xref: /linux/drivers/bluetooth/hci_intel.c (revision 905e46acd3272d04566fec49afbd7ad9e2ed9ae3)
1 /*
2  *
3  *  Bluetooth HCI UART driver for Intel devices
4  *
5  *  Copyright (C) 2015  Intel Corporation
6  *
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  */
23 
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/skbuff.h>
27 #include <linux/firmware.h>
28 #include <linux/module.h>
29 #include <linux/wait.h>
30 #include <linux/tty.h>
31 #include <linux/platform_device.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/acpi.h>
34 #include <linux/interrupt.h>
35 #include <linux/pm_runtime.h>
36 
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
39 
40 #include "hci_uart.h"
41 #include "btintel.h"
42 
43 #define STATE_BOOTLOADER	0
44 #define STATE_DOWNLOADING	1
45 #define STATE_FIRMWARE_LOADED	2
46 #define STATE_FIRMWARE_FAILED	3
47 #define STATE_BOOTING		4
48 #define STATE_LPM_ENABLED	5
49 #define STATE_TX_ACTIVE		6
50 #define STATE_SUSPENDED		7
51 #define STATE_LPM_TRANSACTION	8
52 
53 #define HCI_LPM_WAKE_PKT 0xf0
54 #define HCI_LPM_PKT 0xf1
55 #define HCI_LPM_MAX_SIZE 10
56 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
57 
58 #define LPM_OP_TX_NOTIFY 0x00
59 #define LPM_OP_SUSPEND_ACK 0x02
60 #define LPM_OP_RESUME_ACK 0x03
61 
62 #define LPM_SUSPEND_DELAY_MS 1000
63 
64 struct hci_lpm_pkt {
65 	__u8 opcode;
66 	__u8 dlen;
67 	__u8 data[0];
68 } __packed;
69 
70 struct intel_device {
71 	struct list_head list;
72 	struct platform_device *pdev;
73 	struct gpio_desc *reset;
74 	struct hci_uart *hu;
75 	struct mutex hu_lock;
76 	int irq;
77 };
78 
79 static LIST_HEAD(intel_device_list);
80 static DEFINE_MUTEX(intel_device_list_lock);
81 
82 struct intel_data {
83 	struct sk_buff *rx_skb;
84 	struct sk_buff_head txq;
85 	struct work_struct busy_work;
86 	struct hci_uart *hu;
87 	unsigned long flags;
88 };
89 
90 static u8 intel_convert_speed(unsigned int speed)
91 {
92 	switch (speed) {
93 	case 9600:
94 		return 0x00;
95 	case 19200:
96 		return 0x01;
97 	case 38400:
98 		return 0x02;
99 	case 57600:
100 		return 0x03;
101 	case 115200:
102 		return 0x04;
103 	case 230400:
104 		return 0x05;
105 	case 460800:
106 		return 0x06;
107 	case 921600:
108 		return 0x07;
109 	case 1843200:
110 		return 0x08;
111 	case 3250000:
112 		return 0x09;
113 	case 2000000:
114 		return 0x0a;
115 	case 3000000:
116 		return 0x0b;
117 	default:
118 		return 0xff;
119 	}
120 }
121 
122 static int intel_wait_booting(struct hci_uart *hu)
123 {
124 	struct intel_data *intel = hu->priv;
125 	int err;
126 
127 	err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
128 				  TASK_INTERRUPTIBLE,
129 				  msecs_to_jiffies(1000));
130 
131 	if (err == -EINTR) {
132 		bt_dev_err(hu->hdev, "Device boot interrupted");
133 		return -EINTR;
134 	}
135 
136 	if (err) {
137 		bt_dev_err(hu->hdev, "Device boot timeout");
138 		return -ETIMEDOUT;
139 	}
140 
141 	return err;
142 }
143 
144 #ifdef CONFIG_PM
145 static int intel_wait_lpm_transaction(struct hci_uart *hu)
146 {
147 	struct intel_data *intel = hu->priv;
148 	int err;
149 
150 	err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
151 				  TASK_INTERRUPTIBLE,
152 				  msecs_to_jiffies(1000));
153 
154 	if (err == -EINTR) {
155 		bt_dev_err(hu->hdev, "LPM transaction interrupted");
156 		return -EINTR;
157 	}
158 
159 	if (err) {
160 		bt_dev_err(hu->hdev, "LPM transaction timeout");
161 		return -ETIMEDOUT;
162 	}
163 
164 	return err;
165 }
166 
167 static int intel_lpm_suspend(struct hci_uart *hu)
168 {
169 	static const u8 suspend[] = { 0x01, 0x01, 0x01 };
170 	struct intel_data *intel = hu->priv;
171 	struct sk_buff *skb;
172 
173 	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
174 	    test_bit(STATE_SUSPENDED, &intel->flags))
175 		return 0;
176 
177 	if (test_bit(STATE_TX_ACTIVE, &intel->flags))
178 		return -EAGAIN;
179 
180 	bt_dev_dbg(hu->hdev, "Suspending");
181 
182 	skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
183 	if (!skb) {
184 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
185 		return -ENOMEM;
186 	}
187 
188 	memcpy(skb_put(skb, sizeof(suspend)), suspend, sizeof(suspend));
189 	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
190 
