xref: /linux/drivers/bluetooth/btintel.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Bluetooth support for Intel devices
5  *
6  *  Copyright (C) 2015  Intel Corporation
7  */
8 
9 #include <linux/module.h>
10 #include <linux/firmware.h>
11 #include <linux/regmap.h>
12 #include <linux/acpi.h>
13 #include <acpi/acpi_bus.h>
14 #include <linux/unaligned.h>
15 #include <linux/efi.h>
16 
17 #include <net/bluetooth/bluetooth.h>
18 #include <net/bluetooth/hci_core.h>
19 
20 #include "btintel.h"
21 
22 #define VERSION "0.1"
23 
24 #define BDADDR_INTEL		(&(bdaddr_t){{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}})
25 #define RSA_HEADER_LEN		644
26 #define CSS_HEADER_OFFSET	8
27 #define ECDSA_OFFSET		644
28 #define ECDSA_HEADER_LEN	320
29 
30 #define BTINTEL_EFI_DSBR	L"UefiCnvCommonDSBR"
31 
32 enum {
33 	DSM_SET_WDISABLE2_DELAY = 1,
34 	DSM_SET_RESET_METHOD = 3,
35 };
36 
37 #define CMD_WRITE_BOOT_PARAMS	0xfc0e
38 struct cmd_write_boot_params {
39 	__le32 boot_addr;
40 	u8  fw_build_num;
41 	u8  fw_build_ww;
42 	u8  fw_build_yy;
43 } __packed;
44 
45 static struct {
46 	const char *driver_name;
47 	u8         hw_variant;
48 	u32        fw_build_num;
49 } coredump_info;
50 
51 static const guid_t btintel_guid_dsm =
52 	GUID_INIT(0xaa10f4e0, 0x81ac, 0x4233,
53 		  0xab, 0xf6, 0x3b, 0x2a, 0xc5, 0x0e, 0x28, 0xd9);
54 
55 int btintel_check_bdaddr(struct hci_dev *hdev)
56 {
57 	struct hci_rp_read_bd_addr *bda;
58 	struct sk_buff *skb;
59 
60 	skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
61 			     HCI_INIT_TIMEOUT);
62 	if (IS_ERR(skb)) {
63 		int err = PTR_ERR(skb);
64 		bt_dev_err(hdev, "Reading Intel device address failed (%d)",
65 			   err);
66 		return err;
67 	}
68 
69 	if (skb->len != sizeof(*bda)) {
70 		bt_dev_err(hdev, "Intel device address length mismatch");
71 		kfree_skb(skb);
72 		return -EIO;
73 	}
74 
75 	bda = (struct hci_rp_read_bd_addr *)skb->data;
76 
77 	/* For some Intel based controllers, the default Bluetooth device
78 	 * address 00:03:19:9E:8B:00 can be found. These controllers are
79 	 * fully operational, but have the danger of duplicate addresses
80 	 * and that in turn can cause problems with Bluetooth operation.
81 	 */
82 	if (!bacmp(&bda->bdaddr, BDADDR_INTEL)) {
83 		bt_dev_err(hdev, "Found Intel default device address (%pMR)",
84 			   &bda->bdaddr);
85 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
86 	}
87 
88 	kfree_skb(skb);
89 
90 	return 0;
91 }
92 EXPORT_SYMBOL_GPL(btintel_check_bdaddr);
93 
94 int btintel_enter_mfg(struct hci_dev *hdev)
95 {
96 	static const u8 param[] = { 0x01, 0x00 };
97 	struct sk_buff *skb;
98 
99 	skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
100 	if (IS_ERR(skb)) {
101 		bt_dev_err(hdev, "Entering manufacturer mode failed (%ld)",
102 			   PTR_ERR(skb));
103 		return PTR_ERR(skb);
104 	}
105 	kfree_skb(skb);
106 
107 	return 0;
108 }
109 EXPORT_SYMBOL_GPL(btintel_enter_mfg);
110 
111 int btintel_exit_mfg(struct hci_dev *hdev, bool reset, bool patched)
112 {
113 	u8 param[] = { 0x00, 0x00 };
114 	struct sk_buff *skb;
115 
116 	/* The 2nd command parameter specifies the manufacturing exit method:
117 	 * 0x00: Just disable the manufacturing mode (0x00).
118 	 * 0x01: Disable manufacturing mode and reset with patches deactivated.
119 	 * 0x02: Disable manufacturing mode and reset with patches activated.
120 	 */
121 	if (reset)
122 		param[1] |= patched ? 0x02 : 0x01;
123 
124 	skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
125 	if (IS_ERR(skb)) {
126 		bt_dev_err(hdev, "Exiting manufacturer mode failed (%ld)",
127 			   PTR_ERR(skb));
128 		return PTR_ERR(skb);
129 	}
130 	kfree_skb(skb);
131 
132 	return 0;
133 }
134 EXPORT_SYMBOL_GPL(btintel_exit_mfg);
135 
136 int btintel_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
137 {
138 	struct sk_buff *skb;
139 	int err;
140 
141 	skb = __hci_cmd_sync(hdev, 0xfc31, 6, bdaddr, HCI_INIT_TIMEOUT);
142 	if (IS_ERR(skb)) {
143 		err = PTR_ERR(skb);
144 		bt_dev_err(hdev, "Changing Intel device address failed (%d)",
145 			   err);
146 		return err;
147 	}
148 	kfree_skb(skb);
149 
150 	return 0;
151 }
152 EXPORT_SYMBOL_GPL(btintel_set_bdaddr);
153 
154 static int btintel_set_event_mask(struct hci_dev *hdev, bool debug)
155 {
156 	u8 mask[8] = { 0x87, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
157 	struct sk_buff *skb;
158 	int err;
159 
160 	if (debug)
161 		mask[1] |= 0x62;
162 
163 	skb = __hci_cmd_sync(hdev, 0xfc52, 8, mask, HCI_INIT_TIMEOUT);
164 	if (IS_ERR(skb)) {
165 		err = PTR_ERR(skb);
166 		bt_dev_err(hdev, "Setting Intel event mask failed (%d)", err);
167 		return err;
168 	}
169 	kfree_skb(skb);
170 
171 	return 0;
172 }
173 
174 int btintel_set_diag(struct hci_dev *hdev, bool enable)
175 {
176 	struct sk_buff *skb;
177 	u8 param[3];
178 	int err;
179 
180 	if (enable) {
181 		param[0] = 0x03;
182 		param[1] = 0x03;
183 		param[2] = 0x03;
184 	} else {
185 		param[0] = 0x00;
186 		param[1] = 0x00;
187 		param[2] = 0x00;
188 	}
189 
190 	skb = __hci_cmd_sync(hdev, 0xfc43, 3, param, HCI_INIT_TIMEOUT);
191 	if (IS_ERR(skb)) {
192 		err = PTR_ERR(skb);
193 		if (err == -ENODATA)
194 			goto done;
195 		bt_dev_err(hdev, "Changing Intel diagnostic mode failed (%d)",
196 			   err);
197 		return err;
198 	}
199 	kfree_skb(skb);
200 
201 done:
202 	btintel_set_event_mask(hdev, enable);
203 	return 0;
204 }
205 EXPORT_SYMBOL_GPL(btintel_set_diag);
206 
207 static int btintel_set_diag_mfg(struct hci_dev *hdev, bool enable)
208 {
209 	int err, ret;
210 
211 	err = btintel_enter_mfg(hdev);
212 	if (err)
213 		return err;
214 
215 	ret = btintel_set_diag(hdev, enable);
216 
217 	err = btintel_exit_mfg(hdev, false, false);
218 	if (err)
219 		return err;
220 
221 	return ret;
222 }
223 
224 static int btintel_set_diag_combined(struct hci_dev *hdev, bool enable)
225 {
226 	int ret;
227 
228 	/* Legacy ROM device needs to be in the manufacturer mode to apply
229 	 * diagnostic setting
230 	 *
231 	 * This flag is set after reading the Intel version.
232 	 */
233 	if (btintel_test_flag(hdev, INTEL_ROM_LEGACY))
234 		ret = btintel_set_diag_mfg(hdev, enable);
235 	else
236 		ret = btintel_set_diag(hdev, enable);
237 
238 	return ret;
239 }
240 
241 void btintel_hw_error(struct hci_dev *hdev, u8 code)
242 {
243 	struct sk_buff *skb;
244 	u8 type = 0x00;
245 
246 	bt_dev_err(hdev, "Hardware error 0x%2.2x", code);
247 
248 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
249 	if (IS_ERR(skb)) {
250 		bt_dev_err(hdev, "Reset after hardware error failed (%ld)",
251 			   PTR_ERR(skb));
252 		return;
253 	}
254 	kfree_skb(skb);
255 
256 	skb = __hci_cmd_sync(hdev, 0xfc22, 1, &type, HCI_INIT_TIMEOUT);
257 	if (IS_ERR(skb)) {
258 		bt_dev_err(hdev, "Retrieving Intel exception info failed (%ld)",
259 			   PTR_ERR(skb));
260 		return;
261 	}
262 
263 	if (skb->len != 13) {
264 		bt_dev_err(hdev, "Exception info size mismatch");
265 		kfree_skb(skb);
266 		return;
267 	}
268 
269 	bt_dev_err(hdev, "Exception info %s", (char *)(skb->data + 1));
270 
271 	kfree_skb(skb);
272 }
273 EXPORT_SYMBOL_GPL(btintel_hw_error);
274 
275 int btintel_version_info(struct hci_dev *hdev, struct intel_version *ver)
276 {
277 	const char *variant;
278 
279 	/* The hardware platform number has a fixed value of 0x37 and
280 	 * for now only accept this single value.
281 	 */
282 	if (ver->hw_platform != 0x37) {
283 		bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
284 			   ver->hw_platform);
285 		return -EINVAL;
286 	}
287 
288 	/* Check for supported iBT hardware variants of this firmware
289 	 * loading method.
290 	 *
291 	 * This check has been put in place to ensure correct forward
292 	 * compatibility options when newer hardware variants come along.
293 	 */
294 	switch (ver->hw_variant) {
295 	case 0x07:	/* WP - Legacy ROM */
296 	case 0x08:	/* StP - Legacy ROM */
297 	case 0x0b:      /* SfP */
298 	case 0x0c:      /* WsP */
299 	case 0x11:      /* JfP */
300 	case 0x12:      /* ThP */
301 	case 0x13:      /* HrP */
302 	case 0x14:      /* CcP */
303 		break;
304 	default:
305 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
306 			   ver->hw_variant);
307 		return -EINVAL;
308 	}
309 
310 	switch (ver->fw_variant) {
311 	case 0x01:
312 		variant = "Legacy ROM 2.5";
313 		break;
314 	case 0x06:
315 		variant = "Bootloader";
316 		break;
317 	case 0x22:
318 		variant = "Legacy ROM 2.x";
319 		break;
320 	case 0x23:
321 		variant = "Firmware";
322 		break;
323 	default:
324 		bt_dev_err(hdev, "Unsupported firmware variant(%02x)", ver->fw_variant);
325 		return -EINVAL;
326 	}
327 
328 	coredump_info.hw_variant = ver->hw_variant;
329 	coredump_info.fw_build_num = ver->fw_build_num;
330 
331 	bt_dev_info(hdev, "%s revision %u.%u build %u week %u %u",
332 		    variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f,
333 		    ver->fw_build_num, ver->fw_build_ww,
334 		    2000 + ver->fw_build_yy);
335 
336 	return 0;
337 }
338 EXPORT_SYMBOL_GPL(btintel_version_info);
339 
340 static int btintel_secure_send(struct hci_dev *hdev, u8 fragment_type, u32 plen,
341 			       const void *param)
342 {
343 	while (plen > 0) {
344 		struct sk_buff *skb;
345 		u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen;
346 
347 		cmd_param[0] = fragment_type;
348 		memcpy(cmd_param + 1, param, fragment_len);
349 
350 		skb = __hci_cmd_sync(hdev, 0xfc09, fragment_len + 1,
351 				     cmd_param, HCI_INIT_TIMEOUT);
352 		if (IS_ERR(skb))
353 			return PTR_ERR(skb);
354 
355 		kfree_skb(skb);
356 
357 		plen -= fragment_len;
358 		param += fragment_len;
359 	}
360 
361 	return 0;
362 }
363 
364 int btintel_load_ddc_config(struct hci_dev *hdev, const char *ddc_name)
365 {
366 	const struct firmware *fw;
367 	struct sk_buff *skb;
368 	const u8 *fw_ptr;
369 	int err;
370 
371 	err = request_firmware_direct(&fw, ddc_name, &hdev->dev);
372 	if (err < 0) {
373 		bt_dev_err(hdev, "Failed to load Intel DDC file %s (%d)",
374 			   ddc_name, err);
375 		return err;
376 	}
377 
378 	bt_dev_info(hdev, "Found Intel DDC parameters: %s", ddc_name);
379 
380 	fw_ptr = fw->data;
381 
382 	/* DDC file contains one or more DDC structure which has
383 	 * Length (1 byte), DDC ID (2 bytes), and DDC value (Length - 2).
384 	 */
385 	while (fw->size > fw_ptr - fw->data) {
386 		u8 cmd_plen = fw_ptr[0] + sizeof(u8);
387 
388 		skb = __hci_cmd_sync(hdev, 0xfc8b, cmd_plen, fw_ptr,
389 				     HCI_INIT_TIMEOUT);
390 		if (IS_ERR(skb)) {
391 			bt_dev_err(hdev, "Failed to send Intel_Write_DDC (%ld)",
392 				   PTR_ERR(skb));
393 			release_firmware(fw);
394 			return PTR_ERR(skb);
395 		}
396 
397 		fw_ptr += cmd_plen;
398 		kfree_skb(skb);
399 	}
400 
401 	release_firmware(fw);
402 
403 	bt_dev_info(hdev, "Applying Intel DDC parameters completed");
404 
405 	return 0;
406 }
407 EXPORT_SYMBOL_GPL(btintel_load_ddc_config);
408 
409 int btintel_set_event_mask_mfg(struct hci_dev *hdev, bool debug)
410 {
411 	int err, ret;
412 
413 	err = btintel_enter_mfg(hdev);
414 	if (err)
415 		return err;
416 
417 	ret = btintel_set_event_mask(hdev, debug);
418 
419 	err = btintel_exit_mfg(hdev, false, false);
420 	if (err)
421 		return err;
422 
423 	return ret;
424 }
425 EXPORT_SYMBOL_GPL(btintel_set_event_mask_mfg);
426 
427 int btintel_read_version(struct hci_dev *hdev, struct intel_version *ver)
428 {
429 	struct sk_buff *skb;
430 
431 	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
432 	if (IS_ERR(skb)) {
433 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
434 			   PTR_ERR(skb));
435 		return PTR_ERR(skb);
436 	}
437 
438 	if (!skb || skb->len != sizeof(*ver)) {
439 		bt_dev_err(hdev, "Intel version event size mismatch");
440 		kfree_skb(skb);
441 		return -EILSEQ;
442 	}
443 
444 	memcpy(ver, skb->data, sizeof(*ver));
445 
446 	kfree_skb(skb);
447 
448 	return 0;
449 }
450 EXPORT_SYMBOL_GPL(btintel_read_version);
451 
452 int btintel_version_info_tlv(struct hci_dev *hdev,
453 			     struct intel_version_tlv *version)
454 {
455 	const char *variant;
456 
457 	/* The hardware platform number has a fixed value of 0x37 and
458 	 * for now only accept this single value.
