signal.h> 26 #include <linux/ioctl.h> 27 #include <linux/skbuff.h> 28 #include <linux/firmware.h> 29 #include <linux/serdev.h> 30 31 #include <net/bluetooth/bluetooth.h> 32 #include <net/bluetooth/hci_core.h> 33 34 #include "btintel.h" 35 #include "btbcm.h" 36 #include "hci_uart.h" 37 38 #define VERSION "2.3" 39 40 static const struct hci_uart_proto *hup[HCI_UART_MAX_PROTO]; 41 42 int hci_uart_register_proto(const struct hci_uart_proto *p) 43 { 44 if (p->id >= HCI_UART_MAX_PROTO) 45 return -EINVAL; 46 47 if (hup[p->id]) 48 return -EEXIST; 49 50 hup[p->id] = p; 51 52 BT_INFO("HCI UART protocol %s registered", p->name); 53 54 return 0; 55 } 56 57 int hci_uart_unregister_proto(const struct hci_uart_proto *p) 58 { 59 if (p->id >= HCI_UART_MAX_PROTO) 60 return -EINVAL; 61 62 if (!hup[p->id]) 63 return -EINVAL; 64 65 hup[p->id] = NULL; 66 67 return 0; 68 } 69 70 static const struct hci_uart_proto *hci_uart_get_proto(unsigned int id) 71 { 72 if (id >= HCI_UART_MAX_PROTO) 73 return NULL; 74 75 return hup[id]; 76 } 77 78 static inline void hci_uart_tx_complete(struct hci_uart *hu, int pkt_type) 79 { 80 struct hci_dev *hdev = hu->hdev; 81 82 /* Update HCI stat counters */ 83 switch (pkt_type) { 84 case HCI_COMMAND_PKT: 85 hdev->stat.cmd_tx++; 86 break; 87 88 case HCI_ACLDATA_PKT: 89 hdev->stat.acl_tx++; 90 break; 91 92 case HCI_SCODATA_PKT: 93 hdev->stat.sco_tx++; 94 break; 95 } 96 } 97 98 static inline struct sk_buff *hci_uart_dequeue(struct hci_uart *hu) 99 { 100 struct sk_buff *skb = hu->tx_skb; 101 102 if (!skb) { 103 percpu_down_read(&hu->proto_lock); 104 105 if (test_bit(HCI_UART_PROTO_READY, &hu->flags)) 106 skb = hu->proto->dequeue(hu); 107 108 percpu_up_read(&hu->proto_lock); 109 } else { 110 hu->tx_skb = NULL; 111 } 112 113 return skb; 114 } 115 116 int hci_uart_tx_wakeup(struct hci_uart *hu) 117 { 118 /* This may be called in an IRQ context, so we can't sleep. Therefore 119 * we try to acquire the lock only, and if that fails we assume the 120 * tty is being closed because that is the only time the write lock is 121 * acquired. If, however, at some point in the future the write lock 122 * is also acquired in other situations, then this must be revisited. 123 */ 124 if (!percpu_down_read_trylock(&hu->proto_lock)) 125 return 0; 126 127 if (!test_bit(HCI_UART_PROTO_READY, &hu->flags)) 128 goto no_schedule; 129 130 set_bit(HCI_UART_TX_WAKEUP, &hu->tx_state); 131 if (test_and_set_bit(HCI_UART_SENDING, &hu->tx_state)) 132 goto no_schedule; 133 134 BT_DBG(""); 135 136 schedule_work(&hu->write_work); 137 138 no_schedule: 139 percpu_up_read(&hu->proto_lock); 140 141 return 0; 142 } 143 EXPORT_SYMBOL_GPL(hci_uart_tx_wakeup); 144 145 static void hci_uart_write_work(struct work_struct *work) 146 { 147 struct hci_uart *hu = container_of(work, struct hci_uart, write_work); 148 struct tty_struct *tty = hu->tty; 149 struct hci_dev *hdev = hu->hdev; 150 struct sk_buff *skb; 151 152 /* REVISIT: should we cope with bad skbs or ->write() returning 153 * and error value ? 