xref: /linux/drivers/bluetooth/hci_intel.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  *
3  *  Bluetooth HCI UART driver for Intel devices
4  *
5  *  Copyright (C) 2015  Intel Corporation
6  *
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  */
23 
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/skbuff.h>
27 #include <linux/firmware.h>
28 #include <linux/module.h>
29 #include <linux/wait.h>
30 #include <linux/tty.h>
31 #include <linux/platform_device.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/acpi.h>
34 #include <linux/interrupt.h>
35 #include <linux/pm_runtime.h>
36 
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
39 
40 #include "hci_uart.h"
41 #include "btintel.h"
42 
43 #define STATE_BOOTLOADER	0
44 #define STATE_DOWNLOADING	1
45 #define STATE_FIRMWARE_LOADED	2
46 #define STATE_FIRMWARE_FAILED	3
47 #define STATE_BOOTING		4
48 #define STATE_LPM_ENABLED	5
49 #define STATE_TX_ACTIVE		6
50 #define STATE_SUSPENDED		7
51 #define STATE_LPM_TRANSACTION	8
52 
53 #define HCI_LPM_WAKE_PKT 0xf0
54 #define HCI_LPM_PKT 0xf1
55 #define HCI_LPM_MAX_SIZE 10
56 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
57 
58 #define LPM_OP_TX_NOTIFY 0x00
59 #define LPM_OP_SUSPEND_ACK 0x02
60 #define LPM_OP_RESUME_ACK 0x03
61 
62 #define LPM_SUSPEND_DELAY_MS 1000
63 
64 struct hci_lpm_pkt {
65 	__u8 opcode;
66 	__u8 dlen;
67 	__u8 data[0];
68 } __packed;
69 
70 struct intel_device {
71 	struct list_head list;
72 	struct platform_device *pdev;
73 	struct gpio_desc *reset;
74 	struct hci_uart *hu;
75 	struct mutex hu_lock;
76 	int irq;
77 };
78 
79 static LIST_HEAD(intel_device_list);
80 static DEFINE_MUTEX(intel_device_list_lock);
81 
82 struct intel_data {
83 	struct sk_buff *rx_skb;
84 	struct sk_buff_head txq;
85 	struct work_struct busy_work;
86 	struct hci_uart *hu;
87 	unsigned long flags;
88 };
89 
90 static u8 intel_convert_speed(unsigned int speed)
91 {
92 	switch (speed) {
93 	case 9600:
94 		return 0x00;
95 	case 19200:
96 		return 0x01;
97 	case 38400:
98 		return 0x02;
99 	case 57600:
100 		return 0x03;
101 	case 115200:
102 		return 0x04;
103 	case 230400:
104 		return 0x05;
105 	case 460800:
106 		return 0x06;
107 	case 921600:
108 		return 0x07;
109 	case 1843200:
110 		return 0x08;
111 	case 3250000:
112 		return 0x09;
113 	case 2000000:
114 		return 0x0a;
115 	case 3000000:
116 		return 0x0b;
117 	default:
118 		return 0xff;
119 	}
120 }
121 
122 static int intel_wait_booting(struct hci_uart *hu)
123 {
124 	struct intel_data *intel = hu->priv;
125 	int err;
126 
127 	err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
128 				  TASK_INTERRUPTIBLE,
129 				  msecs_to_jiffies(1000));
130 
131 	if (err == 1) {
132 		bt_dev_err(hu->hdev, "Device boot interrupted");
133 		return -EINTR;
134 	}
135 
136 	if (err) {
137 		bt_dev_err(hu->hdev, "Device boot timeout");
138 		return -ETIMEDOUT;
139 	}
140 
141 	return err;
142 }
143 
144 #ifdef CONFIG_PM
145 static int intel_wait_lpm_transaction(struct hci_uart *hu)
146 {
147 	struct intel_data *intel = hu->priv;
148 	int err;
149 
150 	err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
151 				  TASK_INTERRUPTIBLE,
152 				  msecs_to_jiffies(1000));
153 
154 	if (err == 1) {
155 		bt_dev_err(hu->hdev, "LPM transaction interrupted");
156 		return -EINTR;
157 	}
158 
159 	if (err) {
160 		bt_dev_err(hu->hdev, "LPM transaction timeout");
161 		return -ETIMEDOUT;
162 	}
163 
164 	return err;
165 }
166 
167 static int intel_lpm_suspend(struct hci_uart *hu)
168 {
169 	static const u8 suspend[] = { 0x01, 0x01, 0x01 };
170 	struct intel_data *intel = hu->priv;
171 	struct sk_buff *skb;
172 
173 	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
174 	    test_bit(STATE_SUSPENDED, &intel->flags))
175 		return 0;
176 
177 	if (test_bit(STATE_TX_ACTIVE, &intel->flags))
178 		return -EAGAIN;
179 
180 	bt_dev_dbg(hu->hdev, "Suspending");
181 
182 	skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
183 	if (!skb) {
184 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
185 		return -ENOMEM;
186 	}
187 
188 	memcpy(skb_put(skb, sizeof(suspend)), suspend, sizeof(suspend));
189 	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
190 