459 	 */
460 	if (INTEL_HW_PLATFORM(version->cnvi_bt) != 0x37) {
461 		bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
462 			   INTEL_HW_PLATFORM(version->cnvi_bt));
463 		return -EINVAL;
464 	}
465 
466 	/* Check for supported iBT hardware variants of this firmware
467 	 * loading method.
468 	 *
469 	 * This check has been put in place to ensure correct forward
470 	 * compatibility options when newer hardware variants come along.
471 	 */
472 	switch (INTEL_HW_VARIANT(version->cnvi_bt)) {
473 	case 0x17:	/* TyP */
474 	case 0x18:	/* Slr */
475 	case 0x19:	/* Slr-F */
476 	case 0x1b:      /* Mgr */
477 	case 0x1c:	/* Gale Peak (GaP) */
478 	case 0x1d:	/* BlazarU (BzrU) */
479 	case 0x1e:	/* BlazarI (Bzr) */
480 		break;
481 	default:
482 		bt_dev_err(hdev, "Unsupported Intel hardware variant (0x%x)",
483 			   INTEL_HW_VARIANT(version->cnvi_bt));
484 		return -EINVAL;
485 	}
486 
487 	switch (version->img_type) {
488 	case BTINTEL_IMG_BOOTLOADER:
489 		variant = "Bootloader";
490 		/* It is required that every single firmware fragment is acknowledged
491 		 * with a command complete event. If the boot parameters indicate
492 		 * that this bootloader does not send them, then abort the setup.
493 		 */
494 		if (version->limited_cce != 0x00) {
495 			bt_dev_err(hdev, "Unsupported Intel firmware loading method (0x%x)",
496 				   version->limited_cce);
497 			return -EINVAL;
498 		}
499 
500 		/* Secure boot engine type should be either 1 (ECDSA) or 0 (RSA) */
501 		if (version->sbe_type > 0x01) {
502 			bt_dev_err(hdev, "Unsupported Intel secure boot engine type (0x%x)",
503 				   version->sbe_type);
504 			return -EINVAL;
505 		}
506 
507 		bt_dev_info(hdev, "Device revision is %u", version->dev_rev_id);
508 		bt_dev_info(hdev, "Secure boot is %s",
509 			    version->secure_boot ? "enabled" : "disabled");
510 		bt_dev_info(hdev, "OTP lock is %s",
511 			    version->otp_lock ? "enabled" : "disabled");
512 		bt_dev_info(hdev, "API lock is %s",
513 			    version->api_lock ? "enabled" : "disabled");
514 		bt_dev_info(hdev, "Debug lock is %s",
515 			    version->debug_lock ? "enabled" : "disabled");
516 		bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
517 			    version->min_fw_build_nn, version->min_fw_build_cw,
518 			    2000 + version->min_fw_build_yy);
519 		break;
520 	case BTINTEL_IMG_IML:
521 		variant = "Intermediate loader";
522 		break;
523 	case BTINTEL_IMG_OP:
524 		variant = "Firmware";
525 		break;
526 	default:
527 		bt_dev_err(hdev, "Unsupported image type(%02x)", version->img_type);
528 		return -EINVAL;
529 	}
530 
531 	coredump_info.hw_variant = INTEL_HW_VARIANT(version->cnvi_bt);
532 	coredump_info.fw_build_num = version->build_num;
533 
534 	bt_dev_info(hdev, "%s timestamp %u.%u buildtype %u build %u", variant,
535 		    2000 + (version->timestamp >> 8), version->timestamp & 0xff,
536 		    version->build_type, version->build_num);
537 	if (version->img_type == BTINTEL_IMG_OP)
538 		bt_dev_info(hdev, "Firmware SHA1: 0x%8.8x", version->git_sha1);
539 
540 	return 0;
541 }
542 EXPORT_SYMBOL_GPL(btintel_version_info_tlv);
543 
544 int btintel_parse_version_tlv(struct hci_dev *hdev,
545 			      struct intel_version_tlv *version,
546 			      struct sk_buff *skb)
547 {
548 	/* Consume Command Complete Status field */
549 	skb_pull(skb, 1);
550 
551 	/* Event parameters contatin multiple TLVs. Read each of them
552 	 * and only keep the required data. Also, it use existing legacy
553 	 * version field like hw_platform, hw_variant, and fw_variant
554 	 * to keep the existing setup flow
555 	 */
556 	while (skb->len) {
557 		struct intel_tlv *tlv;
558 
559 		/* Make sure skb has a minimum length of the header */
560 		if (skb->len < sizeof(*tlv))
561 			return -EINVAL;
562 
563 		tlv = (struct intel_tlv *)skb->data;
564 
565 		/* Make sure skb has a enough data */
566 		if (skb->len < tlv->len + sizeof(*tlv))
567 			return -EINVAL;
568 
569 		switch (tlv->type) {
570 		case INTEL_TLV_CNVI_TOP:
571 			version->cnvi_top = get_unaligned_le32(tlv->val);
572 			break;
573 		case INTEL_TLV_CNVR_TOP:
574 			version->cnvr_top = get_unaligned_le32(tlv->val);
575 			break;
576 		case INTEL_TLV_CNVI_BT:
577 			version->cnvi_bt = get_unaligned_le32(tlv->val);
578 			break;
579 		case INTEL_TLV_CNVR_BT:
580 			version->cnvr_bt = get_unaligned_le32(tlv->val);
581 			break;
582 		case INTEL_TLV_DEV_REV_ID:
583 			version->dev_rev_id = get_unaligned_le16(tlv->val);
584 			break;
585 		case INTEL_TLV_IMAGE_TYPE:
586 			version->img_type = tlv->val[0];
587 			break;
588 		case INTEL_TLV_TIME_STAMP:
589 			/* If image type is Operational firmware (0x03), then
590 			 * running FW Calendar Week and Year information can
591 			 * be extracted from Timestamp information
592 			 */
593 			version->min_fw_build_cw = tlv->val[0];
594 			version->min_fw_build_yy = tlv->val[1];
595 			version->timestamp = get_unaligned_le16(tlv->val);
596 			break;
597 		case INTEL_TLV_BUILD_TYPE:
598 			version->build_type = tlv->val[0];
599 			break;
600 		case INTEL_TLV_BUILD_NUM:
601 			/* If image type is Operational firmware (0x03), then
602 			 * running FW build number can be extracted from the
603 			 * Build information
604 			 */
605 			version->min_fw_build_nn = tlv->val[0];
606 			version->build_num = get_unaligned_le32(tlv->val);
607 			break;
608 		case INTEL_TLV_SECURE_BOOT:
609 			version->secure_boot = tlv->val[0];
610 			break;
611 		case INTEL_TLV_OTP_LOCK:
612 			version->otp_lock = tlv->val[0];
613 			break;
614 		case INTEL_TLV_API_LOCK:
615 			version->api_lock = tlv->val[0];
616 			break;
617 		case INTEL_TLV_DEBUG_LOCK:
618 			version->debug_lock = tlv->val[0];
619 			break;
620 		case INTEL_TLV_MIN_FW:
621 			version->min_fw_build_nn = tlv->val[0];
622 			version->min_fw_build_cw = tlv->val[1];
623 			version->min_fw_build_yy = tlv->val[2];
624 			break;
625 		case INTEL_TLV_LIMITED_CCE:
626 			version->limited_cce = tlv->val[0];
627 			break;
628 		case INTEL_TLV_SBE_TYPE:
629 			version->sbe_type = tlv->val[0];
630 			break;
631 		case INTEL_TLV_OTP_BDADDR:
632 			memcpy(&version->otp_bd_addr, tlv->val,
633 							sizeof(bdaddr_t));
634 			break;
635 		case INTEL_TLV_GIT_SHA1:
636 			version->git_sha1 = get_unaligned_le32(tlv->val);
637 			break;
638 		case INTEL_TLV_FW_ID:
639 			snprintf(version->fw_id, sizeof(version->fw_id),
640 				 "%s", tlv->val);
641 			break;
642 		default:
643 			/* Ignore rest of information */
644 			break;
645 		}
646 		/* consume the current tlv and move to next*/
647 		skb_pull(skb, tlv->len + sizeof(*tlv));
648 	}
649 
650 	return 0;
651 }
652 EXPORT_SYMBOL_GPL(btintel_parse_version_tlv);
653 
654 static int btintel_read_version_tlv(struct hci_dev *hdev,
655 				    struct intel_version_tlv *version)
656 {
657 	struct sk_buff *skb;
658 	const u8 param[1] = { 0xFF };
659 
660 	if (!version)
661 		return -EINVAL;
662 
663 	skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
664 	if (IS_ERR(skb)) {
665 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
666 			   PTR_ERR(skb));
667 		return PTR_ERR(skb);
668 	}
669 
670 	if (skb->data[0]) {
671 		bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
672 			   skb->data[0]);
673 		kfree_skb(skb);
674 		return -EIO;
675 	}
676 
677 	btintel_parse_version_tlv(hdev, version, skb);
678 
679 	kfree_skb(skb);
680 	return 0;
681 }
682 
683 /* ------- REGMAP IBT SUPPORT ------- */
684 
685 #define IBT_REG_MODE_8BIT  0x00
686 #define IBT_REG_MODE_16BIT 0x01
687 #define IBT_REG_MODE_32BIT 0x02
688 
689 struct regmap_ibt_context {
690 	struct hci_dev *hdev;
691 	__u16 op_write;
692 	__u16 op_read;
693 };
694 
695 struct ibt_cp_reg_access {
696 	__le32  addr;
697 	__u8    mode;
698 	__u8    len;
699 	__u8    data[];
700 } __packed;
701 
702 struct ibt_rp_reg_access {
703 	__u8    status;
704 	__le32  addr;
705 	__u8    data[];
706 } __packed;
707 
708 static int regmap_ibt_read(void *context, const void *addr, size_t reg_size,
709 			   void *val, size_t val_size)
710 {
711 	struct regmap_ibt_context *ctx = context;
712 	struct ibt_cp_reg_access cp;
713 	struct ibt_rp_reg_access *rp;
714 	struct sk_buff *skb;
715 	int err = 0;
716 
717 	if (reg_size != sizeof(__le32))
718 		return -EINVAL;
719 
720 	switch (val_size) {
721 	case 1:
722 		cp.mode = IBT_REG_MODE_8BIT;
723 		break;
724 	case 2:
725 		cp.mode = IBT_REG_MODE_16BIT;
726 		break;
727 	case 4:
728 		cp.mode = IBT_REG_MODE_32BIT;
729 		break;
730 	default:
731 		return -EINVAL;
732 	}
733 
734 	/* regmap provides a little-endian formatted addr */
735 	cp.addr = *(__le32 *)addr;
736 	cp.len = val_size;
737 
738 	bt_dev_dbg(ctx->hdev, "Register (0x%x) read", le32_to_cpu(cp.addr));
739 
740 	skb = hci_cmd_sync(ctx->hdev, ctx->op_read, sizeof(cp), &cp,
741 			   HCI_CMD_TIMEOUT);
742 	if (IS_ERR(skb)) {
743 		err = PTR_ERR(skb);
744 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error (%d)",
745 			   le32_to_cpu(cp.addr), err);
746 		return err;
747 	}
748 
749 	if (skb->len != sizeof(*rp) + val_size) {
750 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad len",
751 			   le32_to_cpu(cp.addr));
752 		err = -EINVAL;
753 		goto done;
754 	}
755 
756 	rp = (struct ibt_rp_reg_access *)skb->data;
757 
758 	if (rp->addr != cp.addr) {
759 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad addr",
760 			   le32_to_cpu(rp->addr));
761 		err = -EINVAL;
762 		goto done;
763 	}
764 
765 	memcpy(val, rp->data, val_size);
766 
767 done:
768 	kfree_skb(skb);
769 	return err;
770 }
771 
772 static int regmap_ibt_gather_write(void *context,
773 				   const void *addr, size_t reg_size,
774 				   const void *val, size_t val_size)
775 {
776 	struct regmap_ibt_context *ctx = context;
777 	struct ibt_cp_reg_access *cp;
778 	struct sk_buff *skb;
779 	int plen = sizeof(*cp) + val_size;
780 	u8 mode;
781 	int err = 0;
782 
783 	if (reg_size != sizeof(__le32))
784 		return -EINVAL;
785 
786 	switch (val_size) {
787 	case 1:
788 		mode = IBT_REG_MODE_8BIT;
789 		break;
790 	case 2:
791 		mode = IBT_REG_MODE_16BIT;
792 		break;
793 	case 4:
794 		mode = IBT_REG_MODE_32BIT;
795 		break;
796 	default:
797 		return -EINVAL;
798 	}
799 
800 	cp = kmalloc(plen, GFP_KERNEL);
801 	if (!cp)
802 		return -ENOMEM;
803 
804 	/* regmap provides a little-endian formatted addr/value */
805 	cp->addr = *(__le32 *)addr;
806 	cp->mode = mode;
807 	cp->len = val_size;
808 	memcpy(&cp->data, val, val_size);
809 
810 	bt_dev_dbg(ctx->hdev, "Register (0x%x) write", le32_to_cpu(cp->addr));
811 
812 	skb = hci_cmd_sync(ctx->hdev, ctx->op_write, plen, cp, HCI_CMD_TIMEOUT);
813 	if (IS_ERR(skb)) {
814 		err = PTR_ERR(skb);
815 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) write error (%d)",
816 			   le32_to_cpu(cp->addr), err);
817 		goto done;
818 	}
819 	kfree_skb(skb);
820 
821 done:
822 	kfree(cp);
823 	return err;
824 }
825 
826 static int regmap_ibt_write(void *context, const void *data, size_t count)
827 {
828 	/* data contains register+value, since we only support 32bit addr,
829 	 * minimum data size is 4 bytes.
