1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Bluetooth support for Intel PCIe devices 5 * 6 * Copyright (C) 2024 Intel Corporation 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/firmware.h> 12 #include <linux/pci.h> 13 #include <linux/wait.h> 14 #include <linux/delay.h> 15 #include <linux/interrupt.h> 16 17 #include <linux/unaligned.h> 18 19 #include <net/bluetooth/bluetooth.h> 20 #include <net/bluetooth/hci_core.h> 21 22 #include "btintel.h" 23 #include "btintel_pcie.h" 24 25 #define VERSION "0.1" 26 27 #define BTINTEL_PCI_DEVICE(dev, subdev) \ 28 .vendor = PCI_VENDOR_ID_INTEL, \ 29 .device = (dev), \ 30 .subvendor = PCI_ANY_ID, \ 31 .subdevice = (subdev), \ 32 .driver_data = 0 33 34 #define POLL_INTERVAL_US 10 35 36 /* Intel Bluetooth PCIe device id table */ 37 static const struct pci_device_id btintel_pcie_table[] = { 38 { BTINTEL_PCI_DEVICE(0xA876, PCI_ANY_ID) }, 39 { 0 } 40 }; 41 MODULE_DEVICE_TABLE(pci, btintel_pcie_table); 42 43 /* Intel PCIe uses 4 bytes of HCI type instead of 1 byte BT SIG HCI type */ 44 #define BTINTEL_PCIE_HCI_TYPE_LEN 4 45 #define BTINTEL_PCIE_HCI_CMD_PKT 0x00000001 46 #define BTINTEL_PCIE_HCI_ACL_PKT 0x00000002 47 #define BTINTEL_PCIE_HCI_SCO_PKT 0x00000003 48 #define BTINTEL_PCIE_HCI_EVT_PKT 0x00000004 49 #define BTINTEL_PCIE_HCI_ISO_PKT 0x00000005 50 51 static inline void ipc_print_ia_ring(struct hci_dev *hdev, struct ia *ia, 52 u16 queue_num) 53 { 54 bt_dev_dbg(hdev, "IA: %s: tr-h:%02u tr-t:%02u cr-h:%02u cr-t:%02u", 55 queue_num == BTINTEL_PCIE_TXQ_NUM ? "TXQ" : "RXQ", 56 ia->tr_hia[queue_num], ia->tr_tia[queue_num], 57 ia->cr_hia[queue_num], ia->cr_tia[queue_num]); 58 } 59 60 static inline void ipc_print_urbd1(struct hci_dev *hdev, struct urbd1 *urbd1, 61 u16 index) 62 { 63 bt_dev_dbg(hdev, "RXQ:urbd1(%u) frbd_tag:%u status: 0x%x fixed:0x%x", 64 index, urbd1->frbd_tag, urbd1->status, urbd1->fixed); 65 } 66 67 static int btintel_pcie_poll_bit(struct btintel_pcie_data *data, u32 offset, 68 u32 bits, u32 mask, int timeout_us) 69 { 70 int t = 0; 71 u32 reg; 72 73 do { 74 reg = btintel_pcie_rd_reg32(data, offset); 75 76 if ((reg & mask) == (bits & mask)) 77 return t; 78 udelay(POLL_INTERVAL_US); 79 t += POLL_INTERVAL_US; 80 } while (t < timeout_us); 81 82 return -ETIMEDOUT; 83 } 84 85 static struct btintel_pcie_data *btintel_pcie_get_data(struct msix_entry *entry) 86 { 87 u8 queue = entry->entry; 88 struct msix_entry *entries = entry - queue; 89 90 return container_of(entries, struct btintel_pcie_data, msix_entries[0]); 91 } 92 93 /* Set the doorbell for TXQ to notify the device that @index (actually index-1) 94 * of the TFD is updated and ready to transmit. 95 */ 96 static void btintel_pcie_set_tx_db(struct btintel_pcie_data *data, u16 index) 97 { 98 u32 val; 99 100 val = index; 101 val |= (BTINTEL_PCIE_TX_DB_VEC << 16); 102 103 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val); 104 } 105 106 /* Copy the data to next(@tfd_index) data buffer and update the TFD(transfer 107 * descriptor) with the data length and the DMA address of the data buffer. 108 */ 109 static void btintel_pcie_prepare_tx(struct txq *txq, u16 tfd_index, 110 struct sk_buff *skb) 111 { 112 struct data_buf *buf; 113 struct tfd *tfd; 114 115 tfd = &txq->tfds[tfd_index]; 116 memset(tfd, 0, sizeof(*tfd)); 117 118 buf = &txq->bufs[tfd_index]; 119 120 tfd->size = skb->len; 121 tfd->addr = buf->data_p_addr; 122 123 /* Copy the outgoing data to DMA buffer */ 124 memcpy(buf->data, skb->data, tfd->size); 125 } 126 127 static int btintel_pcie_send_sync(struct btintel_pcie_data *data, 128 struct sk_buff *skb) 129 { 130 int ret; 131 u16 tfd_index; 132 struct txq *txq = &data->txq; 133 134 tfd_index = data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM]; 135 136 if (tfd_index > txq->count) 137 return -ERANGE; 138 139 /* Prepare for TX. It updates the TFD with the length of data and 140 * address of the DMA buffer, and copy the data to the DMA buffer 141 */ 142 btintel_pcie_prepare_tx(txq, tfd_index, skb); 143 144 tfd_index = (tfd_index + 1) % txq->count; 145 data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM] = tfd_index; 146 147 /* Arm wait event condition */ 148 data->tx_wait_done = false; 149 150 /* Set the doorbell to notify the device */ 151 btintel_pcie_set_tx_db(data, tfd_index); 152 153 /* Wait for the complete interrupt - URBD0 */ 154 ret = wait_event_timeout(data->tx_wait_q, data->tx_wait_done, 155 msecs_to_jiffies(BTINTEL_PCIE_TX_WAIT_TIMEOUT_MS)); 156 if (!ret) 157 return -ETIME; 158 159 return 0; 160 } 161 162 /* Set the doorbell for RXQ to notify the device that @index (actually index-1) 163 * is available to receive the data 164 */ 165 static void btintel_pcie_set_rx_db(struct btintel_pcie_data *data, u16 index) 166 { 167 u32 val; 168 169 val = index; 170 val |= (BTINTEL_PCIE_RX_DB_VEC << 16); 171 172 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val); 173 } 174 175 /* Update the FRBD (free buffer descriptor) with the @frbd_index and the 176 * DMA address of the free buffer. 