xref: /linux/drivers/bluetooth/hci_intel.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *
3  *  Bluetooth HCI UART driver for Intel devices
4  *
5  *  Copyright (C) 2015  Intel Corporation
6  *
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  */
23 
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/skbuff.h>
27 #include <linux/firmware.h>
28 #include <linux/module.h>
29 #include <linux/wait.h>
30 #include <linux/tty.h>
31 #include <linux/platform_device.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/acpi.h>
34 #include <linux/interrupt.h>
35 #include <linux/pm_runtime.h>
36 
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
39 
40 #include "hci_uart.h"
41 #include "btintel.h"
42 
43 #define STATE_BOOTLOADER	0
44 #define STATE_DOWNLOADING	1
45 #define STATE_FIRMWARE_LOADED	2
46 #define STATE_FIRMWARE_FAILED	3
47 #define STATE_BOOTING		4
48 #define STATE_LPM_ENABLED	5
49 #define STATE_TX_ACTIVE		6
50 #define STATE_SUSPENDED		7
51 #define STATE_LPM_TRANSACTION	8
52 
53 #define HCI_LPM_WAKE_PKT 0xf0
54 #define HCI_LPM_PKT 0xf1
55 #define HCI_LPM_MAX_SIZE 10
56 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
57 
58 #define LPM_OP_TX_NOTIFY 0x00
59 #define LPM_OP_SUSPEND_ACK 0x02
60 #define LPM_OP_RESUME_ACK 0x03
61 
62 #define LPM_SUSPEND_DELAY_MS 1000
63 
64 struct hci_lpm_pkt {
65 	__u8 opcode;
66 	__u8 dlen;
67 	__u8 data[0];
68 } __packed;
69 
70 struct intel_device {
71 	struct list_head list;
72 	struct platform_device *pdev;
73 	struct gpio_desc *reset;
74 	struct hci_uart *hu;
75 	struct mutex hu_lock;
76 	int irq;
77 };
78 
79 static LIST_HEAD(intel_device_list);
80 static DEFINE_MUTEX(intel_device_list_lock);
81 
82 struct intel_data {
83 	struct sk_buff *rx_skb;
84 	struct sk_buff_head txq;
85 	struct work_struct busy_work;
86 	struct hci_uart *hu;
87 	unsigned long flags;
88 };
89 
90 static u8 intel_convert_speed(unsigned int speed)
91 {
92 	switch (speed) {
93 	case 9600:
94 		return 0x00;
95 	case 19200:
96 		return 0x01;
97 	case 38400:
98 		return 0x02;
99 	case 57600:
100 		return 0x03;
101 	case 115200:
102 		return 0x04;
103 	case 230400:
104 		return 0x05;
105 	case 460800:
106 		return 0x06;
107 	case 921600:
108 		return 0x07;
109 	case 1843200:
110 		return 0x08;
111 	case 3250000:
112 		return 0x09;
113 	case 2000000:
114 		return 0x0a;
115 	case 3000000:
116 		return 0x0b;
117 	default:
118 		return 0xff;
119 	}
120 }
121 
122 static int intel_wait_booting(struct hci_uart *hu)
123 {
124 	struct intel_data *intel = hu->priv;
125 	int err;
126 
127 	err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
128 				  TASK_INTERRUPTIBLE,
129 				  msecs_to_jiffies(1000));
130 
131 	if (err == 1) {
132 		bt_dev_err(hu->hdev, "Device boot interrupted");
133 		return -EINTR;
134 	}
135 
136 	if (err) {
137 		bt_dev_err(hu->hdev, "Device boot timeout");
138 		return -ETIMEDOUT;
139 	}
140 
141 	return err;
142 }
143 
144 #ifdef CONFIG_PM
145 static int intel_wait_lpm_transaction(struct hci_uart *hu)
146 {
147 	struct intel_data *intel = hu->priv;
148 	int err;
149 
150 	err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
151 				  TASK_INTERRUPTIBLE,
152 				  msecs_to_jiffies(1000));
153 
154 	if (err == 1) {
155 		bt_dev_err(hu->hdev, "LPM transaction interrupted");
156 		return -EINTR;
157 	}
158 
159 	if (err) {
160 		bt_dev_err(hu->hdev, "LPM transaction timeout");
161 		return -ETIMEDOUT;
162 	}
163 
164 	return err;
165 }
166 
167 static int intel_lpm_suspend(struct hci_uart *hu)
168 {
169 	static const u8 suspend[] = { 0x01, 0x01, 0x01 };
170 	struct intel_data *intel = hu->priv;
171 	struct sk_buff *skb;
172 
173 	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
174 	    test_bit(STATE_SUSPENDED, &intel->flags))
175 		return 0;
176 
177 	if (test_bit(STATE_TX_ACTIVE, &intel->flags))
178 		return -EAGAIN;
179 
180 	bt_dev_dbg(hu->hdev, "Suspending");
181 
182 	skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
183 	if (!skb) {
184 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
185 		return -ENOMEM;
186 	}
187 
188 	memcpy(skb_put(skb, sizeof(suspend)), suspend, sizeof(suspend));
189 	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
190 
