1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Bluetooth support for Intel PCIe devices 5 * 6 * Copyright (C) 2024 Intel Corporation 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/firmware.h> 12 #include <linux/pci.h> 13 #include <linux/wait.h> 14 #include <linux/delay.h> 15 #include <linux/interrupt.h> 16 17 #include <asm/unaligned.h> 18 19 #include <net/bluetooth/bluetooth.h> 20 #include <net/bluetooth/hci_core.h> 21 22 #include "btintel.h" 23 #include "btintel_pcie.h" 24 25 #define VERSION "0.1" 26 27 #define BTINTEL_PCI_DEVICE(dev, subdev) \ 28 .vendor = PCI_VENDOR_ID_INTEL, \ 29 .device = (dev), \ 30 .subvendor = PCI_ANY_ID, \ 31 .subdevice = (subdev), \ 32 .driver_data = 0 33 34 #define POLL_INTERVAL_US 10 35 36 /* Intel Bluetooth PCIe device id table */ 37 static const struct pci_device_id btintel_pcie_table[] = { 38 { BTINTEL_PCI_DEVICE(0xA876, PCI_ANY_ID) }, 39 { 0 } 40 }; 41 MODULE_DEVICE_TABLE(pci, btintel_pcie_table); 42 43 /* Intel PCIe uses 4 bytes of HCI type instead of 1 byte BT SIG HCI type */ 44 #define BTINTEL_PCIE_HCI_TYPE_LEN 4 45 #define BTINTEL_PCIE_HCI_CMD_PKT 0x00000001 46 #define BTINTEL_PCIE_HCI_ACL_PKT 0x00000002 47 #define BTINTEL_PCIE_HCI_SCO_PKT 0x00000003 48 #define BTINTEL_PCIE_HCI_EVT_PKT 0x00000004 49 50 static inline void ipc_print_ia_ring(struct hci_dev *hdev, struct ia *ia, 51 u16 queue_num) 52 { 53 bt_dev_dbg(hdev, "IA: %s: tr-h:%02u tr-t:%02u cr-h:%02u cr-t:%02u", 54 queue_num == BTINTEL_PCIE_TXQ_NUM ? "TXQ" : "RXQ", 55 ia->tr_hia[queue_num], ia->tr_tia[queue_num], 56 ia->cr_hia[queue_num], ia->cr_tia[queue_num]); 57 } 58 59 static inline void ipc_print_urbd1(struct hci_dev *hdev, struct urbd1 *urbd1, 60 u16 index) 61 { 62 bt_dev_dbg(hdev, "RXQ:urbd1(%u) frbd_tag:%u status: 0x%x fixed:0x%x", 63 index, urbd1->frbd_tag, urbd1->status, urbd1->fixed); 64 } 65 66 static int btintel_pcie_poll_bit(struct btintel_pcie_data *data, u32 offset, 67 u32 bits, u32 mask, int timeout_us) 68 { 69 int t = 0; 70 u32 reg; 71 72 do { 73 reg = btintel_pcie_rd_reg32(data, offset); 74 75 if ((reg & mask) == (bits & mask)) 76 return t; 77 udelay(POLL_INTERVAL_US); 78 t += POLL_INTERVAL_US; 79 } while (t < timeout_us); 80 81 return -ETIMEDOUT; 82 } 83 84 static struct btintel_pcie_data *btintel_pcie_get_data(struct msix_entry *entry) 85 { 86 u8 queue = entry->entry; 87 struct msix_entry *entries = entry - queue; 88 89 return container_of(entries, struct btintel_pcie_data, msix_entries[0]); 90 } 91 92 /* Set the doorbell for TXQ to notify the device that @index (actually index-1) 93 * of the TFD is updated and ready to transmit. 94 */ 95 static void btintel_pcie_set_tx_db(struct btintel_pcie_data *data, u16 index) 96 { 97 u32 val; 98 99 val = index; 100 val |= (BTINTEL_PCIE_TX_DB_VEC << 16); 101 102 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val); 103 } 104 105 /* Copy the data to next(@tfd_index) data buffer and update the TFD(transfer 106 * descriptor) with the data length and the DMA address of the data buffer. 107 */ 108 static void btintel_pcie_prepare_tx(struct txq *txq, u16 tfd_index, 109 struct sk_buff *skb) 110 { 111 struct data_buf *buf; 112 struct tfd *tfd; 113 114 tfd = &txq->tfds[tfd_index]; 115 memset(tfd, 0, sizeof(*tfd)); 116 117 buf = &txq->bufs[tfd_index]; 118 119 tfd->size = skb->len; 120 tfd->addr = buf->data_p_addr; 121 122 /* Copy the outgoing data to DMA buffer */ 123 memcpy(buf->data, skb->data, tfd->size); 124 } 125 126 static int btintel_pcie_send_sync(struct btintel_pcie_data *data, 127 struct sk_buff *skb) 128 { 129 int ret; 130 u16 tfd_index; 131 struct txq *txq = &data->txq; 132 133 tfd_index = data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM]; 134 135 if (tfd_index > txq->count) 136 return -ERANGE; 137 138 /* Prepare for TX. It updates the TFD with the length of data and 139 * address of the DMA buffer, and copy the data to the DMA buffer 140 */ 141 btintel_pcie_prepare_tx(txq, tfd_index, skb); 142 143 tfd_index = (tfd_index + 1) % txq->count; 144 data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM] = tfd_index; 145 146 /* Arm wait event condition */ 147 data->tx_wait_done = false; 148 149 /* Set the doorbell to notify the device */ 150 btintel_pcie_set_tx_db(data, tfd_index); 151 152 /* Wait for the complete interrupt - URBD0 */ 153 ret = wait_event_timeout(data->tx_wait_q, data->tx_wait_done, 154 msecs_to_jiffies(BTINTEL_PCIE_TX_WAIT_TIMEOUT_MS)); 155 if (!ret) 156 return -ETIME; 157 158 return 0; 159 } 160 161 /* Set the doorbell for RXQ to notify the device that @index (actually index-1) 162 * is available to receive the data 163 */ 164 static void btintel_pcie_set_rx_db(struct btintel_pcie_data *data, u16 index) 165 { 166 u32 val; 167 168 val = index; 169 val |= (BTINTEL_PCIE_RX_DB_VEC << 16); 170 171 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val); 172 } 173 174 /* Update the FRBD (free buffer descriptor) with the @frbd_index and the 175 * DMA address of the free buffer. 