154 */ 155 156 restart: 157 clear_bit(HCI_UART_TX_WAKEUP, &hu->tx_state); 158 159 while ((skb = hci_uart_dequeue(hu))) { 160 int len; 161 162 set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 163 len = tty->ops->write(tty, skb->data, skb->len); 164 hdev->stat.byte_tx += len; 165 166 skb_pull(skb, len); 167 if (skb->len) { 168 hu->tx_skb = skb; 169 break; 170 } 171 172 hci_uart_tx_complete(hu, hci_skb_pkt_type(skb)); 173 kfree_skb(skb); 174 } 175 176 clear_bit(HCI_UART_SENDING, &hu->tx_state); 177 if (test_bit(HCI_UART_TX_WAKEUP, &hu->tx_state)) 178 goto restart; 179 180 wake_up_bit(&hu->tx_state, HCI_UART_SENDING); 181 } 182 183 void hci_uart_init_work(struct work_struct *work) 184 { 185 struct hci_uart *hu = container_of(work, struct hci_uart, init_ready); 186 int err; 187 struct hci_dev *hdev; 188 189 if (!test_and_clear_bit(HCI_UART_INIT_PENDING, &hu->hdev_flags)) 190 return; 191 192 err = hci_register_dev(hu->hdev); 193 if (err < 0) { 194 BT_ERR("Can't register HCI device"); 195 clear_bit(HCI_UART_PROTO_READY, &hu->flags); 196 hu->proto->close(hu); 197 hdev = hu->hdev; 198 hu->hdev = NULL; 199 hci_free_dev(hdev); 200 return; 201 } 202 203 set_bit(HCI_UART_REGISTERED, &hu->flags); 204 } 205 206 int hci_uart_init_ready(struct hci_uart *hu) 207 { 208 if (!test_bit(HCI_UART_INIT_PENDING, &hu->hdev_flags)) 209 return -EALREADY; 210 211 schedule_work(&hu->init_ready); 212 213 return 0; 214 } 215 216 int hci_uart_wait_until_sent(struct hci_uart *hu) 217 { 218 return wait_on_bit_timeout(&hu->tx_state, HCI_UART_SENDING, 219 TASK_INTERRUPTIBLE, 220 msecs_to_jiffies(2000)); 221 } 222 223 /* ------- Interface to HCI layer ------ */ 224 /* Reset device */ 225 static int hci_uart_flush(struct hci_dev *hdev) 226 { 227 struct hci_uart *hu = hci_get_drvdata(hdev); 228 struct tty_struct *tty = hu->tty; 229 230 BT_DBG("hdev %p tty %p", hdev, tty); 231 232 if (hu->tx_skb) { 233 kfree_skb(hu->tx_skb); hu->tx_skb = NULL; 234 } 235 236 /* Flush any pending characters in the driver and discipline. */ 237 tty_ldisc_flush(tty); 238 tty_driver_flush_buffer(tty); 239 240 percpu_down_read(&hu->proto_lock); 241 242 if (test_bit(HCI_UART_PROTO_READY, &hu->flags)) 243 hu->proto->flush(hu); 244 245 percpu_up_read(&hu->proto_lock); 246 247 return 0; 248 } 249 250 /* Initialize device */ 251 static int hci_uart_open(struct hci_dev *hdev) 252 { 253 BT_DBG("%s %p", hdev->name, hdev); 254 255 /* Undo clearing this from hci_uart_close() */ 256 hdev->flush = hci_uart_flush; 257 258 return 0; 259 } 260 261 /* Close device */ 262 static int hci_uart_close(struct hci_dev *hdev) 263 { 264 BT_DBG("hdev %p", hdev); 265 266 hci_uart_flush(hdev); 267 hdev->flush = NULL; 268 return 0; 269 } 270 271 /* Send frames from HCI layer */ 272 static int hci_uart_send_frame(struct hci_dev *hdev, struct sk_buff *skb) 273 { 274 struct hci_uart *hu = hci_get_drvdata(hdev); 275 276 BT_DBG("%s: type %d len %d", hdev->name, hci_skb_pkt_type(skb), 277 skb->len); 278 279 percpu_down_read(&hu->proto_lock); 280 281 if (!test_bit(HCI_UART_PROTO_READY, &hu->flags)) { 282 percpu_up_read(&hu->proto_lock); 283 return -EUNATCH; 284 } 285 286 hu->proto->enqueue(hu, skb); 287 percpu_up_read(&hu->proto_lock); 288 289 