1 /* 2 * 3 * Bluetooth HCI UART driver for Intel devices 4 * 5 * Copyright (C) 2015 Intel Corporation 6 * 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 */ 23 24 #include <linux/kernel.h> 25 #include <linux/errno.h> 26 #include <linux/skbuff.h> 27 #include <linux/firmware.h> 28 #include <linux/module.h> 29 #include <linux/wait.h> 30 #include <linux/tty.h> 31 #include <linux/platform_device.h> 32 #include <linux/gpio/consumer.h> 33 #include <linux/acpi.h> 34 #include <linux/interrupt.h> 35 #include <linux/pm_runtime.h> 36 37 #include <net/bluetooth/bluetooth.h> 38 #include <net/bluetooth/hci_core.h> 39 40 #include "hci_uart.h" 41 #include "btintel.h" 42 43 #define STATE_BOOTLOADER 0 44 #define STATE_DOWNLOADING 1 45 #define STATE_FIRMWARE_LOADED 2 46 #define STATE_FIRMWARE_FAILED 3 47 #define STATE_BOOTING 4 48 #define STATE_LPM_ENABLED 5 49 #define STATE_TX_ACTIVE 6 50 #define STATE_SUSPENDED 7 51 #define STATE_LPM_TRANSACTION 8 52 53 #define HCI_LPM_WAKE_PKT 0xf0 54 #define HCI_LPM_PKT 0xf1 55 #define HCI_LPM_MAX_SIZE 10 56 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE 57 58 #define LPM_OP_TX_NOTIFY 0x00 59 #define LPM_OP_SUSPEND_ACK 0x02 60 #define LPM_OP_RESUME_ACK 0x03 61 62 #define LPM_SUSPEND_DELAY_MS 1000 63 64 struct hci_lpm_pkt { 65 __u8 opcode; 66 __u8 dlen; 67 __u8 data[0]; 68 } __packed; 69 70 struct intel_device { 71 struct list_head list; 72 struct platform_device *pdev; 73 struct gpio_desc *reset; 74 struct hci_uart *hu; 75 struct mutex hu_lock; 76 int irq; 77 }; 78 79 static LIST_HEAD(intel_device_list); 80 static DEFINE_MUTEX(intel_device_list_lock); 81 82 struct intel_data { 83 struct sk_buff *rx_skb; 84 struct sk_buff_head txq; 85 struct work_struct busy_work; 86 struct hci_uart *hu; 87 unsigned long flags; 88 }; 89 90 static u8 intel_convert_speed(unsigned int speed) 91 { 92 switch (speed) { 93 case 9600: 94 return 0x00; 95 case 19200: 96 return 0x01; 97 case 38400: 98 return 0x02; 99 case 57600: 100 return 0x03; 101 case 115200: 102 return 0x04; 103 case 230400: 104 return 0x05; 105 case 460800: 106 return 0x06; 107 case 921600: 108 return 0x07; 109 case 1843200: 110 return 0x08; 111 case 3250000: 112 return 0x09; 113 case 2000000: 114 return 0x0a; 115 case 3000000: 116 return 0x0b; 117 default: 118 return 0xff; 119 } 120 } 121 122 static int intel_wait_booting(struct hci_uart *hu) 123 { 124 struct intel_data *intel = hu->priv; 125 int err; 126 127 err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING, 128 TASK_INTERRUPTIBLE, 129 msecs_to_jiffies(1000)); 130 131 if (err == 1) { 132 bt_dev_err(hu->hdev, "Device boot interrupted"); 133 return -EINTR; 134 } 135 136 if (err) { 137 bt_dev_err(hu->hdev, "Device boot timeout"); 138 return -ETIMEDOUT; 139 } 140 141 return err; 142 } 143 144 #ifdef CONFIG_PM 145 static int intel_wait_lpm_transaction(struct hci_uart *hu) 146 { 147 struct intel_data *intel = hu->priv; 148 int err; 149 150 err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION, 151 TASK_INTERRUPTIBLE, 152 msecs_to_jiffies(1000)); 153 154 if (err == 1) { 155 bt_dev_err(hu->hdev, "LPM transaction interrupted"); 156 return -EINTR; 157 } 158 159 if (err) { 160 bt_dev_err(hu->hdev, "LPM transaction timeout"); 161 return -ETIMEDOUT; 162 } 163 164 return err; 165 } 166 167 static int intel_lpm_suspend(struct hci_uart *hu) 168 { 169 static const u8 suspend[] = { 0x01, 0x01, 0x01 }; 170 struct intel_data *intel = hu->priv; 171 struct sk_buff *skb; 172 173 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) || 174 test_bit(STATE_SUSPENDED, &intel->flags)) 175 return 0; 176 177 if (test_bit(STATE_TX_ACTIVE, &intel->flags)) 178 return -EAGAIN; 179 180 bt_dev_dbg(hu->hdev, "Suspending"); 181 182 skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL); 183 if (!skb) { 184 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet"); 185 return -ENOMEM; 186 } 187 188 memcpy(skb_put(skb, sizeof(suspend)), suspend, sizeof(suspend)); 189 hci_skb_pkt_type(skb) = HCI_LPM_PKT; 190 191 set_bit(STATE_LPM_TRANSACTION, &intel->flags); 192 193 /* LPM flow is a priority, enqueue packet at list head */ 194 skb_queue_head(&intel->txq, skb); 195 hci_uart_tx_wakeup(hu); 196 197 intel_wait_lpm_transaction(hu); 198 /* Even in case of failure, continue and test the suspended flag */ 199 200 