176 */ 177 static void btintel_pcie_prepare_rx(struct rxq *rxq, u16 frbd_index) 178 { 179 struct data_buf *buf; 180 struct frbd *frbd; 181 182 /* Get the buffer of the FRBD for DMA */ 183 buf = &rxq->bufs[frbd_index]; 184 185 frbd = &rxq->frbds[frbd_index]; 186 memset(frbd, 0, sizeof(*frbd)); 187 188 /* Update FRBD */ 189 frbd->tag = frbd_index; 190 frbd->addr = buf->data_p_addr; 191 } 192 193 static int btintel_pcie_submit_rx(struct btintel_pcie_data *data) 194 { 195 u16 frbd_index; 196 struct rxq *rxq = &data->rxq; 197 198 frbd_index = data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM]; 199 200 if (frbd_index > rxq->count) 201 return -ERANGE; 202 203 /* Prepare for RX submit. It updates the FRBD with the address of DMA 204 * buffer 205 */ 206 btintel_pcie_prepare_rx(rxq, frbd_index); 207 208 frbd_index = (frbd_index + 1) % rxq->count; 209 data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM] = frbd_index; 210 ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM); 211 212 /* Set the doorbell to notify the device */ 213 btintel_pcie_set_rx_db(data, frbd_index); 214 215 return 0; 216 } 217 218 static int btintel_pcie_start_rx(struct btintel_pcie_data *data) 219 { 220 int i, ret; 221 222 for (i = 0; i < BTINTEL_PCIE_RX_MAX_QUEUE; i++) { 223 ret = btintel_pcie_submit_rx(data); 224 if (ret) 225 return ret; 226 } 227 228 return 0; 229 } 230 231 static void btintel_pcie_reset_ia(struct btintel_pcie_data *data) 232 { 233 memset(data->ia.tr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES); 234 memset(data->ia.tr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES); 235 memset(data->ia.cr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES); 236 memset(data->ia.cr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES); 237 } 238 239 static void btintel_pcie_reset_bt(struct btintel_pcie_data *data) 240 { 241 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, 242 BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET); 243 } 244 245 /* This function enables BT function by setting BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT bit in 246 * BTINTEL_PCIE_CSR_FUNC_CTRL_REG register and wait for MSI-X with 247 * BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0. 248 * Then the host reads firmware version from BTINTEL_CSR_F2D_MBX and the boot stage 249 * from BTINTEL_PCIE_CSR_BOOT_STAGE_REG. 250 */ 251 static int btintel_pcie_enable_bt(struct btintel_pcie_data *data) 252 { 253 int err; 254 255 data->gp0_received = false; 256 257 /* Update the DMA address of CI struct to CSR */ 258 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_LSB_REG, 259 data->ci_p_addr & 0xffffffff); 260 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_MSB_REG, 261 (u64)data->ci_p_addr >> 32); 262 263 /* Reset the cached value of boot stage. it is updated by the MSI-X 264 * gp0 interrupt handler. 265 */ 266 data->boot_stage_cache = 0x0; 267 268 /* Set MAC_INIT bit to start primary bootloader */ 269 btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); 270 271 btintel_pcie_set_reg_bits(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, 272 BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT); 273 274 /* Wait until MAC_ACCESS is granted */ 275 err = btintel_pcie_poll_bit(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, 276 BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS, 277 BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS, 278 BTINTEL_DEFAULT_MAC_ACCESS_TIMEOUT_US); 279 if (err < 0) 280 return -ENODEV; 281 282 /* MAC is ready. Enable BT FUNC */ 283 btintel_pcie_set_reg_bits(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, 284 BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA | 285 BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT); 286 287 btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); 288 289 /* wait for interrupt from the device after booting up to primary 290 * bootloader. 291 */ 292 err = wait_event_timeout(data->gp0_wait_q, data->gp0_received, 293 msecs_to_jiffies(BTINTEL_DEFAULT_INTR_TIMEOUT)); 294 if (!err) 295 return -ETIME; 296 297 /* Check cached boot stage is BTINTEL_PCIE_CSR_BOOT_STAGE_ROM(BIT(0)) */ 298 if (~data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_ROM) 299 return -ENODEV; 300 301 return 0; 302 } 303 304 /* This function handles the MSI-X interrupt for gp0 cause (bit 0 in 305 * BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES) which is sent for boot stage and image response. 306 */ 307 static void btintel_pcie_msix_gp0_handler(struct btintel_pcie_data *data) 308 { 309 u32 reg; 310 311 /* This interrupt is for three different causes and it is not easy to 312 * know what causes the interrupt. So, it compares each register value 313 * with cached value and update it before it wake up the queue. 