1 /* 2 * 3 * Bluetooth HCI UART driver for Intel devices 4 * 5 * Copyright (C) 2015 Intel Corporation 6 * 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 */ 23 24 #include <linux/kernel.h> 25 #include <linux/errno.h> 26 #include <linux/skbuff.h> 27 #include <linux/firmware.h> 28 #include <linux/module.h> 29 #include <linux/wait.h> 30 #include <linux/tty.h> 31 #include <linux/platform_device.h> 32 #include <linux/gpio/consumer.h> 33 #include <linux/acpi.h> 34 #include <linux/interrupt.h> 35 #include <linux/pm_runtime.h> 36 37 #include <net/bluetooth/bluetooth.h> 38 #include <net/bluetooth/hci_core.h> 39 40 #include "hci_uart.h" 41 #include "btintel.h" 42 43 #define STATE_BOOTLOADER 0 44 #define STATE_DOWNLOADING 1 45 #define STATE_FIRMWARE_LOADED 2 46 #define STATE_FIRMWARE_FAILED 3 47 #define STATE_BOOTING 4 48 #define STATE_LPM_ENABLED 5 49 #define STATE_TX_ACTIVE 6 50 #define STATE_SUSPENDED 7 51 #define STATE_LPM_TRANSACTION 8 52 53 #define HCI_LPM_WAKE_PKT 0xf0 54 #define HCI_LPM_PKT 0xf1 55 #define HCI_LPM_MAX_SIZE 10 56 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE 57 58 #define LPM_OP_TX_NOTIFY 0x00 59 #define LPM_OP_SUSPEND_ACK 0x02 60 #define LPM_OP_RESUME_ACK 0x03 61 62 #define LPM_SUSPEND_DELAY_MS 1000 63 64 struct hci_lpm_pkt { 65 __u8 opcode; 66 __u8 dlen; 67 __u8 data[0]; 68 } __packed; 69 70 struct intel_device { 71 struct list_head list; 72 struct platform_device *pdev; 73 struct gpio_desc *reset; 74 struct hci_uart *hu; 75 struct mutex hu_lock; 76 int irq; 77 }; 78 79 static LIST_HEAD(intel_device_list); 80 static DEFINE_MUTEX(intel_device_list_lock); 81 82 struct intel_data { 83 struct sk_buff *rx_skb; 84 struct sk_buff_head txq; 85 struct work_struct busy_work; 86 struct hci_uart *hu; 87 unsigned long flags; 88 }; 89 90 static u8 intel_convert_speed(unsigned int speed) 91 { 92 switch (speed) { 93 case 9600: 94 return 0x00; 95 case 19200: 96 return 0x01; 97 case 38400: 98 return 0x02; 99 case 57600: 100 return 0x03; 101 case 115200: 102 return 0x04; 103 case 230400: 104 return 0x05; 105 case 460800: 106 return 0x06; 107 case 921600: 108 return 0x07; 109 case 1843200: 110 return 0x08; 111 case 3250000: 112 return 0x09; 113 case 2000000: 114 return 0x0a; 115 case 3000000: 116 return 0x0b; 117 default: 118 return 0xff; 119 } 120 } 121 122 static int intel_wait_booting(struct hci_uart *hu) 123 { 124 struct intel_data *intel = hu->priv; 125 int err; 126 127 err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING, 128 TASK_INTERRUPTIBLE, 129 msecs_to_jiffies(1000)); 130 131 if (err == 1) { 132 bt_dev_err(hu->hdev, "Device boot interrupted"); 133 return -EINTR; 134 } 135 136 if (err) { 137 bt_dev_err(hu->hdev, "Device boot timeout"); 138 return -ETIMEDOUT; 139 } 140 141 return err; 142 } 143 144 #ifdef CONFIG_PM 145 static int intel_wait_lpm_transaction(struct hci_uart *hu) 146 { 147 struct intel_data *intel = hu->priv; 148 int err; 149 150 err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION, 151 TASK_INTERRUPTIBLE, 152 msecs_to_jiffies(1000)); 153 154 if (err == 1) { 155 bt_dev_err(hu->hdev, "LPM transaction interrupted"); 156 return -EINTR; 157 } 158 159 if (err) { 160 bt_dev_err(hu->hdev, "LPM transaction timeout"); 161 return -ETIMEDOUT; 162 } 163 164 return err; 165 } 166 167 static int intel_lpm_suspend(struct hci_uart *hu) 168 { 169 static const u8 suspend[] = { 0x01, 0x01, 0x01 }; 170 struct intel_data *intel = hu->priv; 171 struct sk_buff *skb; 172 173 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) || 174 test_bit(STATE_SUSPENDED, &intel->flags)) 175 return 0; 176 177 if (test_bit(STATE_TX_ACTIVE, &intel->flags)) 178 return -EAGAIN; 179 180 bt_dev_dbg(hu->hdev, "Suspending"); 181 182 skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL); 183 if (!skb) { 184 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet"); 185 return -ENOMEM; 186 } 187 188 memcpy(skb_put(skb, sizeof(suspend)), suspend, sizeof(suspend)); 189 hci_skb_pkt_type(skb) = HCI_LPM_PKT; 190 191 set_bit(STATE_LPM_TRANSACTION, &intel->flags); 192 193 /* LPM flow is a priority, enqueue packet at list head */ 194 skb_queue_head(&intel->txq, skb); 195 hci_uart_tx_wakeup(hu); 196 197 intel_wait_lpm_transaction(hu); 198 /* Even in case of failure, continue and test the suspended flag */ 199 200 clear_bit(STATE_LPM_TRANSACTION, &intel->flags); 201 202 if (!test_bit(STATE_SUSPENDED, &intel->flags)) { 203 bt_dev_err(hu->hdev, "Device suspend error"); 204 return -EINVAL; 205 } 206 207 bt_dev_dbg(hu->hdev, "Suspended"); 208 209 hci_uart_set_flow_control(hu, true); 210 211 return 0; 212 } 213 214 static int intel_lpm_resume(struct hci_uart *hu) 215 { 216 struct intel_data *intel = hu->priv; 217 struct sk_buff *skb; 218 219 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) || 220 !test_bit(STATE_SUSPENDED, &intel->flags)) 221 return 0; 222 223 bt_dev_dbg(hu->hdev, "Resuming"); 224 225 hci_uart_set_flow_control(hu, false); 226 227 skb = bt_skb_alloc(0, GFP_KERNEL); 228 if (!skb) { 229 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet"); 230 return -ENOMEM; 231 } 232 233 hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT; 234 235 set_bit(STATE_LPM_TRANSACTION, &intel->flags); 236 237 /* LPM flow is a priority, enqueue packet at list head */ 238 skb_queue_head(&intel->txq, skb); 239 hci_uart_tx_wakeup(hu); 240 241 intel_wait_lpm_transaction(hu); 242 /* Even in case of failure, continue and test the suspended flag */ 243 244 clear_bit(STATE_LPM_TRANSACTION, &intel->flags); 245 246 if (test_bit(STATE_SUSPENDED, &intel->flags)) { 247 bt_dev_err(hu->hdev, "Device resume error"); 248 return -EINVAL; 249 } 250 251 bt_dev_dbg(hu->hdev, "Resumed"); 252 253 return 0; 254 } 255 #endif /* CONFIG_PM */ 256 257 static int intel_lpm_host_wake(struct hci_uart *hu) 258 { 259 static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 }; 260 struct intel_data *intel = hu->priv; 261 struct sk_buff *skb; 262 263 hci_uart_set_flow_control(hu, false); 264 265 clear_bit(STATE_SUSPENDED, &intel->flags); 266 267 skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL); 268 if (!skb) { 269 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet"); 270 return -ENOMEM; 271 } 272 273 memcpy(skb_put(skb, sizeof(lpm_resume_ack)), lpm_resume_ack, 274 sizeof(lpm_resume_ack)); 275 hci_skb_pkt_type(skb) = HCI_LPM_PKT; 276 277 /* LPM flow is a priority, enqueue packet at list head */ 278 skb_queue_head(&intel->txq, skb); 279 hci_uart_tx_wakeup(hu); 280 281 bt_dev_dbg(hu->hdev, "Resumed by controller"); 282 283 return 0; 284 } 285 286 static irqreturn_t intel_irq(int irq, void *dev_id) 287 { 288 struct intel_device *idev = dev_id; 289 290 dev_info(&idev->pdev->dev, "hci_intel irq\n"); 291 292 mutex_lock(&idev->hu_lock); 293 if (idev->hu) 294 intel_lpm_host_wake(idev->hu); 295 mutex_unlock(&idev->hu_lock); 296 297 /* Host/Controller are now LPM resumed, trigger a new delayed suspend */ 298 pm_runtime_get(&idev->pdev->dev); 299 pm_runtime_mark_last_busy(&idev->pdev->dev); 300 pm_runtime_put_autosuspend(&idev->pdev->dev); 301 302 return IRQ_HANDLED; 303 } 304 305 static int intel_set_power(struct hci_uart *hu, bool powered) 306 { 307 struct list_head *p; 308 int err = -ENODEV; 309 310 mutex_lock(&intel_device_list_lock); 311 312 list_for_each(p, &intel_device_list) { 313 struct intel_device *idev = list_entry(p, struct intel_device, 314 list); 315 316 /* tty device and pdev device should share the same parent 317 * which is the UART port. 318 */ 319 if (hu->tty->dev->parent != idev->pdev->dev.parent) 320 continue; 321 322 if (!idev->reset) { 323 err = -ENOTSUPP; 324 break; 325 } 326 327 BT_INFO("hu %p, Switching compatible pm device (%s) to %u", 328 hu, dev_name(&idev->pdev->dev), powered); 329 330 gpiod_set_value(idev->reset, powered); 331 332 /* Provide to idev a hu reference which is used to run LPM 333 * transactions (lpm suspend/resume) from PM callbacks. 334 * hu needs to be protected against concurrent removing during 335 * these PM ops. 336 */ 337 mutex_lock(&idev->hu_lock); 338 idev->hu = powered ? hu : NULL; 339 mutex_unlock(&idev->hu_lock); 340 341 if (idev->irq < 0) 342 break; 343 344 if (powered && device_can_wakeup(&idev->pdev->dev)) { 345 err = devm_request_threaded_irq(&idev->pdev->dev, 346 idev->irq, NULL, 347 intel_irq, 348 IRQF_ONESHOT, 349 "bt-host-wake", idev); 350 if (err) { 351 BT_ERR("hu %p, unable to allocate irq-%d", 352 hu, idev->irq); 353 break; 354 } 355 356 device_wakeup_enable(&idev->pdev->dev); 357 358 pm_runtime_set_active(&idev->pdev->dev); 359 pm_runtime_use_autosuspend(&idev->pdev->dev); 360 pm_runtime_set_autosuspend_delay(&idev->pdev->dev, 361 LPM_SUSPEND_DELAY_MS); 362 pm_runtime_enable(&idev->pdev->dev); 363 } else