191 	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
192 
193 	/* LPM flow is a priority, enqueue packet at list head */
194 	skb_queue_head(&intel->txq, skb);
195 	hci_uart_tx_wakeup(hu);
196 
197 	intel_wait_lpm_transaction(hu);
198 	/* Even in case of failure, continue and test the suspended flag */
199 
200 	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
201 
202 	if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
203 		bt_dev_err(hu->hdev, "Device suspend error");
204 		return -EINVAL;
205 	}
206 
207 	bt_dev_dbg(hu->hdev, "Suspended");
208 
209 	hci_uart_set_flow_control(hu, true);
210 
211 	return 0;
212 }
213 
214 static int intel_lpm_resume(struct hci_uart *hu)
215 {
216 	struct intel_data *intel = hu->priv;
217 	struct sk_buff *skb;
218 
219 	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
220 	    !test_bit(STATE_SUSPENDED, &intel->flags))
221 		return 0;
222 
223 	bt_dev_dbg(hu->hdev, "Resuming");
224 
225 	hci_uart_set_flow_control(hu, false);
226 
227 	skb = bt_skb_alloc(0, GFP_KERNEL);
228 	if (!skb) {
229 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
230 		return -ENOMEM;
231 	}
232 
233 	hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
234 
235 	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
236 
237 	/* LPM flow is a priority, enqueue packet at list head */
238 	skb_queue_head(&intel->txq, skb);
239 	hci_uart_tx_wakeup(hu);
240 
241 	intel_wait_lpm_transaction(hu);
242 	/* Even in case of failure, continue and test the suspended flag */
243 
244 	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
245 
246 	if (test_bit(STATE_SUSPENDED, &intel->flags)) {
247 		bt_dev_err(hu->hdev, "Device resume error");
248 		return -EINVAL;
249 	}
250 
251 	bt_dev_dbg(hu->hdev, "Resumed");
252 
253 	return 0;
254 }
255 #endif /* CONFIG_PM */
256 
257 static int intel_lpm_host_wake(struct hci_uart *hu)
258 {
259 	static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
260 	struct intel_data *intel = hu->priv;
261 	struct sk_buff *skb;
262 
263 	hci_uart_set_flow_control(hu, false);
264 
265 	clear_bit(STATE_SUSPENDED, &intel->flags);
266 
267 	skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
268 	if (!skb) {
269 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
270 		return -ENOMEM;
271 	}
272 
273 	memcpy(skb_put(skb, sizeof(lpm_resume_ack)), lpm_resume_ack,
274 	       sizeof(lpm_resume_ack));
275 	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
276 
277 	/* LPM flow is a priority, enqueue packet at list head */
278 	skb_queue_head(&intel->txq, skb);
279 	hci_uart_tx_wakeup(hu);
280 
281 	bt_dev_dbg(hu->hdev, "Resumed by controller");
282 
283 	return 0;
284 }
285 
286 static irqreturn_t intel_irq(int irq, void *dev_id)
287 {
288 	struct intel_device *idev = dev_id;
289 
290 	dev_info(&idev->pdev->dev, "hci_intel irq\n");
291 
292 	mutex_lock(&idev->hu_lock);
293 	if (idev->hu)
294 		intel_lpm_host_wake(idev->hu);
295 	mutex_unlock(&idev->hu_lock);
296 
297 	/* Host/Controller are now LPM resumed, trigger a new delayed suspend */
298 	pm_runtime_get(&idev->pdev->dev);
299 	pm_runtime_mark_last_busy(&idev->pdev->dev);
300 	pm_runtime_put_autosuspend(&idev->pdev->dev);
301 
302 	return IRQ_HANDLED;
303 }
304 
305 static int intel_set_power(struct hci_uart *hu, bool powered)
306 {
307 	struct list_head *p;
308 	int err = -ENODEV;
309 
310 	mutex_lock(&intel_device_list_lock);
311 
312 	list_for_each(p, &intel_device_list) {
313 		struct intel_device *idev = list_entry(p, struct intel_device,
314 						       list);
315 
316 		/* tty device and pdev device should share the same parent
317 		 * which is the UART port.
318 		 */
319 		if (hu->tty->dev->parent != idev->pdev->dev.parent)
320 			continue;
321 
322 		if (!idev->reset) {
323 			err = -ENOTSUPP;
324 			break;
325 		}
326 
327 		BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
328 			hu, dev_name(&idev->pdev->dev), powered);
329 
330 		gpiod_set_value(idev->reset, powered);
331 
332 		/* Provide to idev a hu reference which is used to run LPM
333 		 * transactions (lpm suspend/resume) from PM callbacks.
334 		 * hu needs to be protected against concurrent removing during
335 		 * these PM ops.
