xref: /linux/drivers/bluetooth/btintel_pcie.c (revision f694f30e81c4ade358eb8c75273bac1a48f0cb8f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Bluetooth support for Intel PCIe devices
5  *
6  *  Copyright (C) 2024  Intel Corporation
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/firmware.h>
12 #include <linux/pci.h>
13 #include <linux/wait.h>
14 #include <linux/delay.h>
15 #include <linux/interrupt.h>
16 
17 #include <linux/unaligned.h>
18 
19 #include <net/bluetooth/bluetooth.h>
20 #include <net/bluetooth/hci_core.h>
21 
22 #include "btintel.h"
23 #include "btintel_pcie.h"
24 
25 #define VERSION "0.1"
26 
27 #define BTINTEL_PCI_DEVICE(dev, subdev)	\
28 	.vendor = PCI_VENDOR_ID_INTEL,	\
29 	.device = (dev),		\
30 	.subvendor = PCI_ANY_ID,	\
31 	.subdevice = (subdev),		\
32 	.driver_data = 0
33 
34 #define POLL_INTERVAL_US	10
35 
36 /* Intel Bluetooth PCIe device id table */
37 static const struct pci_device_id btintel_pcie_table[] = {
38 	{ BTINTEL_PCI_DEVICE(0xA876, PCI_ANY_ID) },
39 	{ BTINTEL_PCI_DEVICE(0xE476, PCI_ANY_ID) },
40 	{ 0 }
41 };
42 MODULE_DEVICE_TABLE(pci, btintel_pcie_table);
43 
44 /* Intel PCIe uses 4 bytes of HCI type instead of 1 byte BT SIG HCI type */
45 #define BTINTEL_PCIE_HCI_TYPE_LEN	4
46 #define BTINTEL_PCIE_HCI_CMD_PKT	0x00000001
47 #define BTINTEL_PCIE_HCI_ACL_PKT	0x00000002
48 #define BTINTEL_PCIE_HCI_SCO_PKT	0x00000003
49 #define BTINTEL_PCIE_HCI_EVT_PKT	0x00000004
50 #define BTINTEL_PCIE_HCI_ISO_PKT	0x00000005
51 
52 #define BTINTEL_PCIE_MAGIC_NUM    0xA5A5A5A5
53 
54 #define BTINTEL_PCIE_BLZR_HWEXP_SIZE		1024
55 #define BTINTEL_PCIE_BLZR_HWEXP_DMP_ADDR	0xB00A7C00
56 
57 #define BTINTEL_PCIE_SCP_HWEXP_SIZE		4096
58 #define BTINTEL_PCIE_SCP_HWEXP_DMP_ADDR		0xB030F800
59 
60 #define BTINTEL_PCIE_MAGIC_NUM	0xA5A5A5A5
61 
62 #define BTINTEL_PCIE_TRIGGER_REASON_USER_TRIGGER	0x17A2
63 #define BTINTEL_PCIE_TRIGGER_REASON_FW_ASSERT		0x1E61
64 
65 /* Alive interrupt context */
66 enum {
67 	BTINTEL_PCIE_ROM,
68 	BTINTEL_PCIE_FW_DL,
69 	BTINTEL_PCIE_HCI_RESET,
70 	BTINTEL_PCIE_INTEL_HCI_RESET1,
71 	BTINTEL_PCIE_INTEL_HCI_RESET2,
72 	BTINTEL_PCIE_D0,
73 	BTINTEL_PCIE_D3
74 };
75 
76 /* Structure for dbgc fragment buffer
77  * @buf_addr_lsb: LSB of the buffer's physical address
78  * @buf_addr_msb: MSB of the buffer's physical address
79  * @buf_size: Total size of the buffer
80  */
81 struct btintel_pcie_dbgc_ctxt_buf {
82 	u32	buf_addr_lsb;
83 	u32	buf_addr_msb;
84 	u32	buf_size;
85 };
86 
87 /* Structure for dbgc fragment
88  * @magic_num: 0XA5A5A5A5
89  * @ver: For Driver-FW compatibility
90  * @total_size: Total size of the payload debug info
91  * @num_buf: Num of allocated debug bufs
92  * @bufs: All buffer's addresses and sizes
93  */
94 struct btintel_pcie_dbgc_ctxt {
95 	u32	magic_num;
96 	u32     ver;
97 	u32     total_size;
98 	u32     num_buf;
99 	struct btintel_pcie_dbgc_ctxt_buf bufs[BTINTEL_PCIE_DBGC_BUFFER_COUNT];
100 };
101 
102 /* This function initializes the memory for DBGC buffers and formats the
103  * DBGC fragment which consists header info and DBGC buffer's LSB, MSB and
104  * size as the payload
105  */
106 static int btintel_pcie_setup_dbgc(struct btintel_pcie_data *data)
107 {
108 	struct btintel_pcie_dbgc_ctxt db_frag;
109 	struct data_buf *buf;
110 	int i;
111 
112 	data->dbgc.count = BTINTEL_PCIE_DBGC_BUFFER_COUNT;
113 	data->dbgc.bufs = devm_kcalloc(&data->pdev->dev, data->dbgc.count,
114 				       sizeof(*buf), GFP_KERNEL);
115 	if (!data->dbgc.bufs)
116 		return -ENOMEM;
117 
118 	data->dbgc.buf_v_addr = dmam_alloc_coherent(&data->pdev->dev,
119 						    data->dbgc.count *
120 						    BTINTEL_PCIE_DBGC_BUFFER_SIZE,
121 						    &data->dbgc.buf_p_addr,
122 						    GFP_KERNEL | __GFP_NOWARN);
123 	if (!data->dbgc.buf_v_addr)
124 		return -ENOMEM;
125 
126 	data->dbgc.frag_v_addr = dmam_alloc_coherent(&data->pdev->dev,
127 						     sizeof(struct btintel_pcie_dbgc_ctxt),
128 						     &data->dbgc.frag_p_addr,
129 						     GFP_KERNEL | __GFP_NOWARN);
130 	if (!data->dbgc.frag_v_addr)
131 		return -ENOMEM;
132 
133 	data->dbgc.frag_size = sizeof(struct btintel_pcie_dbgc_ctxt);
134 
135 	db_frag.magic_num = BTINTEL_PCIE_MAGIC_NUM;
136 	db_frag.ver = BTINTEL_PCIE_DBGC_FRAG_VERSION;
137 	db_frag.total_size = BTINTEL_PCIE_DBGC_FRAG_PAYLOAD_SIZE;
138 	db_frag.num_buf = BTINTEL_PCIE_DBGC_FRAG_BUFFER_COUNT;
139 
140 	for (i = 0; i < data->dbgc.count; i++) {
141 		buf = &data->dbgc.bufs[i];
142 		buf->data_p_addr = data->dbgc.buf_p_addr + i * BTINTEL_PCIE_DBGC_BUFFER_SIZE;
143 		buf->data = data->dbgc.buf_v_addr + i * BTINTEL_PCIE_DBGC_BUFFER_SIZE;
144 		db_frag.bufs[i].buf_addr_lsb = lower_32_bits(buf->data_p_addr);
145 		db_frag.bufs[i].buf_addr_msb = upper_32_bits(buf->data_p_addr);
146 		db_frag.bufs[i].buf_size = BTINTEL_PCIE_DBGC_BUFFER_SIZE;
147 	}
148 
149 	memcpy(data->dbgc.frag_v_addr, &db_frag, sizeof(db_frag));
150 	return 0;
151 }
152 
153 static inline void ipc_print_ia_ring(struct hci_dev *hdev, struct ia *ia,
154 				     u16 queue_num)
155 {
156 	bt_dev_dbg(hdev, "IA: %s: tr-h:%02u  tr-t:%02u  cr-h:%02u  cr-t:%02u",
157 		   queue_num == BTINTEL_PCIE_TXQ_NUM ? "TXQ" : "RXQ",
158 		   ia->tr_hia[queue_num], ia->tr_tia[queue_num],
159 		   ia->cr_hia[queue_num], ia->cr_tia[queue_num]);
160 }
161 
162 static inline void ipc_print_urbd1(struct hci_dev *hdev, struct urbd1 *urbd1,
163 				   u16 index)
164 {
165 	bt_dev_dbg(hdev, "RXQ:urbd1(%u) frbd_tag:%u status: 0x%x fixed:0x%x",
166 		   index, urbd1->frbd_tag, urbd1->status, urbd1->fixed);
167 }
168 
169 static struct btintel_pcie_data *btintel_pcie_get_data(struct msix_entry *entry)
170 {
171 	u8 queue = entry->entry;
172 	struct msix_entry *entries = entry - queue;
173 
174 	return container_of(entries, struct btintel_pcie_data, msix_entries[0]);
175 }
176 
177 /* Set the doorbell for TXQ to notify the device that @index (actually index-1)
178  * of the TFD is updated and ready to transmit.
179  */
180 static void btintel_pcie_set_tx_db(struct btintel_pcie_data *data, u16 index)
181 {
182 	u32 val;
183 
184 	val = index;
185 	val |= (BTINTEL_PCIE_TX_DB_VEC << 16);
186 
187 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val);
188 }
189 
190 /* Copy the data to next(@tfd_index) data buffer and update the TFD(transfer
191  * descriptor) with the data length and the DMA address of the data buffer.
192  */
193 static void btintel_pcie_prepare_tx(struct txq *txq, u16 tfd_index,
194 				    struct sk_buff *skb)
195 {
196 	struct data_buf *buf;
197 	struct tfd *tfd;
198 
199 	tfd = &txq->tfds[tfd_index];
200 	memset(tfd, 0, sizeof(*tfd));
201 
202 	buf = &txq->bufs[tfd_index];
203 
204 	tfd->size = skb->len;
205 	tfd->addr = buf->data_p_addr;
206 
207 	/* Copy the outgoing data to DMA buffer */
208 	memcpy(buf->data, skb->data, tfd->size);
209 }
210 
211 static int btintel_pcie_send_sync(struct btintel_pcie_data *data,
212 				  struct sk_buff *skb)
213 {
214 	int ret;
215 	u16 tfd_index;
216 	struct txq *txq = &data->txq;
217 
218 	tfd_index = data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM];
219 
220 	if (tfd_index > txq->count)
221 		return -ERANGE;
222 
223 	/* Prepare for TX. It updates the TFD with the length of data and
224 	 * address of the DMA buffer, and copy the data to the DMA buffer
225 	 */
226 	btintel_pcie_prepare_tx(txq, tfd_index, skb);
227 
228 	tfd_index = (tfd_index + 1) % txq->count;
229 	data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM] = tfd_index;
230 
231 	/* Arm wait event condition */
232 	data->tx_wait_done = false;
233 
234 	/* Set the doorbell to notify the device */
235 	btintel_pcie_set_tx_db(data, tfd_index);
236 
237 	/* Wait for the complete interrupt - URBD0 */
238 	ret = wait_event_timeout(data->tx_wait_q, data->tx_wait_done,
239 				 msecs_to_jiffies(BTINTEL_PCIE_TX_WAIT_TIMEOUT_MS));
240 	if (!ret)
241 		return -ETIME;
242 
243 	return 0;
244 }
245 
246 /* Set the doorbell for RXQ to notify the device that @index (actually index-1)
247  * is available to receive the data
248  */
249 static void btintel_pcie_set_rx_db(struct btintel_pcie_data *data, u16 index)
250 {
251 	u32 val;
252 
253 	val = index;
254 	val |= (BTINTEL_PCIE_RX_DB_VEC << 16);
255 
256 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val);
257 }
258 
259 /* Update the FRBD (free buffer descriptor) with the @frbd_index and the
260  * DMA address of the free buffer.
