xref: /linux/drivers/bluetooth/hci_bcm4377.c (revision 9f2c9170934eace462499ba0bfe042cc72900173)
1 // SPDX-License-Identifier: GPL-2.0-only OR MIT
2 /*
3  * Bluetooth HCI driver for Broadcom 4377/4378/4387 devices attached via PCIe
4  *
5  * Copyright (C) The Asahi Linux Contributors
6  */
7 
8 #include <linux/async.h>
9 #include <linux/bitfield.h>
10 #include <linux/completion.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmi.h>
13 #include <linux/firmware.h>
14 #include <linux/module.h>
15 #include <linux/msi.h>
16 #include <linux/of.h>
17 #include <linux/pci.h>
18 #include <linux/printk.h>
19 
20 #include <asm/unaligned.h>
21 
22 #include <net/bluetooth/bluetooth.h>
23 #include <net/bluetooth/hci_core.h>
24 
25 enum bcm4377_chip {
26 	BCM4377 = 0,
27 	BCM4378,
28 	BCM4387,
29 };
30 
31 #define BCM4377_DEVICE_ID 0x5fa0
32 #define BCM4378_DEVICE_ID 0x5f69
33 #define BCM4387_DEVICE_ID 0x5f71
34 
35 #define BCM4377_TIMEOUT 1000
36 
37 /*
38  * These devices only support DMA transactions inside a 32bit window
39  * (possibly to avoid 64 bit arithmetic). The window size cannot exceed
40  * 0xffffffff but is always aligned down to the previous 0x200 byte boundary
41  * which effectively limits the window to [start, start+0xfffffe00].
42  * We just limit the DMA window to [0, 0xfffffe00] to make sure we don't
43  * run into this limitation.
44  */
45 #define BCM4377_DMA_MASK 0xfffffe00
46 
47 #define BCM4377_PCIECFG_BAR0_WINDOW1	   0x80
48 #define BCM4377_PCIECFG_BAR0_WINDOW2	   0x70
49 #define BCM4377_PCIECFG_BAR0_CORE2_WINDOW1 0x74
50 #define BCM4377_PCIECFG_BAR0_CORE2_WINDOW2 0x78
51 #define BCM4377_PCIECFG_BAR2_WINDOW	   0x84
52 
53 #define BCM4377_PCIECFG_BAR0_CORE2_WINDOW1_DEFAULT 0x18011000
54 #define BCM4377_PCIECFG_BAR2_WINDOW_DEFAULT	   0x19000000
55 
56 #define BCM4377_PCIECFG_SUBSYSTEM_CTRL 0x88
57 
58 #define BCM4377_BAR0_FW_DOORBELL 0x140
59 #define BCM4377_BAR0_RTI_CONTROL 0x144
60 
61 #define BCM4377_BAR0_SLEEP_CONTROL	      0x150
62 #define BCM4377_BAR0_SLEEP_CONTROL_UNQUIESCE  0
63 #define BCM4377_BAR0_SLEEP_CONTROL_AWAKE      2
64 #define BCM4377_BAR0_SLEEP_CONTROL_QUIESCE    3
65 
66 #define BCM4377_BAR0_DOORBELL	    0x174
67 #define BCM4377_BAR0_DOORBELL_VALUE GENMASK(31, 16)
68 #define BCM4377_BAR0_DOORBELL_IDX   GENMASK(15, 8)
69 #define BCM4377_BAR0_DOORBELL_RING  BIT(5)
70 
71 #define BCM4377_BAR0_HOST_WINDOW_LO   0x590
72 #define BCM4377_BAR0_HOST_WINDOW_HI   0x594
73 #define BCM4377_BAR0_HOST_WINDOW_SIZE 0x598
74 
75 #define BCM4377_BAR2_BOOTSTAGE 0x200454
76 
77 #define BCM4377_BAR2_FW_LO   0x200478
78 #define BCM4377_BAR2_FW_HI   0x20047c
79 #define BCM4377_BAR2_FW_SIZE 0x200480
80 
81 #define BCM4377_BAR2_CONTEXT_ADDR_LO 0x20048c
82 #define BCM4377_BAR2_CONTEXT_ADDR_HI 0x200450
83 
84 #define BCM4377_BAR2_RTI_STATUS	     0x20045c
85 #define BCM4377_BAR2_RTI_WINDOW_LO   0x200494
86 #define BCM4377_BAR2_RTI_WINDOW_HI   0x200498
87 #define BCM4377_BAR2_RTI_WINDOW_SIZE 0x20049c
88 
89 #define BCM4377_OTP_SIZE	  0xe0
90 #define BCM4377_OTP_SYS_VENDOR	  0x15
91 #define BCM4377_OTP_CIS		  0x80
92 #define BCM4377_OTP_VENDOR_HDR	  0x00000008
93 #define BCM4377_OTP_MAX_PARAM_LEN 16
94 
95 #define BCM4377_N_TRANSFER_RINGS   9
96 #define BCM4377_N_COMPLETION_RINGS 6
97 
98 #define BCM4377_MAX_RING_SIZE 256
99 
100 #define BCM4377_MSGID_GENERATION GENMASK(15, 8)
101 #define BCM4377_MSGID_ID	 GENMASK(7, 0)
102 
103 #define BCM4377_RING_N_ENTRIES 128
104 
105 #define BCM4377_CONTROL_MSG_SIZE		   0x34
106 #define BCM4377_XFER_RING_MAX_INPLACE_PAYLOAD_SIZE (4 * 0xff)
107 
108 #define MAX_ACL_PAYLOAD_SIZE   (HCI_MAX_FRAME_SIZE + HCI_ACL_HDR_SIZE)
109 #define MAX_SCO_PAYLOAD_SIZE   (HCI_MAX_SCO_SIZE + HCI_SCO_HDR_SIZE)
110 #define MAX_EVENT_PAYLOAD_SIZE (HCI_MAX_EVENT_SIZE + HCI_EVENT_HDR_SIZE)
111 
112 enum bcm4377_otp_params_type {
113 	BCM4377_OTP_BOARD_PARAMS,
114 	BCM4377_OTP_CHIP_PARAMS
115 };
116 
117 enum bcm4377_transfer_ring_id {
118 	BCM4377_XFER_RING_CONTROL = 0,
119 	BCM4377_XFER_RING_HCI_H2D = 1,
120 	BCM4377_XFER_RING_HCI_D2H = 2,
121 	BCM4377_XFER_RING_SCO_H2D = 3,
122 	BCM4377_XFER_RING_SCO_D2H = 4,
123 	BCM4377_XFER_RING_ACL_H2D = 5,
124 	BCM4377_XFER_RING_ACL_D2H = 6,
125 };
126 
127 enum bcm4377_completion_ring_id {
128 	BCM4377_ACK_RING_CONTROL = 0,
129 	BCM4377_ACK_RING_HCI_ACL = 1,
130 	BCM4377_EVENT_RING_HCI_ACL = 2,
131 	BCM4377_ACK_RING_SCO = 3,
132 	BCM4377_EVENT_RING_SCO = 4,
133 };
134 
135 enum bcm4377_doorbell {
136 	BCM4377_DOORBELL_CONTROL = 0,
137 	BCM4377_DOORBELL_HCI_H2D = 1,
138 	BCM4377_DOORBELL_HCI_D2H = 2,
139 	BCM4377_DOORBELL_ACL_H2D = 3,
140 	BCM4377_DOORBELL_ACL_D2H = 4,
141 	BCM4377_DOORBELL_SCO = 6,
142 };
143 
144 /*
145  * Transfer ring entry
146  *
147  * flags: Flags to indicate if the payload is appended or mapped
148  * len: Payload length
149  * payload: Optional payload DMA address
150  * id: Message id to recognize the answer in the completion ring entry
151  */
152 struct bcm4377_xfer_ring_entry {
153 #define BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED	 BIT(0)
154 #define BCM4377_XFER_RING_FLAG_PAYLOAD_IN_FOOTER BIT(1)
155 	u8 flags;
156 	__le16 len;
157 	u8 _unk0;
158 	__le64 payload;
159 	__le16 id;
160 	u8 _unk1[2];
161 } __packed;
162 static_assert(sizeof(struct bcm4377_xfer_ring_entry) == 0x10);
163 
164 /*
165  * Completion ring entry
166  *
167  * flags: Flags to indicate if the payload is appended or mapped. If the payload
168  *        is mapped it can be found in the buffer of the corresponding transfer
169  *        ring message.
170  * ring_id: Transfer ring ID which required this message
171  * msg_id: Message ID specified in transfer ring entry
172  * len: Payload length
173  */
174 struct bcm4377_completion_ring_entry {
175 	u8 flags;
176 	u8 _unk0;
177 	__le16 ring_id;
178 	__le16 msg_id;
179 	__le32 len;
180 	u8 _unk1[6];
181 } __packed;
182 static_assert(sizeof(struct bcm4377_completion_ring_entry) == 0x10);
183 
184 enum bcm4377_control_message_type {
185 	BCM4377_CONTROL_MSG_CREATE_XFER_RING = 1,
186 	BCM4377_CONTROL_MSG_CREATE_COMPLETION_RING = 2,
187 	BCM4377_CONTROL_MSG_DESTROY_XFER_RING = 3,
188 	BCM4377_CONTROL_MSG_DESTROY_COMPLETION_RING = 4,
189 };
190 
191 /*
192  * Control message used to create a completion ring
193  *
194  * msg_type: Must be BCM4377_CONTROL_MSG_CREATE_COMPLETION_RING
195  * header_size: Unknown, but probably reserved space in front of the entry
196  * footer_size: Number of 32 bit words reserved for payloads after the entry
197  * id/id_again: Completion ring index
198  * ring_iova: DMA address of the ring buffer
199  * n_elements: Number of elements inside the ring buffer
200  * msi: MSI index, doesn't work for all rings though and should be zero
201  * intmod_delay: Unknown delay
202  * intmod_bytes: Unknown
203  */
204 struct bcm4377_create_completion_ring_msg {
205 	u8 msg_type;
206 	u8 header_size;
207 	u8 footer_size;
208 	u8 _unk0;
209 	__le16 id;
210 	__le16 id_again;
211 	__le64 ring_iova;
212 	__le16 n_elements;
213 	__le32 unk;
214 	u8 _unk1[6];
215 	__le16 msi;
216 	__le16 intmod_delay;
217 	__le32 intmod_bytes;
218 	__le16 _unk2;
219 	__le32 _unk3;
220 	u8 _unk4[10];
221 } __packed;
222 static_assert(sizeof(struct bcm4377_create_completion_ring_msg) ==
223 	      BCM4377_CONTROL_MSG_SIZE);
224 
225 /*
226  * Control ring message used to destroy a completion ring
227  *
228  * msg_type: Must be BCM4377_CONTROL_MSG_DESTROY_COMPLETION_RING
229  * ring_id: Completion ring to be destroyed
230  */
231 struct bcm4377_destroy_completion_ring_msg {
232 	u8 msg_type;
233 	u8 _pad0;
234 	__le16 ring_id;
235 	u8 _pad1[48];
236 } __packed;
237 static_assert(sizeof(struct bcm4377_destroy_completion_ring_msg) ==
238 	      BCM4377_CONTROL_MSG_SIZE);
239 
240 /*
241  * Control message used to create a transfer ring
242  *
243  * msg_type: Must be BCM4377_CONTROL_MSG_CREATE_XFER_RING
244  * header_size: Number of 32 bit words reserved for unknown content before the
245  *              entry
246  * footer_size: Number of 32 bit words reserved for payloads after the entry
247  * ring_id/ring_id_again: Transfer ring index
248  * ring_iova: DMA address of the ring buffer
249  * n_elements: Number of elements inside the ring buffer
250  * completion_ring_id: Completion ring index for acknowledgements and events
251  * doorbell: Doorbell index used to notify device of new entries
252  * flags: Transfer ring flags
253  *          - virtual: set if there is no associated shared memory and only the
254  *                     corresponding completion ring is used
255  *          - sync: only set for the SCO rings
256  */
257 struct bcm4377_create_transfer_ring_msg {
258 	u8 msg_type;
259 	u8 header_size;
260 	u8 footer_size;
261 	u8 _unk0;
262 	__le16 ring_id;
263 	__le16 ring_id_again;
264 	__le64 ring_iova;
265 	u8 _unk1[8];
266 	__le16 n_elements;
267 	__le16 completion_ring_id;
268 	__le16 doorbell;
269 #define BCM4377_XFER_RING_FLAG_VIRTUAL BIT(7)
270 #define BCM4377_XFER_RING_FLAG_SYNC    BIT(8)
271 	__le16 flags;
272 	u8 _unk2[20];
273 } __packed;
274 static_assert(sizeof(struct bcm4377_create_transfer_ring_msg) ==
275 	      BCM4377_CONTROL_MSG_SIZE);
276 
277 /*
278  * Control ring message used to destroy a transfer ring
279  *
280  * msg_type: Must be BCM4377_CONTROL_MSG_DESTROY_XFER_RING
281  * ring_id: Transfer ring to be destroyed
282  */
283 struct bcm4377_destroy_transfer_ring_msg {
284 	u8 msg_type;
285 	u8 _pad0;
286 	__le16 ring_id;
287 	u8 _pad1[48];
288 } __packed;
289 static_assert(sizeof(struct bcm4377_destroy_transfer_ring_msg) ==
290 	      BCM4377_CONTROL_MSG_SIZE);
291 
292 /*
293  * "Converged IPC" context struct used to make the device aware of all other
294  * shared memory structures. A pointer to this structure is configured inside a
295  * MMIO register.
296  *
297  * version: Protocol version, must be 2.
298  * size: Size of this structure, must be 0x68.
299  * enabled_caps: Enabled capabilities. Unknown bitfield but should be 2.
300  * peripheral_info_addr: DMA address for a 0x20 buffer to which the device will
301  *                       write unknown contents
302  * {completion,xfer}_ring_{tails,heads}_addr: DMA pointers to ring heads/tails
303  * n_completion_rings: Number of completion rings, the firmware only works if
304  *                     this is set to BCM4377_N_COMPLETION_RINGS.