hci_uart_tx_wakeup(hu); 290 291 return 0; 292 } 293 294 /* Check the underlying device or tty has flow control support */ 295 bool hci_uart_has_flow_control(struct hci_uart *hu) 296 { 297 /* serdev nodes check if the needed operations are present */ 298 if (hu->serdev) 299 return true; 300 301 if (hu->tty->driver->ops->tiocmget && hu->tty->driver->ops->tiocmset) 302 return true; 303 304 return false; 305 } 306 307 /* Flow control or un-flow control the device */ 308 void hci_uart_set_flow_control(struct hci_uart *hu, bool enable) 309 { 310 struct tty_struct *tty = hu->tty; 311 struct ktermios ktermios; 312 int status; 313 unsigned int set = 0; 314 unsigned int clear = 0; 315 316 if (hu->serdev) { 317 serdev_device_set_flow_control(hu->serdev, !enable); 318 serdev_device_set_rts(hu->serdev, !enable); 319 return; 320 } 321 322 if (enable) { 323 /* Disable hardware flow control */ 324 ktermios = tty->termios; 325 ktermios.c_cflag &= ~CRTSCTS; 326 tty_set_termios(tty, &ktermios); 327 BT_DBG("Disabling hardware flow control: %s", 328 (tty->termios.c_cflag & CRTSCTS) ? "failed" : "success"); 329 330 /* Clear RTS to prevent the device from sending */ 331 /* Most UARTs need OUT2 to enable interrupts */ 332 status = tty->driver->ops->tiocmget(tty); 333 BT_DBG("Current tiocm 0x%x", status); 334 335 set &= ~(TIOCM_OUT2 | TIOCM_RTS); 336 clear = ~set; 337 set &= TIOCM_DTR | TIOCM_RTS | TIOCM_OUT1 | 338 TIOCM_OUT2 | TIOCM_LOOP; 339 clear &= TIOCM_DTR | TIOCM_RTS | TIOCM_OUT1 | 340 TIOCM_OUT2 | TIOCM_LOOP; 341 status = tty->driver->ops->tiocmset(tty, set, clear); 342 BT_DBG("Clearing RTS: %s", status ? "failed" : "success"); 343 } else { 344 /* Set RTS to allow the device to send again */ 345 status = tty->driver->ops->tiocmget(tty); 346 BT_DBG("Current tiocm 0x%x", status); 347 348 set |= (TIOCM_OUT2 | TIOCM_RTS); 349 clear = ~set; 350 set &= TIOCM_DTR | TIOCM_RTS | TIOCM_OUT1 | 351 TIOCM_OUT2 | TIOCM_LOOP; 352 clear &= TIOCM_DTR | TIOCM_RTS | TIOCM_OUT1 | 353 TIOCM_OUT2 | TIOCM_LOOP; 354 status = tty->driver->ops->tiocmset(tty, set, clear); 355 BT_DBG("Setting RTS: %s", status ? "failed" : "success"); 356 357 /* Re-enable hardware flow control */ 358 ktermios = tty->termios; 359 ktermios.c_cflag |= CRTSCTS; 360 tty_set_termios(tty, &ktermios); 361 BT_DBG("Enabling hardware flow control: %s", 362 !(tty->termios.c_cflag & CRTSCTS) ? "failed" : "success"); 363 } 364 } 365 366 void hci_uart_set_speeds(struct hci_uart *hu, unsigned int init_speed, 367 unsigned int oper_speed) 368 { 369 hu->init_speed = init_speed; 370 hu->oper_speed = oper_speed; 371 } 372 373 void hci_uart_set_baudrate(struct hci_uart *hu, unsigned int speed) 374 { 375 struct tty_struct *tty = hu->tty; 376 struct ktermios ktermios; 377 378 ktermios = tty->termios; 379 ktermios.c_cflag &= ~CBAUD; 380 tty_termios_encode_baud_rate(&ktermios, speed, speed); 381 382 /* tty_set_termios() return not checked as it is always 0 */ 383 tty_set_termios(tty, &ktermios); 384 385 BT_DBG("%s: New tty speeds: %d/%d", hu->hdev->name, 386 tty->termios.c_ispeed, tty->termios.c_ospeed); 387 } 388 389 static int hci_uart_setup(struct