191 	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
192 
193 	/* LPM flow is a priority, enqueue packet at list head */
194 	skb_queue_head(&intel->txq, skb);
195 	hci_uart_tx_wakeup(hu);
196 
197 	intel_wait_lpm_transaction(hu);
198 	/* Even in case of failure, continue and test the suspended flag */
199 
200 	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
201 
202 	if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
203 		bt_dev_err(hu->hdev, "Device suspend error");
204 		return -EINVAL;
205 	}
206 
207 	bt_dev_dbg(hu->hdev, "Suspended");
208 
209 	hci_uart_set_flow_control(hu, true);
210 
211 	return 0;
212 }
213 
214 static int intel_lpm_resume(struct hci_uart *hu)
215 {
216 	struct intel_data *intel = hu->priv;
217 	struct sk_buff *skb;
218 
219 	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
220 	    !test_bit(STATE_SUSPENDED, &intel->flags))
221 		return 0;
222 
223 	bt_dev_dbg(hu->hdev, "Resuming");
224 
225 	hci_uart_set_flow_control(hu, false);
226 
227 	skb = bt_skb_alloc(0, GFP_KERNEL);
228 	if (!skb) {
229 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
230 		return -ENOMEM;
231 	}
232 
233 	hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
234 
235 	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
236 
237 	/* LPM flow is a priority, enqueue packet at list head */
238 	skb_queue_head(&intel->txq, skb);
239 	hci_uart_tx_wakeup(hu);
240 
241 	intel_wait_lpm_transaction(hu);
242 	/* Even in case of failure, continue and test the suspended flag */
243 
244 	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
245 
246 	if (test_bit(STATE_SUSPENDED, &intel->flags)) {
247 		bt_dev_err(hu->hdev, "Device resume error");
248 		return -EINVAL;
249 	}
250 
251 	bt_dev_dbg(hu->hdev, "Resumed");
252 
253 	return 0;
254 }
255 #endif /* CONFIG_PM */
256 
257 static int intel_lpm_host_wake(struct hci_uart *hu)
258 {
259 	static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
260 	struct intel_data *intel = hu->priv;
261 	struct sk_buff *skb;
262 
263 	hci_uart_set_flow_control(hu, false);
264 
265 	clear_bit(STATE_SUSPENDED, &intel->flags);
266 
267 	skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
268 	if (!skb) {
269 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
270 		return -ENOMEM;
271 	}
272 
273 	memcpy(skb_put(skb, sizeof(lpm_resume_ack)), lpm_resume_ack,
274 	       sizeof(lpm_resume_ack));
275 	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
276 
277 	/* LPM flow is a priority, enqueue packet at list head */
278 	skb_queue_head(&intel->txq, skb);
279 	hci_uart_tx_wakeup(hu);
280 
281 	bt_dev_dbg(hu->hdev, "Resumed by controller");
282 
283 	return 0;
284 }
285 
286 static irqreturn_t intel_irq(int irq, void *dev_id)
287 {
288 	struct intel_device *idev = dev_id;
289 
290 	dev_info(&idev->pdev->dev, "hci_intel irq\n");
291 
292 	mutex_lock(&idev->hu_lock);
293 	if (idev->hu)
294 		intel_lpm_host_wake(idev->hu);
295 	mutex_unlock(&idev->hu_lock);
296 
297 	/* Host/Controller are now LPM resumed, trigger a new delayed suspend */
298 	pm_runtime_get(&idev->pdev->dev);
299 	pm_runtime_mark_last_busy(&idev->pdev->dev);
300 	pm_runtime_put_autosuspend(&idev->pdev->dev);
301 
302 	return IRQ_HANDLED;
303 }
304 
305 static int intel_set_power(struct hci_uart *hu, bool powered)
306 {
307 	struct list_head *p;
308 	int err = -ENODEV;
309 
310 	if (!hu->tty->dev)
311 		return err;
312 
313 	mutex_lock(&intel_device_list_lock);
314 
315 	list_for_each(p, &intel_device_list) {
316 		struct intel_device *idev = list_entry(p, struct intel_device,
317 						       list);
318 
319 		/* tty device and pdev device should share the same parent
320 		 * which is the UART port.
321 		 */
322 		if (hu->tty->dev->parent != idev->pdev->dev.parent)
323 			continue;
324 
325 		if (!idev->reset) {
326 			err = -ENOTSUPP;
327 			break;
328 		}
329 
330 		BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
331 			hu, dev_name(&idev->pdev->dev), powered);
332 
333 		gpiod_set_value(idev->reset, powered);
334 
335 		/* Provide to idev a hu reference which is used to run LPM
336 		 * transactions (lpm suspend/resume) from PM callbacks.
337 		 * hu needs to be protected against concurrent removing during
338 		 * these PM ops.