177 */ 178 static void btintel_pcie_prepare_rx(struct rxq *rxq, u16 frbd_index) 179 { 180 struct data_buf *buf; 181 struct frbd *frbd; 182 183 /* Get the buffer of the FRBD for DMA */ 184 buf = &rxq->bufs[frbd_index]; 185 186 frbd = &rxq->frbds[frbd_index]; 187 memset(frbd, 0, sizeof(*frbd)); 188 189 /* Update FRBD */ 190 frbd->tag = frbd_index; 191 frbd->addr = buf->data_p_addr; 192 } 193 194 static int btintel_pcie_submit_rx(struct btintel_pcie_data *data) 195 { 196 u16 frbd_index; 197 struct rxq *rxq = &data->rxq; 198 199 frbd_index = data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM]; 200 201 if (frbd_index > rxq->count) 202 return -ERANGE; 203 204 /* Prepare for RX submit. It updates the FRBD with the address of DMA 205 * buffer 206 */ 207 btintel_pcie_prepare_rx(rxq, frbd_index); 208 209 frbd_index = (frbd_index + 1) % rxq->count; 210 data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM] = frbd_index; 211 ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM); 212 213 /* Set the doorbell to notify the device */ 214 btintel_pcie_set_rx_db(data, frbd_index); 215 216 return 0; 217 } 218 219 static int btintel_pcie_start_rx(struct btintel_pcie_data *data) 220 { 221 int i, ret; 222 223 for (i = 0; i < BTINTEL_PCIE_RX_MAX_QUEUE; i++) { 224 ret = btintel_pcie_submit_rx(data); 225 if (ret) 226 return ret; 227 } 228 229 return 0; 230 } 231 232 static void btintel_pcie_reset_ia(struct btintel_pcie_data *data) 233 { 234 memset(data->ia.tr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES); 235 memset(data->ia.tr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES); 236 memset(data->ia.cr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES); 237 memset(data->ia.cr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES); 238 } 239 240 static void btintel_pcie_reset_bt(struct btintel_pcie_data *data) 241 { 242 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, 243 BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET); 244 } 245 246 /* This function enables BT function by setting BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT bit in 247 * BTINTEL_PCIE_CSR_FUNC_CTRL_REG register and wait for MSI-X with 248 * BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0. 249 * Then the host reads firmware version from BTINTEL_CSR_F2D_MBX and the boot stage 250 * from BTINTEL_PCIE_CSR_BOOT_STAGE_REG. 251 */ 252 static int btintel_pcie_enable_bt(struct btintel_pcie_data *data) 253 { 254 int err; 255 256 data->gp0_received = false; 257 258 /* Update the DMA address of CI struct to CSR */ 259 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_LSB_REG, 260 data->ci_p_addr & 0xffffffff); 261 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_MSB_REG, 262 (u64)data->ci_p_addr >> 32); 263 264 /* Reset the cached value of boot stage. it is updated by the MSI-X 265 * gp0 interrupt handler. 266 */ 267 data->boot_stage_cache = 0x0; 268 269 /* Set MAC_INIT bit to start primary bootloader */ 270 btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); 271 272 btintel_pcie_set_reg_bits(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, 273 BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT); 274 275 /* Wait until MAC_ACCESS is granted */ 276 err = btintel_pcie_poll_bit(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, 277 BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS, 278 BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS, 279 BTINTEL_DEFAULT_MAC_ACCESS_TIMEOUT_US); 280 if (err < 0) 281 return -ENODEV; 282 283 /* MAC is ready. Enable BT FUNC */ 284 btintel_pcie_set_reg_bits(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, 285 BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA | 286 BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT); 287 288 btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); 289 290 /* wait for interrupt from the device after booting up to primary 291 * bootloader. 292 */ 293 err = wait_event_timeout(data->gp0_wait_q, data->gp0_received, 294 msecs_to_jiffies(BTINTEL_DEFAULT_INTR_TIMEOUT)); 295 if (!err) 296 return -ETIME; 297 298 /* Check cached boot stage is BTINTEL_PCIE_CSR_BOOT_STAGE_ROM(BIT(0)) */ 299 if (~data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_ROM) 300 return -ENODEV; 301 302 return 0; 303 } 304 305 /* This function handles the MSI-X interrupt for gp0 cause (bit 0 in 306 * BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES) which is sent for boot stage and image response. 307 */ 308 static void btintel_pcie_msix_gp0_handler(struct btintel_pcie_data *data) 309 { 310 u32 reg; 311 312 /* This interrupt is for three different causes and it is not easy to 313 * know what causes the interrupt. So, it compares each register value 314 * with cached value and update it before it wake up the queue. 