191 	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
192 
193 	/* LPM flow is a priority, enqueue packet at list head */
194 	skb_queue_head(&intel->txq, skb);
195 	hci_uart_tx_wakeup(hu);
196 
197 	intel_wait_lpm_transaction(hu);
198 	/* Even in case of failure, continue and test the suspended flag */
199 
200 	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
201 
202 	if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
203 		bt_dev_err(hu->hdev, "Device suspend error");
204 		return -EINVAL;
205 	}
206 
207 	bt_dev_dbg(hu->hdev, "Suspended");
208 
209 	hci_uart_set_flow_control(hu, true);
210 
211 	return 0;
212 }
213 
214 static int intel_lpm_resume(struct hci_uart *hu)
215 {
216 	struct intel_data *intel = hu->priv;
217 	struct sk_buff *skb;
218 
219 	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
220 	    !test_bit(STATE_SUSPENDED, &intel->flags))
221 		return 0;
222 
223 	bt_dev_dbg(hu->hdev, "Resuming");
224 
225 	hci_uart_set_flow_control(hu, false);
226 
227 	skb = bt_skb_alloc(0, GFP_KERNEL);
228 	if (!skb) {
229 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
230 		return -ENOMEM;
231 	}
232 
233 	hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
234 
235 	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
236 
237 	/* LPM flow is a priority, enqueue packet at list head */
238 	skb_queue_head(&intel->txq, skb);
239 	hci_uart_tx_wakeup(hu);
240 
241 	intel_wait_lpm_transaction(hu);
242 	/* Even in case of failure, continue and test the suspended flag */
243 
244 	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
245 
246 	if (test_bit(STATE_SUSPENDED, &intel->flags)) {
247 		bt_dev_err(hu->hdev, "Device resume error");
248 		return -EINVAL;
249 	}
250 
251 	bt_dev_dbg(hu->hdev, "Resumed");
252 
253 	return 0;
254 }
255 #endif /* CONFIG_PM */
256 
257 static int intel_lpm_host_wake(struct hci_uart *hu)
258 {
259 	static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
260 	struct intel_data *intel = hu->priv;
261 	struct sk_buff *skb;
262 
263 	hci_uart_set_flow_control(hu, false);
264 
265 	clear_bit(STATE_SUSPENDED, &intel->flags);
266 
267 	skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
268 	if (!skb) {
269 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
270 		return -ENOMEM;
271 	}
272 
273 	memcpy(skb_put(skb, sizeof(lpm_resume_ack)), lpm_resume_ack,
274 	       sizeof(lpm_resume_ack));
275 	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
276 
277 	/* LPM flow is a priority, enqueue packet at list head */
278 	skb_queue_head(&intel->txq, skb);
279 	hci_uart_tx_wakeup(hu);
280 
281 	bt_dev_dbg(hu->hdev, "Resumed by controller");
282 
283 	return 0;
284 }
285 
286 static irqreturn_t intel_irq(int irq, void *dev_id)
287 {
288 	struct intel_device *idev = dev_id;
289 
290 	dev_info(&idev->pdev->dev, "hci_intel irq\n");
291 
292 	mutex_lock(&idev->hu_lock);
293 	if (idev->hu)
294 		intel_lpm_host_wake(idev->hu);
295 	mutex_unlock(&idev->hu_lock);
296 
297 	/* Host/Controller are now LPM resumed, trigger a new delayed suspend */
298 	pm_runtime_get(&idev->pdev->dev);
299 	pm_runtime_mark_last_busy(&idev->pdev->dev);
300 	pm_runtime_put_autosuspend(&idev->pdev->dev);
301 
302 	return IRQ_HANDLED;
303 }
304 
305 static int intel_set_power(struct hci_uart *hu, bool powered)
306 {
307 	struct list_head *p;
308 	int err = -ENODEV;
309 
310 	mutex_lock(&intel_device_list_lock);
311 
312 	list_for_each(p, &intel_device_list) {
313 		struct intel_device *idev = list_entry(p, struct intel_device,
314 						       list);
315 
316 		/* tty device and pdev device should share the same parent
317 		 * which is the UART port.
318 		 */
319 		if (hu->tty->dev->parent != idev->pdev->dev.parent)
320 			continue;
321 
322 		if (!idev->reset) {
323 			err = -ENOTSUPP;
324 			break;
325 		}
326 
327 		BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
328 			hu, dev_name(&idev->pdev->dev), powered);
329 
330 		gpiod_set_value(idev->reset, powered);
331 
332 		/* Provide to idev a hu reference which is used to run LPM
333 		 * transactions (lpm suspend/resume) from PM callbacks.
334 		 * hu needs to be protected against concurrent removing during
335 		 * these PM ops.