clear_bit(STATE_LPM_TRANSACTION, &intel->flags); 201 202 if (!test_bit(STATE_SUSPENDED, &intel->flags)) { 203 bt_dev_err(hu->hdev, "Device suspend error"); 204 return -EINVAL; 205 } 206 207 bt_dev_dbg(hu->hdev, "Suspended"); 208 209 hci_uart_set_flow_control(hu, true); 210 211 return 0; 212 } 213 214 static int intel_lpm_resume(struct hci_uart *hu) 215 { 216 struct intel_data *intel = hu->priv; 217 struct sk_buff *skb; 218 219 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) || 220 !test_bit(STATE_SUSPENDED, &intel->flags)) 221 return 0; 222 223 bt_dev_dbg(hu->hdev, "Resuming"); 224 225 hci_uart_set_flow_control(hu, false); 226 227 skb = bt_skb_alloc(0, GFP_KERNEL); 228 if (!skb) { 229 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet"); 230 return -ENOMEM; 231 } 232 233 hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT; 234 235 set_bit(STATE_LPM_TRANSACTION, &intel->flags); 236 237 /* LPM flow is a priority, enqueue packet at list head */ 238 skb_queue_head(&intel->txq, skb); 239 hci_uart_tx_wakeup(hu); 240 241 intel_wait_lpm_transaction(hu); 242 /* Even in case of failure, continue and test the suspended flag */ 243 244 clear_bit(STATE_LPM_TRANSACTION, &intel->flags); 245 246 if (test_bit(STATE_SUSPENDED, &intel->flags)) { 247 bt_dev_err(hu->hdev, "Device resume error"); 248 return -EINVAL; 249 } 250 251 bt_dev_dbg(hu->hdev, "Resumed"); 252 253 return 0; 254 } 255 #endif /* CONFIG_PM */ 256 257 static int intel_lpm_host_wake(struct hci_uart *hu) 258 { 259 static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 }; 260 struct intel_data *intel = hu->priv; 261 struct sk_buff *skb; 262 263 hci_uart_set_flow_control(hu, false); 264 265 clear_bit(STATE_SUSPENDED, &intel->flags); 266 267 skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL); 268 if (!skb) { 269 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet"); 270 return -ENOMEM; 271 } 272 273 memcpy(skb_put(skb, sizeof(lpm_resume_ack)), lpm_resume_ack, 274 sizeof(lpm_resume_ack)); 275 hci_skb_pkt_type(skb) = HCI_LPM_PKT; 276 277 /* LPM flow is a priority, enqueue packet at list head */ 278 skb_queue_head(&intel->txq, skb); 279 hci_uart_tx_wakeup(hu); 280 281 bt_dev_dbg(hu->hdev, "Resumed by controller"); 282 283 return 0; 284 } 285 286 static irqreturn_t intel_irq(int irq, void *dev_id) 287 { 288 struct intel_device *idev = dev_id; 289 290 dev_info(&idev->pdev->dev, "hci_intel irq\n"); 291 292 mutex_lock(&idev->hu_lock); 293 if (idev->hu) 294 intel_lpm_host_wake(idev->hu); 295 mutex_unlock(&idev->hu_lock); 296 297 /* Host/Controller are now LPM resumed, trigger a new delayed suspend */ 298 pm_runtime_get(&idev->pdev->dev); 299 pm_runtime_mark_last_busy(&idev->pdev->dev); 300 pm_runtime_put_autosuspend(&idev->pdev->dev); 301 302 return IRQ_HANDLED; 303 } 304 305 static int intel_set_power(struct hci_uart *hu, bool powered) 306 { 307 struct list_head *p; 308 int err = -ENODEV; 309 310 mutex_lock(&intel_device_list_lock); 311 312 list_for_each(p, &intel_device_list) { 313 struct intel_device *idev = list_entry(p, struct intel_device, 314 list); 315 316 /* tty device and pdev device should share the same parent 317 * which is the UART port. 318 */ 319 if (hu->tty->dev->parent != idev->pdev->dev.parent) 320 continue; 321 322 if (!idev->reset) { 323 err = -ENOTSUPP; 324 break; 325 } 326 327 BT_INFO("hu %p, Switching compatible pm device (%s) to %u", 328 hu, dev_name(&idev->pdev->dev), powered); 329 330 gpiod_set_value(idev->reset, powered); 331 332 /* Provide to idev a hu reference which is used to run LPM 333 * transactions (lpm suspend/resume) from PM callbacks. 334 * hu needs to be protected against concurrent removing during 335 * these PM ops. 336 */ 337 mutex_lock(&idev->hu_lock); 338 idev->hu = powered ? hu : NULL; 339 mutex_unlock(&idev->hu_lock); 340 341 if (idev->irq < 0) 342 break; 343 344 if (powered && device_can_wakeup(&idev->pdev->dev)) { 345 err = devm_request_threaded_irq(&idev->pdev->dev, 346 idev->irq, NULL, 347 intel_irq, 348 IRQF_ONESHOT, 349 "bt-host-wake", idev); 350 if (err) { 351 BT_ERR("hu %p, unable to allocate irq-%d", 352 hu, idev->irq); 353 break; 354 } 355 356 device_wakeup_enable(&idev->pdev->dev); 357 358 pm_runtime_set_active(&idev->pdev->dev); 359 pm_runtime_use_autosuspend(&idev->pdev->dev); 360 pm_runtime_set_autosuspend_delay(&idev->pdev->dev, 