315 */ 316 reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_BOOT_STAGE_REG); 317 if (reg != data->boot_stage_cache) 318 data->boot_stage_cache = reg; 319 320 reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_IMG_RESPONSE_REG); 321 if (reg != data->img_resp_cache) 322 data->img_resp_cache = reg; 323 324 data->gp0_received = true; 325 326 /* If the boot stage is OP or IML, reset IA and start RX again */ 327 if (data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_OPFW || 328 data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_IML) { 329 btintel_pcie_reset_ia(data); 330 btintel_pcie_start_rx(data); 331 } 332 333 wake_up(&data->gp0_wait_q); 334 } 335 336 /* This function handles the MSX-X interrupt for rx queue 0 which is for TX 337 */ 338 static void btintel_pcie_msix_tx_handle(struct btintel_pcie_data *data) 339 { 340 u16 cr_tia, cr_hia; 341 struct txq *txq; 342 struct urbd0 *urbd0; 343 344 cr_tia = data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM]; 345 cr_hia = data->ia.cr_hia[BTINTEL_PCIE_TXQ_NUM]; 346 347 if (cr_tia == cr_hia) 348 return; 349 350 txq = &data->txq; 351 352 while (cr_tia != cr_hia) { 353 data->tx_wait_done = true; 354 wake_up(&data->tx_wait_q); 355 356 urbd0 = &txq->urbd0s[cr_tia]; 357 358 if (urbd0->tfd_index > txq->count) 359 return; 360 361 cr_tia = (cr_tia + 1) % txq->count; 362 data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM] = cr_tia; 363 ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_TXQ_NUM); 364 } 365 } 366 367 /* Process the received rx data 368 * It check the frame header to identify the data type and create skb 369 * and calling HCI API 370 */ 371 static int btintel_pcie_recv_frame(struct btintel_pcie_data *data, 372 struct sk_buff *skb) 373 { 374 int ret; 375 u8 pkt_type; 376 u16 plen; 377 u32 pcie_pkt_type; 378 struct sk_buff *new_skb; 379 void *pdata; 380 struct hci_dev *hdev = data->hdev; 381 382 spin_lock(&data->hci_rx_lock); 383 384 /* The first 4 bytes indicates the Intel PCIe specific packet type */ 385 pdata = skb_pull_data(skb, BTINTEL_PCIE_HCI_TYPE_LEN); 386 if (!pdata) { 387 bt_dev_err(hdev, "Corrupted packet received"); 388 ret = -EILSEQ; 389 goto exit_error; 390 } 391 392 pcie_pkt_type = get_unaligned_le32(pdata); 393 394 switch (pcie_pkt_type) { 395 case BTINTEL_PCIE_HCI_ACL_PKT: 396 if (skb->len >= HCI_ACL_HDR_SIZE) { 397 plen = HCI_ACL_HDR_SIZE + __le16_to_cpu(hci_acl_hdr(skb)->dlen); 398 pkt_type = HCI_ACLDATA_PKT; 399 } else { 400 bt_dev_err(hdev, "ACL packet is too short"); 401 ret = -EILSEQ; 402 goto exit_error; 403 } 404 break; 405 406 case BTINTEL_PCIE_HCI_SCO_PKT: 407 if (skb->len >= HCI_SCO_HDR_SIZE) { 408 plen = HCI_SCO_HDR_SIZE + hci_sco_hdr(skb)->dlen; 409 pkt_type = HCI_SCODATA_PKT; 410 } else { 411 bt_dev_err(hdev, "SCO packet is too short"); 412 ret = -EILSEQ; 413 goto exit_error; 414 } 415 break; 416 417 case BTINTEL_PCIE_HCI_EVT_PKT: 418 if (skb->len >= HCI_EVENT_HDR_SIZE) { 419 plen = HCI_EVENT_HDR_SIZE + hci_event_hdr(skb)->plen; 420 pkt_type = HCI_EVENT_PKT; 421 } else { 422 bt_dev_err(hdev, "Event packet is too short"); 423 ret = -EILSEQ; 424 goto exit_error; 425 } 426 break; 427 428 case BTINTEL_PCIE_HCI_ISO_PKT: 429 if (skb->len >= HCI_ISO_HDR_SIZE) { 430 plen = HCI_ISO_HDR_SIZE + __le16_to_cpu(hci_iso_hdr(skb)->dlen); 431 pkt_type = HCI_ISODATA_PKT; 432 } else { 433 bt_dev_err(hdev, "ISO packet is too short"); 434 ret = -EILSEQ; 435 goto exit_error; 436 } 437 break; 438 439 default: 440 bt_dev_err(hdev, "Invalid packet type received: 0x%4.4x", 441 pcie_pkt_type); 442 ret = -EINVAL; 443 goto exit_error; 444 } 445 446 if (skb->len < plen) { 447 bt_dev_err(hdev, "Received corrupted packet. type: 0x%2.2x", 448 pkt_type); 449 ret = -EILSEQ; 450 goto exit_error; 451 } 452 453 bt_dev_dbg(hdev, "pkt_type: 0x%2.2x len: %u", pkt_type, plen); 454 455 new_skb = bt_skb_alloc(plen, GFP_ATOMIC); 456 if (!new_skb) { 457 bt_dev_err(hdev, "Failed to allocate memory for skb of len: %u", 458 skb->len); 459 ret = -ENOMEM; 460 goto exit_error; 461 } 462 463 hci_skb_pkt_type(new_skb) = pkt_type; 464 skb_put_data(new_skb, skb->data, plen); 465 hdev->stat.byte_rx += plen; 466 467 if (pcie_pkt_type == BTINTEL_PCIE_HCI_EVT_PKT) 468 ret = btintel_recv_event(hdev, new_skb); 469 else 470 ret = hci_recv_frame(hdev, new_skb); 471 472 exit_error: 473 if (ret) 474 hdev->stat.err_rx++; 475 476 spin_unlock(&data->hci_rx_lock); 477 478 return ret; 479 } 480 481 static void btintel_pcie_rx_work(struct work_struct *work) 482 { 483 struct btintel_pcie_data *data = container_of(work, 484 struct btintel_pcie_data, rx_work); 485 struct sk_buff *skb; 486 int err; 487 struct hci_dev *hdev = data->hdev; 488 489 /* Process the sk_buf in queue and send to the HCI layer */ 490 while ((skb = skb_dequeue(&data->rx_skb_q))) { 491 err = btintel_pcie_recv_frame(data, skb); 492 if (err) 493 bt_dev_err(hdev, "Failed to send received frame: %d", 494 err); 495 kfree_skb(skb); 496 } 497 } 498 499 /* create sk_buff with data and save it to queue and start RX work */ 500 static int btintel_pcie_submit_rx_work(struct btintel_pcie_data *data, u8 status, 501 void *buf) 502 { 503 int ret, len; 504 struct rfh_hdr *rfh_hdr; 505 struct sk_buff *skb; 506 507 rfh_hdr = buf; 508 509 len = rfh_hdr->packet_len; 510 if (len <= 0) { 511 ret = -EINVAL; 512 goto resubmit; 513 } 514 515 /* Remove RFH header */ 516 buf += sizeof(*rfh_hdr); 517 518 skb = alloc_skb(len, GFP_ATOMIC); 519 if (!skb) { 520 