336 		 */
337 		mutex_lock(&idev->hu_lock);
338 		idev->hu = powered ? hu : NULL;
339 		mutex_unlock(&idev->hu_lock);
340 
341 		if (idev->irq < 0)
342 			break;
343 
344 		if (powered && device_can_wakeup(&idev->pdev->dev)) {
345 			err = devm_request_threaded_irq(&idev->pdev->dev,
346 							idev->irq, NULL,
347 							intel_irq,
348 							IRQF_ONESHOT,
349 							"bt-host-wake", idev);
350 			if (err) {
351 				BT_ERR("hu %p, unable to allocate irq-%d",
352 				       hu, idev->irq);
353 				break;
354 			}
355 
356 			device_wakeup_enable(&idev->pdev->dev);
357 
358 			pm_runtime_set_active(&idev->pdev->dev);
359 			pm_runtime_use_autosuspend(&idev->pdev->dev);
360 			pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
361 							 LPM_SUSPEND_DELAY_MS);
362 			pm_runtime_enable(&idev->pdev->dev);
363 		} else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
364 			devm_free_irq(&idev->pdev->dev, idev->irq, idev);
365 			device_wakeup_disable(&idev->pdev->dev);
366 
367 			pm_runtime_disable(&idev->pdev->dev);
368 		}
369 	}
370 
371 	mutex_unlock(&intel_device_list_lock);
372 
373 	return err;
374 }
375 
376 static void intel_busy_work(struct work_struct *work)
377 {
378 	struct list_head *p;
379 	struct intel_data *intel = container_of(work, struct intel_data,
380 						busy_work);
381 
382 	/* Link is busy, delay the suspend */
383 	mutex_lock(&intel_device_list_lock);
384 	list_for_each(p, &intel_device_list) {
385 		struct intel_device *idev = list_entry(p, struct intel_device,
386 						       list);
387 
388 		if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
389 			pm_runtime_get(&idev->pdev->dev);
390 			pm_runtime_mark_last_busy(&idev->pdev->dev);
391 			pm_runtime_put_autosuspend(&idev->pdev->dev);
392 			break;
393 		}
394 	}
395 	mutex_unlock(&intel_device_list_lock);
396 }
397 
398 static int intel_open(struct hci_uart *hu)
399 {
400 	struct intel_data *intel;
401 
402 	BT_DBG("hu %p", hu);
403 
404 	intel = kzalloc(sizeof(*intel), GFP_KERNEL);
405 	if (!intel)
406 		return -ENOMEM;
407 
408 	skb_queue_head_init(&intel->txq);
409 	INIT_WORK(&intel->busy_work, intel_busy_work);
410 
411 	intel->hu = hu;
412 
413 	hu->priv = intel;
414 
415 	if (!intel_set_power(hu, true))
416 		set_bit(STATE_BOOTING, &intel->flags);
417 
418 	return 0;
419 }
420 
421 static int intel_close(struct hci_uart *hu)
422 {
423 	struct intel_data *intel = hu->priv;
424 
425 	BT_DBG("hu %p", hu);
426 
427 	cancel_work_sync(&intel->busy_work);
428 
429 	intel_set_power(hu, false);
430 
431 	skb_queue_purge(&intel->txq);
432 	kfree_skb(intel->rx_skb);
433 	kfree(intel);
434 
435 	hu->priv = NULL;
436 	return 0;
437 }
438 
439 static int intel_flush(struct hci_uart *hu)
440 {
441 	struct intel_data *intel = hu->priv;
442 
443 	BT_DBG("hu %p", hu);
444 
445 	skb_queue_purge(&intel->txq);
446 
447 	return 0;
448 }
449 
450 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
451 {
452 	struct sk_buff *skb;
453 	struct hci_event_hdr *hdr;
454 	struct hci_ev_cmd_complete *evt;
455 
456 	skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
457 	if (!skb)
458 		return -ENOMEM;
459 
460 	hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
461 	hdr->evt = HCI_EV_CMD_COMPLETE;
462 	hdr->plen = sizeof(*evt) + 1;
463 
464 	evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
465 	evt->ncmd = 0x01;
466 	evt->opcode = cpu_to_le16(opcode);
467 
468 	*skb_put(skb, 1) = 0x00;
469 
470 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
471 
472 	return hci_recv_frame(hdev, skb);
473 }
474 
475 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
476 {
477 	struct intel_data *intel = hu->priv;
478 	struct hci_dev *hdev = hu->hdev;
479 	u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
480 	struct sk_buff *skb;
481 	int err;
482 
483 	/* This can be the first command sent to the chip, check
484 	 * that the controller is ready.
485 	 */
486 	err = intel_wait_booting(hu);
487 
488 	clear_bit(STATE_BOOTING, &intel->flags);
489 
490 	/* In case of timeout, try to continue anyway */
491 	if (err && err != -ETIMEDOUT)
492 		return err;
493 
494 	bt_dev_info(hdev, "Change controller speed to %d", speed);
495 
496 	speed_cmd[3] = intel_convert_speed(speed);
497 	if (speed_cmd[3] == 0xff) {
498 		bt_dev_err(hdev, "Unsupported speed");
499 		return -EINVAL;
500 	}
501 
502 	/* Device will not accept speed change if Intel version has not been
503 	 * previously requested.