314 */ 315 reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_BOOT_STAGE_REG); 316 if (reg != data->boot_stage_cache) 317 data->boot_stage_cache = reg; 318 319 reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_IMG_RESPONSE_REG); 320 if (reg != data->img_resp_cache) 321 data->img_resp_cache = reg; 322 323 data->gp0_received = true; 324 325 /* If the boot stage is OP or IML, reset IA and start RX again */ 326 if (data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_OPFW || 327 data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_IML) { 328 btintel_pcie_reset_ia(data); 329 btintel_pcie_start_rx(data); 330 } 331 332 wake_up(&data->gp0_wait_q); 333 } 334 335 /* This function handles the MSX-X interrupt for rx queue 0 which is for TX 336 */ 337 static void btintel_pcie_msix_tx_handle(struct btintel_pcie_data *data) 338 { 339 u16 cr_tia, cr_hia; 340 struct txq *txq; 341 struct urbd0 *urbd0; 342 343 cr_tia = data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM]; 344 cr_hia = data->ia.cr_hia[BTINTEL_PCIE_TXQ_NUM]; 345 346 if (cr_tia == cr_hia) 347 return; 348 349 txq = &data->txq; 350 351 while (cr_tia != cr_hia) { 352 data->tx_wait_done = true; 353 wake_up(&data->tx_wait_q); 354 355 urbd0 = &txq->urbd0s[cr_tia]; 356 357 if (urbd0->tfd_index > txq->count) 358 return; 359 360 cr_tia = (cr_tia + 1) % txq->count; 361 data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM] = cr_tia; 362 ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_TXQ_NUM); 363 } 364 } 365 366 /* Process the received rx data 367 * It check the frame header to identify the data type and create skb 368 * and calling HCI API 369 */ 370 static int btintel_pcie_recv_frame(struct btintel_pcie_data *data, 371 struct sk_buff *skb) 372 { 373 int ret; 374 u8 pkt_type; 375 u16 plen; 376 u32 pcie_pkt_type; 377 struct sk_buff *new_skb; 378 void *pdata; 379 struct hci_dev *hdev = data->hdev; 380 381 spin_lock(&data->hci_rx_lock); 382 383 /* The first 4 bytes indicates the Intel PCIe specific packet type */ 384 pdata = skb_pull_data(skb, BTINTEL_PCIE_HCI_TYPE_LEN); 385 if (!pdata) { 386 bt_dev_err(hdev, "Corrupted packet received"); 387 ret = -EILSEQ; 388 goto exit_error; 389 } 390 391 pcie_pkt_type = get_unaligned_le32(pdata); 392 393 switch (pcie_pkt_type) { 394 case BTINTEL_PCIE_HCI_ACL_PKT: 395 if (skb->len >= HCI_ACL_HDR_SIZE) { 396 plen = HCI_ACL_HDR_SIZE + __le16_to_cpu(hci_acl_hdr(skb)->dlen); 397 pkt_type = HCI_ACLDATA_PKT; 398 } else { 399 bt_dev_err(hdev, "ACL packet is too short"); 400 ret = -EILSEQ; 401 goto exit_error; 402 } 403 break; 404 405 case BTINTEL_PCIE_HCI_SCO_PKT: 406 if (skb->len >= HCI_SCO_HDR_SIZE) { 407 plen = HCI_SCO_HDR_SIZE + hci_sco_hdr(skb)->dlen; 408 pkt_type = HCI_SCODATA_PKT; 409 } else { 410 bt_dev_err(hdev, "SCO packet is too short"); 411 ret = -EILSEQ; 412 goto exit_error; 413 } 414 break; 415 416 case BTINTEL_PCIE_HCI_EVT_PKT: 417 if (skb->len >= HCI_EVENT_HDR_SIZE) { 418 plen = HCI_EVENT_HDR_SIZE + hci_event_hdr(skb)->plen; 419 pkt_type = HCI_EVENT_PKT; 420 } else { 421 bt_dev_err(hdev, "Event packet is too short"); 422 ret = -EILSEQ; 423 goto exit_error; 424 } 425 break; 426 default: 427 bt_dev_err(hdev, "Invalid packet type received: 0x%4.4x", 428 pcie_pkt_type); 429 ret = -EINVAL; 430 goto exit_error; 431 } 432 433 if (skb->len < plen) { 434 bt_dev_err(hdev, "Received corrupted packet. type: 0x%2.2x", 435 pkt_type); 436 ret = -EILSEQ; 437 goto exit_error; 438 } 439 440 bt_dev_dbg(hdev, "pkt_type: 0x%2.2x len: %u", pkt_type, plen); 441 442 new_skb = bt_skb_alloc(plen, GFP_ATOMIC); 443 if (!new_skb) { 444 bt_dev_err(hdev, "Failed to allocate memory for skb of len: %u", 445 skb->len); 446 ret = -ENOMEM; 447 goto exit_error; 448 } 449 450 hci_skb_pkt_type(new_skb) = pkt_type; 451 skb_put_data(new_skb, skb->data, plen); 452 hdev->stat.byte_rx += plen; 453 454 if (pcie_pkt_type == BTINTEL_PCIE_HCI_EVT_PKT) 455 ret = btintel_recv_event(hdev, new_skb); 456 else 457 ret = hci_recv_frame(hdev, new_skb); 458 459 exit_error: 460 if (ret) 461 hdev->stat.err_rx++; 462 463 spin_unlock(&data->hci_rx_lock); 464 465 return ret; 466 } 467 468 static void btintel_pcie_rx_work(struct work_struct *work) 469 { 470 struct btintel_pcie_data *data = container_of(work, 471 struct btintel_pcie_data, rx_work); 472 struct sk_buff *skb; 473 int err; 474 struct hci_dev *hdev = data->hdev; 475 476 /* Process the sk_buf in queue and send to the HCI layer */ 477 while ((skb = skb_dequeue(&data->rx_skb_q))) { 478 err = btintel_pcie_recv_frame(data, skb); 479 if (err) 480 bt_dev_err(hdev, "Failed to send received frame: %d", 481 err); 482 kfree_skb(skb); 483 } 484 } 485 486 /* create sk_buff with data and save it to queue and start RX work */ 487 static int btintel_pcie_submit_rx_work(struct btintel_pcie_data *data, u8 status, 488 void *buf) 489 { 490 int ret, len; 491 struct rfh_hdr *rfh_hdr; 492 struct sk_buff *skb; 493 494 rfh_hdr = buf; 495 496 len = rfh_hdr->packet_len; 497 if (len <= 0) { 498 ret = -EINVAL; 499 goto resubmit; 500 } 501 502 /* Remove RFH header */ 503 buf += sizeof(*rfh_hdr); 504 505 skb = alloc_skb(len, GFP_ATOMIC); 506 if (!skb) { 507 ret = -ENOMEM; 508 goto resubmit; 509 } 510 511 skb_put_data(skb, buf, len); 512 skb_queue_tail(&data->rx_skb_q, skb); 513 queue_work(data->workqueue, &data->rx_work); 514 515 resubmit: 516 ret = btintel_pcie_submit_rx(data); 