336 		 */
337 		mutex_lock(&idev->hu_lock);
338 		idev->hu = powered ? hu : NULL;
339 		mutex_unlock(&idev->hu_lock);
340 
341 		if (idev->irq < 0)
342 			break;
343 
344 		if (powered && device_can_wakeup(&idev->pdev->dev)) {
345 			err = devm_request_threaded_irq(&idev->pdev->dev,
346 							idev->irq, NULL,
347 							intel_irq,
348 							IRQF_ONESHOT,
349 							"bt-host-wake", idev);
350 			if (err) {
351 				BT_ERR("hu %p, unable to allocate irq-%d",
352 				       hu, idev->irq);
353 				break;
354 			}
355 
356 			device_wakeup_enable(&idev->pdev->dev);
357 
358 			pm_runtime_set_active(&idev->pdev->dev);
359 			pm_runtime_use_autosuspend(&idev->pdev->dev);
360 			pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
361 							 LPM_SUSPEND_DELAY_MS);
362 			pm_runtime_enable(&idev->pdev->dev);
363 		} else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
364 			devm_free_irq(&idev->pdev->dev, idev->irq, idev);
365 			device_wakeup_disable(&idev->pdev->dev);
366 
367 			pm_runtime_disable(&idev->pdev->dev);
368 		}
369 	}
370 
371 	mutex_unlock(&intel_device_list_lock);
372 
373 	return err;
374 }
375 
376 static void intel_busy_work(struct work_struct *work)
377 {
378 	struct list_head *p;
379 	struct intel_data *intel = container_of(work, struct intel_data,
380 						busy_work);
381 
382 	/* Link is busy, delay the suspend */
383 	mutex_lock(&intel_device_list_lock);
384 	list_for_each(p, &intel_device_list) {
385 		struct intel_device *idev = list_entry(p, struct intel_device,
386 						       list);
387 
388 		if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
389 			pm_runtime_get(&idev->pdev->dev);
390 			pm_runtime_mark_last_busy(&idev->pdev->dev);
391 			pm_runtime_put_autosuspend(&idev->pdev->dev);
392 			break;
393 		}
394 	}
395 	mutex_unlock(&intel_device_list_lock);
396 }
397 
398 static int intel_open(struct hci_uart *hu)
399 {
400 	struct intel_data *intel;
401 
402 	BT_DBG("hu %p", hu);
403 
404 	intel = kzalloc(sizeof(*intel), GFP_KERNEL);
405 	if (!intel)
406 		return -ENOMEM;
407 
408 	skb_queue_head_init(&intel->txq);
409 	INIT_WORK(&intel->busy_work, intel_busy_work);
410 
411 	intel->hu = hu;
412 
413 	hu->priv = intel;
414 
415 	if (!intel_set_power(hu, true))
416 		set_bit(STATE_BOOTING, &intel->flags);
417 
418 	return 0;
419 }
420 
421 static int intel_close(struct hci_uart *hu)
422 {
423 	struct intel_data *intel = hu->priv;
424 
425 	BT_DBG("hu %p", hu);
426 
427 	cancel_work_sync(&intel->busy_work);
428 
429 	intel_set_power(hu, false);
430 
431 	skb_queue_purge(&intel->txq);
432 	kfree_skb(intel->rx_skb);
433 	kfree(intel);
434 
435 	hu->priv = NULL;
436 	return 0;
437 }
438 
439 static int intel_flush(struct hci_uart *hu)
440 {
441 	struct intel_data *intel = hu->priv;
442 
443 	BT_DBG("hu %p", hu);
444 
445 	skb_queue_purge(&intel->txq);
446 
447 	return 0;
448 }
449 
450 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
451 {
452 	struct sk_buff *skb;
453 	struct hci_event_hdr *hdr;
454 	struct hci_ev_cmd_complete *evt;
455 
456 	skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
457 	if (!skb)
458 		return -ENOMEM;
459 
460 	hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
461 	hdr->evt = HCI_EV_CMD_COMPLETE;
462 	hdr->plen = sizeof(*evt) + 1;
463 
464 	evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
465 	evt->ncmd = 0x01;
466 	evt->opcode = cpu_to_le16(opcode);
467 
468 	*skb_put(skb, 1) = 0x00;
469 
470 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
471 
472 	return hci_recv_frame(hdev, skb);
473 }
474 
475 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
476 {
477 	struct intel_data *intel = hu->priv;
478 	struct hci_dev *hdev = hu->hdev;
479 	u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
480 	struct sk_buff *skb;
481 	int err;
482 
483 	/* This can be the first command sent to the chip, check
484 	 * that the controller is ready.
485 	 */
486 	err = intel_wait_booting(hu);
487 
488 	clear_bit(STATE_BOOTING, &intel->flags);
489 
490 	/* In case of timeout, try to continue anyway */
491 	if (err && err != -ETIMEDOUT)
492 		return err;
493 
494 	bt_dev_info(hdev, "Change controller speed to %d", speed);
495 
496 	speed_cmd[3] = intel_convert_speed(speed);
497 	if (speed_cmd[3] == 0xff) {
498 		bt_dev_err(hdev, "Unsupported speed");
499 		return -EINVAL;
500 	}
501 
502 	/* Device will not accept speed change if Intel version has not been
503 	 * previously requested.