361 LPM_SUSPEND_DELAY_MS); 362 pm_runtime_enable(&idev->pdev->dev); 363 } else if (!powered && device_may_wakeup(&idev->pdev->dev)) { 364 devm_free_irq(&idev->pdev->dev, idev->irq, idev); 365 device_wakeup_disable(&idev->pdev->dev); 366 367 pm_runtime_disable(&idev->pdev->dev); 368 } 369 } 370 371 mutex_unlock(&intel_device_list_lock); 372 373 return err; 374 } 375 376 static void intel_busy_work(struct work_struct *work) 377 { 378 struct list_head *p; 379 struct intel_data *intel = container_of(work, struct intel_data, 380 busy_work); 381 382 /* Link is busy, delay the suspend */ 383 mutex_lock(&intel_device_list_lock); 384 list_for_each(p, &intel_device_list) { 385 struct intel_device *idev = list_entry(p, struct intel_device, 386 list); 387 388 if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) { 389 pm_runtime_get(&idev->pdev->dev); 390 pm_runtime_mark_last_busy(&idev->pdev->dev); 391 pm_runtime_put_autosuspend(&idev->pdev->dev); 392 break; 393 } 394 } 395 mutex_unlock(&intel_device_list_lock); 396 } 397 398 static int intel_open(struct hci_uart *hu) 399 { 400 struct intel_data *intel; 401 402 BT_DBG("hu %p", hu); 403 404 intel = kzalloc(sizeof(*intel), GFP_KERNEL); 405 if (!intel) 406 return -ENOMEM; 407 408 skb_queue_head_init(&intel->txq); 409 INIT_WORK(&intel->busy_work, intel_busy_work); 410 411 intel->hu = hu; 412 413 hu->priv = intel; 414 415 if (!intel_set_power(hu, true)) 416 set_bit(STATE_BOOTING, &intel->flags); 417 418 return 0; 419 } 420 421 static int intel_close(struct hci_uart *hu) 422 { 423 struct intel_data *intel = hu->priv; 424 425 BT_DBG("hu %p", hu); 426 427 cancel_work_sync(&intel->busy_work); 428 429 intel_set_power(hu, false); 430 431 skb_queue_purge(&intel->txq); 432 kfree_skb(intel->rx_skb); 433 kfree(intel); 434 435 hu->priv = NULL; 436 return 0; 437 } 438 439 static int intel_flush(struct hci_uart *hu) 440 { 441 struct intel_data *intel = hu->priv; 442 443 BT_DBG("hu %p", hu); 444 445 skb_queue_purge(&intel->txq); 446 447 return 0; 448 } 449 450 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode) 451 { 452 struct sk_buff *skb; 453 struct hci_event_hdr *hdr; 454 struct hci_ev_cmd_complete *evt; 455 456 skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC); 457 if (!skb) 458 return -ENOMEM; 459 460 hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr)); 461 hdr->evt = HCI_EV_CMD_COMPLETE; 462 hdr->plen = sizeof(*evt) + 1; 463 464 evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt)); 465 evt->ncmd = 0x01; 466 evt->opcode = cpu_to_le16(opcode); 467 468 *skb_put(skb, 1) = 0x00; 469 470 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 471 472 return hci_recv_frame(hdev, skb); 473 } 474 475 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed) 476 { 477 struct intel_data *intel = hu->priv; 478 struct hci_dev *hdev = hu->hdev; 479 u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 }; 480 struct sk_buff *skb; 481 int err; 482 483 /* This can be the first command sent to the chip, check 484 * that the controller is ready. 485 */ 486 err = intel_wait_booting(hu); 487 488 clear_bit(STATE_BOOTING, &intel->flags); 489 490 /* In case of timeout, try to continue anyway */ 491 if (err && err != -ETIMEDOUT) 492 return err; 493 494 bt_dev_info(hdev, "Change controller speed to %d", speed); 495 496 speed_cmd[3] = intel_convert_speed(speed); 497 if (speed_cmd[3] == 0xff) { 498 bt_dev_err(hdev, "Unsupported speed"); 499 return -EINVAL; 500 } 501 502 /* Device will not accept speed change if Intel version has not been 503 * previously requested. 504 */ 505 skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT); 506 if (IS_ERR(skb)) { 507 bt_dev_err(hdev, "Reading Intel version information failed (%ld)", 508 PTR_ERR(skb)); 509 return PTR_ERR(skb); 510 } 511 kfree_skb(skb); 512 513 skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL); 514 if (!skb) { 515 bt_dev_err(hdev, "Failed to alloc memory for baudrate packet"); 516 return -ENOMEM; 517 } 518 519 memcpy(skb_put(skb, sizeof(speed_cmd)), speed_cmd, sizeof(speed_cmd)); 520 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 521 522 hci_uart_set_flow_control(hu, true); 523 524 skb_queue_tail(&intel->txq, skb); 525 hci_uart_tx_wakeup(hu); 526 527 /* wait 100ms to change baudrate on controller side */ 528 msleep(100); 529 530 