305  * n_xfer_rings: Number of transfer rings, the firmware only works if
306  *               this is set to BCM4377_N_TRANSFER_RINGS.
307  * control_completion_ring_addr: Control completion ring buffer DMA address
308  * control_xfer_ring_addr: Control transfer ring buffer DMA address
309  * control_xfer_ring_n_entries: Number of control transfer ring entries
310  * control_completion_ring_n_entries: Number of control completion ring entries
311  * control_xfer_ring_doorbell: Control transfer ring doorbell
312  * control_completion_ring_doorbell: Control completion ring doorbell,
313  *                                   must be set to 0xffff
314  * control_xfer_ring_msi: Control completion ring MSI index, must be 0
315  * control_completion_ring_msi: Control completion ring MSI index, must be 0.
316  * control_xfer_ring_header_size: Number of 32 bit words reserved in front of
317  *                                every control transfer ring entry
318  * control_xfer_ring_footer_size: Number of 32 bit words reserved after every
319  *                                control transfer ring entry
320  * control_completion_ring_header_size: Number of 32 bit words reserved in front
321  *                                      of every control completion ring entry
322  * control_completion_ring_footer_size: Number of 32 bit words reserved after
323  *                                      every control completion ring entry
324  * scratch_pad: Optional scratch pad DMA address
325  * scratch_pad_size: Scratch pad size
326  */
327 struct bcm4377_context {
328 	__le16 version;
329 	__le16 size;
330 	__le32 enabled_caps;
331 
332 	__le64 peripheral_info_addr;
333 
334 	/* ring heads and tails */
335 	__le64 completion_ring_heads_addr;
336 	__le64 xfer_ring_tails_addr;
337 	__le64 completion_ring_tails_addr;
338 	__le64 xfer_ring_heads_addr;
339 	__le16 n_completion_rings;
340 	__le16 n_xfer_rings;
341 
342 	/* control ring configuration */
343 	__le64 control_completion_ring_addr;
344 	__le64 control_xfer_ring_addr;
345 	__le16 control_xfer_ring_n_entries;
346 	__le16 control_completion_ring_n_entries;
347 	__le16 control_xfer_ring_doorbell;
348 	__le16 control_completion_ring_doorbell;
349 	__le16 control_xfer_ring_msi;
350 	__le16 control_completion_ring_msi;
351 	u8 control_xfer_ring_header_size;
352 	u8 control_xfer_ring_footer_size;
353 	u8 control_completion_ring_header_size;
354 	u8 control_completion_ring_footer_size;
355 
356 	__le16 _unk0;
357 	__le16 _unk1;
358 
359 	__le64 scratch_pad;
360 	__le32 scratch_pad_size;
361 
362 	__le32 _unk3;
363 } __packed;
364 static_assert(sizeof(struct bcm4377_context) == 0x68);
365 
366 #define BCM4378_CALIBRATION_CHUNK_SIZE 0xe6
367 struct bcm4378_hci_send_calibration_cmd {
368 	u8 unk;
369 	__le16 blocks_left;
370 	u8 data[BCM4378_CALIBRATION_CHUNK_SIZE];
371 } __packed;
372 
373 #define BCM4378_PTB_CHUNK_SIZE 0xcf
374 struct bcm4378_hci_send_ptb_cmd {
375 	__le16 blocks_left;
376 	u8 data[BCM4378_PTB_CHUNK_SIZE];
377 } __packed;
378 
379 /*
380  * Shared memory structure used to store the ring head and tail pointers.
381  */
382 struct bcm4377_ring_state {
383 	__le16 completion_ring_head[BCM4377_N_COMPLETION_RINGS];
384 	__le16 completion_ring_tail[BCM4377_N_COMPLETION_RINGS];
385 	__le16 xfer_ring_head[BCM4377_N_TRANSFER_RINGS];
386 	__le16 xfer_ring_tail[BCM4377_N_TRANSFER_RINGS];
387 };
388 
389 /*
390  * A transfer ring can be used in two configurations:
391  *  1) Send control or HCI messages to the device which are then acknowledged
392  *     in the corresponding completion ring
393  *  2) Receiving HCI frames from the devices. In this case the transfer ring
394  *     itself contains empty messages that are acknowledged once data is
395  *     available from the device. If the payloads fit inside the footers
396  *     of the completion ring the transfer ring can be configured to be
397  *     virtual such that it has no ring buffer.
398  *
399  * ring_id: ring index hardcoded in the firmware
400  * doorbell: doorbell index to notify device of new entries
401  * payload_size: optional in-place payload size
402  * mapped_payload_size: optional out-of-place payload size
403  * completion_ring: index of corresponding completion ring
404  * n_entries: number of entries inside this ring
405  * generation: ring generation; incremented on hci_open to detect stale messages
406  * sync: set to true for SCO rings
407  * virtual: set to true if this ring has no entries and is just required to
408  *          setup a corresponding completion ring for device->host messages
409  * d2h_buffers_only: set to true if this ring is only used to provide large
410  *                   buffers used by device->host messages in the completion
411  *                   ring
412  * allow_wait: allow to wait for messages to be acknowledged
413  * enabled: true once the ring has been created and can be used
414  * ring: ring buffer for entries (struct bcm4377_xfer_ring_entry)
415  * ring_dma: DMA address for ring entry buffer
416  * payloads: payload buffer for mapped_payload_size payloads
417  * payloads_dma:DMA address for payload buffer
418  * events: pointer to array of completions if waiting is allowed
419  * msgids: bitmap to keep track of used message ids
420  * lock: Spinlock to protect access to ring structurs used in the irq handler
421  */
422 struct bcm4377_transfer_ring {
423 	enum bcm4377_transfer_ring_id ring_id;
424 	enum bcm4377_doorbell doorbell;
425 	size_t payload_size;
426 	size_t mapped_payload_size;
427 	u8 completion_ring;
428 	u16 n_entries;
429 	u8 generation;
430 
431 	bool sync;
432 	bool virtual;
433 	bool d2h_buffers_only;
434 	bool allow_wait;
435 	bool enabled;
436 
437 	void *ring;
438 	dma_addr_t ring_dma;
439 
440 	void *payloads;
441 	dma_addr_t payloads_dma;
442 
443 	struct completion **events;
444 	DECLARE_BITMAP(msgids, BCM4377_MAX_RING_SIZE);
445 	spinlock_t lock;
446 };
447 
448 /*
449  * A completion ring can be either used to either acknowledge messages sent in
450  * the corresponding transfer ring or to receive messages associated with the
451  * transfer ring. When used to receive messages the transfer ring either
452  * has no ring buffer and is only advanced ("virtual transfer ring") or it
453  * only contains empty DMA buffers to be used for the payloads.
454  *
455  * ring_id: completion ring id, hardcoded in firmware
456  * payload_size: optional payload size after each entry
457  * delay: unknown delay
458  * n_entries: number of entries in this ring
459  * enabled: true once the ring has been created and can be used
460  * ring: ring buffer for entries (struct bcm4377_completion_ring_entry)
461  * ring_dma: DMA address of ring buffer
462  * transfer_rings: bitmap of corresponding transfer ring ids
463  */
464 struct bcm4377_completion_ring {
465 	enum bcm4377_completion_ring_id ring_id;
466 	u16 payload_size;
467 	u16 delay;
468 	u16 n_entries;
469 	bool enabled;
470 
471 	void *ring;
472 	dma_addr_t ring_dma;
473 
474 	unsigned long transfer_rings;
475 };
476 
477 struct bcm4377_data;
478 
479 /*
480  * Chip-specific configuration struct
481  *
482  * id: Chip id (e.g. 0x4377 for BCM4377)
483  * otp_offset: Offset to the start of the OTP inside BAR0
484  * bar0_window1: Backplane address mapped to the first window in BAR0
485  * bar0_window2: Backplane address mapped to the second window in BAR0
486  * bar0_core2_window2: Optional backplane address mapped to the second core's
487  *                     second window in BAR0
488  * has_bar0_core2_window2: Set to true if this chip requires the second core's
489  *                         second window to be configured
490  * clear_pciecfg_subsystem_ctrl_bit19: Set to true if bit 19 in the
491  *                                     vendor-specific subsystem control
492  *                                     register has to be cleared
493  * disable_aspm: Set to true if ASPM must be disabled due to hardware errata
494  * broken_ext_scan: Set to true if the chip erroneously claims to support
495  *                  extended scanning
496  * broken_mws_transport_config: Set to true if the chip erroneously claims to
497  *                              support MWS Transport Configuration
498  * send_calibration: Optional callback to send calibration data
499  * send_ptb: Callback to send "PTB" regulatory/calibration data
500  */
501 struct bcm4377_hw {
502 	unsigned int id;
503 
504 	u32 otp_offset;
505 
506 	u32 bar0_window1;
507 	u32 bar0_window2;
508 	u32 bar0_core2_window2;
509 
510 	unsigned long has_bar0_core2_window2 : 1;
511 	unsigned long clear_pciecfg_subsystem_ctrl_bit19 : 1;
512 	unsigned long disable_aspm : 1;
513 	unsigned long broken_ext_scan : 1;
514 	unsigned long broken_mws_transport_config : 1;
515 
516 	int (*send_calibration)(struct bcm4377_data *bcm4377);
517 	int (*send_ptb)(struct bcm4377_data *bcm4377,
518 			const struct firmware *fw);
519 };
520 
521 static const struct bcm4377_hw bcm4377_hw_variants[];
522 static const struct dmi_system_id bcm4377_dmi_board_table[];
523 
524 /*
525  * Private struct associated with each device containing global state
526  *
527  * pdev: Pointer to associated struct pci_dev
528  * hdev: Pointer to associated strucy hci_dev
529  * bar0: iomem pointing to BAR0
530  * bar1: iomem pointing to BAR2
531  * bootstage: Current value of the bootstage
532  * rti_status: Current "RTI" status value
533  * hw: Pointer to chip-specific struct bcm4377_hw
534  * taurus_cal_blob: "Taurus" calibration blob used for some chips
535  * taurus_cal_size: "Taurus" calibration blob size
536  * taurus_beamforming_cal_blob: "Taurus" beamforming calibration blob used for
537  *                              some chips
538  * taurus_beamforming_cal_size: "Taurus" beamforming calibration blob size
539  * stepping: Chip stepping read from OTP; used for firmware selection
540  * vendor: Antenna vendor read from OTP; used for firmware selection
541  * board_type: Board type from FDT or DMI match; used for firmware selection
542  * event: Event for changed bootstage or rti_status; used for booting firmware
543  * ctx: "Converged IPC" context
544  * ctx_dma: "Converged IPC" context DMA address
545  * ring_state: Shared memory buffer containing ring head and tail indexes
546  * ring_state_dma: DMA address for ring_state
547  * {control,hci_acl,sco}_ack_ring: Completion rings used to acknowledge messages
548  * {hci_acl,sco}_event_ring: Completion rings used for device->host messages
549  * control_h2d_ring: Transfer ring used for control messages
550  * {hci,sco,acl}_h2d_ring: Transfer ring used to transfer HCI frames
551  * {hci,sco,acl}_d2h_ring: Transfer ring used to receive HCI frames in the
552  *                         corresponding completion ring
553  */
554 struct bcm4377_data {
555 	struct pci_dev *pdev;
556 	struct hci_dev *hdev;
557 
558 	void __iomem *bar0;
559 	void __iomem *bar2;
560 
561 	u32 bootstage;
562 	u32 rti_status;
563 
564 	const struct bcm4377_hw *hw;
565 
566 	const void *taurus_cal_blob;
567 	int taurus_cal_size;
568 	const void *taurus_beamforming_cal_blob;
569 	int taurus_beamforming_cal_size;
570 
571 	char stepping[BCM4377_OTP_MAX_PARAM_LEN];
572 	char vendor[BCM4377_OTP_MAX_PARAM_LEN];
573 	const char *board_type;
574 
575 	struct completion event;
576 
577 	struct bcm4377_context *ctx;
578 	dma_addr_t ctx_dma;
579 
580 	struct bcm4377_ring_state *ring_state;
581 	dma_addr_t ring_state_dma;
582 
583 	/*
584 	 * The HCI and ACL rings have to be merged because this structure is
585 	 * hardcoded in the firmware.