504 	 */
505 	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
506 	if (IS_ERR(skb)) {
507 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
508 			   PTR_ERR(skb));
509 		return PTR_ERR(skb);
510 	}
511 	kfree_skb(skb);
512 
513 	skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
514 	if (!skb) {
515 		bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
516 		return -ENOMEM;
517 	}
518 
519 	memcpy(skb_put(skb, sizeof(speed_cmd)), speed_cmd, sizeof(speed_cmd));
520 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
521 
522 	hci_uart_set_flow_control(hu, true);
523 
524 	skb_queue_tail(&intel->txq, skb);
525 	hci_uart_tx_wakeup(hu);
526 
527 	/* wait 100ms to change baudrate on controller side */
528 	msleep(100);
529 
530 	hci_uart_set_baudrate(hu, speed);
531 	hci_uart_set_flow_control(hu, false);
532 
533 	return 0;
534 }
535 
536 static int intel_setup(struct hci_uart *hu)
537 {
538 	static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
539 					  0x00, 0x08, 0x04, 0x00 };
540 	struct intel_data *intel = hu->priv;
541 	struct hci_dev *hdev = hu->hdev;
542 	struct sk_buff *skb;
543 	struct intel_version ver;
544 	struct intel_boot_params *params;
545 	struct list_head *p;
546 	const struct firmware *fw;
547 	const u8 *fw_ptr;
548 	char fwname[64];
549 	u32 frag_len;
550 	ktime_t calltime, delta, rettime;
551 	unsigned long long duration;
552 	unsigned int init_speed, oper_speed;
553 	int speed_change = 0;
554 	int err;
555 
556 	bt_dev_dbg(hdev, "start intel_setup");
557 
558 	hu->hdev->set_diag = btintel_set_diag;
559 	hu->hdev->set_bdaddr = btintel_set_bdaddr;
560 
561 	calltime = ktime_get();
562 
563 	if (hu->init_speed)
564 		init_speed = hu->init_speed;
565 	else
566 		init_speed = hu->proto->init_speed;
567 
568 	if (hu->oper_speed)
569 		oper_speed = hu->oper_speed;
570 	else
571 		oper_speed = hu->proto->oper_speed;
572 
573 	if (oper_speed && init_speed && oper_speed != init_speed)
574 		speed_change = 1;
575 
576 	/* Check that the controller is ready */
577 	err = intel_wait_booting(hu);
578 
579 	clear_bit(STATE_BOOTING, &intel->flags);
580 
581 	/* In case of timeout, try to continue anyway */
582 	if (err && err != -ETIMEDOUT)
583 		return err;
584 
585 	set_bit(STATE_BOOTLOADER, &intel->flags);
586 
587 	/* Read the Intel version information to determine if the device
588 	 * is in bootloader mode or if it already has operational firmware
589 	 * loaded.
590 	 */
591 	 err = btintel_read_version(hdev, &ver);
592 	 if (err)
593 		return err;
594 
595 	/* The hardware platform number has a fixed value of 0x37 and
596 	 * for now only accept this single value.
597 	 */
598 	if (ver.hw_platform != 0x37) {
599 		bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
600 			   ver.hw_platform);
601 		return -EINVAL;
602 	}
603 
604 	/* At the moment only the hardware variant iBT 3.0 (LnP/SfP) is
605 	 * supported by this firmware loading method. This check has been
606 	 * put in place to ensure correct forward compatibility options
607 	 * when newer hardware variants come along.
608 	 */
609 	if (ver.hw_variant != 0x0b) {
610 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
611 			   ver.hw_variant);
612 		return -EINVAL;
613 	}
614 
615 	btintel_version_info(hdev, &ver);
616 
617 	/* The firmware variant determines if the device is in bootloader
618 	 * mode or is running operational firmware. The value 0x06 identifies
619 	 * the bootloader and the value 0x23 identifies the operational
620 	 * firmware.
621 	 *
622 	 * When the operational firmware is already present, then only
623 	 * the check for valid Bluetooth device address is needed. This
624 	 * determines if the device will be added as configured or
625 	 * unconfigured controller.
626 	 *
627 	 * It is not possible to use the Secure Boot Parameters in this
628 	 * case since that command is only available in bootloader mode.
629 	 */
630 	if (ver.fw_variant == 0x23) {
631 		clear_bit(STATE_BOOTLOADER, &intel->flags);
632 		btintel_check_bdaddr(hdev);
633 		return 0;
634 	}
635 
636 	/* If the device is not in bootloader mode, then the only possible
637 	 * choice is to return an error and abort the device initialization.
638 	 */
639 	if (ver.fw_variant != 0x06) {
640 		bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
641 			   ver.fw_variant);
642 		return -ENODEV;
643 	}
644 
645 	/* Read the secure boot parameters to identify the operating
646 	 * details of the bootloader.