261  */
262 static void btintel_pcie_prepare_rx(struct rxq *rxq, u16 frbd_index)
263 {
264 	struct data_buf *buf;
265 	struct frbd *frbd;
266 
267 	/* Get the buffer of the FRBD for DMA */
268 	buf = &rxq->bufs[frbd_index];
269 
270 	frbd = &rxq->frbds[frbd_index];
271 	memset(frbd, 0, sizeof(*frbd));
272 
273 	/* Update FRBD */
274 	frbd->tag = frbd_index;
275 	frbd->addr = buf->data_p_addr;
276 }
277 
278 static int btintel_pcie_submit_rx(struct btintel_pcie_data *data)
279 {
280 	u16 frbd_index;
281 	struct rxq *rxq = &data->rxq;
282 
283 	frbd_index = data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM];
284 
285 	if (frbd_index > rxq->count)
286 		return -ERANGE;
287 
288 	/* Prepare for RX submit. It updates the FRBD with the address of DMA
289 	 * buffer
290 	 */
291 	btintel_pcie_prepare_rx(rxq, frbd_index);
292 
293 	frbd_index = (frbd_index + 1) % rxq->count;
294 	data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM] = frbd_index;
295 	ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM);
296 
297 	/* Set the doorbell to notify the device */
298 	btintel_pcie_set_rx_db(data, frbd_index);
299 
300 	return 0;
301 }
302 
303 static int btintel_pcie_start_rx(struct btintel_pcie_data *data)
304 {
305 	int i, ret;
306 
307 	for (i = 0; i < BTINTEL_PCIE_RX_MAX_QUEUE; i++) {
308 		ret = btintel_pcie_submit_rx(data);
309 		if (ret)
310 			return ret;
311 	}
312 
313 	return 0;
314 }
315 
316 static void btintel_pcie_reset_ia(struct btintel_pcie_data *data)
317 {
318 	memset(data->ia.tr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
319 	memset(data->ia.tr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
320 	memset(data->ia.cr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
321 	memset(data->ia.cr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
322 }
323 
324 static int btintel_pcie_reset_bt(struct btintel_pcie_data *data)
325 {
326 	u32 reg;
327 	int retry = 3;
328 
329 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
330 
331 	reg &= ~(BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA |
332 			BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT |
333 			BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT);
334 	reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_BUS_MASTER_DISCON;
335 
336 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg);
337 
338 	do {
339 		reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
340 		if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_BUS_MASTER_STS)
341 			break;
342 		usleep_range(10000, 12000);
343 
344 	} while (--retry > 0);
345 	usleep_range(10000, 12000);
346 
347 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
348 
349 	reg &= ~(BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA |
350 			BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT |
351 			BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT);
352 	reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET;
353 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg);
354 	usleep_range(10000, 12000);
355 
356 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
357 	bt_dev_dbg(data->hdev, "csr register after reset: 0x%8.8x", reg);
358 
359 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_BOOT_STAGE_REG);
360 
361 	/* If shared hardware reset is success then boot stage register shall be
362 	 * set to 0
363 	 */
364 	return reg == 0 ? 0 : -ENODEV;
365 }
366 
367 static void btintel_pcie_mac_init(struct btintel_pcie_data *data)
368 {
369 	u32 reg;
370 
371 	/* Set MAC_INIT bit to start primary bootloader */
372 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
373 	reg &= ~(BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT |
374 			BTINTEL_PCIE_CSR_FUNC_CTRL_BUS_MASTER_DISCON |
375 			BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET);
376 	reg |= (BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA |
377 			BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT);
378 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg);
379 }
380 
381 static int btintel_pcie_add_dmp_data(struct hci_dev *hdev, const void *data, int size)
382 {
383 	struct sk_buff *skb;
384 	int err;
385 
386 	skb = alloc_skb(size, GFP_ATOMIC);
387 	if (!skb)
388 		return -ENOMEM;
389 
390 	skb_put_data(skb, data, size);
391 	err = hci_devcd_append(hdev, skb);
392 	if (err) {
393 		bt_dev_err(hdev, "Failed to append data in the coredump");
394 		return err;
395 	}
396 
397 	return 0;
398 }
399 
400 static int btintel_pcie_get_mac_access(struct btintel_pcie_data *data)
401 {
402 	u32 reg;
403 	int retry = 15;
404 
405 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
406 
407 	reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_STOP_MAC_ACCESS_DIS;
408 	reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_XTAL_CLK_REQ;
409 	if ((reg & BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS) == 0)
410 		reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_REQ;
411 
412 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg);
413 
414 	do {
415 		reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
416 		if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS)
417 			return 0;
418 		/* Need delay here for Target Access harwdware to settle down*/
419 		usleep_range(1000, 1200);
420 
421 	} while (--retry > 0);
422 
423 	return -ETIME;
424 }
425 
426 static void btintel_pcie_release_mac_access(struct btintel_pcie_data *data)
427 {
428 	u32 reg;
429 
430 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
431 
432 	if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_REQ)
433 		reg &= ~BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_REQ;
434 
435 	if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_STOP_MAC_ACCESS_DIS)
436 		reg &= ~BTINTEL_PCIE_CSR_FUNC_CTRL_STOP_MAC_ACCESS_DIS;
437 
438 	if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_XTAL_CLK_REQ)
439 		reg &= ~BTINTEL_PCIE_CSR_FUNC_CTRL_XTAL_CLK_REQ;
440 
441 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg);
442 }
443 
444 static void btintel_pcie_copy_tlv(struct sk_buff *skb, enum btintel_pcie_tlv_type type,
445 				  void *data, int size)
446 {
447 	struct intel_tlv *tlv;
448 
449 	tlv = skb_put(skb, sizeof(*tlv) + size);
450 	tlv->type = type;
451 	tlv->len = size;
452 	memcpy(tlv->val, data, tlv->len);
453 }
454 
455 static int btintel_pcie_read_dram_buffers(struct btintel_pcie_data *data)
456 {
457 	u32 offset, prev_size, wr_ptr_status, dump_size, i;
458 	struct btintel_pcie_dbgc *dbgc = &data->dbgc;
459 	u8 buf_idx, dump_time_len, fw_build;
460 	struct hci_dev *hdev = data->hdev;
461 	struct intel_tlv *tlv;
462 	struct timespec64 now;
463 	struct sk_buff *skb;
464 	struct tm tm_now;
465 	char buf[256];
466 	u16 hdr_len;
467 	int ret;
468 
469 	wr_ptr_status = btintel_pcie_rd_dev_mem(data, BTINTEL_PCIE_DBGC_CUR_DBGBUFF_STATUS);
470 	offset = wr_ptr_status & BTINTEL_PCIE_DBG_OFFSET_BIT_MASK;
471 
472 	buf_idx = BTINTEL_PCIE_DBGC_DBG_BUF_IDX(wr_ptr_status);
473 	if (buf_idx > dbgc->count) {
474 		bt_dev_warn(hdev, "Buffer index is invalid");
475 		return -EINVAL;
476 	}
477 
478 	prev_size = buf_idx * BTINTEL_PCIE_DBGC_BUFFER_SIZE;
479 	if (prev_size + offset >= prev_size)
480 		data->dmp_hdr.write_ptr = prev_size + offset;
481 	else
482 		return -EINVAL;
483 
484 	ktime_get_real_ts64(&now);
485 	time64_to_tm(now.tv_sec, 0, &tm_now);
486 	dump_time_len = snprintf(buf, sizeof(buf), "Dump Time: %02d-%02d-%04ld %02d:%02d:%02d",
487 				 tm_now.tm_mday, tm_now.tm_mon + 1, tm_now.tm_year + 1900,
488 				 tm_now.tm_hour, tm_now.tm_min, tm_now.tm_sec);
489 
490 	fw_build = snprintf(buf + dump_time_len, sizeof(buf) - dump_time_len,
491 			    "Firmware Timestamp: Year %u WW %02u buildtype %u build %u",
492 			    2000 + (data->dmp_hdr.fw_timestamp >> 8),
493 			    data->dmp_hdr.fw_timestamp & 0xff, data->dmp_hdr.fw_build_type,
494 			    data->dmp_hdr.fw_build_num);
495 
496 	hdr_len = sizeof(*tlv) + sizeof(data->dmp_hdr.cnvi_bt) +
497 		  sizeof(*tlv) + sizeof(data->dmp_hdr.write_ptr) +
498 		  sizeof(*tlv) + sizeof(data->dmp_hdr.wrap_ctr) +
499 		  sizeof(*tlv) + sizeof(data->dmp_hdr.trigger_reason) +
500 		  sizeof(*tlv) + sizeof(data->dmp_hdr.fw_git_sha1) +
501 		  sizeof(*tlv) + sizeof(data->dmp_hdr.cnvr_top) +
502 		  sizeof(*tlv) + sizeof(data->dmp_hdr.cnvi_top) +
503 		  sizeof(*tlv) + dump_time_len +
504 		  sizeof(*tlv) + fw_build;
505 
506 	dump_size = hdr_len + sizeof(hdr_len);
507 
508 	skb = alloc_skb(dump_size, GFP_KERNEL);
509 	if (!skb)
510 		return -ENOMEM;
511 
512 	/* Add debug buffers data length to dump size */
513 	dump_size += BTINTEL_PCIE_DBGC_BUFFER_SIZE * dbgc->count;