830 	 */
831 	if (WARN_ONCE(count < 4, "Invalid register access"))
832 		return -EINVAL;
833 
834 	return regmap_ibt_gather_write(context, data, 4, data + 4, count - 4);
835 }
836 
837 static void regmap_ibt_free_context(void *context)
838 {
839 	kfree(context);
840 }
841 
842 static const struct regmap_bus regmap_ibt = {
843 	.read = regmap_ibt_read,
844 	.write = regmap_ibt_write,
845 	.gather_write = regmap_ibt_gather_write,
846 	.free_context = regmap_ibt_free_context,
847 	.reg_format_endian_default = REGMAP_ENDIAN_LITTLE,
848 	.val_format_endian_default = REGMAP_ENDIAN_LITTLE,
849 };
850 
851 /* Config is the same for all register regions */
852 static const struct regmap_config regmap_ibt_cfg = {
853 	.name      = "btintel_regmap",
854 	.reg_bits  = 32,
855 	.val_bits  = 32,
856 };
857 
858 struct regmap *btintel_regmap_init(struct hci_dev *hdev, u16 opcode_read,
859 				   u16 opcode_write)
860 {
861 	struct regmap_ibt_context *ctx;
862 
863 	bt_dev_info(hdev, "regmap: Init R%x-W%x region", opcode_read,
864 		    opcode_write);
865 
866 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
867 	if (!ctx)
868 		return ERR_PTR(-ENOMEM);
869 
870 	ctx->op_read = opcode_read;
871 	ctx->op_write = opcode_write;
872 	ctx->hdev = hdev;
873 
874 	return regmap_init(&hdev->dev, &regmap_ibt, ctx, &regmap_ibt_cfg);
875 }
876 EXPORT_SYMBOL_GPL(btintel_regmap_init);
877 
878 int btintel_send_intel_reset(struct hci_dev *hdev, u32 boot_param)
879 {
880 	struct intel_reset params = { 0x00, 0x01, 0x00, 0x01, 0x00000000 };
881 	struct sk_buff *skb;
882 
883 	params.boot_param = cpu_to_le32(boot_param);
884 
885 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), &params,
886 			     HCI_INIT_TIMEOUT);
887 	if (IS_ERR(skb)) {
888 		bt_dev_err(hdev, "Failed to send Intel Reset command");
889 		return PTR_ERR(skb);
890 	}
891 
892 	kfree_skb(skb);
893 
894 	return 0;
895 }
896 EXPORT_SYMBOL_GPL(btintel_send_intel_reset);
897 
898 int btintel_read_boot_params(struct hci_dev *hdev,
899 			     struct intel_boot_params *params)
900 {
901 	struct sk_buff *skb;
902 
903 	skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
904 	if (IS_ERR(skb)) {
905 		bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
906 			   PTR_ERR(skb));
907 		return PTR_ERR(skb);
908 	}
909 
910 	if (skb->len != sizeof(*params)) {
911 		bt_dev_err(hdev, "Intel boot parameters size mismatch");
912 		kfree_skb(skb);
913 		return -EILSEQ;
914 	}
915 
916 	memcpy(params, skb->data, sizeof(*params));
917 
918 	kfree_skb(skb);
919 
920 	if (params->status) {
921 		bt_dev_err(hdev, "Intel boot parameters command failed (%02x)",
922 			   params->status);
923 		return -bt_to_errno(params->status);
924 	}
925 
926 	bt_dev_info(hdev, "Device revision is %u",
927 		    le16_to_cpu(params->dev_revid));
928 
929 	bt_dev_info(hdev, "Secure boot is %s",
930 		    params->secure_boot ? "enabled" : "disabled");
931 
932 	bt_dev_info(hdev, "OTP lock is %s",
933 		    params->otp_lock ? "enabled" : "disabled");
934 
935 	bt_dev_info(hdev, "API lock is %s",
936 		    params->api_lock ? "enabled" : "disabled");
937 
938 	bt_dev_info(hdev, "Debug lock is %s",
939 		    params->debug_lock ? "enabled" : "disabled");
940 
941 	bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
942 		    params->min_fw_build_nn, params->min_fw_build_cw,
943 		    2000 + params->min_fw_build_yy);
944 
945 	return 0;
946 }
947 EXPORT_SYMBOL_GPL(btintel_read_boot_params);
948 
949 static int btintel_sfi_rsa_header_secure_send(struct hci_dev *hdev,
950 					      const struct firmware *fw)
951 {
952 	int err;
953 
954 	/* Start the firmware download transaction with the Init fragment
955 	 * represented by the 128 bytes of CSS header.
956 	 */
957 	err = btintel_secure_send(hdev, 0x00, 128, fw->data);
958 	if (err < 0) {
959 		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
960 		goto done;
961 	}
962 
963 	/* Send the 256 bytes of public key information from the firmware
964 	 * as the PKey fragment.
965 	 */
966 	err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
967 	if (err < 0) {
968 		bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
969 		goto done;
970 	}
971 
972 	/* Send the 256 bytes of signature information from the firmware
973 	 * as the Sign fragment.
974 	 */
975 	err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
976 	if (err < 0) {
977 		bt_dev_err(hdev, "Failed to send firmware signature (%d)", err);
978 		goto done;
979 	}
980 
981 done:
982 	return err;
983 }
984 
985 static int btintel_sfi_ecdsa_header_secure_send(struct hci_dev *hdev,
986 						const struct firmware *fw)
987 {
988 	int err;
989 
990 	/* Start the firmware download transaction with the Init fragment
991 	 * represented by the 128 bytes of CSS header.
992 	 */
993 	err = btintel_secure_send(hdev, 0x00, 128, fw->data + 644);
994 	if (err < 0) {
995 		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
996 		return err;
997 	}
998 
999 	/* Send the 96 bytes of public key information from the firmware
1000 	 * as the PKey fragment.
1001 	 */
1002 	err = btintel_secure_send(hdev, 0x03, 96, fw->data + 644 + 128);
1003 	if (err < 0) {
1004 		bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
1005 		return err;
1006 	}
1007 
1008 	/* Send the 96 bytes of signature information from the firmware
1009 	 * as the Sign fragment
1010 	 */
1011 	err = btintel_secure_send(hdev, 0x02, 96, fw->data + 644 + 224);
1012 	if (err < 0) {
1013 		bt_dev_err(hdev, "Failed to send firmware signature (%d)",
1014 			   err);
1015 		return err;
1016 	}
1017 	return 0;
1018 }
1019 
1020 static int btintel_download_firmware_payload(struct hci_dev *hdev,
1021 					     const struct firmware *fw,
1022 					     size_t offset)
1023 {
1024 	int err;
1025 	const u8 *fw_ptr;
1026 	u32 frag_len;
1027 
1028 	fw_ptr = fw->data + offset;
1029 	frag_len = 0;
1030 	err = -EINVAL;
1031 
1032 	while (fw_ptr - fw->data < fw->size) {
1033 		struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
1034 
1035 		frag_len += sizeof(*cmd) + cmd->plen;
1036 
1037 		/* The parameter length of the secure send command requires
1038 		 * a 4 byte alignment. It happens so that the firmware file
1039 		 * contains proper Intel_NOP commands to align the fragments
1040 		 * as needed.
1041 		 *
1042 		 * Send set of commands with 4 byte alignment from the
1043 		 * firmware data buffer as a single Data fragment.
1044 		 */
1045 		if (!(frag_len % 4)) {
1046 			err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
1047 			if (err < 0) {
1048 				bt_dev_err(hdev,
1049 					   "Failed to send firmware data (%d)",
1050 					   err);
1051 				goto done;
1052 			}
1053 
1054 			fw_ptr += frag_len;
1055 			frag_len = 0;
1056 		}
1057 	}
1058 
1059 done:
1060 	return err;
1061 }
1062 
1063 static bool btintel_firmware_version(struct hci_dev *hdev,
1064 				     u8 num, u8 ww, u8 yy,
1065 				     const struct firmware *fw,
1066 				     u32 *boot_addr)
1067 {
1068 	const u8 *fw_ptr;
1069 
1070 	fw_ptr = fw->data;
1071 
1072 	while (fw_ptr - fw->data < fw->size) {
1073 		struct hci_command_hdr *cmd = (void *)(fw_ptr);
1074 
1075 		/* Each SKU has a different reset parameter to use in the
1076 		 * HCI_Intel_Reset command and it is embedded in the firmware
1077 		 * data. So, instead of using static value per SKU, check
1078 		 * the firmware data and save it for later use.
1079 		 */
1080 		if (le16_to_cpu(cmd->opcode) == CMD_WRITE_BOOT_PARAMS) {
1081 			struct cmd_write_boot_params *params;
1082 
1083 			params = (void *)(fw_ptr + sizeof(*cmd));
1084 
1085 			*boot_addr = le32_to_cpu(params->boot_addr);
1086 
1087 			bt_dev_info(hdev, "Boot Address: 0x%x", *boot_addr);
1088 
1089 			bt_dev_info(hdev, "Firmware Version: %u-%u.%u",
1090 				    params->fw_build_num, params->fw_build_ww,
1091 				    params->fw_build_yy);
1092 
1093 			return (num == params->fw_build_num &&
1094 				ww == params->fw_build_ww &&
1095 				yy == params->fw_build_yy);
1096 		}
1097 
1098 		fw_ptr += sizeof(*cmd) + cmd->plen;
1099 	}
1100 
1101 	return false;
1102 }
1103 
1104 int btintel_download_firmware(struct hci_dev *hdev,
1105 			      struct intel_version *ver,
1106 			      const struct firmware *fw,
1107 			      u32 *boot_param)
1108 {
1109 	int err;
1110 
1111 	/* SfP and WsP don't seem to update the firmware version on file
1112 	 * so version checking is currently not possible.
1113 	 */
1114 	switch (ver->hw_variant) {
1115 	case 0x0b:	/* SfP */
1116 	case 0x0c:	/* WsP */
1117 		/* Skip version checking */
1118 		break;
1119 	default:
1120 
1121 		/* Skip download if firmware has the same version */
1122 		if (btintel_firmware_version(hdev, ver->fw_build_num,
1123 					     ver->fw_build_ww, ver->fw_build_yy,
1124 					     fw, boot_param)) {
1125 			bt_dev_info(hdev, "Firmware already loaded");
1126 			/* Return -EALREADY to indicate that the firmware has
1127 			 * already been loaded.
1128 			 */
1129 			return -EALREADY;
1130 		}
1131 	}
1132 
1133 	/* The firmware variant determines if the device is in bootloader
1134 	 * mode or is running operational firmware. The value 0x06 identifies
1135 	 * the bootloader and the value 0x23 identifies the operational
1136 	 * firmware.
1137 	 *
1138 	 * If the firmware version has changed that means it needs to be reset
1139 	 * to bootloader when operational so the new firmware can be loaded.
1140 	 */
1141 	if (ver->fw_variant == 0x23)
1142 		return -EINVAL;
1143 
1144 	err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1145 	if (err)
1146 		return err;
1147 
1148 	return btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
1149 }
1150 EXPORT_SYMBOL_GPL(btintel_download_firmware);
1151 
1152 static int btintel_download_fw_tlv(struct hci_dev *hdev,
1153 				   struct intel_version_tlv *ver,
1154 				   const struct firmware *fw, u32 *boot_param,
1155 				   u8 hw_variant, u8 sbe_type)
1156 {
1157 	int err;
1158 	u32 css_header_ver;
1159 
1160 	/* Skip download if firmware has the same version */
1161 	if (btintel_firmware_version(hdev, ver->min_fw_build_nn,
1162 				     ver->min_fw_build_cw,
1163 				     ver->min_fw_build_yy,
1164 				     fw, boot_param)) {
1165 		bt_dev_info(hdev, "Firmware already loaded");
1166 		/* Return -EALREADY to indicate that firmware has
1167 		 * already been loaded.
1168 		 */
1169 		return -EALREADY;
1170 	}
1171 
1172 	/* The firmware variant determines if the device is in bootloader
1173 	 * mode or is running operational firmware. The value 0x01 identifies
1174 	 * the bootloader and the value 0x03 identifies the operational
1175 	 * firmware.
1176 	 *
1177 	 * If the firmware version has changed that means it needs to be reset
1178 	 * to bootloader when operational so the new firmware can be loaded.
1179 	 */
1180 	if (ver->img_type == BTINTEL_IMG_OP)
1181 		return -EINVAL;
1182 
1183 	/* iBT hardware variants 0x0b, 0x0c, 0x11, 0x12, 0x13, 0x14 support
1184 	 * only RSA secure boot engine. Hence, the corresponding sfi file will
1185 	 * have RSA header of 644 bytes followed by Command Buffer.
1186 	 *
1187 	 * iBT hardware variants 0x17, 0x18 onwards support both RSA and ECDSA
1188 	 * secure boot engine. As a result, the corresponding sfi file will
1189 	 * have RSA header of 644, ECDSA header of 320 bytes followed by
1190 	 * Command Buffer.
1191 	 *
1192 	 * CSS Header byte positions 0x08 to 0x0B represent the CSS Header
1193 	 * version: RSA(0x00010000) , ECDSA (0x00020000)
1194 	 */
1195 	css_header_ver = get_unaligned_le32(fw->data + CSS_HEADER_OFFSET);
1196 	if (css_header_ver != 0x00010000) {
1197 		bt_dev_err(hdev, "Invalid CSS Header version");
1198 		return -EINVAL;
1199 	}
1200 
1201 	if (hw_variant <= 0x14) {
1202 		if (sbe_type != 0x00) {
1203 			bt_dev_err(hdev, "Invalid SBE type for hardware variant (%d)",
1204 				   hw_variant);
1205 			return -EINVAL;
1206 		}
1207 
1208 		err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1209 		if (err)
1210 			return err;
1211 
1212 		err = btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
1213 		if (err)
1214 			return err;
1215 	} else if (hw_variant >= 0x17) {
1216 		/* Check if CSS header for ECDSA follows the RSA header */
1217 		if (fw->data[ECDSA_OFFSET] != 0x06)
1218 			return -EINVAL;
1219 
1220 		/* Check if the CSS Header version is ECDSA(0x00020000) */
1221 		css_header_ver = get_unaligned_le32(fw->data + ECDSA_OFFSET + CSS_HEADER_OFFSET);
1222 		if (css_header_ver != 0x00020000) {
1223 			bt_dev_err(hdev, "Invalid CSS Header version");
1224 			return -EINVAL;
1225 		}
1226 
1227 		if (sbe_type == 0x00) {
1228 			err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1229 			if (err)
1230 				return err;
1231 
1232 			err = btintel_download_firmware_payload(hdev, fw,
1233 								RSA_HEADER_LEN + ECDSA_HEADER_LEN);
1234 			if (err)
1235 				return err;
1236 		} else if (sbe_type == 0x01) {
1237 			err = btintel_sfi_ecdsa_header_secure_send(hdev, fw);
1238 			if (err)
1239 				return err;
1240 
1241 			err = btintel_download_firmware_payload(hdev, fw,
1242 								RSA_HEADER_LEN + ECDSA_HEADER_LEN);
1243 			if (err)
1244 				return err;
1245 		}
1246 	}
1247 	return 0;
1248 }
1249 
1250 static void btintel_reset_to_bootloader(struct hci_dev *hdev)
1251 {
1252 	struct intel_reset params;
1253 	struct sk_buff *skb;
1254 
1255 	/* PCIe transport uses shared hardware reset mechanism for recovery
1256 	 * which gets triggered in pcie *setup* function on error.
1257 	 */
1258 	if (hdev->bus == HCI_PCI)
1259 		return;
1260 
1261 	/* Send Intel Reset command. This will result in
1262 	 * re-enumeration of BT controller.