hci_dev *hdev) 390 { 391 struct hci_uart *hu = hci_get_drvdata(hdev); 392 struct hci_rp_read_local_version *ver; 393 struct sk_buff *skb; 394 unsigned int speed; 395 int err; 396 397 /* Init speed if any */ 398 if (hu->init_speed) 399 speed = hu->init_speed; 400 else if (hu->proto->init_speed) 401 speed = hu->proto->init_speed; 402 else 403 speed = 0; 404 405 if (speed) 406 hci_uart_set_baudrate(hu, speed); 407 408 /* Operational speed if any */ 409 if (hu->oper_speed) 410 speed = hu->oper_speed; 411 else if (hu->proto->oper_speed) 412 speed = hu->proto->oper_speed; 413 else 414 speed = 0; 415 416 if (hu->proto->set_baudrate && speed) { 417 err = hu->proto->set_baudrate(hu, speed); 418 if (!err) 419 hci_uart_set_baudrate(hu, speed); 420 } 421 422 if (hu->proto->setup) 423 return hu->proto->setup(hu); 424 425 if (!test_bit(HCI_UART_VND_DETECT, &hu->hdev_flags)) 426 return 0; 427 428 skb = __hci_cmd_sync(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL, 429 HCI_INIT_TIMEOUT); 430 if (IS_ERR(skb)) { 431 BT_ERR("%s: Reading local version information failed (%ld)", 432 hdev->name, PTR_ERR(skb)); 433 return 0; 434 } 435 436 if (skb->len != sizeof(*ver)) { 437 BT_ERR("%s: Event length mismatch for version information", 438 hdev->name); 439 goto done; 440 } 441 442 ver = (struct hci_rp_read_local_version *)skb->data; 443 444 switch (le16_to_cpu(ver->manufacturer)) { 445 #ifdef CONFIG_BT_HCIUART_INTEL 446 case 2: 447 hdev->set_bdaddr = btintel_set_bdaddr; 448 btintel_check_bdaddr(hdev); 449 break; 450 #endif 451 #ifdef CONFIG_BT_HCIUART_BCM 452 case 15: 453 hdev->set_bdaddr = btbcm_set_bdaddr; 454 btbcm_check_bdaddr(hdev); 455 break; 456 #endif 457 default: 458 break; 459 } 460 461 done: 462 kfree_skb(skb); 463 return 0; 464 } 465 466 /* ------ LDISC part ------ */ 467 /* hci_uart_tty_open 468 * 469 * Called when line discipline changed to HCI_UART. 470 * 471 * Arguments: 472 * tty pointer to tty info structure 473 * Return Value: 474 * 0 if success, otherwise error code 475 */ 476 static int hci_uart_tty_open(struct tty_struct *tty) 477 { 478 struct hci_uart *hu; 479 480 BT_DBG("tty %p", tty); 481 482 if (!capable(CAP_NET_ADMIN)) 483 return -EPERM; 484 485 /* Error if the tty has no write op instead of leaving an exploitable 486 * hole 487 */ 488 if (tty->ops->write == NULL) 489 return -EOPNOTSUPP; 490 491 hu = kzalloc(sizeof(*hu), GFP_KERNEL); 492 if (!hu) { 493 BT_ERR("Can't allocate control structure"); 494 return -ENFILE; 495 } 496 if (percpu_init_rwsem(&hu->proto_lock)) { 497 BT_ERR("Can't allocate semaphore structure"); 498 kfree(hu); 499 return -ENOMEM; 500 } 501 502 tty->disc_data = hu; 503 hu->tty = tty; 504 tty->receive_room = 65536; 505 506 /* disable alignment support by default */ 507 hu->alignment = 1; 508 hu->padding = 0; 509 510 INIT_WORK(&hu->init_ready, hci_uart_init_work); 511 INIT_WORK(&hu->write_work, hci_uart_write_work); 512 513 /* Flush any pending characters in the driver */ 514 tty_driver_flush_buffer(tty); 515 516 return 0; 517 } 518 519 /* hci_uart_tty_close() 520 * 521 * Called when the line discipline is changed to something 522 * else, the tty is closed, or the tty detects a hangup. 