514 
515 	ret = hci_devcd_init(hdev, dump_size);
516 	if (ret) {
517 		bt_dev_err(hdev, "Failed to init devcoredump, err %d", ret);
518 		kfree_skb(skb);
519 		return ret;
520 	}
521 
522 	skb_put_data(skb, &hdr_len, sizeof(hdr_len));
523 
524 	btintel_pcie_copy_tlv(skb, BTINTEL_CNVI_BT, &data->dmp_hdr.cnvi_bt,
525 			      sizeof(data->dmp_hdr.cnvi_bt));
526 
527 	btintel_pcie_copy_tlv(skb, BTINTEL_WRITE_PTR, &data->dmp_hdr.write_ptr,
528 			      sizeof(data->dmp_hdr.write_ptr));
529 
530 	data->dmp_hdr.wrap_ctr = btintel_pcie_rd_dev_mem(data,
531 							 BTINTEL_PCIE_DBGC_DBGBUFF_WRAP_ARND);
532 
533 	btintel_pcie_copy_tlv(skb, BTINTEL_WRAP_CTR, &data->dmp_hdr.wrap_ctr,
534 			      sizeof(data->dmp_hdr.wrap_ctr));
535 
536 	btintel_pcie_copy_tlv(skb, BTINTEL_TRIGGER_REASON, &data->dmp_hdr.trigger_reason,
537 			      sizeof(data->dmp_hdr.trigger_reason));
538 
539 	btintel_pcie_copy_tlv(skb, BTINTEL_FW_SHA, &data->dmp_hdr.fw_git_sha1,
540 			      sizeof(data->dmp_hdr.fw_git_sha1));
541 
542 	btintel_pcie_copy_tlv(skb, BTINTEL_CNVR_TOP, &data->dmp_hdr.cnvr_top,
543 			      sizeof(data->dmp_hdr.cnvr_top));
544 
545 	btintel_pcie_copy_tlv(skb, BTINTEL_CNVI_TOP, &data->dmp_hdr.cnvi_top,
546 			      sizeof(data->dmp_hdr.cnvi_top));
547 
548 	btintel_pcie_copy_tlv(skb, BTINTEL_DUMP_TIME, buf, dump_time_len);
549 
550 	btintel_pcie_copy_tlv(skb, BTINTEL_FW_BUILD, buf + dump_time_len, fw_build);
551 
552 	ret = hci_devcd_append(hdev, skb);
553 	if (ret)
554 		goto exit_err;
555 
556 	for (i = 0; i < dbgc->count; i++) {
557 		ret = btintel_pcie_add_dmp_data(hdev, dbgc->bufs[i].data,
558 						BTINTEL_PCIE_DBGC_BUFFER_SIZE);
559 		if (ret)
560 			break;
561 	}
562 
563 exit_err:
564 	hci_devcd_complete(hdev);
565 	return ret;
566 }
567 
568 static void btintel_pcie_dump_traces(struct hci_dev *hdev)
569 {
570 	struct btintel_pcie_data *data = hci_get_drvdata(hdev);
571 	int ret = 0;
572 
573 	ret = btintel_pcie_get_mac_access(data);
574 	if (ret) {
575 		bt_dev_err(hdev, "Failed to get mac access: (%d)", ret);
576 		return;
577 	}
578 
579 	ret = btintel_pcie_read_dram_buffers(data);
580 
581 	btintel_pcie_release_mac_access(data);
582 
583 	if (ret)
584 		bt_dev_err(hdev, "Failed to dump traces: (%d)", ret);
585 }
586 
587 static void btintel_pcie_dump_hdr(struct hci_dev *hdev, struct sk_buff *skb)
588 {
589 	struct btintel_pcie_data *data = hci_get_drvdata(hdev);
590 	u16 len = skb->len;
591 	u16 *hdrlen_ptr;
592 	char buf[80];
593 
594 	hdrlen_ptr = skb_put_zero(skb, sizeof(len));
595 
596 	snprintf(buf, sizeof(buf), "Controller Name: 0x%X\n",
597 		 INTEL_HW_VARIANT(data->dmp_hdr.cnvi_bt));
598 	skb_put_data(skb, buf, strlen(buf));
599 
600 	snprintf(buf, sizeof(buf), "Firmware Build Number: %u\n",
601 		 data->dmp_hdr.fw_build_num);
602 	skb_put_data(skb, buf, strlen(buf));
603 
604 	snprintf(buf, sizeof(buf), "Driver: %s\n", data->dmp_hdr.driver_name);
605 	skb_put_data(skb, buf, strlen(buf));
606 
607 	snprintf(buf, sizeof(buf), "Vendor: Intel\n");
608 	skb_put_data(skb, buf, strlen(buf));
609 
610 	*hdrlen_ptr = skb->len - len;
611 }
612 
613 static void btintel_pcie_dump_notify(struct hci_dev *hdev, int state)
614 {
615 	struct btintel_pcie_data *data = hci_get_drvdata(hdev);
616 
617 	switch (state) {
618 	case HCI_DEVCOREDUMP_IDLE:
619 		data->dmp_hdr.state = HCI_DEVCOREDUMP_IDLE;
620 		break;
621 	case HCI_DEVCOREDUMP_ACTIVE:
622 		data->dmp_hdr.state = HCI_DEVCOREDUMP_ACTIVE;
623 		break;
624 	case HCI_DEVCOREDUMP_TIMEOUT:
625 	case HCI_DEVCOREDUMP_ABORT:
626 	case HCI_DEVCOREDUMP_DONE:
627 		data->dmp_hdr.state = HCI_DEVCOREDUMP_IDLE;
628 		break;
629 	}
630 }
631 
632 /* This function enables BT function by setting BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT bit in
633  * BTINTEL_PCIE_CSR_FUNC_CTRL_REG register and wait for MSI-X with
634  * BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0.
635  * Then the host reads firmware version from BTINTEL_CSR_F2D_MBX and the boot stage
636  * from BTINTEL_PCIE_CSR_BOOT_STAGE_REG.
637  */
638 static int btintel_pcie_enable_bt(struct btintel_pcie_data *data)
639 {
640 	int err;
641 	u32 reg;
642 
643 	data->gp0_received = false;
644 
645 	/* Update the DMA address of CI struct to CSR */
646 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_LSB_REG,
647 			      data->ci_p_addr & 0xffffffff);
648 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_MSB_REG,
649 			      (u64)data->ci_p_addr >> 32);
650 
651 	/* Reset the cached value of boot stage. it is updated by the MSI-X
652 	 * gp0 interrupt handler.
653 	 */
654 	data->boot_stage_cache = 0x0;
655 
656 	/* Set MAC_INIT bit to start primary bootloader */
657 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
658 	reg &= ~(BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT |
659 			BTINTEL_PCIE_CSR_FUNC_CTRL_BUS_MASTER_DISCON |
660 			BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET);
661 	reg |= (BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA |
662 			BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT);
663 
664 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg);
665 
666 	/* MAC is ready. Enable BT FUNC */
667 	btintel_pcie_set_reg_bits(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG,
668 				  BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT);
669 
670 	btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
671 
672 	/* wait for interrupt from the device after booting up to primary
673 	 * bootloader.
674 	 */
675 	data->alive_intr_ctxt = BTINTEL_PCIE_ROM;
676 	err = wait_event_timeout(data->gp0_wait_q, data->gp0_received,
677 				 msecs_to_jiffies(BTINTEL_DEFAULT_INTR_TIMEOUT_MS));
678 	if (!err)
679 		return -ETIME;
680 
681 	/* Check cached boot stage is BTINTEL_PCIE_CSR_BOOT_STAGE_ROM(BIT(0)) */
682 	if (~data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_ROM)
683 		return -ENODEV;
684 
685 	return 0;
686 }
687 
688 static inline bool btintel_pcie_in_op(struct btintel_pcie_data *data)
689 {
690 	return data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_OPFW;
691 }
692 
693 static inline bool btintel_pcie_in_iml(struct btintel_pcie_data *data)
694 {
695 	return data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_IML &&
696 		!(data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_OPFW);
697 }
698 
699 static inline bool btintel_pcie_in_d3(struct btintel_pcie_data *data)
700 {
701 	return data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_D3_STATE_READY;
702 }
703 
704 static inline bool btintel_pcie_in_d0(struct btintel_pcie_data *data)
705 {
706 	return !(data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_D3_STATE_READY);
707 }
708 
709 static void btintel_pcie_wr_sleep_cntrl(struct btintel_pcie_data *data,
710 					u32 dxstate)
711 {
712 	bt_dev_dbg(data->hdev, "writing sleep_ctl_reg: 0x%8.8x", dxstate);
713 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_IPC_SLEEP_CTL_REG, dxstate);
714 }
715 
716 static inline char *btintel_pcie_alivectxt_state2str(u32 alive_intr_ctxt)
717 {
718 	switch (alive_intr_ctxt) {
719 	case BTINTEL_PCIE_ROM:
720 		return "rom";
721 	case BTINTEL_PCIE_FW_DL:
722 		return "fw_dl";
723 	case BTINTEL_PCIE_D0:
724 		return "d0";
725 	case BTINTEL_PCIE_D3:
726 		return "d3";
727 	case BTINTEL_PCIE_HCI_RESET:
728 		return "hci_reset";
729 	case BTINTEL_PCIE_INTEL_HCI_RESET1:
730 		return "intel_reset1";
731 	case BTINTEL_PCIE_INTEL_HCI_RESET2:
732 		return "intel_reset2";
733 	default:
734 		return "unknown";
735 	}
736 }
737 
738 static int btintel_pcie_read_device_mem(struct btintel_pcie_data *data,
739 					void *buf, u32 dev_addr, int len)
740 {
741 	int err;
742 	u32 *val = buf;
743 
744 	/* Get device mac access */
745 	err = btintel_pcie_get_mac_access(data);
746 	if (err) {
747 		bt_dev_err(data->hdev, "Failed to get mac access %d", err);
748 		return err;
749 	}
750 
751 	for (; len > 0; len -= 4, dev_addr += 4, val++)
752 		*val = btintel_pcie_rd_dev_mem(data, dev_addr);
753 
754 	btintel_pcie_release_mac_access(data);
755 
756 	return 0;
757 }
758 
759 /* This function handles the MSI-X interrupt for gp0 cause (bit 0 in
760  * BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES) which is sent for boot stage and image response.
761  */
762 static void btintel_pcie_msix_gp0_handler(struct btintel_pcie_data *data)
763 {
764 	bool submit_rx, signal_waitq;
765 	u32 reg, old_ctxt;
766 
767 	/* This interrupt is for three different causes and it is not easy to
768 	 * know what causes the interrupt. So, it compares each register value
769 	 * with cached value and update it before it wake up the queue.