647 	 */
648 	skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_CMD_TIMEOUT);
649 	if (IS_ERR(skb)) {
650 		bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
651 			   PTR_ERR(skb));
652 		return PTR_ERR(skb);
653 	}
654 
655 	if (skb->len != sizeof(*params)) {
656 		bt_dev_err(hdev, "Intel boot parameters size mismatch");
657 		kfree_skb(skb);
658 		return -EILSEQ;
659 	}
660 
661 	params = (struct intel_boot_params *)skb->data;
662 	if (params->status) {
663 		bt_dev_err(hdev, "Intel boot parameters command failure (%02x)",
664 			   params->status);
665 		err = -bt_to_errno(params->status);
666 		kfree_skb(skb);
667 		return err;
668 	}
669 
670 	bt_dev_info(hdev, "Device revision is %u",
671 		    le16_to_cpu(params->dev_revid));
672 
673 	bt_dev_info(hdev, "Secure boot is %s",
674 		    params->secure_boot ? "enabled" : "disabled");
675 
676 	bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
677 		params->min_fw_build_nn, params->min_fw_build_cw,
678 		2000 + params->min_fw_build_yy);
679 
680 	/* It is required that every single firmware fragment is acknowledged
681 	 * with a command complete event. If the boot parameters indicate
682 	 * that this bootloader does not send them, then abort the setup.
683 	 */
684 	if (params->limited_cce != 0x00) {
685 		bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
686 			   params->limited_cce);
687 		kfree_skb(skb);
688 		return -EINVAL;
689 	}
690 
691 	/* If the OTP has no valid Bluetooth device address, then there will
692 	 * also be no valid address for the operational firmware.
693 	 */
694 	if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
695 		bt_dev_info(hdev, "No device address configured");
696 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
697 	}
698 
699 	/* With this Intel bootloader only the hardware variant and device
700 	 * revision information are used to select the right firmware.
701 	 *
702 	 * Currently this bootloader support is limited to hardware variant
703 	 * iBT 3.0 (LnP/SfP) which is identified by the value 11 (0x0b).
704 	 */
705 	snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.sfi",
706 		 le16_to_cpu(params->dev_revid));
707 
708 	err = request_firmware(&fw, fwname, &hdev->dev);
709 	if (err < 0) {
710 		bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
711 			   err);
712 		kfree_skb(skb);
713 		return err;
714 	}
715 
716 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
717 
718 	/* Save the DDC file name for later */
719 	snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.ddc",
720 		 le16_to_cpu(params->dev_revid));
721 
722 	kfree_skb(skb);
723 
724 	if (fw->size < 644) {
725 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
726 			   fw->size);
727 		err = -EBADF;
728 		goto done;
729 	}
730 
731 	set_bit(STATE_DOWNLOADING, &intel->flags);
732 
733 	/* Start the firmware download transaction with the Init fragment
734 	 * represented by the 128 bytes of CSS header.
735 	 */
736 	err = btintel_secure_send(hdev, 0x00, 128, fw->data);
737 	if (err < 0) {
738 		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
739 		goto done;
740 	}
741 
742 	/* Send the 256 bytes of public key information from the firmware
743 	 * as the PKey fragment.
744 	 */
745 	err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
746 	if (err < 0) {
747 		bt_dev_err(hdev, "Failed to send firmware public key (%d)",
748 			   err);
749 		goto done;
750 	}
751 
752 	/* Send the 256 bytes of signature information from the firmware
753 	 * as the Sign fragment.
754 	 */
755 	err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
756 	if (err < 0) {
757 		bt_dev_err(hdev, "Failed to send firmware signature (%d)",
758 			   err);
759 		goto done;
760 	}
761 
762 	fw_ptr = fw->data + 644;
763 	frag_len = 0;
764 
765 	while (fw_ptr - fw->data < fw->size) {
766 		struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
767 
768 		frag_len += sizeof(*cmd) + cmd->plen;
769 
770 		bt_dev_dbg(hdev, "Patching %td/%zu", (fw_ptr - fw->data),
771 			   fw->size);
772 
773 		/* The parameter length of the secure send command requires
774 		 * a 4 byte alignment. It happens so that the firmware file
775 		 * contains proper Intel_NOP commands to align the fragments
776 		 * as needed.
777 		 *
778 		 * Send set of commands with 4 byte alignment from the
779 		 * firmware data buffer as a single Data fragement.
780 		 */
781 		if (frag_len % 4)
782 			continue;
783 
784 		/* Send each command from the firmware data buffer as
785 		 * a single Data fragment.
786 		 */
787 		err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
788 		if (err < 0) {
789 			bt_dev_err(hdev, "Failed to send firmware data (%d)",
790 				   err);
791 			goto done;
792 		}
793 
794 		fw_ptr += frag_len;
795 		frag_len = 0;
796 	}
797 
798 	set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
799 
800 	bt_dev_info(hdev, "Waiting for firmware download to complete");
801 
802 	/* Before switching the device into operational mode and with that
803 	 * booting the loaded firmware, wait for the bootloader notification
804 	 * that all fragments have been successfully received.
805 	 *
806 	 * When the event processing receives the notification, then the
807 	 * STATE_DOWNLOADING flag will be cleared.
808 	 *
809 	 * The firmware loading should not take longer than 5 seconds
810 	 * and thus just timeout if that happens and fail the setup
811 	 * of this device.