ret = -ENOMEM; 521 goto resubmit; 522 } 523 524 skb_put_data(skb, buf, len); 525 skb_queue_tail(&data->rx_skb_q, skb); 526 queue_work(data->workqueue, &data->rx_work); 527 528 resubmit: 529 ret = btintel_pcie_submit_rx(data); 530 531 return ret; 532 } 533 534 /* Handles the MSI-X interrupt for rx queue 1 which is for RX */ 535 static void btintel_pcie_msix_rx_handle(struct btintel_pcie_data *data) 536 { 537 u16 cr_hia, cr_tia; 538 struct rxq *rxq; 539 struct urbd1 *urbd1; 540 struct data_buf *buf; 541 int ret; 542 struct hci_dev *hdev = data->hdev; 543 544 cr_hia = data->ia.cr_hia[BTINTEL_PCIE_RXQ_NUM]; 545 cr_tia = data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM]; 546 547 bt_dev_dbg(hdev, "RXQ: cr_hia: %u cr_tia: %u", cr_hia, cr_tia); 548 549 /* Check CR_TIA and CR_HIA for change */ 550 if (cr_tia == cr_hia) { 551 bt_dev_warn(hdev, "RXQ: no new CD found"); 552 return; 553 } 554 555 rxq = &data->rxq; 556 557 /* The firmware sends multiple CD in a single MSI-X and it needs to 558 * process all received CDs in this interrupt. 559 */ 560 while (cr_tia != cr_hia) { 561 urbd1 = &rxq->urbd1s[cr_tia]; 562 ipc_print_urbd1(data->hdev, urbd1, cr_tia); 563 564 buf = &rxq->bufs[urbd1->frbd_tag]; 565 if (!buf) { 566 bt_dev_err(hdev, "RXQ: failed to get the DMA buffer for %d", 567 urbd1->frbd_tag); 568 return; 569 } 570 571 ret = btintel_pcie_submit_rx_work(data, urbd1->status, 572 buf->data); 573 if (ret) { 574 bt_dev_err(hdev, "RXQ: failed to submit rx request"); 575 return; 576 } 577 578 cr_tia = (cr_tia + 1) % rxq->count; 579 data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM] = cr_tia; 580 ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM); 581 } 582 } 583 584 static irqreturn_t btintel_pcie_msix_isr(int irq, void *data) 585 { 586 return IRQ_WAKE_THREAD; 587 } 588 589 static irqreturn_t btintel_pcie_irq_msix_handler(int irq, void *dev_id) 590 { 591 struct msix_entry *entry = dev_id; 592 struct btintel_pcie_data *data = btintel_pcie_get_data(entry); 593 u32 intr_fh, intr_hw; 594 595 spin_lock(&data->irq_lock); 596 intr_fh = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES); 597 intr_hw = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES); 598 599 /* Clear causes registers to avoid being handling the same cause */ 600 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES, intr_fh); 601 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES, intr_hw); 602 spin_unlock(&data->irq_lock); 603 604 if (unlikely(!(intr_fh | intr_hw))) { 605 /* Ignore interrupt, inta == 0 */ 606 return IRQ_NONE; 607 } 608 609 /* This interrupt is triggered by the firmware after updating 610 * boot_stage register and image_response register 611 */ 612 if (intr_hw & BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0) 613 btintel_pcie_msix_gp0_handler(data); 614 615 /* For TX */ 616 if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0) 617 btintel_pcie_msix_tx_handle(data); 618 619 /* For RX */ 620 if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1) 621 btintel_pcie_msix_rx_handle(data); 622 623 /* 624 * Before sending the interrupt the HW disables it to prevent a nested 625 * interrupt. This is done by writing 1 to the corresponding bit in 626 * the mask register. After handling the interrupt, it should be 627 * re-enabled by clearing this bit. This register is defined as write 1 628 * clear (W1C) register, meaning that it's cleared by writing 1 629 * to the bit. 630 */ 631 btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_AUTOMASK_ST, 632 BIT(entry->entry)); 633 634 return IRQ_HANDLED; 635 } 636 637 /* This function requests the irq for MSI-X and registers the handlers per irq. 638 * Currently, it requests only 1 irq for all interrupt causes. 639 */ 640 static int btintel_pcie_setup_irq(struct btintel_pcie_data *data) 641 { 642 int err; 643 int num_irqs, i; 644 645 for (i = 0; i < BTINTEL_PCIE_MSIX_VEC_MAX; i++) 646 data->msix_entries[i].entry = i; 647 648 num_irqs = pci_alloc_irq_vectors(data->pdev, BTINTEL_PCIE_MSIX_VEC_MIN, 649 BTINTEL_PCIE_MSIX_VEC_MAX, PCI_IRQ_MSIX); 650 if (num_irqs < 0) 651 return num_irqs; 652 653 data->alloc_vecs = num_irqs; 654 data->msix_enabled = 1; 655 data->def_irq = 0; 656 657 /* setup irq handler */ 658 for (i = 0; i < data->alloc_vecs; i++) { 659 struct msix_entry *msix_entry; 660 661 msix_entry = &data->msix_entries[i]; 662 msix_entry->vector = pci_irq_vector(data->pdev, i); 663 664 err = devm_request_threaded_irq(&data->pdev->dev, 665 msix_entry->vector, 666 btintel_pcie_msix_isr, 667 btintel_pcie_irq_msix_handler, 668 IRQF_SHARED, 669 KBUILD_MODNAME, 670 msix_entry); 671 if (err) { 672 pci_free_irq_vectors(data->pdev); 673 data->alloc_vecs = 0; 674 return err; 675 } 676 } 677 return 0; 678 } 679 680 struct btintel_pcie_causes_list { 681 u32 cause; 682 u32 mask_reg; 683 u8 cause_num; 684 }; 685 686 static struct btintel_pcie_causes_list causes_list[] = { 687 { BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK, 0x00 }, 688 { BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK, 0x01 }, 689 { BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK, 0x20 }, 690 }; 691 692 /* This function configures the interrupt masks for both HW_INT_CAUSES and 693 * FH_INT_CAUSES which are meaningful to us. 694 * 695 * After resetting BT function via PCIE FLR or FUNC_CTRL reset, the driver 696 * need to call this function again to configure since the masks 697 * are reset to 0xFFFFFFFF after reset. 