770 	 */
771 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_BOOT_STAGE_REG);
772 	if (reg != data->boot_stage_cache)
773 		data->boot_stage_cache = reg;
774 
775 	bt_dev_dbg(data->hdev, "Alive context: %s old_boot_stage: 0x%8.8x new_boot_stage: 0x%8.8x",
776 		   btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt),
777 		   data->boot_stage_cache, reg);
778 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_IMG_RESPONSE_REG);
779 	if (reg != data->img_resp_cache)
780 		data->img_resp_cache = reg;
781 
782 	data->gp0_received = true;
783 
784 	old_ctxt = data->alive_intr_ctxt;
785 	submit_rx = false;
786 	signal_waitq = false;
787 
788 	switch (data->alive_intr_ctxt) {
789 	case BTINTEL_PCIE_ROM:
790 		data->alive_intr_ctxt = BTINTEL_PCIE_FW_DL;
791 		signal_waitq = true;
792 		break;
793 	case BTINTEL_PCIE_FW_DL:
794 		/* Error case is already handled. Ideally control shall not
795 		 * reach here
796 		 */
797 		break;
798 	case BTINTEL_PCIE_INTEL_HCI_RESET1:
799 		if (btintel_pcie_in_op(data)) {
800 			submit_rx = true;
801 			break;
802 		}
803 
804 		if (btintel_pcie_in_iml(data)) {
805 			submit_rx = true;
806 			data->alive_intr_ctxt = BTINTEL_PCIE_FW_DL;
807 			break;
808 		}
809 		break;
810 	case BTINTEL_PCIE_INTEL_HCI_RESET2:
811 		if (btintel_test_and_clear_flag(data->hdev, INTEL_WAIT_FOR_D0)) {
812 			btintel_wake_up_flag(data->hdev, INTEL_WAIT_FOR_D0);
813 			data->alive_intr_ctxt = BTINTEL_PCIE_D0;
814 		}
815 		break;
816 	case BTINTEL_PCIE_D0:
817 		if (btintel_pcie_in_d3(data)) {
818 			data->alive_intr_ctxt = BTINTEL_PCIE_D3;
819 			signal_waitq = true;
820 			break;
821 		}
822 		break;
823 	case BTINTEL_PCIE_D3:
824 		if (btintel_pcie_in_d0(data)) {
825 			data->alive_intr_ctxt = BTINTEL_PCIE_D0;
826 			submit_rx = true;
827 			signal_waitq = true;
828 			break;
829 		}
830 		break;
831 	case BTINTEL_PCIE_HCI_RESET:
832 		data->alive_intr_ctxt = BTINTEL_PCIE_D0;
833 		submit_rx = true;
834 		signal_waitq = true;
835 		break;
836 	default:
837 		bt_dev_err(data->hdev, "Unknown state: 0x%2.2x",
838 			   data->alive_intr_ctxt);
839 		break;
840 	}
841 
842 	if (submit_rx) {
843 		btintel_pcie_reset_ia(data);
844 		btintel_pcie_start_rx(data);
845 	}
846 
847 	if (signal_waitq) {
848 		bt_dev_dbg(data->hdev, "wake up gp0 wait_q");
849 		wake_up(&data->gp0_wait_q);
850 	}
851 
852 	if (old_ctxt != data->alive_intr_ctxt)
853 		bt_dev_dbg(data->hdev, "alive context changed: %s  ->  %s",
854 			   btintel_pcie_alivectxt_state2str(old_ctxt),
855 			   btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt));
856 }
857 
858 /* This function handles the MSX-X interrupt for rx queue 0 which is for TX
859  */
860 static void btintel_pcie_msix_tx_handle(struct btintel_pcie_data *data)
861 {
862 	u16 cr_tia, cr_hia;
863 	struct txq *txq;
864 	struct urbd0 *urbd0;
865 
866 	cr_tia = data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM];
867 	cr_hia = data->ia.cr_hia[BTINTEL_PCIE_TXQ_NUM];
868 
869 	if (cr_tia == cr_hia)
870 		return;
871 
872 	txq = &data->txq;
873 
874 	while (cr_tia != cr_hia) {
875 		data->tx_wait_done = true;
876 		wake_up(&data->tx_wait_q);
877 
878 		urbd0 = &txq->urbd0s[cr_tia];
879 
880 		if (urbd0->tfd_index > txq->count)
881 			return;
882 
883 		cr_tia = (cr_tia + 1) % txq->count;
884 		data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM] = cr_tia;
885 		ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_TXQ_NUM);
886 	}
887 }
888 
889 static int btintel_pcie_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
890 {
891 	struct hci_event_hdr *hdr = (void *)skb->data;
892 	const char diagnostics_hdr[] = { 0x87, 0x80, 0x03 };
893 	struct btintel_pcie_data *data = hci_get_drvdata(hdev);
894 
895 	if (skb->len > HCI_EVENT_HDR_SIZE && hdr->evt == 0xff &&
896 	    hdr->plen > 0) {
897 		const void *ptr = skb->data + HCI_EVENT_HDR_SIZE + 1;
898 		unsigned int len = skb->len - HCI_EVENT_HDR_SIZE - 1;
899 
900 		if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
901 			switch (skb->data[2]) {
902 			case 0x02:
903 				/* When switching to the operational firmware
904 				 * the device sends a vendor specific event
905 				 * indicating that the bootup completed.
906 				 */
907 				btintel_bootup(hdev, ptr, len);
908 
909 				/* If bootup event is from operational image,
910 				 * driver needs to write sleep control register to
911 				 * move into D0 state
912 				 */
913 				if (btintel_pcie_in_op(data)) {
914 					btintel_pcie_wr_sleep_cntrl(data, BTINTEL_PCIE_STATE_D0);
915 					data->alive_intr_ctxt = BTINTEL_PCIE_INTEL_HCI_RESET2;
916 					kfree_skb(skb);
917 					return 0;
918 				}
919 
920 				if (btintel_pcie_in_iml(data)) {
921 					/* In case of IML, there is no concept
922 					 * of D0 transition. Just mimic as if
923 					 * IML moved to D0 by clearing INTEL_WAIT_FOR_D0
924 					 * bit and waking up the task waiting on
925 					 * INTEL_WAIT_FOR_D0. This is required
926 					 * as intel_boot() is common function for
927 					 * both IML and OP image loading.
928 					 */
929 					if (btintel_test_and_clear_flag(data->hdev,
930 									INTEL_WAIT_FOR_D0))
931 						btintel_wake_up_flag(data->hdev,
932 								     INTEL_WAIT_FOR_D0);
933 				}
934 				kfree_skb(skb);
935 				return 0;
936 			case 0x06:
937 				/* When the firmware loading completes the
938 				 * device sends out a vendor specific event
939 				 * indicating the result of the firmware
940 				 * loading.
941 				 */
942 				btintel_secure_send_result(hdev, ptr, len);
943 				kfree_skb(skb);
944 				return 0;
945 			}
946 		}
947 
948 		/* Handle all diagnostics events separately. May still call
949 		 * hci_recv_frame.
950 		 */
951 		if (len >= sizeof(diagnostics_hdr) &&
952 		    memcmp(&skb->data[2], diagnostics_hdr,
953 			   sizeof(diagnostics_hdr)) == 0) {
954 			return btintel_diagnostics(hdev, skb);
955 		}
956 
957 		/* This is a debug event that comes from IML and OP image when it
958 		 * starts execution. There is no need pass this event to stack.
959 		 */
960 		if (skb->data[2] == 0x97)
961 			return 0;
962 	}
963 
964 	return hci_recv_frame(hdev, skb);
965 }
966 /* Process the received rx data
967  * It check the frame header to identify the data type and create skb
968  * and calling HCI API
969  */
970 static int btintel_pcie_recv_frame(struct btintel_pcie_data *data,
971 				       struct sk_buff *skb)
972 {
973 	int ret;
974 	u8 pkt_type;
975 	u16 plen;
976 	u32 pcie_pkt_type;
977 	struct sk_buff *new_skb;
978 	void *pdata;
979 	struct hci_dev *hdev = data->hdev;
980 
981 	spin_lock(&data->hci_rx_lock);
982 
983 	/* The first 4 bytes indicates the Intel PCIe specific packet type */
984 	pdata = skb_pull_data(skb, BTINTEL_PCIE_HCI_TYPE_LEN);
985 	if (!pdata) {
986 		bt_dev_err(hdev, "Corrupted packet received");
987 		ret = -EILSEQ;
988 		goto exit_error;
989 	}
990 
991 	pcie_pkt_type = get_unaligned_le32(pdata);
992 
993 	switch (pcie_pkt_type) {
994 	case BTINTEL_PCIE_HCI_ACL_PKT:
995 		if (skb->len >= HCI_ACL_HDR_SIZE) {
996 			plen = HCI_ACL_HDR_SIZE + __le16_to_cpu(hci_acl_hdr(skb)->dlen);
997 			pkt_type = HCI_ACLDATA_PKT;
998 		} else {
999 			bt_dev_err(hdev, "ACL packet is too short");
1000 			ret = -EILSEQ;
1001 			goto exit_error;
1002 		}
1003 		break;
1004 
1005 	case BTINTEL_PCIE_HCI_SCO_PKT:
1006 		if (skb->len >= HCI_SCO_HDR_SIZE) {
1007 			plen = HCI_SCO_HDR_SIZE + hci_sco_hdr(skb)->dlen;
1008 			pkt_type = HCI_SCODATA_PKT;
1009 		} else {
1010 			bt_dev_err(hdev, "SCO packet is too short");
1011 			ret = -EILSEQ;
1012 			goto exit_error;
1013 		}
1014 		break;
1015 
1016 	case BTINTEL_PCIE_HCI_EVT_PKT:
1017 		if (skb->len >= HCI_EVENT_HDR_SIZE) {
1018 			plen = HCI_EVENT_HDR_SIZE + hci_event_hdr(skb)->plen;
1019 			pkt_type = HCI_EVENT_PKT;
1020 		} else {
1021 			bt_dev_err(hdev, "Event packet is too short");
1022 			ret = -EILSEQ;
1023 			goto exit_error;
1024 		}
1025 		break;
1026 
1027 	case BTINTEL_PCIE_HCI_ISO_PKT:
1028 		if (skb->len >= HCI_ISO_HDR_SIZE) {
1029 			plen = HCI_ISO_HDR_SIZE + __le16_to_cpu(hci_iso_hdr(skb)->dlen);
1030 			pkt_type = HCI_ISODATA_PKT;
1031 		} else {
1032 			bt_dev_err(hdev, "ISO packet is too short");
1033 			ret = -EILSEQ;
1034 			goto exit_error;
1035 		}
1036 		break;
1037 
1038 	default:
1039 		bt_dev_err(hdev, "Invalid packet type received: 0x%4.4x",
1040 			   pcie_pkt_type);
1041 		ret = -EINVAL;
1042 		goto exit_error;
1043 	}
1044 
1045 	if (skb->len < plen) {
1046 		bt_dev_err(hdev, "Received corrupted packet. type: 0x%2.2x",
1047 			   pkt_type);
1048 		ret = -EILSEQ;
1049 		goto exit_error;
1050 	}
1051 
1052 	bt_dev_dbg(hdev, "pkt_type: 0x%2.2x len: %u", pkt_type, plen);
1053 
1054 	new_skb = bt_skb_alloc(plen, GFP_ATOMIC);
1055 	if (!new_skb) {
1056 		bt_dev_err(hdev, "Failed to allocate memory for skb of len: %u",
1057 			   skb->len);
1058 		ret = -ENOMEM;
1059 		goto exit_error;
1060 	}
1061 
1062 	hci_skb_pkt_type(new_skb) = pkt_type;
1063 	skb_put_data(new_skb, skb->data, plen);
1064 	hdev->stat.byte_rx += plen;
1065 
1066 	if (pcie_pkt_type == BTINTEL_PCIE_HCI_EVT_PKT)
1067 		ret = btintel_pcie_recv_event(hdev, new_skb);
1068 	else
1069 		ret = hci_recv_frame(hdev, new_skb);
1070 
1071 exit_error:
1072 	if (ret)
1073 		hdev->stat.err_rx++;
1074 
1075 	spin_unlock(&data->hci_rx_lock);
1076 
1077 	return ret;
1078 }
1079 
1080 static void btintel_pcie_read_hwexp(struct btintel_pcie_data *data)
1081 {
1082 	int len, err, offset, pending;
1083 	struct sk_buff *skb;