812 	 */
813 	err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
814 				  TASK_INTERRUPTIBLE,
815 				  msecs_to_jiffies(5000));
816 	if (err == 1) {
817 		bt_dev_err(hdev, "Firmware loading interrupted");
818 		err = -EINTR;
819 		goto done;
820 	}
821 
822 	if (err) {
823 		bt_dev_err(hdev, "Firmware loading timeout");
824 		err = -ETIMEDOUT;
825 		goto done;
826 	}
827 
828 	if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
829 		bt_dev_err(hdev, "Firmware loading failed");
830 		err = -ENOEXEC;
831 		goto done;
832 	}
833 
834 	rettime = ktime_get();
835 	delta = ktime_sub(rettime, calltime);
836 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
837 
838 	bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
839 
840 done:
841 	release_firmware(fw);
842 
843 	if (err < 0)
844 		return err;
845 
846 	/* We need to restore the default speed before Intel reset */
847 	if (speed_change) {
848 		err = intel_set_baudrate(hu, init_speed);
849 		if (err)
850 			return err;
851 	}
852 
853 	calltime = ktime_get();
854 
855 	set_bit(STATE_BOOTING, &intel->flags);
856 
857 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
858 			     HCI_CMD_TIMEOUT);
859 	if (IS_ERR(skb))
860 		return PTR_ERR(skb);
861 
862 	kfree_skb(skb);
863 
864 	/* The bootloader will not indicate when the device is ready. This
865 	 * is done by the operational firmware sending bootup notification.
866 	 *
867 	 * Booting into operational firmware should not take longer than
868 	 * 1 second. However if that happens, then just fail the setup
869 	 * since something went wrong.
870 	 */
871 	bt_dev_info(hdev, "Waiting for device to boot");
872 
873 	err = intel_wait_booting(hu);
874 	if (err)
875 		return err;
876 
877 	clear_bit(STATE_BOOTING, &intel->flags);
878 
879 	rettime = ktime_get();
880 	delta = ktime_sub(rettime, calltime);
881 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
882 
883 	bt_dev_info(hdev, "Device booted in %llu usecs", duration);
884 
885 	/* Enable LPM if matching pdev with wakeup enabled, set TX active
886 	 * until further LPM TX notification.
887 	 */
888 	mutex_lock(&intel_device_list_lock);
889 	list_for_each(p, &intel_device_list) {
890 		struct intel_device *dev = list_entry(p, struct intel_device,
891 						      list);
892 		if (hu->tty->dev->parent == dev->pdev->dev.parent) {
893 			if (device_may_wakeup(&dev->pdev->dev)) {
894 				set_bit(STATE_LPM_ENABLED, &intel->flags);
895 				set_bit(STATE_TX_ACTIVE, &intel->flags);
896 			}
897 			break;
898 		}
899 	}
900 	mutex_unlock(&intel_device_list_lock);
901 
902 	/* Ignore errors, device can work without DDC parameters */
903 	btintel_load_ddc_config(hdev, fwname);
904 
905 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
906 	if (IS_ERR(skb))
907 		return PTR_ERR(skb);
908 	kfree_skb(skb);
909 
910 	if (speed_change) {
911 		err = intel_set_baudrate(hu, oper_speed);
912 		if (err)
913 			return err;
914 	}
915 
916 	bt_dev_info(hdev, "Setup complete");
917 
918 	clear_bit(STATE_BOOTLOADER, &intel->flags);
919 
920 	return 0;
921 }
922 
923 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
924 {
925 	struct hci_uart *hu = hci_get_drvdata(hdev);
926 	struct intel_data *intel = hu->priv;
927 	struct hci_event_hdr *hdr;
928 
929 	if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
930 	    !test_bit(STATE_BOOTING, &intel->flags))
931 		goto recv;
932 
933 	hdr = (void *)skb->data;
934 
935 	/* When the firmware loading completes the device sends
936 	 * out a vendor specific event indicating the result of
937 	 * the firmware loading.
938 	 */
939 	if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
940 	    skb->data[2] == 0x06) {
941 		if (skb->data[3] != 0x00)
942 			set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
943 
944 		if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
945 		    test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) {
946 			smp_mb__after_atomic();
947 			wake_up_bit(&intel->flags, STATE_DOWNLOADING);
948 		}
949 
950 	/* When switching to the operational firmware the device
951 	 * sends a vendor specific event indicating that the bootup
952 	 * completed.