517 518 return ret; 519 } 520 521 /* Handles the MSI-X interrupt for rx queue 1 which is for RX */ 522 static void btintel_pcie_msix_rx_handle(struct btintel_pcie_data *data) 523 { 524 u16 cr_hia, cr_tia; 525 struct rxq *rxq; 526 struct urbd1 *urbd1; 527 struct data_buf *buf; 528 int ret; 529 struct hci_dev *hdev = data->hdev; 530 531 cr_hia = data->ia.cr_hia[BTINTEL_PCIE_RXQ_NUM]; 532 cr_tia = data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM]; 533 534 bt_dev_dbg(hdev, "RXQ: cr_hia: %u cr_tia: %u", cr_hia, cr_tia); 535 536 /* Check CR_TIA and CR_HIA for change */ 537 if (cr_tia == cr_hia) { 538 bt_dev_warn(hdev, "RXQ: no new CD found"); 539 return; 540 } 541 542 rxq = &data->rxq; 543 544 /* The firmware sends multiple CD in a single MSI-X and it needs to 545 * process all received CDs in this interrupt. 546 */ 547 while (cr_tia != cr_hia) { 548 urbd1 = &rxq->urbd1s[cr_tia]; 549 ipc_print_urbd1(data->hdev, urbd1, cr_tia); 550 551 buf = &rxq->bufs[urbd1->frbd_tag]; 552 if (!buf) { 553 bt_dev_err(hdev, "RXQ: failed to get the DMA buffer for %d", 554 urbd1->frbd_tag); 555 return; 556 } 557 558 ret = btintel_pcie_submit_rx_work(data, urbd1->status, 559 buf->data); 560 if (ret) { 561 bt_dev_err(hdev, "RXQ: failed to submit rx request"); 562 return; 563 } 564 565 cr_tia = (cr_tia + 1) % rxq->count; 566 data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM] = cr_tia; 567 ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM); 568 } 569 } 570 571 static irqreturn_t btintel_pcie_msix_isr(int irq, void *data) 572 { 573 return IRQ_WAKE_THREAD; 574 } 575 576 static irqreturn_t btintel_pcie_irq_msix_handler(int irq, void *dev_id) 577 { 578 struct msix_entry *entry = dev_id; 579 struct btintel_pcie_data *data = btintel_pcie_get_data(entry); 580 u32 intr_fh, intr_hw; 581 582 spin_lock(&data->irq_lock); 583 intr_fh = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES); 584 intr_hw = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES); 585 586 /* Clear causes registers to avoid being handling the same cause */ 587 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES, intr_fh); 588 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES, intr_hw); 589 spin_unlock(&data->irq_lock); 590 591 if (unlikely(!(intr_fh | intr_hw))) { 592 /* Ignore interrupt, inta == 0 */ 593 return IRQ_NONE; 594 } 595 596 /* This interrupt is triggered by the firmware after updating 597 * boot_stage register and image_response register 598 */ 599 if (intr_hw & BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0) 600 btintel_pcie_msix_gp0_handler(data); 601 602 /* For TX */ 603 if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0) 604 btintel_pcie_msix_tx_handle(data); 605 606 /* For RX */ 607 if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1) 608 btintel_pcie_msix_rx_handle(data); 609 610 /* 611 * Before sending the interrupt the HW disables it to prevent a nested 612 * interrupt. This is done by writing 1 to the corresponding bit in 613 * the mask register. After handling the interrupt, it should be 614 * re-enabled by clearing this bit. This register is defined as write 1 615 * clear (W1C) register, meaning that it's cleared by writing 1 616 * to the bit. 617 */ 618 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_AUTOMASK_ST, 619 BIT(entry->entry)); 620 621 return IRQ_HANDLED; 622 } 623 624 /* This function requests the irq for MSI-X and registers the handlers per irq. 625 * Currently, it requests only 1 irq for all interrupt causes. 626 */ 627 static int btintel_pcie_setup_irq(struct btintel_pcie_data *data) 628 { 629 int err; 630 int num_irqs, i; 631 632 for (i = 0; i < BTINTEL_PCIE_MSIX_VEC_MAX; i++) 633 data->msix_entries[i].entry = i; 634 635 num_irqs = pci_alloc_irq_vectors(data->pdev, BTINTEL_PCIE_MSIX_VEC_MIN, 636 BTINTEL_PCIE_MSIX_VEC_MAX, PCI_IRQ_MSIX); 637 if (num_irqs < 0) 638 return num_irqs; 639 640 data->alloc_vecs = num_irqs; 641 data->msix_enabled = 1; 642 data->def_irq = 0; 643 644 /* setup irq handler */ 645 for (i = 0; i < data->alloc_vecs; i++) { 646 struct msix_entry *msix_entry; 647 648 msix_entry = &data->msix_entries[i]; 649 msix_entry->vector = pci_irq_vector(data->pdev, i); 650 651 err = devm_request_threaded_irq(&data->pdev->dev, 652 msix_entry->vector, 653 btintel_pcie_msix_isr, 654 btintel_pcie_irq_msix_handler, 655 IRQF_SHARED, 656 KBUILD_MODNAME, 657 msix_entry); 658 if (err) { 659 pci_free_irq_vectors(data->pdev); 660 data->alloc_vecs = 0; 661 return err; 662 } 663 } 664 return 0; 665 } 666 667 struct btintel_pcie_causes_list { 668 u32 cause; 669 u32 mask_reg; 670 u8 cause_num; 671 }; 672 673 static struct btintel_pcie_causes_list causes_list[] = { 674 { BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK, 0x00 }, 675 { BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK, 0x01 }, 676 { BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK, 0x20 }, 677 }; 678 679 /* This function configures the interrupt masks for both HW_INT_CAUSES and 680 * FH_INT_CAUSES which are meaningful to us. 681 * 682 * After resetting BT function via PCIE FLR or FUNC_CTRL reset, the driver 683 * need to call this function again to configure since the masks 684 * are reset to 0xFFFFFFFF after reset. 