1084 	u8 *buf, prefix[64];
1085 	u32 addr, val;
1086 	u16 pkt_len;
1087 
1088 	struct tlv {
1089 		u8	type;
1090 		__le16	len;
1091 		u8	val[];
1092 	} __packed;
1093 
1094 	struct tlv *tlv;
1095 
1096 	switch (data->dmp_hdr.cnvi_top & 0xfff) {
1097 	case BTINTEL_CNVI_BLAZARI:
1098 	case BTINTEL_CNVI_BLAZARIW:
1099 		/* only from step B0 onwards */
1100 		if (INTEL_CNVX_TOP_STEP(data->dmp_hdr.cnvi_top) != 0x01)
1101 			return;
1102 		len = BTINTEL_PCIE_BLZR_HWEXP_SIZE; /* exception data length */
1103 		addr = BTINTEL_PCIE_BLZR_HWEXP_DMP_ADDR;
1104 	break;
1105 	case BTINTEL_CNVI_SCP:
1106 		len = BTINTEL_PCIE_SCP_HWEXP_SIZE;
1107 		addr = BTINTEL_PCIE_SCP_HWEXP_DMP_ADDR;
1108 	break;
1109 	default:
1110 		bt_dev_err(data->hdev, "Unsupported cnvi 0x%8.8x", data->dmp_hdr.cnvi_top);
1111 		return;
1112 	}
1113 
1114 	buf = kzalloc(len, GFP_KERNEL);
1115 	if (!buf)
1116 		goto exit_on_error;
1117 
1118 	btintel_pcie_mac_init(data);
1119 
1120 	err = btintel_pcie_read_device_mem(data, buf, addr, len);
1121 	if (err)
1122 		goto exit_on_error;
1123 
1124 	val = get_unaligned_le32(buf);
1125 	if (val != BTINTEL_PCIE_MAGIC_NUM) {
1126 		bt_dev_err(data->hdev, "Invalid exception dump signature: 0x%8.8x",
1127 			   val);
1128 		goto exit_on_error;
1129 	}
1130 
1131 	snprintf(prefix, sizeof(prefix), "Bluetooth: %s: ", bt_dev_name(data->hdev));
1132 
1133 	offset = 4;
1134 	do {
1135 		pending = len - offset;
1136 		if (pending < sizeof(*tlv))
1137 			break;
1138 		tlv = (struct tlv *)(buf + offset);
1139 
1140 		/* If type == 0, then there are no more TLVs to be parsed */
1141 		if (!tlv->type) {
1142 			bt_dev_dbg(data->hdev, "Invalid TLV type 0");
1143 			break;
1144 		}
1145 		pkt_len = le16_to_cpu(tlv->len);
1146 		offset += sizeof(*tlv);
1147 		pending = len - offset;
1148 		if (pkt_len > pending)
1149 			break;
1150 
1151 		offset += pkt_len;
1152 
1153 		 /* Only TLVs of type == 1 are HCI events, no need to process other
1154 		  * TLVs
1155 		  */
1156 		if (tlv->type != 1)
1157 			continue;
1158 
1159 		bt_dev_dbg(data->hdev, "TLV packet length: %u", pkt_len);
1160 		if (pkt_len > HCI_MAX_EVENT_SIZE)
1161 			break;
1162 		skb = bt_skb_alloc(pkt_len, GFP_KERNEL);
1163 		if (!skb)
1164 			goto exit_on_error;
1165 		hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
1166 		skb_put_data(skb, tlv->val, pkt_len);
1167 
1168 		/* copy Intel specific pcie packet type */
1169 		val = BTINTEL_PCIE_HCI_EVT_PKT;
1170 		memcpy(skb_push(skb, BTINTEL_PCIE_HCI_TYPE_LEN), &val,
1171 		       BTINTEL_PCIE_HCI_TYPE_LEN);
1172 
1173 		print_hex_dump(KERN_DEBUG, prefix, DUMP_PREFIX_OFFSET, 16, 1,
1174 			       tlv->val, pkt_len, false);
1175 
1176 		btintel_pcie_recv_frame(data, skb);
1177 	} while (offset < len);
1178 
1179 exit_on_error:
1180 	kfree(buf);
1181 }
1182 
1183 static void btintel_pcie_msix_hw_exp_handler(struct btintel_pcie_data *data)
1184 {
1185 	bt_dev_err(data->hdev, "Received hw exception interrupt");
1186 
1187 	if (test_and_set_bit(BTINTEL_PCIE_CORE_HALTED, &data->flags))
1188 		return;
1189 
1190 	if (test_and_set_bit(BTINTEL_PCIE_HWEXP_INPROGRESS, &data->flags))
1191 		return;
1192 
1193 	/* Trigger device core dump when there is HW  exception */
1194 	if (!test_and_set_bit(BTINTEL_PCIE_COREDUMP_INPROGRESS, &data->flags))
1195 		data->dmp_hdr.trigger_reason = BTINTEL_PCIE_TRIGGER_REASON_FW_ASSERT;
1196 
1197 	queue_work(data->workqueue, &data->rx_work);
1198 }
1199 
1200 static void btintel_pcie_rx_work(struct work_struct *work)
1201 {
1202 	struct btintel_pcie_data *data = container_of(work,
1203 					struct btintel_pcie_data, rx_work);
1204 	struct sk_buff *skb;
1205 	int err;
1206 	struct hci_dev *hdev = data->hdev;
1207 
1208 	if (test_bit(BTINTEL_PCIE_HWEXP_INPROGRESS, &data->flags)) {
1209 		/* Unlike usb products, controller will not send hardware
1210 		 * exception event on exception. Instead controller writes the
1211 		 * hardware event to device memory along with optional debug
1212 		 * events, raises MSIX and halts. Driver shall read the
1213 		 * exception event from device memory and passes it stack for
1214 		 * further processing.
1215 		 */
1216 		btintel_pcie_read_hwexp(data);
1217 		clear_bit(BTINTEL_PCIE_HWEXP_INPROGRESS, &data->flags);
1218 	}
1219 
1220 	if (test_bit(BTINTEL_PCIE_COREDUMP_INPROGRESS, &data->flags)) {
1221 		btintel_pcie_dump_traces(data->hdev);
1222 		clear_bit(BTINTEL_PCIE_COREDUMP_INPROGRESS, &data->flags);
1223 	}
1224 
1225 	/* Process the sk_buf in queue and send to the HCI layer */
1226 	while ((skb = skb_dequeue(&data->rx_skb_q))) {
1227 		err = btintel_pcie_recv_frame(data, skb);
1228 		if (err)
1229 			bt_dev_err(hdev, "Failed to send received frame: %d",
1230 				   err);
1231 		kfree_skb(skb);
1232 	}
1233 }
1234 
1235 /* create sk_buff with data and save it to queue and start RX work */
1236 static int btintel_pcie_submit_rx_work(struct btintel_pcie_data *data, u8 status,
1237 				       void *buf)
1238 {
1239 	int ret, len;
1240 	struct rfh_hdr *rfh_hdr;
1241 	struct sk_buff *skb;
1242 
1243 	rfh_hdr = buf;
1244 
1245 	len = rfh_hdr->packet_len;
1246 	if (len <= 0) {
1247 		ret = -EINVAL;
1248 		goto resubmit;
1249 	}
1250 
1251 	/* Remove RFH header */
1252 	buf += sizeof(*rfh_hdr);
1253 
1254 	skb = alloc_skb(len, GFP_ATOMIC);
1255 	if (!skb)
1256 		goto resubmit;
1257 
1258 	skb_put_data(skb, buf, len);
1259 	skb_queue_tail(&data->rx_skb_q, skb);
1260 	queue_work(data->workqueue, &data->rx_work);
1261 
1262 resubmit:
1263 	ret = btintel_pcie_submit_rx(data);
1264 
1265 	return ret;
1266 }
1267 
1268 /* Handles the MSI-X interrupt for rx queue 1 which is for RX */
1269 static void btintel_pcie_msix_rx_handle(struct btintel_pcie_data *data)
1270 {
1271 	u16 cr_hia, cr_tia;
1272 	struct rxq *rxq;
1273 	struct urbd1 *urbd1;
1274 	struct data_buf *buf;
1275 	int ret;
1276 	struct hci_dev *hdev = data->hdev;
1277 
1278 	cr_hia = data->ia.cr_hia[BTINTEL_PCIE_RXQ_NUM];
1279 	cr_tia = data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM];
1280 
1281 	bt_dev_dbg(hdev, "RXQ: cr_hia: %u  cr_tia: %u", cr_hia, cr_tia);
1282 
1283 	/* Check CR_TIA and CR_HIA for change */
1284 	if (cr_tia == cr_hia) {
1285 		bt_dev_warn(hdev, "RXQ: no new CD found");
1286 		return;
1287 	}
1288 
1289 	rxq = &data->rxq;
1290 
1291 	/* The firmware sends multiple CD in a single MSI-X and it needs to
1292 	 * process all received CDs in this interrupt.
1293 	 */
1294 	while (cr_tia != cr_hia) {
1295 		urbd1 = &rxq->urbd1s[cr_tia];
1296 		ipc_print_urbd1(data->hdev, urbd1, cr_tia);
1297 
1298 		buf = &rxq->bufs[urbd1->frbd_tag];
1299 		if (!buf) {
1300 			bt_dev_err(hdev, "RXQ: failed to get the DMA buffer for %d",
1301 				   urbd1->frbd_tag);
1302 			return;
1303 		}
1304 
1305 		ret = btintel_pcie_submit_rx_work(data, urbd1->status,
1306 						  buf->data);
1307 		if (ret) {
1308 			bt_dev_err(hdev, "RXQ: failed to submit rx request");
1309 			return;
1310 		}
1311 
1312 		cr_tia = (cr_tia + 1) % rxq->count;
1313 		data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM] = cr_tia;
1314 		ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM);
1315 	}
1316 }
1317 
1318 static irqreturn_t btintel_pcie_msix_isr(int irq, void *data)
1319 {
1320 	return IRQ_WAKE_THREAD;
1321 }
1322 
1323 static irqreturn_t btintel_pcie_irq_msix_handler(int irq, void *dev_id)
1324 {
1325 	struct msix_entry *entry = dev_id;
1326 	struct btintel_pcie_data *data = btintel_pcie_get_data(entry);
1327 	u32 intr_fh, intr_hw;
1328 
1329 	spin_lock(&data->irq_lock);
1330 	intr_fh = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES);
1331 	intr_hw = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES);
1332 
1333 	/* Clear causes registers to avoid being handling the same cause */
1334 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES, intr_fh);
1335 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES, intr_hw);
1336 	spin_unlock(&data->irq_lock);
1337 
1338 	if (unlikely(!(intr_fh | intr_hw))) {
1339 		/* Ignore interrupt, inta == 0 */
1340 		return IRQ_NONE;
1341 	}
1342 
1343 	/* This interrupt is raised when there is an hardware exception */
1344 	if (intr_hw & BTINTEL_PCIE_MSIX_HW_INT_CAUSES_HWEXP)
1345 		btintel_pcie_msix_hw_exp_handler(data);
1346 
1347 	/* This interrupt is triggered by the firmware after updating
1348 	 * boot_stage register and image_response register
1349 	 */
1350 	if (intr_hw & BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0)
1351 		btintel_pcie_msix_gp0_handler(data);
1352 
1353 	/* For TX */
1354 	if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0)
1355 		btintel_pcie_msix_tx_handle(data);
1356 
1357 	/* For RX */
1358 	if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1)
1359 		btintel_pcie_msix_rx_handle(data);
1360 
1361 	/*
1362 	 * Before sending the interrupt the HW disables it to prevent a nested
1363 	 * interrupt. This is done by writing 1 to the corresponding bit in
1364 	 * the mask register. After handling the interrupt, it should be
1365 	 * re-enabled by clearing this bit. This register is defined as write 1
1366 	 * clear (W1C) register, meaning that it's cleared by writing 1
1367 	 * to the bit.
1368 	 */
1369 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_AUTOMASK_ST,
1370 			      BIT(entry->entry));
1371 
1372 	return IRQ_HANDLED;
1373 }
1374 
1375 /* This function requests the irq for MSI-X and registers the handlers per irq.
1376  * Currently, it requests only 1 irq for all interrupt causes.
