1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Bluetooth support for Intel PCIe devices 5 * 6 * Copyright (C) 2024 Intel Corporation 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/firmware.h> 12 #include <linux/pci.h> 13 #include <linux/wait.h> 14 #include <linux/delay.h> 15 #include <linux/interrupt.h> 16 17 #include <linux/unaligned.h> 18 #include <linux/devcoredump.h> 19 20 #include <net/bluetooth/bluetooth.h> 21 #include <net/bluetooth/hci_core.h> 22 #include <net/bluetooth/hci_drv.h> 23 24 #include "btintel.h" 25 #include "btintel_pcie.h" 26 27 #define VERSION "0.1" 28 29 #define BTINTEL_PCI_DEVICE(dev, subdev) \ 30 .vendor = PCI_VENDOR_ID_INTEL, \ 31 .device = (dev), \ 32 .subvendor = PCI_ANY_ID, \ 33 .subdevice = (subdev), \ 34 .driver_data = 0 35 36 #define POLL_INTERVAL_US 10 37 38 /* Intel Bluetooth PCIe device id table */ 39 static const struct pci_device_id btintel_pcie_table[] = { 40 /* BlazarI, Wildcat Lake */ 41 { BTINTEL_PCI_DEVICE(0x4D76, PCI_ANY_ID) }, 42 /* BlazarI, Lunar Lake */ 43 { BTINTEL_PCI_DEVICE(0xA876, PCI_ANY_ID) }, 44 /* Scorpious, Panther Lake-H484 */ 45 { BTINTEL_PCI_DEVICE(0xE376, PCI_ANY_ID) }, 46 /* Scorpious, Panther Lake-H404 */ 47 { BTINTEL_PCI_DEVICE(0xE476, PCI_ANY_ID) }, 48 { 0 } 49 }; 50 MODULE_DEVICE_TABLE(pci, btintel_pcie_table); 51 52 struct btintel_pcie_dev_recovery { 53 struct list_head list; 54 u8 count; 55 time64_t last_error; 56 char name[]; 57 }; 58 59 /* Intel PCIe uses 4 bytes of HCI type instead of 1 byte BT SIG HCI type */ 60 #define BTINTEL_PCIE_HCI_TYPE_LEN 4 61 #define BTINTEL_PCIE_HCI_CMD_PKT 0x00000001 62 #define BTINTEL_PCIE_HCI_ACL_PKT 0x00000002 63 #define BTINTEL_PCIE_HCI_SCO_PKT 0x00000003 64 #define BTINTEL_PCIE_HCI_EVT_PKT 0x00000004 65 #define BTINTEL_PCIE_HCI_ISO_PKT 0x00000005 66 67 #define BTINTEL_PCIE_MAGIC_NUM 0xA5A5A5A5 68 69 #define BTINTEL_PCIE_BLZR_HWEXP_SIZE 1024 70 #define BTINTEL_PCIE_BLZR_HWEXP_DMP_ADDR 0xB00A7C00 71 72 #define BTINTEL_PCIE_SCP_HWEXP_SIZE 4096 73 #define BTINTEL_PCIE_SCP_HWEXP_DMP_ADDR 0xB030F800 74 75 #define BTINTEL_PCIE_MAGIC_NUM 0xA5A5A5A5 76 77 #define BTINTEL_PCIE_TRIGGER_REASON_USER_TRIGGER 0x17A2 78 #define BTINTEL_PCIE_TRIGGER_REASON_FW_ASSERT 0x1E61 79 80 #define BTINTEL_PCIE_RESET_WINDOW_SECS 5 81 #define BTINTEL_PCIE_FLR_MAX_RETRY 1 82 83 /* Alive interrupt context */ 84 enum { 85 BTINTEL_PCIE_ROM, 86 BTINTEL_PCIE_FW_DL, 87 BTINTEL_PCIE_HCI_RESET, 88 BTINTEL_PCIE_INTEL_HCI_RESET1, 89 BTINTEL_PCIE_INTEL_HCI_RESET2, 90 BTINTEL_PCIE_D0, 91 BTINTEL_PCIE_D3 92 }; 93 94 /* Structure for dbgc fragment buffer 95 * @buf_addr_lsb: LSB of the buffer's physical address 96 * @buf_addr_msb: MSB of the buffer's physical address 97 * @buf_size: Total size of the buffer 98 */ 99 struct btintel_pcie_dbgc_ctxt_buf { 100 u32 buf_addr_lsb; 101 u32 buf_addr_msb; 102 u32 buf_size; 103 }; 104 105 /* Structure for dbgc fragment 106 * @magic_num: 0XA5A5A5A5 107 * @ver: For Driver-FW compatibility 108 * @total_size: Total size of the payload debug info 109 * @num_buf: Num of allocated debug bufs 110 * @bufs: All buffer's addresses and sizes 111 */ 112 struct btintel_pcie_dbgc_ctxt { 113 u32 magic_num; 114 u32 ver; 115 u32 total_size; 116 u32 num_buf; 117 struct btintel_pcie_dbgc_ctxt_buf bufs[BTINTEL_PCIE_DBGC_BUFFER_COUNT]; 118 }; 119 120 struct btintel_pcie_removal { 121 struct pci_dev *pdev; 122 struct work_struct work; 123 }; 124 125 static LIST_HEAD(btintel_pcie_recovery_list); 126 static DEFINE_SPINLOCK(btintel_pcie_recovery_lock); 127 128 static inline char *btintel_pcie_alivectxt_state2str(u32 alive_intr_ctxt) 129 { 130 switch (alive_intr_ctxt) { 131 case BTINTEL_PCIE_ROM: 132 return "rom"; 133 case BTINTEL_PCIE_FW_DL: 134 return "fw_dl"; 135 case BTINTEL_PCIE_D0: 136 return "d0"; 137 case BTINTEL_PCIE_D3: 138 return "d3"; 139 case BTINTEL_PCIE_HCI_RESET: 140 return "hci_reset"; 141 case BTINTEL_PCIE_INTEL_HCI_RESET1: 142 return "intel_reset1"; 143 case BTINTEL_PCIE_INTEL_HCI_RESET2: 144 return "intel_reset2"; 145 default: 146 return "unknown"; 147 } 148 } 149 150 /* This function initializes the memory for DBGC buffers and formats the 151 * DBGC fragment which consists header info and DBGC buffer's LSB, MSB and 152 * size as the payload 153 */ 154 static int btintel_pcie_setup_dbgc(struct btintel_pcie_data *data) 155 { 156 struct btintel_pcie_dbgc_ctxt db_frag; 157 struct data_buf *buf; 158 int i; 159 160 data->dbgc.count = BTINTEL_PCIE_DBGC_BUFFER_COUNT; 161 data->dbgc.bufs = devm_kcalloc(&data->pdev->dev, data->dbgc.count, 162 sizeof(*buf), GFP_KERNEL); 163 if (!data->dbgc.bufs) 164 return -ENOMEM; 165 166 data->dbgc.buf_v_addr = dmam_alloc_coherent(&data->pdev->dev, 167 data->dbgc.count * 168 BTINTEL_PCIE_DBGC_BUFFER_SIZE, 169 &data->dbgc.buf_p_addr, 170 GFP_KERNEL | __GFP_NOWARN); 171 if (!data->dbgc.buf_v_addr) 172 return -ENOMEM; 173 174 data->dbgc.frag_v_addr = dmam_alloc_coherent(&data->pdev->dev, 175 sizeof(struct btintel_pcie_dbgc_ctxt), 176 &data->dbgc.frag_p_addr, 177 GFP_KERNEL | __GFP_NOWARN); 178 if (!data->dbgc.frag_v_addr) 179 return -ENOMEM; 180 181 data->dbgc.frag_size = sizeof(struct btintel_pcie_dbgc_ctxt); 182 183 db_frag.magic_num = BTINTEL_PCIE_MAGIC_NUM; 184 db_frag.ver = BTINTEL_PCIE_DBGC_FRAG_VERSION; 185 db_frag.total_size = BTINTEL_PCIE_DBGC_FRAG_PAYLOAD_SIZE; 186 db_frag.num_buf = BTINTEL_PCIE_DBGC_FRAG_BUFFER_COUNT; 187 188 for (i = 0; i < data->dbgc.count; i++) { 189 buf = &data->dbgc.bufs[i]; 190 buf->data_p_addr = data->dbgc.buf_p_addr + i * BTINTEL_PCIE_DBGC_BUFFER_SIZE; 191 buf->data = data->dbgc.buf_v_addr + i * BTINTEL_PCIE_DBGC_BUFFER_SIZE; 192 db_frag.bufs[i].buf_addr_lsb = lower_32_bits(buf->data_p_addr); 193 db_frag.bufs[i].buf_addr_msb = upper_32_bits(buf->data_p_addr); 194 db_frag.bufs[i].buf_size = BTINTEL_PCIE_DBGC_BUFFER_SIZE; 195 } 196 197 memcpy(data->dbgc.frag_v_addr, &db_frag, sizeof(db_frag)); 198 return 0; 199 } 200 201 static inline void ipc_print_ia_ring(struct hci_dev *hdev, struct ia *ia, 202 u16 queue_num) 203 { 204 bt_dev_dbg(hdev, "IA: %s: tr-h:%02u tr-t:%02u cr-h:%02u cr-t:%02u", 205 queue_num == BTINTEL_PCIE_TXQ_NUM ? "TXQ" : "RXQ", 206 ia->tr_hia[queue_num], ia->tr_tia[queue_num], 207 ia->cr_hia[queue_num], ia->cr_tia[queue_num]); 208 } 209 210 static inline void ipc_print_urbd1(struct hci_dev *hdev, struct urbd1 *urbd1, 211 u16 index) 212 { 213 bt_dev_dbg(hdev, "RXQ:urbd1(%u) frbd_tag:%u status: 0x%x fixed:0x%x", 214 index, urbd1->frbd_tag, urbd1->status, urbd1->fixed); 215 } 216 217 static struct btintel_pcie_data *btintel_pcie_get_data(struct msix_entry *entry) 218 { 219 u8 queue = entry->entry; 220 struct msix_entry *entries = entry - queue; 221 222 return container_of(entries, struct btintel_pcie_data, msix_entries[0]); 223 } 224 225 /* Set the doorbell for TXQ to notify the device that @index (actually index-1) 226 * of the TFD is updated and ready to transmit. 227 */ 228 static void btintel_pcie_set_tx_db(struct btintel_pcie_data *data, u16 index) 229 { 230 u32 val; 231 232 val = index; 233 val |= (BTINTEL_PCIE_TX_DB_VEC << 16); 234 235 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val); 236 } 237 238 /* Copy the data to next(@tfd_index) data buffer and update the TFD(transfer 239 * descriptor) with the data length and the DMA address of the data buffer. 240 */ 241 static void btintel_pcie_prepare_tx(struct txq *txq, u16 tfd_index, 242 struct sk_buff *skb) 243 { 244 struct data_buf *buf; 245 struct tfd *tfd; 246 247 tfd = &txq->tfds[tfd_index]; 248 memset(tfd, 0, sizeof(*tfd)); 249 250 buf = &txq->bufs[tfd_index]; 251 252 tfd->size = skb->len; 253 tfd->addr = buf->data_p_addr; 254 255 /* Copy the outgoing data to DMA buffer */ 256 memcpy(buf->data, skb->data, tfd->size); 257 } 258 259 static inline void btintel_pcie_dump_debug_registers(struct hci_dev *hdev) 260 { 261 struct btintel_pcie_data *data = hci_get_drvdata(hdev); 262 u16 cr_hia, cr_tia; 263 u32 reg, mbox_reg; 264 struct sk_buff *skb; 265 u8 buf[80]; 266 267 skb = alloc_skb(1024, GFP_ATOMIC); 268 if (!skb) 269 return; 270 271 snprintf(buf, sizeof(buf), "%s", "---- Dump of debug registers ---"); 272 bt_dev_dbg(hdev, "%s", buf); 273 skb_put_data(skb, buf, strlen(buf)); 274 275 reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_BOOT_STAGE_REG); 276 snprintf(buf, sizeof(buf), "boot stage: 0x%8.8x", reg); 277 bt_dev_dbg(hdev, "%s", buf); 278 skb_put_data(skb, buf, strlen(buf)); 279 data->boot_stage_cache = reg; 280 281 reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_IPC_STATUS_REG); 282 snprintf(buf, sizeof(buf), "ipc status: 0x%8.8x", reg); 283 skb_put_data(skb, buf, strlen(buf)); 284 bt_dev_dbg(hdev, "%s", buf); 285 286 reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_IPC_CONTROL_REG); 287 snprintf(buf, sizeof(buf), "ipc control: 0x%8.8x", reg); 288 skb_put_data(skb, buf, strlen(buf)); 289 bt_dev_dbg(hdev, "%s", buf); 290 291 reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_IPC_SLEEP_CTL_REG); 292 snprintf(buf, sizeof(buf), "ipc sleep control: 0x%8.8x", reg); 293 skb_put_data(skb, buf, strlen(buf)); 294 bt_dev_dbg(hdev, "%s", buf); 295 296 /*Read the Mail box status and registers*/ 297 reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MBOX_STATUS_REG); 298 snprintf(buf, sizeof(buf), "mbox status: 0x%8.8x", reg); 299 skb_put_data(skb, buf, strlen(buf)); 300 if (reg & BTINTEL_PCIE_CSR_MBOX_STATUS_MBOX1) { 301 mbox_reg = btintel_pcie_rd_reg32(data, 302 BTINTEL_PCIE_CSR_MBOX_1_REG); 303 snprintf(buf, sizeof(buf), "mbox_1: 0x%8.8x", mbox_reg); 304 skb_put_data(skb, buf, strlen(buf)); 305 bt_dev_dbg(hdev, "%s", buf); 306 } 307 308 if (reg & BTINTEL_PCIE_CSR_MBOX_STATUS_MBOX2) { 309 mbox_reg = btintel_pcie_rd_reg32(data, 310 BTINTEL_PCIE_CSR_MBOX_2_REG); 311 snprintf(buf, sizeof(buf), "mbox_2: 0x%8.8x", mbox_reg); 312 skb_put_data(skb, buf, strlen(buf)); 313 bt_dev_dbg(hdev, "%s", buf); 314 } 315 316 if (reg & BTINTEL_PCIE_CSR_MBOX_STATUS_MBOX3) { 317 mbox_reg = btintel_pcie_rd_reg32(data, 318 BTINTEL_PCIE_CSR_MBOX_3_REG); 319 snprintf(buf, sizeof(buf), "mbox_3: 0x%8.8x", mbox_reg); 320 skb_put_data(skb, buf, strlen(buf)); 321 bt_dev_dbg(hdev, "%s", buf); 322 } 323 324 if (reg & BTINTEL_PCIE_CSR_MBOX_STATUS_MBOX4) { 325 mbox_reg = btintel_pcie_rd_reg32(data, 326 BTINTEL_PCIE_CSR_MBOX_4_REG); 327 snprintf(buf, sizeof(buf), "mbox_4: 0x%8.8x", mbox_reg); 328 skb_put_data(skb, buf, strlen(buf)); 329 bt_dev_dbg(hdev, "%s", buf); 330 } 331 332 cr_hia = data->ia.cr_hia[BTINTEL_PCIE_RXQ_NUM]; 333 cr_tia = data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM]; 334 snprintf(buf, sizeof(buf), "rxq: cr_tia: %u cr_hia: %u", cr_tia, cr_hia); 335 skb_put_data(skb, buf, strlen(buf)); 336 bt_dev_dbg(hdev, "%s", buf); 337 338 cr_hia = data->ia.cr_hia[BTINTEL_PCIE_TXQ_NUM]; 339 cr_tia = data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM]; 