1263 	 *
1264 	 * Intel Reset parameter description:
1265 	 * reset_type :   0x00 (Soft reset),
1266 	 *		  0x01 (Hard reset)
1267 	 * patch_enable : 0x00 (Do not enable),
1268 	 *		  0x01 (Enable)
1269 	 * ddc_reload :   0x00 (Do not reload),
1270 	 *		  0x01 (Reload)
1271 	 * boot_option:   0x00 (Current image),
1272 	 *                0x01 (Specified boot address)
1273 	 * boot_param:    Boot address
1274 	 *
1275 	 */
1276 
1277 	params.reset_type = 0x01;
1278 	params.patch_enable = 0x01;
1279 	params.ddc_reload = 0x01;
1280 	params.boot_option = 0x00;
1281 	params.boot_param = cpu_to_le32(0x00000000);
1282 
1283 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params),
1284 			     &params, HCI_INIT_TIMEOUT);
1285 	if (IS_ERR(skb)) {
1286 		bt_dev_err(hdev, "FW download error recovery failed (%ld)",
1287 			   PTR_ERR(skb));
1288 		return;
1289 	}
1290 	bt_dev_info(hdev, "Intel reset sent to retry FW download");
1291 	kfree_skb(skb);
1292 
1293 	/* Current Intel BT controllers(ThP/JfP) hold the USB reset
1294 	 * lines for 2ms when it receives Intel Reset in bootloader mode.
1295 	 * Whereas, the upcoming Intel BT controllers will hold USB reset
1296 	 * for 150ms. To keep the delay generic, 150ms is chosen here.
1297 	 */
1298 	msleep(150);
1299 }
1300 
1301 static int btintel_read_debug_features(struct hci_dev *hdev,
1302 				       struct intel_debug_features *features)
1303 {
1304 	struct sk_buff *skb;
1305 	u8 page_no = 1;
1306 
1307 	/* Intel controller supports two pages, each page is of 128-bit
1308 	 * feature bit mask. And each bit defines specific feature support
1309 	 */
1310 	skb = __hci_cmd_sync(hdev, 0xfca6, sizeof(page_no), &page_no,
1311 			     HCI_INIT_TIMEOUT);
1312 	if (IS_ERR(skb)) {
1313 		bt_dev_err(hdev, "Reading supported features failed (%ld)",
1314 			   PTR_ERR(skb));
1315 		return PTR_ERR(skb);
1316 	}
1317 
1318 	if (skb->len != (sizeof(features->page1) + 3)) {
1319 		bt_dev_err(hdev, "Supported features event size mismatch");
1320 		kfree_skb(skb);
1321 		return -EILSEQ;
1322 	}
1323 
1324 	memcpy(features->page1, skb->data + 3, sizeof(features->page1));
1325 
1326 	/* Read the supported features page2 if required in future.
1327 	 */
1328 	kfree_skb(skb);
1329 	return 0;
1330 }
1331 
1332 static int btintel_set_debug_features(struct hci_dev *hdev,
1333 			       const struct intel_debug_features *features)
1334 {
1335 	u8 mask[11] = { 0x0a, 0x92, 0x02, 0x7f, 0x00, 0x00, 0x00, 0x00,
1336 			0x00, 0x00, 0x00 };
1337 	u8 period[5] = { 0x04, 0x91, 0x02, 0x05, 0x00 };
1338 	u8 trace_enable = 0x02;
1339 	struct sk_buff *skb;
1340 
1341 	if (!features) {
1342 		bt_dev_warn(hdev, "Debug features not read");
1343 		return -EINVAL;
1344 	}
1345 
1346 	if (!(features->page1[0] & 0x3f)) {
1347 		bt_dev_info(hdev, "Telemetry exception format not supported");
1348 		return 0;
1349 	}
1350 
1351 	skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
1352 	if (IS_ERR(skb)) {
1353 		bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
1354 			   PTR_ERR(skb));
1355 		return PTR_ERR(skb);
1356 	}
1357 	kfree_skb(skb);
1358 
1359 	skb = __hci_cmd_sync(hdev, 0xfc8b, 5, period, HCI_INIT_TIMEOUT);
1360 	if (IS_ERR(skb)) {
1361 		bt_dev_err(hdev, "Setting periodicity for link statistics traces failed (%ld)",
1362 			   PTR_ERR(skb));
1363 		return PTR_ERR(skb);
1364 	}
1365 	kfree_skb(skb);
1366 
1367 	skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT);
1368 	if (IS_ERR(skb)) {
1369 		bt_dev_err(hdev, "Enable tracing of link statistics events failed (%ld)",
1370 			   PTR_ERR(skb));
1371 		return PTR_ERR(skb);
1372 	}
1373 	kfree_skb(skb);
1374 
1375 	bt_dev_info(hdev, "set debug features: trace_enable 0x%02x mask 0x%02x",
1376 		    trace_enable, mask[3]);
1377 
1378 	return 0;
1379 }
1380 
1381 static int btintel_reset_debug_features(struct hci_dev *hdev,
1382 				 const struct intel_debug_features *features)
1383 {
1384 	u8 mask[11] = { 0x0a, 0x92, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,
1385 			0x00, 0x00, 0x00 };
1386 	u8 trace_enable = 0x00;
1387 	struct sk_buff *skb;
1388 
1389 	if (!features) {
1390 		bt_dev_warn(hdev, "Debug features not read");
1391 		return -EINVAL;
1392 	}
1393 
1394 	if (!(features->page1[0] & 0x3f)) {
1395 		bt_dev_info(hdev, "Telemetry exception format not supported");
1396 		return 0;
1397 	}
1398 
1399 	/* Should stop the trace before writing ddc event mask. */
1400 	skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT);
1401 	if (IS_ERR(skb)) {
1402 		bt_dev_err(hdev, "Stop tracing of link statistics events failed (%ld)",
1403 			   PTR_ERR(skb));
1404 		return PTR_ERR(skb);
1405 	}
1406 	kfree_skb(skb);
1407 
1408 	skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
1409 	if (IS_ERR(skb)) {
1410 		bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
1411 			   PTR_ERR(skb));
1412 		return PTR_ERR(skb);
1413 	}
1414 	kfree_skb(skb);
1415 
1416 	bt_dev_info(hdev, "reset debug features: trace_enable 0x%02x mask 0x%02x",
1417 		    trace_enable, mask[3]);
1418 
1419 	return 0;
1420 }
1421 
1422 int btintel_set_quality_report(struct hci_dev *hdev, bool enable)
1423 {
1424 	struct intel_debug_features features;
1425 	int err;
1426 
1427 	bt_dev_dbg(hdev, "enable %d", enable);
1428 
1429 	/* Read the Intel supported features and if new exception formats
1430 	 * supported, need to load the additional DDC config to enable.
1431 	 */
1432 	err = btintel_read_debug_features(hdev, &features);
1433 	if (err)
1434 		return err;
1435 
1436 	/* Set or reset the debug features. */
1437 	if (enable)
1438 		err = btintel_set_debug_features(hdev, &features);
1439 	else
1440 		err = btintel_reset_debug_features(hdev, &features);
1441 
1442 	return err;
1443 }
1444 EXPORT_SYMBOL_GPL(btintel_set_quality_report);
1445 
1446 static void btintel_coredump(struct hci_dev *hdev)
1447 {
1448 	struct sk_buff *skb;
1449 
1450 	skb = __hci_cmd_sync(hdev, 0xfc4e, 0, NULL, HCI_CMD_TIMEOUT);
1451 	if (IS_ERR(skb)) {
1452 		bt_dev_err(hdev, "Coredump failed (%ld)", PTR_ERR(skb));
1453 		return;
1454 	}
1455 
1456 	kfree_skb(skb);
1457 }
1458 
1459 static void btintel_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb)
1460 {
1461 	char buf[80];
1462 
1463 	snprintf(buf, sizeof(buf), "Controller Name: 0x%X\n",
1464 		 coredump_info.hw_variant);
1465 	skb_put_data(skb, buf, strlen(buf));
1466 
1467 	snprintf(buf, sizeof(buf), "Firmware Version: 0x%X\n",
1468 		 coredump_info.fw_build_num);
1469 	skb_put_data(skb, buf, strlen(buf));
1470 
1471 	snprintf(buf, sizeof(buf), "Driver: %s\n", coredump_info.driver_name);
1472 	skb_put_data(skb, buf, strlen(buf));
1473 
1474 	snprintf(buf, sizeof(buf), "Vendor: Intel\n");
1475 	skb_put_data(skb, buf, strlen(buf));
1476 }
1477 
1478 static int btintel_register_devcoredump_support(struct hci_dev *hdev)
1479 {
1480 	struct intel_debug_features features;
1481 	int err;
1482 
1483 	err = btintel_read_debug_features(hdev, &features);
1484 	if (err) {
1485 		bt_dev_info(hdev, "Error reading debug features");
1486 		return err;
1487 	}
1488 
1489 	if (!(features.page1[0] & 0x3f)) {
1490 		bt_dev_dbg(hdev, "Telemetry exception format not supported");
1491 		return -EOPNOTSUPP;
1492 	}
1493 
1494 	hci_devcd_register(hdev, btintel_coredump, btintel_dmp_hdr, NULL);
1495 
1496 	return err;
1497 }
1498 
1499 static const struct firmware *btintel_legacy_rom_get_fw(struct hci_dev *hdev,
1500 					       struct intel_version *ver)
1501 {
1502 	const struct firmware *fw;
1503 	char fwname[64];
1504 	int ret;
1505 
1506 	snprintf(fwname, sizeof(fwname),
1507 		 "intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq",
1508 		 ver->hw_platform, ver->hw_variant, ver->hw_revision,
1509 		 ver->fw_variant,  ver->fw_revision, ver->fw_build_num,
1510 		 ver->fw_build_ww, ver->fw_build_yy);
1511 
1512 	ret = request_firmware(&fw, fwname, &hdev->dev);
1513 	if (ret < 0) {
1514 		if (ret == -EINVAL) {
1515 			bt_dev_err(hdev, "Intel firmware file request failed (%d)",
1516 				   ret);
1517 			return NULL;
1518 		}
1519 
1520 		bt_dev_err(hdev, "failed to open Intel firmware file: %s (%d)",
1521 			   fwname, ret);
1522 
1523 		/* If the correct firmware patch file is not found, use the
1524 		 * default firmware patch file instead
1525 		 */
1526 		snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.bseq",
1527 			 ver->hw_platform, ver->hw_variant);
1528 		if (request_firmware(&fw, fwname, &hdev->dev) < 0) {
1529 			bt_dev_err(hdev, "failed to open default fw file: %s",
1530 				   fwname);
1531 			return NULL;
1532 		}
1533 	}
1534 
1535 	bt_dev_info(hdev, "Intel Bluetooth firmware file: %s", fwname);
1536 
1537 	return fw;
1538 }
1539 
1540 static int btintel_legacy_rom_patching(struct hci_dev *hdev,
1541 				      const struct firmware *fw,
1542 				      const u8 **fw_ptr, int *disable_patch)
1543 {
1544 	struct sk_buff *skb;
1545 	struct hci_command_hdr *cmd;
1546 	const u8 *cmd_param;
1547 	struct hci_event_hdr *evt = NULL;
1548 	const u8 *evt_param = NULL;
1549 	int remain = fw->size - (*fw_ptr - fw->data);
1550 
1551 	/* The first byte indicates the types of the patch command or event.
1552 	 * 0x01 means HCI command and 0x02 is HCI event. If the first bytes
1553 	 * in the current firmware buffer doesn't start with 0x01 or
1554 	 * the size of remain buffer is smaller than HCI command header,
1555 	 * the firmware file is corrupted and it should stop the patching
1556 	 * process.
1557 	 */
1558 	if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) {
1559 		bt_dev_err(hdev, "Intel fw corrupted: invalid cmd read");
1560 		return -EINVAL;
1561 	}
1562 	(*fw_ptr)++;
1563 	remain--;
1564 
1565 	cmd = (struct hci_command_hdr *)(*fw_ptr);
1566 	*fw_ptr += sizeof(*cmd);
1567 	remain -= sizeof(*cmd);
1568 
1569 	/* Ensure that the remain firmware data is long enough than the length
1570 	 * of command parameter. If not, the firmware file is corrupted.
1571 	 */
1572 	if (remain < cmd->plen) {
1573 		bt_dev_err(hdev, "Intel fw corrupted: invalid cmd len");
1574 		return -EFAULT;
1575 	}
1576 
1577 	/* If there is a command that loads a patch in the firmware
1578 	 * file, then enable the patch upon success, otherwise just
1579 	 * disable the manufacturer mode, for example patch activation
1580 	 * is not required when the default firmware patch file is used
1581 	 * because there are no patch data to load.
1582 	 */
1583 	if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e)
1584 		*disable_patch = 0;
1585 
1586 	cmd_param = *fw_ptr;
1587 	*fw_ptr += cmd->plen;
1588 	remain -= cmd->plen;
1589 
1590 	/* This reads the expected events when the above command is sent to the
1591 	 * device. Some vendor commands expects more than one events, for
1592 	 * example command status event followed by vendor specific event.
1593 	 * For this case, it only keeps the last expected event. so the command
1594 	 * can be sent with __hci_cmd_sync_ev() which returns the sk_buff of
1595 	 * last expected event.
1596 	 */
1597 	while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) {
1598 		(*fw_ptr)++;
1599 		remain--;
1600 
1601 		evt = (struct hci_event_hdr *)(*fw_ptr);
1602 		*fw_ptr += sizeof(*evt);
1603 		remain -= sizeof(*evt);
1604 
1605 		if (remain < evt->plen) {
1606 			bt_dev_err(hdev, "Intel fw corrupted: invalid evt len");
1607 			return -EFAULT;
1608 		}
1609 
1610 		evt_param = *fw_ptr;
1611 		*fw_ptr += evt->plen;
1612 		remain -= evt->plen;
1613 	}
1614 
1615 	/* Every HCI commands in the firmware file has its correspond event.
1616 	 * If event is not found or remain is smaller than zero, the firmware
1617 	 * file is corrupted.
1618 	 */
1619 	if (!evt || !evt_param || remain < 0) {
1620 		bt_dev_err(hdev, "Intel fw corrupted: invalid evt read");
1621 		return -EFAULT;
1622 	}
1623 
1624 	skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), cmd->plen,
1625 				cmd_param, evt->evt, HCI_INIT_TIMEOUT);
1626 	if (IS_ERR(skb)) {
1627 		bt_dev_err(hdev, "sending Intel patch command (0x%4.4x) failed (%ld)",
1628 			   cmd->opcode, PTR_ERR(skb));
1629 		return PTR_ERR(skb);
1630 	}
1631 
1632 	/* It ensures that the returned event matches the event data read from
1633 	 * the firmware file. At fist, it checks the length and then
1634 	 * the contents of the event.