1377  */
1378 static int btintel_pcie_setup_irq(struct btintel_pcie_data *data)
1379 {
1380 	int err;
1381 	int num_irqs, i;
1382 
1383 	for (i = 0; i < BTINTEL_PCIE_MSIX_VEC_MAX; i++)
1384 		data->msix_entries[i].entry = i;
1385 
1386 	num_irqs = pci_alloc_irq_vectors(data->pdev, BTINTEL_PCIE_MSIX_VEC_MIN,
1387 					 BTINTEL_PCIE_MSIX_VEC_MAX, PCI_IRQ_MSIX);
1388 	if (num_irqs < 0)
1389 		return num_irqs;
1390 
1391 	data->alloc_vecs = num_irqs;
1392 	data->msix_enabled = 1;
1393 	data->def_irq = 0;
1394 
1395 	/* setup irq handler */
1396 	for (i = 0; i < data->alloc_vecs; i++) {
1397 		struct msix_entry *msix_entry;
1398 
1399 		msix_entry = &data->msix_entries[i];
1400 		msix_entry->vector = pci_irq_vector(data->pdev, i);
1401 
1402 		err = devm_request_threaded_irq(&data->pdev->dev,
1403 						msix_entry->vector,
1404 						btintel_pcie_msix_isr,
1405 						btintel_pcie_irq_msix_handler,
1406 						IRQF_SHARED,
1407 						KBUILD_MODNAME,
1408 						msix_entry);
1409 		if (err) {
1410 			pci_free_irq_vectors(data->pdev);
1411 			data->alloc_vecs = 0;
1412 			return err;
1413 		}
1414 	}
1415 	return 0;
1416 }
1417 
1418 struct btintel_pcie_causes_list {
1419 	u32 cause;
1420 	u32 mask_reg;
1421 	u8 cause_num;
1422 };
1423 
1424 static struct btintel_pcie_causes_list causes_list[] = {
1425 	{ BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0,	BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK,	0x00 },
1426 	{ BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1,	BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK,	0x01 },
1427 	{ BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0,	BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK,	0x20 },
1428 	{ BTINTEL_PCIE_MSIX_HW_INT_CAUSES_HWEXP, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK,	0x23 },
1429 };
1430 
1431 /* This function configures the interrupt masks for both HW_INT_CAUSES and
1432  * FH_INT_CAUSES which are meaningful to us.
1433  *
1434  * After resetting BT function via PCIE FLR or FUNC_CTRL reset, the driver
1435  * need to call this function again to configure since the masks
1436  * are reset to 0xFFFFFFFF after reset.
1437  */
1438 static void btintel_pcie_config_msix(struct btintel_pcie_data *data)
1439 {
1440 	int i;
1441 	int val = data->def_irq | BTINTEL_PCIE_MSIX_NON_AUTO_CLEAR_CAUSE;
1442 
1443 	/* Set Non Auto Clear Cause */
1444 	for (i = 0; i < ARRAY_SIZE(causes_list); i++) {
1445 		btintel_pcie_wr_reg8(data,
1446 				     BTINTEL_PCIE_CSR_MSIX_IVAR(causes_list[i].cause_num),
1447 				     val);
1448 		btintel_pcie_clr_reg_bits(data,
1449 					  causes_list[i].mask_reg,
1450 					  causes_list[i].cause);
1451 	}
1452 
1453 	/* Save the initial interrupt mask */
1454 	data->fh_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK);
1455 	data->hw_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK);
1456 }
1457 
1458 static int btintel_pcie_config_pcie(struct pci_dev *pdev,
1459 				    struct btintel_pcie_data *data)
1460 {
1461 	int err;
1462 
1463 	err = pcim_enable_device(pdev);
1464 	if (err)
1465 		return err;
1466 
1467 	pci_set_master(pdev);
1468 
1469 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1470 	if (err) {
1471 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1472 		if (err)
1473 			return err;
1474 	}
1475 
1476 	data->base_addr = pcim_iomap_region(pdev, 0, KBUILD_MODNAME);
1477 	if (IS_ERR(data->base_addr))
1478 		return PTR_ERR(data->base_addr);
1479 
1480 	err = btintel_pcie_setup_irq(data);
1481 	if (err)
1482 		return err;
1483 
1484 	/* Configure MSI-X with causes list */
1485 	btintel_pcie_config_msix(data);
1486 
1487 	return 0;
1488 }
1489 
1490 static void btintel_pcie_init_ci(struct btintel_pcie_data *data,
1491 				 struct ctx_info *ci)
1492 {
1493 	ci->version = 0x1;
1494 	ci->size = sizeof(*ci);
1495 	ci->config = 0x0000;
1496 	ci->addr_cr_hia = data->ia.cr_hia_p_addr;
1497 	ci->addr_tr_tia = data->ia.tr_tia_p_addr;
1498 	ci->addr_cr_tia = data->ia.cr_tia_p_addr;
1499 	ci->addr_tr_hia = data->ia.tr_hia_p_addr;
1500 	ci->num_cr_ia = BTINTEL_PCIE_NUM_QUEUES;
1501 	ci->num_tr_ia = BTINTEL_PCIE_NUM_QUEUES;
1502 	ci->addr_urbdq0 = data->txq.urbd0s_p_addr;
1503 	ci->addr_tfdq = data->txq.tfds_p_addr;
1504 	ci->num_tfdq = data->txq.count;
1505 	ci->num_urbdq0 = data->txq.count;
1506 	ci->tfdq_db_vec = BTINTEL_PCIE_TXQ_NUM;
1507 	ci->urbdq0_db_vec = BTINTEL_PCIE_TXQ_NUM;
1508 	ci->rbd_size = BTINTEL_PCIE_RBD_SIZE_4K;
1509 	ci->addr_frbdq = data->rxq.frbds_p_addr;
1510 	ci->num_frbdq = data->rxq.count;
1511 	ci->frbdq_db_vec = BTINTEL_PCIE_RXQ_NUM;
1512 	ci->addr_urbdq1 = data->rxq.urbd1s_p_addr;
1513 	ci->num_urbdq1 = data->rxq.count;
1514 	ci->urbdq_db_vec = BTINTEL_PCIE_RXQ_NUM;
1515 
1516 	ci->dbg_output_mode = 0x01;
1517 	ci->dbgc_addr = data->dbgc.frag_p_addr;
1518 	ci->dbgc_size = data->dbgc.frag_size;
1519 	ci->dbg_preset = 0x00;
1520 }
1521 
1522 static void btintel_pcie_free_txq_bufs(struct btintel_pcie_data *data,
1523 				       struct txq *txq)
1524 {
1525 	/* Free data buffers first */
1526 	dma_free_coherent(&data->pdev->dev, txq->count * BTINTEL_PCIE_BUFFER_SIZE,
1527 			  txq->buf_v_addr, txq->buf_p_addr);
1528 	kfree(txq->bufs);
1529 }
1530 
1531 static int btintel_pcie_setup_txq_bufs(struct btintel_pcie_data *data,
1532 				       struct txq *txq)
1533 {
1534 	int i;
1535 	struct data_buf *buf;
1536 
1537 	/* Allocate the same number of buffers as the descriptor */
1538 	txq->bufs = kmalloc_array(txq->count, sizeof(*buf), GFP_KERNEL);
1539 	if (!txq->bufs)
1540 		return -ENOMEM;
1541 
1542 	/* Allocate full chunk of data buffer for DMA first and do indexing and
1543 	 * initialization next, so it can be freed easily
1544 	 */
1545 	txq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev,
1546 					     txq->count * BTINTEL_PCIE_BUFFER_SIZE,
1547 					     &txq->buf_p_addr,
1548 					     GFP_KERNEL | __GFP_NOWARN);
1549 	if (!txq->buf_v_addr) {
1550 		kfree(txq->bufs);
1551 		return -ENOMEM;
1552 	}
1553 
1554 	/* Setup the allocated DMA buffer to bufs. Each data_buf should
1555 	 * have virtual address and physical address
1556 	 */
1557 	for (i = 0; i < txq->count; i++) {
1558 		buf = &txq->bufs[i];
1559 		buf->data_p_addr = txq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
1560 		buf->data = txq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
1561 	}
1562 
1563 	return 0;
1564 }
1565 
1566 static void btintel_pcie_free_rxq_bufs(struct btintel_pcie_data *data,
1567 				       struct rxq *rxq)
1568 {
1569 	/* Free data buffers first */
1570 	dma_free_coherent(&data->pdev->dev, rxq->count * BTINTEL_PCIE_BUFFER_SIZE,
1571 			  rxq->buf_v_addr, rxq->buf_p_addr);
1572 	kfree(rxq->bufs);
1573 }
1574 
1575 static int btintel_pcie_setup_rxq_bufs(struct btintel_pcie_data *data,
1576 				       struct rxq *rxq)
1577 {
1578 	int i;
1579 	struct data_buf *buf;
1580 
1581 	/* Allocate the same number of buffers as the descriptor */
1582 	rxq->bufs = kmalloc_array(rxq->count, sizeof(*buf), GFP_KERNEL);
1583 	if (!rxq->bufs)
1584 		return -ENOMEM;
1585 
1586 	/* Allocate full chunk of data buffer for DMA first and do indexing and
1587 	 * initialization next, so it can be freed easily
1588 	 */
1589 	rxq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev,
1590 					     rxq->count * BTINTEL_PCIE_BUFFER_SIZE,
1591 					     &rxq->buf_p_addr,
1592 					     GFP_KERNEL | __GFP_NOWARN);
1593 	if (!rxq->buf_v_addr) {
1594 		kfree(rxq->bufs);
1595 		return -ENOMEM;
1596 	}
1597 
1598 	/* Setup the allocated DMA buffer to bufs. Each data_buf should
1599 	 * have virtual address and physical address
1600 	 */
1601 	for (i = 0; i < rxq->count; i++) {
1602 		buf = &rxq->bufs[i];
1603 		buf->data_p_addr = rxq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
1604 		buf->data = rxq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
1605 	}
1606 
1607 	return 0;
1608 }
1609 
1610 static void btintel_pcie_setup_ia(struct btintel_pcie_data *data,
1611 				  dma_addr_t p_addr, void *v_addr,
1612 				  struct ia *ia)
1613 {
1614 	/* TR Head Index Array */
1615 	ia->tr_hia_p_addr = p_addr;
1616 	ia->tr_hia = v_addr;
1617 
1618 	/* TR Tail Index Array */
1619 	ia->tr_tia_p_addr = p_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES;
1620 	ia->tr_tia = v_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES;
1621 
1622 	/* CR Head index Array */
1623 	ia->cr_hia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2);
1624 	ia->cr_hia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2);
1625 
1626 	/* CR Tail Index Array */
1627 	ia->cr_tia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3);
1628 	ia->cr_tia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3);
1629 }
1630 
1631 static void btintel_pcie_free(struct btintel_pcie_data *data)
1632 {
1633 	btintel_pcie_free_rxq_bufs(data, &data->rxq);
1634 	btintel_pcie_free_txq_bufs(data, &data->txq);
1635 
1636 	dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr);
1637 	dma_pool_destroy(data->dma_pool);
1638 }
1639 
1640 /* Allocate tx and rx queues, any related data structures and buffers.
1641  */
1642 static int btintel_pcie_alloc(struct btintel_pcie_data *data)
1643 {
1644 	int err = 0;
1645 	size_t total;
1646 	dma_addr_t p_addr;
1647 	void *v_addr;
1648 
1649 	/* Allocate the chunk of DMA memory for descriptors, index array, and
1650 	 * context information, instead of allocating individually.