698 */ 699 static void btintel_pcie_config_msix(struct btintel_pcie_data *data) 700 { 701 int i; 702 int val = data->def_irq | BTINTEL_PCIE_MSIX_NON_AUTO_CLEAR_CAUSE; 703 704 /* Set Non Auto Clear Cause */ 705 for (i = 0; i < ARRAY_SIZE(causes_list); i++) { 706 btintel_pcie_wr_reg8(data, 707 BTINTEL_PCIE_CSR_MSIX_IVAR(causes_list[i].cause_num), 708 val); 709 btintel_pcie_clr_reg_bits(data, 710 causes_list[i].mask_reg, 711 causes_list[i].cause); 712 } 713 714 /* Save the initial interrupt mask */ 715 data->fh_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK); 716 data->hw_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK); 717 } 718 719 static int btintel_pcie_config_pcie(struct pci_dev *pdev, 720 struct btintel_pcie_data *data) 721 { 722 int err; 723 724 err = pcim_enable_device(pdev); 725 if (err) 726 return err; 727 728 pci_set_master(pdev); 729 730 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 731 if (err) { 732 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 733 if (err) 734 return err; 735 } 736 737 err = pcim_iomap_regions(pdev, BIT(0), KBUILD_MODNAME); 738 if (err) 739 return err; 740 741 data->base_addr = pcim_iomap_table(pdev)[0]; 742 if (!data->base_addr) 743 return -ENODEV; 744 745 err = btintel_pcie_setup_irq(data); 746 if (err) 747 return err; 748 749 /* Configure MSI-X with causes list */ 750 btintel_pcie_config_msix(data); 751 752 return 0; 753 } 754 755 static void btintel_pcie_init_ci(struct btintel_pcie_data *data, 756 struct ctx_info *ci) 757 { 758 ci->version = 0x1; 759 ci->size = sizeof(*ci); 760 ci->config = 0x0000; 761 ci->addr_cr_hia = data->ia.cr_hia_p_addr; 762 ci->addr_tr_tia = data->ia.tr_tia_p_addr; 763 ci->addr_cr_tia = data->ia.cr_tia_p_addr; 764 ci->addr_tr_hia = data->ia.tr_hia_p_addr; 765 ci->num_cr_ia = BTINTEL_PCIE_NUM_QUEUES; 766 ci->num_tr_ia = BTINTEL_PCIE_NUM_QUEUES; 767 ci->addr_urbdq0 = data->txq.urbd0s_p_addr; 768 ci->addr_tfdq = data->txq.tfds_p_addr; 769 ci->num_tfdq = data->txq.count; 770 ci->num_urbdq0 = data->txq.count; 771 ci->tfdq_db_vec = BTINTEL_PCIE_TXQ_NUM; 772 ci->urbdq0_db_vec = BTINTEL_PCIE_TXQ_NUM; 773 ci->rbd_size = BTINTEL_PCIE_RBD_SIZE_4K; 774 ci->addr_frbdq = data->rxq.frbds_p_addr; 775 ci->num_frbdq = data->rxq.count; 776 ci->frbdq_db_vec = BTINTEL_PCIE_RXQ_NUM; 777 ci->addr_urbdq1 = data->rxq.urbd1s_p_addr; 778 ci->num_urbdq1 = data->rxq.count; 779 ci->urbdq_db_vec = BTINTEL_PCIE_RXQ_NUM; 780 } 781 782 static void btintel_pcie_free_txq_bufs(struct btintel_pcie_data *data, 783 struct txq *txq) 784 { 785 /* Free data buffers first */ 786 dma_free_coherent(&data->pdev->dev, txq->count * BTINTEL_PCIE_BUFFER_SIZE, 787 txq->buf_v_addr, txq->buf_p_addr); 788 kfree(txq->bufs); 789 } 790 791 static int btintel_pcie_setup_txq_bufs(struct btintel_pcie_data *data, 792 struct txq *txq) 793 { 794 int i; 795 struct data_buf *buf; 796 797 /* Allocate the same number of buffers as the descriptor */ 798 txq->bufs = kmalloc_array(txq->count, sizeof(*buf), GFP_KERNEL); 799 if (!txq->bufs) 800 return -ENOMEM; 801 802 /* Allocate full chunk of data buffer for DMA first and do indexing and 803 * initialization next, so it can be freed easily 804 */ 805 txq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev, 806 txq->count * BTINTEL_PCIE_BUFFER_SIZE, 807 &txq->buf_p_addr, 808 GFP_KERNEL | __GFP_NOWARN); 809 if (!txq->buf_v_addr) { 810 kfree(txq->bufs); 811 return -ENOMEM; 812 } 813 814 /* Setup the allocated DMA buffer to bufs. Each data_buf should 815 * have virtual address and physical address 816 */ 817 for (i = 0; i < txq->count; i++) { 818 buf = &txq->bufs[i]; 819 buf->data_p_addr = txq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE); 820 buf->data = txq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE); 821 } 822 823 return 0; 824 } 825 826 static void btintel_pcie_free_rxq_bufs(struct btintel_pcie_data *data, 827 struct rxq *rxq) 828 { 829 /* Free data buffers first */ 830 dma_free_coherent(&data->pdev->dev, rxq->count * BTINTEL_PCIE_BUFFER_SIZE, 831 rxq->buf_v_addr, rxq->buf_p_addr); 832 kfree(rxq->bufs); 833 } 834 835 static int btintel_pcie_setup_rxq_bufs(struct btintel_pcie_data *data, 836 struct rxq *rxq) 837 { 838 int i; 839 struct data_buf *buf; 840 841 /* Allocate the same number of buffers as the descriptor */ 842 rxq->bufs = kmalloc_array(rxq->count, sizeof(*buf), GFP_KERNEL); 843 if (!rxq->bufs) 844 return -ENOMEM; 845 846 /* Allocate full chunk of data buffer for DMA first and do indexing and 847 * initialization next, so it can be freed easily 848 */ 849 rxq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev, 850 rxq->count * BTINTEL_PCIE_BUFFER_SIZE, 851 &rxq->buf_p_addr, 852 GFP_KERNEL | __GFP_NOWARN); 853 if (!rxq->buf_v_addr) { 