504 	 */
505 	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
506 	if (IS_ERR(skb)) {
507 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
508 			   PTR_ERR(skb));
509 		return PTR_ERR(skb);
510 	}
511 	kfree_skb(skb);
512 
513 	skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
514 	if (!skb) {
515 		bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
516 		return -ENOMEM;
517 	}
518 
519 	memcpy(skb_put(skb, sizeof(speed_cmd)), speed_cmd, sizeof(speed_cmd));
520 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
521 
522 	hci_uart_set_flow_control(hu, true);
523 
524 	skb_queue_tail(&intel->txq, skb);
525 	hci_uart_tx_wakeup(hu);
526 
527 	/* wait 100ms to change baudrate on controller side */
528 	msleep(100);
529 
530 	hci_uart_set_baudrate(hu, speed);
531 	hci_uart_set_flow_control(hu, false);
532 
533 	return 0;
534 }
535 
536 static int intel_setup(struct hci_uart *hu)
537 {
538 	static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
539 					  0x00, 0x08, 0x04, 0x00 };
540 	static const u8 lpm_param[] = { 0x03, 0x07, 0x01, 0x0b };
541 	struct intel_data *intel = hu->priv;
542 	struct intel_device *idev = NULL;
543 	struct hci_dev *hdev = hu->hdev;
544 	struct sk_buff *skb;
545 	struct intel_version ver;
546 	struct intel_boot_params *params;
547 	struct list_head *p;
548 	const struct firmware *fw;
549 	const u8 *fw_ptr;
550 	char fwname[64];
551 	u32 frag_len;
552 	ktime_t calltime, delta, rettime;
553 	unsigned long long duration;
554 	unsigned int init_speed, oper_speed;
555 	int speed_change = 0;
556 	int err;
557 
558 	bt_dev_dbg(hdev, "start intel_setup");
559 
560 	hu->hdev->set_diag = btintel_set_diag;
561 	hu->hdev->set_bdaddr = btintel_set_bdaddr;
562 
563 	calltime = ktime_get();
564 
565 	if (hu->init_speed)
566 		init_speed = hu->init_speed;
567 	else
568 		init_speed = hu->proto->init_speed;
569 
570 	if (hu->oper_speed)
571 		oper_speed = hu->oper_speed;
572 	else
573 		oper_speed = hu->proto->oper_speed;
574 
575 	if (oper_speed && init_speed && oper_speed != init_speed)
576 		speed_change = 1;
577 
578 	/* Check that the controller is ready */
579 	err = intel_wait_booting(hu);
580 
581 	clear_bit(STATE_BOOTING, &intel->flags);
582 
583 	/* In case of timeout, try to continue anyway */
584 	if (err && err != -ETIMEDOUT)
585 		return err;
586 
587 	set_bit(STATE_BOOTLOADER, &intel->flags);
588 
589 	/* Read the Intel version information to determine if the device
590 	 * is in bootloader mode or if it already has operational firmware
591 	 * loaded.
592 	 */
593 	 err = btintel_read_version(hdev, &ver);
594 	 if (err)
595 		return err;
596 
597 	/* The hardware platform number has a fixed value of 0x37 and
598 	 * for now only accept this single value.
599 	 */
600 	if (ver.hw_platform != 0x37) {
601 		bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
602 			   ver.hw_platform);
603 		return -EINVAL;
604 	}
605 
606 	/* At the moment only the hardware variant iBT 3.0 (LnP/SfP) is
607 	 * supported by this firmware loading method. This check has been
608 	 * put in place to ensure correct forward compatibility options
609 	 * when newer hardware variants come along.
610 	 */
611 	if (ver.hw_variant != 0x0b) {
612 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
613 			   ver.hw_variant);
614 		return -EINVAL;
615 	}
616 
617 	btintel_version_info(hdev, &ver);
618 
619 	/* The firmware variant determines if the device is in bootloader
620 	 * mode or is running operational firmware. The value 0x06 identifies
621 	 * the bootloader and the value 0x23 identifies the operational
622 	 * firmware.
623 	 *
624 	 * When the operational firmware is already present, then only
625 	 * the check for valid Bluetooth device address is needed. This
626 	 * determines if the device will be added as configured or
627 	 * unconfigured controller.
628 	 *
629 	 * It is not possible to use the Secure Boot Parameters in this
630 	 * case since that command is only available in bootloader mode.
631 	 */
632 	if (ver.fw_variant == 0x23) {
633 		clear_bit(STATE_BOOTLOADER, &intel->flags);
634 		btintel_check_bdaddr(hdev);
635 		return 0;
636 	}
637 
638 	/* If the device is not in bootloader mode, then the only possible
639 	 * choice is to return an error and abort the device initialization.
640 	 */
641 	if (ver.fw_variant != 0x06) {
642 		bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
643 			   ver.fw_variant);
644 		return -ENODEV;
645 	}
646 
647 	/* Read the secure boot parameters to identify the operating
648 	 * details of the bootloader.