586 	 */
587 	struct bcm4377_completion_ring control_ack_ring;
588 	struct bcm4377_completion_ring hci_acl_ack_ring;
589 	struct bcm4377_completion_ring hci_acl_event_ring;
590 	struct bcm4377_completion_ring sco_ack_ring;
591 	struct bcm4377_completion_ring sco_event_ring;
592 
593 	struct bcm4377_transfer_ring control_h2d_ring;
594 	struct bcm4377_transfer_ring hci_h2d_ring;
595 	struct bcm4377_transfer_ring hci_d2h_ring;
596 	struct bcm4377_transfer_ring sco_h2d_ring;
597 	struct bcm4377_transfer_ring sco_d2h_ring;
598 	struct bcm4377_transfer_ring acl_h2d_ring;
599 	struct bcm4377_transfer_ring acl_d2h_ring;
600 };
601 
602 static void bcm4377_ring_doorbell(struct bcm4377_data *bcm4377, u8 doorbell,
603 				  u16 val)
604 {
605 	u32 db = 0;
606 
607 	db |= FIELD_PREP(BCM4377_BAR0_DOORBELL_VALUE, val);
608 	db |= FIELD_PREP(BCM4377_BAR0_DOORBELL_IDX, doorbell);
609 	db |= BCM4377_BAR0_DOORBELL_RING;
610 
611 	dev_dbg(&bcm4377->pdev->dev, "write %d to doorbell #%d (0x%x)\n", val,
612 		doorbell, db);
613 	iowrite32(db, bcm4377->bar0 + BCM4377_BAR0_DOORBELL);
614 }
615 
616 static int bcm4377_extract_msgid(struct bcm4377_data *bcm4377,
617 				 struct bcm4377_transfer_ring *ring,
618 				 u16 raw_msgid, u8 *msgid)
619 {
620 	u8 generation = FIELD_GET(BCM4377_MSGID_GENERATION, raw_msgid);
621 	*msgid = FIELD_GET(BCM4377_MSGID_ID, raw_msgid);
622 
623 	if (generation != ring->generation) {
624 		dev_warn(
625 			&bcm4377->pdev->dev,
626 			"invalid message generation %d should be %d in entry for ring %d\n",
627 			generation, ring->generation, ring->ring_id);
628 		return -EINVAL;
629 	}
630 
631 	if (*msgid >= ring->n_entries) {
632 		dev_warn(&bcm4377->pdev->dev,
633 			 "invalid message id in entry for ring %d: %d > %d\n",
634 			 ring->ring_id, *msgid, ring->n_entries);
635 		return -EINVAL;
636 	}
637 
638 	return 0;
639 }
640 
641 static void bcm4377_handle_event(struct bcm4377_data *bcm4377,
642 				 struct bcm4377_transfer_ring *ring,
643 				 u16 raw_msgid, u8 entry_flags, u8 type,
644 				 void *payload, size_t len)
645 {
646 	struct sk_buff *skb;
647 	u16 head;
648 	u8 msgid;
649 	unsigned long flags;
650 
651 	spin_lock_irqsave(&ring->lock, flags);
652 	if (!ring->enabled) {
653 		dev_warn(&bcm4377->pdev->dev,
654 			 "event for disabled transfer ring %d\n",
655 			 ring->ring_id);
656 		goto out;
657 	}
658 
659 	if (ring->d2h_buffers_only &&
660 	    entry_flags & BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED) {
661 		if (bcm4377_extract_msgid(bcm4377, ring, raw_msgid, &msgid))
662 			goto out;
663 
664 		if (len > ring->mapped_payload_size) {
665 			dev_warn(
666 				&bcm4377->pdev->dev,
667 				"invalid payload len in event for ring %d: %zu > %zu\n",
668 				ring->ring_id, len, ring->mapped_payload_size);
669 			goto out;
670 		}
671 
672 		payload = ring->payloads + msgid * ring->mapped_payload_size;
673 	}
674 
675 	skb = bt_skb_alloc(len, GFP_ATOMIC);
676 	if (!skb)
677 		goto out;
678 
679 	memcpy(skb_put(skb, len), payload, len);
680 	hci_skb_pkt_type(skb) = type;
681 	hci_recv_frame(bcm4377->hdev, skb);
682 
683 out:
684 	head = le16_to_cpu(bcm4377->ring_state->xfer_ring_head[ring->ring_id]);
685 	head = (head + 1) % ring->n_entries;
686 	bcm4377->ring_state->xfer_ring_head[ring->ring_id] = cpu_to_le16(head);
687 
688 	bcm4377_ring_doorbell(bcm4377, ring->doorbell, head);
689 
690 	spin_unlock_irqrestore(&ring->lock, flags);
691 }
692 
693 static void bcm4377_handle_ack(struct bcm4377_data *bcm4377,
694 			       struct bcm4377_transfer_ring *ring,
695 			       u16 raw_msgid)
696 {
697 	unsigned long flags;
698 	u8 msgid;
699 
700 	spin_lock_irqsave(&ring->lock, flags);
701 
702 	if (bcm4377_extract_msgid(bcm4377, ring, raw_msgid, &msgid))
703 		goto unlock;
704 
705 	if (!test_bit(msgid, ring->msgids)) {
706 		dev_warn(
707 			&bcm4377->pdev->dev,
708 			"invalid message id in ack for ring %d: %d is not used\n",
709 			ring->ring_id, msgid);
710 		goto unlock;
711 	}
712 
713 	if (ring->allow_wait && ring->events[msgid]) {
714 		complete(ring->events[msgid]);
715 		ring->events[msgid] = NULL;
716 	}
717 
718 	bitmap_release_region(ring->msgids, msgid, ring->n_entries);
719 
720 unlock:
721 	spin_unlock_irqrestore(&ring->lock, flags);
722 }
723 
724 static void bcm4377_handle_completion(struct bcm4377_data *bcm4377,
725 				      struct bcm4377_completion_ring *ring,
726 				      u16 pos)
727 {
728 	struct bcm4377_completion_ring_entry *entry;
729 	u16 msg_id, transfer_ring;
730 	size_t entry_size, data_len;
731 	void *data;
732 
733 	if (pos >= ring->n_entries) {
734 		dev_warn(&bcm4377->pdev->dev,
735 			 "invalid offset %d for completion ring %d\n", pos,
736 			 ring->ring_id);
737 		return;
738 	}
739 
740 	entry_size = sizeof(*entry) + ring->payload_size;
741 	entry = ring->ring + pos * entry_size;
742 	data = ring->ring + pos * entry_size + sizeof(*entry);
743 	data_len = le32_to_cpu(entry->len);
744 	msg_id = le16_to_cpu(entry->msg_id);
745 	transfer_ring = le16_to_cpu(entry->ring_id);
746 
747 	if ((ring->transfer_rings & BIT(transfer_ring)) == 0) {
748 		dev_warn(
749 			&bcm4377->pdev->dev,
750 			"invalid entry at offset %d for transfer ring %d in completion ring %d\n",
751 			pos, transfer_ring, ring->ring_id);
752 		return;
753 	}
754 
755 	dev_dbg(&bcm4377->pdev->dev,
756 		"entry in completion ring %d for transfer ring %d with msg_id %d\n",
757 		ring->ring_id, transfer_ring, msg_id);
758 
759 	switch (transfer_ring) {
760 	case BCM4377_XFER_RING_CONTROL:
761 		bcm4377_handle_ack(bcm4377, &bcm4377->control_h2d_ring, msg_id);
762 		break;
763 	case BCM4377_XFER_RING_HCI_H2D:
764 		bcm4377_handle_ack(bcm4377, &bcm4377->hci_h2d_ring, msg_id);
765 		break;
766 	case BCM4377_XFER_RING_SCO_H2D:
767 		bcm4377_handle_ack(bcm4377, &bcm4377->sco_h2d_ring, msg_id);
768 		break;
769 	case BCM4377_XFER_RING_ACL_H2D:
770 		bcm4377_handle_ack(bcm4377, &bcm4377->acl_h2d_ring, msg_id);
771 		break;
772 
773 	case BCM4377_XFER_RING_HCI_D2H:
774 		bcm4377_handle_event(bcm4377, &bcm4377->hci_d2h_ring, msg_id,
775 				     entry->flags, HCI_EVENT_PKT, data,
776 				     data_len);
777 		break;
778 	case BCM4377_XFER_RING_SCO_D2H:
779 		bcm4377_handle_event(bcm4377, &bcm4377->sco_d2h_ring, msg_id,
780 				     entry->flags, HCI_SCODATA_PKT, data,
781 				     data_len);
782 		break;
783 	case BCM4377_XFER_RING_ACL_D2H:
784 		bcm4377_handle_event(bcm4377, &bcm4377->acl_d2h_ring, msg_id,
785 				     entry->flags, HCI_ACLDATA_PKT, data,
786 				     data_len);
787 		break;
788 
789 	default:
790 		dev_warn(
791 			&bcm4377->pdev->dev,
792 			"entry in completion ring %d for unknown transfer ring %d with msg_id %d\n",
793 			ring->ring_id, transfer_ring, msg_id);
794 	}
795 }
796 
797 static void bcm4377_poll_completion_ring(struct bcm4377_data *bcm4377,
798 					 struct bcm4377_completion_ring *ring)
799 {
800 	u16 tail;
801 	__le16 *heads = bcm4377->ring_state->completion_ring_head;
802 	__le16 *tails = bcm4377->ring_state->completion_ring_tail;
803 
804 	if (!ring->enabled)
805 		return;
806 
807 	tail = le16_to_cpu(tails[ring->ring_id]);
808 	dev_dbg(&bcm4377->pdev->dev,
809 		"completion ring #%d: head: %d, tail: %d\n", ring->ring_id,
810 		le16_to_cpu(heads[ring->ring_id]), tail);
811 
812 	while (tail != le16_to_cpu(READ_ONCE(heads[ring->ring_id]))) {
813 		/*
814 		 * ensure the CPU doesn't speculate through the comparison.
815 		 * otherwise it might already read the (empty) queue entry
816 		 * before the updated head has been loaded and checked.
817 		 */
818 		dma_rmb();
819 
820 		bcm4377_handle_completion(bcm4377, ring, tail);
821 
822 		tail = (tail + 1) % ring->n_entries;
823 		tails[ring->ring_id] = cpu_to_le16(tail);
824 	}
825 }
826 
827 static irqreturn_t bcm4377_irq(int irq, void *data)
828 {
829 	struct bcm4377_data *bcm4377 = data;
830 	u32 bootstage, rti_status;
831 
832 	bootstage = ioread32(bcm4377->bar2 + BCM4377_BAR2_BOOTSTAGE);
833 	rti_status = ioread32(bcm4377->bar2 + BCM4377_BAR2_RTI_STATUS);
834 
835 	if (bootstage != bcm4377->bootstage ||
836 	    rti_status != bcm4377->rti_status) {
837 		dev_dbg(&bcm4377->pdev->dev,
838 			"bootstage = %d -> %d, rti state = %d -> %d\n",
839 			bcm4377->bootstage, bootstage, bcm4377->rti_status,
840 			rti_status);
841 		complete(&bcm4377->event);
842 		bcm4377->bootstage = bootstage;
843 		bcm4377->rti_status = rti_status;
844 	}
845 
846 	if (rti_status > 2)
847 		dev_err(&bcm4377->pdev->dev, "RTI status is %d\n", rti_status);
848 
849 	bcm4377_poll_completion_ring(bcm4377, &bcm4377->control_ack_ring);
850 	bcm4377_poll_completion_ring(bcm4377, &bcm4377->hci_acl_event_ring);
851 	bcm4377_poll_completion_ring(bcm4377, &bcm4377->hci_acl_ack_ring);
852 	bcm4377_poll_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
853 	bcm4377_poll_completion_ring(bcm4377, &bcm4377->sco_event_ring);
854 
855 	return IRQ_HANDLED;
856 }
857 
858 static int bcm4377_enqueue(struct bcm4377_data *bcm4377,
859 			   struct bcm4377_transfer_ring *ring, void *data,
860 			   size_t len, bool wait)
861 {
862 	unsigned long flags;
863 	struct bcm4377_xfer_ring_entry *entry;
864 	void *payload;
865 	size_t offset;
866 	u16 head, tail, new_head;
867 	u16 raw_msgid;
868 	int ret, msgid;
869 	DECLARE_COMPLETION_ONSTACK(event);
870 
871 	if (len > ring->payload_size && len > ring->mapped_payload_size) {
872 		dev_warn(
873 			&bcm4377->pdev->dev,
874 			"payload len %zu is too large for ring %d (max is %zu or %zu)\n",
875 			len, ring->ring_id, ring->payload_size,
876 			ring->mapped_payload_size);
877 		return -EINVAL;
878 	}
879 	if (wait && !ring->allow_wait)
880 		return -EINVAL;
881 	if (ring->virtual)
882 		return -EINVAL;
883 
884 	spin_lock_irqsave(&ring->lock, flags);
885 
886 	head = le16_to_cpu(bcm4377->ring_state->xfer_ring_head[ring->ring_id]);
887 	tail = le16_to_cpu(bcm4377->ring_state->xfer_ring_tail[ring->ring_id]);
888 
889 	new_head = (head + 1) % ring->n_entries;
890 
891 	if (new_head == tail) {
892 		dev_warn(&bcm4377->pdev->dev,
893 			 "can't send message because ring %d is full\n",
894 			 ring->ring_id);
895 		ret = -EINVAL;
896 		goto out;
897 	}
898 
899 	msgid = bitmap_find_free_region(ring->msgids, ring->n_entries, 0);
900 	if (msgid < 0) {
901 		dev_warn(&bcm4377->pdev->dev,
902 			 "can't find message id for ring %d\n", ring->ring_id);
903 		ret = -EINVAL;
904 		goto out;
905 	}
906 
907 	raw_msgid = FIELD_PREP(BCM4377_MSGID_GENERATION, ring->generation);
908 	raw_msgid |= FIELD_PREP(BCM4377_MSGID_ID, msgid);
909 
910 	offset = head * (sizeof(*entry) + ring->payload_size);
911 	entry = ring->ring + offset;
912 
913 	memset(entry, 0, sizeof(*entry));
914 	entry->id = cpu_to_le16(raw_msgid);
915 	entry->len = cpu_to_le16(len);
916 
917 	if (len <= ring->payload_size) {
918 		entry->flags = BCM4377_XFER_RING_FLAG_PAYLOAD_IN_FOOTER;
919 		payload = ring->ring + offset + sizeof(*entry);
920 	} else {
921 		entry->flags = BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED;
922 		entry->payload = cpu_to_le64(ring->payloads_dma +
923 					     msgid * ring->mapped_payload_size);
924 		payload = ring->payloads + msgid * ring->mapped_payload_size;
925 	}
926 
927 	memcpy(payload, data, len);
928 
929 	if (wait)
930 		ring->events[msgid] = &event;
931 
932 	/*
933 	 * The 4377 chips stop responding to any commands as soon as they
934 	 * have been idle for a while. Poking the sleep control register here
935 	 * makes them come alive again.