685 */ 686 static void btintel_pcie_config_msix(struct btintel_pcie_data *data) 687 { 688 int i; 689 int val = data->def_irq | BTINTEL_PCIE_MSIX_NON_AUTO_CLEAR_CAUSE; 690 691 /* Set Non Auto Clear Cause */ 692 for (i = 0; i < ARRAY_SIZE(causes_list); i++) { 693 btintel_pcie_wr_reg8(data, 694 BTINTEL_PCIE_CSR_MSIX_IVAR(causes_list[i].cause_num), 695 val); 696 btintel_pcie_clr_reg_bits(data, 697 causes_list[i].mask_reg, 698 causes_list[i].cause); 699 } 700 701 /* Save the initial interrupt mask */ 702 data->fh_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK); 703 data->hw_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK); 704 } 705 706 static int btintel_pcie_config_pcie(struct pci_dev *pdev, 707 struct btintel_pcie_data *data) 708 { 709 int err; 710 711 err = pcim_enable_device(pdev); 712 if (err) 713 return err; 714 715 pci_set_master(pdev); 716 717 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 718 if (err) { 719 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 720 if (err) 721 return err; 722 } 723 724 err = pcim_iomap_regions(pdev, BIT(0), KBUILD_MODNAME); 725 if (err) 726 return err; 727 728 data->base_addr = pcim_iomap_table(pdev)[0]; 729 if (!data->base_addr) 730 return -ENODEV; 731 732 err = btintel_pcie_setup_irq(data); 733 if (err) 734 return err; 735 736 /* Configure MSI-X with causes list */ 737 btintel_pcie_config_msix(data); 738 739 return 0; 740 } 741 742 static void btintel_pcie_init_ci(struct btintel_pcie_data *data, 743 struct ctx_info *ci) 744 { 745 ci->version = 0x1; 746 ci->size = sizeof(*ci); 747 ci->config = 0x0000; 748 ci->addr_cr_hia = data->ia.cr_hia_p_addr; 749 ci->addr_tr_tia = data->ia.tr_tia_p_addr; 750 ci->addr_cr_tia = data->ia.cr_tia_p_addr; 751 ci->addr_tr_hia = data->ia.tr_hia_p_addr; 752 ci->num_cr_ia = BTINTEL_PCIE_NUM_QUEUES; 753 ci->num_tr_ia = BTINTEL_PCIE_NUM_QUEUES; 754 ci->addr_urbdq0 = data->txq.urbd0s_p_addr; 755 ci->addr_tfdq = data->txq.tfds_p_addr; 756 ci->num_tfdq = data->txq.count; 757 ci->num_urbdq0 = data->txq.count; 758 ci->tfdq_db_vec = BTINTEL_PCIE_TXQ_NUM; 759 ci->urbdq0_db_vec = BTINTEL_PCIE_TXQ_NUM; 760 ci->rbd_size = BTINTEL_PCIE_RBD_SIZE_4K; 761 ci->addr_frbdq = data->rxq.frbds_p_addr; 762 ci->num_frbdq = data->rxq.count; 763 ci->frbdq_db_vec = BTINTEL_PCIE_RXQ_NUM; 764 ci->addr_urbdq1 = data->rxq.urbd1s_p_addr; 765 ci->num_urbdq1 = data->rxq.count; 766 ci->urbdq_db_vec = BTINTEL_PCIE_RXQ_NUM; 767 } 768 769 static void btintel_pcie_free_txq_bufs(struct btintel_pcie_data *data, 770 struct txq *txq) 771 { 772 /* Free data buffers first */ 773 dma_free_coherent(&data->pdev->dev, txq->count * BTINTEL_PCIE_BUFFER_SIZE, 774 txq->buf_v_addr, txq->buf_p_addr); 775 kfree(txq->bufs); 776 } 777 778 static int btintel_pcie_setup_txq_bufs(struct btintel_pcie_data *data, 779 struct txq *txq) 780 { 781 int i; 782 struct data_buf *buf; 783 784 /* Allocate the same number of buffers as the descriptor */ 785 txq->bufs = kmalloc_array(txq->count, sizeof(*buf), GFP_KERNEL); 786 if (!txq->bufs) 787 return -ENOMEM; 788 789 /* Allocate full chunk of data buffer for DMA first and do indexing and 790 * initialization next, so it can be freed easily 791 */ 792 txq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev, 793 txq->count * BTINTEL_PCIE_BUFFER_SIZE, 794 &txq->buf_p_addr, 795 GFP_KERNEL | __GFP_NOWARN); 796 if (!txq->buf_v_addr) { 797 kfree(txq->bufs); 798 return -ENOMEM; 799 } 800 801 /* Setup the allocated DMA buffer to bufs. Each data_buf should 802 * have virtual address and physical address 803 */ 804 for (i = 0; i < txq->count; i++) { 805 buf = &txq->bufs[i]; 806 buf->data_p_addr = txq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE); 807 buf->data = txq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE); 808 } 809 810 return 0; 811 } 812 813 static void btintel_pcie_free_rxq_bufs(struct btintel_pcie_data *data, 814 struct rxq *rxq) 815 { 816 /* Free data buffers first */ 817 dma_free_coherent(&data->pdev->dev, rxq->count * BTINTEL_PCIE_BUFFER_SIZE, 818 rxq->buf_v_addr, rxq->buf_p_addr); 819 kfree(rxq->bufs); 820 } 821 822 static int btintel_pcie_setup_rxq_bufs(struct btintel_pcie_data *data, 823 struct rxq *rxq) 824 { 825 int i; 826 struct data_buf *buf; 827 828 /* Allocate the same number of buffers as the descriptor */ 829 rxq->bufs = kmalloc_array(rxq->count, sizeof(*buf), GFP_KERNEL); 830 if (!rxq->bufs) 831 return -ENOMEM; 832 833 /* Allocate full chunk of data buffer for DMA first and do indexing and 834 * initialization next, so it can be freed easily 835 */ 836 rxq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev, 837 rxq->count * BTINTEL_PCIE_BUFFER_SIZE, 838 &rxq->buf_p_addr, 839 GFP_KERNEL | __GFP_NOWARN); 840 if (!rxq->buf_v_addr) { 841 kfree(rxq->bufs); 842 return -ENOMEM; 843 } 844 845 /* Setup the allocated DMA buffer to bufs. Each data_buf should 846 * have