649 	 */
650 	skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_CMD_TIMEOUT);
651 	if (IS_ERR(skb)) {
652 		bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
653 			   PTR_ERR(skb));
654 		return PTR_ERR(skb);
655 	}
656 
657 	if (skb->len != sizeof(*params)) {
658 		bt_dev_err(hdev, "Intel boot parameters size mismatch");
659 		kfree_skb(skb);
660 		return -EILSEQ;
661 	}
662 
663 	params = (struct intel_boot_params *)skb->data;
664 	if (params->status) {
665 		bt_dev_err(hdev, "Intel boot parameters command failure (%02x)",
666 			   params->status);
667 		err = -bt_to_errno(params->status);
668 		kfree_skb(skb);
669 		return err;
670 	}
671 
672 	bt_dev_info(hdev, "Device revision is %u",
673 		    le16_to_cpu(params->dev_revid));
674 
675 	bt_dev_info(hdev, "Secure boot is %s",
676 		    params->secure_boot ? "enabled" : "disabled");
677 
678 	bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
679 		params->min_fw_build_nn, params->min_fw_build_cw,
680 		2000 + params->min_fw_build_yy);
681 
682 	/* It is required that every single firmware fragment is acknowledged
683 	 * with a command complete event. If the boot parameters indicate
684 	 * that this bootloader does not send them, then abort the setup.
685 	 */
686 	if (params->limited_cce != 0x00) {
687 		bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
688 			   params->limited_cce);
689 		kfree_skb(skb);
690 		return -EINVAL;
691 	}
692 
693 	/* If the OTP has no valid Bluetooth device address, then there will
694 	 * also be no valid address for the operational firmware.
695 	 */
696 	if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
697 		bt_dev_info(hdev, "No device address configured");
698 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
699 	}
700 
701 	/* With this Intel bootloader only the hardware variant and device
702 	 * revision information are used to select the right firmware.
703 	 *
704 	 * Currently this bootloader support is limited to hardware variant
705 	 * iBT 3.0 (LnP/SfP) which is identified by the value 11 (0x0b).
706 	 */
707 	snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.sfi",
708 		 le16_to_cpu(params->dev_revid));
709 
710 	err = request_firmware(&fw, fwname, &hdev->dev);
711 	if (err < 0) {
712 		bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
713 			   err);
714 		kfree_skb(skb);
715 		return err;
716 	}
717 
718 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
719 
720 	/* Save the DDC file name for later */
721 	snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.ddc",
722 		 le16_to_cpu(params->dev_revid));
723 
724 	kfree_skb(skb);
725 
726 	if (fw->size < 644) {
727 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
728 			   fw->size);
729 		err = -EBADF;
730 		goto done;
731 	}
732 
733 	set_bit(STATE_DOWNLOADING, &intel->flags);
734 
735 	/* Start the firmware download transaction with the Init fragment
736 	 * represented by the 128 bytes of CSS header.
737 	 */
738 	err = btintel_secure_send(hdev, 0x00, 128, fw->data);
739 	if (err < 0) {
740 		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
741 		goto done;
742 	}
743 
744 	/* Send the 256 bytes of public key information from the firmware
745 	 * as the PKey fragment.
746 	 */
747 	err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
748 	if (err < 0) {
749 		bt_dev_err(hdev, "Failed to send firmware public key (%d)",
750 			   err);
751 		goto done;
752 	}
753 
754 	/* Send the 256 bytes of signature information from the firmware
755 	 * as the Sign fragment.
756 	 */
757 	err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
758 	if (err < 0) {
759 		bt_dev_err(hdev, "Failed to send firmware signature (%d)",
760 			   err);
761 		goto done;
762 	}
763 
764 	fw_ptr = fw->data + 644;
765 	frag_len = 0;
766 
767 	while (fw_ptr - fw->data < fw->size) {
768 		struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
769 
770 		frag_len += sizeof(*cmd) + cmd->plen;
771 
772 		bt_dev_dbg(hdev, "Patching %td/%zu", (fw_ptr - fw->data),
773 			   fw->size);
774 
775 		/* The parameter length of the secure send command requires
776 		 * a 4 byte alignment. It happens so that the firmware file
777 		 * contains proper Intel_NOP commands to align the fragments
778 		 * as needed.
779 		 *
780 		 * Send set of commands with 4 byte alignment from the
781 		 * firmware data buffer as a single Data fragement.
782 		 */
783 		if (frag_len % 4)
784 			continue;
785 
786 		/* Send each command from the firmware data buffer as
787 		 * a single Data fragment.
788 		 */
789 		err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
790 		if (err < 0) {
791 			bt_dev_err(hdev, "Failed to send firmware data (%d)",
792 				   err);
793 			goto done;
794 		}
795 
796 		fw_ptr += frag_len;
797 		frag_len = 0;
798 	}
799 
800 	set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
801 
802 	bt_dev_info(hdev, "Waiting for firmware download to complete");
803 
804 	/* Before switching the device into operational mode and with that
805 	 * booting the loaded firmware, wait for the bootloader notification
806 	 * that all fragments have been successfully received.
807 	 *
808 	 * When the event processing receives the notification, then the
809 	 * STATE_DOWNLOADING flag will be cleared.
810 	 *
811 	 * The firmware loading should not take longer than 5 seconds
812 	 * and thus just timeout if that happens and fail the setup
813 	 * of this device.