523 */ 524 static void hci_uart_tty_close(struct tty_struct *tty) 525 { 526 struct hci_uart *hu = tty->disc_data; 527 struct hci_dev *hdev; 528 529 BT_DBG("tty %p", tty); 530 531 /* Detach from the tty */ 532 tty->disc_data = NULL; 533 534 if (!hu) 535 return; 536 537 hdev = hu->hdev; 538 if (hdev) 539 hci_uart_close(hdev); 540 541 if (test_bit(HCI_UART_PROTO_READY, &hu->flags)) { 542 percpu_down_write(&hu->proto_lock); 543 clear_bit(HCI_UART_PROTO_READY, &hu->flags); 544 percpu_up_write(&hu->proto_lock); 545 546 cancel_work_sync(&hu->init_ready); 547 cancel_work_sync(&hu->write_work); 548 549 if (hdev) { 550 if (test_bit(HCI_UART_REGISTERED, &hu->flags)) 551 hci_unregister_dev(hdev); 552 hci_free_dev(hdev); 553 } 554 hu->proto->close(hu); 555 } 556 clear_bit(HCI_UART_PROTO_SET, &hu->flags); 557 558 percpu_free_rwsem(&hu->proto_lock); 559 560 kfree(hu); 561 } 562 563 /* hci_uart_tty_wakeup() 564 * 565 * Callback for transmit wakeup. Called when low level 566 * device driver can accept more send data. 567 * 568 * Arguments: tty pointer to associated tty instance data 569 * Return Value: None 570 */ 571 static void hci_uart_tty_wakeup(struct tty_struct *tty) 572 { 573 struct hci_uart *hu = tty->disc_data; 574 575 BT_DBG(""); 576 577 if (!hu) 578 return; 579 580 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 581 582 if (tty != hu->tty) 583 return; 584 585 if (test_bit(HCI_UART_PROTO_READY, &hu->flags)) 586 hci_uart_tx_wakeup(hu); 587 } 588 589 /* hci_uart_tty_receive() 590 * 591 * Called by tty low level driver when receive data is 592 * available. 593 * 594 * Arguments: tty pointer to tty isntance data 595 * data pointer to received data 596 * flags pointer to flags for data 597 * count count of received data in bytes 598 * 599 * Return Value: None 600 */ 601 static void hci_uart_tty_receive(struct tty_struct *tty, const u8 *data, 602 const u8 *flags, size_t count) 603 { 604 struct hci_uart *hu = tty->disc_data; 605 606 if (!hu || tty != hu->tty) 607 return; 608 609 percpu_down_read(&hu->proto_lock); 610 611 if (!test_bit(HCI_UART_PROTO_READY, &hu->flags)) { 612 percpu_up_read(&hu->proto_lock); 613 return; 614 } 615 616 /* It does not need a lock here as it is already protected by a mutex in 617 * tty caller 618 */ 619 hu->proto->recv(hu, data, count); 620 percpu_up_read(&hu->proto_lock); 621 622 if (hu->hdev) 623 hu->hdev->stat.byte_rx += count; 624 625 tty_unthrottle(tty); 626 } 627 628 static int hci_uart_register_dev(struct hci_uart *hu) 629 { 630 struct hci_dev *hdev; 631 int err; 632 633 BT_DBG(""); 634 635 /* Initialize and register HCI device */ 636 hdev = hci_alloc_dev(); 637 if (!hdev) { 638 BT_ERR("Can't allocate HCI device"); 639 return -ENOMEM; 640 } 641 642 hu->hdev = hdev; 643 644 hdev->bus = HCI_UART; 645 hci_set_drvdata(hdev, hu); 646 647 /* Only when vendor specific setup callback is provided, consider 648 * the manufacturer information valid. This avoids filling in the 649 * value for Ericsson when nothing is specified. 