hci_uart_set_baudrate(hu, speed); 531 hci_uart_set_flow_control(hu, false); 532 533 return 0; 534 } 535 536 static int intel_setup(struct hci_uart *hu) 537 { 538 static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01, 539 0x00, 0x08, 0x04, 0x00 }; 540 struct intel_data *intel = hu->priv; 541 struct hci_dev *hdev = hu->hdev; 542 struct sk_buff *skb; 543 struct intel_version ver; 544 struct intel_boot_params *params; 545 struct list_head *p; 546 const struct firmware *fw; 547 const u8 *fw_ptr; 548 char fwname[64]; 549 u32 frag_len; 550 ktime_t calltime, delta, rettime; 551 unsigned long long duration; 552 unsigned int init_speed, oper_speed; 553 int speed_change = 0; 554 int err; 555 556 bt_dev_dbg(hdev, "start intel_setup"); 557 558 hu->hdev->set_diag = btintel_set_diag; 559 hu->hdev->set_bdaddr = btintel_set_bdaddr; 560 561 calltime = ktime_get(); 562 563 if (hu->init_speed) 564 init_speed = hu->init_speed; 565 else 566 init_speed = hu->proto->init_speed; 567 568 if (hu->oper_speed) 569 oper_speed = hu->oper_speed; 570 else 571 oper_speed = hu->proto->oper_speed; 572 573 if (oper_speed && init_speed && oper_speed != init_speed) 574 speed_change = 1; 575 576 /* Check that the controller is ready */ 577 err = intel_wait_booting(hu); 578 579 clear_bit(STATE_BOOTING, &intel->flags); 580 581 /* In case of timeout, try to continue anyway */ 582 if (err && err != -ETIMEDOUT) 583 return err; 584 585 set_bit(STATE_BOOTLOADER, &intel->flags); 586 587 /* Read the Intel version information to determine if the device 588 * is in bootloader mode or if it already has operational firmware 589 * loaded. 590 */ 591 err = btintel_read_version(hdev, &ver); 592 if (err) 593 return err; 594 595 /* The hardware platform number has a fixed value of 0x37 and 596 * for now only accept this single value. 597 */ 598 if (ver.hw_platform != 0x37) { 599 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)", 600 ver.hw_platform); 601 return -EINVAL; 602 } 603 604 /* At the moment only the hardware variant iBT 3.0 (LnP/SfP) is 605 * supported by this firmware loading method. This check has been 606 * put in place to ensure correct forward compatibility options 607 * when newer hardware variants come along. 608 */ 609 if (ver.hw_variant != 0x0b) { 610 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)", 611 ver.hw_variant); 612 return -EINVAL; 613 } 614 615 btintel_version_info(hdev, &ver); 616 617 /* The firmware variant determines if the device is in bootloader 618 * mode or is running operational firmware. The value 0x06 identifies 619 * the bootloader and the value 0x23 identifies the operational 620 * firmware. 621 * 622 * When the operational firmware is already present, then only 623 * the check for valid Bluetooth device address is needed. This 624 * determines if the device will be added as configured or 625 * unconfigured controller. 626 * 627 * It is not possible to use the Secure Boot Parameters in this 628 * case since that command is only available in bootloader mode. 629 */ 630 if (ver.fw_variant == 0x23) { 631 clear_bit(STATE_BOOTLOADER, &intel->flags); 632 btintel_check_bdaddr(hdev); 633 return 0; 634 } 635 636 /* If the device is not in bootloader mode, then the only possible 637 * choice is to return an error and abort the device initialization. 638 */ 639 if (ver.fw_variant != 0x06) { 640 bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)", 641 ver.fw_variant); 642 return -ENODEV; 643 } 644 645 /* Read the secure boot parameters to identify the operating 646 * details of the bootloader. 647 */ 648 skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_CMD_TIMEOUT); 649 if (IS_ERR(skb)) { 650 bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)", 651 PTR_ERR(skb)); 652 return PTR_ERR(skb); 653 } 654 655 if (skb->len != sizeof(*params)) { 656 bt_dev_err(hdev, "Intel boot parameters size mismatch"); 657 kfree_skb(skb); 658 return -EILSEQ; 659 } 660 661 params = (struct intel_boot_params *)skb->data; 662 if (params->status) { 663 bt_dev_err(hdev, "Intel boot parameters command failure (%02x)", 664 params->status); 665 err = -bt_to_errno(params->status); 666 kfree_skb(skb); 667 return err; 668 } 669 670 bt_dev_info(hdev, "Device revision is %u", 671 le16_to_cpu(params->dev_revid)); 672 673 bt_dev_info(hdev, "Secure boot is %s", 674 params->secure_boot ? "enabled" : "disabled"); 675 676 bt_dev_info(hdev, "Minimum firmware build %u week %u %u", 677 params->min_fw_build_nn, params->min_fw_build_cw, 678 2000 + params->min_fw_build_yy); 679 680 /* It is required that every single firmware fragment is acknowledged 681 * with a command complete event. If the boot parameters indicate 682 * that this bootloader does not send them, then abort the setup. 