339 		 */
340 		mutex_lock(&idev->hu_lock);
341 		idev->hu = powered ? hu : NULL;
342 		mutex_unlock(&idev->hu_lock);
343 
344 		if (idev->irq < 0)
345 			break;
346 
347 		if (powered && device_can_wakeup(&idev->pdev->dev)) {
348 			err = devm_request_threaded_irq(&idev->pdev->dev,
349 							idev->irq, NULL,
350 							intel_irq,
351 							IRQF_ONESHOT,
352 							"bt-host-wake", idev);
353 			if (err) {
354 				BT_ERR("hu %p, unable to allocate irq-%d",
355 				       hu, idev->irq);
356 				break;
357 			}
358 
359 			device_wakeup_enable(&idev->pdev->dev);
360 
361 			pm_runtime_set_active(&idev->pdev->dev);
362 			pm_runtime_use_autosuspend(&idev->pdev->dev);
363 			pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
364 							 LPM_SUSPEND_DELAY_MS);
365 			pm_runtime_enable(&idev->pdev->dev);
366 		} else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
367 			devm_free_irq(&idev->pdev->dev, idev->irq, idev);
368 			device_wakeup_disable(&idev->pdev->dev);
369 
370 			pm_runtime_disable(&idev->pdev->dev);
371 		}
372 	}
373 
374 	mutex_unlock(&intel_device_list_lock);
375 
376 	return err;
377 }
378 
379 static void intel_busy_work(struct work_struct *work)
380 {
381 	struct list_head *p;
382 	struct intel_data *intel = container_of(work, struct intel_data,
383 						busy_work);
384 
385 	if (!intel->hu->tty->dev)
386 		return;
387 
388 	/* Link is busy, delay the suspend */
389 	mutex_lock(&intel_device_list_lock);
390 	list_for_each(p, &intel_device_list) {
391 		struct intel_device *idev = list_entry(p, struct intel_device,
392 						       list);
393 
394 		if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
395 			pm_runtime_get(&idev->pdev->dev);
396 			pm_runtime_mark_last_busy(&idev->pdev->dev);
397 			pm_runtime_put_autosuspend(&idev->pdev->dev);
398 			break;
399 		}
400 	}
401 	mutex_unlock(&intel_device_list_lock);
402 }
403 
404 static int intel_open(struct hci_uart *hu)
405 {
406 	struct intel_data *intel;
407 
408 	BT_DBG("hu %p", hu);
409 
410 	intel = kzalloc(sizeof(*intel), GFP_KERNEL);
411 	if (!intel)
412 		return -ENOMEM;
413 
414 	skb_queue_head_init(&intel->txq);
415 	INIT_WORK(&intel->busy_work, intel_busy_work);
416 
417 	intel->hu = hu;
418 
419 	hu->priv = intel;
420 
421 	if (!intel_set_power(hu, true))
422 		set_bit(STATE_BOOTING, &intel->flags);
423 
424 	return 0;
425 }
426 
427 static int intel_close(struct hci_uart *hu)
428 {
429 	struct intel_data *intel = hu->priv;
430 
431 	BT_DBG("hu %p", hu);
432 
433 	cancel_work_sync(&intel->busy_work);
434 
435 	intel_set_power(hu, false);
436 
437 	skb_queue_purge(&intel->txq);
438 	kfree_skb(intel->rx_skb);
439 	kfree(intel);
440 
441 	hu->priv = NULL;
442 	return 0;
443 }
444 
445 static int intel_flush(struct hci_uart *hu)
446 {
447 	struct intel_data *intel = hu->priv;
448 
449 	BT_DBG("hu %p", hu);
450 
451 	skb_queue_purge(&intel->txq);
452 
453 	return 0;
454 }
455 
456 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
457 {
458 	struct sk_buff *skb;
459 	struct hci_event_hdr *hdr;
460 	struct hci_ev_cmd_complete *evt;
461 
462 	skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
463 	if (!skb)
464 		return -ENOMEM;
465 
466 	hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
467 	hdr->evt = HCI_EV_CMD_COMPLETE;
468 	hdr->plen = sizeof(*evt) + 1;
469 
470 	evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
471 	evt->ncmd = 0x01;
472 	evt->opcode = cpu_to_le16(opcode);
473 
474 	*skb_put(skb, 1) = 0x00;
475 
476 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
477 
478 	return hci_recv_frame(hdev, skb);
479 }
480 
481 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
482 {
483 	struct intel_data *intel = hu->priv;
484 	struct hci_dev *hdev = hu->hdev;
485 	u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
486 	struct sk_buff *skb;
487 	int err;
488 
489 	/* This can be the first command sent to the chip, check
490 	 * that the controller is ready.
491 	 */
492 	err = intel_wait_booting(hu);
493 
494 	clear_bit(STATE_BOOTING, &intel->flags);
495 
496 	/* In case of timeout, try to continue anyway */
497 	if (err && err != -ETIMEDOUT)
498 		return err;
499 
500 	bt_dev_info(hdev, "Change controller speed to %d", speed);
501 
502 	speed_cmd[3] = intel_convert_speed(speed);
503 	if (speed_cmd[3] == 0xff) {
504 		bt_dev_err(hdev, "Unsupported speed");
505 		return -EINVAL;
506 	}
507 
508 	/* Device will not accept speed change if Intel version has not been
509 	 * previously requested.