1635 	 */
1636 	if (skb->len != evt->plen) {
1637 		bt_dev_err(hdev, "mismatch event length (opcode 0x%4.4x)",
1638 			   le16_to_cpu(cmd->opcode));
1639 		kfree_skb(skb);
1640 		return -EFAULT;
1641 	}
1642 
1643 	if (memcmp(skb->data, evt_param, evt->plen)) {
1644 		bt_dev_err(hdev, "mismatch event parameter (opcode 0x%4.4x)",
1645 			   le16_to_cpu(cmd->opcode));
1646 		kfree_skb(skb);
1647 		return -EFAULT;
1648 	}
1649 	kfree_skb(skb);
1650 
1651 	return 0;
1652 }
1653 
1654 static int btintel_legacy_rom_setup(struct hci_dev *hdev,
1655 				    struct intel_version *ver)
1656 {
1657 	const struct firmware *fw;
1658 	const u8 *fw_ptr;
1659 	int disable_patch, err;
1660 	struct intel_version new_ver;
1661 
1662 	BT_DBG("%s", hdev->name);
1663 
1664 	/* fw_patch_num indicates the version of patch the device currently
1665 	 * have. If there is no patch data in the device, it is always 0x00.
1666 	 * So, if it is other than 0x00, no need to patch the device again.
1667 	 */
1668 	if (ver->fw_patch_num) {
1669 		bt_dev_info(hdev,
1670 			    "Intel device is already patched. patch num: %02x",
1671 			    ver->fw_patch_num);
1672 		goto complete;
1673 	}
1674 
1675 	/* Opens the firmware patch file based on the firmware version read
1676 	 * from the controller. If it fails to open the matching firmware
1677 	 * patch file, it tries to open the default firmware patch file.
1678 	 * If no patch file is found, allow the device to operate without
1679 	 * a patch.
1680 	 */
1681 	fw = btintel_legacy_rom_get_fw(hdev, ver);
1682 	if (!fw)
1683 		goto complete;
1684 	fw_ptr = fw->data;
1685 
1686 	/* Enable the manufacturer mode of the controller.
1687 	 * Only while this mode is enabled, the driver can download the
1688 	 * firmware patch data and configuration parameters.
1689 	 */
1690 	err = btintel_enter_mfg(hdev);
1691 	if (err) {
1692 		release_firmware(fw);
1693 		return err;
1694 	}
1695 
1696 	disable_patch = 1;
1697 
1698 	/* The firmware data file consists of list of Intel specific HCI
1699 	 * commands and its expected events. The first byte indicates the
1700 	 * type of the message, either HCI command or HCI event.
1701 	 *
1702 	 * It reads the command and its expected event from the firmware file,
1703 	 * and send to the controller. Once __hci_cmd_sync_ev() returns,
1704 	 * the returned event is compared with the event read from the firmware
1705 	 * file and it will continue until all the messages are downloaded to
1706 	 * the controller.
1707 	 *
1708 	 * Once the firmware patching is completed successfully,
1709 	 * the manufacturer mode is disabled with reset and activating the
1710 	 * downloaded patch.
1711 	 *
1712 	 * If the firmware patching fails, the manufacturer mode is
1713 	 * disabled with reset and deactivating the patch.
1714 	 *
1715 	 * If the default patch file is used, no reset is done when disabling
1716 	 * the manufacturer.
1717 	 */
1718 	while (fw->size > fw_ptr - fw->data) {
1719 		int ret;
1720 
1721 		ret = btintel_legacy_rom_patching(hdev, fw, &fw_ptr,
1722 						 &disable_patch);
1723 		if (ret < 0)
1724 			goto exit_mfg_deactivate;
1725 	}
1726 
1727 	release_firmware(fw);
1728 
1729 	if (disable_patch)
1730 		goto exit_mfg_disable;
1731 
1732 	/* Patching completed successfully and disable the manufacturer mode
1733 	 * with reset and activate the downloaded firmware patches.
1734 	 */
1735 	err = btintel_exit_mfg(hdev, true, true);
1736 	if (err)
1737 		return err;
1738 
1739 	/* Need build number for downloaded fw patches in
1740 	 * every power-on boot
1741 	 */
1742 	err = btintel_read_version(hdev, &new_ver);
1743 	if (err)
1744 		return err;
1745 
1746 	bt_dev_info(hdev, "Intel BT fw patch 0x%02x completed & activated",
1747 		    new_ver.fw_patch_num);
1748 
1749 	goto complete;
1750 
1751 exit_mfg_disable:
1752 	/* Disable the manufacturer mode without reset */
1753 	err = btintel_exit_mfg(hdev, false, false);
1754 	if (err)
1755 		return err;
1756 
1757 	bt_dev_info(hdev, "Intel firmware patch completed");
1758 
1759 	goto complete;
1760 
1761 exit_mfg_deactivate:
1762 	release_firmware(fw);
1763 
1764 	/* Patching failed. Disable the manufacturer mode with reset and
1765 	 * deactivate the downloaded firmware patches.
1766 	 */
1767 	err = btintel_exit_mfg(hdev, true, false);
1768 	if (err)
1769 		return err;
1770 
1771 	bt_dev_info(hdev, "Intel firmware patch completed and deactivated");
1772 
1773 complete:
1774 	/* Set the event mask for Intel specific vendor events. This enables
1775 	 * a few extra events that are useful during general operation.
1776 	 */
1777 	btintel_set_event_mask_mfg(hdev, false);
1778 
1779 	btintel_check_bdaddr(hdev);
1780 
1781 	return 0;
1782 }
1783 
1784 static int btintel_download_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
1785 {
1786 	ktime_t delta, rettime;
1787 	unsigned long long duration;
1788 	int err;
1789 
1790 	btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
1791 
1792 	bt_dev_info(hdev, "Waiting for firmware download to complete");
1793 
1794 	err = btintel_wait_on_flag_timeout(hdev, INTEL_DOWNLOADING,
1795 					   TASK_INTERRUPTIBLE,
1796 					   msecs_to_jiffies(msec));
1797 	if (err == -EINTR) {
1798 		bt_dev_err(hdev, "Firmware loading interrupted");
1799 		return err;
1800 	}
1801 
1802 	if (err) {
1803 		bt_dev_err(hdev, "Firmware loading timeout");
1804 		return -ETIMEDOUT;
1805 	}
1806 
1807 	if (btintel_test_flag(hdev, INTEL_FIRMWARE_FAILED)) {
1808 		bt_dev_err(hdev, "Firmware loading failed");
1809 		return -ENOEXEC;
1810 	}
1811 
1812 	rettime = ktime_get();
1813 	delta = ktime_sub(rettime, calltime);
1814 	duration = (unsigned long long)ktime_to_ns(delta) >> 10;
1815 
1816 	bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
1817 
1818 	return 0;
1819 }
1820 
1821 static int btintel_boot_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
1822 {
1823 	ktime_t delta, rettime;
1824 	unsigned long long duration;
1825 	int err;
1826 
1827 	bt_dev_info(hdev, "Waiting for device to boot");
1828 
1829 	err = btintel_wait_on_flag_timeout(hdev, INTEL_BOOTING,
1830 					   TASK_INTERRUPTIBLE,
1831 					   msecs_to_jiffies(msec));
1832 	if (err == -EINTR) {
1833 		bt_dev_err(hdev, "Device boot interrupted");
1834 		return -EINTR;
1835 	}
1836 
1837 	if (err) {
1838 		bt_dev_err(hdev, "Device boot timeout");
1839 		return -ETIMEDOUT;
1840 	}
1841 
1842 	rettime = ktime_get();
1843 	delta = ktime_sub(rettime, calltime);
1844 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
1845 
1846 	bt_dev_info(hdev, "Device booted in %llu usecs", duration);
1847 
1848 	return 0;
1849 }
1850 
1851 static int btintel_boot_wait_d0(struct hci_dev *hdev, ktime_t calltime,
1852 				int msec)
1853 {
1854 	ktime_t delta, rettime;
1855 	unsigned long long duration;
1856 	int err;
1857 
1858 	bt_dev_info(hdev, "Waiting for device transition to d0");
1859 
1860 	err = btintel_wait_on_flag_timeout(hdev, INTEL_WAIT_FOR_D0,
1861 					   TASK_INTERRUPTIBLE,
1862 					   msecs_to_jiffies(msec));
1863 	if (err == -EINTR) {
1864 		bt_dev_err(hdev, "Device d0 move interrupted");
1865 		return -EINTR;
1866 	}
1867 
1868 	if (err) {
1869 		bt_dev_err(hdev, "Device d0 move timeout");
1870 		return -ETIMEDOUT;
1871 	}
1872 
1873 	rettime = ktime_get();
1874 	delta = ktime_sub(rettime, calltime);
1875 	duration = (unsigned long long)ktime_to_ns(delta) >> 10;
1876 
1877 	bt_dev_info(hdev, "Device moved to D0 in %llu usecs", duration);
1878 
1879 	return 0;
1880 }
1881 
1882 static int btintel_boot(struct hci_dev *hdev, u32 boot_addr)
1883 {
1884 	ktime_t calltime;
1885 	int err;
1886 
1887 	calltime = ktime_get();
1888 
1889 	btintel_set_flag(hdev, INTEL_BOOTING);
1890 	btintel_set_flag(hdev, INTEL_WAIT_FOR_D0);
1891 
1892 	err = btintel_send_intel_reset(hdev, boot_addr);
1893 	if (err) {
1894 		bt_dev_err(hdev, "Intel Soft Reset failed (%d)", err);
1895 		btintel_reset_to_bootloader(hdev);
1896 		return err;
1897 	}
1898 
1899 	/* The bootloader will not indicate when the device is ready. This
1900 	 * is done by the operational firmware sending bootup notification.
1901 	 *
1902 	 * Booting into operational firmware should not take longer than
1903 	 * 5 second. However if that happens, then just fail the setup
1904 	 * since something went wrong.
1905 	 */
1906 	err = btintel_boot_wait(hdev, calltime, 5000);
1907 	if (err == -ETIMEDOUT) {
1908 		btintel_reset_to_bootloader(hdev);
1909 		goto exit_error;
1910 	}
1911 
1912 	if (hdev->bus == HCI_PCI) {
1913 		/* In case of PCIe, after receiving bootup event, driver performs
1914 		 * D0 entry by writing 0 to sleep control register (check
1915 		 * btintel_pcie_recv_event())
1916 		 * Firmware acks with alive interrupt indicating host is full ready to
1917 		 * perform BT operation. Lets wait here till INTEL_WAIT_FOR_D0
1918 		 * bit is cleared.
1919 		 */
1920 		calltime = ktime_get();
1921 		err = btintel_boot_wait_d0(hdev, calltime, 2000);
1922 	}
1923 
1924 exit_error:
1925 	return err;
1926 }
1927 
1928 static int btintel_get_fw_name(struct intel_version *ver,
1929 					     struct intel_boot_params *params,
1930 					     char *fw_name, size_t len,
1931 					     const char *suffix)
1932 {
1933 	switch (ver->hw_variant) {
1934 	case 0x0b:	/* SfP */
1935 	case 0x0c:	/* WsP */
1936 		snprintf(fw_name, len, "intel/ibt-%u-%u.%s",
1937 			 ver->hw_variant,
1938 			 le16_to_cpu(params->dev_revid),
1939 			 suffix);
1940 		break;
1941 	case 0x11:	/* JfP */
1942 	case 0x12:	/* ThP */
1943 	case 0x13:	/* HrP */
1944 	case 0x14:	/* CcP */
1945 		snprintf(fw_name, len, "intel/ibt-%u-%u-%u.%s",
1946 			 ver->hw_variant,
1947 			 ver->hw_revision,
1948 			 ver->fw_revision,
1949 			 suffix);
1950 		break;
1951 	default:
1952 		return -EINVAL;
1953 	}
1954 
1955 	return 0;
1956 }
1957 
1958 static int btintel_download_fw(struct hci_dev *hdev,
1959 					 struct intel_version *ver,
1960 					 struct intel_boot_params *params,
1961 					 u32 *boot_param)
1962 {
1963 	const struct firmware *fw;
1964 	char fwname[64];
1965 	int err;
1966 	ktime_t calltime;
1967 
1968 	if (!ver || !params)
1969 		return -EINVAL;
1970 
1971 	/* The firmware variant determines if the device is in bootloader
1972 	 * mode or is running operational firmware. The value 0x06 identifies
1973 	 * the bootloader and the value 0x23 identifies the operational
1974 	 * firmware.
1975 	 *
1976 	 * When the operational firmware is already present, then only
1977 	 * the check for valid Bluetooth device address is needed. This
1978 	 * determines if the device will be added as configured or
1979 	 * unconfigured controller.
1980 	 *
1981 	 * It is not possible to use the Secure Boot Parameters in this
1982 	 * case since that command is only available in bootloader mode.
1983 	 */
1984 	if (ver->fw_variant == 0x23) {
1985 		btintel_clear_flag(hdev, INTEL_BOOTLOADER);
1986 		btintel_check_bdaddr(hdev);
1987 
1988 		/* SfP and WsP don't seem to update the firmware version on file
1989 		 * so version checking is currently possible.
1990 		 */
1991 		switch (ver->hw_variant) {
1992 		case 0x0b:	/* SfP */
1993 		case 0x0c:	/* WsP */
1994 			return 0;
1995 		}
1996 
1997 		/* Proceed to download to check if the version matches */
1998 		goto download;
1999 	}
2000 
2001 	/* Read the secure boot parameters to identify the operating
2002 	 * details of the bootloader.
2003 	 */
2004 	err = btintel_read_boot_params(hdev, params);
2005 	if (err)
2006 		return err;
2007 
2008 	/* It is required that every single firmware fragment is acknowledged
2009 	 * with a command complete event. If the boot parameters indicate
2010 	 * that this bootloader does not send them, then abort the setup.
2011 	 */
2012 	if (params->limited_cce != 0x00) {
2013 		bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
2014 			   params->limited_cce);
2015 		return -EINVAL;
2016 	}
2017 
2018 	/* If the OTP has no valid Bluetooth device address, then there will
2019 	 * also be no valid address for the operational firmware.
2020 	 */
2021 	if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
2022 		bt_dev_info(hdev, "No device address configured");
2023 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
2024 	}
2025 
2026 download:
2027 	/* With this Intel bootloader only the hardware variant and device
2028 	 * revision information are used to select the right firmware for SfP
2029 	 * and WsP.
2030 	 *
2031 	 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
2032 	 *
2033 	 * Currently the supported hardware variants are:
2034 	 *   11 (0x0b) for iBT3.0 (LnP/SfP)
2035 	 *   12 (0x0c) for iBT3.5 (WsP)
2036 	 *
2037 	 * For ThP/JfP and for future SKU's, the FW name varies based on HW
2038 	 * variant, HW revision and FW revision, as these are dependent on CNVi
2039 	 * and RF Combination.