1651 	 * The DMA memory for data buffer is allocated while setting up the
1652 	 * each queue.
1653 	 *
1654 	 * Total size is sum of the following
1655 	 *  + size of TFD * Number of descriptors in queue
1656 	 *  + size of URBD0 * Number of descriptors in queue
1657 	 *  + size of FRBD * Number of descriptors in queue
1658 	 *  + size of URBD1 * Number of descriptors in queue
1659 	 *  + size of index * Number of queues(2) * type of index array(4)
1660 	 *  + size of context information
1661 	 */
1662 	total = (sizeof(struct tfd) + sizeof(struct urbd0) + sizeof(struct frbd)
1663 		+ sizeof(struct urbd1)) * BTINTEL_DESCS_COUNT;
1664 
1665 	/* Add the sum of size of index array and size of ci struct */
1666 	total += (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4) + sizeof(struct ctx_info);
1667 
1668 	/* Allocate DMA Pool */
1669 	data->dma_pool = dma_pool_create(KBUILD_MODNAME, &data->pdev->dev,
1670 					 total, BTINTEL_PCIE_DMA_POOL_ALIGNMENT, 0);
1671 	if (!data->dma_pool) {
1672 		err = -ENOMEM;
1673 		goto exit_error;
1674 	}
1675 
1676 	v_addr = dma_pool_zalloc(data->dma_pool, GFP_KERNEL | __GFP_NOWARN,
1677 				 &p_addr);
1678 	if (!v_addr) {
1679 		dma_pool_destroy(data->dma_pool);
1680 		err = -ENOMEM;
1681 		goto exit_error;
1682 	}
1683 
1684 	data->dma_p_addr = p_addr;
1685 	data->dma_v_addr = v_addr;
1686 
1687 	/* Setup descriptor count */
1688 	data->txq.count = BTINTEL_DESCS_COUNT;
1689 	data->rxq.count = BTINTEL_DESCS_COUNT;
1690 
1691 	/* Setup tfds */
1692 	data->txq.tfds_p_addr = p_addr;
1693 	data->txq.tfds = v_addr;
1694 
1695 	p_addr += (sizeof(struct tfd) * BTINTEL_DESCS_COUNT);
1696 	v_addr += (sizeof(struct tfd) * BTINTEL_DESCS_COUNT);
1697 
1698 	/* Setup urbd0 */
1699 	data->txq.urbd0s_p_addr = p_addr;
1700 	data->txq.urbd0s = v_addr;
1701 
1702 	p_addr += (sizeof(struct urbd0) * BTINTEL_DESCS_COUNT);
1703 	v_addr += (sizeof(struct urbd0) * BTINTEL_DESCS_COUNT);
1704 
1705 	/* Setup FRBD*/
1706 	data->rxq.frbds_p_addr = p_addr;
1707 	data->rxq.frbds = v_addr;
1708 
1709 	p_addr += (sizeof(struct frbd) * BTINTEL_DESCS_COUNT);
1710 	v_addr += (sizeof(struct frbd) * BTINTEL_DESCS_COUNT);
1711 
1712 	/* Setup urbd1 */
1713 	data->rxq.urbd1s_p_addr = p_addr;
1714 	data->rxq.urbd1s = v_addr;
1715 
1716 	p_addr += (sizeof(struct urbd1) * BTINTEL_DESCS_COUNT);
1717 	v_addr += (sizeof(struct urbd1) * BTINTEL_DESCS_COUNT);
1718 
1719 	/* Setup data buffers for txq */
1720 	err = btintel_pcie_setup_txq_bufs(data, &data->txq);
1721 	if (err)
1722 		goto exit_error_pool;
1723 
1724 	/* Setup data buffers for rxq */
1725 	err = btintel_pcie_setup_rxq_bufs(data, &data->rxq);
1726 	if (err)
1727 		goto exit_error_txq;
1728 
1729 	/* Setup Index Array */
1730 	btintel_pcie_setup_ia(data, p_addr, v_addr, &data->ia);
1731 
1732 	/* Setup data buffers for dbgc */
1733 	err = btintel_pcie_setup_dbgc(data);
1734 	if (err)
1735 		goto exit_error_txq;
1736 
1737 	/* Setup Context Information */
1738 	p_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4;
1739 	v_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4;
1740 
1741 	data->ci = v_addr;
1742 	data->ci_p_addr = p_addr;
1743 
1744 	/* Initialize the CI */
1745 	btintel_pcie_init_ci(data, data->ci);
1746 
1747 	return 0;
1748 
1749 exit_error_txq:
1750 	btintel_pcie_free_txq_bufs(data, &data->txq);
1751 exit_error_pool:
1752 	dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr);
1753 	dma_pool_destroy(data->dma_pool);
1754 exit_error:
1755 	return err;
1756 }
1757 
1758 static int btintel_pcie_open(struct hci_dev *hdev)
1759 {
1760 	bt_dev_dbg(hdev, "");
1761 
1762 	return 0;
1763 }
1764 
1765 static int btintel_pcie_close(struct hci_dev *hdev)
1766 {
1767 	bt_dev_dbg(hdev, "");
1768 
1769 	return 0;
1770 }
1771 
1772 static int btintel_pcie_inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
1773 {
1774 	struct sk_buff *skb;
1775 	struct hci_event_hdr *hdr;
1776 	struct hci_ev_cmd_complete *evt;
1777 
1778 	skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL);
1779 	if (!skb)
1780 		return -ENOMEM;
1781 
1782 	hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
1783 	hdr->evt = HCI_EV_CMD_COMPLETE;
1784 	hdr->plen = sizeof(*evt) + 1;
1785 
1786 	evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
1787 	evt->ncmd = 0x01;
1788 	evt->opcode = cpu_to_le16(opcode);
1789 
1790 	*(u8 *)skb_put(skb, 1) = 0x00;
1791 
1792 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
1793 
1794 	return hci_recv_frame(hdev, skb);
1795 }
1796 
1797 static int btintel_pcie_send_frame(struct hci_dev *hdev,
1798 				       struct sk_buff *skb)
1799 {
1800 	struct btintel_pcie_data *data = hci_get_drvdata(hdev);
1801 	struct hci_command_hdr *cmd;
1802 	__u16 opcode = ~0;
1803 	int ret;
1804 	u32 type;
1805 	u32 old_ctxt;
1806 
1807 	/* Due to the fw limitation, the type header of the packet should be
1808 	 * 4 bytes unlike 1 byte for UART. In UART, the firmware can read
1809 	 * the first byte to get the packet type and redirect the rest of data
1810 	 * packet to the right handler.
1811 	 *
1812 	 * But for PCIe, THF(Transfer Flow Handler) fetches the 4 bytes of data
1813 	 * from DMA memory and by the time it reads the first 4 bytes, it has
1814 	 * already consumed some part of packet. Thus the packet type indicator
1815 	 * for iBT PCIe is 4 bytes.
1816 	 *
1817 	 * Luckily, when HCI core creates the skb, it allocates 8 bytes of
1818 	 * head room for profile and driver use, and before sending the data
1819 	 * to the device, append the iBT PCIe packet type in the front.
1820 	 */
1821 	switch (hci_skb_pkt_type(skb)) {
1822 	case HCI_COMMAND_PKT:
1823 		type = BTINTEL_PCIE_HCI_CMD_PKT;
1824 		cmd = (void *)skb->data;
1825 		opcode = le16_to_cpu(cmd->opcode);
1826 		if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
1827 			struct hci_command_hdr *cmd = (void *)skb->data;
1828 			__u16 opcode = le16_to_cpu(cmd->opcode);
1829 
1830 			/* When the 0xfc01 command is issued to boot into
1831 			 * the operational firmware, it will actually not
1832 			 * send a command complete event. To keep the flow
1833 			 * control working inject that event here.
1834 			 */
1835 			if (opcode == 0xfc01)
1836 				btintel_pcie_inject_cmd_complete(hdev, opcode);
1837 		}
1838 		/* Firmware raises alive interrupt on HCI_OP_RESET */
1839 		if (opcode == HCI_OP_RESET)
1840 			data->gp0_received = false;
1841 
1842 		hdev->stat.cmd_tx++;
1843 		break;
1844 	case HCI_ACLDATA_PKT:
1845 		type = BTINTEL_PCIE_HCI_ACL_PKT;
1846 		hdev->stat.acl_tx++;
1847 		break;
1848 	case HCI_SCODATA_PKT:
1849 		type = BTINTEL_PCIE_HCI_SCO_PKT;
1850 		hdev->stat.sco_tx++;
1851 		break;
1852 	case HCI_ISODATA_PKT:
1853 		type = BTINTEL_PCIE_HCI_ISO_PKT;
1854 		break;
1855 	default:
1856 		bt_dev_err(hdev, "Unknown HCI packet type");
1857 		return -EILSEQ;
1858 	}
1859 	memcpy(skb_push(skb, BTINTEL_PCIE_HCI_TYPE_LEN), &type,
1860 	       BTINTEL_PCIE_HCI_TYPE_LEN);
1861 
1862 	ret = btintel_pcie_send_sync(data, skb);
1863 	if (ret) {
1864 		hdev->stat.err_tx++;
1865 		bt_dev_err(hdev, "Failed to send frame (%d)", ret);
1866 		goto exit_error;
1867 	}
1868 
1869 	if (type == BTINTEL_PCIE_HCI_CMD_PKT &&
1870 	    (opcode == HCI_OP_RESET || opcode == 0xfc01)) {
1871 		old_ctxt = data->alive_intr_ctxt;
1872 		data->alive_intr_ctxt =
1873 			(opcode == 0xfc01 ? BTINTEL_PCIE_INTEL_HCI_RESET1 :
1874 				BTINTEL_PCIE_HCI_RESET);
1875 		bt_dev_dbg(data->hdev, "sent cmd: 0x%4.4x alive context changed: %s  ->  %s",
1876 			   opcode, btintel_pcie_alivectxt_state2str(old_ctxt),
1877 			   btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt));
1878 		if (opcode == HCI_OP_RESET) {
1879 			ret = wait_event_timeout(data->gp0_wait_q,
1880 						 data->gp0_received,
1881 						 msecs_to_jiffies(BTINTEL_DEFAULT_INTR_TIMEOUT_MS));
1882 			if (!ret) {
1883 				hdev->stat.err_tx++;
1884 				bt_dev_err(hdev, "No alive interrupt received for %s",
1885 					   btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt));
1886 				ret = -ETIME;
1887 				goto exit_error;
1888 			}
1889 		}
1890 	}
1891 	hdev->stat.byte_tx += skb->len;
1892 	kfree_skb(skb);
1893 
1894 exit_error:
1895 	return ret;
1896 }
1897 
1898 static void btintel_pcie_release_hdev(struct btintel_pcie_data *data)
1899 {
1900 	struct hci_dev *hdev;
1901 
1902 	hdev = data->hdev;
1903 	hci_unregister_dev(hdev);
1904 	hci_free_dev(hdev);
1905 	data->hdev = NULL;
1906 }
1907 
1908 static int btintel_pcie_setup_internal(struct hci_dev *hdev)
1909 {
1910 	struct btintel_pcie_data *data = hci_get_drvdata(hdev);
1911 	const u8 param[1] = { 0xFF };
1912 	struct intel_version_tlv ver_tlv;
1913 	struct sk_buff *skb;
1914 	int err;
1915 
1916 	BT_DBG("%s", hdev->name);
1917 
1918 	skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
1919 	if (IS_ERR(skb)) {
1920 		bt_dev_err(hdev, "Reading Intel version command failed (%ld)",
1921 			   PTR_ERR(skb));
1922 		return PTR_ERR(skb);
1923 	}
1924 
1925 	/* Check the status */
1926 	if (skb->data[0]) {
1927 		bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
1928 			   skb->data[0]);
1929 		err = -EIO;
1930 		goto exit_error;
1931 	}
1932 
1933 	/* Apply the common HCI quirks for Intel device */
1934 	set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
1935 	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1936 	set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
1937 
1938 	/* Set up the quality report callback for Intel devices */
1939 	hdev->set_quality_report = btintel_set_quality_report;
1940 
1941 	memset(&ver_tlv, 0, sizeof(ver_tlv));
1942 	/* For TLV type device, parse the tlv data */
1943 	err = btintel_parse_version_tlv(hdev, &ver_tlv, skb);
1944 	if (err) {
1945 		bt_dev_err(hdev, "Failed to parse TLV version information");
1946 		goto exit_error;
1947 	}
1948 
1949 	switch (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)) {
1950 	case 0x37:
1951 		break;
1952 	default:
1953 		bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
1954 			   INTEL_HW_PLATFORM(ver_tlv.cnvi_bt));
1955 		err = -EINVAL;
1956 		goto exit_error;
1957 	}
1958 
1959 	/* Check for supported iBT hardware variants of this firmware
1960 	 * loading method.