510 	 */
511 	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
512 	if (IS_ERR(skb)) {
513 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
514 			   PTR_ERR(skb));
515 		return PTR_ERR(skb);
516 	}
517 	kfree_skb(skb);
518 
519 	skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
520 	if (!skb) {
521 		bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
522 		return -ENOMEM;
523 	}
524 
525 	memcpy(skb_put(skb, sizeof(speed_cmd)), speed_cmd, sizeof(speed_cmd));
526 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
527 
528 	hci_uart_set_flow_control(hu, true);
529 
530 	skb_queue_tail(&intel->txq, skb);
531 	hci_uart_tx_wakeup(hu);
532 
533 	/* wait 100ms to change baudrate on controller side */
534 	msleep(100);
535 
536 	hci_uart_set_baudrate(hu, speed);
537 	hci_uart_set_flow_control(hu, false);
538 
539 	return 0;
540 }
541 
542 static int intel_setup(struct hci_uart *hu)
543 {
544 	static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
545 					  0x00, 0x08, 0x04, 0x00 };
546 	struct intel_data *intel = hu->priv;
547 	struct hci_dev *hdev = hu->hdev;
548 	struct sk_buff *skb;
549 	struct intel_version ver;
550 	struct intel_boot_params *params;
551 	struct list_head *p;
552 	const struct firmware *fw;
553 	const u8 *fw_ptr;
554 	char fwname[64];
555 	u32 frag_len;
556 	ktime_t calltime, delta, rettime;
557 	unsigned long long duration;
558 	unsigned int init_speed, oper_speed;
559 	int speed_change = 0;
560 	int err;
561 
562 	bt_dev_dbg(hdev, "start intel_setup");
563 
564 	hu->hdev->set_diag = btintel_set_diag;
565 	hu->hdev->set_bdaddr = btintel_set_bdaddr;
566 
567 	calltime = ktime_get();
568 
569 	if (hu->init_speed)
570 		init_speed = hu->init_speed;
571 	else
572 		init_speed = hu->proto->init_speed;
573 
574 	if (hu->oper_speed)
575 		oper_speed = hu->oper_speed;
576 	else
577 		oper_speed = hu->proto->oper_speed;
578 
579 	if (oper_speed && init_speed && oper_speed != init_speed)
580 		speed_change = 1;
581 
582 	/* Check that the controller is ready */
583 	err = intel_wait_booting(hu);
584 
585 	clear_bit(STATE_BOOTING, &intel->flags);
586 
587 	/* In case of timeout, try to continue anyway */
588 	if (err && err != -ETIMEDOUT)
589 		return err;
590 
591 	set_bit(STATE_BOOTLOADER, &intel->flags);
592 
593 	/* Read the Intel version information to determine if the device
594 	 * is in bootloader mode or if it already has operational firmware
595 	 * loaded.
596 	 */
597 	 err = btintel_read_version(hdev, &ver);
598 	 if (err)
599 		return err;
600 
601 	/* The hardware platform number has a fixed value of 0x37 and
602 	 * for now only accept this single value.
603 	 */
604 	if (ver.hw_platform != 0x37) {
605 		bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
606 			   ver.hw_platform);
607 		return -EINVAL;
608 	}
609 
610         /* Check for supported iBT hardware variants of this firmware
611          * loading method.
612          *
613          * This check has been put in place to ensure correct forward
614          * compatibility options when newer hardware variants come along.
615          */
616 	switch (ver.hw_variant) {
617 	case 0x0b:	/* LnP */
618 	case 0x0c:	/* WsP */
619 	case 0x12:	/* ThP */
620 		break;
621 	default:
622 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
623 			   ver.hw_variant);
624 		return -EINVAL;
625 	}
626 
627 	btintel_version_info(hdev, &ver);
628 
629 	/* The firmware variant determines if the device is in bootloader
630 	 * mode or is running operational firmware. The value 0x06 identifies
631 	 * the bootloader and the value 0x23 identifies the operational
632 	 * firmware.
633 	 *
634 	 * When the operational firmware is already present, then only
635 	 * the check for valid Bluetooth device address is needed. This
636 	 * determines if the device will be added as configured or
637 	 * unconfigured controller.
638 	 *
639 	 * It is not possible to use the Secure Boot Parameters in this
640 	 * case since that command is only available in bootloader mode.
641 	 */
642 	if (ver.fw_variant == 0x23) {
643 		clear_bit(STATE_BOOTLOADER, &intel->flags);
644 		btintel_check_bdaddr(hdev);
645 		return 0;
646 	}
647 
648 	/* If the device is not in bootloader mode, then the only possible
649 	 * choice is to return an error and abort the device initialization.
650 	 */
651 	if (ver.fw_variant != 0x06) {
652 		bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
653 			   ver.fw_variant);
654 		return -ENODEV;
655 	}
656 
657 	/* Read the secure boot parameters to identify the operating
658 	 * details of the bootloader.