2040 	 *
2041 	 *   17 (0x11) for iBT3.5 (JfP)
2042 	 *   18 (0x12) for iBT3.5 (ThP)
2043 	 *
2044 	 * The firmware file name for these will be
2045 	 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
2046 	 *
2047 	 */
2048 	err = btintel_get_fw_name(ver, params, fwname, sizeof(fwname), "sfi");
2049 	if (err < 0) {
2050 		if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2051 			/* Firmware has already been loaded */
2052 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2053 			return 0;
2054 		}
2055 
2056 		bt_dev_err(hdev, "Unsupported Intel firmware naming");
2057 		return -EINVAL;
2058 	}
2059 
2060 	err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
2061 	if (err < 0) {
2062 		if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2063 			/* Firmware has already been loaded */
2064 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2065 			return 0;
2066 		}
2067 
2068 		bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
2069 			   fwname, err);
2070 		return err;
2071 	}
2072 
2073 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
2074 
2075 	if (fw->size < 644) {
2076 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
2077 			   fw->size);
2078 		err = -EBADF;
2079 		goto done;
2080 	}
2081 
2082 	calltime = ktime_get();
2083 
2084 	btintel_set_flag(hdev, INTEL_DOWNLOADING);
2085 
2086 	/* Start firmware downloading and get boot parameter */
2087 	err = btintel_download_firmware(hdev, ver, fw, boot_param);
2088 	if (err < 0) {
2089 		if (err == -EALREADY) {
2090 			/* Firmware has already been loaded */
2091 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2092 			err = 0;
2093 			goto done;
2094 		}
2095 
2096 		/* When FW download fails, send Intel Reset to retry
2097 		 * FW download.
2098 		 */
2099 		btintel_reset_to_bootloader(hdev);
2100 		goto done;
2101 	}
2102 
2103 	/* Before switching the device into operational mode and with that
2104 	 * booting the loaded firmware, wait for the bootloader notification
2105 	 * that all fragments have been successfully received.
2106 	 *
2107 	 * When the event processing receives the notification, then the
2108 	 * INTEL_DOWNLOADING flag will be cleared.
2109 	 *
2110 	 * The firmware loading should not take longer than 5 seconds
2111 	 * and thus just timeout if that happens and fail the setup
2112 	 * of this device.
2113 	 */
2114 	err = btintel_download_wait(hdev, calltime, 5000);
2115 	if (err == -ETIMEDOUT)
2116 		btintel_reset_to_bootloader(hdev);
2117 
2118 done:
2119 	release_firmware(fw);
2120 	return err;
2121 }
2122 
2123 static int btintel_bootloader_setup(struct hci_dev *hdev,
2124 				    struct intel_version *ver)
2125 {
2126 	struct intel_version new_ver;
2127 	struct intel_boot_params params;
2128 	u32 boot_param;
2129 	char ddcname[64];
2130 	int err;
2131 
2132 	BT_DBG("%s", hdev->name);
2133 
2134 	/* Set the default boot parameter to 0x0 and it is updated to
2135 	 * SKU specific boot parameter after reading Intel_Write_Boot_Params
2136 	 * command while downloading the firmware.
2137 	 */
2138 	boot_param = 0x00000000;
2139 
2140 	btintel_set_flag(hdev, INTEL_BOOTLOADER);
2141 
2142 	err = btintel_download_fw(hdev, ver, &params, &boot_param);
2143 	if (err)
2144 		return err;
2145 
2146 	/* controller is already having an operational firmware */
2147 	if (ver->fw_variant == 0x23)
2148 		goto finish;
2149 
2150 	err = btintel_boot(hdev, boot_param);
2151 	if (err)
2152 		return err;
2153 
2154 	btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2155 
2156 	err = btintel_get_fw_name(ver, &params, ddcname,
2157 						sizeof(ddcname), "ddc");
2158 
2159 	if (err < 0) {
2160 		bt_dev_err(hdev, "Unsupported Intel firmware naming");
2161 	} else {
2162 		/* Once the device is running in operational mode, it needs to
2163 		 * apply the device configuration (DDC) parameters.
2164 		 *
2165 		 * The device can work without DDC parameters, so even if it
2166 		 * fails to load the file, no need to fail the setup.
2167 		 */
2168 		btintel_load_ddc_config(hdev, ddcname);
2169 	}
2170 
2171 	hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT);
2172 
2173 	/* Read the Intel version information after loading the FW  */
2174 	err = btintel_read_version(hdev, &new_ver);
2175 	if (err)
2176 		return err;
2177 
2178 	btintel_version_info(hdev, &new_ver);
2179 
2180 finish:
2181 	/* Set the event mask for Intel specific vendor events. This enables
2182 	 * a few extra events that are useful during general operation. It
2183 	 * does not enable any debugging related events.
2184 	 *
2185 	 * The device will function correctly without these events enabled
2186 	 * and thus no need to fail the setup.
2187 	 */
2188 	btintel_set_event_mask(hdev, false);
2189 
2190 	return 0;
2191 }
2192 
2193 static void btintel_get_fw_name_tlv(const struct intel_version_tlv *ver,
2194 				    char *fw_name, size_t len,
2195 				    const char *suffix)
2196 {
2197 	const char *format;
2198 	u32 cnvi, cnvr;
2199 
2200 	cnvi = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top),
2201 					INTEL_CNVX_TOP_STEP(ver->cnvi_top));
2202 
2203 	cnvr = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top),
2204 					INTEL_CNVX_TOP_STEP(ver->cnvr_top));
2205 
2206 	/* Only Blazar  product supports downloading of intermediate loader
2207 	 * image
2208 	 */
2209 	if (INTEL_HW_VARIANT(ver->cnvi_bt) >= 0x1e) {
2210 		u8 zero[BTINTEL_FWID_MAXLEN];
2211 
2212 		if (ver->img_type == BTINTEL_IMG_BOOTLOADER) {
2213 			format = "intel/ibt-%04x-%04x-iml.%s";
2214 			snprintf(fw_name, len, format, cnvi, cnvr, suffix);
2215 			return;
2216 		}
2217 
2218 		memset(zero, 0, sizeof(zero));
2219 
2220 		/* ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step-fw_id> */
2221 		if (memcmp(ver->fw_id, zero, sizeof(zero))) {
2222 			format = "intel/ibt-%04x-%04x-%s.%s";
2223 			snprintf(fw_name, len, format, cnvi, cnvr,
2224 				 ver->fw_id, suffix);
2225 			return;
2226 		}
2227 		/* If firmware id is not present, fallback to legacy naming
2228 		 * convention
2229 		 */
2230 	}
2231 	/* Fallback to legacy naming convention for other controllers
2232 	 * ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step>
2233 	 */
2234 	format = "intel/ibt-%04x-%04x.%s";
2235 	snprintf(fw_name, len, format, cnvi, cnvr, suffix);
2236 }
2237 
2238 static void btintel_get_iml_tlv(const struct intel_version_tlv *ver,
2239 				char *fw_name, size_t len,
2240 				const char *suffix)
2241 {
2242 	const char *format;
2243 	u32 cnvi, cnvr;
2244 
2245 	cnvi = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top),
2246 					INTEL_CNVX_TOP_STEP(ver->cnvi_top));
2247 
2248 	cnvr = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top),
2249 					INTEL_CNVX_TOP_STEP(ver->cnvr_top));
2250 
2251 	format = "intel/ibt-%04x-%04x-iml.%s";
2252 	snprintf(fw_name, len, format, cnvi, cnvr, suffix);
2253 }
2254 
2255 static int btintel_prepare_fw_download_tlv(struct hci_dev *hdev,
2256 					   struct intel_version_tlv *ver,
2257 					   u32 *boot_param)
2258 {
2259 	const struct firmware *fw;
2260 	char fwname[128];
2261 	int err;
2262 	ktime_t calltime;
2263 
2264 	if (!ver || !boot_param)
2265 		return -EINVAL;
2266 
2267 	/* The firmware variant determines if the device is in bootloader
2268 	 * mode or is running operational firmware. The value 0x03 identifies
2269 	 * the bootloader and the value 0x23 identifies the operational
2270 	 * firmware.
2271 	 *
2272 	 * When the operational firmware is already present, then only
2273 	 * the check for valid Bluetooth device address is needed. This
2274 	 * determines if the device will be added as configured or
2275 	 * unconfigured controller.
2276 	 *
2277 	 * It is not possible to use the Secure Boot Parameters in this
2278 	 * case since that command is only available in bootloader mode.
2279 	 */
2280 	if (ver->img_type == BTINTEL_IMG_OP) {
2281 		btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2282 		btintel_check_bdaddr(hdev);
2283 	} else {
2284 		/*
2285 		 * Check for valid bd address in boot loader mode. Device
2286 		 * will be marked as unconfigured if empty bd address is
2287 		 * found.
2288 		 */
2289 		if (!bacmp(&ver->otp_bd_addr, BDADDR_ANY)) {
2290 			bt_dev_info(hdev, "No device address configured");
2291 			set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
2292 		}
2293 	}
2294 
2295 	if (ver->img_type == BTINTEL_IMG_OP) {
2296 		/* Controller running OP image. In case of FW downgrade,
2297 		 * FWID TLV may not be present and driver may attempt to load
2298 		 * firmware image which doesn't exist. Lets compare the version
2299 		 * of IML image
2300 		 */
2301 		if (INTEL_HW_VARIANT(ver->cnvi_bt) >= 0x1e)
2302 			btintel_get_iml_tlv(ver, fwname, sizeof(fwname), "sfi");
2303 		else
2304 			btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi");
2305 	} else {
2306 		btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi");
2307 	}
2308 
2309 	err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
2310 	if (err < 0) {
2311 		if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2312 			/* Firmware has already been loaded */
2313 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2314 			return 0;
2315 		}
2316 
2317 		bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
2318 			   fwname, err);
2319 
2320 		return err;
2321 	}
2322 
2323 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
2324 
2325 	if (fw->size < 644) {
2326 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
2327 			   fw->size);
2328 		err = -EBADF;
2329 		goto done;
2330 	}
2331 
2332 	calltime = ktime_get();
2333 
2334 	btintel_set_flag(hdev, INTEL_DOWNLOADING);
2335 
2336 	/* Start firmware downloading and get boot parameter */
2337 	err = btintel_download_fw_tlv(hdev, ver, fw, boot_param,
2338 					       INTEL_HW_VARIANT(ver->cnvi_bt),
2339 					       ver->sbe_type);
2340 	if (err < 0) {
2341 		if (err == -EALREADY) {
2342 			/* Firmware has already been loaded */
2343 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2344 			err = 0;
2345 			goto done;
2346 		}
2347 
2348 		/* When FW download fails, send Intel Reset to retry
2349 		 * FW download.
2350 		 */
2351 		btintel_reset_to_bootloader(hdev);
2352 		goto done;
2353 	}
2354 
2355 	/* Before switching the device into operational mode and with that
2356 	 * booting the loaded firmware, wait for the bootloader notification
2357 	 * that all fragments have been successfully received.
2358 	 *
2359 	 * When the event processing receives the notification, then the
2360 	 * BTUSB_DOWNLOADING flag will be cleared.
2361 	 *
2362 	 * The firmware loading should not take longer than 5 seconds
2363 	 * and thus just timeout if that happens and fail the setup
2364 	 * of this device.