if (!powered && device_may_wakeup(&idev->pdev->dev)) { 364 devm_free_irq(&idev->pdev->dev, idev->irq, idev); 365 device_wakeup_disable(&idev->pdev->dev); 366 367 pm_runtime_disable(&idev->pdev->dev); 368 } 369 } 370 371 mutex_unlock(&intel_device_list_lock); 372 373 return err; 374 } 375 376 static void intel_busy_work(struct work_struct *work) 377 { 378 struct list_head *p; 379 struct intel_data *intel = container_of(work, struct intel_data, 380 busy_work); 381 382 /* Link is busy, delay the suspend */ 383 mutex_lock(&intel_device_list_lock); 384 list_for_each(p, &intel_device_list) { 385 struct intel_device *idev = list_entry(p, struct intel_device, 386 list); 387 388 if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) { 389 pm_runtime_get(&idev->pdev->dev); 390 pm_runtime_mark_last_busy(&idev->pdev->dev); 391 pm_runtime_put_autosuspend(&idev->pdev->dev); 392 break; 393 } 394 } 395 mutex_unlock(&intel_device_list_lock); 396 } 397 398 static int intel_open(struct hci_uart *hu) 399 { 400 struct intel_data *intel; 401 402 BT_DBG("hu %p", hu); 403 404 intel = kzalloc(sizeof(*intel), GFP_KERNEL); 405 if (!intel) 406 return -ENOMEM; 407 408 skb_queue_head_init(&intel->txq); 409 INIT_WORK(&intel->busy_work, intel_busy_work); 410 411 intel->hu = hu; 412 413 hu->priv = intel; 414 415 if (!intel_set_power(hu, true)) 416 set_bit(STATE_BOOTING, &intel->flags); 417 418 return 0; 419 } 420 421 static int intel_close(struct hci_uart *hu) 422 { 423 struct intel_data *intel = hu->priv; 424 425 BT_DBG("hu %p", hu); 426 427 cancel_work_sync(&intel->busy_work); 428 429 intel_set_power(hu, false); 430 431 skb_queue_purge(&intel->txq); 432 kfree_skb(intel->rx_skb); 433 kfree(intel); 434 435 hu->priv = NULL; 436 return 0; 437 } 438 439 static int intel_flush(struct hci_uart *hu) 440 { 441 struct intel_data *intel = hu->priv; 442 443 BT_DBG("hu %p", hu); 444 445 skb_queue_purge(&intel->txq); 446 447 return 0; 448 } 449 450 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode) 451 { 452 struct sk_buff *skb; 453 struct hci_event_hdr *hdr; 454 struct hci_ev_cmd_complete *evt; 455 456 skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC); 457 if (!skb) 458 return -ENOMEM; 459 460 hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr)); 461 hdr->evt = HCI_EV_CMD_COMPLETE; 462 hdr->plen = sizeof(*evt) + 1; 463 464 evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt)); 465 evt->ncmd = 0x01; 466 evt->opcode = cpu_to_le16(opcode); 467 468 *skb_put(skb, 1) = 0x00; 469 470 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 471 472 return hci_recv_frame(hdev, skb); 473 } 474 475 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed) 476 { 477 struct intel_data *intel = hu->priv; 478 struct hci_dev *hdev = hu->hdev; 479 u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 }; 480 struct sk_buff *skb; 481 int err; 482 483 /* This can be the first command sent to the chip, check 484 * that the controller is ready. 485 */ 486 err = intel_wait_booting(hu); 487 488 clear_bit(STATE_BOOTING, &intel->flags); 489 490 /* In case of timeout, try to continue anyway */ 491 if (err && err != -ETIMEDOUT) 492 return err; 493 494 bt_dev_info(hdev, "Change controller speed to %d", speed); 495 496 speed_cmd[3] = intel_convert_speed(speed); 497 if (speed_cmd[3] == 0xff) { 498 bt_dev_err(hdev, "Unsupported speed"); 499 return -EINVAL; 500 } 501 502 /* Device will not accept speed change if Intel version has not been 503 * previously requested. 504 */ 505 skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT); 506 if (IS_ERR(skb)) { 507 bt_dev_err(hdev, "Reading Intel version information failed (%ld)", 508 PTR_ERR(skb)); 509 return PTR_ERR(skb); 510 } 511 kfree_skb(skb); 512 513 skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL); 514 if (!skb) { 515 bt_dev_err(hdev, "Failed to alloc memory for baudrate packet"); 516 return -ENOMEM; 517 } 518 519 memcpy(skb_put(skb, sizeof(speed_cmd)), speed_cmd, sizeof(speed_cmd)); 520 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 521 522 hci_uart_set_flow_control(hu, true); 523 524 skb_queue_tail(&intel->txq, skb); 525 hci_uart_tx_wakeup(hu); 526 527 /* wait 100ms to change baudrate on controller side */ 528 msleep(100); 529 530 hci_uart_set_baudrate(hu, speed); 531 hci_uart_set_flow_control(hu, false); 532 533 return 0; 534 } 535 536 static int