659 	 */
660 	skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_CMD_TIMEOUT);
661 	if (IS_ERR(skb)) {
662 		bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
663 			   PTR_ERR(skb));
664 		return PTR_ERR(skb);
665 	}
666 
667 	if (skb->len != sizeof(*params)) {
668 		bt_dev_err(hdev, "Intel boot parameters size mismatch");
669 		kfree_skb(skb);
670 		return -EILSEQ;
671 	}
672 
673 	params = (struct intel_boot_params *)skb->data;
674 	if (params->status) {
675 		bt_dev_err(hdev, "Intel boot parameters command failure (%02x)",
676 			   params->status);
677 		err = -bt_to_errno(params->status);
678 		kfree_skb(skb);
679 		return err;
680 	}
681 
682 	bt_dev_info(hdev, "Device revision is %u",
683 		    le16_to_cpu(params->dev_revid));
684 
685 	bt_dev_info(hdev, "Secure boot is %s",
686 		    params->secure_boot ? "enabled" : "disabled");
687 
688 	bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
689 		params->min_fw_build_nn, params->min_fw_build_cw,
690 		2000 + params->min_fw_build_yy);
691 
692 	/* It is required that every single firmware fragment is acknowledged
693 	 * with a command complete event. If the boot parameters indicate
694 	 * that this bootloader does not send them, then abort the setup.
695 	 */
696 	if (params->limited_cce != 0x00) {
697 		bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
698 			   params->limited_cce);
699 		kfree_skb(skb);
700 		return -EINVAL;
701 	}
702 
703 	/* If the OTP has no valid Bluetooth device address, then there will
704 	 * also be no valid address for the operational firmware.
705 	 */
706 	if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
707 		bt_dev_info(hdev, "No device address configured");
708 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
709 	}
710 
711 	/* With this Intel bootloader only the hardware variant and device
712 	 * revision information are used to select the right firmware.
713 	 *
714 	 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
715 	 *
716 	 * Currently the supported hardware variants are:
717 	 *   11 (0x0b) for iBT 3.0 (LnP/SfP)
718 	 */
719 	snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi",
720 		le16_to_cpu(ver.hw_variant),
721 		le16_to_cpu(params->dev_revid));
722 
723 	err = request_firmware(&fw, fwname, &hdev->dev);
724 	if (err < 0) {
725 		bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
726 			   err);
727 		kfree_skb(skb);
728 		return err;
729 	}
730 
731 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
732 
733 	/* Save the DDC file name for later */
734 	snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc",
735 		le16_to_cpu(ver.hw_variant),
736 		le16_to_cpu(params->dev_revid));
737 
738 	kfree_skb(skb);
739 
740 	if (fw->size < 644) {
741 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
742 			   fw->size);
743 		err = -EBADF;
744 		goto done;
745 	}
746 
747 	set_bit(STATE_DOWNLOADING, &intel->flags);
748 
749 	/* Start the firmware download transaction with the Init fragment
750 	 * represented by the 128 bytes of CSS header.
751 	 */
752 	err = btintel_secure_send(hdev, 0x00, 128, fw->data);
753 	if (err < 0) {
754 		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
755 		goto done;
756 	}
757 
758 	/* Send the 256 bytes of public key information from the firmware
759 	 * as the PKey fragment.
760 	 */
761 	err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
762 	if (err < 0) {
763 		bt_dev_err(hdev, "Failed to send firmware public key (%d)",
764 			   err);
765 		goto done;
766 	}
767 
768 	/* Send the 256 bytes of signature information from the firmware
769 	 * as the Sign fragment.
770 	 */
771 	err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
772 	if (err < 0) {
773 		bt_dev_err(hdev, "Failed to send firmware signature (%d)",
774 			   err);
775 		goto done;
776 	}
777 
778 	fw_ptr = fw->data + 644;
779 	frag_len = 0;
780 
781 	while (fw_ptr - fw->data < fw->size) {
782 		struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
783 
784 		frag_len += sizeof(*cmd) + cmd->plen;
785 
786 		bt_dev_dbg(hdev, "Patching %td/%zu", (fw_ptr - fw->data),
787 			   fw->size);
788 
789 		/* The parameter length of the secure send command requires
790 		 * a 4 byte alignment. It happens so that the firmware file
791 		 * contains proper Intel_NOP commands to align the fragments
792 		 * as needed.
793 		 *
794 		 * Send set of commands with 4 byte alignment from the
795 		 * firmware data buffer as a single Data fragement.
796 		 */
797 		if (frag_len % 4)
798 			continue;
799 
800 		/* Send each command from the firmware data buffer as
801 		 * a single Data fragment.
802 		 */
803 		err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
804 		if (err < 0) {
805 			bt_dev_err(hdev, "Failed to send firmware data (%d)",
806 				   err);
807 			goto done;
808 		}
809 
810 		fw_ptr += frag_len;
811 		frag_len = 0;
812 	}
813 
814 	set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
815 
816 	bt_dev_info(hdev, "Waiting for firmware download to complete");
817 
818 	/* Before switching the device into operational mode and with that
819 	 * booting the loaded firmware, wait for the bootloader notification
820 	 * that all fragments have been successfully received.
821 	 *
822 	 * When the event processing receives the notification, then the
823 	 * STATE_DOWNLOADING flag will be cleared.
824 	 *
825 	 * The firmware loading should not take longer than 5 seconds
826 	 * and thus just timeout if that happens and fail the setup
827 	 * of this device.