1961 	 *
1962 	 * This check has been put in place to ensure correct forward
1963 	 * compatibility options when newer hardware variants come
1964 	 * along.
1965 	 */
1966 	switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) {
1967 	case 0x1e:	/* BzrI */
1968 	case 0x1f:	/* ScP  */
1969 		/* Display version information of TLV type */
1970 		btintel_version_info_tlv(hdev, &ver_tlv);
1971 
1972 		/* Apply the device specific HCI quirks for TLV based devices
1973 		 *
1974 		 * All TLV based devices support WBS
1975 		 */
1976 		set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
1977 
1978 		/* Setup MSFT Extension support */
1979 		btintel_set_msft_opcode(hdev,
1980 					INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
1981 
1982 		err = btintel_bootloader_setup_tlv(hdev, &ver_tlv);
1983 		if (err)
1984 			goto exit_error;
1985 		break;
1986 	default:
1987 		bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
1988 			   INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
1989 		err = -EINVAL;
1990 		goto exit_error;
1991 		break;
1992 	}
1993 
1994 	data->dmp_hdr.cnvi_top = ver_tlv.cnvi_top;
1995 	data->dmp_hdr.cnvr_top = ver_tlv.cnvr_top;
1996 	data->dmp_hdr.fw_timestamp = ver_tlv.timestamp;
1997 	data->dmp_hdr.fw_build_type = ver_tlv.build_type;
1998 	data->dmp_hdr.fw_build_num = ver_tlv.build_num;
1999 	data->dmp_hdr.cnvi_bt = ver_tlv.cnvi_bt;
2000 
2001 	if (ver_tlv.img_type == 0x02 || ver_tlv.img_type == 0x03)
2002 		data->dmp_hdr.fw_git_sha1 = ver_tlv.git_sha1;
2003 
2004 	err = hci_devcd_register(hdev, btintel_pcie_dump_traces, btintel_pcie_dump_hdr,
2005 				 btintel_pcie_dump_notify);
2006 	if (err) {
2007 		bt_dev_err(hdev, "Failed to register coredump (%d)", err);
2008 		goto exit_error;
2009 	}
2010 
2011 	btintel_print_fseq_info(hdev);
2012 exit_error:
2013 	kfree_skb(skb);
2014 
2015 	return err;
2016 }
2017 
2018 static int btintel_pcie_setup(struct hci_dev *hdev)
2019 {
2020 	int err, fw_dl_retry = 0;
2021 	struct btintel_pcie_data *data = hci_get_drvdata(hdev);
2022 
2023 	while ((err = btintel_pcie_setup_internal(hdev)) && fw_dl_retry++ < 1) {
2024 		bt_dev_err(hdev, "Firmware download retry count: %d",
2025 			   fw_dl_retry);
2026 		err = btintel_pcie_reset_bt(data);
2027 		if (err) {
2028 			bt_dev_err(hdev, "Failed to do shr reset: %d", err);
2029 			break;
2030 		}
2031 		usleep_range(10000, 12000);
2032 		btintel_pcie_reset_ia(data);
2033 		btintel_pcie_config_msix(data);
2034 		err = btintel_pcie_enable_bt(data);
2035 		if (err) {
2036 			bt_dev_err(hdev, "Failed to enable hardware: %d", err);
2037 			break;
2038 		}
2039 		btintel_pcie_start_rx(data);
2040 	}
2041 	return err;
2042 }
2043 
2044 static int btintel_pcie_setup_hdev(struct btintel_pcie_data *data)
2045 {
2046 	int err;
2047 	struct hci_dev *hdev;
2048 
2049 	hdev = hci_alloc_dev_priv(sizeof(struct btintel_data));
2050 	if (!hdev)
2051 		return -ENOMEM;
2052 
2053 	hdev->bus = HCI_PCI;
2054 	hci_set_drvdata(hdev, data);
2055 
2056 	data->hdev = hdev;
2057 	SET_HCIDEV_DEV(hdev, &data->pdev->dev);
2058 
2059 	hdev->manufacturer = 2;
2060 	hdev->open = btintel_pcie_open;
2061 	hdev->close = btintel_pcie_close;
2062 	hdev->send = btintel_pcie_send_frame;
2063 	hdev->setup = btintel_pcie_setup;
2064 	hdev->shutdown = btintel_shutdown_combined;
2065 	hdev->hw_error = btintel_hw_error;
2066 	hdev->set_diag = btintel_set_diag;
2067 	hdev->set_bdaddr = btintel_set_bdaddr;
2068 
2069 	err = hci_register_dev(hdev);
2070 	if (err < 0) {
2071 		BT_ERR("Failed to register to hdev (%d)", err);
2072 		goto exit_error;
2073 	}
2074 
2075 	data->dmp_hdr.driver_name = KBUILD_MODNAME;
2076 	return 0;
2077 
2078 exit_error:
2079 	hci_free_dev(hdev);
2080 	return err;
2081 }
2082 
2083 static int btintel_pcie_probe(struct pci_dev *pdev,
2084 			      const struct pci_device_id *ent)
2085 {
2086 	int err;
2087 	struct btintel_pcie_data *data;
2088 
2089 	if (!pdev)
2090 		return -ENODEV;
2091 
2092 	data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
2093 	if (!data)
2094 		return -ENOMEM;
2095 
2096 	data->pdev = pdev;
2097 
2098 	spin_lock_init(&data->irq_lock);
2099 	spin_lock_init(&data->hci_rx_lock);
2100 
2101 	init_waitqueue_head(&data->gp0_wait_q);
2102 	data->gp0_received = false;
2103 
2104 	init_waitqueue_head(&data->tx_wait_q);
2105 	data->tx_wait_done = false;
2106 
2107 	data->workqueue = alloc_ordered_workqueue(KBUILD_MODNAME, WQ_HIGHPRI);
2108 	if (!data->workqueue)
2109 		return -ENOMEM;
2110 
2111 	skb_queue_head_init(&data->rx_skb_q);
2112 	INIT_WORK(&data->rx_work, btintel_pcie_rx_work);
2113 
2114 	data->boot_stage_cache = 0x00;
2115 	data->img_resp_cache = 0x00;
2116 
2117 	err = btintel_pcie_config_pcie(pdev, data);
2118 	if (err)
2119 		goto exit_error;
2120 
2121 	pci_set_drvdata(pdev, data);
2122 
2123 	err = btintel_pcie_alloc(data);
2124 	if (err)
2125 		goto exit_error;
2126 
2127 	err = btintel_pcie_enable_bt(data);
2128 	if (err)
2129 		goto exit_error;
2130 
2131 	/* CNV information (CNVi and CNVr) is in CSR */
2132 	data->cnvi = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_HW_REV_REG);
2133 
2134 	data->cnvr = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_RF_ID_REG);
2135 
2136 	err = btintel_pcie_start_rx(data);
2137 	if (err)
2138 		goto exit_error;
2139 
2140 	err = btintel_pcie_setup_hdev(data);
2141 	if (err)
2142 		goto exit_error;
2143 
2144 	bt_dev_dbg(data->hdev, "cnvi: 0x%8.8x cnvr: 0x%8.8x", data->cnvi,
2145 		   data->cnvr);
2146 	return 0;
2147 
2148 exit_error:
2149 	/* reset device before exit */
2150 	btintel_pcie_reset_bt(data);
2151 
2152 	pci_clear_master(pdev);
2153 
2154 	pci_set_drvdata(pdev, NULL);
2155 
2156 	return err;
2157 }
2158 
2159 static void btintel_pcie_remove(struct pci_dev *pdev)
2160 {
2161 	struct btintel_pcie_data *data;
2162 
2163 	data = pci_get_drvdata(pdev);
2164 
2165 	btintel_pcie_reset_bt(data);
2166 	for (int i = 0; i < data->alloc_vecs; i++) {
2167 		struct msix_entry *msix_entry;
2168 
2169 		msix_entry = &data->msix_entries[i];
2170 		free_irq(msix_entry->vector, msix_entry);
2171 	}
2172 
2173 	pci_free_irq_vectors(pdev);
2174 
2175 	btintel_pcie_release_hdev(data);
2176 
2177 	flush_work(&data->rx_work);
2178 
2179 	destroy_workqueue(data->workqueue);
2180 
2181 	btintel_pcie_free(data);
2182 
2183 	pci_clear_master(pdev);
2184 
2185 	pci_set_drvdata(pdev, NULL);
2186 }
2187 
2188 #ifdef CONFIG_DEV_COREDUMP
2189 static void btintel_pcie_coredump(struct device *dev)
2190 {
2191 	struct  pci_dev *pdev = to_pci_dev(dev);
2192 	struct btintel_pcie_data *data = pci_get_drvdata(pdev);
2193 
2194 	if (test_and_set_bit(BTINTEL_PCIE_COREDUMP_INPROGRESS, &data->flags))
2195 		return;
2196 
2197 	data->dmp_hdr.trigger_reason  = BTINTEL_PCIE_TRIGGER_REASON_USER_TRIGGER;
2198 	queue_work(data->workqueue, &data->rx_work);
2199 }
2200 #endif
2201 
2202 static struct pci_driver btintel_pcie_driver = {
2203 	.name = KBUILD_MODNAME,
2204 	.id_table = btintel_pcie_table,
2205 	.probe = btintel_pcie_probe,
2206 	.remove = btintel_pcie_remove,
2207 #ifdef CONFIG_DEV_COREDUMP
2208 	.driver.coredump = btintel_pcie_coredump
2209 #endif
2210 };
2211 module_pci_driver(btintel_pcie_driver);
2212 
2213 MODULE_AUTHOR("Tedd Ho-Jeong An <tedd.an@intel.com>");
2214 MODULE_DESCRIPTION("Intel Bluetooth PCIe transport driver ver " VERSION);
2215 MODULE_VERSION(VERSION);
2216 MODULE_LICENSE("GPL");
2217