340 snprintf(buf, sizeof(buf), "txq: cr_tia: %u cr_hia: %u", cr_tia, cr_hia); 341 skb_put_data(skb, buf, strlen(buf)); 342 bt_dev_dbg(hdev, "%s", buf); 343 snprintf(buf, sizeof(buf), "--------------------------------"); 344 bt_dev_dbg(hdev, "%s", buf); 345 346 hci_recv_diag(hdev, skb); 347 } 348 349 static int btintel_pcie_send_sync(struct btintel_pcie_data *data, 350 struct sk_buff *skb, u32 pkt_type, u16 opcode) 351 { 352 int ret; 353 u16 tfd_index; 354 u32 old_ctxt; 355 bool wait_on_alive = false; 356 struct hci_dev *hdev = data->hdev; 357 358 struct txq *txq = &data->txq; 359 360 tfd_index = data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM]; 361 362 if (tfd_index > txq->count) 363 return -ERANGE; 364 365 /* Firmware raises alive interrupt on HCI_OP_RESET or 366 * BTINTEL_HCI_OP_RESET 367 */ 368 wait_on_alive = (pkt_type == BTINTEL_PCIE_HCI_CMD_PKT && 369 (opcode == BTINTEL_HCI_OP_RESET || opcode == HCI_OP_RESET)); 370 371 if (wait_on_alive) { 372 data->gp0_received = false; 373 old_ctxt = data->alive_intr_ctxt; 374 data->alive_intr_ctxt = 375 (opcode == BTINTEL_HCI_OP_RESET ? BTINTEL_PCIE_INTEL_HCI_RESET1 : 376 BTINTEL_PCIE_HCI_RESET); 377 bt_dev_dbg(data->hdev, "sending cmd: 0x%4.4x alive context changed: %s -> %s", 378 opcode, btintel_pcie_alivectxt_state2str(old_ctxt), 379 btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt)); 380 } 381 382 memcpy(skb_push(skb, BTINTEL_PCIE_HCI_TYPE_LEN), &pkt_type, 383 BTINTEL_PCIE_HCI_TYPE_LEN); 384 385 /* Prepare for TX. It updates the TFD with the length of data and 386 * address of the DMA buffer, and copy the data to the DMA buffer 387 */ 388 btintel_pcie_prepare_tx(txq, tfd_index, skb); 389 390 tfd_index = (tfd_index + 1) % txq->count; 391 data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM] = tfd_index; 392 393 /* Arm wait event condition */ 394 data->tx_wait_done = false; 395 396 /* Set the doorbell to notify the device */ 397 btintel_pcie_set_tx_db(data, tfd_index); 398 399 /* Wait for the complete interrupt - URBD0 */ 400 ret = wait_event_timeout(data->tx_wait_q, data->tx_wait_done, 401 msecs_to_jiffies(BTINTEL_PCIE_TX_WAIT_TIMEOUT_MS)); 402 if (!ret) { 403 bt_dev_err(data->hdev, "Timeout (%u ms) on tx completion", 404 BTINTEL_PCIE_TX_WAIT_TIMEOUT_MS); 405 btintel_pcie_dump_debug_registers(data->hdev); 406 return -ETIME; 407 } 408 409 if (wait_on_alive) { 410 ret = wait_event_timeout(data->gp0_wait_q, 411 data->gp0_received, 412 msecs_to_jiffies(BTINTEL_DEFAULT_INTR_TIMEOUT_MS)); 413 if (!ret) { 414 hdev->stat.err_tx++; 415 bt_dev_err(hdev, "Timeout (%u ms) on alive interrupt, alive context: %s", 416 BTINTEL_DEFAULT_INTR_TIMEOUT_MS, 417 btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt)); 418 return -ETIME; 419 } 420 } 421 return 0; 422 } 423 424 /* Set the doorbell for RXQ to notify the device that @index (actually index-1) 425 * is available to receive the data 426 */ 427 static void btintel_pcie_set_rx_db(struct btintel_pcie_data *data, u16 index) 428 { 429 u32 val; 430 431 val = index; 432 val |= (BTINTEL_PCIE_RX_DB_VEC << 16); 433 434 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val); 435 } 436 437 /* Update the FRBD (free buffer descriptor) with the @frbd_index and the 438 * DMA address of the free buffer. 439 */ 440 static void btintel_pcie_prepare_rx(struct rxq *rxq, u16 frbd_index) 441 { 442 struct data_buf *buf; 443 struct frbd *frbd; 444 445 /* Get the buffer of the FRBD for DMA */ 446 buf = &rxq->bufs[frbd_index]; 447 448 frbd = &rxq->frbds[frbd_index]; 449 memset(frbd, 0, sizeof(*frbd)); 450 451 /* Update FRBD */ 452 frbd->tag = frbd_index; 453 frbd->addr = buf->data_p_addr; 454 } 455 456 static int btintel_pcie_submit_rx(struct btintel_pcie_data *data) 457 { 458 u16 frbd_index; 459 struct rxq *rxq = &data->rxq; 460 461 frbd_index = data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM]; 462 463 if (frbd_index > rxq->count) 464 return -ERANGE; 465 466 /* Prepare for RX submit. It updates the FRBD with the address of DMA 467 * buffer 468 */ 469 btintel_pcie_prepare_rx(rxq, frbd_index); 470 471 frbd_index = (frbd_index + 1) % rxq->count; 472 data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM] = frbd_index; 473 ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM); 474 475 /* Set the doorbell to notify the device */ 476 btintel_pcie_set_rx_db(data, frbd_index); 477 478 return 0; 479 } 480 481 static int btintel_pcie_start_rx(struct btintel_pcie_data *data) 482 { 483 int i, ret; 484 struct rxq *rxq = &data->rxq; 485 486 /* Post (BTINTEL_PCIE_RX_DESCS_COUNT - 3) buffers to overcome the 487 * hardware issues leading to race condition at the firmware. 488 */ 489 490 for (i = 0; i < rxq->count - 3; i++) { 491 ret = btintel_pcie_submit_rx(data); 492 if (ret) 493 return ret; 494 } 495 496 return 0; 497 } 498 499 static void btintel_pcie_reset_ia(struct btintel_pcie_data *data) 500 { 501 memset(data->ia.tr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES); 502 memset(data->ia.tr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES); 503 memset(data->ia.cr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES); 504 memset(data->ia.cr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES); 505 } 506 507 static int btintel_pcie_reset_bt(struct btintel_pcie_data *data) 508 { 509 u32 reg; 510 int retry = 3; 511 512 reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); 513 514 reg &= ~(BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA | 515 BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT | 516 BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT); 517 reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_BUS_MASTER_DISCON; 518 519 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg); 520 521 do { 522 reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); 523 if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_BUS_MASTER_STS) 524 break; 525 usleep_range(10000, 12000); 526 527 } while (--retry > 0); 528 usleep_range(10000, 12000); 529 530 reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); 531 532 reg &= ~(BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA | 533 BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT | 534 BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT); 535 reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET; 536 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg); 537 usleep_range(10000, 12000); 538 539 reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); 540 bt_dev_dbg(data->hdev, "csr register after reset: 0x%8.8x", reg); 541 542 reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_BOOT_STAGE_REG); 543 544 /* If shared hardware reset is success then boot stage register shall be 545 * set to 0 546 */ 547 return reg == 0 ? 0 : -ENODEV; 548 } 549 550 static void btintel_pcie_mac_init(struct btintel_pcie_data *data) 551 { 552 u32 reg; 553 554 /* Set MAC_INIT bit to start primary bootloader */ 555 reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); 556 reg &= ~(BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT | 557 BTINTEL_PCIE_CSR_FUNC_CTRL_BUS_MASTER_DISCON | 558 BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET); 559 reg |= (BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA | 560 BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT); 561 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg); 562 } 563 564 static int btintel_pcie_get_mac_access(struct btintel_pcie_data *data) 565 { 566 u32 reg; 567 int retry = 15; 568 569 reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); 570 571 reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_STOP_MAC_ACCESS_DIS; 572 reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_XTAL_CLK_REQ; 573 if ((reg & BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS) == 0) 574 reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_REQ; 575 576 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg); 577 578 do { 579 reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); 580 if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS) 581 return 0; 582 /* Need delay here for Target Access harwdware to settle down*/ 583 usleep_range(1000, 1200); 584 585 } while (--retry > 0); 586 587 return -ETIME; 588 } 589 590 static void btintel_pcie_release_mac_access(struct btintel_pcie_data *data) 591 { 592 u32 reg; 593 594 reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); 595 596 if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_REQ) 597 reg &= ~BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_REQ; 598 599 if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_STOP_MAC_ACCESS_DIS) 600 reg &= ~BTINTEL_PCIE_CSR_FUNC_CTRL_STOP_MAC_ACCESS_DIS; 601 602 if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_XTAL_CLK_REQ) 603 reg &= ~BTINTEL_PCIE_CSR_FUNC_CTRL_XTAL_CLK_REQ; 604 605 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg); 606 } 607 608 static void *btintel_pcie_copy_tlv(void *dest, enum btintel_pcie_tlv_type type, 609 void *data, size_t size) 610 { 611 struct intel_tlv *tlv; 612 613 tlv = dest; 614 tlv->type = type; 615 tlv->len = size; 616 memcpy(tlv->val, data, tlv->len); 617 return dest + sizeof(*tlv) + size; 618 } 619 620 static int btintel_pcie_read_dram_buffers(struct btintel_pcie_data *data) 621 { 622 u32 offset, prev_size, wr_ptr_status, dump_size, data_len; 623 struct btintel_pcie_dbgc *dbgc = &data->dbgc; 624 struct hci_dev *hdev = data->hdev; 625 u8 *pdata, *p, buf_idx; 626 struct intel_tlv *tlv; 627 struct timespec64 now; 628 struct tm tm_now; 629 char fw_build[128]; 630 char ts[128]; 631 char vendor[64]; 632 char driver[64]; 633 634 if (!IS_ENABLED(CONFIG_DEV_COREDUMP)) 635 return -EOPNOTSUPP; 636 637 638 wr_ptr_status = btintel_pcie_rd_dev_mem(data, BTINTEL_PCIE_DBGC_CUR_DBGBUFF_STATUS); 639 offset = wr_ptr_status & BTINTEL_PCIE_DBG_OFFSET_BIT_MASK; 640 641 buf_idx = BTINTEL_PCIE_DBGC_DBG_BUF_IDX(wr_ptr_status); 642 if (buf_idx > dbgc->count) { 643 bt_dev_warn(hdev, "Buffer index is invalid"); 644 return -EINVAL; 645 } 646 647 prev_size = buf_idx * BTINTEL_PCIE_DBGC_BUFFER_SIZE; 648 if (prev_size + offset >= prev_size) 649 data->dmp_hdr.write_ptr = prev_size + offset; 650 else 651 return -EINVAL; 652 653 snprintf(vendor, sizeof(vendor), "Vendor: Intel\n"); 654 snprintf(driver, sizeof(driver), "Driver: %s\n", 655 data->dmp_hdr.driver_name); 656 657 ktime_get_real_ts64(&now); 658 time64_to_tm(now.tv_sec, 0, &tm_now); 659 snprintf(ts, sizeof(ts), "Dump Time: %02d-%02d-%04ld %02d:%02d:%02d", 660 tm_now.tm_mday, tm_now.tm_mon + 1, tm_now.tm_year + 1900, 661 tm_now.tm_hour, tm_now.tm_min, tm_now.tm_sec); 662 663 snprintf(fw_build, sizeof(fw_build), 664 "Firmware Timestamp: Year %u WW %02u buildtype %u build %u", 665 2000 + (data->dmp_hdr.fw_timestamp >> 8), 666 data->dmp_hdr.fw_timestamp & 0xff, data->dmp_hdr.fw_build_type, 667 data->dmp_hdr.fw_build_num); 668 669 data_len = sizeof(*tlv) + sizeof(data->dmp_hdr.cnvi_bt) + 670 sizeof(*tlv) + sizeof(data->dmp_hdr.write_ptr) + 671 sizeof(*tlv) + sizeof(data->dmp_hdr.wrap_ctr) + 672 sizeof(*tlv) + sizeof(data->dmp_hdr.trigger_reason) + 673 sizeof(*tlv) + sizeof(data->dmp_hdr.fw_git_sha1) + 674 sizeof(*tlv) + sizeof(data->dmp_hdr.cnvr_top) + 675 sizeof(*tlv) + sizeof(data->dmp_hdr.cnvi_top) + 676 sizeof(*tlv) + strlen(ts) + 677 sizeof(*tlv) + strlen(fw_build) + 678 sizeof(*tlv) + strlen(vendor) + 679 sizeof(*tlv) + strlen(driver); 680 681 /* 682 * sizeof(u32) - signature 683 * sizeof(data_len) - to store tlv data size 684 * data_len - TLV data 685 */ 686 dump_size = sizeof(u32) + sizeof(data_len) + data_len; 687 688 689 /* Add debug buffers data length to dump size */ 690 dump_size += BTINTEL_PCIE_DBGC_BUFFER_SIZE * dbgc->count; 691 692 pdata = vmalloc(dump_size); 693 if (!pdata) 694 return -ENOMEM; 695 p = pdata; 696 697 *(u32 *)p = BTINTEL_PCIE_MAGIC_NUM; 698 p += sizeof(u32); 699 700 *(u32 *)p = data_len; 701 p += sizeof(u32); 702 703 704 p = btintel_pcie_copy_tlv(p, BTINTEL_VENDOR, vendor, strlen(vendor)); 705 p = btintel_pcie_copy_tlv(p, BTINTEL_DRIVER, driver, strlen(driver)); 706 p = btintel_pcie_copy_tlv(p, BTINTEL_DUMP_TIME, ts, strlen(ts)); 707 p = btintel_pcie_copy_tlv(p, BTINTEL_FW_BUILD, fw_build, 708 strlen(fw_build)); 709 p = btintel_pcie_copy_tlv(p, BTINTEL_CNVI_BT, &data->dmp_hdr.cnvi_bt, 710 sizeof(data->dmp_hdr.cnvi_bt)); 711 p = btintel_pcie_copy_tlv(p, BTINTEL_WRITE_PTR, &data->dmp_hdr.write_ptr, 712 sizeof(data->dmp_hdr.write_ptr)); 713 p = btintel_pcie_copy_tlv(p, BTINTEL_WRAP_CTR, &data->dmp_hdr.wrap_ctr, 714 sizeof(data->dmp_hdr.wrap_ctr)); 715 716 data->dmp_hdr.wrap_ctr = btintel_pcie_rd_dev_mem(data, 717 BTINTEL_PCIE_DBGC_DBGBUFF_WRAP_ARND); 718 719 p = btintel_pcie_copy_tlv(p, BTINTEL_TRIGGER_REASON, &data->dmp_hdr.trigger_reason, 720 sizeof(data->dmp_hdr.trigger_reason)); 721 p = btintel_pcie_copy_tlv(p, BTINTEL_FW_SHA, &data->dmp_hdr.fw_git_sha1, 722 sizeof(data->dmp_hdr.fw_git_sha1)); 723 p = btintel_pcie_copy_tlv(p, BTINTEL_CNVR_TOP, &data->dmp_hdr.cnvr_top, 724 sizeof(data->dmp_hdr.cnvr_top)); 725 p = btintel_pcie_copy_tlv(p, BTINTEL_CNVI_TOP, &data->dmp_hdr.cnvi_top, 726 sizeof(data->dmp_hdr.cnvi_top)); 727 728 memcpy(p, dbgc->bufs[0].data, dbgc->count * BTINTEL_PCIE_DBGC_BUFFER_SIZE); 729 dev_coredumpv(&hdev->dev, pdata, dump_size, GFP_KERNEL); 730 return 0; 731 } 732 733 static void btintel_pcie_dump_traces(struct hci_dev *hdev) 734 { 735 struct btintel_pcie_data *data = hci_get_drvdata(hdev); 736 int ret = 0; 737 738 ret = btintel_pcie_get_mac_access(data); 739 if (ret) { 740 bt_dev_err(hdev, "Failed to get mac access: (%d)", ret); 741 return; 742 } 743 744 ret = btintel_pcie_read_dram_buffers(data); 745 746 btintel_pcie_release_mac_access(data); 747 748 if (ret) 749 bt_dev_err(hdev, "Failed to dump traces: (%d)", ret); 750 } 751 752 /* This function enables BT function by setting BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT bit in 753 * BTINTEL_PCIE_CSR_FUNC_CTRL_REG register and wait for MSI-X with 754 * BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0. 755 * Then the host reads firmware version from BTINTEL_CSR_F2D_MBX and the boot stage 756 * from BTINTEL_PCIE_CSR_BOOT_STAGE_REG. 757 */ 758 static int btintel_pcie_enable_bt(struct btintel_pcie_data *data) 759 { 760 int err; 761 u32 reg; 762 763 data->gp0_received = false; 764 765 /* Update the DMA address of CI struct to CSR */ 766 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_LSB_REG, 767 data->ci_p_addr & 0xffffffff); 768 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_MSB_REG, 769 (u64)data->ci_p_addr >> 32); 770 771 /* Reset the cached value of boot stage. it is updated by the MSI-X 772 * gp0 interrupt handler. 773 */ 774 data->boot_stage_cache = 0x0; 775 776 /* Set MAC_INIT bit to start primary bootloader */ 777 reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); 778 reg &= ~(BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT | 779 BTINTEL_PCIE_CSR_FUNC_CTRL_BUS_MASTER_DISCON | 780 BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET); 781 reg |= (BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA | 782 BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT); 783 784 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg); 785 786 /* MAC is ready. Enable BT FUNC */ 787 btintel_pcie_set_reg_bits(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, 788 BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT); 789 790 btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); 791 792 /* wait for interrupt from the device after booting up to primary 793 * bootloader. 794 */ 795 data->alive_intr_ctxt = BTINTEL_PCIE_ROM; 796 err = wait_event_timeout(data->gp0_wait_q, data->gp0_received, 797 msecs_to_jiffies(BTINTEL_DEFAULT_INTR_TIMEOUT_MS)); 798 if (!err) 799 return -ETIME; 800 801 /* Check cached boot stage is BTINTEL_PCIE_CSR_BOOT_STAGE_ROM(BIT(0)) */ 802 if (~data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_ROM) 803 return -ENODEV; 804 805 return 0; 806 } 807 808 static inline bool btintel_pcie_in_op(struct btintel_pcie_data *data) 809 { 810 return data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_OPFW; 811 } 812 813 static inline bool btintel_pcie_in_iml(struct btintel_pcie_data *data) 814 { 815 return data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_IML && 816 !(data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_OPFW); 817 } 818 819 static inline bool btintel_pcie_in_d3(struct btintel_pcie_data *data) 820 { 821 return data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_D3_STATE_READY; 822 } 823 824 static inline bool btintel_pcie_in_d0(struct btintel_pcie_data *data) 825 { 826 return !(data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_D3_STATE_READY); 827 } 828 829 static inline bool btintel_pcie_in_device_halt(struct btintel_pcie_data *data) 830 { 831 return data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_DEVICE_HALTED; 832 } 833 834 static void btintel_pcie_wr_sleep_cntrl(struct btintel_pcie_data *data, 835 u32 dxstate) 836 { 837 bt_dev_dbg(data->hdev, "writing sleep_ctl_reg: 0x%8.8x", dxstate); 838 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_IPC_SLEEP_CTL_REG, dxstate); 839 } 840 841 static int btintel_pcie_read_device_mem(struct btintel_pcie_data *data, 842 void *buf, u32 dev_addr, int len) 843 { 844 int err; 845 u32 *val = buf; 846 847 /* Get device mac access */ 848 err = btintel_pcie_get_mac_access(data); 849 if (err) { 850 bt_dev_err(data->hdev, "Failed to get mac access %d", err); 851 return err; 852 } 853 854 for (; len > 0; len -= 4, dev_addr += 4, val++) 855 *val = btintel_pcie_rd_dev_mem(data, dev_addr); 856 857 btintel_pcie_release_mac_access(data); 858 859 return 0; 860 } 861 862 static inline bool btintel_pcie_in_lockdown(struct btintel_pcie_data *data) 863 { 864 return (data->boot_stage_cache & 865 BTINTEL_PCIE_CSR_BOOT_STAGE_ROM_LOCKDOWN) || 866 (data->boot_stage_cache & 867 BTINTEL_PCIE_CSR_BOOT_STAGE_IML_LOCKDOWN); 868 } 869 870 static inline bool btintel_pcie_in_error(struct btintel_pcie_data *data) 871 { 872 return (data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_DEVICE_ERR) || 873 (data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_ABORT_HANDLER); 874 } 875 876 static void btintel_pcie_msix_gp1_handler(struct btintel_pcie_data *data) 877 { 878 bt_dev_err(data->hdev, "Received gp1 mailbox interrupt"); 879 btintel_pcie_dump_debug_registers(data->hdev); 880 } 881 882 /* This function handles the MSI-X interrupt for gp0 cause (bit 0 in 883 * BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES) which is sent for boot stage and image response. 884 */ 885 static void btintel_pcie_msix_gp0_handler(struct btintel_pcie_data *data) 886 { 887 bool submit_rx, signal_waitq; 888 u32 reg, old_ctxt; 889 890 /* This interrupt is for three different causes and it is not easy to 891 * know what causes the interrupt. So, it compares each register value 892 * with cached value and update it before it wake up the queue. 893 */ 894 reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_BOOT_STAGE_REG); 895 if (reg != data->boot_stage_cache) 896 data->boot_stage_cache = reg; 897 898 bt_dev_dbg(data->hdev, "Alive context: %s old_boot_stage: 0x%8.8x new_boot_stage: 0x%8.8x", 899 btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt), 900 data->boot_stage_cache, reg); 901 reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_IMG_RESPONSE_REG); 902 if (reg != data->img_resp_cache) 903 data->img_resp_cache = reg; 904 905 if (btintel_pcie_in_error(data)) { 906 bt_dev_err(data->hdev, "Controller in error state"); 907 btintel_pcie_dump_debug_registers(data->hdev); 908 return; 909 } 910 911 if (btintel_pcie_in_lockdown(data)) { 912 bt_dev_err(data->hdev, "Controller in lockdown state"); 913 btintel_pcie_dump_debug_registers(data->hdev); 914 return; 915 } 916 917 data->gp0_received = true; 918 919 old_ctxt = data->alive_intr_ctxt; 920 submit_rx = false; 921 signal_waitq = false; 922 923 switch (data->alive_intr_ctxt) { 924 case BTINTEL_PCIE_ROM: 925 data->alive_intr_ctxt = BTINTEL_PCIE_FW_DL; 926 signal_waitq = true; 927 break; 928 case BTINTEL_PCIE_FW_DL: 929 /* Error case is already handled. Ideally control shall not 930 * reach here 931 */ 932 break; 933 case BTINTEL_PCIE_INTEL_HCI_RESET1: 934 if (btintel_pcie_in_op(data)) { 935 submit_rx = true; 936 signal_waitq = true; 937 break; 938 } 939 940 if (btintel_pcie_in_iml(data)) { 941 submit_rx = true; 942 signal_waitq = true; 943 data->alive_intr_ctxt = BTINTEL_PCIE_FW_DL; 944 break; 945 } 946 break; 947 case BTINTEL_PCIE_INTEL_HCI_RESET2: 948 if (btintel_test_and_clear_flag(data->hdev, INTEL_WAIT_FOR_D0)) { 949 btintel_wake_up_flag(data->hdev, INTEL_WAIT_FOR_D0); 950 data->alive_intr_ctxt = BTINTEL_PCIE_D0; 951 } 952 break; 953 case BTINTEL_PCIE_D0: 954 if (btintel_pcie_in_d3(data)) { 955 data->alive_intr_ctxt = BTINTEL_PCIE_D3; 956 signal_waitq = true; 957 break; 958 } 959 break; 960 case BTINTEL_PCIE_D3: 961 if (btintel_pcie_in_d0(data)) { 962 data->alive_intr_ctxt = BTINTEL_PCIE_D0; 963 submit_rx = true; 964 signal_waitq = true; 965 break; 966 } 967 break; 968 case BTINTEL_PCIE_HCI_RESET: 969 data->alive_intr_ctxt = BTINTEL_PCIE_D0; 970 submit_rx = true; 971 signal_waitq = true; 972 break; 973 default: 974 bt_dev_err(data->hdev, "Unknown state: 0x%2.2x", 975 data->alive_intr_ctxt); 976 break; 977 } 978 979 if (submit_rx) { 980 btintel_pcie_reset_ia(data); 981 btintel_pcie_start_rx(data); 982 } 983 984 if (signal_waitq) { 985 bt_dev_dbg(data->hdev, "wake up gp0 wait_q"); 986 