828 	 */
829 	err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
830 				  TASK_INTERRUPTIBLE,
831 				  msecs_to_jiffies(5000));
832 	if (err == -EINTR) {
833 		bt_dev_err(hdev, "Firmware loading interrupted");
834 		err = -EINTR;
835 		goto done;
836 	}
837 
838 	if (err) {
839 		bt_dev_err(hdev, "Firmware loading timeout");
840 		err = -ETIMEDOUT;
841 		goto done;
842 	}
843 
844 	if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
845 		bt_dev_err(hdev, "Firmware loading failed");
846 		err = -ENOEXEC;
847 		goto done;
848 	}
849 
850 	rettime = ktime_get();
851 	delta = ktime_sub(rettime, calltime);
852 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
853 
854 	bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
855 
856 done:
857 	release_firmware(fw);
858 
859 	if (err < 0)
860 		return err;
861 
862 	/* We need to restore the default speed before Intel reset */
863 	if (speed_change) {
864 		err = intel_set_baudrate(hu, init_speed);
865 		if (err)
866 			return err;
867 	}
868 
869 	calltime = ktime_get();
870 
871 	set_bit(STATE_BOOTING, &intel->flags);
872 
873 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
874 			     HCI_CMD_TIMEOUT);
875 	if (IS_ERR(skb))
876 		return PTR_ERR(skb);
877 
878 	kfree_skb(skb);
879 
880 	/* The bootloader will not indicate when the device is ready. This
881 	 * is done by the operational firmware sending bootup notification.
882 	 *
883 	 * Booting into operational firmware should not take longer than
884 	 * 1 second. However if that happens, then just fail the setup
885 	 * since something went wrong.
886 	 */
887 	bt_dev_info(hdev, "Waiting for device to boot");
888 
889 	err = intel_wait_booting(hu);
890 	if (err)
891 		return err;
892 
893 	clear_bit(STATE_BOOTING, &intel->flags);
894 
895 	rettime = ktime_get();
896 	delta = ktime_sub(rettime, calltime);
897 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
898 
899 	bt_dev_info(hdev, "Device booted in %llu usecs", duration);
900 
901 	/* Enable LPM if matching pdev with wakeup enabled, set TX active
902 	 * until further LPM TX notification.
903 	 */
904 	mutex_lock(&intel_device_list_lock);
905 	list_for_each(p, &intel_device_list) {
906 		struct intel_device *dev = list_entry(p, struct intel_device,
907 						      list);
908 		if (!hu->tty->dev)
909 			break;
910 		if (hu->tty->dev->parent == dev->pdev->dev.parent) {
911 			if (device_may_wakeup(&dev->pdev->dev)) {
912 				set_bit(STATE_LPM_ENABLED, &intel->flags);
913 				set_bit(STATE_TX_ACTIVE, &intel->flags);
914 			}
915 			break;
916 		}
917 	}
918 	mutex_unlock(&intel_device_list_lock);
919 
920 	/* Ignore errors, device can work without DDC parameters */
921 	btintel_load_ddc_config(hdev, fwname);
922 
923 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
924 	if (IS_ERR(skb))
925 		return PTR_ERR(skb);
926 	kfree_skb(skb);
927 
928 	if (speed_change) {
929 		err = intel_set_baudrate(hu, oper_speed);
930 		if (err)
931 			return err;
932 	}
933 
934 	bt_dev_info(hdev, "Setup complete");
935 
936 	clear_bit(STATE_BOOTLOADER, &intel->flags);
937 
938 	return 0;
939 }
940 
941 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
942 {
943 	struct hci_uart *hu = hci_get_drvdata(hdev);
944 	struct intel_data *intel = hu->priv;
945 	struct hci_event_hdr *hdr;
946 
947 	if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
948 	    !test_bit(STATE_BOOTING, &intel->flags))
949 		goto recv;
950 
951 	hdr = (void *)skb->data;
952 
953 	/* When the firmware loading completes the device sends
954 	 * out a vendor specific event indicating the result of
955 	 * the firmware loading.
956 	 */
957 	if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
958 	    skb->data[2] == 0x06) {
959 		if (skb->data[3] != 0x00)
960 			set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
961 
962 		if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
963 		    test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) {
964 			smp_mb__after_atomic();
965 			wake_up_bit(&intel->flags, STATE_DOWNLOADING);
966 		}
967 
968 	/* When switching to the operational firmware the device
969 	 * sends a vendor specific event indicating that the bootup
970 	 * completed.