854 kfree(rxq->bufs); 855 return -ENOMEM; 856 } 857 858 /* Setup the allocated DMA buffer to bufs. Each data_buf should 859 * have virtual address and physical address 860 */ 861 for (i = 0; i < rxq->count; i++) { 862 buf = &rxq->bufs[i]; 863 buf->data_p_addr = rxq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE); 864 buf->data = rxq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE); 865 } 866 867 return 0; 868 } 869 870 static void btintel_pcie_setup_ia(struct btintel_pcie_data *data, 871 dma_addr_t p_addr, void *v_addr, 872 struct ia *ia) 873 { 874 /* TR Head Index Array */ 875 ia->tr_hia_p_addr = p_addr; 876 ia->tr_hia = v_addr; 877 878 /* TR Tail Index Array */ 879 ia->tr_tia_p_addr = p_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES; 880 ia->tr_tia = v_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES; 881 882 /* CR Head index Array */ 883 ia->cr_hia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2); 884 ia->cr_hia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2); 885 886 /* CR Tail Index Array */ 887 ia->cr_tia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3); 888 ia->cr_tia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3); 889 } 890 891 static void btintel_pcie_free(struct btintel_pcie_data *data) 892 { 893 btintel_pcie_free_rxq_bufs(data, &data->rxq); 894 btintel_pcie_free_txq_bufs(data, &data->txq); 895 896 dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr); 897 dma_pool_destroy(data->dma_pool); 898 } 899 900 /* Allocate tx and rx queues, any related data structures and buffers. 901 */ 902 static int btintel_pcie_alloc(struct btintel_pcie_data *data) 903 { 904 int err = 0; 905 size_t total; 906 dma_addr_t p_addr; 907 void *v_addr; 908 909 /* Allocate the chunk of DMA memory for descriptors, index array, and 910 * context information, instead of allocating individually. 911 * The DMA memory for data buffer is allocated while setting up the 912 * each queue. 913 * 914 * Total size is sum of the following 915 * + size of TFD * Number of descriptors in queue 916 * + size of URBD0 * Number of descriptors in queue 917 * + size of FRBD * Number of descriptors in queue 918 * + size of URBD1 * Number of descriptors in queue 919 * + size of index * Number of queues(2) * type of index array(4) 920 * + size of context information 921 */ 922 total = (sizeof(struct tfd) + sizeof(struct urbd0) + sizeof(struct frbd) 923 + sizeof(struct urbd1)) * BTINTEL_DESCS_COUNT; 924 925 /* Add the sum of size of index array and size of ci struct */ 926 total += (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4) + sizeof(struct ctx_info); 927 928 /* Allocate DMA Pool */ 929 data->dma_pool = dma_pool_create(KBUILD_MODNAME, &data->pdev->dev, 930 total, BTINTEL_PCIE_DMA_POOL_ALIGNMENT, 0); 931 if (!data->dma_pool) { 932 err = -ENOMEM; 933 goto exit_error; 934 } 935 936 v_addr = dma_pool_zalloc(data->dma_pool, GFP_KERNEL | __GFP_NOWARN, 937 &p_addr); 938 if (!v_addr) { 939 dma_pool_destroy(data->dma_pool); 940 err = -ENOMEM; 941 goto exit_error; 942 } 943 944 data->dma_p_addr = p_addr; 945 data->dma_v_addr = v_addr; 946 947 /* Setup descriptor count */ 948 data->txq.count = BTINTEL_DESCS_COUNT; 949 data->rxq.count = BTINTEL_DESCS_COUNT; 950 951 /* Setup tfds */ 952 data->txq.tfds_p_addr = p_addr; 953 data->txq.tfds = v_addr; 954 955 p_addr += (sizeof(struct tfd) * BTINTEL_DESCS_COUNT); 956 v_addr += (sizeof(struct tfd) * BTINTEL_DESCS_COUNT); 957 958 /* Setup urbd0 */ 959 data->txq.urbd0s_p_addr = p_addr; 960 data->txq.urbd0s = v_addr; 961 962 p_addr += (sizeof(struct urbd0) * BTINTEL_DESCS_COUNT); 963 v_addr += (sizeof(struct urbd0) * BTINTEL_DESCS_COUNT); 964 965 /* Setup FRBD*/ 966 data->rxq.frbds_p_addr = p_addr; 967 data->rxq.frbds = v_addr; 968 969 p_addr += (sizeof(struct frbd) * BTINTEL_DESCS_COUNT); 970 v_addr += (sizeof(struct frbd) * BTINTEL_DESCS_COUNT); 971 972 /* Setup urbd1 */ 973 data->rxq.urbd1s_p_addr = p_addr; 974 data->rxq.urbd1s = v_addr; 975 976 p_addr += (sizeof(struct urbd1) * BTINTEL_DESCS_COUNT); 977 v_addr += (sizeof(struct urbd1) * BTINTEL_DESCS_COUNT); 978 979 /* Setup data buffers for txq */ 980 err = btintel_pcie_setup_txq_bufs(data, &data->txq); 981 if (err) 982 goto exit_error_pool; 983 984 /* Setup data buffers for rxq */ 985 err = btintel_pcie_setup_rxq_bufs(data, &data->rxq); 986 if (err) 987 goto exit_error_txq; 988 989 /* Setup Index Array */ 990 btintel_pcie_setup_ia(data, p_addr, v_addr, &data->ia); 991 992 /* Setup Context Information */ 993 p_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4; 994 v_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4; 995 996 data->ci = v_addr; 997 data->ci_p_addr = p_addr; 998 999 /* Initialize the CI */ 1000 btintel_pcie_init_ci(data, data->ci); 1001 1002 return 0; 1003 1004 exit_error_txq: 1005 btintel_pcie_free_txq_bufs(data, &data->txq); 1006 exit_error_pool: 1007 dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr); 1008 dma_pool_destroy(data->dma_pool); 1009 exit_error: 1010 return err; 1011 } 1012 1013 static int btintel_pcie_open(struct hci_dev *hdev) 1014 { 1015 bt_dev_dbg(hdev, ""); 1016 1017 return 0; 1018 } 1019 1020 static int btintel_pcie_close(struct hci_dev *hdev) 1021 { 1022 bt_dev_dbg(hdev, ""); 1023 1024 return 0; 1025 } 1026 1027 static int btintel_pcie_inject_cmd_complete(struct hci_dev *hdev, __u16 opcode) 1028 { 1029 struct sk_buff *skb; 1030 struct hci_event_hdr *hdr; 1031 struct hci_ev_cmd_complete *evt; 1032 1033 skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL); 1034 if (!skb) 1035 return -ENOMEM; 1036 1037 hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr)); 1038 hdr->evt = HCI_EV_CMD_COMPLETE; 1039 hdr->plen = sizeof(*evt) + 1; 1040 1041 evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt)); 1042 evt->ncmd = 0x01; 1043 evt->opcode = cpu_to_le16(opcode); 1044 1045 *(u8 *)skb_put(skb, 1) = 0x00; 1046 1047 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 1048 1049 return hci_recv_frame(hdev, skb); 1050 } 1051 1052 static int btintel_pcie_send_frame(struct hci_dev *hdev, 1053 struct sk_buff *skb) 1054 { 1055 struct btintel_pcie_data *data = hci_get_drvdata(hdev); 1056 int ret; 1057 u32 type; 1058 1059 /* Due to the fw limitation, the type header of the packet should be 1060 * 4 bytes unlike 1 byte for UART. In UART, the firmware can read 1061 * the first byte to get the packet type and redirect the rest of data 1062 * packet to the right handler. 1063 * 1064 * But for PCIe, THF(Transfer Flow Handler) fetches the 4 bytes of data 1065 * from DMA memory and by the time it reads the first 4 bytes, it has 1066 * already consumed some part of packet. Thus the packet type indicator 1067 * for iBT PCIe is 4 bytes. 1068 * 1069 * Luckily, when HCI core creates the skb, it allocates 8 bytes of 1070 * head room for profile and driver use, and before sending the data 1071 * to the device, append the iBT PCIe packet type in the front. 1072 */ 1073 switch (hci_skb_pkt_type(skb)) { 1074 case HCI_COMMAND_PKT: 1075 type = BTINTEL_PCIE_HCI_CMD_PKT; 1076 if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) { 1077 struct hci_command_hdr *cmd = (void *)skb->data; 1078 __u16 opcode = le16_to_cpu(cmd->opcode); 1079 1080 /* When the 0xfc01 command is issued to boot into 1081 * the operational firmware, it will actually not 1082 * send a command complete event. To keep the flow 1083 * control working inject that event here. 1084 */ 1085 if (opcode == 0xfc01) 1086 btintel_pcie_inject_cmd_complete(hdev, opcode); 1087 } 1088 hdev->stat.cmd_tx++; 1089 break; 1090 case HCI_ACLDATA_PKT: 1091 type = BTINTEL_PCIE_HCI_ACL_PKT; 1092 hdev->stat.acl_tx++; 1093 break; 1094 case HCI_SCODATA_PKT: 1095 type = BTINTEL_PCIE_HCI_SCO_PKT; 1096 hdev->stat.sco_tx++; 1097 break; 1098 case HCI_ISODATA_PKT: 1099 type = BTINTEL_PCIE_HCI_ISO_PKT; 1100 break; 1101 default: 1102 bt_dev_err(hdev, "Unknown HCI packet type"); 1103 return -EILSEQ; 1104 } 1105 memcpy(skb_push(skb, BTINTEL_PCIE_HCI_TYPE_LEN), &type, 1106 BTINTEL_PCIE_HCI_TYPE_LEN); 1107 1108 ret = btintel_pcie_send_sync(data, skb); 1109 if (ret) { 1110 hdev->stat.err_tx++; 1111 bt_dev_err(hdev, "Failed to send frame (%d)", ret); 1112 goto exit_error; 1113 } 1114 hdev->stat.byte_tx += skb->len; 1115 kfree_skb(skb); 1116 1117 exit_error: 1118 return ret; 1119 } 1120 1121 static void btintel_pcie_release_hdev(struct btintel_pcie_data *data) 1122 { 1123 struct hci_dev *hdev; 1124 1125 hdev = data->hdev; 1126 hci_unregister_dev(hdev); 1127 hci_free_dev(hdev); 1128 data->hdev = NULL; 1129 } 1130 1131 static int btintel_pcie_setup(struct hci_dev *hdev) 1132 { 1133 const u8 param[1] = { 0xFF }; 1134 struct intel_version_tlv ver_tlv; 1135 struct sk_buff *skb; 1136 int err; 1137 1138 BT_DBG("%s", hdev->name); 1139 1140 skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT); 1141 if (IS_ERR(skb)) { 1142 bt_dev_err(hdev, "Reading Intel version command failed (%ld)", 1143 PTR_ERR(skb)); 1144 return PTR_ERR(skb); 1145 } 1146 1147 /* Check the status */ 1148 if (skb->data[0]) { 1149 bt_dev_err(hdev, "Intel Read Version command failed (%02x)", 1150 skb->data[0]); 1151 err = -EIO; 1152 goto exit_error; 1153 } 1154 1155 /* Apply the common HCI quirks for Intel device */ 1156 set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks); 1157 set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks); 1158 set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks); 1159 1160 /* Set up the quality report callback for Intel devices */ 1161 hdev->set_quality_report = btintel_set_quality_report; 1162 1163 memset(&ver_tlv, 0, sizeof(ver_tlv)); 1164 /* For TLV type device, parse the tlv data */ 1165 err = btintel_parse_version_tlv(hdev, &ver_tlv, skb); 1166 if (err) { 1167 bt_dev_err(hdev, "Failed to parse TLV version information"); 1168 goto exit_error; 1169 } 1170 1171 switch (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)) { 1172 case 0x37: 1173 break; 1174 default: 1175 bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)", 1176 INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)); 1177 err = -EINVAL; 1178 goto exit_error; 1179 } 1180 1181 /* Check for supported iBT hardware variants of this firmware 1182 * loading method. 