intel_setup(struct hci_uart *hu) 537 { 538 static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01, 539 0x00, 0x08, 0x04, 0x00 }; 540 static const u8 lpm_param[] = { 0x03, 0x07, 0x01, 0x0b }; 541 struct intel_data *intel = hu->priv; 542 struct intel_device *idev = NULL; 543 struct hci_dev *hdev = hu->hdev; 544 struct sk_buff *skb; 545 struct intel_version ver; 546 struct intel_boot_params *params; 547 struct list_head *p; 548 const struct firmware *fw; 549 const u8 *fw_ptr; 550 char fwname[64]; 551 u32 frag_len; 552 ktime_t calltime, delta, rettime; 553 unsigned long long duration; 554 unsigned int init_speed, oper_speed; 555 int speed_change = 0; 556 int err; 557 558 bt_dev_dbg(hdev, "start intel_setup"); 559 560 hu->hdev->set_diag = btintel_set_diag; 561 hu->hdev->set_bdaddr = btintel_set_bdaddr; 562 563 calltime = ktime_get(); 564 565 if (hu->init_speed) 566 init_speed = hu->init_speed; 567 else 568 init_speed = hu->proto->init_speed; 569 570 if (hu->oper_speed) 571 oper_speed = hu->oper_speed; 572 else 573 oper_speed = hu->proto->oper_speed; 574 575 if (oper_speed && init_speed && oper_speed != init_speed) 576 speed_change = 1; 577 578 /* Check that the controller is ready */ 579 err = intel_wait_booting(hu); 580 581 clear_bit(STATE_BOOTING, &intel->flags); 582 583 /* In case of timeout, try to continue anyway */ 584 if (err && err != -ETIMEDOUT) 585 return err; 586 587 set_bit(STATE_BOOTLOADER, &intel->flags); 588 589 /* Read the Intel version information to determine if the device 590 * is in bootloader mode or if it already has operational firmware 591 * loaded. 592 */ 593 err = btintel_read_version(hdev, &ver); 594 if (err) 595 return err; 596 597 /* The hardware platform number has a fixed value of 0x37 and 598 * for now only accept this single value. 599 */ 600 if (ver.hw_platform != 0x37) { 601 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)", 602 ver.hw_platform); 603 return -EINVAL; 604 } 605 606 /* At the moment only the hardware variant iBT 3.0 (LnP/SfP) is 607 * supported by this firmware loading method. This check has been 608 * put in place to ensure correct forward compatibility options 609 * when newer hardware variants come along. 610 */ 611 if (ver.hw_variant != 0x0b) { 612 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)", 613 ver.hw_variant); 614 return -EINVAL; 615 } 616 617 btintel_version_info(hdev, &ver); 618 619 /* The firmware variant determines if the device is in bootloader 620 * mode or is running operational firmware. The value 0x06 identifies 621 * the bootloader and the value 0x23 identifies the operational 622 * firmware. 623 * 624 * When the operational firmware is already present, then only 625 * the check for valid Bluetooth device address is needed. This 626 * determines if the device will be added as configured or 627 * unconfigured controller. 628 * 629 * It is not possible to use the Secure Boot Parameters in this 630 * case since that command is only available in bootloader mode. 631 */ 632 if (ver.fw_variant == 0x23) { 633 clear_bit(STATE_BOOTLOADER, &intel->flags); 634 btintel_check_bdaddr(hdev); 635 return 0; 636 } 637 638 /* If the device is not in bootloader mode, then the only possible 639 * choice is to return an error and abort the device initialization. 640 */ 641 if (ver.fw_variant != 0x06) { 642 bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)", 643 ver.fw_variant); 644 return -ENODEV; 645 } 646 647 /* Read the secure boot parameters to identify the operating 648 * details of the bootloader. 649 */ 650 skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_CMD_TIMEOUT); 651 if (IS_ERR(skb)) { 652 bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)", 653 PTR_ERR(skb)); 654 return PTR_ERR(skb); 655 } 656 657 if (skb->len != sizeof(*params)) { 658 bt_dev_err(hdev, "Intel boot parameters size mismatch"); 659 kfree_skb(skb); 660 return -EILSEQ; 661 } 662 663 params = (struct intel_boot_params *)skb->data; 664 if (params->status) { 665 bt_dev_err(hdev, "Intel boot parameters command failure (%02x)", 666 params->status); 667 err = -bt_to_errno(params->status); 668 kfree_skb(skb); 669 return err; 670 } 671 672 bt_dev_info(hdev, "Device revision is %u", 673 le16_to_cpu(params->dev_revid)); 674 675 bt_dev_info(hdev, "Secure boot is %s", 676 params->secure_boot ? "enabled" : "disabled"); 677 678 bt_dev_info(hdev, "Minimum firmware build %u week %u %u", 679 params->min_fw_build_nn, params->min_fw_build_cw, 680 2000 + params->min_fw_build_yy); 681 682 /* It is required that every single firmware fragment is acknowledged 683 * with a command complete event. If the boot parameters indicate 684 * that this bootloader does not send them, then abort the setup. 