814 	 */
815 	err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
816 				  TASK_INTERRUPTIBLE,
817 				  msecs_to_jiffies(5000));
818 	if (err == 1) {
819 		bt_dev_err(hdev, "Firmware loading interrupted");
820 		err = -EINTR;
821 		goto done;
822 	}
823 
824 	if (err) {
825 		bt_dev_err(hdev, "Firmware loading timeout");
826 		err = -ETIMEDOUT;
827 		goto done;
828 	}
829 
830 	if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
831 		bt_dev_err(hdev, "Firmware loading failed");
832 		err = -ENOEXEC;
833 		goto done;
834 	}
835 
836 	rettime = ktime_get();
837 	delta = ktime_sub(rettime, calltime);
838 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
839 
840 	bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
841 
842 done:
843 	release_firmware(fw);
844 
845 	if (err < 0)
846 		return err;
847 
848 	/* We need to restore the default speed before Intel reset */
849 	if (speed_change) {
850 		err = intel_set_baudrate(hu, init_speed);
851 		if (err)
852 			return err;
853 	}
854 
855 	calltime = ktime_get();
856 
857 	set_bit(STATE_BOOTING, &intel->flags);
858 
859 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
860 			     HCI_CMD_TIMEOUT);
861 	if (IS_ERR(skb))
862 		return PTR_ERR(skb);
863 
864 	kfree_skb(skb);
865 
866 	/* The bootloader will not indicate when the device is ready. This
867 	 * is done by the operational firmware sending bootup notification.
868 	 *
869 	 * Booting into operational firmware should not take longer than
870 	 * 1 second. However if that happens, then just fail the setup
871 	 * since something went wrong.
872 	 */
873 	bt_dev_info(hdev, "Waiting for device to boot");
874 
875 	err = intel_wait_booting(hu);
876 	if (err)
877 		return err;
878 
879 	clear_bit(STATE_BOOTING, &intel->flags);
880 
881 	rettime = ktime_get();
882 	delta = ktime_sub(rettime, calltime);
883 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
884 
885 	bt_dev_info(hdev, "Device booted in %llu usecs", duration);
886 
887 	/* Enable LPM if matching pdev with wakeup enabled */
888 	mutex_lock(&intel_device_list_lock);
889 	list_for_each(p, &intel_device_list) {
890 		struct intel_device *dev = list_entry(p, struct intel_device,
891 						      list);
892 		if (hu->tty->dev->parent == dev->pdev->dev.parent) {
893 			if (device_may_wakeup(&dev->pdev->dev))
894 				idev = dev;
895 			break;
896 		}
897 	}
898 	mutex_unlock(&intel_device_list_lock);
899 
900 	if (!idev)
901 		goto no_lpm;
902 
903 	bt_dev_info(hdev, "Enabling LPM");
904 
905 	skb = __hci_cmd_sync(hdev, 0xfc8b, sizeof(lpm_param), lpm_param,
906 			     HCI_CMD_TIMEOUT);
907 	if (IS_ERR(skb)) {
908 		bt_dev_err(hdev, "Failed to enable LPM");
909 		goto no_lpm;
910 	}
911 	kfree_skb(skb);
912 
913 	set_bit(STATE_LPM_ENABLED, &intel->flags);
914 
915 no_lpm:
916 	/* Ignore errors, device can work without DDC parameters */
917 	btintel_load_ddc_config(hdev, fwname);
918 
919 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
920 	if (IS_ERR(skb))
921 		return PTR_ERR(skb);
922 	kfree_skb(skb);
923 
924 	if (speed_change) {
925 		err = intel_set_baudrate(hu, oper_speed);
926 		if (err)
927 			return err;
928 	}
929 
930 	bt_dev_info(hdev, "Setup complete");
931 
932 	clear_bit(STATE_BOOTLOADER, &intel->flags);
933 
934 	return 0;
935 }
936 
937 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
938 {
939 	struct hci_uart *hu = hci_get_drvdata(hdev);
940 	struct intel_data *intel = hu->priv;
941 	struct hci_event_hdr *hdr;
942 
943 	if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
944 	    !test_bit(STATE_BOOTING, &intel->flags))
945 		goto recv;
946 
947 	hdr = (void *)skb->data;
948 
949 	/* When the firmware loading completes the device sends
950 	 * out a vendor specific event indicating the result of
951 	 * the firmware loading.
952 	 */
953 	if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
954 	    skb->data[2] == 0x06) {
955 		if (skb->data[3] != 0x00)
956 			set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
957 
958 		if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
959 		    test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) {
960 			smp_mb__after_atomic();
961 			wake_up_bit(&intel->flags, STATE_DOWNLOADING);
962 		}
963 
964 	/* When switching to the operational firmware the device
965 	 * sends a vendor specific event indicating that the bootup
966 	 * completed.