953 	 */
954 	} else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
955 		   skb->data[2] == 0x02) {
956 		if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) {
957 			smp_mb__after_atomic();
958 			wake_up_bit(&intel->flags, STATE_BOOTING);
959 		}
960 	}
961 recv:
962 	return hci_recv_frame(hdev, skb);
963 }
964 
965 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
966 {
967 	struct hci_uart *hu = hci_get_drvdata(hdev);
968 	struct intel_data *intel = hu->priv;
969 
970 	bt_dev_dbg(hdev, "TX idle notification (%d)", value);
971 
972 	if (value) {
973 		set_bit(STATE_TX_ACTIVE, &intel->flags);
974 		schedule_work(&intel->busy_work);
975 	} else {
976 		clear_bit(STATE_TX_ACTIVE, &intel->flags);
977 	}
978 }
979 
980 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
981 {
982 	struct hci_lpm_pkt *lpm = (void *)skb->data;
983 	struct hci_uart *hu = hci_get_drvdata(hdev);
984 	struct intel_data *intel = hu->priv;
985 
986 	switch (lpm->opcode) {
987 	case LPM_OP_TX_NOTIFY:
988 		if (lpm->dlen < 1) {
989 			bt_dev_err(hu->hdev, "Invalid LPM notification packet");
990 			break;
991 		}
992 		intel_recv_lpm_notify(hdev, lpm->data[0]);
993 		break;
994 	case LPM_OP_SUSPEND_ACK:
995 		set_bit(STATE_SUSPENDED, &intel->flags);
996 		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
997 			smp_mb__after_atomic();
998 			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
999 		}
1000 		break;
1001 	case LPM_OP_RESUME_ACK:
1002 		clear_bit(STATE_SUSPENDED, &intel->flags);
1003 		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1004 			smp_mb__after_atomic();
1005 			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1006 		}
1007 		break;
1008 	default:
1009 		bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
1010 		break;
1011 	}
1012 
1013 	kfree_skb(skb);
1014 
1015 	return 0;
1016 }
1017 
1018 #define INTEL_RECV_LPM \
1019 	.type = HCI_LPM_PKT, \
1020 	.hlen = HCI_LPM_HDR_SIZE, \
1021 	.loff = 1, \
1022 	.lsize = 1, \
1023 	.maxlen = HCI_LPM_MAX_SIZE
1024 
1025 static const struct h4_recv_pkt intel_recv_pkts[] = {
1026 	{ H4_RECV_ACL,    .recv = hci_recv_frame   },
1027 	{ H4_RECV_SCO,    .recv = hci_recv_frame   },
1028 	{ H4_RECV_EVENT,  .recv = intel_recv_event },
1029 	{ INTEL_RECV_LPM, .recv = intel_recv_lpm   },
1030 };
1031 
1032 static int intel_recv(struct hci_uart *hu, const void *data, int count)
1033 {
1034 	struct intel_data *intel = hu->priv;
1035 
1036 	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1037 		return -EUNATCH;
1038 
1039 	intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
1040 				    intel_recv_pkts,
1041 				    ARRAY_SIZE(intel_recv_pkts));
1042 	if (IS_ERR(intel->rx_skb)) {
1043 		int err = PTR_ERR(intel->rx_skb);
1044 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1045 		intel->rx_skb = NULL;
1046 		return err;
1047 	}
1048 
1049 	return count;
1050 }
1051 
1052 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
1053 {
1054 	struct intel_data *intel = hu->priv;
1055 	struct list_head *p;
1056 
1057 	BT_DBG("hu %p skb %p", hu, skb);
1058 
1059 	/* Be sure our controller is resumed and potential LPM transaction
1060 	 * completed before enqueuing any packet.
1061 	 */
1062 	mutex_lock(&intel_device_list_lock);
1063 	list_for_each(p, &intel_device_list) {
1064 		struct intel_device *idev = list_entry(p, struct intel_device,
1065 						       list);
1066 
1067 		if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1068 			pm_runtime_get_sync(&idev->pdev->dev);
1069 			pm_runtime_mark_last_busy(&idev->pdev->dev);
1070 			pm_runtime_put_autosuspend(&idev->pdev->dev);
1071 			break;
1072 		}
1073 	}
1074 	mutex_unlock(&intel_device_list_lock);
1075 
1076 	skb_queue_tail(&intel->txq, skb);
1077 
1078 	return 0;
1079 }
1080 
1081 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1082 {
1083 	struct intel_data *intel = hu->priv;
1084 	struct sk_buff *skb;
1085 
1086 	skb = skb_dequeue(&intel->txq);
1087 	if (!skb)
1088 		return skb;
1089 
1090 	if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1091 	    (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1092 		struct hci_command_hdr *cmd = (void *)skb->data;
1093 		__u16 opcode = le16_to_cpu(cmd->opcode);
1094 
1095 		/* When the 0xfc01 command is issued to boot into
1096 		 * the operational firmware, it will actually not
1097 		 * send a command complete event. To keep the flow
1098 		 * control working inject that event here.