685 */ 686 if (params->limited_cce != 0x00) { 687 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)", 688 params->limited_cce); 689 kfree_skb(skb); 690 return -EINVAL; 691 } 692 693 /* If the OTP has no valid Bluetooth device address, then there will 694 * also be no valid address for the operational firmware. 695 */ 696 if (!bacmp(¶ms->otp_bdaddr, BDADDR_ANY)) { 697 bt_dev_info(hdev, "No device address configured"); 698 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); 699 } 700 701 /* With this Intel bootloader only the hardware variant and device 702 * revision information are used to select the right firmware. 703 * 704 * Currently this bootloader support is limited to hardware variant 705 * iBT 3.0 (LnP/SfP) which is identified by the value 11 (0x0b). 706 */ 707 snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.sfi", 708 le16_to_cpu(params->dev_revid)); 709 710 err = request_firmware(&fw, fwname, &hdev->dev); 711 if (err < 0) { 712 bt_dev_err(hdev, "Failed to load Intel firmware file (%d)", 713 err); 714 kfree_skb(skb); 715 return err; 716 } 717 718 bt_dev_info(hdev, "Found device firmware: %s", fwname); 719 720 /* Save the DDC file name for later */ 721 snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.ddc", 722 le16_to_cpu(params->dev_revid)); 723 724 kfree_skb(skb); 725 726 if (fw->size < 644) { 727 bt_dev_err(hdev, "Invalid size of firmware file (%zu)", 728 fw->size); 729 err = -EBADF; 730 goto done; 731 } 732 733 set_bit(STATE_DOWNLOADING, &intel->flags); 734 735 /* Start the firmware download transaction with the Init fragment 736 * represented by the 128 bytes of CSS header. 737 */ 738 err = btintel_secure_send(hdev, 0x00, 128, fw->data); 739 if (err < 0) { 740 bt_dev_err(hdev, "Failed to send firmware header (%d)", err); 741 goto done; 742 } 743 744 /* Send the 256 bytes of public key information from the firmware 745 * as the PKey fragment. 746 */ 747 err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128); 748 if (err < 0) { 749 bt_dev_err(hdev, "Failed to send firmware public key (%d)", 750 err); 751 goto done; 752 } 753 754 /* Send the 256 bytes of signature information from the firmware 755 * as the Sign fragment. 756 */ 757 err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388); 758 if (err < 0) { 759 bt_dev_err(hdev, "Failed to send firmware signature (%d)", 760 err); 761 goto done; 762 } 763 764 fw_ptr = fw->data + 644; 765 frag_len = 0; 766 767 while (fw_ptr - fw->data < fw->size) { 768 struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len); 769 770 frag_len += sizeof(*cmd) + cmd->plen; 771 772 bt_dev_dbg(hdev, "Patching %td/%zu", (fw_ptr - fw->data), 773 fw->size); 774 775 /* The parameter length of the secure send command requires 776 * a 4 byte alignment. It happens so that the firmware file 777 * contains proper Intel_NOP commands to align the fragments 778 * as needed. 779 * 780 * Send set of commands with 4 byte alignment from the 781 * firmware data buffer as a single Data fragement. 782 */ 783 if (frag_len % 4) 784 continue; 785 786 /* Send each command from the firmware data buffer as 787 * a single Data fragment. 788 */ 789 err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr); 790 if (err < 0) { 791 bt_dev_err(hdev, "Failed to send firmware data (%d)", 792 err); 793 goto done; 794 } 795 796 fw_ptr += frag_len; 797 frag_len = 0; 798 } 799 800 set_bit(STATE_FIRMWARE_LOADED, &intel->flags); 801 802 bt_dev_info(hdev, "Waiting for firmware download to complete"); 803 804 /* Before switching the device into operational mode and with that 805 * booting the loaded firmware, wait for the bootloader notification 806 * that all fragments have been successfully received. 807 * 808 * When the event processing receives the notification, then the 809 * STATE_DOWNLOADING flag will be cleared. 810 * 811 * The firmware loading should not take longer than 5 seconds 812 * and thus just timeout if that happens and fail the setup 813 * of this device. 