683 */ 684 if (params->limited_cce != 0x00) { 685 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)", 686 params->limited_cce); 687 kfree_skb(skb); 688 return -EINVAL; 689 } 690 691 /* If the OTP has no valid Bluetooth device address, then there will 692 * also be no valid address for the operational firmware. 693 */ 694 if (!bacmp(¶ms->otp_bdaddr, BDADDR_ANY)) { 695 bt_dev_info(hdev, "No device address configured"); 696 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); 697 } 698 699 /* With this Intel bootloader only the hardware variant and device 700 * revision information are used to select the right firmware. 701 * 702 * Currently this bootloader support is limited to hardware variant 703 * iBT 3.0 (LnP/SfP) which is identified by the value 11 (0x0b). 704 */ 705 snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.sfi", 706 le16_to_cpu(params->dev_revid)); 707 708 err = request_firmware(&fw, fwname, &hdev->dev); 709 if (err < 0) { 710 bt_dev_err(hdev, "Failed to load Intel firmware file (%d)", 711 err); 712 kfree_skb(skb); 713 return err; 714 } 715 716 bt_dev_info(hdev, "Found device firmware: %s", fwname); 717 718 /* Save the DDC file name for later */ 719 snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.ddc", 720 le16_to_cpu(params->dev_revid)); 721 722 kfree_skb(skb); 723 724 if (fw->size < 644) { 725 bt_dev_err(hdev, "Invalid size of firmware file (%zu)", 726 fw->size); 727 err = -EBADF; 728 goto done; 729 } 730 731 set_bit(STATE_DOWNLOADING, &intel->flags); 732 733 /* Start the firmware download transaction with the Init fragment 734 * represented by the 128 bytes of CSS header. 735 */ 736 err = btintel_secure_send(hdev, 0x00, 128, fw->data); 737 if (err < 0) { 738 bt_dev_err(hdev, "Failed to send firmware header (%d)", err); 739 goto done; 740 } 741 742 /* Send the 256 bytes of public key information from the firmware 743 * as the PKey fragment. 744 */ 745 err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128); 746 if (err < 0) { 747 bt_dev_err(hdev, "Failed to send firmware public key (%d)", 748 err); 749 goto done; 750 } 751 752 /* Send the 256 bytes of signature information from the firmware 753 * as the Sign fragment. 754 */ 755 err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388); 756 if (err < 0) { 757 bt_dev_err(hdev, "Failed to send firmware signature (%d)", 758 err); 759 goto done; 760 } 761 762 fw_ptr = fw->data + 644; 763 frag_len = 0; 764 765 while (fw_ptr - fw->data < fw->size) { 766 struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len); 767 768 frag_len += sizeof(*cmd) + cmd->plen; 769 770 bt_dev_dbg(hdev, "Patching %td/%zu", (fw_ptr - fw->data), 771 fw->size); 772 773 /* The parameter length of the secure send command requires 774 * a 4 byte alignment. It happens so that the firmware file 775 * contains proper Intel_NOP commands to align the fragments 776 * as needed. 777 * 778 * Send set of commands with 4 byte alignment from the 779 * firmware data buffer as a single Data fragement. 780 */ 781 if (frag_len % 4) 782 continue; 783 784 /* Send each command from the firmware data buffer as 785 * a single Data fragment. 786 */ 787 err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr); 788 if (err < 0) { 789 bt_dev_err(hdev, "Failed to send firmware data (%d)", 790 err); 791 goto done; 792 } 793 794 fw_ptr += frag_len; 795 frag_len = 0; 796 } 797 798 set_bit(STATE_FIRMWARE_LOADED, &intel->flags); 799 800 bt_dev_info(hdev, "Waiting for firmware download to complete"); 801 802 /* Before switching the device into operational mode and with that 803 * booting the loaded firmware, wait for the bootloader notification 804 * that all fragments have been successfully received. 805 * 806 * When the event processing receives the notification, then the 807 * STATE_DOWNLOADING flag will be cleared. 