1099 		 */
1100 		if (opcode == 0xfc01)
1101 			inject_cmd_complete(hu->hdev, opcode);
1102 	}
1103 
1104 	/* Prepend skb with frame type */
1105 	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1106 
1107 	return skb;
1108 }
1109 
1110 static const struct hci_uart_proto intel_proto = {
1111 	.id		= HCI_UART_INTEL,
1112 	.name		= "Intel",
1113 	.manufacturer	= 2,
1114 	.init_speed	= 115200,
1115 	.oper_speed	= 3000000,
1116 	.open		= intel_open,
1117 	.close		= intel_close,
1118 	.flush		= intel_flush,
1119 	.setup		= intel_setup,
1120 	.set_baudrate	= intel_set_baudrate,
1121 	.recv		= intel_recv,
1122 	.enqueue	= intel_enqueue,
1123 	.dequeue	= intel_dequeue,
1124 };
1125 
1126 #ifdef CONFIG_ACPI
1127 static const struct acpi_device_id intel_acpi_match[] = {
1128 	{ "INT33E1", 0 },
1129 	{ },
1130 };
1131 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1132 #endif
1133 
1134 #ifdef CONFIG_PM
1135 static int intel_suspend_device(struct device *dev)
1136 {
1137 	struct intel_device *idev = dev_get_drvdata(dev);
1138 
1139 	mutex_lock(&idev->hu_lock);
1140 	if (idev->hu)
1141 		intel_lpm_suspend(idev->hu);
1142 	mutex_unlock(&idev->hu_lock);
1143 
1144 	return 0;
1145 }
1146 
1147 static int intel_resume_device(struct device *dev)
1148 {
1149 	struct intel_device *idev = dev_get_drvdata(dev);
1150 
1151 	mutex_lock(&idev->hu_lock);
1152 	if (idev->hu)
1153 		intel_lpm_resume(idev->hu);
1154 	mutex_unlock(&idev->hu_lock);
1155 
1156 	return 0;
1157 }
1158 #endif
1159 
1160 #ifdef CONFIG_PM_SLEEP
1161 static int intel_suspend(struct device *dev)
1162 {
1163 	struct intel_device *idev = dev_get_drvdata(dev);
1164 
1165 	if (device_may_wakeup(dev))
1166 		enable_irq_wake(idev->irq);
1167 
1168 	return intel_suspend_device(dev);
1169 }
1170 
1171 static int intel_resume(struct device *dev)
1172 {
1173 	struct intel_device *idev = dev_get_drvdata(dev);
1174 
1175 	if (device_may_wakeup(dev))
1176 		disable_irq_wake(idev->irq);
1177 
1178 	return intel_resume_device(dev);
1179 }
1180 #endif
1181 
1182 static const struct dev_pm_ops intel_pm_ops = {
1183 	SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1184 	SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1185 };
1186 
1187 static int intel_probe(struct platform_device *pdev)
1188 {
1189 	struct intel_device *idev;
1190 
1191 	idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1192 	if (!idev)
1193 		return -ENOMEM;
1194 
1195 	mutex_init(&idev->hu_lock);
1196 
1197 	idev->pdev = pdev;
1198 
1199 	idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1200 	if (IS_ERR(idev->reset)) {
1201 		dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1202 		return PTR_ERR(idev->reset);
1203 	}
1204 
1205 	idev->irq = platform_get_irq(pdev, 0);
1206 	if (idev->irq < 0) {
1207 		struct gpio_desc *host_wake;
1208 
1209 		dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1210 
1211 		host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1212 		if (IS_ERR(host_wake)) {
1213 			dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1214 			goto no_irq;
1215 		}
1216 
1217 		idev->irq = gpiod_to_irq(host_wake);
1218 		if (idev->irq < 0) {
1219 			dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1220 			goto no_irq;
1221 		}
1222 	}
1223 
1224 	/* Only enable wake-up/irq when controller is powered */
1225 	device_set_wakeup_capable(&pdev->dev, true);
1226 	device_wakeup_disable(&pdev->dev);
1227 
1228 no_irq:
1229 	platform_set_drvdata(pdev, idev);
1230 
1231 	/* Place this instance on the device list */
1232 	mutex_lock(&intel_device_list_lock);
1233 	list_add_tail(&idev->list, &intel_device_list);
1234 	mutex_unlock(&intel_device_list_lock);
1235 
1236 	dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1237 		 desc_to_gpio(idev->reset), idev->irq);
1238 
1239 	return 0;
1240 }
1241 
1242 static int intel_remove(struct platform_device *pdev)
1243 {
1244 	struct intel_device *idev = platform_get_drvdata(pdev);
1245 
1246 	device_wakeup_disable(&pdev->dev);
1247 
1248 	mutex_lock(&intel_device_list_lock);
1249 	list_del(&idev->list);
1250 	mutex_unlock(&intel_device_list_lock);
1251 
1252 	dev_info(&pdev->dev, "unregistered.\n");
1253 
1254 	return 0;
1255 }
1256 
1257 static struct platform_driver intel_driver = {
1258 	.probe = intel_probe,
1259 	.remove = intel_remove,
1260 	.driver = {
1261 		.name = "hci_intel",
1262 		.acpi_match_table = ACPI_PTR(intel_acpi_match),
1263 		.pm = &intel_pm_ops,
1264 	},
1265 };
1266 
1267 int __init intel_init(void)
1268 {
1269 	platform_driver_register(&intel_driver);
1270 
1271 	return hci_uart_register_proto(&intel_proto);
1272 }
1273 
1274 int __exit intel_deinit(void)
1275 {
1276 	platform_driver_unregister(&intel_driver);
1277 
1278 	return hci_uart_unregister_proto(&intel_proto);
1279 }
1280