wake_up(&data->gp0_wait_q); 987 } 988 989 if (old_ctxt != data->alive_intr_ctxt) 990 bt_dev_dbg(data->hdev, "alive context changed: %s -> %s", 991 btintel_pcie_alivectxt_state2str(old_ctxt), 992 btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt)); 993 } 994 995 /* This function handles the MSX-X interrupt for rx queue 0 which is for TX 996 */ 997 static void btintel_pcie_msix_tx_handle(struct btintel_pcie_data *data) 998 { 999 u16 cr_tia, cr_hia; 1000 struct txq *txq; 1001 struct urbd0 *urbd0; 1002 1003 cr_tia = data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM]; 1004 cr_hia = data->ia.cr_hia[BTINTEL_PCIE_TXQ_NUM]; 1005 1006 if (cr_tia == cr_hia) 1007 return; 1008 1009 txq = &data->txq; 1010 1011 while (cr_tia != cr_hia) { 1012 data->tx_wait_done = true; 1013 wake_up(&data->tx_wait_q); 1014 1015 urbd0 = &txq->urbd0s[cr_tia]; 1016 1017 if (urbd0->tfd_index > txq->count) 1018 return; 1019 1020 cr_tia = (cr_tia + 1) % txq->count; 1021 data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM] = cr_tia; 1022 ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_TXQ_NUM); 1023 } 1024 } 1025 1026 static int btintel_pcie_recv_event(struct hci_dev *hdev, struct sk_buff *skb) 1027 { 1028 struct hci_event_hdr *hdr = (void *)skb->data; 1029 struct btintel_pcie_data *data = hci_get_drvdata(hdev); 1030 1031 if (skb->len > HCI_EVENT_HDR_SIZE && hdr->evt == 0xff && 1032 hdr->plen > 0) { 1033 const void *ptr = skb->data + HCI_EVENT_HDR_SIZE + 1; 1034 unsigned int len = skb->len - HCI_EVENT_HDR_SIZE - 1; 1035 1036 if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) { 1037 switch (skb->data[2]) { 1038 case 0x02: 1039 /* When switching to the operational firmware 1040 * the device sends a vendor specific event 1041 * indicating that the bootup completed. 1042 */ 1043 btintel_bootup(hdev, ptr, len); 1044 1045 /* If bootup event is from operational image, 1046 * driver needs to write sleep control register to 1047 * move into D0 state 1048 */ 1049 if (btintel_pcie_in_op(data)) { 1050 btintel_pcie_wr_sleep_cntrl(data, BTINTEL_PCIE_STATE_D0); 1051 data->alive_intr_ctxt = BTINTEL_PCIE_INTEL_HCI_RESET2; 1052 kfree_skb(skb); 1053 return 0; 1054 } 1055 1056 if (btintel_pcie_in_iml(data)) { 1057 /* In case of IML, there is no concept 1058 * of D0 transition. Just mimic as if 1059 * IML moved to D0 by clearing INTEL_WAIT_FOR_D0 1060 * bit and waking up the task waiting on 1061 * INTEL_WAIT_FOR_D0. This is required 1062 * as intel_boot() is common function for 1063 * both IML and OP image loading. 1064 */ 1065 if (btintel_test_and_clear_flag(data->hdev, 1066 INTEL_WAIT_FOR_D0)) 1067 btintel_wake_up_flag(data->hdev, 1068 INTEL_WAIT_FOR_D0); 1069 } 1070 kfree_skb(skb); 1071 return 0; 1072 case 0x06: 1073 /* When the firmware loading completes the 1074 * device sends out a vendor specific event 1075 * indicating the result of the firmware 1076 * loading. 1077 */ 1078 btintel_secure_send_result(hdev, ptr, len); 1079 kfree_skb(skb); 1080 return 0; 1081 } 1082 } 1083 1084 /* This is a debug event that comes from IML and OP image when it 1085 * starts execution. There is no need pass this event to stack. 1086 */ 1087 if (skb->data[2] == 0x97) { 1088 hci_recv_diag(hdev, skb); 1089 return 0; 1090 } 1091 } 1092 1093 return hci_recv_frame(hdev, skb); 1094 } 1095 /* Process the received rx data 1096 * It check the frame header to identify the data type and create skb 1097 * and calling HCI API 1098 */ 1099 static int btintel_pcie_recv_frame(struct btintel_pcie_data *data, 1100 struct sk_buff *skb) 1101 { 1102 int ret; 1103 u8 pkt_type; 1104 u16 plen; 1105 u32 pcie_pkt_type; 1106 void *pdata; 1107 struct hci_dev *hdev = data->hdev; 1108 1109 spin_lock(&data->hci_rx_lock); 1110 1111 /* The first 4 bytes indicates the Intel PCIe specific packet type */ 1112 pdata = skb_pull_data(skb, BTINTEL_PCIE_HCI_TYPE_LEN); 1113 if (!pdata) { 1114 bt_dev_err(hdev, "Corrupted packet received"); 1115 ret = -EILSEQ; 1116 goto exit_error; 1117 } 1118 1119 pcie_pkt_type = get_unaligned_le32(pdata); 1120 1121 switch (pcie_pkt_type) { 1122 case BTINTEL_PCIE_HCI_ACL_PKT: 1123 if (skb->len >= HCI_ACL_HDR_SIZE) { 1124 plen = HCI_ACL_HDR_SIZE + __le16_to_cpu(hci_acl_hdr(skb)->dlen); 1125 pkt_type = HCI_ACLDATA_PKT; 1126 } else { 1127 bt_dev_err(hdev, "ACL packet is too short"); 1128 ret = -EILSEQ; 1129 goto exit_error; 1130 } 1131 break; 1132 1133 case BTINTEL_PCIE_HCI_SCO_PKT: 1134 if (skb->len >= HCI_SCO_HDR_SIZE) { 1135 plen = HCI_SCO_HDR_SIZE + hci_sco_hdr(skb)->dlen; 1136 pkt_type = HCI_SCODATA_PKT; 1137 } else { 1138 bt_dev_err(hdev, "SCO packet is too short"); 1139 ret = -EILSEQ; 1140 goto exit_error; 1141 } 1142 break; 1143 1144 case BTINTEL_PCIE_HCI_EVT_PKT: 1145 if (skb->len >= HCI_EVENT_HDR_SIZE) { 1146 plen = HCI_EVENT_HDR_SIZE + hci_event_hdr(skb)->plen; 1147 pkt_type = HCI_EVENT_PKT; 1148 } else { 1149 bt_dev_err(hdev, "Event packet is too short"); 1150 ret = -EILSEQ; 1151 goto exit_error; 1152 } 1153 break; 1154 1155 case BTINTEL_PCIE_HCI_ISO_PKT: 1156 if (skb->len >= HCI_ISO_HDR_SIZE) { 1157 plen = HCI_ISO_HDR_SIZE + __le16_to_cpu(hci_iso_hdr(skb)->dlen); 1158 pkt_type = HCI_ISODATA_PKT; 1159 } else { 1160 bt_dev_err(hdev, "ISO packet is too short"); 1161 ret = -EILSEQ; 1162 goto exit_error; 1163 } 1164 break; 1165 1166 default: 1167 bt_dev_err(hdev, "Invalid packet type received: 0x%4.4x", 1168 pcie_pkt_type); 1169 ret = -EINVAL; 1170 goto exit_error; 1171 } 1172 1173 if (skb->len < plen) { 1174 bt_dev_err(hdev, "Received corrupted packet. type: 0x%2.2x", 1175 pkt_type); 1176 ret = -EILSEQ; 1177 goto exit_error; 1178 } 1179 1180 bt_dev_dbg(hdev, "pkt_type: 0x%2.2x len: %u", pkt_type, plen); 1181 1182 hci_skb_pkt_type(skb) = pkt_type; 1183 hdev->stat.byte_rx += plen; 1184 skb_trim(skb, plen); 1185 1186 if (pcie_pkt_type == BTINTEL_PCIE_HCI_EVT_PKT) 1187 ret = btintel_pcie_recv_event(hdev, skb); 1188 else 1189 ret = hci_recv_frame(hdev, skb); 1190 skb = NULL; /* skb is freed in the callee */ 1191 1192 exit_error: 1193 kfree_skb(skb); 1194 1195 if (ret) 1196 hdev->stat.err_rx++; 1197 1198 spin_unlock(&data->hci_rx_lock); 1199 1200 return ret; 1201 } 1202 1203 static void btintel_pcie_read_hwexp(struct btintel_pcie_data *data) 1204 { 1205 int len, err, offset, pending; 1206 struct sk_buff *skb; 1207 u8 *buf, prefix[64]; 1208 u32 addr, val; 1209 u16 pkt_len; 1210 1211 struct tlv { 1212 u8 type; 1213 __le16 len; 1214 u8 val[]; 1215 } __packed; 1216 1217 struct tlv *tlv; 1218 1219 switch (data->dmp_hdr.cnvi_top & 0xfff) { 1220 case BTINTEL_CNVI_BLAZARI: 1221 case BTINTEL_CNVI_BLAZARIW: 1222 /* only from step B0 onwards */ 1223 if (INTEL_CNVX_TOP_STEP(data->dmp_hdr.cnvi_top) != 0x01) 1224 return; 1225 len = BTINTEL_PCIE_BLZR_HWEXP_SIZE; /* exception data length */ 1226 addr = BTINTEL_PCIE_BLZR_HWEXP_DMP_ADDR; 1227 break; 1228 case BTINTEL_CNVI_SCP: 1229 len = BTINTEL_PCIE_SCP_HWEXP_SIZE; 1230 addr = BTINTEL_PCIE_SCP_HWEXP_DMP_ADDR; 1231 break; 1232 default: 1233 bt_dev_err(data->hdev, "Unsupported cnvi 0x%8.8x", data->dmp_hdr.cnvi_top); 1234 return; 1235 } 1236 1237 buf = kzalloc(len, GFP_KERNEL); 1238 if (!buf) 1239 goto exit_on_error; 1240 1241 btintel_pcie_mac_init(data); 1242 1243 err = btintel_pcie_read_device_mem(data, buf, addr, len); 1244 if (err) 1245 goto exit_on_error; 1246 1247 val = get_unaligned_le32(buf); 1248 if (val != BTINTEL_PCIE_MAGIC_NUM) { 1249 bt_dev_err(data->hdev, "Invalid exception dump signature: 0x%8.8x", 1250 val); 1251 goto exit_on_error; 1252 } 1253 1254 snprintf(prefix, sizeof(prefix), "Bluetooth: %s: ", bt_dev_name(data->hdev)); 1255 1256 offset = 4; 1257 do { 1258 pending = len - offset; 1259 if (pending < sizeof(*tlv)) 1260 break; 1261 tlv = (struct tlv *)(buf + offset); 1262 1263 /* If type == 0, then there are no more TLVs to be parsed */ 1264 if (!tlv->type) { 1265 bt_dev_dbg(data->hdev, "Invalid TLV type 0"); 1266 break; 1267 } 1268 pkt_len = le16_to_cpu(tlv->len); 1269 offset += sizeof(*tlv); 1270 pending = len - offset; 1271 if (pkt_len > pending) 1272 break; 1273 1274 offset += pkt_len; 1275 1276 /* Only TLVs of type == 1 are HCI events, no need to process other 1277 * TLVs 1278 */ 1279 if (tlv->type != 1) 1280 continue; 1281 1282 bt_dev_dbg(data->hdev, "TLV packet length: %u", pkt_len); 1283 if (pkt_len > HCI_MAX_EVENT_SIZE) 1284 break; 1285 skb = bt_skb_alloc(pkt_len, GFP_KERNEL); 1286 if (!skb) 1287 goto exit_on_error; 1288 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 1289 skb_put_data(skb, tlv->val, pkt_len); 1290 1291 /* copy Intel specific pcie packet type */ 1292 val = BTINTEL_PCIE_HCI_EVT_PKT; 1293 memcpy(skb_push(skb, BTINTEL_PCIE_HCI_TYPE_LEN), &val, 1294 BTINTEL_PCIE_HCI_TYPE_LEN); 1295 1296 print_hex_dump(KERN_DEBUG, prefix, DUMP_PREFIX_OFFSET, 16, 1, 1297 tlv->val, pkt_len, false); 1298 1299 btintel_pcie_recv_frame(data, skb); 1300 } while (offset < len); 1301 1302 exit_on_error: 1303 kfree(buf); 1304 } 1305 1306 static void btintel_pcie_msix_hw_exp_handler(struct btintel_pcie_data *data) 1307 { 1308 bt_dev_err(data->hdev, "Received hw exception interrupt"); 1309 1310 if (test_and_set_bit(BTINTEL_PCIE_CORE_HALTED, &data->flags)) 1311 return; 1312 1313 if (test_and_set_bit(BTINTEL_PCIE_HWEXP_INPROGRESS, &data->flags)) 1314 return; 1315 1316 /* Trigger device core dump when there is HW exception */ 1317 if (!test_and_set_bit(BTINTEL_PCIE_COREDUMP_INPROGRESS, &data->flags)) 1318 data->dmp_hdr.trigger_reason = BTINTEL_PCIE_TRIGGER_REASON_FW_ASSERT; 1319 1320 queue_work(data->workqueue, &data->rx_work); 1321 } 1322 1323 static void btintel_pcie_rx_work(struct work_struct *work) 1324 { 1325 struct btintel_pcie_data *data = container_of(work, 1326 struct btintel_pcie_data, rx_work); 1327 struct sk_buff *skb; 1328 1329 if (test_bit(BTINTEL_PCIE_COREDUMP_INPROGRESS, &data->flags)) { 1330 btintel_pcie_dump_traces(data->hdev); 1331 clear_bit(BTINTEL_PCIE_COREDUMP_INPROGRESS, &data->flags); 1332 } 1333 1334 if (test_bit(BTINTEL_PCIE_HWEXP_INPROGRESS, &data->flags)) { 1335 /* Unlike usb products, controller will not send hardware 1336 * exception event on exception. Instead controller writes the 1337 * hardware event to device memory along with optional debug 1338 * events, raises MSIX and halts. Driver shall read the 1339 * exception event from device memory and passes it stack for 1340 * further processing. 