2365 	 */
2366 	err = btintel_download_wait(hdev, calltime, 5000);
2367 	if (err == -ETIMEDOUT)
2368 		btintel_reset_to_bootloader(hdev);
2369 
2370 done:
2371 	release_firmware(fw);
2372 	return err;
2373 }
2374 
2375 static int btintel_get_codec_config_data(struct hci_dev *hdev,
2376 					 __u8 link, struct bt_codec *codec,
2377 					 __u8 *ven_len, __u8 **ven_data)
2378 {
2379 	int err = 0;
2380 
2381 	if (!ven_data || !ven_len)
2382 		return -EINVAL;
2383 
2384 	*ven_len = 0;
2385 	*ven_data = NULL;
2386 
2387 	if (link != ESCO_LINK) {
2388 		bt_dev_err(hdev, "Invalid link type(%u)", link);
2389 		return -EINVAL;
2390 	}
2391 
2392 	*ven_data = kmalloc(sizeof(__u8), GFP_KERNEL);
2393 	if (!*ven_data) {
2394 		err = -ENOMEM;
2395 		goto error;
2396 	}
2397 
2398 	/* supports only CVSD and mSBC offload codecs */
2399 	switch (codec->id) {
2400 	case 0x02:
2401 		**ven_data = 0x00;
2402 		break;
2403 	case 0x05:
2404 		**ven_data = 0x01;
2405 		break;
2406 	default:
2407 		err = -EINVAL;
2408 		bt_dev_err(hdev, "Invalid codec id(%u)", codec->id);
2409 		goto error;
2410 	}
2411 	/* codec and its capabilities are pre-defined to ids
2412 	 * preset id = 0x00 represents CVSD codec with sampling rate 8K
2413 	 * preset id = 0x01 represents mSBC codec with sampling rate 16K
2414 	 */
2415 	*ven_len = sizeof(__u8);
2416 	return err;
2417 
2418 error:
2419 	kfree(*ven_data);
2420 	*ven_data = NULL;
2421 	return err;
2422 }
2423 
2424 static int btintel_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id)
2425 {
2426 	/* Intel uses 1 as data path id for all the usecases */
2427 	*data_path_id = 1;
2428 	return 0;
2429 }
2430 
2431 static int btintel_configure_offload(struct hci_dev *hdev)
2432 {
2433 	struct sk_buff *skb;
2434 	int err = 0;
2435 	struct intel_offload_use_cases *use_cases;
2436 
2437 	skb = __hci_cmd_sync(hdev, 0xfc86, 0, NULL, HCI_INIT_TIMEOUT);
2438 	if (IS_ERR(skb)) {
2439 		bt_dev_err(hdev, "Reading offload use cases failed (%ld)",
2440 			   PTR_ERR(skb));
2441 		return PTR_ERR(skb);
2442 	}
2443 
2444 	if (skb->len < sizeof(*use_cases)) {
2445 		err = -EIO;
2446 		goto error;
2447 	}
2448 
2449 	use_cases = (void *)skb->data;
2450 
2451 	if (use_cases->status) {
2452 		err = -bt_to_errno(skb->data[0]);
2453 		goto error;
2454 	}
2455 
2456 	if (use_cases->preset[0] & 0x03) {
2457 		hdev->get_data_path_id = btintel_get_data_path_id;
2458 		hdev->get_codec_config_data = btintel_get_codec_config_data;
2459 	}
2460 error:
2461 	kfree_skb(skb);
2462 	return err;
2463 }
2464 
2465 static void btintel_set_ppag(struct hci_dev *hdev, struct intel_version_tlv *ver)
2466 {
2467 	struct sk_buff *skb;
2468 	struct hci_ppag_enable_cmd ppag_cmd;
2469 	acpi_handle handle;
2470 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
2471 	union acpi_object *p, *elements;
2472 	u32 domain, mode;
2473 	acpi_status status;
2474 
2475 	/* PPAG is not supported if CRF is HrP2, Jfp2, JfP1 */
2476 	switch (ver->cnvr_top & 0xFFF) {
2477 	case 0x504:     /* Hrp2 */
2478 	case 0x202:     /* Jfp2 */
2479 	case 0x201:     /* Jfp1 */
2480 		bt_dev_dbg(hdev, "PPAG not supported for Intel CNVr (0x%3x)",
2481 			   ver->cnvr_top & 0xFFF);
2482 		return;
2483 	}
2484 
2485 	handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2486 	if (!handle) {
2487 		bt_dev_info(hdev, "No support for BT device in ACPI firmware");
2488 		return;
2489 	}
2490 
2491 	status = acpi_evaluate_object(handle, "PPAG", NULL, &buffer);
2492 	if (ACPI_FAILURE(status)) {
2493 		if (status == AE_NOT_FOUND) {
2494 			bt_dev_dbg(hdev, "PPAG-BT: ACPI entry not found");
2495 			return;
2496 		}
2497 		bt_dev_warn(hdev, "PPAG-BT: ACPI Failure: %s", acpi_format_exception(status));
2498 		return;
2499 	}
2500 
2501 	p = buffer.pointer;
2502 	if (p->type != ACPI_TYPE_PACKAGE || p->package.count != 2) {
2503 		bt_dev_warn(hdev, "PPAG-BT: Invalid object type: %d or package count: %d",
2504 			    p->type, p->package.count);
2505 		kfree(buffer.pointer);
2506 		return;
2507 	}
2508 
2509 	elements = p->package.elements;
2510 
2511 	/* PPAG table is located at element[1] */
2512 	p = &elements[1];
2513 
2514 	domain = (u32)p->package.elements[0].integer.value;
2515 	mode = (u32)p->package.elements[1].integer.value;
2516 	kfree(buffer.pointer);
2517 
2518 	if (domain != 0x12) {
2519 		bt_dev_dbg(hdev, "PPAG-BT: Bluetooth domain is disabled in ACPI firmware");
2520 		return;
2521 	}
2522 
2523 	/* PPAG mode
2524 	 * BIT 0 : 0 Disabled in EU
2525 	 *         1 Enabled in EU
2526 	 * BIT 1 : 0 Disabled in China
2527 	 *         1 Enabled in China
2528 	 */
2529 	mode &= 0x03;
2530 
2531 	if (!mode) {
2532 		bt_dev_dbg(hdev, "PPAG-BT: EU, China mode are disabled in BIOS");
2533 		return;
2534 	}
2535 
2536 	ppag_cmd.ppag_enable_flags = cpu_to_le32(mode);
2537 
2538 	skb = __hci_cmd_sync(hdev, INTEL_OP_PPAG_CMD, sizeof(ppag_cmd),
2539 			     &ppag_cmd, HCI_CMD_TIMEOUT);
2540 	if (IS_ERR(skb)) {
2541 		bt_dev_warn(hdev, "Failed to send PPAG Enable (%ld)", PTR_ERR(skb));
2542 		return;
2543 	}
2544 	bt_dev_info(hdev, "PPAG-BT: Enabled (Mode %d)", mode);
2545 	kfree_skb(skb);
2546 }
2547 
2548 static int btintel_acpi_reset_method(struct hci_dev *hdev)
2549 {
2550 	int ret = 0;
2551 	acpi_status status;
2552 	union acpi_object *p, *ref;
2553 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2554 
2555 	status = acpi_evaluate_object(ACPI_HANDLE(GET_HCIDEV_DEV(hdev)), "_PRR", NULL, &buffer);
2556 	if (ACPI_FAILURE(status)) {
2557 		bt_dev_err(hdev, "Failed to run _PRR method");
2558 		ret = -ENODEV;
2559 		return ret;
2560 	}
2561 	p = buffer.pointer;
2562 
2563 	if (p->package.count != 1 || p->type != ACPI_TYPE_PACKAGE) {
2564 		bt_dev_err(hdev, "Invalid arguments");
2565 		ret = -EINVAL;
2566 		goto exit_on_error;
2567 	}
2568 
2569 	ref = &p->package.elements[0];
2570 	if (ref->type != ACPI_TYPE_LOCAL_REFERENCE) {
2571 		bt_dev_err(hdev, "Invalid object type: 0x%x", ref->type);
2572 		ret = -EINVAL;
2573 		goto exit_on_error;
2574 	}
2575 
2576 	status = acpi_evaluate_object(ref->reference.handle, "_RST", NULL, NULL);
2577 	if (ACPI_FAILURE(status)) {
2578 		bt_dev_err(hdev, "Failed to run_RST method");
2579 		ret = -ENODEV;
2580 		goto exit_on_error;
2581 	}
2582 
2583 exit_on_error:
2584 	kfree(buffer.pointer);
2585 	return ret;
2586 }
2587 
2588 static void btintel_set_dsm_reset_method(struct hci_dev *hdev,
2589 					 struct intel_version_tlv *ver_tlv)
2590 {
2591 	struct btintel_data *data = hci_get_priv(hdev);
2592 	acpi_handle handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2593 	u8 reset_payload[4] = {0x01, 0x00, 0x01, 0x00};
2594 	union acpi_object *obj, argv4;
2595 	enum {
2596 		RESET_TYPE_WDISABLE2,
2597 		RESET_TYPE_VSEC
2598 	};
2599 
2600 	handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2601 
2602 	if (!handle) {
2603 		bt_dev_dbg(hdev, "No support for bluetooth device in ACPI firmware");
2604 		return;
2605 	}
2606 
2607 	if (!acpi_has_method(handle, "_PRR")) {
2608 		bt_dev_err(hdev, "No support for _PRR ACPI method");
2609 		return;
2610 	}
2611 
2612 	switch (ver_tlv->cnvi_top & 0xfff) {
2613 	case 0x910: /* GalePeak2 */
2614 		reset_payload[2] = RESET_TYPE_VSEC;
2615 		break;
2616 	default:
2617 		/* WDISABLE2 is the default reset method */
2618 		reset_payload[2] = RESET_TYPE_WDISABLE2;
2619 
2620 		if (!acpi_check_dsm(handle, &btintel_guid_dsm, 0,
2621 				    BIT(DSM_SET_WDISABLE2_DELAY))) {
2622 			bt_dev_err(hdev, "No dsm support to set reset delay");
2623 			return;
2624 		}
2625 		argv4.integer.type = ACPI_TYPE_INTEGER;
2626 		/* delay required to toggle BT power */
2627 		argv4.integer.value = 160;
2628 		obj = acpi_evaluate_dsm(handle, &btintel_guid_dsm, 0,
2629 					DSM_SET_WDISABLE2_DELAY, &argv4);
2630 		if (!obj) {
2631 			bt_dev_err(hdev, "Failed to call dsm to set reset delay");
2632 			return;
2633 		}
2634 		ACPI_FREE(obj);
2635 	}
2636 
2637 	bt_dev_info(hdev, "DSM reset method type: 0x%02x", reset_payload[2]);
2638 
2639 	if (!acpi_check_dsm(handle, &btintel_guid_dsm, 0,
2640 			    DSM_SET_RESET_METHOD)) {
2641 		bt_dev_warn(hdev, "No support for dsm to set reset method");
2642 		return;
2643 	}
2644 	argv4.buffer.type = ACPI_TYPE_BUFFER;
2645 	argv4.buffer.length = sizeof(reset_payload);
2646 	argv4.buffer.pointer = reset_payload;
2647 
2648 	obj = acpi_evaluate_dsm(handle, &btintel_guid_dsm, 0,
2649 				DSM_SET_RESET_METHOD, &argv4);
2650 	if (!obj) {
2651 		bt_dev_err(hdev, "Failed to call dsm to set reset method");
2652 		return;
2653 	}
2654 	ACPI_FREE(obj);
2655 	data->acpi_reset_method = btintel_acpi_reset_method;
2656 }
2657 
2658 #define BTINTEL_ISODATA_HANDLE_BASE 0x900
2659 
2660 static u8 btintel_classify_pkt_type(struct hci_dev *hdev, struct sk_buff *skb)
2661 {
2662 	/*
2663 	 * Distinguish ISO data packets form ACL data packets
2664 	 * based on their connection handle value range.
2665 	 */
2666 	if (hci_skb_pkt_type(skb) == HCI_ACLDATA_PKT) {
2667 		__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2668 
2669 		if (hci_handle(handle) >= BTINTEL_ISODATA_HANDLE_BASE)
2670 			return HCI_ISODATA_PKT;
2671 	}
2672 
2673 	return hci_skb_pkt_type(skb);
2674 }
2675 
2676 /*
2677  * UefiCnvCommonDSBR UEFI variable provides information from the OEM platforms
2678  * if they have replaced the BRI (Bluetooth Radio Interface) resistor to
2679  * overcome the potential STEP errors on their designs. Based on the
2680  * configauration, bluetooth firmware shall adjust the BRI response line drive
2681  * strength. The below structure represents DSBR data.
2682  * struct {
2683  *	u8 header;
2684  *	u32 dsbr;
2685  * } __packed;
2686  *
2687  * header - defines revision number of the structure
2688  * dsbr - defines drive strength BRI response
2689  *	bit0
2690  *		0 - instructs bluetooth firmware to use default values
2691  *		1 - instructs bluetooth firmware to override default values
2692  *	bit3:1
2693  *		Reserved
2694  *	bit7:4
2695  *		DSBR override values (only if bit0 is set. Default value is 0xF
2696  *	bit31:7
2697  *		Reserved
2698  * Expected values for dsbr field:
2699  *	1. 0xF1 - indicates that the resistor on board is 33 Ohm
2700  *	2. 0x00 or 0xB1 - indicates that the resistor on board is 10 Ohm
2701  *	3. Non existing UEFI variable or invalid (none of the above) - indicates
2702  *	   that the resistor on board is 10 Ohm
2703  * Even if uefi variable is not present, driver shall send 0xfc0a command to
2704  * firmware to use default values.
2705  *
2706  */
2707 static int btintel_uefi_get_dsbr(u32 *dsbr_var)
2708 {
2709 	struct btintel_dsbr {
2710 		u8 header;
2711 		u32 dsbr;
2712 	} __packed data;
2713 
2714 	efi_status_t status;
2715 	unsigned long data_size = 0;
2716 	efi_guid_t guid = EFI_GUID(0xe65d8884, 0xd4af, 0x4b20, 0x8d, 0x03,
2717 				   0x77, 0x2e, 0xcc, 0x3d, 0xa5, 0x31);
2718 
2719 	if (!IS_ENABLED(CONFIG_EFI))
2720 		return -EOPNOTSUPP;
2721 
2722 	if (!efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE))
2723 		return -EOPNOTSUPP;
2724 
2725 	status = efi.get_variable(BTINTEL_EFI_DSBR, &guid, NULL, &data_size,
2726 				  NULL);
2727 
2728 	if (status != EFI_BUFFER_TOO_SMALL || !data_size)
2729 		return -EIO;
2730 
2731 	status = efi.get_variable(BTINTEL_EFI_DSBR, &guid, NULL, &data_size,
2732 				  &data);
2733 
2734 	if (status != EFI_SUCCESS)
2735 		return -ENXIO;
2736 
2737 	*dsbr_var = data.dsbr;
2738 	return 0;
2739 }
2740 
2741 static int btintel_set_dsbr(struct hci_dev *hdev, struct intel_version_tlv *ver)
2742 {
2743 	struct btintel_dsbr_cmd {
2744 		u8 enable;
2745 		u8 dsbr;
2746 	} __packed;
2747 
2748 	struct btintel_dsbr_cmd cmd;
2749 	struct sk_buff *skb;
2750 	u32 dsbr, cnvi;
2751 	u8 status;
2752 	int err;
2753 
2754 	cnvi = ver->cnvi_top & 0xfff;
2755 	/* DSBR command needs to be sent for,
2756 	 * 1. BlazarI or BlazarIW + B0 step product in IML image.
2757 	 * 2. Gale Peak2 or BlazarU in OP image.
2758 	 */
2759 
2760 	switch (cnvi) {
2761 	case BTINTEL_CNVI_BLAZARI:
2762 	case BTINTEL_CNVI_BLAZARIW:
2763 		if (ver->img_type == BTINTEL_IMG_IML &&
2764 		    INTEL_CNVX_TOP_STEP(ver->cnvi_top) == 0x01)
2765 			break;
2766 		return 0;
2767 	case BTINTEL_CNVI_GAP:
2768 	case BTINTEL_CNVI_BLAZARU:
2769 		if (ver->img_type == BTINTEL_IMG_OP &&
2770 		    hdev->bus == HCI_USB)
2771 			break;
2772 		return 0;
2773 	default:
2774 		return 0;
2775 	}
2776 
2777 	dsbr = 0;
2778 	err = btintel_uefi_get_dsbr(&dsbr);
2779 	if (err < 0)
2780 		bt_dev_dbg(hdev, "Error reading efi: %ls  (%d)",
2781 			   BTINTEL_EFI_DSBR, err);
2782 
2783 	cmd.enable = dsbr & BIT(0);
2784 	cmd.dsbr = dsbr >> 4 & 0xF;
2785 
2786 	bt_dev_info(hdev, "dsbr: enable: 0x%2.2x value: 0x%2.2x", cmd.enable,
2787 		    cmd.dsbr);
2788 
2789 	skb = __hci_cmd_sync(hdev, 0xfc0a, sizeof(cmd), &cmd,  HCI_CMD_TIMEOUT);
2790 	if (IS_ERR(skb))
2791 		return -bt_to_errno(PTR_ERR(skb));
2792 
2793 	status = skb->data[0];
2794 	kfree_skb(skb);
2795 
2796 	if (status)
2797 		return -bt_to_errno(status);
2798 
2799 	return 0;
2800 }
2801 
2802 int btintel_bootloader_setup_tlv(struct hci_dev *hdev,
2803 				 struct intel_version_tlv *ver)
2804 {
2805 	u32 boot_param;
2806 	char ddcname[64];
2807 	int err;
2808 	struct intel_version_tlv new_ver;
2809 
2810 	bt_dev_dbg(hdev, "");
2811 
2812 	/* Set the default boot parameter to 0x0 and it is updated to
2813 	 * SKU specific boot parameter after reading Intel_Write_Boot_Params
2814 	 * command while downloading the firmware.
2815 	 */
2816 	boot_param = 0x00000000;
2817 
2818 	/* In case of PCIe, this function might get called multiple times with
2819 	 * same hdev instance if there is any error on firmware download.
2820 	 * Need to clear stale bits of previous firmware download attempt.
2821 	 */
2822 	for (int i = 0; i < __INTEL_NUM_FLAGS; i++)
2823 		btintel_clear_flag(hdev, i);
2824 
2825 	btintel_set_flag(hdev, INTEL_BOOTLOADER);
2826 
2827 	err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param);
2828 	if (err)
2829 		return err;
2830 
2831 	/* check if controller is already having an operational firmware */
2832 	if (ver->img_type == BTINTEL_IMG_OP)
2833 		goto finish;
2834 
2835 	err = btintel_boot(hdev, boot_param);
2836 	if (err)
2837 		return err;
2838 
2839 	err = btintel_read_version_tlv(hdev, ver);
2840 	if (err)
2841 		return err;
2842 
2843 	/* set drive strength of BRI response */
2844 	err = btintel_set_dsbr(hdev, ver);
2845 	if (err) {
2846 		bt_dev_err(hdev, "Failed to send dsbr command (%d)", err);
2847 		return err;
2848 	}
2849 
2850 	/* If image type returned is BTINTEL_IMG_IML, then controller supports
2851 	 * intermediate loader image
2852 	 */
2853 	if (ver->img_type == BTINTEL_IMG_IML) {
2854 		err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param);
2855 		if (err)
2856 			return err;
2857 
2858 		err = btintel_boot(hdev, boot_param);
2859 		if (err)
2860 			return err;
2861 	}
2862 
2863 	btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2864 
2865 	btintel_get_fw_name_tlv(ver, ddcname, sizeof(ddcname), "ddc");
2866 	/* Once the device is running in operational mode, it needs to
2867 	 * apply the device configuration (DDC) parameters.