967 	 */
968 	} else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
969 		   skb->data[2] == 0x02) {
970 		if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) {
971 			smp_mb__after_atomic();
972 			wake_up_bit(&intel->flags, STATE_BOOTING);
973 		}
974 	}
975 recv:
976 	return hci_recv_frame(hdev, skb);
977 }
978 
979 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
980 {
981 	struct hci_uart *hu = hci_get_drvdata(hdev);
982 	struct intel_data *intel = hu->priv;
983 
984 	bt_dev_dbg(hdev, "TX idle notification (%d)", value);
985 
986 	if (value) {
987 		set_bit(STATE_TX_ACTIVE, &intel->flags);
988 		schedule_work(&intel->busy_work);
989 	} else {
990 		clear_bit(STATE_TX_ACTIVE, &intel->flags);
991 	}
992 }
993 
994 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
995 {
996 	struct hci_lpm_pkt *lpm = (void *)skb->data;
997 	struct hci_uart *hu = hci_get_drvdata(hdev);
998 	struct intel_data *intel = hu->priv;
999 
1000 	switch (lpm->opcode) {
1001 	case LPM_OP_TX_NOTIFY:
1002 		if (lpm->dlen < 1) {
1003 			bt_dev_err(hu->hdev, "Invalid LPM notification packet");
1004 			break;
1005 		}
1006 		intel_recv_lpm_notify(hdev, lpm->data[0]);
1007 		break;
1008 	case LPM_OP_SUSPEND_ACK:
1009 		set_bit(STATE_SUSPENDED, &intel->flags);
1010 		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1011 			smp_mb__after_atomic();
1012 			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1013 		}
1014 		break;
1015 	case LPM_OP_RESUME_ACK:
1016 		clear_bit(STATE_SUSPENDED, &intel->flags);
1017 		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1018 			smp_mb__after_atomic();
1019 			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1020 		}
1021 		break;
1022 	default:
1023 		bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
1024 		break;
1025 	}
1026 
1027 	kfree_skb(skb);
1028 
1029 	return 0;
1030 }
1031 
1032 #define INTEL_RECV_LPM \
1033 	.type = HCI_LPM_PKT, \
1034 	.hlen = HCI_LPM_HDR_SIZE, \
1035 	.loff = 1, \
1036 	.lsize = 1, \
1037 	.maxlen = HCI_LPM_MAX_SIZE
1038 
1039 static const struct h4_recv_pkt intel_recv_pkts[] = {
1040 	{ H4_RECV_ACL,    .recv = hci_recv_frame   },
1041 	{ H4_RECV_SCO,    .recv = hci_recv_frame   },
1042 	{ H4_RECV_EVENT,  .recv = intel_recv_event },
1043 	{ INTEL_RECV_LPM, .recv = intel_recv_lpm   },
1044 };
1045 
1046 static int intel_recv(struct hci_uart *hu, const void *data, int count)
1047 {
1048 	struct intel_data *intel = hu->priv;
1049 
1050 	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1051 		return -EUNATCH;
1052 
1053 	intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
1054 				    intel_recv_pkts,
1055 				    ARRAY_SIZE(intel_recv_pkts));
1056 	if (IS_ERR(intel->rx_skb)) {
1057 		int err = PTR_ERR(intel->rx_skb);
1058 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1059 		intel->rx_skb = NULL;
1060 		return err;
1061 	}
1062 
1063 	return count;
1064 }
1065 
1066 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
1067 {
1068 	struct intel_data *intel = hu->priv;
1069 	struct list_head *p;
1070 
1071 	BT_DBG("hu %p skb %p", hu, skb);
1072 
1073 	/* Be sure our controller is resumed and potential LPM transaction
1074 	 * completed before enqueuing any packet.
1075 	 */
1076 	mutex_lock(&intel_device_list_lock);
1077 	list_for_each(p, &intel_device_list) {
1078 		struct intel_device *idev = list_entry(p, struct intel_device,
1079 						       list);
1080 
1081 		if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1082 			pm_runtime_get_sync(&idev->pdev->dev);
1083 			pm_runtime_mark_last_busy(&idev->pdev->dev);
1084 			pm_runtime_put_autosuspend(&idev->pdev->dev);
1085 			break;
1086 		}
1087 	}
1088 	mutex_unlock(&intel_device_list_lock);
1089 
1090 	skb_queue_tail(&intel->txq, skb);
1091 
1092 	return 0;
1093 }
1094 
1095 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1096 {
1097 	struct intel_data *intel = hu->priv;
1098 	struct sk_buff *skb;
1099 
1100 	skb = skb_dequeue(&intel->txq);
1101 	if (!skb)
1102 		return skb;
1103 
1104 	if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1105 	    (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1106 		struct hci_command_hdr *cmd = (void *)skb->data;
1107 		__u16 opcode = le16_to_cpu(cmd->opcode);
1108 
1109 		/* When the 0xfc01 command is issued to boot into
1110 		 * the operational firmware, it will actually not
1111 		 * send a command complete event. To keep the flow
1112 		 * control working inject that event here.