1341 */ 1342 btintel_pcie_read_hwexp(data); 1343 clear_bit(BTINTEL_PCIE_HWEXP_INPROGRESS, &data->flags); 1344 } 1345 1346 /* Process the sk_buf in queue and send to the HCI layer */ 1347 while ((skb = skb_dequeue(&data->rx_skb_q))) { 1348 btintel_pcie_recv_frame(data, skb); 1349 } 1350 } 1351 1352 /* create sk_buff with data and save it to queue and start RX work */ 1353 static int btintel_pcie_submit_rx_work(struct btintel_pcie_data *data, u8 status, 1354 void *buf) 1355 { 1356 int ret, len; 1357 struct rfh_hdr *rfh_hdr; 1358 struct sk_buff *skb; 1359 1360 rfh_hdr = buf; 1361 1362 len = rfh_hdr->packet_len; 1363 if (len <= 0) { 1364 ret = -EINVAL; 1365 goto resubmit; 1366 } 1367 1368 /* Remove RFH header */ 1369 buf += sizeof(*rfh_hdr); 1370 1371 skb = alloc_skb(len, GFP_ATOMIC); 1372 if (!skb) 1373 goto resubmit; 1374 1375 skb_put_data(skb, buf, len); 1376 skb_queue_tail(&data->rx_skb_q, skb); 1377 queue_work(data->workqueue, &data->rx_work); 1378 1379 resubmit: 1380 ret = btintel_pcie_submit_rx(data); 1381 1382 return ret; 1383 } 1384 1385 /* Handles the MSI-X interrupt for rx queue 1 which is for RX */ 1386 static void btintel_pcie_msix_rx_handle(struct btintel_pcie_data *data) 1387 { 1388 u16 cr_hia, cr_tia; 1389 struct rxq *rxq; 1390 struct urbd1 *urbd1; 1391 struct data_buf *buf; 1392 int ret; 1393 struct hci_dev *hdev = data->hdev; 1394 1395 cr_hia = data->ia.cr_hia[BTINTEL_PCIE_RXQ_NUM]; 1396 cr_tia = data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM]; 1397 1398 bt_dev_dbg(hdev, "RXQ: cr_hia: %u cr_tia: %u", cr_hia, cr_tia); 1399 1400 /* Check CR_TIA and CR_HIA for change */ 1401 if (cr_tia == cr_hia) 1402 return; 1403 1404 rxq = &data->rxq; 1405 1406 /* The firmware sends multiple CD in a single MSI-X and it needs to 1407 * process all received CDs in this interrupt. 1408 */ 1409 while (cr_tia != cr_hia) { 1410 urbd1 = &rxq->urbd1s[cr_tia]; 1411 ipc_print_urbd1(data->hdev, urbd1, cr_tia); 1412 1413 buf = &rxq->bufs[urbd1->frbd_tag]; 1414 if (!buf) { 1415 bt_dev_err(hdev, "RXQ: failed to get the DMA buffer for %d", 1416 urbd1->frbd_tag); 1417 return; 1418 } 1419 1420 ret = btintel_pcie_submit_rx_work(data, urbd1->status, 1421 buf->data); 1422 if (ret) { 1423 bt_dev_err(hdev, "RXQ: failed to submit rx request"); 1424 return; 1425 } 1426 1427 cr_tia = (cr_tia + 1) % rxq->count; 1428 data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM] = cr_tia; 1429 ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM); 1430 } 1431 } 1432 1433 static irqreturn_t btintel_pcie_msix_isr(int irq, void *data) 1434 { 1435 return IRQ_WAKE_THREAD; 1436 } 1437 1438 static inline bool btintel_pcie_is_rxq_empty(struct btintel_pcie_data *data) 1439 { 1440 return data->ia.cr_hia[BTINTEL_PCIE_RXQ_NUM] == data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM]; 1441 } 1442 1443 static inline bool btintel_pcie_is_txackq_empty(struct btintel_pcie_data *data) 1444 { 1445 return data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM] == data->ia.cr_hia[BTINTEL_PCIE_TXQ_NUM]; 1446 } 1447 1448 static irqreturn_t btintel_pcie_irq_msix_handler(int irq, void *dev_id) 1449 { 1450 struct msix_entry *entry = dev_id; 1451 struct btintel_pcie_data *data = btintel_pcie_get_data(entry); 1452 u32 intr_fh, intr_hw; 1453 1454 spin_lock(&data->irq_lock); 1455 intr_fh = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES); 1456 intr_hw = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES); 1457 1458 /* Clear causes registers to avoid being handling the same cause */ 1459 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES, intr_fh); 1460 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES, intr_hw); 1461 spin_unlock(&data->irq_lock); 1462 1463 if (unlikely(!(intr_fh | intr_hw))) { 1464 /* Ignore interrupt, inta == 0 */ 1465 return IRQ_NONE; 1466 } 1467 1468 /* This interrupt is raised when there is an hardware exception */ 1469 if (intr_hw & BTINTEL_PCIE_MSIX_HW_INT_CAUSES_HWEXP) 1470 btintel_pcie_msix_hw_exp_handler(data); 1471 1472 if (intr_hw & BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP1) 1473 btintel_pcie_msix_gp1_handler(data); 1474 1475 1476 /* For TX */ 1477 if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0) { 1478 btintel_pcie_msix_tx_handle(data); 1479 if (!btintel_pcie_is_rxq_empty(data)) 1480 btintel_pcie_msix_rx_handle(data); 1481 } 1482 1483 /* For RX */ 1484 if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1) { 1485 btintel_pcie_msix_rx_handle(data); 1486 if (!btintel_pcie_is_txackq_empty(data)) 1487 btintel_pcie_msix_tx_handle(data); 1488 } 1489 1490 /* This interrupt is triggered by the firmware after updating 1491 * boot_stage register and image_response register 1492 */ 1493 if (intr_hw & BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0) 1494 btintel_pcie_msix_gp0_handler(data); 1495 1496 /* 1497 * Before sending the interrupt the HW disables it to prevent a nested 1498 * interrupt. This is done by writing 1 to the corresponding bit in 1499 * the mask register. After handling the interrupt, it should be 1500 * re-enabled by clearing this bit. This register is defined as write 1 1501 * clear (W1C) register, meaning that it's cleared by writing 1 1502 * to the bit. 1503 */ 1504 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_AUTOMASK_ST, 1505 BIT(entry->entry)); 1506 1507 return IRQ_HANDLED; 1508 } 1509 1510 /* This function requests the irq for MSI-X and registers the handlers per irq. 1511 * Currently, it requests only 1 irq for all interrupt causes. 1512 */ 1513 static int btintel_pcie_setup_irq(struct btintel_pcie_data *data) 1514 { 1515 int err; 1516 int num_irqs, i; 1517 1518 for (i = 0; i < BTINTEL_PCIE_MSIX_VEC_MAX; i++) 1519 data->msix_entries[i].entry = i; 1520 1521 num_irqs = pci_alloc_irq_vectors(data->pdev, BTINTEL_PCIE_MSIX_VEC_MIN, 1522 BTINTEL_PCIE_MSIX_VEC_MAX, PCI_IRQ_MSIX); 1523 if (num_irqs < 0) 1524 return num_irqs; 1525 1526 data->alloc_vecs = num_irqs; 1527 data->msix_enabled = 1; 1528 data->def_irq = 0; 1529 1530 /* setup irq handler */ 1531 for (i = 0; i < data->alloc_vecs; i++) { 1532 struct msix_entry *msix_entry; 1533 1534 msix_entry = &data->msix_entries[i]; 1535 msix_entry->vector = pci_irq_vector(data->pdev, i); 1536 1537 err = devm_request_threaded_irq(&data->pdev->dev, 1538 msix_entry->vector, 1539 btintel_pcie_msix_isr, 1540 btintel_pcie_irq_msix_handler, 1541 IRQF_SHARED, 1542 KBUILD_MODNAME, 1543 msix_entry); 1544 if (err) { 1545 pci_free_irq_vectors(data->pdev); 1546 data->alloc_vecs = 0; 1547 return err; 1548 } 1549 } 1550 return 0; 1551 } 1552 1553 struct btintel_pcie_causes_list { 1554 u32 cause; 1555 u32 mask_reg; 1556 u8 cause_num; 1557 }; 1558 1559 static struct btintel_pcie_causes_list causes_list[] = { 1560 { BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK, 0x00 }, 1561 { BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK, 0x01 }, 1562 { BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK, 0x20 }, 1563 { BTINTEL_PCIE_MSIX_HW_INT_CAUSES_HWEXP, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK, 0x23 }, 1564 }; 1565 1566 /* This function configures the interrupt masks for both HW_INT_CAUSES and 1567 * FH_INT_CAUSES which are meaningful to us. 1568 * 1569 * After resetting BT function via PCIE FLR or FUNC_CTRL reset, the driver 1570 * need to call this function again to configure since the masks 1571 * are reset to 0xFFFFFFFF after reset. 1572 */ 1573 static void btintel_pcie_config_msix(struct btintel_pcie_data *data) 1574 { 1575 int i; 1576 int val = data->def_irq | BTINTEL_PCIE_MSIX_NON_AUTO_CLEAR_CAUSE; 1577 1578 /* Set Non Auto Clear Cause */ 1579 for (i = 0; i < ARRAY_SIZE(causes_list); i++) { 1580 btintel_pcie_wr_reg8(data, 1581 BTINTEL_PCIE_CSR_MSIX_IVAR(causes_list[i].cause_num), 1582 val); 1583 btintel_pcie_clr_reg_bits(data, 1584 causes_list[i].mask_reg, 1585 causes_list[i].cause); 1586 } 1587 1588 /* Save the initial interrupt mask */ 1589 data->fh_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK); 1590 data->hw_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK); 1591 } 1592 1593 static int btintel_pcie_config_pcie(struct pci_dev *pdev, 1594 struct btintel_pcie_data *data) 1595 { 1596 int err; 1597 1598 err = pcim_enable_device(pdev); 1599 if (err) 1600 return err; 1601 1602 pci_set_master(pdev); 1603 1604 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 1605 if (err) { 1606 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1607 if (err) 1608 return err; 1609 } 1610 1611 data->base_addr = pcim_iomap_region(pdev, 0, KBUILD_MODNAME); 1612 if (IS_ERR(data->base_addr)) 1613 return PTR_ERR(data->base_addr); 1614 1615 err = btintel_pcie_setup_irq(data); 1616 if (err) 1617 return err; 1618 1619 /* Configure MSI-X with causes list */ 1620 btintel_pcie_config_msix(data); 1621 1622 return 0; 1623 } 1624 1625 static void btintel_pcie_init_ci(struct btintel_pcie_data *data, 1626 struct ctx_info *ci) 1627 { 1628 ci->version = 0x1; 1629 ci->size = sizeof(*ci); 1630 ci->config = 0x0000; 1631 ci->addr_cr_hia = data->ia.cr_hia_p_addr; 1632 ci->addr_tr_tia = data->ia.tr_tia_p_addr; 1633 ci->addr_cr_tia = data->ia.cr_tia_p_addr; 1634 ci->addr_tr_hia = data->ia.tr_hia_p_addr; 1635 ci->num_cr_ia = BTINTEL_PCIE_NUM_QUEUES; 1636 ci->num_tr_ia = BTINTEL_PCIE_NUM_QUEUES; 1637 ci->addr_urbdq0 = data->txq.urbd0s_p_addr; 1638 ci->addr_tfdq = data->txq.tfds_p_addr; 1639 ci->num_tfdq = data->txq.count; 1640 ci->num_urbdq0 = data->txq.count; 1641 ci->tfdq_db_vec = BTINTEL_PCIE_TXQ_NUM; 1642 ci->urbdq0_db_vec = BTINTEL_PCIE_TXQ_NUM; 1643 ci->rbd_size = BTINTEL_PCIE_RBD_SIZE_4K; 1644 ci->addr_frbdq = data->rxq.frbds_p_addr; 1645 ci->num_frbdq = data->rxq.count; 1646 ci->frbdq_db_vec = BTINTEL_PCIE_RXQ_NUM; 1647 ci->addr_urbdq1 = data->rxq.urbd1s_p_addr; 1648 ci->num_urbdq1 = data->rxq.count; 1649 ci->urbdq_db_vec = BTINTEL_PCIE_RXQ_NUM; 1650 1651 ci->dbg_output_mode = 0x01; 1652 ci->dbgc_addr = data->dbgc.frag_p_addr; 1653 ci->dbgc_size = data->dbgc.frag_size; 1654 ci->dbg_preset = 0x00; 1655 } 1656 1657 static void btintel_pcie_free_txq_bufs(struct btintel_pcie_data *data, 1658 struct txq *txq) 1659 { 1660 /* Free data buffers first */ 1661 dma_free_coherent(&data->pdev->dev, txq->count * BTINTEL_PCIE_BUFFER_SIZE, 1662 txq->buf_v_addr, txq->buf_p_addr); 1663 kfree(txq->bufs); 1664 } 1665 1666 static int btintel_pcie_setup_txq_bufs(struct btintel_pcie_data *data, 1667 struct txq *txq) 1668 { 1669 int i; 1670 struct data_buf *buf; 1671 1672 /* Allocate the same number of buffers as the descriptor */ 1673 txq->bufs = kmalloc_array(txq->count, sizeof(*buf), GFP_KERNEL); 1674 if (!txq->bufs) 1675 return -ENOMEM; 1676 1677 /* Allocate full chunk of data buffer for DMA first and do indexing and 1678 * initialization next, so it can be freed easily 1679 */ 1680 txq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev, 1681 txq->count * BTINTEL_PCIE_BUFFER_SIZE, 1682 &txq->buf_p_addr, 1683 GFP_KERNEL | __GFP_NOWARN); 1684 if (!txq->buf_v_addr) { 1685 kfree(txq->bufs); 1686 return -ENOMEM; 1687 } 1688 1689 /* Setup the allocated DMA buffer to bufs. Each data_buf should 1690 * have virtual address and physical address 1691 */ 1692 for (i = 0; i < txq->count; i++) { 1693 buf = &txq->bufs[i]; 1694 buf->data_p_addr = txq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE); 1695 buf->data = txq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE); 1696 } 1697 1698 return 0; 1699 } 1700 1701 static void btintel_pcie_free_rxq_bufs(struct btintel_pcie_data *data, 1702 struct rxq *rxq) 1703 { 1704 /* Free data buffers first */ 1705 dma_free_coherent(&data->pdev->dev, rxq->count * BTINTEL_PCIE_BUFFER_SIZE, 1706 rxq->buf_v_addr, rxq->buf_p_addr); 1707 kfree(rxq->bufs); 1708 } 1709 1710 static int btintel_pcie_setup_rxq_bufs(struct btintel_pcie_data *data, 1711 struct rxq *rxq) 1712 { 1713 int i; 1714 struct data_buf *buf; 1715 1716 /* Allocate the same number of buffers as the descriptor */ 1717 rxq->bufs = kmalloc_array(rxq->count, sizeof(*buf), GFP_KERNEL); 1718 if (!rxq->bufs) 1719 return -ENOMEM; 1720 1721 /* Allocate full chunk of data buffer for DMA first and do indexing and 1722 * initialization next, so it can be freed easily 1723 */ 1724 rxq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev, 1725 rxq->count * BTINTEL_PCIE_BUFFER_SIZE, 1726 &rxq->buf_p_addr, 1727 GFP_KERNEL | __GFP_NOWARN); 1728 if (!rxq->buf_v_addr) { 1729 kfree(rxq->bufs); 1730 return -ENOMEM; 1731 } 1732 1733 /* Setup the allocated DMA buffer to bufs. Each data_buf should 1734 * have virtual address and physical address 1735 */ 1736 for (i = 0; i < rxq->count; i++) { 1737 buf = &rxq->bufs[i]; 1738 buf->data_p_addr = rxq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE); 1739 buf->data = rxq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE); 1740 } 1741 1742 return 0; 1743 } 1744 1745 static void btintel_pcie_setup_ia(struct btintel_pcie_data *data, 1746 dma_addr_t p_addr, void *v_addr, 1747 struct ia *ia) 1748 { 1749 /* TR Head Index Array */ 1750 ia->tr_hia_p_addr = p_addr; 1751 ia->tr_hia = v_addr; 1752 1753 /* TR Tail Index Array */ 1754 ia->tr_tia_p_addr = p_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES; 1755 ia->tr_tia = v_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES; 1756 1757 /* CR Head index Array */ 1758 ia->cr_hia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2); 1759 ia->cr_hia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2); 1760 1761 /* CR Tail Index Array */ 1762 ia->cr_tia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3); 1763 ia->cr_tia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3); 1764 } 1765 1766 static void btintel_pcie_free(struct btintel_pcie_data *data) 1767 { 1768 btintel_pcie_free_rxq_bufs(data, &data->rxq); 1769 btintel_pcie_free_txq_bufs(data, &data->txq); 1770 1771 dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr); 1772 dma_pool_destroy(data->dma_pool); 1773 } 1774 1775 /* Allocate tx and rx queues, any related data structures and buffers. 1776 */ 1777 static int btintel_pcie_alloc(struct btintel_pcie_data *data) 1778 { 1779 int err = 0; 1780 size_t total; 1781 dma_addr_t p_addr; 1782 void *v_addr; 1783 1784 /* Allocate the chunk of DMA memory for descriptors, index array, and 1785 * context information, instead of allocating individually. 1786 * The DMA memory for data buffer is allocated while setting up the 1787 * each queue. 1788 * 1789 * Total size is sum of the following 1790 * + size of TFD * Number of descriptors in queue 1791 * + size of URBD0 * Number of descriptors in queue 1792 * + size of FRBD * Number of descriptors in queue 1793 * + size of URBD1 * Number of descriptors in queue 1794 * + size of index * Number of queues(2) * type of index array(4) 1795 * + size of context information 1796 */ 1797 total = (sizeof(struct tfd) + sizeof(struct urbd0)) * BTINTEL_PCIE_TX_DESCS_COUNT; 1798 total += (sizeof(struct frbd) + sizeof(struct urbd1)) * BTINTEL_PCIE_RX_DESCS_COUNT; 1799 1800 /* Add the sum of size of index array and size of ci struct */ 1801 total += (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4) + sizeof(struct ctx_info); 1802 1803 /* Allocate DMA Pool */ 1804 data->dma_pool = dma_pool_create(KBUILD_MODNAME, &data->pdev->dev, 1805 total, BTINTEL_PCIE_DMA_POOL_ALIGNMENT, 0); 1806 if (!data->dma_pool) { 1807 err = -ENOMEM; 1808 goto exit_error; 1809 } 1810 1811 v_addr = dma_pool_zalloc(data->dma_pool, GFP_KERNEL | __GFP_NOWARN, 1812 &p_addr); 1813 if (!v_addr) { 1814 dma_pool_destroy(data->dma_pool); 1815 err = -ENOMEM; 1816 goto exit_error; 1817 } 1818 1819 data->dma_p_addr = p_addr; 1820 data->dma_v_addr = v_addr; 1821 1822 /* Setup descriptor count */ 1823 data->txq.count = BTINTEL_PCIE_TX_DESCS_COUNT; 1824 data->rxq.count = BTINTEL_PCIE_RX_DESCS_COUNT; 1825 1826 /* Setup tfds */ 1827 data->txq.tfds_p_addr = p_addr; 1828 data->txq.tfds = v_addr; 1829 1830 p_addr += (sizeof(struct tfd) * BTINTEL_PCIE_TX_DESCS_COUNT); 1831 v_addr += (sizeof(struct tfd) * BTINTEL_PCIE_TX_DESCS_COUNT); 1832 1833 /* Setup urbd0 */ 1834 data->txq.urbd0s_p_addr = p_addr; 1835 data->txq.urbd0s = v_addr; 1836 1837 p_addr += (sizeof(struct urbd0) * BTINTEL_PCIE_TX_DESCS_COUNT); 1838 v_addr += (sizeof(struct urbd0) * BTINTEL_PCIE_TX_DESCS_COUNT); 1839 1840 /* Setup FRBD*/ 1841 data->rxq.frbds_p_addr = p_addr; 1842 data->rxq.frbds = v_addr; 1843 1844 p_addr += (sizeof(struct frbd) * BTINTEL_PCIE_RX_DESCS_COUNT); 1845 v_addr += (sizeof(struct frbd) * BTINTEL_PCIE_RX_DESCS_COUNT); 1846 1847 /* Setup urbd1 */ 1848 data->rxq.urbd1s_p_addr = p_addr; 1849 data->rxq.urbd1s = v_addr; 1850 1851 p_addr += (sizeof(struct urbd1) * BTINTEL_PCIE_RX_DESCS_COUNT); 1852 v_addr += (sizeof(struct urbd1) * BTINTEL_PCIE_RX_DESCS_COUNT); 1853 1854 /* Setup data buffers for txq */ 1855 err = btintel_pcie_setup_txq_bufs(data, &data->txq); 1856 if (err) 1857 goto exit_error_pool; 1858 1859 /* Setup data buffers for rxq */ 1860 err = btintel_pcie_setup_rxq_bufs(data, &data->rxq); 1861 if (err) 1862 goto exit_error_txq; 1863 1864 /* Setup Index Array */ 1865 btintel_pcie_setup_ia(data, p_addr, v_addr, &data->ia); 1866 1867 /* Setup data buffers for dbgc */ 1868 err = btintel_pcie_setup_dbgc(data); 1869 if (err) 1870 goto exit_error_txq; 1871 1872 /* Setup Context Information */ 1873 p_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4; 1874 v_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4; 1875 1876 data->ci = v_addr; 1877 data->ci_p_addr = p_addr; 1878 1879 /* Initialize the CI */ 1880 btintel_pcie_init_ci(data, data->ci); 1881 1882 return 0; 1883 1884 exit_error_txq: 1885 btintel_pcie_free_txq_bufs(data, &data->txq); 1886 exit_error_pool: 1887 dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr); 1888 dma_pool_destroy(data->dma_pool); 1889 exit_error: 1890 return err; 1891 } 1892 1893 static int btintel_pcie_open(struct hci_dev *hdev) 1894 { 1895 bt_dev_dbg(hdev, ""); 1896 1897 return 0; 1898 } 1899 1900 static int btintel_pcie_close(struct hci_dev *hdev) 1901 { 1902 bt_dev_dbg(hdev, ""); 1903 1904 return 0; 1905 } 1906 1907 static int btintel_pcie_inject_cmd_complete(struct hci_dev *hdev, __u16 opcode) 1908 { 1909 struct sk_buff *skb; 1910 struct hci_event_hdr *hdr; 1911 struct hci_ev_cmd_complete *evt; 1912 1913 skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL); 1914 if (!skb) 1915 return -ENOMEM; 1916 1917 hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr)); 1918 hdr->evt = HCI_EV_CMD_COMPLETE; 1919 hdr->plen = sizeof(*evt) + 1; 1920 1921 evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt)); 1922 evt->ncmd = 0x01; 1923 evt->opcode = cpu_to_le16(opcode); 1924 1925 *(u8 *)skb_put(skb, 1) = 0x00; 1926 1927 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 1928 1929 return hci_recv_frame(hdev, skb); 1930 } 1931 1932 static int btintel_pcie_send_frame(struct hci_dev *hdev, 1933 struct sk_buff *skb) 1934 { 1935 struct btintel_pcie_data *data = hci_get_drvdata(hdev); 1936 struct hci_command_hdr *cmd; 1937 __u16 opcode = ~0; 1938 int ret; 1939 u32 type; 1940 1941 if (test_bit(BTINTEL_PCIE_CORE_HALTED, &data->flags)) 1942 return -ENODEV; 1943 1944 /* Due to the fw limitation, the type header of the packet should be 1945 * 4 bytes unlike 1 byte for UART. In UART, the firmware can read 1946 * the first byte to get the packet type and redirect the rest of data 1947 * packet to the right handler. 1948 * 1949 * But for PCIe, THF(Transfer Flow Handler) fetches the 4 bytes of data 1950 * from DMA memory and by the time it reads the first 4 bytes, it has 1951 * already consumed some part of packet. Thus the packet type indicator 1952 * for iBT PCIe is 4 bytes. 1953 * 1954 * Luckily, when HCI core creates the skb, it allocates 8 bytes of 1955 * head room for profile and driver use, and before sending the data 1956 * to the device, append the iBT PCIe packet type in the front. 1957 */ 1958 switch (hci_skb_pkt_type(skb)) { 1959 case HCI_COMMAND_PKT: 1960 type = BTINTEL_PCIE_HCI_CMD_PKT; 1961 cmd = (void *)skb->data; 1962 opcode = le16_to_cpu(cmd->opcode); 1963 if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) { 1964 struct hci_command_hdr *cmd = (void *)skb->data; 1965 __u16 opcode = le16_to_cpu(cmd->opcode); 1966 1967 /* When the BTINTEL_HCI_OP_RESET command is issued to 1968 * boot into the operational firmware, it will actually 1969 * not send a command complete event. To keep the flow 1970 * control working inject that event here. 1971 */ 1972 if (opcode == BTINTEL_HCI_OP_RESET) 1973 btintel_pcie_inject_cmd_complete(hdev, opcode); 1974 } 1975 1976 hdev->stat.cmd_tx++; 1977 break; 1978 case HCI_ACLDATA_PKT: 1979 type = BTINTEL_PCIE_HCI_ACL_PKT; 1980 hdev->stat.acl_tx++; 1981 break; 1982 case HCI_SCODATA_PKT: 1983 type = BTINTEL_PCIE_HCI_SCO_PKT; 1984 hdev->stat.sco_tx++; 1985 break; 1986 case HCI_ISODATA_PKT: 1987 type = BTINTEL_PCIE_HCI_ISO_PKT; 1988 break; 1989 default: 1990 bt_dev_err(hdev, "Unknown HCI packet type"); 1991 return -EILSEQ; 1992 } 1993 1994 ret = btintel_pcie_send_sync(data, skb, type, opcode); 1995 if (ret) { 1996 hdev->stat.err_tx++; 1997 bt_dev_err(hdev, "Failed to send frame (%d)", ret); 1998 goto exit_error; 1999 } 2000 2001 hdev->stat.byte_tx += skb->len; 2002 kfree_skb(skb); 2003 2004 exit_error: 2005 return ret; 2006 } 2007 2008 static void btintel_pcie_release_hdev(struct btintel_pcie_data *data) 2009 { 2010 struct hci_dev *hdev; 2011 2012 hdev = data->hdev; 2013 hci_unregister_dev(hdev); 2014 hci_free_dev(hdev); 2015 data->hdev = NULL; 2016 } 2017 2018 static void btintel_pcie_disable_interrupts(struct btintel_pcie_data *data) 2019 { 2020 spin_lock(&data->irq_lock); 2021 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK, data->fh_init_mask); 2022 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK, data->hw_init_mask); 2023 spin_unlock(&data->irq_lock); 2024 } 2025 2026 static void btintel_pcie_enable_interrupts(struct btintel_pcie_data *data) 2027 { 2028 spin_lock(&data->irq_lock); 2029 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK, ~data->fh_init_mask); 2030 