1183 * 1184 * This check has been put in place to ensure correct forward 1185 * compatibility options when newer hardware variants come 1186 * along. 1187 */ 1188 switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) { 1189 case 0x1e: /* BzrI */ 1190 /* Display version information of TLV type */ 1191 btintel_version_info_tlv(hdev, &ver_tlv); 1192 1193 /* Apply the device specific HCI quirks for TLV based devices 1194 * 1195 * All TLV based devices support WBS 1196 */ 1197 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks); 1198 1199 /* Setup MSFT Extension support */ 1200 btintel_set_msft_opcode(hdev, 1201 INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); 1202 1203 err = btintel_bootloader_setup_tlv(hdev, &ver_tlv); 1204 if (err) 1205 goto exit_error; 1206 break; 1207 default: 1208 bt_dev_err(hdev, "Unsupported Intel hw variant (%u)", 1209 INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); 1210 err = -EINVAL; 1211 goto exit_error; 1212 break; 1213 } 1214 1215 btintel_print_fseq_info(hdev); 1216 exit_error: 1217 kfree_skb(skb); 1218 1219 return err; 1220 } 1221 1222 static int btintel_pcie_setup_hdev(struct btintel_pcie_data *data) 1223 { 1224 int err; 1225 struct hci_dev *hdev; 1226 1227 hdev = hci_alloc_dev_priv(sizeof(struct btintel_data)); 1228 if (!hdev) 1229 return -ENOMEM; 1230 1231 hdev->bus = HCI_PCI; 1232 hci_set_drvdata(hdev, data); 1233 1234 data->hdev = hdev; 1235 SET_HCIDEV_DEV(hdev, &data->pdev->dev); 1236 1237 hdev->manufacturer = 2; 1238 hdev->open = btintel_pcie_open; 1239 hdev->close = btintel_pcie_close; 1240 hdev->send = btintel_pcie_send_frame; 1241 hdev->setup = btintel_pcie_setup; 1242 hdev->shutdown = btintel_shutdown_combined; 1243 hdev->hw_error = btintel_hw_error; 1244 hdev->set_diag = btintel_set_diag; 1245 hdev->set_bdaddr = btintel_set_bdaddr; 1246 1247 err = hci_register_dev(hdev); 1248 if (err < 0) { 1249 BT_ERR("Failed to register to hdev (%d)", err); 1250 goto exit_error; 1251 } 1252 1253 return 0; 1254 1255 exit_error: 1256 hci_free_dev(hdev); 1257 return err; 1258 } 1259 1260 static int btintel_pcie_probe(struct pci_dev *pdev, 1261 const struct pci_device_id *ent) 1262 { 1263 int err; 1264 struct btintel_pcie_data *data; 1265 1266 if (!pdev) 1267 return -ENODEV; 1268 1269 data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); 1270 if (!data) 1271 return -ENOMEM; 1272 1273 data->pdev = pdev; 1274 1275 spin_lock_init(&data->irq_lock); 1276 spin_lock_init(&data->hci_rx_lock); 1277 1278 init_waitqueue_head(&data->gp0_wait_q); 1279 data->gp0_received = false; 1280 1281 init_waitqueue_head(&data->tx_wait_q); 1282 data->tx_wait_done = false; 1283 1284 data->workqueue = alloc_ordered_workqueue(KBUILD_MODNAME, WQ_HIGHPRI); 1285 if (!data->workqueue) 1286 return -ENOMEM; 1287 1288 skb_queue_head_init(&data->rx_skb_q); 1289 INIT_WORK(&data->rx_work, btintel_pcie_rx_work); 1290 1291 data->boot_stage_cache = 0x00; 1292 data->img_resp_cache = 0x00; 1293 1294 err = btintel_pcie_config_pcie(pdev, data); 1295 if (err) 1296 goto exit_error; 1297 1298 pci_set_drvdata(pdev, data); 1299 1300 err = btintel_pcie_alloc(data); 1301 if (err) 1302 goto exit_error; 1303 1304 err = btintel_pcie_enable_bt(data); 1305 if (err) 1306 goto exit_error; 1307 1308 /* CNV information (CNVi and CNVr) is in CSR */ 1309 data->cnvi = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_HW_REV_REG); 1310 1311 data->cnvr = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_RF_ID_REG); 1312 1313 err = btintel_pcie_start_rx(data); 1314 if (err) 1315 goto exit_error; 1316 1317 err = btintel_pcie_setup_hdev(data); 1318 if (err) 1319 goto exit_error; 1320 1321 bt_dev_dbg(data->hdev, "cnvi: 0x%8.8x cnvr: 0x%8.8x", data->cnvi, 1322 data->cnvr); 1323 return 0; 1324 1325 exit_error: 1326 /* reset device before exit */ 1327 btintel_pcie_reset_bt(data); 1328 1329 pci_clear_master(pdev); 1330 1331 pci_set_drvdata(pdev, NULL); 1332 1333 return err; 1334 } 1335 1336 static void btintel_pcie_remove(struct pci_dev *pdev) 1337 { 1338 struct btintel_pcie_data *data; 1339 1340 data = pci_get_drvdata(pdev); 1341 1342 btintel_pcie_reset_bt(data); 1343 for (int i = 0; i < data->alloc_vecs; i++) { 1344 struct msix_entry *msix_entry; 1345 1346 msix_entry = &data->msix_entries[i]; 1347 free_irq(msix_entry->vector, msix_entry); 1348 } 1349 1350 pci_free_irq_vectors(pdev); 1351 1352 btintel_pcie_release_hdev(data); 1353 1354 flush_work(&data->rx_work); 1355 1356 destroy_workqueue(data->workqueue); 1357 1358 btintel_pcie_free(data); 1359 1360 pci_clear_master(pdev); 1361 1362 pci_set_drvdata(pdev, NULL); 1363 } 1364 1365 static struct pci_driver btintel_pcie_driver = { 1366 .name = KBUILD_MODNAME, 1367 .id_table = btintel_pcie_table, 1368 .probe = btintel_pcie_probe, 1369 .remove = btintel_pcie_remove, 1370 }; 1371 module_pci_driver(btintel_pcie_driver); 1372 1373 MODULE_AUTHOR("Tedd Ho-Jeong An <tedd.an@intel.com>"); 1374 MODULE_DESCRIPTION("Intel Bluetooth PCIe transport driver ver " VERSION); 1375 MODULE_VERSION(VERSION); 1376 MODULE_LICENSE("GPL"); 1377