808 * 809 * The firmware loading should not take longer than 5 seconds 810 * and thus just timeout if that happens and fail the setup 811 * of this device. 812 */ 813 err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING, 814 TASK_INTERRUPTIBLE, 815 msecs_to_jiffies(5000)); 816 if (err == 1) { 817 bt_dev_err(hdev, "Firmware loading interrupted"); 818 err = -EINTR; 819 goto done; 820 } 821 822 if (err) { 823 bt_dev_err(hdev, "Firmware loading timeout"); 824 err = -ETIMEDOUT; 825 goto done; 826 } 827 828 if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) { 829 bt_dev_err(hdev, "Firmware loading failed"); 830 err = -ENOEXEC; 831 goto done; 832 } 833 834 rettime = ktime_get(); 835 delta = ktime_sub(rettime, calltime); 836 duration = (unsigned long long) ktime_to_ns(delta) >> 10; 837 838 bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration); 839 840 done: 841 release_firmware(fw); 842 843 if (err < 0) 844 return err; 845 846 /* We need to restore the default speed before Intel reset */ 847 if (speed_change) { 848 err = intel_set_baudrate(hu, init_speed); 849 if (err) 850 return err; 851 } 852 853 calltime = ktime_get(); 854 855 set_bit(STATE_BOOTING, &intel->flags); 856 857 skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param, 858 HCI_CMD_TIMEOUT); 859 if (IS_ERR(skb)) 860 return PTR_ERR(skb); 861 862 kfree_skb(skb); 863 864 /* The bootloader will not indicate when the device is ready. This 865 * is done by the operational firmware sending bootup notification. 866 * 867 * Booting into operational firmware should not take longer than 868 * 1 second. However if that happens, then just fail the setup 869 * since something went wrong. 870 */ 871 bt_dev_info(hdev, "Waiting for device to boot"); 872 873 err = intel_wait_booting(hu); 874 if (err) 875 return err; 876 877 clear_bit(STATE_BOOTING, &intel->flags); 878 879 rettime = ktime_get(); 880 delta = ktime_sub(rettime, calltime); 881 duration = (unsigned long long) ktime_to_ns(delta) >> 10; 882 883 bt_dev_info(hdev, "Device booted in %llu usecs", duration); 884 885 /* Enable LPM if matching pdev with wakeup enabled, set TX active 886 * until further LPM TX notification. 887 */ 888 mutex_lock(&intel_device_list_lock); 889 list_for_each(p, &intel_device_list) { 890 struct intel_device *dev = list_entry(p, struct intel_device, 891 list); 892 if (hu->tty->dev->parent == dev->pdev->dev.parent) { 893 if (device_may_wakeup(&dev->pdev->dev)) { 894 set_bit(STATE_LPM_ENABLED, &intel->flags); 895 set_bit(STATE_TX_ACTIVE, &intel->flags); 896 } 897 break; 898 } 899 } 900 mutex_unlock(&intel_device_list_lock); 901 902 /* Ignore errors, device can work without DDC parameters */ 903 btintel_load_ddc_config(hdev, fwname); 904 905 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT); 906 if (IS_ERR(skb)) 907 return PTR_ERR(skb); 908 kfree_skb(skb); 909 910 if (speed_change) { 911 err = intel_set_baudrate(hu, oper_speed); 912 if (err) 913 return err; 914 } 915 916 bt_dev_info(hdev, "Setup complete"); 917 918 clear_bit(STATE_BOOTLOADER, &intel->flags); 919 920 return 0; 921 } 922 923 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb) 924 { 925 struct hci_uart *hu = hci_get_drvdata(hdev); 926 struct intel_data *intel = hu->priv; 927 struct hci_event_hdr *hdr; 928 929 if (!test_bit(STATE_BOOTLOADER, &intel->flags) && 930 !test_bit(STATE_BOOTING, &intel->flags)) 931 goto recv; 932 933 hdr = (void *)skb->data; 934 935 /* When the firmware loading completes the device sends 936 * out a vendor specific event indicating the result of 937 * the firmware loading. 938 */ 939 if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 && 940 skb->data[2] == 0x06) { 941 if (skb->data[3] != 0x00) 942 set_bit(STATE_FIRMWARE_FAILED, &intel->flags); 943 944 if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) && 945 test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) { 946 smp_mb__after_atomic(); 947 wake_up_bit(&intel->flags, STATE_DOWNLOADING); 948 } 949 950 /* When switching to the operational firmware the device 951 * sends a vendor specific event indicating that the bootup 952 * completed. 