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK, ~data->hw_init_mask); 2031 spin_unlock(&data->irq_lock); 2032 } 2033 2034 static void btintel_pcie_synchronize_irqs(struct btintel_pcie_data *data) 2035 { 2036 for (int i = 0; i < data->alloc_vecs; i++) 2037 synchronize_irq(data->msix_entries[i].vector); 2038 } 2039 2040 static int btintel_pcie_setup_internal(struct hci_dev *hdev) 2041 { 2042 struct btintel_pcie_data *data = hci_get_drvdata(hdev); 2043 const u8 param[1] = { 0xFF }; 2044 struct intel_version_tlv ver_tlv; 2045 struct sk_buff *skb; 2046 int err; 2047 2048 BT_DBG("%s", hdev->name); 2049 2050 skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT); 2051 if (IS_ERR(skb)) { 2052 bt_dev_err(hdev, "Reading Intel version command failed (%ld)", 2053 PTR_ERR(skb)); 2054 return PTR_ERR(skb); 2055 } 2056 2057 /* Check the status */ 2058 if (skb->data[0]) { 2059 bt_dev_err(hdev, "Intel Read Version command failed (%02x)", 2060 skb->data[0]); 2061 err = -EIO; 2062 goto exit_error; 2063 } 2064 2065 /* Apply the common HCI quirks for Intel device */ 2066 hci_set_quirk(hdev, HCI_QUIRK_STRICT_DUPLICATE_FILTER); 2067 hci_set_quirk(hdev, HCI_QUIRK_SIMULTANEOUS_DISCOVERY); 2068 hci_set_quirk(hdev, HCI_QUIRK_NON_PERSISTENT_DIAG); 2069 2070 /* Set up the quality report callback for Intel devices */ 2071 hdev->set_quality_report = btintel_set_quality_report; 2072 2073 memset(&ver_tlv, 0, sizeof(ver_tlv)); 2074 /* For TLV type device, parse the tlv data */ 2075 err = btintel_parse_version_tlv(hdev, &ver_tlv, skb); 2076 if (err) { 2077 bt_dev_err(hdev, "Failed to parse TLV version information"); 2078 goto exit_error; 2079 } 2080 2081 switch (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)) { 2082 case 0x37: 2083 break; 2084 default: 2085 bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)", 2086 INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)); 2087 err = -EINVAL; 2088 goto exit_error; 2089 } 2090 2091 /* Check for supported iBT hardware variants of this firmware 2092 * loading method. 2093 * 2094 * This check has been put in place to ensure correct forward 2095 * compatibility options when newer hardware variants come 2096 * along. 2097 */ 2098 switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) { 2099 case 0x1e: /* BzrI */ 2100 case 0x1f: /* ScP */ 2101 case 0x22: /* BzrIW */ 2102 /* Display version information of TLV type */ 2103 btintel_version_info_tlv(hdev, &ver_tlv); 2104 2105 /* Apply the device specific HCI quirks for TLV based devices 2106 * 2107 * All TLV based devices support WBS 2108 */ 2109 hci_set_quirk(hdev, HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED); 2110 2111 /* Setup MSFT Extension support */ 2112 btintel_set_msft_opcode(hdev, 2113 INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); 2114 2115 err = btintel_bootloader_setup_tlv(hdev, &ver_tlv); 2116 if (err) 2117 goto exit_error; 2118 break; 2119 default: 2120 bt_dev_err(hdev, "Unsupported Intel hw variant (%u)", 2121 INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); 2122 err = -EINVAL; 2123 goto exit_error; 2124 break; 2125 } 2126 2127 data->dmp_hdr.cnvi_top = ver_tlv.cnvi_top; 2128 data->dmp_hdr.cnvr_top = ver_tlv.cnvr_top; 2129 data->dmp_hdr.fw_timestamp = ver_tlv.timestamp; 2130 data->dmp_hdr.fw_build_type = ver_tlv.build_type; 2131 data->dmp_hdr.fw_build_num = ver_tlv.build_num; 2132 data->dmp_hdr.cnvi_bt = ver_tlv.cnvi_bt; 2133 2134 if (ver_tlv.img_type == 0x02 || ver_tlv.img_type == 0x03) 2135 data->dmp_hdr.fw_git_sha1 = ver_tlv.git_sha1; 2136 2137 btintel_print_fseq_info(hdev); 2138 exit_error: 2139 kfree_skb(skb); 2140 2141 return err; 2142 } 2143 2144 static int btintel_pcie_setup(struct hci_dev *hdev) 2145 { 2146 int err, fw_dl_retry = 0; 2147 struct btintel_pcie_data *data = hci_get_drvdata(hdev); 2148 2149 while ((err = btintel_pcie_setup_internal(hdev)) && fw_dl_retry++ < 1) { 2150 bt_dev_err(hdev, "Firmware download retry count: %d", 2151 fw_dl_retry); 2152 btintel_pcie_dump_debug_registers(hdev); 2153 btintel_pcie_disable_interrupts(data); 2154 btintel_pcie_synchronize_irqs(data); 2155 err = btintel_pcie_reset_bt(data); 2156 if (err) { 2157 bt_dev_err(hdev, "Failed to do shr reset: %d", err); 2158 break; 2159 } 2160 usleep_range(10000, 12000); 2161 btintel_pcie_reset_ia(data); 2162 btintel_pcie_enable_interrupts(data); 2163 btintel_pcie_config_msix(data); 2164 err = btintel_pcie_enable_bt(data); 2165 if (err) { 2166 bt_dev_err(hdev, "Failed to enable hardware: %d", err); 2167 break; 2168 } 2169 btintel_pcie_start_rx(data); 2170 } 2171 2172 if (!err) 2173 set_bit(BTINTEL_PCIE_SETUP_DONE, &data->flags); 2174 return err; 2175 } 2176 2177 static struct btintel_pcie_dev_recovery * 2178 btintel_pcie_get_recovery(struct pci_dev *pdev, struct device *dev) 2179 { 2180 struct btintel_pcie_dev_recovery *tmp, *data = NULL; 2181 const char *name = pci_name(pdev); 2182 const size_t name_len = strlen(name) + 1; 2183 struct hci_dev *hdev = to_hci_dev(dev); 2184 2185 spin_lock(&btintel_pcie_recovery_lock); 2186 list_for_each_entry(tmp, &btintel_pcie_recovery_list, list) { 2187 if (strcmp(tmp->name, name)) 2188 continue; 2189 data = tmp; 2190 break; 2191 } 2192 spin_unlock(&btintel_pcie_recovery_lock); 2193 2194 if (data) { 2195 bt_dev_dbg(hdev, "Found restart data for BDF: %s", data->name); 2196 return data; 2197 } 2198 2199 data = kzalloc(struct_size(data, name, name_len), GFP_ATOMIC); 2200 if (!data) 2201 return NULL; 2202 2203 strscpy(data->name, name, name_len); 2204 spin_lock(&btintel_pcie_recovery_lock); 2205 list_add_tail(&data->list, &btintel_pcie_recovery_list); 2206 spin_unlock(&btintel_pcie_recovery_lock); 2207 2208 return data; 2209 } 2210 2211 static void btintel_pcie_free_restart_list(void) 2212 { 2213 struct btintel_pcie_dev_recovery *tmp; 2214 2215 while ((tmp = list_first_entry_or_null(&btintel_pcie_recovery_list, 2216 typeof(*tmp), list))) { 2217 list_del(&tmp->list); 2218 kfree(tmp); 2219 } 2220 } 2221 2222 static void btintel_pcie_inc_recovery_count(struct pci_dev *pdev, 2223 struct device *dev) 2224 { 2225 struct btintel_pcie_dev_recovery *data; 2226 time64_t retry_window; 2227 2228 data = btintel_pcie_get_recovery(pdev, dev); 2229 if (!data) 2230 return; 2231 2232 retry_window = ktime_get_boottime_seconds() - data->last_error; 2233 if (data->count == 0) { 2234 data->last_error = ktime_get_boottime_seconds(); 2235 data->count++; 2236 } else if (retry_window < BTINTEL_PCIE_RESET_WINDOW_SECS && 2237 data->count <= BTINTEL_PCIE_FLR_MAX_RETRY) { 2238 data->count++; 2239 } else if (retry_window > BTINTEL_PCIE_RESET_WINDOW_SECS) { 2240 data->last_error = 0; 2241 data->count = 0; 2242 } 2243 } 2244 2245 static int btintel_pcie_setup_hdev(struct btintel_pcie_data *data); 2246 2247 static void btintel_pcie_removal_work(struct work_struct *wk) 2248 { 2249 struct btintel_pcie_removal *removal = 2250 container_of(wk, struct btintel_pcie_removal, work); 2251 struct pci_dev *pdev = removal->pdev; 2252 struct btintel_pcie_data *data; 2253 int err; 2254 2255 pci_lock_rescan_remove(); 2256 2257 if (!pdev->bus) 2258 goto error; 2259 2260 data = pci_get_drvdata(pdev); 2261 2262 btintel_pcie_disable_interrupts(data); 2263 btintel_pcie_synchronize_irqs(data); 2264 2265 flush_work(&data->rx_work); 2266 2267 bt_dev_dbg(data->hdev, "Release bluetooth interface"); 2268 btintel_pcie_release_hdev(data); 2269 2270 err = pci_reset_function(pdev); 2271 if (err) { 2272 BT_ERR("Failed resetting the pcie device (%d)", err); 2273 goto error; 2274 } 2275 2276 btintel_pcie_enable_interrupts(data); 2277 btintel_pcie_config_msix(data); 2278 2279 err = btintel_pcie_enable_bt(data); 2280 if (err) { 2281 BT_ERR("Failed to enable bluetooth hardware after reset (%d)", 2282 err); 2283 goto error; 2284 } 2285 2286 btintel_pcie_reset_ia(data); 2287 btintel_pcie_start_rx(data); 2288 data->flags = 0; 2289 2290 err = btintel_pcie_setup_hdev(data); 2291 if (err) { 2292 BT_ERR("Failed registering hdev (%d)", err); 2293 goto error; 2294 } 2295 error: 2296 pci_dev_put(pdev); 2297 pci_unlock_rescan_remove(); 2298 kfree(removal); 2299 } 2300 2301 static void btintel_pcie_reset(struct hci_dev *hdev) 2302 { 2303 struct btintel_pcie_removal *removal; 2304 struct btintel_pcie_data *data; 2305 2306 data = hci_get_drvdata(hdev); 2307 2308 if (!test_bit(BTINTEL_PCIE_SETUP_DONE, &data->flags)) 2309 return; 2310 2311 if (test_and_set_bit(BTINTEL_PCIE_RECOVERY_IN_PROGRESS, &data->flags)) 2312 return; 2313 2314 removal = kzalloc(sizeof(*removal), GFP_ATOMIC); 2315 if (!removal) 2316 return; 2317 2318 removal->pdev = data->pdev; 2319 INIT_WORK(&removal->work, btintel_pcie_removal_work); 2320 pci_dev_get(removal->pdev); 2321 schedule_work(&removal->work); 2322 } 2323 2324 static void btintel_pcie_hw_error(struct hci_dev *hdev, u8 code) 2325 { 2326 struct btintel_pcie_dev_recovery *data; 2327 struct btintel_pcie_data *dev_data = hci_get_drvdata(hdev); 2328 struct pci_dev *pdev = dev_data->pdev; 2329 time64_t retry_window; 2330 2331 if (code == 0x13) { 2332 bt_dev_err(hdev, "Encountered top exception"); 2333 return; 2334 } 2335 2336 data = btintel_pcie_get_recovery(pdev, &hdev->dev); 2337 if (!data) 2338 return; 2339 2340 retry_window = ktime_get_boottime_seconds() - data->last_error; 2341 2342 if (retry_window < BTINTEL_PCIE_RESET_WINDOW_SECS && 2343 data->count >= BTINTEL_PCIE_FLR_MAX_RETRY) { 2344 bt_dev_err(hdev, "Exhausted maximum: %d recovery attempts: %d", 2345 BTINTEL_PCIE_FLR_MAX_RETRY, data->count); 2346 bt_dev_dbg(hdev, "Boot time: %lld seconds", 2347 ktime_get_boottime_seconds()); 2348 bt_dev_dbg(hdev, "last error at: %lld seconds", 2349 data->last_error); 2350 return; 2351 } 2352 btintel_pcie_inc_recovery_count(pdev, &hdev->dev); 2353 btintel_pcie_reset(hdev); 2354 } 2355 2356 static bool btintel_pcie_wakeup(struct hci_dev *hdev) 2357 { 2358 struct btintel_pcie_data *data = hci_get_drvdata(hdev); 2359 2360 return device_may_wakeup(&data->pdev->dev); 2361 } 2362 2363 static const struct { 2364 u16 opcode; 2365 const char *desc; 2366 } btintel_pcie_hci_drv_supported_commands[] = { 2367 /* Common commands */ 2368 { HCI_DRV_OP_READ_INFO, "Read Info" }, 2369 }; 2370 2371 static int btintel_pcie_hci_drv_read_info(struct hci_dev *hdev, void *data, 2372 u16 data_len) 2373 { 2374 struct hci_drv_rp_read_info *rp; 2375 size_t rp_size; 2376 int err, i; 2377 u16 opcode, num_supported_commands = 2378 ARRAY_SIZE(btintel_pcie_hci_drv_supported_commands); 2379 2380 rp_size = sizeof(*rp) + num_supported_commands * 2; 2381 2382 rp = kmalloc(rp_size, GFP_KERNEL); 2383 if (!rp) 2384 return -ENOMEM; 2385 2386 strscpy_pad(rp->driver_name, KBUILD_MODNAME); 2387 2388 rp->num_supported_commands = cpu_to_le16(num_supported_commands); 2389 for (i = 0; i < num_supported_commands; i++) { 2390 opcode = btintel_pcie_hci_drv_supported_commands[i].opcode; 2391 bt_dev_dbg(hdev, 2392 "Supported HCI Drv command (0x%02x|0x%04x): %s", 2393 hci_opcode_ogf(opcode), 2394 hci_opcode_ocf(opcode), 2395 btintel_pcie_hci_drv_supported_commands[i].desc); 2396 rp->supported_commands[i] = cpu_to_le16(opcode); 2397 } 2398 2399 err = hci_drv_cmd_complete(hdev, HCI_DRV_OP_READ_INFO, 2400 HCI_DRV_STATUS_SUCCESS, 2401 rp, rp_size); 2402 2403 kfree(rp); 2404 return err; 2405 } 2406 2407 static const struct hci_drv_handler btintel_pcie_hci_drv_common_handlers[] = { 2408 { btintel_pcie_hci_drv_read_info, HCI_DRV_READ_INFO_SIZE }, 2409 }; 2410 2411 static const struct hci_drv_handler btintel_pcie_hci_drv_specific_handlers[] = {}; 2412 2413 static struct hci_drv btintel_pcie_hci_drv = { 2414 .common_handler_count = ARRAY_SIZE(btintel_pcie_hci_drv_common_handlers), 2415 .common_handlers = btintel_pcie_hci_drv_common_handlers, 2416 .specific_handler_count = ARRAY_SIZE(btintel_pcie_hci_drv_specific_handlers), 2417 .specific_handlers = btintel_pcie_hci_drv_specific_handlers, 2418 }; 2419 2420 static int btintel_pcie_setup_hdev(struct btintel_pcie_data *data) 2421 { 2422 int err; 2423 struct hci_dev *hdev; 2424 2425 hdev = hci_alloc_dev_priv(sizeof(struct btintel_data)); 2426 if (!hdev) 2427 return -ENOMEM; 2428 2429 hdev->bus = HCI_PCI; 2430 hci_set_drvdata(hdev, data); 2431 2432 data->hdev = hdev; 2433 SET_HCIDEV_DEV(hdev, &data->pdev->dev); 2434 2435 hdev->manufacturer = 2; 2436 hdev->open = btintel_pcie_open; 2437 hdev->close = btintel_pcie_close; 2438 hdev->send = btintel_pcie_send_frame; 2439 hdev->setup = btintel_pcie_setup; 2440 hdev->shutdown = btintel_shutdown_combined; 2441 hdev->hw_error = btintel_pcie_hw_error; 2442 hdev->set_diag = btintel_set_diag; 2443 hdev->set_bdaddr = btintel_set_bdaddr; 2444 hdev->reset = btintel_pcie_reset; 2445 hdev->wakeup = btintel_pcie_wakeup; 2446 hdev->hci_drv = &btintel_pcie_hci_drv; 2447 2448 err = hci_register_dev(hdev); 2449 if (err < 0) { 2450 BT_ERR("Failed to register to hdev (%d)", err); 2451 goto exit_error; 2452 } 2453 2454 data->dmp_hdr.driver_name = KBUILD_MODNAME; 2455 return 0; 2456 2457 exit_error: 2458 hci_free_dev(hdev); 2459 return err; 2460 } 2461 2462 static int btintel_pcie_probe(struct pci_dev *pdev, 2463 const struct pci_device_id *ent) 2464 { 2465 int err; 2466 struct btintel_pcie_data *data; 2467 2468 if (!pdev) 2469 return -ENODEV; 2470 2471 data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); 2472 if (!data) 2473 return -ENOMEM; 2474 2475 data->pdev = pdev; 2476 2477 spin_lock_init(&data->irq_lock); 2478 spin_lock_init(&data->hci_rx_lock); 2479 2480 init_waitqueue_head(&data->gp0_wait_q); 2481 data->gp0_received = false; 2482 2483 init_waitqueue_head(&data->tx_wait_q); 2484 data->tx_wait_done = false; 2485 2486 data->workqueue = alloc_ordered_workqueue(KBUILD_MODNAME, WQ_HIGHPRI); 2487 if (!data->workqueue) 2488 return -ENOMEM; 2489 2490 skb_queue_head_init(&data->rx_skb_q); 2491 INIT_WORK(&data->rx_work, btintel_pcie_rx_work); 2492 2493 data->boot_stage_cache = 0x00; 2494 data->img_resp_cache = 0x00; 2495 2496 err = btintel_pcie_config_pcie(pdev, data); 2497 if (err) 2498 goto exit_error; 2499 2500 pci_set_drvdata(pdev, data); 2501 2502 err = btintel_pcie_alloc(data); 2503 if (err) 2504 goto exit_error; 2505 2506 err = btintel_pcie_enable_bt(data); 2507 if (err) 2508 goto exit_error; 2509 2510 /* CNV information (CNVi and CNVr) is in CSR */ 2511 data->cnvi = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_HW_REV_REG); 2512 2513 data->cnvr = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_RF_ID_REG); 2514 2515 err = btintel_pcie_start_rx(data); 2516 if (err) 2517 goto exit_error; 2518 2519 err = btintel_pcie_setup_hdev(data); 2520 if (err) 2521 goto exit_error; 2522 2523 bt_dev_dbg(data->hdev, "cnvi: 0x%8.8x cnvr: 0x%8.8x", data->cnvi, 2524 data->cnvr); 2525 return 0; 2526 2527 exit_error: 2528 /* reset device before exit */ 2529 btintel_pcie_reset_bt(data); 2530 2531 pci_clear_master(pdev); 2532 2533 pci_set_drvdata(pdev, NULL); 2534 2535 return err; 2536 } 2537 2538 static void btintel_pcie_remove(struct pci_dev *pdev) 2539 { 2540 struct btintel_pcie_data *data; 2541 2542 data = pci_get_drvdata(pdev); 2543 2544 btintel_pcie_disable_interrupts(data); 2545 2546 btintel_pcie_synchronize_irqs(data); 2547 2548 flush_work(&data->rx_work); 2549 2550 btintel_pcie_reset_bt(data); 2551 for (int i = 0; i < data->alloc_vecs; i++) { 2552 struct msix_entry *msix_entry; 2553 2554 msix_entry = &data->msix_entries[i]; 2555 free_irq(msix_entry->vector, msix_entry); 2556 } 2557 2558 pci_free_irq_vectors(pdev); 2559 2560 btintel_pcie_release_hdev(data); 2561 2562 destroy_workqueue(data->workqueue); 2563 2564 btintel_pcie_free(data); 2565 2566 pci_clear_master(pdev); 2567 2568 pci_set_drvdata(pdev, NULL); 2569 } 2570 2571 #ifdef CONFIG_DEV_COREDUMP 2572 static void btintel_pcie_coredump(struct device *dev) 2573 { 2574 struct pci_dev *pdev = to_pci_dev(dev); 2575 struct btintel_pcie_data *data = pci_get_drvdata(pdev); 2576 2577 if (test_and_set_bit(BTINTEL_PCIE_COREDUMP_INPROGRESS, &data->flags)) 2578 return; 2579 2580 data->dmp_hdr.trigger_reason = BTINTEL_PCIE_TRIGGER_REASON_USER_TRIGGER; 2581 queue_work(data->workqueue, &data->rx_work); 2582 } 2583 #endif 2584 2585 static int btintel_pcie_set_dxstate(struct btintel_pcie_data *data, u32 dxstate) 2586 { 2587 int retry = 0, status; 2588 u32 dx_intr_timeout_ms = 200; 2589 2590 do { 2591 data->gp0_received = false; 2592 2593 btintel_pcie_wr_sleep_cntrl(data, dxstate); 2594 2595 status = wait_event_timeout(data->gp0_wait_q, data->gp0_received, 2596 msecs_to_jiffies(dx_intr_timeout_ms)); 2597 2598 if (status) 2599 return 0; 2600 2601 bt_dev_warn(data->hdev, 2602 "Timeout (%u ms) on alive interrupt for D%d entry, retry count %d", 2603 dx_intr_timeout_ms, dxstate, retry); 2604 2605 /* clear gp0 cause */ 2606 btintel_pcie_clr_reg_bits(data, 2607 BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES, 2608 BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0); 2609 2610 /* A hardware bug may cause the alive interrupt to be missed. 2611 * Check if the controller reached the expected state and retry 2612 * the operation only if it hasn't. 2613 */ 2614 if (dxstate == BTINTEL_PCIE_STATE_D0) { 2615 if (btintel_pcie_in_d0(data)) 2616 return 0; 2617 } else { 2618 if (btintel_pcie_in_d3(data)) 2619 return 0; 2620 } 2621 2622 } while (++retry < BTINTEL_PCIE_DX_TRANSITION_MAX_RETRIES); 2623 2624 return -EBUSY; 2625 } 2626 2627 static int btintel_pcie_suspend_late(struct device *dev, pm_message_t mesg) 2628 { 2629 struct pci_dev *pdev = to_pci_dev(dev); 2630 struct btintel_pcie_data *data; 2631 ktime_t start; 2632 u32 dxstate; 2633 int err; 2634 2635 data = pci_get_drvdata(pdev); 2636 2637 dxstate = (mesg.event == PM_EVENT_SUSPEND ? 2638 BTINTEL_PCIE_STATE_D3_HOT : BTINTEL_PCIE_STATE_D3_COLD); 2639 2640 data->pm_sx_event = mesg.event; 2641 2642 start = ktime_get(); 2643 2644 /* Refer: 6.4.11.7 -> Platform power management */ 2645 err = btintel_pcie_set_dxstate(data, dxstate); 2646 2647 if (err) 2648 return err; 2649 2650 bt_dev_dbg(data->hdev, 2651 "device entered into d3 state from d0 in %lld us", 2652 ktime_to_us(ktime_get() - start)); 2653 return err; 2654 } 2655 2656 static int btintel_pcie_suspend(struct device *dev) 2657 { 2658 return btintel_pcie_suspend_late(dev, PMSG_SUSPEND); 2659 } 2660 2661 static int btintel_pcie_hibernate(struct device *dev) 2662 { 2663 return btintel_pcie_suspend_late(dev, PMSG_HIBERNATE); 2664 } 2665 2666 static int btintel_pcie_freeze(struct device *dev) 2667 { 2668 return btintel_pcie_suspend_late(dev, PMSG_FREEZE); 2669 } 2670 2671 static int btintel_pcie_resume(struct device *dev) 2672 { 2673 struct pci_dev *pdev = to_pci_dev(dev); 2674 struct btintel_pcie_data *data; 2675 ktime_t start; 2676 int err; 2677 2678 data = pci_get_drvdata(pdev); 2679 data->gp0_received = false; 2680 2681 start = ktime_get(); 2682 2683 /* When the system enters S4 (hibernate) mode, bluetooth device loses 2684 * power, which results in the erasure of its loaded firmware. 2685 * Consequently, function level reset (flr) is required on system 2686 * resume to bring the controller back into an operational state by 2687 * initiating a new firmware download. 2688 */ 2689 2690 if (data->pm_sx_event == PM_EVENT_FREEZE || 2691 data->pm_sx_event == PM_EVENT_HIBERNATE) { 2692 set_bit(BTINTEL_PCIE_CORE_HALTED, &data->flags); 2693 btintel_pcie_reset(data->hdev); 2694 return 0; 2695 } 2696 2697 /* Refer: 6.4.11.7 -> Platform power management */ 2698 err = btintel_pcie_set_dxstate(data, BTINTEL_PCIE_STATE_D0); 2699 2700 if (err == 0) { 2701 bt_dev_dbg(data->hdev, 2702 "device entered into d0 state from d3 in %lld us", 2703 ktime_to_us(ktime_get() - start)); 2704 return err; 2705 } 2706 2707 /* Trigger function level reset if the controller is in error 2708 * state during resume() to bring back the controller to 2709 * operational mode 2710 */ 2711 2712 data->boot_stage_cache = btintel_pcie_rd_reg32(data, 2713 BTINTEL_PCIE_CSR_BOOT_STAGE_REG); 2714 if (btintel_pcie_in_error(data) || 2715 btintel_pcie_in_device_halt(data)) { 2716 bt_dev_err(data->hdev, "Controller in error state for D0 entry"); 2717 if (!test_and_set_bit(BTINTEL_PCIE_COREDUMP_INPROGRESS, 2718 &data->flags)) { 2719 data->dmp_hdr.trigger_reason = 2720 BTINTEL_PCIE_TRIGGER_REASON_FW_ASSERT; 2721 queue_work(data->workqueue, &data->rx_work); 2722 } 2723 set_bit(BTINTEL_PCIE_CORE_HALTED, &data->flags); 2724 btintel_pcie_reset(data->hdev); 2725 } 2726 return err; 2727 } 2728 2729 static const struct dev_pm_ops btintel_pcie_pm_ops = { 2730 .suspend = btintel_pcie_suspend, 2731 .resume = btintel_pcie_resume, 2732 .freeze = btintel_pcie_freeze, 2733 .thaw = btintel_pcie_resume, 2734 .poweroff = btintel_pcie_hibernate, 2735 .restore = btintel_pcie_resume, 2736 }; 2737 2738 static struct pci_driver btintel_pcie_driver = { 2739 .name = KBUILD_MODNAME, 2740 .id_table = btintel_pcie_table, 2741 .probe = btintel_pcie_probe, 2742 .remove = btintel_pcie_remove, 2743 .driver.pm = pm_sleep_ptr(&btintel_pcie_pm_ops), 2744 #ifdef CONFIG_DEV_COREDUMP 2745 .driver.coredump = btintel_pcie_coredump 2746 #endif 2747 }; 2748 2749 static int __init btintel_pcie_init(void) 2750 { 2751 return pci_register_driver(&btintel_pcie_driver); 2752 } 2753 2754 static void __exit btintel_pcie_exit(void) 2755 { 2756 pci_unregister_driver(&btintel_pcie_driver); 2757 btintel_pcie_free_restart_list(); 2758 } 2759 2760 module_init(btintel_pcie_init); 2761 module_exit(btintel_pcie_exit); 2762 2763 MODULE_AUTHOR("Tedd Ho-Jeong An <tedd.an@intel.com>"); 2764 MODULE_DESCRIPTION("Intel Bluetooth PCIe transport driver ver " VERSION); 2765 MODULE_VERSION(VERSION); 2766 MODULE_LICENSE("GPL"); 2767