virtual address and physical address 847 */ 848 for (i = 0; i < rxq->count; i++) { 849 buf = &rxq->bufs[i]; 850 buf->data_p_addr = rxq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE); 851 buf->data = rxq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE); 852 } 853 854 return 0; 855 } 856 857 static void btintel_pcie_setup_ia(struct btintel_pcie_data *data, 858 dma_addr_t p_addr, void *v_addr, 859 struct ia *ia) 860 { 861 /* TR Head Index Array */ 862 ia->tr_hia_p_addr = p_addr; 863 ia->tr_hia = v_addr; 864 865 /* TR Tail Index Array */ 866 ia->tr_tia_p_addr = p_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES; 867 ia->tr_tia = v_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES; 868 869 /* CR Head index Array */ 870 ia->cr_hia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2); 871 ia->cr_hia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2); 872 873 /* CR Tail Index Array */ 874 ia->cr_tia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3); 875 ia->cr_tia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3); 876 } 877 878 static void btintel_pcie_free(struct btintel_pcie_data *data) 879 { 880 btintel_pcie_free_rxq_bufs(data, &data->rxq); 881 btintel_pcie_free_txq_bufs(data, &data->txq); 882 883 dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr); 884 dma_pool_destroy(data->dma_pool); 885 } 886 887 /* Allocate tx and rx queues, any related data structures and buffers. 888 */ 889 static int btintel_pcie_alloc(struct btintel_pcie_data *data) 890 { 891 int err = 0; 892 size_t total; 893 dma_addr_t p_addr; 894 void *v_addr; 895 896 /* Allocate the chunk of DMA memory for descriptors, index array, and 897 * context information, instead of allocating individually. 898 * The DMA memory for data buffer is allocated while setting up the 899 * each queue. 900 * 901 * Total size is sum of the following 902 * + size of TFD * Number of descriptors in queue 903 * + size of URBD0 * Number of descriptors in queue 904 * + size of FRBD * Number of descriptors in queue 905 * + size of URBD1 * Number of descriptors in queue 906 * + size of index * Number of queues(2) * type of index array(4) 907 * + size of context information 908 */ 909 total = (sizeof(struct tfd) + sizeof(struct urbd0) + sizeof(struct frbd) 910 + sizeof(struct urbd1)) * BTINTEL_DESCS_COUNT; 911 912 /* Add the sum of size of index array and size of ci struct */ 913 total += (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4) + sizeof(struct ctx_info); 914 915 /* Allocate DMA Pool */ 916 data->dma_pool = dma_pool_create(KBUILD_MODNAME, &data->pdev->dev, 917 total, BTINTEL_PCIE_DMA_POOL_ALIGNMENT, 0); 918 if (!data->dma_pool) { 919 err = -ENOMEM; 920 goto exit_error; 921 } 922 923 v_addr = dma_pool_zalloc(data->dma_pool, GFP_KERNEL | __GFP_NOWARN, 924 &p_addr); 925 if (!v_addr) { 926 dma_pool_destroy(data->dma_pool); 927 err = -ENOMEM; 928 goto exit_error; 929 } 930 931 data->dma_p_addr = p_addr; 932 data->dma_v_addr = v_addr; 933 934 /* Setup descriptor count */ 935 data->txq.count = BTINTEL_DESCS_COUNT; 936 data->rxq.count = BTINTEL_DESCS_COUNT; 937 938 /* Setup tfds */ 939 data->txq.tfds_p_addr = p_addr; 940 data->txq.tfds = v_addr; 941 942 p_addr += (sizeof(struct tfd) * BTINTEL_DESCS_COUNT); 943 v_addr += (sizeof(struct tfd) * BTINTEL_DESCS_COUNT); 944 945 /* Setup urbd0 */ 946 data->txq.urbd0s_p_addr = p_addr; 947 data->txq.urbd0s = v_addr; 948 949 p_addr += (sizeof(struct urbd0) * BTINTEL_DESCS_COUNT); 950 v_addr += (sizeof(struct urbd0) * BTINTEL_DESCS_COUNT); 951 952 /* Setup FRBD*/ 953 data->rxq.frbds_p_addr = p_addr; 954 data->rxq.frbds = v_addr; 955 956 p_addr += (sizeof(struct frbd) * BTINTEL_DESCS_COUNT); 957 v_addr += (sizeof(struct frbd) * BTINTEL_DESCS_COUNT); 958 959 /* Setup urbd1 */ 960 data->rxq.urbd1s_p_addr = p_addr; 961 data->rxq.urbd1s = v_addr; 962 963 p_addr += (sizeof(struct urbd1) * BTINTEL_DESCS_COUNT); 964 v_addr += (sizeof(struct urbd1) * BTINTEL_DESCS_COUNT); 965 966 /* Setup data buffers for txq */ 967 err = btintel_pcie_setup_txq_bufs(data, &data->txq); 968 if (err) 969 goto exit_error_pool; 970 971 /* Setup data buffers for rxq */ 972 err = btintel_pcie_setup_rxq_bufs(data, &data->rxq); 973 if (err) 974 goto exit_error_txq; 975 976 /* Setup Index Array */ 977 btintel_pcie_setup_ia(data, p_addr, v_addr, &data->ia); 978 979 /* Setup Context Information */ 980 p_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4; 981 v_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4; 982 983 data->ci = v_addr; 984 data->ci_p_addr = p_addr; 985 986 /* Initialize the CI */ 987 btintel_pcie_init_ci(data, data->ci); 988 989 return 0; 990 991 exit_error_txq: 992 btintel_pcie_free_txq_bufs(data, &data->txq); 993 exit_error_pool: 994 dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr); 995 dma_pool_destroy(data->dma_pool); 996 exit_error: 997 return err; 998 } 999 1000 static int btintel_pcie_open(struct hci_dev *hdev) 1001 { 1002 bt_dev_dbg(hdev, ""); 1003 1004 return 0; 1005 } 1006 1007 static int btintel_pcie_close(struct