936 	 */
937 	iowrite32(BCM4377_BAR0_SLEEP_CONTROL_AWAKE,
938 		  bcm4377->bar0 + BCM4377_BAR0_SLEEP_CONTROL);
939 
940 	dev_dbg(&bcm4377->pdev->dev,
941 		"updating head for transfer queue #%d to %d\n", ring->ring_id,
942 		new_head);
943 	bcm4377->ring_state->xfer_ring_head[ring->ring_id] =
944 		cpu_to_le16(new_head);
945 
946 	if (!ring->sync)
947 		bcm4377_ring_doorbell(bcm4377, ring->doorbell, new_head);
948 	ret = 0;
949 
950 out:
951 	spin_unlock_irqrestore(&ring->lock, flags);
952 
953 	if (ret == 0 && wait) {
954 		ret = wait_for_completion_interruptible_timeout(
955 			&event, BCM4377_TIMEOUT);
956 		if (ret == 0)
957 			ret = -ETIMEDOUT;
958 		else if (ret > 0)
959 			ret = 0;
960 
961 		spin_lock_irqsave(&ring->lock, flags);
962 		ring->events[msgid] = NULL;
963 		spin_unlock_irqrestore(&ring->lock, flags);
964 	}
965 
966 	return ret;
967 }
968 
969 static int bcm4377_create_completion_ring(struct bcm4377_data *bcm4377,
970 					  struct bcm4377_completion_ring *ring)
971 {
972 	struct bcm4377_create_completion_ring_msg msg;
973 	int ret;
974 
975 	if (ring->enabled) {
976 		dev_warn(&bcm4377->pdev->dev,
977 			 "completion ring %d already enabled\n", ring->ring_id);
978 		return 0;
979 	}
980 
981 	memset(ring->ring, 0,
982 	       ring->n_entries * (sizeof(struct bcm4377_completion_ring_entry) +
983 				  ring->payload_size));
984 	memset(&msg, 0, sizeof(msg));
985 	msg.msg_type = BCM4377_CONTROL_MSG_CREATE_COMPLETION_RING;
986 	msg.id = cpu_to_le16(ring->ring_id);
987 	msg.id_again = cpu_to_le16(ring->ring_id);
988 	msg.ring_iova = cpu_to_le64(ring->ring_dma);
989 	msg.n_elements = cpu_to_le16(ring->n_entries);
990 	msg.intmod_bytes = cpu_to_le32(0xffffffff);
991 	msg.unk = cpu_to_le32(0xffffffff);
992 	msg.intmod_delay = cpu_to_le16(ring->delay);
993 	msg.footer_size = ring->payload_size / 4;
994 
995 	ret = bcm4377_enqueue(bcm4377, &bcm4377->control_h2d_ring, &msg,
996 			      sizeof(msg), true);
997 	if (!ret)
998 		ring->enabled = true;
999 
1000 	return ret;
1001 }
1002 
1003 static int bcm4377_destroy_completion_ring(struct bcm4377_data *bcm4377,
1004 					   struct bcm4377_completion_ring *ring)
1005 {
1006 	struct bcm4377_destroy_completion_ring_msg msg;
1007 	int ret;
1008 
1009 	memset(&msg, 0, sizeof(msg));
1010 	msg.msg_type = BCM4377_CONTROL_MSG_DESTROY_COMPLETION_RING;
1011 	msg.ring_id = cpu_to_le16(ring->ring_id);
1012 
1013 	ret = bcm4377_enqueue(bcm4377, &bcm4377->control_h2d_ring, &msg,
1014 			      sizeof(msg), true);
1015 	if (ret)
1016 		dev_warn(&bcm4377->pdev->dev,
1017 			 "failed to destroy completion ring %d\n",
1018 			 ring->ring_id);
1019 
1020 	ring->enabled = false;
1021 	return ret;
1022 }
1023 
1024 static int bcm4377_create_transfer_ring(struct bcm4377_data *bcm4377,
1025 					struct bcm4377_transfer_ring *ring)
1026 {
1027 	struct bcm4377_create_transfer_ring_msg msg;
1028 	u16 flags = 0;
1029 	int ret, i;
1030 	unsigned long spinlock_flags;
1031 
1032 	if (ring->virtual)
1033 		flags |= BCM4377_XFER_RING_FLAG_VIRTUAL;
1034 	if (ring->sync)
1035 		flags |= BCM4377_XFER_RING_FLAG_SYNC;
1036 
1037 	spin_lock_irqsave(&ring->lock, spinlock_flags);
1038 	memset(&msg, 0, sizeof(msg));
1039 	msg.msg_type = BCM4377_CONTROL_MSG_CREATE_XFER_RING;
1040 	msg.ring_id = cpu_to_le16(ring->ring_id);
1041 	msg.ring_id_again = cpu_to_le16(ring->ring_id);
1042 	msg.ring_iova = cpu_to_le64(ring->ring_dma);
1043 	msg.n_elements = cpu_to_le16(ring->n_entries);
1044 	msg.completion_ring_id = cpu_to_le16(ring->completion_ring);
1045 	msg.doorbell = cpu_to_le16(ring->doorbell);
1046 	msg.flags = cpu_to_le16(flags);
1047 	msg.footer_size = ring->payload_size / 4;
1048 
1049 	bcm4377->ring_state->xfer_ring_head[ring->ring_id] = 0;
1050 	bcm4377->ring_state->xfer_ring_tail[ring->ring_id] = 0;
1051 	ring->generation++;
1052 	spin_unlock_irqrestore(&ring->lock, spinlock_flags);
1053 
1054 	ret = bcm4377_enqueue(bcm4377, &bcm4377->control_h2d_ring, &msg,
1055 			      sizeof(msg), true);
1056 
1057 	spin_lock_irqsave(&ring->lock, spinlock_flags);
1058 
1059 	if (ring->d2h_buffers_only) {
1060 		for (i = 0; i < ring->n_entries; ++i) {
1061 			struct bcm4377_xfer_ring_entry *entry =
1062 				ring->ring + i * sizeof(*entry);
1063 			u16 raw_msgid = FIELD_PREP(BCM4377_MSGID_GENERATION,
1064 						   ring->generation);
1065 			raw_msgid |= FIELD_PREP(BCM4377_MSGID_ID, i);
1066 
1067 			memset(entry, 0, sizeof(*entry));
1068 			entry->id = cpu_to_le16(raw_msgid);
1069 			entry->len = cpu_to_le16(ring->mapped_payload_size);
1070 			entry->flags = BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED;
1071 			entry->payload =
1072 				cpu_to_le64(ring->payloads_dma +
1073 					    i * ring->mapped_payload_size);
1074 		}
1075 	}
1076 
1077 	/*
1078 	 * send some messages if this is a device->host ring to allow the device
1079 	 * to reply by acknowledging them in the completion ring
1080 	 */
1081 	if (ring->virtual || ring->d2h_buffers_only) {
1082 		bcm4377->ring_state->xfer_ring_head[ring->ring_id] =
1083 			cpu_to_le16(0xf);
1084 		bcm4377_ring_doorbell(bcm4377, ring->doorbell, 0xf);
1085 	}
1086 
1087 	ring->enabled = true;
1088 	spin_unlock_irqrestore(&ring->lock, spinlock_flags);
1089 
1090 	return ret;
1091 }
1092 
1093 static int bcm4377_destroy_transfer_ring(struct bcm4377_data *bcm4377,
1094 					 struct bcm4377_transfer_ring *ring)
1095 {
1096 	struct bcm4377_destroy_transfer_ring_msg msg;
1097 	int ret;
1098 
1099 	memset(&msg, 0, sizeof(msg));
1100 	msg.msg_type = BCM4377_CONTROL_MSG_DESTROY_XFER_RING;
1101 	msg.ring_id = cpu_to_le16(ring->ring_id);
1102 
1103 	ret = bcm4377_enqueue(bcm4377, &bcm4377->control_h2d_ring, &msg,
1104 			      sizeof(msg), true);
1105 	if (ret)
1106 		dev_warn(&bcm4377->pdev->dev,
1107 			 "failed to destroy transfer ring %d\n", ring->ring_id);
1108 
1109 	ring->enabled = false;
1110 	return ret;
1111 }
1112 
1113 static int __bcm4378_send_calibration_chunk(struct bcm4377_data *bcm4377,
1114 					    const void *data, size_t data_len,
1115 					    u16 blocks_left)
1116 {
1117 	struct bcm4378_hci_send_calibration_cmd cmd;
1118 	struct sk_buff *skb;
1119 
1120 	if (data_len > sizeof(cmd.data))
1121 		return -EINVAL;
1122 
1123 	memset(&cmd, 0, sizeof(cmd));
1124 	cmd.unk = 0x03;
1125 	cmd.blocks_left = cpu_to_le16(blocks_left);
1126 	memcpy(cmd.data, data, data_len);
1127 
1128 	skb = __hci_cmd_sync(bcm4377->hdev, 0xfd97, sizeof(cmd), &cmd,
1129 			     HCI_INIT_TIMEOUT);
1130 	if (IS_ERR(skb))
1131 		return PTR_ERR(skb);
1132 
1133 	kfree_skb(skb);
1134 	return 0;
1135 }
1136 
1137 static int __bcm4378_send_calibration(struct bcm4377_data *bcm4377,
1138 				      const void *data, size_t data_size)
1139 {
1140 	int ret;
1141 	size_t i, left, transfer_len;
1142 	size_t blocks =
1143 		DIV_ROUND_UP(data_size, (size_t)BCM4378_CALIBRATION_CHUNK_SIZE);
1144 
1145 	if (!data) {
1146 		dev_err(&bcm4377->pdev->dev,
1147 			"no calibration data available.\n");
1148 		return -ENOENT;
1149 	}
1150 
1151 	for (i = 0, left = data_size; i < blocks; ++i, left -= transfer_len) {
1152 		transfer_len =
1153 			min_t(size_t, left, BCM4378_CALIBRATION_CHUNK_SIZE);
1154 
1155 		ret = __bcm4378_send_calibration_chunk(
1156 			bcm4377, data + i * BCM4378_CALIBRATION_CHUNK_SIZE,
1157 			transfer_len, blocks - i - 1);
1158 		if (ret) {
1159 			dev_err(&bcm4377->pdev->dev,
1160 				"send calibration chunk failed with %d\n", ret);
1161 			return ret;
1162 		}
1163 	}
1164 
1165 	return 0;
1166 }
1167 
1168 static int bcm4378_send_calibration(struct bcm4377_data *bcm4377)
1169 {
1170 	if ((strcmp(bcm4377->stepping, "b1") == 0) ||
1171 	    strcmp(bcm4377->stepping, "b3") == 0)
1172 		return __bcm4378_send_calibration(
1173 			bcm4377, bcm4377->taurus_beamforming_cal_blob,
1174 			bcm4377->taurus_beamforming_cal_size);
1175 	else
1176 		return __bcm4378_send_calibration(bcm4377,
1177 						  bcm4377->taurus_cal_blob,
1178 						  bcm4377->taurus_cal_size);
1179 }
1180 
1181 static int bcm4387_send_calibration(struct bcm4377_data *bcm4377)
1182 {
1183 	if (strcmp(bcm4377->stepping, "c2") == 0)
1184 		return __bcm4378_send_calibration(
1185 			bcm4377, bcm4377->taurus_beamforming_cal_blob,
1186 			bcm4377->taurus_beamforming_cal_size);
1187 	else
1188 		return __bcm4378_send_calibration(bcm4377,
1189 						  bcm4377->taurus_cal_blob,
1190 						  bcm4377->taurus_cal_size);
1191 }
1192 
1193 static const struct firmware *bcm4377_request_blob(struct bcm4377_data *bcm4377,
1194 						   const char *suffix)
1195 {
1196 	const struct firmware *fw;
1197 	char name0[64], name1[64];
1198 	int ret;
1199 
1200 	snprintf(name0, sizeof(name0), "brcm/brcmbt%04x%s-%s-%s.%s",
1201 		 bcm4377->hw->id, bcm4377->stepping, bcm4377->board_type,
1202 		 bcm4377->vendor, suffix);
1203 	snprintf(name1, sizeof(name1), "brcm/brcmbt%04x%s-%s.%s",
1204 		 bcm4377->hw->id, bcm4377->stepping, bcm4377->board_type,
1205 		 suffix);
1206 	dev_dbg(&bcm4377->pdev->dev, "Trying to load firmware: '%s' or '%s'\n",
1207 		name0, name1);
1208 
1209 	ret = firmware_request_nowarn(&fw, name0, &bcm4377->pdev->dev);
1210 	if (!ret)
1211 		return fw;
1212 	ret = firmware_request_nowarn(&fw, name1, &bcm4377->pdev->dev);
1213 	if (!ret)
1214 		return fw;
1215 
1216 	dev_err(&bcm4377->pdev->dev,
1217 		"Unable to load firmware; tried '%s' and '%s'\n", name0, name1);
1218 	return NULL;
1219 }
1220 
1221 static int bcm4377_send_ptb(struct bcm4377_data *bcm4377,
1222 			    const struct firmware *fw)
1223 {
1224 	struct sk_buff *skb;
1225 
1226 	skb = __hci_cmd_sync(bcm4377->hdev, 0xfd98, fw->size, fw->data,
1227 			     HCI_INIT_TIMEOUT);
1228 	/*
1229 	 * This command seems to always fail on more recent firmware versions
1230 	 * (even in traces taken from the macOS driver). It's unclear why this
1231 	 * happens but because the PTB file contains calibration and/or
1232 	 * regulatory data and may be required on older firmware we still try to
1233 	 * send it here just in case and just ignore if it fails.