814 */ 815 err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING, 816 TASK_INTERRUPTIBLE, 817 msecs_to_jiffies(5000)); 818 if (err == 1) { 819 bt_dev_err(hdev, "Firmware loading interrupted"); 820 err = -EINTR; 821 goto done; 822 } 823 824 if (err) { 825 bt_dev_err(hdev, "Firmware loading timeout"); 826 err = -ETIMEDOUT; 827 goto done; 828 } 829 830 if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) { 831 bt_dev_err(hdev, "Firmware loading failed"); 832 err = -ENOEXEC; 833 goto done; 834 } 835 836 rettime = ktime_get(); 837 delta = ktime_sub(rettime, calltime); 838 duration = (unsigned long long) ktime_to_ns(delta) >> 10; 839 840 bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration); 841 842 done: 843 release_firmware(fw); 844 845 if (err < 0) 846 return err; 847 848 /* We need to restore the default speed before Intel reset */ 849 if (speed_change) { 850 err = intel_set_baudrate(hu, init_speed); 851 if (err) 852 return err; 853 } 854 855 calltime = ktime_get(); 856 857 set_bit(STATE_BOOTING, &intel->flags); 858 859 skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param, 860 HCI_CMD_TIMEOUT); 861 if (IS_ERR(skb)) 862 return PTR_ERR(skb); 863 864 kfree_skb(skb); 865 866 /* The bootloader will not indicate when the device is ready. This 867 * is done by the operational firmware sending bootup notification. 868 * 869 * Booting into operational firmware should not take longer than 870 * 1 second. However if that happens, then just fail the setup 871 * since something went wrong. 872 */ 873 bt_dev_info(hdev, "Waiting for device to boot"); 874 875 err = intel_wait_booting(hu); 876 if (err) 877 return err; 878 879 clear_bit(STATE_BOOTING, &intel->flags); 880 881 rettime = ktime_get(); 882 delta = ktime_sub(rettime, calltime); 883 duration = (unsigned long long) ktime_to_ns(delta) >> 10; 884 885 bt_dev_info(hdev, "Device booted in %llu usecs", duration); 886 887 /* Enable LPM if matching pdev with wakeup enabled */ 888 mutex_lock(&intel_device_list_lock); 889 list_for_each(p, &intel_device_list) { 890 struct intel_device *dev = list_entry(p, struct intel_device, 891 list); 892 if (hu->tty->dev->parent == dev->pdev->dev.parent) { 893 if (device_may_wakeup(&dev->pdev->dev)) 894 idev = dev; 895 break; 896 } 897 } 898 mutex_unlock(&intel_device_list_lock); 899 900 if (!idev) 901 goto no_lpm; 902 903 bt_dev_info(hdev, "Enabling LPM"); 904 905 skb = __hci_cmd_sync(hdev, 0xfc8b, sizeof(lpm_param), lpm_param, 906 HCI_CMD_TIMEOUT); 907 if (IS_ERR(skb)) { 908 bt_dev_err(hdev, "Failed to enable LPM"); 909 goto no_lpm; 910 } 911 kfree_skb(skb); 912 913 set_bit(STATE_LPM_ENABLED, &intel->flags); 914 915 no_lpm: 916 /* Ignore errors, device can work without DDC parameters */ 917 btintel_load_ddc_config(hdev, fwname); 918 919 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT); 920 if (IS_ERR(skb)) 921 return PTR_ERR(skb); 922 kfree_skb(skb); 923 924 if (speed_change) { 925 err = intel_set_baudrate(hu, oper_speed); 926 if (err) 927 return err; 928 } 929 930 bt_dev_info(hdev, "Setup complete"); 931 932 clear_bit(STATE_BOOTLOADER, &intel->flags); 933 934 return 0; 935 } 936 937 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb) 938 { 939 struct hci_uart *hu = hci_get_drvdata(hdev); 940 struct intel_data *intel = hu->priv; 941 struct hci_event_hdr *hdr; 942 943 if (!test_bit(STATE_BOOTLOADER, &intel->flags) && 944 !test_bit(STATE_BOOTING, &intel->flags)) 945 goto recv; 946 947 hdr = (void *)skb->data; 948 949 /* When the firmware loading completes the device sends 950 * out a vendor specific event indicating the result of 951 * the firmware loading. 952 */ 953 if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 && 954 skb->data[2] == 0x06) { 955 if (skb->data[3] != 0x00) 956 set_bit(STATE_FIRMWARE_FAILED, &intel->flags); 957 958 if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) && 959 test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) { 960 smp_mb__after_atomic(); 961 wake_up_bit(&intel->flags, STATE_DOWNLOADING); 962 } 963 964 /* When switching to the operational firmware the device 965 * sends a vendor specific event indicating that the bootup 966 * completed. 