hci_dev *hdev) 1008 { 1009 bt_dev_dbg(hdev, ""); 1010 1011 return 0; 1012 } 1013 1014 static int btintel_pcie_inject_cmd_complete(struct hci_dev *hdev, __u16 opcode) 1015 { 1016 struct sk_buff *skb; 1017 struct hci_event_hdr *hdr; 1018 struct hci_ev_cmd_complete *evt; 1019 1020 skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL); 1021 if (!skb) 1022 return -ENOMEM; 1023 1024 hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr)); 1025 hdr->evt = HCI_EV_CMD_COMPLETE; 1026 hdr->plen = sizeof(*evt) + 1; 1027 1028 evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt)); 1029 evt->ncmd = 0x01; 1030 evt->opcode = cpu_to_le16(opcode); 1031 1032 *(u8 *)skb_put(skb, 1) = 0x00; 1033 1034 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 1035 1036 return hci_recv_frame(hdev, skb); 1037 } 1038 1039 static int btintel_pcie_send_frame(struct hci_dev *hdev, 1040 struct sk_buff *skb) 1041 { 1042 struct btintel_pcie_data *data = hci_get_drvdata(hdev); 1043 int ret; 1044 u32 type; 1045 1046 /* Due to the fw limitation, the type header of the packet should be 1047 * 4 bytes unlike 1 byte for UART. In UART, the firmware can read 1048 * the first byte to get the packet type and redirect the rest of data 1049 * packet to the right handler. 1050 * 1051 * But for PCIe, THF(Transfer Flow Handler) fetches the 4 bytes of data 1052 * from DMA memory and by the time it reads the first 4 bytes, it has 1053 * already consumed some part of packet. Thus the packet type indicator 1054 * for iBT PCIe is 4 bytes. 1055 * 1056 * Luckily, when HCI core creates the skb, it allocates 8 bytes of 1057 * head room for profile and driver use, and before sending the data 1058 * to the device, append the iBT PCIe packet type in the front. 1059 */ 1060 switch (hci_skb_pkt_type(skb)) { 1061 case HCI_COMMAND_PKT: 1062 type = BTINTEL_PCIE_HCI_CMD_PKT; 1063 if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) { 1064 struct hci_command_hdr *cmd = (void *)skb->data; 1065 __u16 opcode = le16_to_cpu(cmd->opcode); 1066 1067 /* When the 0xfc01 command is issued to boot into 1068 * the operational firmware, it will actually not 1069 * send a command complete event. To keep the flow 1070 * control working inject that event here. 1071 */ 1072 if (opcode == 0xfc01) 1073 btintel_pcie_inject_cmd_complete(hdev, opcode); 1074 } 1075 hdev->stat.cmd_tx++; 1076 break; 1077 case HCI_ACLDATA_PKT: 1078 type = BTINTEL_PCIE_HCI_ACL_PKT; 1079 hdev->stat.acl_tx++; 1080 break; 1081 case HCI_SCODATA_PKT: 1082 type = BTINTEL_PCIE_HCI_SCO_PKT; 1083 hdev->stat.sco_tx++; 1084 break; 1085 default: 1086 bt_dev_err(hdev, "Unknown HCI packet type"); 1087 return -EILSEQ; 1088 } 1089 memcpy(skb_push(skb, BTINTEL_PCIE_HCI_TYPE_LEN), &type, 1090 BTINTEL_PCIE_HCI_TYPE_LEN); 1091 1092 ret = btintel_pcie_send_sync(data, skb); 1093 if (ret) { 1094 hdev->stat.err_tx++; 1095 bt_dev_err(hdev, "Failed to send frame (%d)", ret); 1096 goto exit_error; 1097 } 1098 hdev->stat.byte_tx += skb->len; 1099 kfree_skb(skb); 1100 1101 exit_error: 1102 return ret; 1103 } 1104 1105 static void btintel_pcie_release_hdev(struct btintel_pcie_data *data) 1106 { 1107 struct hci_dev *hdev; 1108 1109 hdev = data->hdev; 1110 hci_unregister_dev(hdev); 1111 hci_free_dev(hdev); 1112 data->hdev = NULL; 1113 } 1114 1115 static int btintel_pcie_setup(struct hci_dev *hdev) 1116 { 1117 const u8 param[1] = { 0xFF }; 1118 struct intel_version_tlv ver_tlv; 1119 struct sk_buff *skb; 1120 int err; 1121 1122 BT_DBG("%s", hdev->name); 1123 1124 skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT); 1125 if (IS_ERR(skb)) { 1126 bt_dev_err(hdev, "Reading Intel version command failed (%ld)", 1127 PTR_ERR(skb)); 1128 return PTR_ERR(skb); 1129 } 1130 1131 /* Check the status */ 1132 if (skb->data[0]) { 1133 bt_dev_err(hdev, "Intel Read Version command failed (%02x)", 1134 skb->data[0]); 1135 err = -EIO; 1136 goto exit_error; 1137 } 1138 1139 /* Apply the common HCI quirks for Intel device */ 1140 set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks); 1141 set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks); 1142 set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks); 1143 1144 /* Set up the quality report callback for Intel devices */ 1145 hdev->set_quality_report = btintel_set_quality_report; 1146 1147 memset(&ver_tlv, 0, sizeof(ver_tlv)); 1148 /* For TLV type device, parse the tlv data */ 1149 err = btintel_parse_version_tlv(hdev, &ver_tlv, skb); 1150 if (err) { 1151 bt_dev_err(hdev, "Failed to parse TLV version information"); 1152 goto exit_error; 1153 } 1154 1155 switch (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)) { 1156 case 0x37: 1157 break; 1158 default: 1159 bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)", 1160 INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)); 1161 err = -EINVAL; 1162 goto exit_error; 1163 } 1164 1165 /* Check for supported iBT hardware variants of this firmware 1166 * loading method. 1167 * 1168 * This check has been put in place to ensure correct forward 1169 * compatibility options when newer hardware variants come 1170 * along. 