1234 	 */
1235 	if (!IS_ERR(skb))
1236 		kfree_skb(skb);
1237 	return 0;
1238 }
1239 
1240 static int bcm4378_send_ptb_chunk(struct bcm4377_data *bcm4377,
1241 				  const void *data, size_t data_len,
1242 				  u16 blocks_left)
1243 {
1244 	struct bcm4378_hci_send_ptb_cmd cmd;
1245 	struct sk_buff *skb;
1246 
1247 	if (data_len > BCM4378_PTB_CHUNK_SIZE)
1248 		return -EINVAL;
1249 
1250 	memset(&cmd, 0, sizeof(cmd));
1251 	cmd.blocks_left = cpu_to_le16(blocks_left);
1252 	memcpy(cmd.data, data, data_len);
1253 
1254 	skb = __hci_cmd_sync(bcm4377->hdev, 0xfe0d, sizeof(cmd), &cmd,
1255 			     HCI_INIT_TIMEOUT);
1256 	if (IS_ERR(skb))
1257 		return PTR_ERR(skb);
1258 
1259 	kfree_skb(skb);
1260 	return 0;
1261 }
1262 
1263 static int bcm4378_send_ptb(struct bcm4377_data *bcm4377,
1264 			    const struct firmware *fw)
1265 {
1266 	size_t chunks = DIV_ROUND_UP(fw->size, (size_t)BCM4378_PTB_CHUNK_SIZE);
1267 	size_t i, left, transfer_len;
1268 	int ret;
1269 
1270 	for (i = 0, left = fw->size; i < chunks; ++i, left -= transfer_len) {
1271 		transfer_len = min_t(size_t, left, BCM4378_PTB_CHUNK_SIZE);
1272 
1273 		dev_dbg(&bcm4377->pdev->dev, "sending ptb chunk %zu/%zu\n",
1274 			i + 1, chunks);
1275 		ret = bcm4378_send_ptb_chunk(
1276 			bcm4377, fw->data + i * BCM4378_PTB_CHUNK_SIZE,
1277 			transfer_len, chunks - i - 1);
1278 		if (ret) {
1279 			dev_err(&bcm4377->pdev->dev,
1280 				"sending ptb chunk %zu failed (%d)", i, ret);
1281 			return ret;
1282 		}
1283 	}
1284 
1285 	return 0;
1286 }
1287 
1288 static int bcm4377_hci_open(struct hci_dev *hdev)
1289 {
1290 	struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
1291 	int ret;
1292 
1293 	dev_dbg(&bcm4377->pdev->dev, "creating rings\n");
1294 
1295 	ret = bcm4377_create_completion_ring(bcm4377,
1296 					     &bcm4377->hci_acl_ack_ring);
1297 	if (ret)
1298 		return ret;
1299 	ret = bcm4377_create_completion_ring(bcm4377,
1300 					     &bcm4377->hci_acl_event_ring);
1301 	if (ret)
1302 		goto destroy_hci_acl_ack;
1303 	ret = bcm4377_create_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
1304 	if (ret)
1305 		goto destroy_hci_acl_event;
1306 	ret = bcm4377_create_completion_ring(bcm4377, &bcm4377->sco_event_ring);
1307 	if (ret)
1308 		goto destroy_sco_ack;
1309 	dev_dbg(&bcm4377->pdev->dev,
1310 		"all completion rings successfully created!\n");
1311 
1312 	ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->hci_h2d_ring);
1313 	if (ret)
1314 		goto destroy_sco_event;
1315 	ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->hci_d2h_ring);
1316 	if (ret)
1317 		goto destroy_hci_h2d;
1318 	ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->sco_h2d_ring);
1319 	if (ret)
1320 		goto destroy_hci_d2h;
1321 	ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->sco_d2h_ring);
1322 	if (ret)
1323 		goto destroy_sco_h2d;
1324 	ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->acl_h2d_ring);
1325 	if (ret)
1326 		goto destroy_sco_d2h;
1327 	ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->acl_d2h_ring);
1328 	if (ret)
1329 		goto destroy_acl_h2d;
1330 	dev_dbg(&bcm4377->pdev->dev,
1331 		"all transfer rings successfully created!\n");
1332 
1333 	return 0;
1334 
1335 destroy_acl_h2d:
1336 	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->acl_h2d_ring);
1337 destroy_sco_d2h:
1338 	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->sco_d2h_ring);
1339 destroy_sco_h2d:
1340 	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->sco_h2d_ring);
1341 destroy_hci_d2h:
1342 	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->hci_h2d_ring);
1343 destroy_hci_h2d:
1344 	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->hci_d2h_ring);
1345 destroy_sco_event:
1346 	bcm4377_destroy_completion_ring(bcm4377, &bcm4377->sco_event_ring);
1347 destroy_sco_ack:
1348 	bcm4377_destroy_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
1349 destroy_hci_acl_event:
1350 	bcm4377_destroy_completion_ring(bcm4377, &bcm4377->hci_acl_event_ring);
1351 destroy_hci_acl_ack:
1352 	bcm4377_destroy_completion_ring(bcm4377, &bcm4377->hci_acl_ack_ring);
1353 
1354 	dev_err(&bcm4377->pdev->dev, "Creating rings failed with %d\n", ret);
1355 	return ret;
1356 }
1357 
1358 static int bcm4377_hci_close(struct hci_dev *hdev)
1359 {
1360 	struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
1361 
1362 	dev_dbg(&bcm4377->pdev->dev, "destroying rings in hci_close\n");
1363 
1364 	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->acl_d2h_ring);
1365 	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->acl_h2d_ring);
1366 	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->sco_d2h_ring);
1367 	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->sco_h2d_ring);
1368 	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->hci_d2h_ring);
1369 	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->hci_h2d_ring);
1370 
1371 	bcm4377_destroy_completion_ring(bcm4377, &bcm4377->sco_event_ring);
1372 	bcm4377_destroy_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
1373 	bcm4377_destroy_completion_ring(bcm4377, &bcm4377->hci_acl_event_ring);
1374 	bcm4377_destroy_completion_ring(bcm4377, &bcm4377->hci_acl_ack_ring);
1375 
1376 	return 0;
1377 }
1378 
1379 static bool bcm4377_is_valid_bdaddr(struct bcm4377_data *bcm4377,
1380 				    bdaddr_t *addr)
1381 {
1382 	if (addr->b[0] != 0x93)
1383 		return true;
1384 	if (addr->b[1] != 0x76)
1385 		return true;
1386 	if (addr->b[2] != 0x00)
1387 		return true;
1388 	if (addr->b[4] != (bcm4377->hw->id & 0xff))
1389 		return true;
1390 	if (addr->b[5] != (bcm4377->hw->id >> 8))
1391 		return true;
1392 	return false;
1393 }
1394 
1395 static int bcm4377_check_bdaddr(struct bcm4377_data *bcm4377)
1396 {
1397 	struct hci_rp_read_bd_addr *bda;
1398 	struct sk_buff *skb;
1399 
1400 	skb = __hci_cmd_sync(bcm4377->hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
1401 			     HCI_INIT_TIMEOUT);
1402 	if (IS_ERR(skb)) {
1403 		int err = PTR_ERR(skb);
1404 
1405 		dev_err(&bcm4377->pdev->dev, "HCI_OP_READ_BD_ADDR failed (%d)",
1406 			err);
1407 		return err;
1408 	}
1409 
1410 	if (skb->len != sizeof(*bda)) {
1411 		dev_err(&bcm4377->pdev->dev,
1412 			"HCI_OP_READ_BD_ADDR reply length invalid");
1413 		kfree_skb(skb);
1414 		return -EIO;
1415 	}
1416 
1417 	bda = (struct hci_rp_read_bd_addr *)skb->data;
1418 	if (!bcm4377_is_valid_bdaddr(bcm4377, &bda->bdaddr))
1419 		set_bit(HCI_QUIRK_INVALID_BDADDR, &bcm4377->hdev->quirks);
1420 
1421 	kfree_skb(skb);
1422 	return 0;
1423 }
1424 
1425 static int bcm4377_hci_setup(struct hci_dev *hdev)
1426 {
1427 	struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
1428 	const struct firmware *fw;
1429 	int ret;
1430 
1431 	if (bcm4377->hw->send_calibration) {
1432 		ret = bcm4377->hw->send_calibration(bcm4377);
1433 		if (ret)
1434 			return ret;
1435 	}
1436 
1437 	fw = bcm4377_request_blob(bcm4377, "ptb");
1438 	if (!fw) {
1439 		dev_err(&bcm4377->pdev->dev, "failed to load PTB data");
1440 		return -ENOENT;
1441 	}
1442 
1443 	ret = bcm4377->hw->send_ptb(bcm4377, fw);
1444 	release_firmware(fw);
1445 	if (ret)
1446 		return ret;
1447 
1448 	return bcm4377_check_bdaddr(bcm4377);
1449 }
1450 
1451 static int bcm4377_hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
1452 {
1453 	struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
1454 	struct bcm4377_transfer_ring *ring;
1455 	int ret;
1456 
1457 	switch (hci_skb_pkt_type(skb)) {
1458 	case HCI_COMMAND_PKT:
1459 		hdev->stat.cmd_tx++;
1460 		ring = &bcm4377->hci_h2d_ring;
1461 		break;
1462 
1463 	case HCI_ACLDATA_PKT:
1464 		hdev->stat.acl_tx++;
1465 		ring = &bcm4377->acl_h2d_ring;
1466 		break;
1467 
1468 	case HCI_SCODATA_PKT:
1469 		hdev->stat.sco_tx++;
1470 		ring = &bcm4377->sco_h2d_ring;
1471 		break;
1472 
1473 	default:
1474 		return -EILSEQ;
1475 	}
1476 
1477 	ret = bcm4377_enqueue(bcm4377, ring, skb->data, skb->len, false);
1478 	if (ret < 0) {
1479 		hdev->stat.err_tx++;
1480 		return ret;
1481 	}
1482 
1483 	hdev->stat.byte_tx += skb->len;
1484 	kfree_skb(skb);
1485 	return ret;
1486 }
1487 
1488 static int bcm4377_hci_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
1489 {
1490 	struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
1491 	struct sk_buff *skb;
1492 	int err;
1493 
1494 	skb = __hci_cmd_sync(hdev, 0xfc01, 6, bdaddr, HCI_INIT_TIMEOUT);
1495 	if (IS_ERR(skb)) {
1496 		err = PTR_ERR(skb);
1497 		dev_err(&bcm4377->pdev->dev,
1498 			"Change address command failed (%d)", err);
1499 		return err;
1500 	}
1501 	kfree_skb(skb);
1502 
1503 	return 0;
1504 }
1505 
1506 static int bcm4377_alloc_transfer_ring(struct bcm4377_data *bcm4377,
1507 				       struct bcm4377_transfer_ring *ring)
1508 {
1509 	size_t entry_size;
1510 
1511 	spin_lock_init(&ring->lock);
1512 	ring->payload_size = ALIGN(ring->payload_size, 4);
1513 	ring->mapped_payload_size = ALIGN(ring->mapped_payload_size, 4);
1514 
1515 	if (ring->payload_size > BCM4377_XFER_RING_MAX_INPLACE_PAYLOAD_SIZE)
1516 		return -EINVAL;
1517 	if (ring->n_entries > BCM4377_MAX_RING_SIZE)
1518 		return -EINVAL;
1519 	if (ring->virtual && ring->allow_wait)
1520 		return -EINVAL;
1521 
1522 	if (ring->d2h_buffers_only) {
1523 		if (ring->virtual)
1524 			return -EINVAL;
1525 		if (ring->payload_size)
1526 			return -EINVAL;
1527 		if (!ring->mapped_payload_size)
1528 			return -EINVAL;
1529 	}
1530 	if (ring->virtual)
1531 		return 0;
1532 
1533 	entry_size =
1534 		ring->payload_size + sizeof(struct bcm4377_xfer_ring_entry);
1535 	ring->ring = dmam_alloc_coherent(&bcm4377->pdev->dev,
1536 					 ring->n_entries * entry_size,
1537 					 &ring->ring_dma, GFP_KERNEL);
1538 	if (!ring->ring)
1539 		return -ENOMEM;
1540 
1541 	if (ring->allow_wait) {
1542 		ring->events = devm_kcalloc(&bcm4377->pdev->dev,
1543 					    ring->n_entries,
1544 					    sizeof(*ring->events), GFP_KERNEL);
1545 		if (!ring->events)
1546 			return -ENOMEM;
1547 	}
1548 
1549 	if (ring->mapped_payload_size) {
1550 		ring->payloads = dmam_alloc_coherent(
1551 			&bcm4377->pdev->dev,
1552 			ring->n_entries * ring->mapped_payload_size,
1553 			&ring->payloads_dma, GFP_KERNEL);
1554 		if (!ring->payloads)
1555 			return -ENOMEM;
1556 	}
1557 
1558 	return 0;
1559 }
1560 
1561 static int bcm4377_alloc_completion_ring(struct bcm4377_data *bcm4377,
1562 					 struct bcm4377_completion_ring *ring)
1563 {
1564 	size_t entry_size;
1565 
1566 	ring->payload_size = ALIGN(ring->payload_size, 4);
1567 	if (ring->payload_size > BCM4377_XFER_RING_MAX_INPLACE_PAYLOAD_SIZE)
1568 		return -EINVAL;
1569 	if (ring->n_entries > BCM4377_MAX_RING_SIZE)
1570 		return -EINVAL;
1571 
1572 	entry_size = ring->payload_size +
1573 		     sizeof(struct bcm4377_completion_ring_entry);
1574 
1575 	ring->ring = dmam_alloc_coherent(&bcm4377->pdev->dev,
1576 					 ring->n_entries * entry_size,
1577 					 &ring->ring_dma, GFP_KERNEL);
1578 	if (!ring->ring)
1579 		return -ENOMEM;
1580 	return 0;
1581 }
1582 
1583 static int bcm4377_init_context(struct bcm4377_data *bcm4377)
1584 {
1585 	struct device *dev = &bcm4377->pdev->dev;
1586 	dma_addr_t peripheral_info_dma;
1587 
1588 	bcm4377->ctx = dmam_alloc_coherent(dev, sizeof(*bcm4377->ctx),
1589 					   &bcm4377->ctx_dma, GFP_KERNEL);
1590 	if (!bcm4377->ctx)
1591 		return -ENOMEM;
1592 	memset(bcm4377->ctx, 0, sizeof(*bcm4377->ctx));
1593 
1594 	bcm4377->ring_state =
1595 		dmam_alloc_coherent(dev, sizeof(*bcm4377->ring_state),
1596 				    &bcm4377->ring_state_dma, GFP_KERNEL);
1597 	if (!bcm4377->ring_state)
1598 		return -ENOMEM;
1599 	memset(bcm4377->ring_state, 0, sizeof(*bcm4377->ring_state));
1600 
1601 	bcm4377->ctx->version = cpu_to_le16(1);
1602 	bcm4377->ctx->size = cpu_to_le16(sizeof(*bcm4377->ctx));
1603 	bcm4377->ctx->enabled_caps = cpu_to_le32(2);
1604 
1605 	/*
1606 	 * The BT device will write 0x20 bytes of data to this buffer but
1607 	 * the exact contents are unknown. It only needs to exist for BT
1608 	 * to work such that we can just allocate and then ignore it.