971 	 */
972 	} else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
973 		   skb->data[2] == 0x02) {
974 		if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) {
975 			smp_mb__after_atomic();
976 			wake_up_bit(&intel->flags, STATE_BOOTING);
977 		}
978 	}
979 recv:
980 	return hci_recv_frame(hdev, skb);
981 }
982 
983 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
984 {
985 	struct hci_uart *hu = hci_get_drvdata(hdev);
986 	struct intel_data *intel = hu->priv;
987 
988 	bt_dev_dbg(hdev, "TX idle notification (%d)", value);
989 
990 	if (value) {
991 		set_bit(STATE_TX_ACTIVE, &intel->flags);
992 		schedule_work(&intel->busy_work);
993 	} else {
994 		clear_bit(STATE_TX_ACTIVE, &intel->flags);
995 	}
996 }
997 
998 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
999 {
1000 	struct hci_lpm_pkt *lpm = (void *)skb->data;
1001 	struct hci_uart *hu = hci_get_drvdata(hdev);
1002 	struct intel_data *intel = hu->priv;
1003 
1004 	switch (lpm->opcode) {
1005 	case LPM_OP_TX_NOTIFY:
1006 		if (lpm->dlen < 1) {
1007 			bt_dev_err(hu->hdev, "Invalid LPM notification packet");
1008 			break;
1009 		}
1010 		intel_recv_lpm_notify(hdev, lpm->data[0]);
1011 		break;
1012 	case LPM_OP_SUSPEND_ACK:
1013 		set_bit(STATE_SUSPENDED, &intel->flags);
1014 		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1015 			smp_mb__after_atomic();
1016 			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1017 		}
1018 		break;
1019 	case LPM_OP_RESUME_ACK:
1020 		clear_bit(STATE_SUSPENDED, &intel->flags);
1021 		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1022 			smp_mb__after_atomic();
1023 			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1024 		}
1025 		break;
1026 	default:
1027 		bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
1028 		break;
1029 	}
1030 
1031 	kfree_skb(skb);
1032 
1033 	return 0;
1034 }
1035 
1036 #define INTEL_RECV_LPM \
1037 	.type = HCI_LPM_PKT, \
1038 	.hlen = HCI_LPM_HDR_SIZE, \
1039 	.loff = 1, \
1040 	.lsize = 1, \
1041 	.maxlen = HCI_LPM_MAX_SIZE
1042 
1043 static const struct h4_recv_pkt intel_recv_pkts[] = {
1044 	{ H4_RECV_ACL,    .recv = hci_recv_frame   },
1045 	{ H4_RECV_SCO,    .recv = hci_recv_frame   },
1046 	{ H4_RECV_EVENT,  .recv = intel_recv_event },
1047 	{ INTEL_RECV_LPM, .recv = intel_recv_lpm   },
1048 };
1049 
1050 static int intel_recv(struct hci_uart *hu, const void *data, int count)
1051 {
1052 	struct intel_data *intel = hu->priv;
1053 
1054 	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1055 		return -EUNATCH;
1056 
1057 	intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
1058 				    intel_recv_pkts,
1059 				    ARRAY_SIZE(intel_recv_pkts));
1060 	if (IS_ERR(intel->rx_skb)) {
1061 		int err = PTR_ERR(intel->rx_skb);
1062 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1063 		intel->rx_skb = NULL;
1064 		return err;
1065 	}
1066 
1067 	return count;
1068 }
1069 
1070 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
1071 {
1072 	struct intel_data *intel = hu->priv;
1073 	struct list_head *p;
1074 
1075 	BT_DBG("hu %p skb %p", hu, skb);
1076 
1077 	if (!hu->tty->dev)
1078 		goto out_enqueue;
1079 
1080 	/* Be sure our controller is resumed and potential LPM transaction
1081 	 * completed before enqueuing any packet.
1082 	 */
1083 	mutex_lock(&intel_device_list_lock);
1084 	list_for_each(p, &intel_device_list) {
1085 		struct intel_device *idev = list_entry(p, struct intel_device,
1086 						       list);
1087 
1088 		if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1089 			pm_runtime_get_sync(&idev->pdev->dev);
1090 			pm_runtime_mark_last_busy(&idev->pdev->dev);
1091 			pm_runtime_put_autosuspend(&idev->pdev->dev);
1092 			break;
1093 		}
1094 	}
1095 	mutex_unlock(&intel_device_list_lock);
1096 out_enqueue:
1097 	skb_queue_tail(&intel->txq, skb);
1098 
1099 	return 0;
1100 }
1101 
1102 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1103 {
1104 	struct intel_data *intel = hu->priv;
1105 	struct sk_buff *skb;
1106 
1107 	skb = skb_dequeue(&intel->txq);
1108 	if (!skb)
1109 		return skb;
1110 
1111 	if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1112 	    (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1113 		struct hci_command_hdr *cmd = (void *)skb->data;
1114 		__u16 opcode = le16_to_cpu(cmd->opcode);
1115 
1116 		/* When the 0xfc01 command is issued to boot into
1117 		 * the operational firmware, it will actually not
1118 		 * send a command complete event. To keep the flow
1119 		 * control working inject that event here.