650 */ 651 if (hu->proto->setup) 652 hdev->manufacturer = hu->proto->manufacturer; 653 654 hdev->open = hci_uart_open; 655 hdev->close = hci_uart_close; 656 hdev->flush = hci_uart_flush; 657 hdev->send = hci_uart_send_frame; 658 hdev->setup = hci_uart_setup; 659 SET_HCIDEV_DEV(hdev, hu->tty->dev); 660 661 if (test_bit(HCI_UART_RAW_DEVICE, &hu->hdev_flags)) 662 set_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks); 663 664 if (test_bit(HCI_UART_EXT_CONFIG, &hu->hdev_flags)) 665 set_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks); 666 667 if (!test_bit(HCI_UART_RESET_ON_INIT, &hu->hdev_flags)) 668 set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks); 669 670 /* Only call open() for the protocol after hdev is fully initialized as 671 * open() (or a timer/workqueue it starts) may attempt to reference it. 672 */ 673 err = hu->proto->open(hu); 674 if (err) { 675 hu->hdev = NULL; 676 hci_free_dev(hdev); 677 return err; 678 } 679 680 if (test_bit(HCI_UART_INIT_PENDING, &hu->hdev_flags)) 681 return 0; 682 683 if (hci_register_dev(hdev) < 0) { 684 BT_ERR("Can't register HCI device"); 685 hu->proto->close(hu); 686 hu->hdev = NULL; 687 hci_free_dev(hdev); 688 return -ENODEV; 689 } 690 691 set_bit(HCI_UART_REGISTERED, &hu->flags); 692 693 return 0; 694 } 695 696 static int hci_uart_set_proto(struct hci_uart *hu, int id) 697 { 698 const struct hci_uart_proto *p; 699 int err; 700 701 p = hci_uart_get_proto(id); 702 if (!p) 703 return -EPROTONOSUPPORT; 704 705 hu->proto = p; 706 707 err = hci_uart_register_dev(hu); 708 if (err) { 709 return err; 710 } 711 712 set_bit(HCI_UART_PROTO_READY, &hu->flags); 713 return 0; 714 } 715 716 static int hci_uart_set_flags(struct hci_uart *hu, unsigned long flags) 717 { 718 unsigned long valid_flags = BIT(HCI_UART_RAW_DEVICE) | 719 BIT(HCI_UART_RESET_ON_INIT) | 720 BIT(HCI_UART_INIT_PENDING) | 721 BIT(HCI_UART_EXT_CONFIG) | 722 BIT(HCI_UART_VND_DETECT); 723 724 if (flags & ~valid_flags) 725 return -EINVAL; 726 727 hu->hdev_flags = flags; 728 729 return 0; 730 } 731 732 /* hci_uart_tty_ioctl() 733 * 734 * Process IOCTL system call for the tty device. 735 * 736 * Arguments: 737 * 738 * tty pointer to tty instance data 739 * cmd IOCTL command code 740 * arg argument for IOCTL call (cmd dependent) 741 * 742 * Return Value: Command dependent 743 */ 744 static int hci_uart_tty_ioctl(struct tty_struct *tty, unsigned int cmd, 745 unsigned long arg) 746 { 747 struct hci_uart *hu = tty->disc_data; 748 int err = 0; 749 750 BT_DBG(""); 751 752 /* Verify the status of the device */ 753 if (!hu) 754 return -EBADF; 755 756 switch (cmd) { 757 case HCIUARTSETPROTO: 758 if (!test_and_set_bit(HCI_UART_PROTO_SET, &hu->flags)) { 759 err = hci_uart_set_proto(hu, arg); 760 if (err) 761 clear_bit(HCI_UART_PROTO_SET, &hu->flags); 762 } else 763 err = -EBUSY; 764 break; 765 766 case HCIUARTGETPROTO: 767 if (test_bit(HCI_UART_PROTO_SET, &hu->flags) && 768 test_bit(HCI_UART_PROTO_READY, &hu->flags)) 769 err = hu->proto->id; 770 else 771 err = -EUNATCH; 772 break; 773 774 case HCIUARTGETDEVICE: 775 if (test_bit(HCI_UART_REGISTERED, &hu->flags)) 776 err = hu->hdev->id; 777 else 778 err = -EUNATCH; 779 break; 780 781 case HCIUARTSETFLAGS: 782 if (test_bit(HCI_UART_PROTO_SET, &hu->flags)) 783 err = -EBUSY; 784 else 785 err = hci_uart_set_flags(hu, arg); 786 break; 787 788 case HCIUARTGETFLAGS: 789 err = hu->hdev_flags; 790 break; 791 792 default: 793 err = n_tty_ioctl_helper(tty, cmd, arg); 794 break; 795 } 796 797 return err; 798 } 799 800 /* 801 * We don't provide read/write/poll interface for user space. 