1609 	 */
1610 	if (!dmam_alloc_coherent(&bcm4377->pdev->dev, 0x20,
1611 				 &peripheral_info_dma, GFP_KERNEL))
1612 		return -ENOMEM;
1613 	bcm4377->ctx->peripheral_info_addr = cpu_to_le64(peripheral_info_dma);
1614 
1615 	bcm4377->ctx->xfer_ring_heads_addr = cpu_to_le64(
1616 		bcm4377->ring_state_dma +
1617 		offsetof(struct bcm4377_ring_state, xfer_ring_head));
1618 	bcm4377->ctx->xfer_ring_tails_addr = cpu_to_le64(
1619 		bcm4377->ring_state_dma +
1620 		offsetof(struct bcm4377_ring_state, xfer_ring_tail));
1621 	bcm4377->ctx->completion_ring_heads_addr = cpu_to_le64(
1622 		bcm4377->ring_state_dma +
1623 		offsetof(struct bcm4377_ring_state, completion_ring_head));
1624 	bcm4377->ctx->completion_ring_tails_addr = cpu_to_le64(
1625 		bcm4377->ring_state_dma +
1626 		offsetof(struct bcm4377_ring_state, completion_ring_tail));
1627 
1628 	bcm4377->ctx->n_completion_rings =
1629 		cpu_to_le16(BCM4377_N_COMPLETION_RINGS);
1630 	bcm4377->ctx->n_xfer_rings = cpu_to_le16(BCM4377_N_TRANSFER_RINGS);
1631 
1632 	bcm4377->ctx->control_completion_ring_addr =
1633 		cpu_to_le64(bcm4377->control_ack_ring.ring_dma);
1634 	bcm4377->ctx->control_completion_ring_n_entries =
1635 		cpu_to_le16(bcm4377->control_ack_ring.n_entries);
1636 	bcm4377->ctx->control_completion_ring_doorbell = cpu_to_le16(0xffff);
1637 	bcm4377->ctx->control_completion_ring_msi = 0;
1638 	bcm4377->ctx->control_completion_ring_header_size = 0;
1639 	bcm4377->ctx->control_completion_ring_footer_size = 0;
1640 
1641 	bcm4377->ctx->control_xfer_ring_addr =
1642 		cpu_to_le64(bcm4377->control_h2d_ring.ring_dma);
1643 	bcm4377->ctx->control_xfer_ring_n_entries =
1644 		cpu_to_le16(bcm4377->control_h2d_ring.n_entries);
1645 	bcm4377->ctx->control_xfer_ring_doorbell =
1646 		cpu_to_le16(bcm4377->control_h2d_ring.doorbell);
1647 	bcm4377->ctx->control_xfer_ring_msi = 0;
1648 	bcm4377->ctx->control_xfer_ring_header_size = 0;
1649 	bcm4377->ctx->control_xfer_ring_footer_size =
1650 		bcm4377->control_h2d_ring.payload_size / 4;
1651 
1652 	dev_dbg(&bcm4377->pdev->dev, "context initialized at IOVA %pad",
1653 		&bcm4377->ctx_dma);
1654 
1655 	return 0;
1656 }
1657 
1658 static int bcm4377_prepare_rings(struct bcm4377_data *bcm4377)
1659 {
1660 	int ret;
1661 
1662 	/*
1663 	 * Even though many of these settings appear to be configurable
1664 	 * when sending the "create ring" messages most of these are
1665 	 * actually hardcoded in some (and quite possibly all) firmware versions
1666 	 * and changing them on the host has no effect.
1667 	 * Specifically, this applies to at least the doorbells, the transfer
1668 	 * and completion ring ids and their mapping (e.g. both HCI and ACL
1669 	 * entries will always be queued in completion rings 1 and 2 no matter
1670 	 * what we configure here).
1671 	 */
1672 	bcm4377->control_ack_ring.ring_id = BCM4377_ACK_RING_CONTROL;
1673 	bcm4377->control_ack_ring.n_entries = 32;
1674 	bcm4377->control_ack_ring.transfer_rings =
1675 		BIT(BCM4377_XFER_RING_CONTROL);
1676 
1677 	bcm4377->hci_acl_ack_ring.ring_id = BCM4377_ACK_RING_HCI_ACL;
1678 	bcm4377->hci_acl_ack_ring.n_entries = 2 * BCM4377_RING_N_ENTRIES;
1679 	bcm4377->hci_acl_ack_ring.transfer_rings =
1680 		BIT(BCM4377_XFER_RING_HCI_H2D) | BIT(BCM4377_XFER_RING_ACL_H2D);
1681 	bcm4377->hci_acl_ack_ring.delay = 1000;
1682 
1683 	/*
1684 	 * A payload size of MAX_EVENT_PAYLOAD_SIZE is enough here since large
1685 	 * ACL packets will be transmitted inside buffers mapped via
1686 	 * acl_d2h_ring anyway.
1687 	 */
1688 	bcm4377->hci_acl_event_ring.ring_id = BCM4377_EVENT_RING_HCI_ACL;
1689 	bcm4377->hci_acl_event_ring.payload_size = MAX_EVENT_PAYLOAD_SIZE;
1690 	bcm4377->hci_acl_event_ring.n_entries = 2 * BCM4377_RING_N_ENTRIES;
1691 	bcm4377->hci_acl_event_ring.transfer_rings =
1692 		BIT(BCM4377_XFER_RING_HCI_D2H) | BIT(BCM4377_XFER_RING_ACL_D2H);
1693 	bcm4377->hci_acl_event_ring.delay = 1000;
1694 
1695 	bcm4377->sco_ack_ring.ring_id = BCM4377_ACK_RING_SCO;
1696 	bcm4377->sco_ack_ring.n_entries = BCM4377_RING_N_ENTRIES;
1697 	bcm4377->sco_ack_ring.transfer_rings = BIT(BCM4377_XFER_RING_SCO_H2D);
1698 
1699 	bcm4377->sco_event_ring.ring_id = BCM4377_EVENT_RING_SCO;
1700 	bcm4377->sco_event_ring.payload_size = MAX_SCO_PAYLOAD_SIZE;
1701 	bcm4377->sco_event_ring.n_entries = BCM4377_RING_N_ENTRIES;
1702 	bcm4377->sco_event_ring.transfer_rings = BIT(BCM4377_XFER_RING_SCO_D2H);
1703 
1704 	bcm4377->control_h2d_ring.ring_id = BCM4377_XFER_RING_CONTROL;
1705 	bcm4377->control_h2d_ring.doorbell = BCM4377_DOORBELL_CONTROL;
1706 	bcm4377->control_h2d_ring.payload_size = BCM4377_CONTROL_MSG_SIZE;
1707 	bcm4377->control_h2d_ring.completion_ring = BCM4377_ACK_RING_CONTROL;
1708 	bcm4377->control_h2d_ring.allow_wait = true;
1709 	bcm4377->control_h2d_ring.n_entries = BCM4377_RING_N_ENTRIES;
1710 
1711 	bcm4377->hci_h2d_ring.ring_id = BCM4377_XFER_RING_HCI_H2D;
1712 	bcm4377->hci_h2d_ring.doorbell = BCM4377_DOORBELL_HCI_H2D;
1713 	bcm4377->hci_h2d_ring.payload_size = MAX_EVENT_PAYLOAD_SIZE;
1714 	bcm4377->hci_h2d_ring.completion_ring = BCM4377_ACK_RING_HCI_ACL;
1715 	bcm4377->hci_h2d_ring.n_entries = BCM4377_RING_N_ENTRIES;
1716 
1717 	bcm4377->hci_d2h_ring.ring_id = BCM4377_XFER_RING_HCI_D2H;
1718 	bcm4377->hci_d2h_ring.doorbell = BCM4377_DOORBELL_HCI_D2H;
1719 	bcm4377->hci_d2h_ring.completion_ring = BCM4377_EVENT_RING_HCI_ACL;
1720 	bcm4377->hci_d2h_ring.virtual = true;
1721 	bcm4377->hci_d2h_ring.n_entries = BCM4377_RING_N_ENTRIES;
1722 
1723 	bcm4377->sco_h2d_ring.ring_id = BCM4377_XFER_RING_SCO_H2D;
1724 	bcm4377->sco_h2d_ring.doorbell = BCM4377_DOORBELL_SCO;
1725 	bcm4377->sco_h2d_ring.payload_size = MAX_SCO_PAYLOAD_SIZE;
1726 	bcm4377->sco_h2d_ring.completion_ring = BCM4377_ACK_RING_SCO;
1727 	bcm4377->sco_h2d_ring.sync = true;
1728 	bcm4377->sco_h2d_ring.n_entries = BCM4377_RING_N_ENTRIES;
1729 
1730 	bcm4377->sco_d2h_ring.ring_id = BCM4377_XFER_RING_SCO_D2H;
1731 	bcm4377->sco_d2h_ring.doorbell = BCM4377_DOORBELL_SCO;
1732 	bcm4377->sco_d2h_ring.completion_ring = BCM4377_EVENT_RING_SCO;
1733 	bcm4377->sco_d2h_ring.virtual = true;
1734 	bcm4377->sco_d2h_ring.sync = true;
1735 	bcm4377->sco_d2h_ring.n_entries = BCM4377_RING_N_ENTRIES;
1736 
1737 	/*
1738 	 * This ring has to use mapped_payload_size because the largest ACL
1739 	 * packet doesn't fit inside the largest possible footer
1740 	 */
1741 	bcm4377->acl_h2d_ring.ring_id = BCM4377_XFER_RING_ACL_H2D;
1742 	bcm4377->acl_h2d_ring.doorbell = BCM4377_DOORBELL_ACL_H2D;
1743 	bcm4377->acl_h2d_ring.mapped_payload_size = MAX_ACL_PAYLOAD_SIZE;
1744 	bcm4377->acl_h2d_ring.completion_ring = BCM4377_ACK_RING_HCI_ACL;
1745 	bcm4377->acl_h2d_ring.n_entries = BCM4377_RING_N_ENTRIES;
1746 
1747 	/*
1748 	 * This ring only contains empty buffers to be used by incoming
1749 	 * ACL packets that do not fit inside the footer of hci_acl_event_ring
1750 	 */
1751 	bcm4377->acl_d2h_ring.ring_id = BCM4377_XFER_RING_ACL_D2H;
1752 	bcm4377->acl_d2h_ring.doorbell = BCM4377_DOORBELL_ACL_D2H;
1753 	bcm4377->acl_d2h_ring.completion_ring = BCM4377_EVENT_RING_HCI_ACL;
1754 	bcm4377->acl_d2h_ring.d2h_buffers_only = true;
1755 	bcm4377->acl_d2h_ring.mapped_payload_size = MAX_ACL_PAYLOAD_SIZE;
1756 	bcm4377->acl_d2h_ring.n_entries = BCM4377_RING_N_ENTRIES;
1757 
1758 	/*
1759 	 * no need for any cleanup since this is only called from _probe
1760 	 * and only devres-managed allocations are used
1761 	 */
1762 	ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->control_h2d_ring);
1763 	if (ret)
1764 		return ret;
1765 	ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->hci_h2d_ring);
1766 	if (ret)
1767 		return ret;
1768 	ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->hci_d2h_ring);
1769 	if (ret)
1770 		return ret;
1771 	ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->sco_h2d_ring);
1772 	if (ret)
1773 		return ret;
1774 	ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->sco_d2h_ring);
1775 	if (ret)
1776 		return ret;
1777 	ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->acl_h2d_ring);
1778 	if (ret)
1779 		return ret;
1780 	ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->acl_d2h_ring);
1781 	if (ret)
1782 		return ret;
1783 
1784 	ret = bcm4377_alloc_completion_ring(bcm4377,
1785 					    &bcm4377->control_ack_ring);
1786 	if (ret)
1787 		return ret;
1788 	ret = bcm4377_alloc_completion_ring(bcm4377,
1789 					    &bcm4377->hci_acl_ack_ring);
1790 	if (ret)
1791 		return ret;
1792 	ret = bcm4377_alloc_completion_ring(bcm4377,
1793 					    &bcm4377->hci_acl_event_ring);
1794 	if (ret)
1795 		return ret;
1796 	ret = bcm4377_alloc_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
1797 	if (ret)
1798 		return ret;
1799 	ret = bcm4377_alloc_completion_ring(bcm4377, &bcm4377->sco_event_ring);
1800 	if (ret)
1801 		return ret;
1802 
1803 	dev_dbg(&bcm4377->pdev->dev, "all rings allocated and prepared\n");
1804 
1805 	return 0;
1806 }
1807 
1808 static int bcm4377_boot(struct bcm4377_data *bcm4377)
1809 {
1810 	const struct firmware *fw;
1811 	void *bfr;
1812 	dma_addr_t fw_dma;
1813 	int ret = 0;
1814 	u32 bootstage, rti_status;
1815 
1816 	bootstage = ioread32(bcm4377->bar2 + BCM4377_BAR2_BOOTSTAGE);
1817 	rti_status = ioread32(bcm4377->bar2 + BCM4377_BAR2_RTI_STATUS);
1818 
1819 	if (bootstage != 0) {
1820 		dev_err(&bcm4377->pdev->dev, "bootstage is %d and not 0\n",
1821 			bootstage);
1822 		return -EINVAL;
1823 	}
1824 
1825 	if (rti_status != 0) {
1826 		dev_err(&bcm4377->pdev->dev, "RTI status is %d and not 0\n",
1827 			rti_status);
1828 		return -EINVAL;
1829 	}
1830 
1831 	fw = bcm4377_request_blob(bcm4377, "bin");
1832 	if (!fw) {
1833 		dev_err(&bcm4377->pdev->dev, "Failed to load firmware\n");
1834 		return -ENOENT;
1835 	}
1836 
1837 	bfr = dma_alloc_coherent(&bcm4377->pdev->dev, fw->size, &fw_dma,
1838 				 GFP_KERNEL);
1839 	if (!bfr) {
1840 		ret = -ENOMEM;
1841 		goto out_release_fw;
1842 	}
1843 
1844 	memcpy(bfr, fw->data, fw->size);
1845 
1846 	iowrite32(0, bcm4377->bar0 + BCM4377_BAR0_HOST_WINDOW_LO);
1847 	iowrite32(0, bcm4377->bar0 + BCM4377_BAR0_HOST_WINDOW_HI);
1848 	iowrite32(BCM4377_DMA_MASK,
1849 		  bcm4377->bar0 + BCM4377_BAR0_HOST_WINDOW_SIZE);
1850 
1851 	iowrite32(lower_32_bits(fw_dma), bcm4377->bar2 + BCM4377_BAR2_FW_LO);
1852 	iowrite32(upper_32_bits(fw_dma), bcm4377->bar2 + BCM4377_BAR2_FW_HI);
1853 	iowrite32(fw->size, bcm4377->bar2 + BCM4377_BAR2_FW_SIZE);
1854 	iowrite32(0, bcm4377->bar0 + BCM4377_BAR0_FW_DOORBELL);
1855 
1856 	dev_dbg(&bcm4377->pdev->dev, "waiting for firmware to boot\n");
1857 
1858 	ret = wait_for_completion_interruptible_timeout(&bcm4377->event,
1859 							BCM4377_TIMEOUT);