1113 		 */
1114 		if (opcode == 0xfc01)
1115 			inject_cmd_complete(hu->hdev, opcode);
1116 	}
1117 
1118 	/* Prepend skb with frame type */
1119 	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1120 
1121 	return skb;
1122 }
1123 
1124 static const struct hci_uart_proto intel_proto = {
1125 	.id		= HCI_UART_INTEL,
1126 	.name		= "Intel",
1127 	.manufacturer	= 2,
1128 	.init_speed	= 115200,
1129 	.oper_speed	= 3000000,
1130 	.open		= intel_open,
1131 	.close		= intel_close,
1132 	.flush		= intel_flush,
1133 	.setup		= intel_setup,
1134 	.set_baudrate	= intel_set_baudrate,
1135 	.recv		= intel_recv,
1136 	.enqueue	= intel_enqueue,
1137 	.dequeue	= intel_dequeue,
1138 };
1139 
1140 #ifdef CONFIG_ACPI
1141 static const struct acpi_device_id intel_acpi_match[] = {
1142 	{ "INT33E1", 0 },
1143 	{ },
1144 };
1145 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1146 #endif
1147 
1148 #ifdef CONFIG_PM
1149 static int intel_suspend_device(struct device *dev)
1150 {
1151 	struct intel_device *idev = dev_get_drvdata(dev);
1152 
1153 	mutex_lock(&idev->hu_lock);
1154 	if (idev->hu)
1155 		intel_lpm_suspend(idev->hu);
1156 	mutex_unlock(&idev->hu_lock);
1157 
1158 	return 0;
1159 }
1160 
1161 static int intel_resume_device(struct device *dev)
1162 {
1163 	struct intel_device *idev = dev_get_drvdata(dev);
1164 
1165 	mutex_lock(&idev->hu_lock);
1166 	if (idev->hu)
1167 		intel_lpm_resume(idev->hu);
1168 	mutex_unlock(&idev->hu_lock);
1169 
1170 	return 0;
1171 }
1172 #endif
1173 
1174 #ifdef CONFIG_PM_SLEEP
1175 static int intel_suspend(struct device *dev)
1176 {
1177 	struct intel_device *idev = dev_get_drvdata(dev);
1178 
1179 	if (device_may_wakeup(dev))
1180 		enable_irq_wake(idev->irq);
1181 
1182 	return intel_suspend_device(dev);
1183 }
1184 
1185 static int intel_resume(struct device *dev)
1186 {
1187 	struct intel_device *idev = dev_get_drvdata(dev);
1188 
1189 	if (device_may_wakeup(dev))
1190 		disable_irq_wake(idev->irq);
1191 
1192 	return intel_resume_device(dev);
1193 }
1194 #endif
1195 
1196 static const struct dev_pm_ops intel_pm_ops = {
1197 	SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1198 	SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1199 };
1200 
1201 static int intel_probe(struct platform_device *pdev)
1202 {
1203 	struct intel_device *idev;
1204 
1205 	idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1206 	if (!idev)
1207 		return -ENOMEM;
1208 
1209 	mutex_init(&idev->hu_lock);
1210 
1211 	idev->pdev = pdev;
1212 
1213 	idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1214 	if (IS_ERR(idev->reset)) {
1215 		dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1216 		return PTR_ERR(idev->reset);
1217 	}
1218 
1219 	idev->irq = platform_get_irq(pdev, 0);
1220 	if (idev->irq < 0) {
1221 		struct gpio_desc *host_wake;
1222 
1223 		dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1224 
1225 		host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1226 		if (IS_ERR(host_wake)) {
1227 			dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1228 			goto no_irq;
1229 		}
1230 
1231 		idev->irq = gpiod_to_irq(host_wake);
1232 		if (idev->irq < 0) {
1233 			dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1234 			goto no_irq;
1235 		}
1236 	}
1237 
1238 	/* Only enable wake-up/irq when controller is powered */
1239 	device_set_wakeup_capable(&pdev->dev, true);
1240 	device_wakeup_disable(&pdev->dev);
1241 
1242 no_irq:
1243 	platform_set_drvdata(pdev, idev);
1244 
1245 	/* Place this instance on the device list */
1246 	mutex_lock(&intel_device_list_lock);
1247 	list_add_tail(&idev->list, &intel_device_list);
1248 	mutex_unlock(&intel_device_list_lock);
1249 
1250 	dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1251 		 desc_to_gpio(idev->reset), idev->irq);
1252 
1253 	return 0;
1254 }
1255 
1256 static int intel_remove(struct platform_device *pdev)
1257 {
1258 	struct intel_device *idev = platform_get_drvdata(pdev);
1259 
1260 	device_wakeup_disable(&pdev->dev);
1261 
1262 	mutex_lock(&intel_device_list_lock);
1263 	list_del(&idev->list);
1264 	mutex_unlock(&intel_device_list_lock);
1265 
1266 	dev_info(&pdev->dev, "unregistered.\n");
1267 
1268 	return 0;
1269 }
1270 
1271 static struct platform_driver intel_driver = {
1272 	.probe = intel_probe,
1273 	.remove = intel_remove,
1274 	.driver = {
1275 		.name = "hci_intel",
1276 		.acpi_match_table = ACPI_PTR(intel_acpi_match),
1277 		.pm = &intel_pm_ops,
1278 	},
1279 };
1280 
1281 int __init intel_init(void)
1282 {
1283 	platform_driver_register(&intel_driver);
1284 
1285 	return hci_uart_register_proto(&intel_proto);
1286 }
1287 
1288 int __exit intel_deinit(void)
1289 {
1290 	platform_driver_unregister(&intel_driver);
1291 
1292 	return hci_uart_unregister_proto(&intel_proto);
1293 }
1294