802 */ 803 static ssize_t hci_uart_tty_read(struct tty_struct *tty, struct file *file, 804 u8 *buf, size_t nr, void **cookie, 805 unsigned long offset) 806 { 807 return 0; 808 } 809 810 static ssize_t hci_uart_tty_write(struct tty_struct *tty, struct file *file, 811 const u8 *data, size_t count) 812 { 813 return 0; 814 } 815 816 static struct tty_ldisc_ops hci_uart_ldisc = { 817 .owner = THIS_MODULE, 818 .num = N_HCI, 819 .name = "n_hci", 820 .open = hci_uart_tty_open, 821 .close = hci_uart_tty_close, 822 .read = hci_uart_tty_read, 823 .write = hci_uart_tty_write, 824 .ioctl = hci_uart_tty_ioctl, 825 .compat_ioctl = hci_uart_tty_ioctl, 826 .receive_buf = hci_uart_tty_receive, 827 .write_wakeup = hci_uart_tty_wakeup, 828 }; 829 830 static int __init hci_uart_init(void) 831 { 832 int err; 833 834 BT_INFO("HCI UART driver ver %s", VERSION); 835 836 /* Register the tty discipline */ 837 err = tty_register_ldisc(&hci_uart_ldisc); 838 if (err) { 839 BT_ERR("HCI line discipline registration failed. (%d)", err); 840 return err; 841 } 842 843 #ifdef CONFIG_BT_HCIUART_H4 844 h4_init(); 845 #endif 846 #ifdef CONFIG_BT_HCIUART_BCSP 847 bcsp_init(); 848 #endif 849 #ifdef CONFIG_BT_HCIUART_LL 850 ll_init(); 851 #endif 852 #ifdef CONFIG_BT_HCIUART_ATH3K 853 ath_init(); 854 #endif 855 #ifdef CONFIG_BT_HCIUART_3WIRE 856 h5_init(); 857 #endif 858 #ifdef CONFIG_BT_HCIUART_INTEL 859 intel_init(); 860 #endif 861 #ifdef CONFIG_BT_HCIUART_BCM 862 bcm_init(); 863 #endif 864 #ifdef CONFIG_BT_HCIUART_QCA 865 qca_init(); 866 #endif 867 #ifdef CONFIG_BT_HCIUART_AG6XX 868 ag6xx_init(); 869 #endif 870 #ifdef CONFIG_BT_HCIUART_MRVL 871 mrvl_init(); 872 #endif 873 874 return 0; 875 } 876 877 static void __exit hci_uart_exit(void) 878 { 879 #ifdef CONFIG_BT_HCIUART_H4 880 h4_deinit(); 881 #endif 882 #ifdef CONFIG_BT_HCIUART_BCSP 883 bcsp_deinit(); 884 #endif 885 #ifdef CONFIG_BT_HCIUART_LL 886 ll_deinit(); 887 #endif 888 #ifdef CONFIG_BT_HCIUART_ATH3K 889 ath_deinit(); 890 #endif 891 #ifdef CONFIG_BT_HCIUART_3WIRE 892 h5_deinit(); 893 #endif 894 #ifdef CONFIG_BT_HCIUART_INTEL 895 intel_deinit(); 896 #endif 897 #ifdef CONFIG_BT_HCIUART_BCM 898 bcm_deinit(); 899 #endif 900 #ifdef CONFIG_BT_HCIUART_QCA 901 qca_deinit(); 902 #endif 903 #ifdef CONFIG_BT_HCIUART_AG6XX 904 ag6xx_deinit(); 905 #endif 906 #ifdef CONFIG_BT_HCIUART_MRVL 907 mrvl_deinit(); 908 #endif 909 910 tty_unregister_ldisc(&hci_uart_ldisc); 911 } 912 913 module_init(hci_uart_init); 914 module_exit(hci_uart_exit); 915 916 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>"); 917 MODULE_DESCRIPTION("Bluetooth HCI UART driver ver " VERSION); 918 MODULE_VERSION(VERSION); 919 MODULE_LICENSE("GPL"); 920 MODULE_ALIAS_LDISC(N_HCI); 921