1860 	if (ret == 0) {
1861 		ret = -ETIMEDOUT;
1862 		goto out_dma_free;
1863 	} else if (ret < 0) {
1864 		goto out_dma_free;
1865 	}
1866 
1867 	if (bcm4377->bootstage != 2) {
1868 		dev_err(&bcm4377->pdev->dev, "boostage %d != 2\n",
1869 			bcm4377->bootstage);
1870 		ret = -ENXIO;
1871 		goto out_dma_free;
1872 	}
1873 
1874 	dev_dbg(&bcm4377->pdev->dev, "firmware has booted (stage = %x)\n",
1875 		bcm4377->bootstage);
1876 	ret = 0;
1877 
1878 out_dma_free:
1879 	dma_free_coherent(&bcm4377->pdev->dev, fw->size, bfr, fw_dma);
1880 out_release_fw:
1881 	release_firmware(fw);
1882 	return ret;
1883 }
1884 
1885 static int bcm4377_setup_rti(struct bcm4377_data *bcm4377)
1886 {
1887 	int ret;
1888 
1889 	dev_dbg(&bcm4377->pdev->dev, "starting RTI\n");
1890 	iowrite32(1, bcm4377->bar0 + BCM4377_BAR0_RTI_CONTROL);
1891 
1892 	ret = wait_for_completion_interruptible_timeout(&bcm4377->event,
1893 							BCM4377_TIMEOUT);
1894 	if (ret == 0) {
1895 		dev_err(&bcm4377->pdev->dev,
1896 			"timed out while waiting for RTI to transition to state 1");
1897 		return -ETIMEDOUT;
1898 	} else if (ret < 0) {
1899 		return ret;
1900 	}
1901 
1902 	if (bcm4377->rti_status != 1) {
1903 		dev_err(&bcm4377->pdev->dev, "RTI did not ack state 1 (%d)\n",
1904 			bcm4377->rti_status);
1905 		return -ENODEV;
1906 	}
1907 	dev_dbg(&bcm4377->pdev->dev, "RTI is in state 1\n");
1908 
1909 	/* allow access to the entire IOVA space again */
1910 	iowrite32(0, bcm4377->bar2 + BCM4377_BAR2_RTI_WINDOW_LO);
1911 	iowrite32(0, bcm4377->bar2 + BCM4377_BAR2_RTI_WINDOW_HI);
1912 	iowrite32(BCM4377_DMA_MASK,
1913 		  bcm4377->bar2 + BCM4377_BAR2_RTI_WINDOW_SIZE);
1914 
1915 	/* setup "Converged IPC" context */
1916 	iowrite32(lower_32_bits(bcm4377->ctx_dma),
1917 		  bcm4377->bar2 + BCM4377_BAR2_CONTEXT_ADDR_LO);
1918 	iowrite32(upper_32_bits(bcm4377->ctx_dma),
1919 		  bcm4377->bar2 + BCM4377_BAR2_CONTEXT_ADDR_HI);
1920 	iowrite32(2, bcm4377->bar0 + BCM4377_BAR0_RTI_CONTROL);
1921 
1922 	ret = wait_for_completion_interruptible_timeout(&bcm4377->event,
1923 							BCM4377_TIMEOUT);
1924 	if (ret == 0) {
1925 		dev_err(&bcm4377->pdev->dev,
1926 			"timed out while waiting for RTI to transition to state 2");
1927 		return -ETIMEDOUT;
1928 	} else if (ret < 0) {
1929 		return ret;
1930 	}
1931 
1932 	if (bcm4377->rti_status != 2) {
1933 		dev_err(&bcm4377->pdev->dev, "RTI did not ack state 2 (%d)\n",
1934 			bcm4377->rti_status);
1935 		return -ENODEV;
1936 	}
1937 
1938 	dev_dbg(&bcm4377->pdev->dev,
1939 		"RTI is in state 2; control ring is ready\n");
1940 	bcm4377->control_ack_ring.enabled = true;
1941 
1942 	return 0;
1943 }
1944 
1945 static int bcm4377_parse_otp_board_params(struct bcm4377_data *bcm4377,
1946 					  char tag, const char *val, size_t len)
1947 {
1948 	if (tag != 'V')
1949 		return 0;
1950 	if (len >= sizeof(bcm4377->vendor))
1951 		return -EINVAL;
1952 
1953 	strscpy(bcm4377->vendor, val, len + 1);
1954 	return 0;
1955 }
1956 
1957 static int bcm4377_parse_otp_chip_params(struct bcm4377_data *bcm4377, char tag,
1958 					 const char *val, size_t len)
1959 {
1960 	size_t idx = 0;
1961 
1962 	if (tag != 's')
1963 		return 0;
1964 	if (len >= sizeof(bcm4377->stepping))
1965 		return -EINVAL;
1966 
1967 	while (len != 0) {
1968 		bcm4377->stepping[idx] = tolower(val[idx]);
1969 		if (val[idx] == '\0')
1970 			return 0;
1971 
1972 		idx++;
1973 		len--;
1974 	}
1975 
1976 	bcm4377->stepping[idx] = '\0';
1977 	return 0;
1978 }
1979 
1980 static int bcm4377_parse_otp_str(struct bcm4377_data *bcm4377, const u8 *str,
1981 				 enum bcm4377_otp_params_type type)
1982 {
1983 	const char *p;
1984 	int ret;
1985 
1986 	p = skip_spaces(str);
1987 	while (*p) {
1988 		char tag = *p++;
1989 		const char *end;
1990 		size_t len;
1991 
1992 		if (*p++ != '=') /* implicit NUL check */
1993 			return -EINVAL;
1994 
1995 		/* *p might be NUL here, if so end == p and len == 0 */
1996 		end = strchrnul(p, ' ');
1997 		len = end - p;
1998 
1999 		/* leave 1 byte for NUL in destination string */
2000 		if (len > (BCM4377_OTP_MAX_PARAM_LEN - 1))
2001 			return -EINVAL;
2002 
2003 		switch (type) {
2004 		case BCM4377_OTP_BOARD_PARAMS:
2005 			ret = bcm4377_parse_otp_board_params(bcm4377, tag, p,
2006 							     len);
2007 			break;
2008 		case BCM4377_OTP_CHIP_PARAMS:
2009 			ret = bcm4377_parse_otp_chip_params(bcm4377, tag, p,
2010 							    len);
2011 			break;
2012 		default:
2013 			ret = -EINVAL;
2014 			break;
2015 		}
2016 
2017 		if (ret)
2018 			return ret;
2019 
2020 		/* Skip to next arg, if any */
2021 		p = skip_spaces(end);
2022 	}
2023 
2024 	return 0;
2025 }
2026 
2027 static int bcm4377_parse_otp_sys_vendor(struct bcm4377_data *bcm4377, u8 *otp,
2028 					size_t size)
2029 {
2030 	int idx = 4;
2031 	const char *chip_params;
2032 	const char *board_params;
2033 	int ret;
2034 
2035 	/* 4-byte header and two empty strings */
2036 	if (size < 6)
2037 		return -EINVAL;
2038 
2039 	if (get_unaligned_le32(otp) != BCM4377_OTP_VENDOR_HDR)
2040 		return -EINVAL;
2041 
2042 	chip_params = &otp[idx];
2043 
2044 	/* Skip first string, including terminator */
2045 	idx += strnlen(chip_params, size - idx) + 1;
2046 	if (idx >= size)
2047 		return -EINVAL;
2048 
2049 	board_params = &otp[idx];
2050 
2051 	/* Skip to terminator of second string */
2052 	idx += strnlen(board_params, size - idx);
2053 	if (idx >= size)
2054 		return -EINVAL;
2055 
2056 	/* At this point both strings are guaranteed NUL-terminated */
2057 	dev_dbg(&bcm4377->pdev->dev,
2058 		"OTP: chip_params='%s' board_params='%s'\n", chip_params,
2059 		board_params);
2060 
2061 	ret = bcm4377_parse_otp_str(bcm4377, chip_params,
2062 				    BCM4377_OTP_CHIP_PARAMS);
2063 	if (ret)
2064 		return ret;
2065 
2066 	ret = bcm4377_parse_otp_str(bcm4377, board_params,
2067 				    BCM4377_OTP_BOARD_PARAMS);
2068 	if (ret)
2069 		return ret;
2070 
2071 	if (!bcm4377->stepping[0] || !bcm4377->vendor[0])
2072 		return -EINVAL;
2073 
2074 	dev_dbg(&bcm4377->pdev->dev, "OTP: stepping=%s, vendor=%s\n",
2075 		bcm4377->stepping, bcm4377->vendor);
2076 	return 0;
2077 }
2078 
2079 static int bcm4377_parse_otp(struct bcm4377_data *bcm4377)
2080 {
2081 	u8 *otp;
2082 	int i;
2083 	int ret = -ENOENT;
2084 
2085 	otp = kzalloc(BCM4377_OTP_SIZE, GFP_KERNEL);
2086 	if (!otp)
2087 		return -ENOMEM;
2088 
2089 	for (i = 0; i < BCM4377_OTP_SIZE; ++i)
2090 		otp[i] = ioread8(bcm4377->bar0 + bcm4377->hw->otp_offset + i);
2091 
2092 	i = 0;
2093 	while (i < (BCM4377_OTP_SIZE - 1)) {
2094 		u8 type = otp[i];
2095 		u8 length = otp[i + 1];
2096 
2097 		if (type == 0)
2098 			break;
2099 
2100 		if ((i + 2 + length) > BCM4377_OTP_SIZE)
2101 			break;
2102 
2103 		switch (type) {
2104 		case BCM4377_OTP_SYS_VENDOR:
2105 			dev_dbg(&bcm4377->pdev->dev,
2106 				"OTP @ 0x%x (%d): SYS_VENDOR", i, length);
2107 			ret = bcm4377_parse_otp_sys_vendor(bcm4377, &otp[i + 2],
2108 							   length);
2109 			break;
2110 		case BCM4377_OTP_CIS:
2111 			dev_dbg(&bcm4377->pdev->dev, "OTP @ 0x%x (%d): CIS", i,
2112 				length);
2113 			break;
2114 		default:
2115 			dev_dbg(&bcm4377->pdev->dev, "OTP @ 0x%x (%d): unknown",
2116 				i, length);
2117 			break;
2118 		}
2119 
2120 		i += 2 + length;
2121 	}
2122 
2123 	kfree(otp);
2124 	return ret;
2125 }
2126 
2127 static int bcm4377_init_cfg(struct bcm4377_data *bcm4377)
2128 {
2129 	int ret;
2130 	u32 ctrl;
2131 
2132 	ret = pci_write_config_dword(bcm4377->pdev,
2133 				     BCM4377_PCIECFG_BAR0_WINDOW1,
2134 				     bcm4377->hw->bar0_window1);
2135 	if (ret)
2136 		return ret;
2137 
2138 	ret = pci_write_config_dword(bcm4377->pdev,
2139 				     BCM4377_PCIECFG_BAR0_WINDOW2,
2140 				     bcm4377->hw->bar0_window2);
2141 	if (ret)
2142 		return ret;
2143 
2144 	ret = pci_write_config_dword(
2145 		bcm4377->pdev, BCM4377_PCIECFG_BAR0_CORE2_WINDOW1,
2146 		BCM4377_PCIECFG_BAR0_CORE2_WINDOW1_DEFAULT);
2147 	if (ret)
2148 		return ret;
2149 
2150 	if (bcm4377->hw->has_bar0_core2_window2) {
2151 		ret = pci_write_config_dword(bcm4377->pdev,
2152 					     BCM4377_PCIECFG_BAR0_CORE2_WINDOW2,
2153 					     bcm4377->hw->bar0_core2_window2);
2154 		if (ret)
2155 			return ret;
2156 	}
2157 
2158 	ret = pci_write_config_dword(bcm4377->pdev, BCM4377_PCIECFG_BAR2_WINDOW,
2159 				     BCM4377_PCIECFG_BAR2_WINDOW_DEFAULT);
2160 	if (ret)
2161 		return ret;
2162 
2163 	ret = pci_read_config_dword(bcm4377->pdev,
2164 				    BCM4377_PCIECFG_SUBSYSTEM_CTRL, &ctrl);
2165 	if (ret)
2166 		return ret;
2167 
2168 	if (bcm4377->hw->clear_pciecfg_subsystem_ctrl_bit19)
2169 		ctrl &= ~BIT(19);
2170 	ctrl |= BIT(16);
2171 
2172 	return pci_write_config_dword(bcm4377->pdev,
2173 				      BCM4377_PCIECFG_SUBSYSTEM_CTRL, ctrl);
2174 }
2175 
2176 static int bcm4377_probe_dmi(struct bcm4377_data *bcm4377)
2177 {
2178 	const struct dmi_system_id *board_type_dmi_id;
2179 
2180 	board_type_dmi_id = dmi_first_match(bcm4377_dmi_board_table);
2181 	if (board_type_dmi_id && board_type_dmi_id->driver_data) {
2182 		bcm4377->board_type = board_type_dmi_id->driver_data;
2183 		dev_dbg(&bcm4377->pdev->dev,
2184 			"found board type via DMI match: %s\n",
2185 			bcm4377->board_type);
2186 	}
2187 
2188 	return 0;
2189 }
2190 
2191 static int bcm4377_probe_of(struct bcm4377_data *bcm4377)
2192 {
2193 	struct device_node *np = bcm4377->pdev->dev.of_node;
2194 	int ret;
2195 
2196 	if (!np)
2197 		return 0;
2198 
2199 	ret = of_property_read_string(np, "brcm,board-type",
2200 				      &bcm4377->board_type);
2201 	if (ret) {
2202 		dev_err(&bcm4377->pdev->dev, "no brcm,board-type property\n");
2203 		return ret;
2204 	}
2205 
2206 	bcm4377->taurus_beamforming_cal_blob =
2207 		of_get_property(np, "brcm,taurus-bf-cal-blob",
2208 				&bcm4377->taurus_beamforming_cal_size);
2209 	if (!bcm4377->taurus_beamforming_cal_blob) {
2210 		dev_err(&bcm4377->pdev->dev,
2211 			"no brcm,taurus-bf-cal-blob property\n");
2212 		return -ENOENT;
2213 	}
2214 	bcm4377->taurus_cal_blob = of_get_property(np, "brcm,taurus-cal-blob",
2215 						   &bcm4377->taurus_cal_size);
2216 	if (!bcm4377->taurus_cal_blob) {
2217 		dev_err(&bcm4377->pdev->dev,
2218 			"no brcm,taurus-cal-blob property\n");
2219 		return -ENOENT;
2220 	}
2221 
2222 	return 0;
2223 }
2224 
2225 static void bcm4377_disable_aspm(struct bcm4377_data *bcm4377)
2226 {
2227 	pci_disable_link_state(bcm4377->pdev,
2228 			       PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1);
2229 
2230 	/*
2231 	 * pci_disable_link_state can fail if either CONFIG_PCIEASPM is disabled
2232 	 * or if the BIOS hasn't handed over control to us. We must *always*
2233 	 * disable ASPM for this device due to hardware errata though.