953 */ 954 } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 && 955 skb->data[2] == 0x02) { 956 if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) { 957 smp_mb__after_atomic(); 958 wake_up_bit(&intel->flags, STATE_BOOTING); 959 } 960 } 961 recv: 962 return hci_recv_frame(hdev, skb); 963 } 964 965 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value) 966 { 967 struct hci_uart *hu = hci_get_drvdata(hdev); 968 struct intel_data *intel = hu->priv; 969 970 bt_dev_dbg(hdev, "TX idle notification (%d)", value); 971 972 if (value) { 973 set_bit(STATE_TX_ACTIVE, &intel->flags); 974 schedule_work(&intel->busy_work); 975 } else { 976 clear_bit(STATE_TX_ACTIVE, &intel->flags); 977 } 978 } 979 980 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb) 981 { 982 struct hci_lpm_pkt *lpm = (void *)skb->data; 983 struct hci_uart *hu = hci_get_drvdata(hdev); 984 struct intel_data *intel = hu->priv; 985 986 switch (lpm->opcode) { 987 case LPM_OP_TX_NOTIFY: 988 if (lpm->dlen < 1) { 989 bt_dev_err(hu->hdev, "Invalid LPM notification packet"); 990 break; 991 } 992 intel_recv_lpm_notify(hdev, lpm->data[0]); 993 break; 994 case LPM_OP_SUSPEND_ACK: 995 set_bit(STATE_SUSPENDED, &intel->flags); 996 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) { 997 smp_mb__after_atomic(); 998 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION); 999 } 1000 break; 1001 case LPM_OP_RESUME_ACK: 1002 clear_bit(STATE_SUSPENDED, &intel->flags); 1003 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) { 1004 smp_mb__after_atomic(); 1005 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION); 1006 } 1007 break; 1008 default: 1009 bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode); 1010 break; 1011 } 1012 1013 kfree_skb(skb); 1014 1015 return 0; 1016 } 1017 1018 #define INTEL_RECV_LPM \ 1019 .type = HCI_LPM_PKT, \ 1020 .hlen = HCI_LPM_HDR_SIZE, \ 1021 .loff = 1, \ 1022 .lsize = 1, \ 1023 .maxlen = HCI_LPM_MAX_SIZE 1024 1025 static const struct h4_recv_pkt intel_recv_pkts[] = { 1026 { H4_RECV_ACL, .recv = hci_recv_frame }, 1027 { H4_RECV_SCO, .recv = hci_recv_frame }, 1028 { H4_RECV_EVENT, .recv = intel_recv_event }, 1029 { INTEL_RECV_LPM, .recv = intel_recv_lpm }, 1030 }; 1031 1032 static int intel_recv(struct hci_uart *hu, const void *data, int count) 1033 { 1034 struct intel_data *intel = hu->priv; 1035 1036 if (!test_bit(HCI_UART_REGISTERED, &hu->flags)) 1037 return -EUNATCH; 1038 1039 intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count, 1040 intel_recv_pkts, 1041 ARRAY_SIZE(intel_recv_pkts)); 1042 if (IS_ERR(intel->rx_skb)) { 1043 int err = PTR_ERR(intel->rx_skb); 1044 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err); 1045 intel->rx_skb = NULL; 1046 return err; 1047 } 1048 1049 return count; 1050 } 1051 1052 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb) 1053 { 1054 struct intel_data *intel = hu->priv; 1055 struct list_head *p; 1056 1057 BT_DBG("hu %p skb %p", hu, skb); 1058 1059 /* Be sure our controller is resumed and potential LPM transaction 1060 * completed before enqueuing any packet. 1061 */ 1062 mutex_lock(&intel_device_list_lock); 1063 list_for_each(p, &intel_device_list) { 1064 struct intel_device *idev = list_entry(p, struct intel_device, 1065 list); 1066 1067 if (hu->tty->dev->parent == idev->pdev->dev.parent) { 1068 pm_runtime_get_sync(&idev->pdev->dev); 1069 pm_runtime_mark_last_busy(&idev->pdev->dev); 1070 pm_runtime_put_autosuspend(&idev->pdev->dev); 1071 break; 1072 } 1073 } 1074 mutex_unlock(&intel_device_list_lock); 1075 1076 skb_queue_tail(&intel->txq, skb); 1077 1078 return 0; 1079 } 1080 1081 static struct sk_buff *intel_dequeue(struct hci_uart *hu) 1082 { 1083 struct intel_data *intel = hu->priv; 1084 struct sk_buff *skb; 1085 1086 skb = skb_dequeue(&intel->txq); 1087 if (!skb) 1088 return skb; 1089 1090 if (test_bit(STATE_BOOTLOADER, &intel->flags) && 1091 (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) { 1092 struct hci_command_hdr *cmd = (void *)skb->data; 1093 __u16 opcode = le16_to_cpu(cmd->opcode); 1094 1095 /* When the 0xfc01 command is issued to boot into 1096 * the operational firmware, it will actually not 1097 * send a command complete event. To keep the flow 1098 * control working inject that event here. 1099 */ 1100 if (opcode == 0xfc01) 1101 inject_cmd_complete(hu->hdev, opcode); 1102 } 1103 1104 /* Prepend skb with frame type */ 1105 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1); 1106 1107 return skb; 1108 } 1109 1110 static const struct hci_uart_proto intel_proto = { 1111 .id = HCI_UART_INTEL, 1112 .name = "Intel", 1113 .manufacturer = 2, 1114 .init_speed = 115200, 1115 .oper_speed = 3000000, 1116 .open = intel_open, 1117 .close = intel_close, 1118 .flush = intel_flush, 1119 .setup = intel_setup, 1120 .set_baudrate = intel_set_baudrate, 1121 .recv = intel_recv, 1122 .enqueue = intel_enqueue, 1123 .dequeue = intel_dequeue, 1124 }; 1125 1126 #ifdef CONFIG_ACPI 1127 static const struct acpi_device_id intel_acpi_match[] = { 1128 { "INT33E1", 0 }, 1129 { }, 1130 }; 1131 MODULE_DEVICE_TABLE(acpi, intel_acpi_match); 1132 #endif 1133 1134 #ifdef CONFIG_PM 1135 static int intel_suspend_device(struct device *dev) 1136 { 1137 struct intel_device *idev = dev_get_drvdata(dev); 1138 1139 mutex_lock(&idev->hu_lock); 1140 if (idev->hu) 1141 intel_lpm_suspend(idev->hu); 1142 mutex_unlock(&idev->hu_lock); 1143 1144 return 0; 1145 } 1146 1147 static int intel_resume_device(struct device *dev) 1148 { 1149 struct intel_device *idev = dev_get_drvdata(dev); 1150 1151 mutex_lock(&idev->hu_lock); 1152 if (idev->hu) 1153 intel_lpm_resume(idev->hu); 1154 mutex_unlock(&idev->hu_lock); 1155 1156 return 0; 1157 } 1158 #endif 1159 1160 #ifdef CONFIG_PM_SLEEP 1161 static int intel_suspend(struct device *dev) 1162 { 1163 struct intel_device *idev = dev_get_drvdata(dev); 1164 1165 if (device_may_wakeup(dev)) 1166 enable_irq_wake(idev->irq); 1167 1168 return intel_suspend_device(dev); 1169 } 1170 1171 static int intel_resume(struct device *dev) 1172 { 1173 struct intel_device *idev = dev_get_drvdata(dev); 1174 1175 if (device_may_wakeup(dev)) 1176 disable_irq_wake(idev->irq); 1177 1178 return intel_resume_device(dev); 1179 } 1180 #endif 1181 1182 static const struct dev_pm_ops intel_pm_ops = { 1183 SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume) 1184 SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL) 1185 }; 1186 1187 static int intel_probe(struct platform_device *pdev) 1188 { 1189 struct intel_device *idev; 1190 1191 idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL); 1192 if (!idev) 1193 return -ENOMEM; 1194 1195 mutex_init(&idev->hu_lock); 1196 1197 idev->pdev = pdev; 1198 1199 idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW); 1200 if (IS_ERR(idev->reset)) { 1201 dev_err(&pdev->dev, "Unable to retrieve gpio\n"); 1202 return PTR_ERR(idev->reset); 1203 } 1204 1205 idev->irq = platform_get_irq(pdev, 0); 1206 if (idev->irq < 0) { 1207 struct gpio_desc *host_wake; 1208 1209 dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n"); 1210 1211 host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN); 1212 if (IS_ERR(host_wake)) { 1213 dev_err(&pdev->dev, "Unable to retrieve IRQ\n"); 1214 goto no_irq; 1215 } 1216 1217 idev->irq = gpiod_to_irq(host_wake); 1218 if (idev->irq < 0) { 1219 dev_err(&pdev->dev, "No corresponding irq for gpio\n"); 1220 goto no_irq; 1221 } 1222 } 1223 1224 /* Only enable wake-up/irq when controller is powered */ 1225 device_set_wakeup_capable(&pdev->dev, true); 1226 device_wakeup_disable(&pdev->dev); 1227 1228 no_irq: 1229 platform_set_drvdata(pdev, idev); 1230 1231 /* Place this instance on the device list */ 1232 mutex_lock(&intel_device_list_lock); 1233 list_add_tail(&idev->list, &intel_device_list); 1234 mutex_unlock(&intel_device_list_lock); 1235 1236 dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n", 1237 desc_to_gpio(idev->reset), idev->irq); 1238 1239 return 0; 1240 } 1241 1242 static int intel_remove(struct platform_device *pdev) 1243 { 1244 struct intel_device *idev = platform_get_drvdata(pdev); 1245 1246 device_wakeup_disable(&pdev->dev); 1247 1248 mutex_lock(&intel_device_list_lock); 1249 list_del(&idev->list); 1250 mutex_unlock(&intel_device_list_lock); 1251 1252 dev_info(&pdev->dev, "unregistered.\n"); 1253 1254 return 0; 1255 } 1256 1257 static struct platform_driver intel_driver = { 1258 .probe = intel_probe, 1259 .remove = intel_remove, 1260 .driver = { 1261 .name = "hci_intel", 1262 .acpi_match_table = ACPI_PTR(intel_acpi_match), 1263 .pm = &intel_pm_ops, 1264 }, 1265 }; 1266 1267 int __init intel_init(void) 1268 { 1269 platform_driver_register(&intel_driver); 1270 1271 return hci_uart_register_proto(&intel_proto); 1272 } 1273 1274 int __exit intel_deinit(void) 1275 { 1276 platform_driver_unregister(&intel_driver); 1277 1278 return hci_uart_unregister_proto(&intel_proto); 1279 } 1280