967 */ 968 } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 && 969 skb->data[2] == 0x02) { 970 if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) { 971 smp_mb__after_atomic(); 972 wake_up_bit(&intel->flags, STATE_BOOTING); 973 } 974 } 975 recv: 976 return hci_recv_frame(hdev, skb); 977 } 978 979 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value) 980 { 981 struct hci_uart *hu = hci_get_drvdata(hdev); 982 struct intel_data *intel = hu->priv; 983 984 bt_dev_dbg(hdev, "TX idle notification (%d)", value); 985 986 if (value) { 987 set_bit(STATE_TX_ACTIVE, &intel->flags); 988 schedule_work(&intel->busy_work); 989 } else { 990 clear_bit(STATE_TX_ACTIVE, &intel->flags); 991 } 992 } 993 994 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb) 995 { 996 struct hci_lpm_pkt *lpm = (void *)skb->data; 997 struct hci_uart *hu = hci_get_drvdata(hdev); 998 struct intel_data *intel = hu->priv; 999 1000 switch (lpm->opcode) { 1001 case LPM_OP_TX_NOTIFY: 1002 if (lpm->dlen < 1) { 1003 bt_dev_err(hu->hdev, "Invalid LPM notification packet"); 1004 break; 1005 } 1006 intel_recv_lpm_notify(hdev, lpm->data[0]); 1007 break; 1008 case LPM_OP_SUSPEND_ACK: 1009 set_bit(STATE_SUSPENDED, &intel->flags); 1010 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) { 1011 smp_mb__after_atomic(); 1012 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION); 1013 } 1014 break; 1015 case LPM_OP_RESUME_ACK: 1016 clear_bit(STATE_SUSPENDED, &intel->flags); 1017 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) { 1018 smp_mb__after_atomic(); 1019 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION); 1020 } 1021 break; 1022 default: 1023 bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode); 1024 break; 1025 } 1026 1027 kfree_skb(skb); 1028 1029 return 0; 1030 } 1031 1032 #define INTEL_RECV_LPM \ 1033 .type = HCI_LPM_PKT, \ 1034 .hlen = HCI_LPM_HDR_SIZE, \ 1035 .loff = 1, \ 1036 .lsize = 1, \ 1037 .maxlen = HCI_LPM_MAX_SIZE 1038 1039 static const struct h4_recv_pkt intel_recv_pkts[] = { 1040 { H4_RECV_ACL, .recv = hci_recv_frame }, 1041 { H4_RECV_SCO, .recv = hci_recv_frame }, 1042 { H4_RECV_EVENT, .recv = intel_recv_event }, 1043 { INTEL_RECV_LPM, .recv = intel_recv_lpm }, 1044 }; 1045 1046 static int intel_recv(struct hci_uart *hu, const void *data, int count) 1047 { 1048 struct intel_data *intel = hu->priv; 1049 1050 if (!test_bit(HCI_UART_REGISTERED, &hu->flags)) 1051 return -EUNATCH; 1052 1053 intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count, 1054 intel_recv_pkts, 1055 ARRAY_SIZE(intel_recv_pkts)); 1056 if (IS_ERR(intel->rx_skb)) { 1057 int err = PTR_ERR(intel->rx_skb); 1058 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err); 1059 intel->rx_skb = NULL; 1060 return err; 1061 } 1062 1063 return count; 1064 } 1065 1066 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb) 1067 { 1068 struct intel_data *intel = hu->priv; 1069 struct list_head *p; 1070 1071 BT_DBG("hu %p skb %p", hu, skb); 1072 1073 /* Be sure our controller is resumed and potential LPM transaction 1074 * completed before enqueuing any packet. 1075 */ 1076 mutex_lock(&intel_device_list_lock); 1077 list_for_each(p, &intel_device_list) { 1078 struct intel_device *idev = list_entry(p, struct intel_device, 1079 list); 1080 1081 if (hu->tty->dev->parent == idev->pdev->dev.parent) { 1082 pm_runtime_get_sync(&idev->pdev->dev); 1083 pm_runtime_mark_last_busy(&idev->pdev->dev); 1084 pm_runtime_put_autosuspend(&idev->pdev->dev); 1085 break; 1086 } 1087 } 1088 mutex_unlock(&intel_device_list_lock); 1089 1090 skb_queue_tail(&intel->txq, skb); 1091 1092 return 0; 1093 } 1094 1095 static struct sk_buff *intel_dequeue(struct hci_uart *hu) 1096 { 1097 struct intel_data *intel = hu->priv; 1098 struct sk_buff *skb; 1099 1100 skb = skb_dequeue(&intel->txq); 1101 if (!skb) 1102 return skb; 1103 1104 if (test_bit(STATE_BOOTLOADER, &intel->flags) && 1105 (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) { 1106 struct hci_command_hdr *cmd = (void *)skb->data; 1107 __u16 opcode = le16_to_cpu(cmd->opcode); 1108 1109 /* When the 0xfc01 command is issued to boot into 1110 * the operational firmware, it will actually not 1111 * send a command complete event. To keep the flow 1112 * control working inject that event here. 1113 */ 1114 if (opcode == 0xfc01) 1115 inject_cmd_complete(hu->hdev, opcode); 1116 } 1117 1118 /* Prepend skb with frame type */ 1119 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1); 1120 1121 return skb; 1122 } 1123 1124 static const struct hci_uart_proto intel_proto = { 1125 .id = HCI_UART_INTEL, 1126 .name = "Intel", 1127 .manufacturer = 2, 1128 .init_speed = 115200, 1129 .oper_speed = 3000000, 1130 .open = intel_open, 1131 .close = intel_close, 1132 .flush = intel_flush, 1133 .setup = intel_setup, 1134 .set_baudrate = intel_set_baudrate, 1135 .recv = intel_recv, 1136 .enqueue = intel_enqueue, 1137 .dequeue = intel_dequeue, 1138 }; 1139 1140 #ifdef CONFIG_ACPI 1141 static const struct acpi_device_id intel_acpi_match[] = { 1142 { "INT33E1", 0 }, 1143 { }, 1144 }; 1145 MODULE_DEVICE_TABLE(acpi, intel_acpi_match); 1146 #endif 1147 1148 #ifdef CONFIG_PM 1149 static int intel_suspend_device(struct device *dev) 1150 { 1151 struct intel_device *idev = dev_get_drvdata(dev); 1152 1153 mutex_lock(&idev->hu_lock); 1154 if (idev->hu) 1155 intel_lpm_suspend(idev->hu); 1156 mutex_unlock(&idev->hu_lock); 1157 1158 return 0; 1159 } 1160 1161 static int intel_resume_device(struct device *dev) 1162 { 1163 struct intel_device *idev = dev_get_drvdata(dev); 1164 1165 mutex_lock(&idev->hu_lock); 1166 if (idev->hu) 1167 intel_lpm_resume(idev->hu); 1168 mutex_unlock(&idev->hu_lock); 1169 1170 return 0; 1171 } 1172 #endif 1173 1174 #ifdef CONFIG_PM_SLEEP 1175 static int intel_suspend(struct device *dev) 1176 { 1177 struct intel_device *idev = dev_get_drvdata(dev); 1178 1179 if (device_may_wakeup(dev)) 1180 enable_irq_wake(idev->irq); 1181 1182 return intel_suspend_device(dev); 1183 } 1184 1185 static int intel_resume(struct device *dev) 1186 { 1187 struct intel_device *idev = dev_get_drvdata(dev); 1188 1189 if (device_may_wakeup(dev)) 1190 disable_irq_wake(idev->irq); 1191 1192 return intel_resume_device(dev); 1193 } 1194 #endif 1195 1196 static const struct dev_pm_ops intel_pm_ops = { 1197 SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume) 1198 SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL) 1199 }; 1200 1201 static int intel_probe(struct platform_device *pdev) 1202 { 1203 struct intel_device *idev; 1204 1205 idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL); 1206 if (!idev) 1207 return -ENOMEM; 1208 1209 mutex_init(&idev->hu_lock); 1210 1211 idev->pdev = pdev; 1212 1213 idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW); 1214 if (IS_ERR(idev->reset)) { 1215 dev_err(&pdev->dev, "Unable to retrieve gpio\n"); 1216 return PTR_ERR(idev->reset); 1217 } 1218 1219 idev->irq = platform_get_irq(pdev, 0); 1220 if (idev->irq < 0) { 1221 struct gpio_desc *host_wake; 1222 1223 dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n"); 1224 1225 host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN); 1226 if (IS_ERR(host_wake)) { 1227 dev_err(&pdev->dev, "Unable to retrieve IRQ\n"); 1228 goto no_irq; 1229 } 1230 1231 idev->irq = gpiod_to_irq(host_wake); 1232 if (idev->irq < 0) { 1233 dev_err(&pdev->dev, "No corresponding irq for gpio\n"); 1234 goto no_irq; 1235 } 1236 } 1237 1238 /* Only enable wake-up/irq when controller is powered */ 1239 device_set_wakeup_capable(&pdev->dev, true); 1240 device_wakeup_disable(&pdev->dev); 1241 1242 no_irq: 1243 platform_set_drvdata(pdev, idev); 1244 1245 /* Place this instance on the device list */ 1246 mutex_lock(&intel_device_list_lock); 1247 list_add_tail(&idev->list, &intel_device_list); 1248 mutex_unlock(&intel_device_list_lock); 1249 1250 dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n", 1251 desc_to_gpio(idev->reset), idev->irq); 1252 1253 return 0; 1254 } 1255 1256 static int intel_remove(struct platform_device *pdev) 1257 { 1258 struct intel_device *idev = platform_get_drvdata(pdev); 1259 1260 device_wakeup_disable(&pdev->dev); 1261 1262 mutex_lock(&intel_device_list_lock); 1263 list_del(&idev->list); 1264 mutex_unlock(&intel_device_list_lock); 1265 1266 dev_info(&pdev->dev, "unregistered.\n"); 1267 1268 return 0; 1269 } 1270 1271 static struct platform_driver intel_driver = { 1272 .probe = intel_probe, 1273 .remove = intel_remove, 1274 .driver = { 1275 .name = "hci_intel", 1276 .acpi_match_table = ACPI_PTR(intel_acpi_match), 1277 .pm = &intel_pm_ops, 1278 }, 1279 }; 1280 1281 int __init intel_init(void) 1282 { 1283 platform_driver_register(&intel_driver); 1284 1285 return hci_uart_register_proto(&intel_proto); 1286 } 1287 1288 int __exit intel_deinit(void) 1289 { 1290 platform_driver_unregister(&intel_driver); 1291 1292 return hci_uart_unregister_proto(&intel_proto); 1293 } 1294