1171 */ 1172 switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) { 1173 case 0x1e: /* BzrI */ 1174 /* Display version information of TLV type */ 1175 btintel_version_info_tlv(hdev, &ver_tlv); 1176 1177 /* Apply the device specific HCI quirks for TLV based devices 1178 * 1179 * All TLV based devices support WBS 1180 */ 1181 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks); 1182 1183 /* Apply LE States quirk from solar onwards */ 1184 set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks); 1185 1186 /* Setup MSFT Extension support */ 1187 btintel_set_msft_opcode(hdev, 1188 INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); 1189 1190 err = btintel_bootloader_setup_tlv(hdev, &ver_tlv); 1191 if (err) 1192 goto exit_error; 1193 break; 1194 default: 1195 bt_dev_err(hdev, "Unsupported Intel hw variant (%u)", 1196 INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); 1197 err = -EINVAL; 1198 goto exit_error; 1199 break; 1200 } 1201 1202 btintel_print_fseq_info(hdev); 1203 exit_error: 1204 kfree_skb(skb); 1205 1206 return err; 1207 } 1208 1209 static int btintel_pcie_setup_hdev(struct btintel_pcie_data *data) 1210 { 1211 int err; 1212 struct hci_dev *hdev; 1213 1214 hdev = hci_alloc_dev(); 1215 if (!hdev) 1216 return -ENOMEM; 1217 1218 hdev->bus = HCI_PCI; 1219 hci_set_drvdata(hdev, data); 1220 1221 data->hdev = hdev; 1222 SET_HCIDEV_DEV(hdev, &data->pdev->dev); 1223 1224 hdev->manufacturer = 2; 1225 hdev->open = btintel_pcie_open; 1226 hdev->close = btintel_pcie_close; 1227 hdev->send = btintel_pcie_send_frame; 1228 hdev->setup = btintel_pcie_setup; 1229 hdev->shutdown = btintel_shutdown_combined; 1230 hdev->hw_error = btintel_hw_error; 1231 hdev->set_diag = btintel_set_diag; 1232 hdev->set_bdaddr = btintel_set_bdaddr; 1233 1234 err = hci_register_dev(hdev); 1235 if (err < 0) { 1236 BT_ERR("Failed to register to hdev (%d)", err); 1237 goto exit_error; 1238 } 1239 1240 return 0; 1241 1242 exit_error: 1243 hci_free_dev(hdev); 1244 return err; 1245 } 1246 1247 static int btintel_pcie_probe(struct pci_dev *pdev, 1248 const struct pci_device_id *ent) 1249 { 1250 int err; 1251 struct btintel_pcie_data *data; 1252 1253 if (!pdev) 1254 return -ENODEV; 1255 1256 data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); 1257 if (!data) 1258 return -ENOMEM; 1259 1260 data->pdev = pdev; 1261 1262 spin_lock_init(&data->irq_lock); 1263 spin_lock_init(&data->hci_rx_lock); 1264 1265 init_waitqueue_head(&data->gp0_wait_q); 1266 data->gp0_received = false; 1267 1268 init_waitqueue_head(&data->tx_wait_q); 1269 data->tx_wait_done = false; 1270 1271 data->workqueue = alloc_ordered_workqueue(KBUILD_MODNAME, WQ_HIGHPRI); 1272 if (!data->workqueue) 1273 return -ENOMEM; 1274 1275 skb_queue_head_init(&data->rx_skb_q); 1276 INIT_WORK(&data->rx_work, btintel_pcie_rx_work); 1277 1278 data->boot_stage_cache = 0x00; 1279 data->img_resp_cache = 0x00; 1280 1281 err = btintel_pcie_config_pcie(pdev, data); 1282 if (err) 1283 goto exit_error; 1284 1285 pci_set_drvdata(pdev, data); 1286 1287 err = btintel_pcie_alloc(data); 1288 if (err) 1289 goto exit_error; 1290 1291 err = btintel_pcie_enable_bt(data); 1292 if (err) 1293 goto exit_error; 1294 1295 /* CNV information (CNVi and CNVr) is in CSR */ 1296 data->cnvi = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_HW_REV_REG); 1297 1298 data->cnvr = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_RF_ID_REG); 1299 1300 err = btintel_pcie_start_rx(data); 1301 if (err) 1302 goto exit_error; 1303 1304 err = btintel_pcie_setup_hdev(data); 1305 if (err) 1306 goto exit_error; 1307 1308 bt_dev_dbg(data->hdev, "cnvi: 0x%8.8x cnvr: 0x%8.8x", data->cnvi, 1309 data->cnvr); 1310 return 0; 1311 1312 exit_error: 1313 /* reset device before exit */ 1314 btintel_pcie_reset_bt(data); 1315 1316 pci_clear_master(pdev); 1317 1318 pci_set_drvdata(pdev, NULL); 1319 1320 return err; 1321 } 1322 1323 static void btintel_pcie_remove(struct pci_dev *pdev) 1324 { 1325 struct btintel_pcie_data *data; 1326 1327 data = pci_get_drvdata(pdev); 1328 1329 btintel_pcie_reset_bt(data); 1330 for (int i = 0; i < data->alloc_vecs; i++) { 1331 struct msix_entry *msix_entry; 1332 1333 msix_entry = &data->msix_entries[i]; 1334 free_irq(msix_entry->vector, msix_entry); 1335 } 1336 1337 pci_free_irq_vectors(pdev); 1338 1339 btintel_pcie_release_hdev(data); 1340 1341 flush_work(&data->rx_work); 1342 1343 destroy_workqueue(data->workqueue); 1344 1345 btintel_pcie_free(data); 1346 1347 pci_clear_master(pdev); 1348 1349 pci_set_drvdata(pdev, NULL); 1350 } 1351 1352 static struct pci_driver btintel_pcie_driver = { 1353 .name = KBUILD_MODNAME, 1354 .id_table = btintel_pcie_table, 1355 .probe = btintel_pcie_probe, 1356 .remove = btintel_pcie_remove, 1357 }; 1358 module_pci_driver(btintel_pcie_driver); 1359 1360 MODULE_AUTHOR("Tedd Ho-Jeong An <tedd.an@intel.com>"); 1361 MODULE_DESCRIPTION("Intel Bluetooth PCIe transport driver ver " VERSION); 1362 MODULE_VERSION(VERSION); 1363 MODULE_LICENSE("GPL"); 1364