1120 		 */
1121 		if (opcode == 0xfc01)
1122 			inject_cmd_complete(hu->hdev, opcode);
1123 	}
1124 
1125 	/* Prepend skb with frame type */
1126 	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1127 
1128 	return skb;
1129 }
1130 
1131 static const struct hci_uart_proto intel_proto = {
1132 	.id		= HCI_UART_INTEL,
1133 	.name		= "Intel",
1134 	.manufacturer	= 2,
1135 	.init_speed	= 115200,
1136 	.oper_speed	= 3000000,
1137 	.open		= intel_open,
1138 	.close		= intel_close,
1139 	.flush		= intel_flush,
1140 	.setup		= intel_setup,
1141 	.set_baudrate	= intel_set_baudrate,
1142 	.recv		= intel_recv,
1143 	.enqueue	= intel_enqueue,
1144 	.dequeue	= intel_dequeue,
1145 };
1146 
1147 #ifdef CONFIG_ACPI
1148 static const struct acpi_device_id intel_acpi_match[] = {
1149 	{ "INT33E1", 0 },
1150 	{ },
1151 };
1152 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1153 #endif
1154 
1155 #ifdef CONFIG_PM
1156 static int intel_suspend_device(struct device *dev)
1157 {
1158 	struct intel_device *idev = dev_get_drvdata(dev);
1159 
1160 	mutex_lock(&idev->hu_lock);
1161 	if (idev->hu)
1162 		intel_lpm_suspend(idev->hu);
1163 	mutex_unlock(&idev->hu_lock);
1164 
1165 	return 0;
1166 }
1167 
1168 static int intel_resume_device(struct device *dev)
1169 {
1170 	struct intel_device *idev = dev_get_drvdata(dev);
1171 
1172 	mutex_lock(&idev->hu_lock);
1173 	if (idev->hu)
1174 		intel_lpm_resume(idev->hu);
1175 	mutex_unlock(&idev->hu_lock);
1176 
1177 	return 0;
1178 }
1179 #endif
1180 
1181 #ifdef CONFIG_PM_SLEEP
1182 static int intel_suspend(struct device *dev)
1183 {
1184 	struct intel_device *idev = dev_get_drvdata(dev);
1185 
1186 	if (device_may_wakeup(dev))
1187 		enable_irq_wake(idev->irq);
1188 
1189 	return intel_suspend_device(dev);
1190 }
1191 
1192 static int intel_resume(struct device *dev)
1193 {
1194 	struct intel_device *idev = dev_get_drvdata(dev);
1195 
1196 	if (device_may_wakeup(dev))
1197 		disable_irq_wake(idev->irq);
1198 
1199 	return intel_resume_device(dev);
1200 }
1201 #endif
1202 
1203 static const struct dev_pm_ops intel_pm_ops = {
1204 	SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1205 	SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1206 };
1207 
1208 static int intel_probe(struct platform_device *pdev)
1209 {
1210 	struct intel_device *idev;
1211 
1212 	idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1213 	if (!idev)
1214 		return -ENOMEM;
1215 
1216 	mutex_init(&idev->hu_lock);
1217 
1218 	idev->pdev = pdev;
1219 
1220 	idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1221 	if (IS_ERR(idev->reset)) {
1222 		dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1223 		return PTR_ERR(idev->reset);
1224 	}
1225 
1226 	idev->irq = platform_get_irq(pdev, 0);
1227 	if (idev->irq < 0) {
1228 		struct gpio_desc *host_wake;
1229 
1230 		dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1231 
1232 		host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1233 		if (IS_ERR(host_wake)) {
1234 			dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1235 			goto no_irq;
1236 		}
1237 
1238 		idev->irq = gpiod_to_irq(host_wake);
1239 		if (idev->irq < 0) {
1240 			dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1241 			goto no_irq;
1242 		}
1243 	}
1244 
1245 	/* Only enable wake-up/irq when controller is powered */
1246 	device_set_wakeup_capable(&pdev->dev, true);
1247 	device_wakeup_disable(&pdev->dev);
1248 
1249 no_irq:
1250 	platform_set_drvdata(pdev, idev);
1251 
1252 	/* Place this instance on the device list */
1253 	mutex_lock(&intel_device_list_lock);
1254 	list_add_tail(&idev->list, &intel_device_list);
1255 	mutex_unlock(&intel_device_list_lock);
1256 
1257 	dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1258 		 desc_to_gpio(idev->reset), idev->irq);
1259 
1260 	return 0;
1261 }
1262 
1263 static int intel_remove(struct platform_device *pdev)
1264 {
1265 	struct intel_device *idev = platform_get_drvdata(pdev);
1266 
1267 	device_wakeup_disable(&pdev->dev);
1268 
1269 	mutex_lock(&intel_device_list_lock);
1270 	list_del(&idev->list);
1271 	mutex_unlock(&intel_device_list_lock);
1272 
1273 	dev_info(&pdev->dev, "unregistered.\n");
1274 
1275 	return 0;
1276 }
1277 
1278 static struct platform_driver intel_driver = {
1279 	.probe = intel_probe,
1280 	.remove = intel_remove,
1281 	.driver = {
1282 		.name = "hci_intel",
1283 		.acpi_match_table = ACPI_PTR(intel_acpi_match),
1284 		.pm = &intel_pm_ops,
1285 	},
1286 };
1287 
1288 int __init intel_init(void)
1289 {
1290 	platform_driver_register(&intel_driver);
1291 
1292 	return hci_uart_register_proto(&intel_proto);
1293 }
1294 
1295 int __exit intel_deinit(void)
1296 {
1297 	platform_driver_unregister(&intel_driver);
1298 
1299 	return hci_uart_unregister_proto(&intel_proto);
1300 }
1301