2234 	 */
2235 	pcie_capability_clear_word(bcm4377->pdev, PCI_EXP_LNKCTL,
2236 				   PCI_EXP_LNKCTL_ASPMC);
2237 }
2238 
2239 static void bcm4377_pci_free_irq_vectors(void *data)
2240 {
2241 	pci_free_irq_vectors(data);
2242 }
2243 
2244 static void bcm4377_hci_free_dev(void *data)
2245 {
2246 	hci_free_dev(data);
2247 }
2248 
2249 static void bcm4377_hci_unregister_dev(void *data)
2250 {
2251 	hci_unregister_dev(data);
2252 }
2253 
2254 static int bcm4377_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2255 {
2256 	struct bcm4377_data *bcm4377;
2257 	struct hci_dev *hdev;
2258 	int ret, irq;
2259 
2260 	ret = dma_set_mask_and_coherent(&pdev->dev, BCM4377_DMA_MASK);
2261 	if (ret)
2262 		return ret;
2263 
2264 	bcm4377 = devm_kzalloc(&pdev->dev, sizeof(*bcm4377), GFP_KERNEL);
2265 	if (!bcm4377)
2266 		return -ENOMEM;
2267 
2268 	bcm4377->pdev = pdev;
2269 	bcm4377->hw = &bcm4377_hw_variants[id->driver_data];
2270 	init_completion(&bcm4377->event);
2271 
2272 	ret = bcm4377_prepare_rings(bcm4377);
2273 	if (ret)
2274 		return ret;
2275 
2276 	ret = bcm4377_init_context(bcm4377);
2277 	if (ret)
2278 		return ret;
2279 
2280 	ret = bcm4377_probe_dmi(bcm4377);
2281 	if (ret)
2282 		return ret;
2283 	ret = bcm4377_probe_of(bcm4377);
2284 	if (ret)
2285 		return ret;
2286 	if (!bcm4377->board_type) {
2287 		dev_err(&pdev->dev, "unable to determine board type\n");
2288 		return -ENODEV;
2289 	}
2290 
2291 	if (bcm4377->hw->disable_aspm)
2292 		bcm4377_disable_aspm(bcm4377);
2293 
2294 	ret = pci_reset_function_locked(pdev);
2295 	if (ret)
2296 		dev_warn(
2297 			&pdev->dev,
2298 			"function level reset failed with %d; trying to continue anyway\n",
2299 			ret);
2300 
2301 	/*
2302 	 * If this number is too low and we try to access any BAR too
2303 	 * early the device will crash. Experiments have shown that
2304 	 * approximately 50 msec is the minimum amount we have to wait.
2305 	 * Let's double that to be safe.
2306 	 */
2307 	msleep(100);
2308 
2309 	ret = pcim_enable_device(pdev);
2310 	if (ret)
2311 		return ret;
2312 	pci_set_master(pdev);
2313 
2314 	ret = bcm4377_init_cfg(bcm4377);
2315 	if (ret)
2316 		return ret;
2317 
2318 	bcm4377->bar0 = pcim_iomap(pdev, 0, 0);
2319 	if (!bcm4377->bar0)
2320 		return -EBUSY;
2321 	bcm4377->bar2 = pcim_iomap(pdev, 2, 0);
2322 	if (!bcm4377->bar2)
2323 		return -EBUSY;
2324 
2325 	ret = bcm4377_parse_otp(bcm4377);
2326 	if (ret) {
2327 		dev_err(&pdev->dev, "Reading OTP failed with %d\n", ret);
2328 		return ret;
2329 	}
2330 
2331 	/*
2332 	 * Legacy interrupts result in an IRQ storm because we don't know where
2333 	 * the interrupt mask and status registers for these chips are.
2334 	 * MSIs are acked automatically instead.
2335 	 */
2336 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
2337 	if (ret < 0)
2338 		return -ENODEV;
2339 	ret = devm_add_action_or_reset(&pdev->dev, bcm4377_pci_free_irq_vectors,
2340 				       pdev);
2341 	if (ret)
2342 		return ret;
2343 
2344 	irq = pci_irq_vector(pdev, 0);
2345 	if (irq <= 0)
2346 		return -ENODEV;
2347 
2348 	ret = devm_request_irq(&pdev->dev, irq, bcm4377_irq, 0, "bcm4377",
2349 			       bcm4377);
2350 	if (ret)
2351 		return ret;
2352 
2353 	hdev = hci_alloc_dev();
2354 	if (!hdev)
2355 		return -ENOMEM;
2356 	ret = devm_add_action_or_reset(&pdev->dev, bcm4377_hci_free_dev, hdev);
2357 	if (ret)
2358 		return ret;
2359 
2360 	bcm4377->hdev = hdev;
2361 
2362 	hdev->bus = HCI_PCI;
2363 	hdev->dev_type = HCI_PRIMARY;
2364 	hdev->open = bcm4377_hci_open;
2365 	hdev->close = bcm4377_hci_close;
2366 	hdev->send = bcm4377_hci_send_frame;
2367 	hdev->set_bdaddr = bcm4377_hci_set_bdaddr;
2368 	hdev->setup = bcm4377_hci_setup;
2369 
2370 	set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
2371 	if (bcm4377->hw->broken_mws_transport_config)
2372 		set_bit(HCI_QUIRK_BROKEN_MWS_TRANSPORT_CONFIG, &hdev->quirks);
2373 	if (bcm4377->hw->broken_ext_scan)
2374 		set_bit(HCI_QUIRK_BROKEN_EXT_SCAN, &hdev->quirks);
2375 
2376 	pci_set_drvdata(pdev, bcm4377);
2377 	hci_set_drvdata(hdev, bcm4377);
2378 	SET_HCIDEV_DEV(hdev, &pdev->dev);
2379 
2380 	ret = bcm4377_boot(bcm4377);
2381 	if (ret)
2382 		return ret;
2383 
2384 	ret = bcm4377_setup_rti(bcm4377);
2385 	if (ret)
2386 		return ret;
2387 
2388 	ret = hci_register_dev(hdev);
2389 	if (ret)
2390 		return ret;
2391 	return devm_add_action_or_reset(&pdev->dev, bcm4377_hci_unregister_dev,
2392 					hdev);
2393 }
2394 
2395 static int bcm4377_suspend(struct pci_dev *pdev, pm_message_t state)
2396 {
2397 	struct bcm4377_data *bcm4377 = pci_get_drvdata(pdev);
2398 	int ret;
2399 
2400 	ret = hci_suspend_dev(bcm4377->hdev);
2401 	if (ret)
2402 		return ret;
2403 
2404 	iowrite32(BCM4377_BAR0_SLEEP_CONTROL_QUIESCE,
2405 		  bcm4377->bar0 + BCM4377_BAR0_SLEEP_CONTROL);
2406 
2407 	return 0;
2408 }
2409 
2410 static int bcm4377_resume(struct pci_dev *pdev)
2411 {
2412 	struct bcm4377_data *bcm4377 = pci_get_drvdata(pdev);
2413 
2414 	iowrite32(BCM4377_BAR0_SLEEP_CONTROL_UNQUIESCE,
2415 		  bcm4377->bar0 + BCM4377_BAR0_SLEEP_CONTROL);
2416 
2417 	return hci_resume_dev(bcm4377->hdev);
2418 }
2419 
2420 static const struct dmi_system_id bcm4377_dmi_board_table[] = {
2421 	{
2422 		.matches = {
2423 			DMI_MATCH(DMI_BOARD_VENDOR, "Apple Inc."),
2424 			DMI_MATCH(DMI_PRODUCT_NAME, "MacBookAir9,1"),
2425 		},
2426 		.driver_data = "apple,formosa",
2427 	},
2428 	{
2429 		.matches = {
2430 			DMI_MATCH(DMI_BOARD_VENDOR, "Apple Inc."),
2431 			DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro15,4"),
2432 		},
2433 		.driver_data = "apple,formosa",
2434 	},
2435 	{
2436 		.matches = {
2437 			DMI_MATCH(DMI_BOARD_VENDOR, "Apple Inc."),
2438 			DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro16,3"),
2439 		},
2440 		.driver_data = "apple,formosa",
2441 	},
2442 	{}
2443 };
2444 
2445 static const struct bcm4377_hw bcm4377_hw_variants[] = {
2446 	[BCM4377] = {
2447 		.id = 0x4377,
2448 		.otp_offset = 0x4120,
2449 		.bar0_window1 = 0x1800b000,
2450 		.bar0_window2 = 0x1810c000,
2451 		.disable_aspm = true,
2452 		.broken_ext_scan = true,
2453 		.send_ptb = bcm4377_send_ptb,
2454 	},
2455 
2456 	[BCM4378] = {
2457 		.id = 0x4378,
2458 		.otp_offset = 0x4120,
2459 		.bar0_window1 = 0x18002000,
2460 		.bar0_window2 = 0x1810a000,
2461 		.bar0_core2_window2 = 0x18107000,
2462 		.has_bar0_core2_window2 = true,
2463 		.broken_mws_transport_config = true,
2464 		.send_calibration = bcm4378_send_calibration,
2465 		.send_ptb = bcm4378_send_ptb,
2466 	},
2467 
2468 	[BCM4387] = {
2469 		.id = 0x4387,
2470 		.otp_offset = 0x413c,
2471 		.bar0_window1 = 0x18002000,
2472 		.bar0_window2 = 0x18109000,
2473 		.bar0_core2_window2 = 0x18106000,
2474 		.has_bar0_core2_window2 = true,
2475 		.clear_pciecfg_subsystem_ctrl_bit19 = true,
2476 		.broken_mws_transport_config = true,
2477 		.send_calibration = bcm4387_send_calibration,
2478 		.send_ptb = bcm4378_send_ptb,
2479 	},
2480 };
2481 
2482 #define BCM4377_DEVID_ENTRY(id)                                             \
2483 	{                                                                   \
2484 		PCI_VENDOR_ID_BROADCOM, BCM##id##_DEVICE_ID, PCI_ANY_ID,    \
2485 			PCI_ANY_ID, PCI_CLASS_NETWORK_OTHER << 8, 0xffff00, \
2486 			BCM##id                                             \
2487 	}
2488 
2489 static const struct pci_device_id bcm4377_devid_table[] = {
2490 	BCM4377_DEVID_ENTRY(4377),
2491 	BCM4377_DEVID_ENTRY(4378),
2492 	BCM4377_DEVID_ENTRY(4387),
2493 	{},
2494 };
2495 MODULE_DEVICE_TABLE(pci, bcm4377_devid_table);
2496 
2497 static struct pci_driver bcm4377_pci_driver = {
2498 	.name = "hci_bcm4377",
2499 	.id_table = bcm4377_devid_table,
2500 	.probe = bcm4377_probe,
2501 	.suspend = bcm4377_suspend,
2502 	.resume = bcm4377_resume,
2503 };
2504 module_pci_driver(bcm4377_pci_driver);
2505 
2506 MODULE_AUTHOR("Sven Peter <sven@svenpeter.dev>");
2507 MODULE_DESCRIPTION("Bluetooth support for Broadcom 4377/4378/4387 devices");
2508 MODULE_LICENSE("Dual MIT/GPL");
2509 MODULE_FIRMWARE("brcm/brcmbt4377*.bin");
2510 MODULE_FIRMWARE("brcm/brcmbt4377*.ptb");
2511 MODULE_FIRMWARE("brcm/brcmbt4378*.bin");
2512 MODULE_FIRMWARE("brcm/brcmbt4378*.ptb");
2513 MODULE_FIRMWARE("brcm/brcmbt4387*.bin");
2514 MODULE_FIRMWARE("brcm/brcmbt4387*.ptb");
2515