2868 	 *
2869 	 * The device can work without DDC parameters, so even if it
2870 	 * fails to load the file, no need to fail the setup.
2871 	 */
2872 	btintel_load_ddc_config(hdev, ddcname);
2873 
2874 	/* Read supported use cases and set callbacks to fetch datapath id */
2875 	btintel_configure_offload(hdev);
2876 
2877 	hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT);
2878 
2879 	/* Set PPAG feature */
2880 	btintel_set_ppag(hdev, ver);
2881 
2882 	/* Read the Intel version information after loading the FW  */
2883 	err = btintel_read_version_tlv(hdev, &new_ver);
2884 	if (err)
2885 		return err;
2886 
2887 	btintel_version_info_tlv(hdev, &new_ver);
2888 
2889 finish:
2890 	/* Set the event mask for Intel specific vendor events. This enables
2891 	 * a few extra events that are useful during general operation. It
2892 	 * does not enable any debugging related events.
2893 	 *
2894 	 * The device will function correctly without these events enabled
2895 	 * and thus no need to fail the setup.
2896 	 */
2897 	btintel_set_event_mask(hdev, false);
2898 
2899 	return 0;
2900 }
2901 EXPORT_SYMBOL_GPL(btintel_bootloader_setup_tlv);
2902 
2903 void btintel_set_msft_opcode(struct hci_dev *hdev, u8 hw_variant)
2904 {
2905 	switch (hw_variant) {
2906 	/* Legacy bootloader devices that supports MSFT Extension */
2907 	case 0x11:	/* JfP */
2908 	case 0x12:	/* ThP */
2909 	case 0x13:	/* HrP */
2910 	case 0x14:	/* CcP */
2911 	/* All Intel new generation controllers support the Microsoft vendor
2912 	 * extension are using 0xFC1E for VsMsftOpCode.
2913 	 */
2914 	case 0x17:
2915 	case 0x18:
2916 	case 0x19:
2917 	case 0x1b:
2918 	case 0x1c:
2919 	case 0x1d:
2920 	case 0x1e:
2921 		hci_set_msft_opcode(hdev, 0xFC1E);
2922 		break;
2923 	default:
2924 		/* Not supported */
2925 		break;
2926 	}
2927 }
2928 EXPORT_SYMBOL_GPL(btintel_set_msft_opcode);
2929 
2930 void btintel_print_fseq_info(struct hci_dev *hdev)
2931 {
2932 	struct sk_buff *skb;
2933 	u8 *p;
2934 	u32 val;
2935 	const char *str;
2936 
2937 	skb = __hci_cmd_sync(hdev, 0xfcb3, 0, NULL, HCI_CMD_TIMEOUT);
2938 	if (IS_ERR(skb)) {
2939 		bt_dev_dbg(hdev, "Reading fseq status command failed (%ld)",
2940 			   PTR_ERR(skb));
2941 		return;
2942 	}
2943 
2944 	if (skb->len < (sizeof(u32) * 16 + 2)) {
2945 		bt_dev_dbg(hdev, "Malformed packet of length %u received",
2946 			   skb->len);
2947 		kfree_skb(skb);
2948 		return;
2949 	}
2950 
2951 	p = skb_pull_data(skb, 1);
2952 	if (*p) {
2953 		bt_dev_dbg(hdev, "Failed to get fseq status (0x%2.2x)", *p);
2954 		kfree_skb(skb);
2955 		return;
2956 	}
2957 
2958 	p = skb_pull_data(skb, 1);
2959 	switch (*p) {
2960 	case 0:
2961 		str = "Success";
2962 		break;
2963 	case 1:
2964 		str = "Fatal error";
2965 		break;
2966 	case 2:
2967 		str = "Semaphore acquire error";
2968 		break;
2969 	default:
2970 		str = "Unknown error";
2971 		break;
2972 	}
2973 
2974 	if (*p) {
2975 		bt_dev_err(hdev, "Fseq status: %s (0x%2.2x)", str, *p);
2976 		kfree_skb(skb);
2977 		return;
2978 	}
2979 
2980 	bt_dev_info(hdev, "Fseq status: %s (0x%2.2x)", str, *p);
2981 
2982 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2983 	bt_dev_dbg(hdev, "Reason: 0x%8.8x", val);
2984 
2985 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2986 	bt_dev_dbg(hdev, "Global version: 0x%8.8x", val);
2987 
2988 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2989 	bt_dev_dbg(hdev, "Installed version: 0x%8.8x", val);
2990 
2991 	p = skb->data;
2992 	skb_pull_data(skb, 4);
2993 	bt_dev_info(hdev, "Fseq executed: %2.2u.%2.2u.%2.2u.%2.2u", p[0], p[1],
2994 		    p[2], p[3]);
2995 
2996 	p = skb->data;
2997 	skb_pull_data(skb, 4);
2998 	bt_dev_info(hdev, "Fseq BT Top: %2.2u.%2.2u.%2.2u.%2.2u", p[0], p[1],
2999 		    p[2], p[3]);
3000 
3001 	val = get_unaligned_le32(skb_pull_data(skb, 4));
3002 	bt_dev_dbg(hdev, "Fseq Top init version: 0x%8.8x", val);
3003 
3004 	val = get_unaligned_le32(skb_pull_data(skb, 4));
3005 	bt_dev_dbg(hdev, "Fseq Cnvio init version: 0x%8.8x", val);
3006 
3007 	val = get_unaligned_le32(skb_pull_data(skb, 4));
3008 	bt_dev_dbg(hdev, "Fseq MBX Wifi file version: 0x%8.8x", val);
3009 
3010 	val = get_unaligned_le32(skb_pull_data(skb, 4));
3011 	bt_dev_dbg(hdev, "Fseq BT version: 0x%8.8x", val);
3012 
3013 	val = get_unaligned_le32(skb_pull_data(skb, 4));
3014 	bt_dev_dbg(hdev, "Fseq Top reset address: 0x%8.8x", val);
3015 
3016 	val = get_unaligned_le32(skb_pull_data(skb, 4));
3017 	bt_dev_dbg(hdev, "Fseq MBX timeout: 0x%8.8x", val);
3018 
3019 	val = get_unaligned_le32(skb_pull_data(skb, 4));
3020 	bt_dev_dbg(hdev, "Fseq MBX ack: 0x%8.8x", val);
3021 
3022 	val = get_unaligned_le32(skb_pull_data(skb, 4));
3023 	bt_dev_dbg(hdev, "Fseq CNVi id: 0x%8.8x", val);
3024 
3025 	val = get_unaligned_le32(skb_pull_data(skb, 4));
3026 	bt_dev_dbg(hdev, "Fseq CNVr id: 0x%8.8x", val);
3027 
3028 	val = get_unaligned_le32(skb_pull_data(skb, 4));
3029 	bt_dev_dbg(hdev, "Fseq Error handle: 0x%8.8x", val);
3030 
3031 	val = get_unaligned_le32(skb_pull_data(skb, 4));
3032 	bt_dev_dbg(hdev, "Fseq Magic noalive indication: 0x%8.8x", val);
3033 
3034 	val = get_unaligned_le32(skb_pull_data(skb, 4));
3035 	bt_dev_dbg(hdev, "Fseq OTP version: 0x%8.8x", val);
3036 
3037 	val = get_unaligned_le32(skb_pull_data(skb, 4));
3038 	bt_dev_dbg(hdev, "Fseq MBX otp version: 0x%8.8x", val);
3039 
3040 	kfree_skb(skb);
3041 }
3042 EXPORT_SYMBOL_GPL(btintel_print_fseq_info);
3043 
3044 static int btintel_setup_combined(struct hci_dev *hdev)
3045 {
3046 	const u8 param[1] = { 0xFF };
3047 	struct intel_version ver;
3048 	struct intel_version_tlv ver_tlv;
3049 	struct sk_buff *skb;
3050 	int err;
3051 
3052 	BT_DBG("%s", hdev->name);
3053 
3054 	/* The some controllers have a bug with the first HCI command sent to it
3055 	 * returning number of completed commands as zero. This would stall the
3056 	 * command processing in the Bluetooth core.
3057 	 *
3058 	 * As a workaround, send HCI Reset command first which will reset the
3059 	 * number of completed commands and allow normal command processing
3060 	 * from now on.
3061 	 *
3062 	 * Regarding the INTEL_BROKEN_SHUTDOWN_LED flag, these devices maybe
3063 	 * in the SW_RFKILL ON state as a workaround of fixing LED issue during
3064 	 * the shutdown() procedure, and once the device is in SW_RFKILL ON
3065 	 * state, the only way to exit out of it is sending the HCI_Reset
3066 	 * command.
3067 	 */
3068 	if (btintel_test_flag(hdev, INTEL_BROKEN_INITIAL_NCMD) ||
3069 	    btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) {
3070 		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
3071 				     HCI_INIT_TIMEOUT);
3072 		if (IS_ERR(skb)) {
3073 			bt_dev_err(hdev,
3074 				   "sending initial HCI reset failed (%ld)",
3075 				   PTR_ERR(skb));
3076 			return PTR_ERR(skb);
3077 		}
3078 		kfree_skb(skb);
3079 	}
3080 
3081 	/* Starting from TyP device, the command parameter and response are
3082 	 * changed even though the OCF for HCI_Intel_Read_Version command
3083 	 * remains same. The legacy devices can handle even if the
3084 	 * command has a parameter and returns a correct version information.
3085 	 * So, it uses new format to support both legacy and new format.
3086 	 */
3087 	skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
3088 	if (IS_ERR(skb)) {
3089 		bt_dev_err(hdev, "Reading Intel version command failed (%ld)",
3090 			   PTR_ERR(skb));
3091 		return PTR_ERR(skb);
3092 	}
3093 
3094 	/* Check the status */
3095 	if (skb->data[0]) {
3096 		bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
3097 			   skb->data[0]);
3098 		err = -EIO;
3099 		goto exit_error;
3100 	}
3101 
3102 	/* Apply the common HCI quirks for Intel device */
3103 	set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
3104 	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
3105 	set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
3106 
3107 	/* Set up the quality report callback for Intel devices */
3108 	hdev->set_quality_report = btintel_set_quality_report;
3109 
3110 	/* For Legacy device, check the HW platform value and size */
3111 	if (skb->len == sizeof(ver) && skb->data[1] == 0x37) {
3112 		bt_dev_dbg(hdev, "Read the legacy Intel version information");
3113 
3114 		memcpy(&ver, skb->data, sizeof(ver));
3115 
3116 		/* Display version information */
3117 		btintel_version_info(hdev, &ver);
3118 
3119 		/* Check for supported iBT hardware variants of this firmware
3120 		 * loading method.
3121 		 *
3122 		 * This check has been put in place to ensure correct forward
3123 		 * compatibility options when newer hardware variants come
3124 		 * along.
3125 		 */
3126 		switch (ver.hw_variant) {
3127 		case 0x07:	/* WP */
3128 		case 0x08:	/* StP */
3129 			/* Legacy ROM product */
3130 			btintel_set_flag(hdev, INTEL_ROM_LEGACY);
3131 
3132 			/* Apply the device specific HCI quirks
3133 			 *
3134 			 * WBS for SdP - For the Legacy ROM products, only SdP
3135 			 * supports the WBS. But the version information is not
3136 			 * enough to use here because the StP2 and SdP have same
3137 			 * hw_variant and fw_variant. So, this flag is set by
3138 			 * the transport driver (btusb) based on the HW info
3139 			 * (idProduct)
3140 			 */
3141 			if (!btintel_test_flag(hdev,
3142 					       INTEL_ROM_LEGACY_NO_WBS_SUPPORT))
3143 				set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
3144 					&hdev->quirks);
3145 
3146 			err = btintel_legacy_rom_setup(hdev, &ver);
3147 			break;
3148 		case 0x0b:      /* SfP */
3149 		case 0x11:      /* JfP */
3150 		case 0x12:      /* ThP */
3151 		case 0x13:      /* HrP */
3152 		case 0x14:      /* CcP */
3153 			fallthrough;
3154 		case 0x0c:	/* WsP */
3155 			/* Apply the device specific HCI quirks
3156 			 *
3157 			 * All Legacy bootloader devices support WBS
3158 			 */
3159 			set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
3160 				&hdev->quirks);
3161 
3162 			/* These variants don't seem to support LE Coded PHY */
3163 			set_bit(HCI_QUIRK_BROKEN_LE_CODED, &hdev->quirks);
3164 
3165 			/* Setup MSFT Extension support */
3166 			btintel_set_msft_opcode(hdev, ver.hw_variant);
3167 
3168 			err = btintel_bootloader_setup(hdev, &ver);
3169 			btintel_register_devcoredump_support(hdev);
3170 			break;
3171 		default:
3172 			bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
3173 				   ver.hw_variant);
3174 			err = -EINVAL;
3175 		}
3176 
3177 		hci_set_hw_info(hdev,
3178 				"INTEL platform=%u variant=%u revision=%u",
3179 				ver.hw_platform, ver.hw_variant,
3180 				ver.hw_revision);
3181 
3182 		goto exit_error;
3183 	}
3184 
3185 	/* memset ver_tlv to start with clean state as few fields are exclusive
3186 	 * to bootloader mode and are not populated in operational mode
3187 	 */
3188 	memset(&ver_tlv, 0, sizeof(ver_tlv));
3189 	/* For TLV type device, parse the tlv data */
3190 	err = btintel_parse_version_tlv(hdev, &ver_tlv, skb);
3191 	if (err) {
3192 		bt_dev_err(hdev, "Failed to parse TLV version information");
3193 		goto exit_error;
3194 	}
3195 
3196 	if (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt) != 0x37) {
3197 		bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
3198 			   INTEL_HW_PLATFORM(ver_tlv.cnvi_bt));
3199 		err = -EINVAL;
3200 		goto exit_error;
3201 	}
3202 
3203 	/* Check for supported iBT hardware variants of this firmware
3204 	 * loading method.
3205 	 *
3206 	 * This check has been put in place to ensure correct forward
3207 	 * compatibility options when newer hardware variants come
3208 	 * along.
3209 	 */
3210 	switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) {
3211 	case 0x11:      /* JfP */
3212 	case 0x12:      /* ThP */
3213 	case 0x13:      /* HrP */
3214 	case 0x14:      /* CcP */
3215 		/* Some legacy bootloader devices starting from JfP,
3216 		 * the operational firmware supports both old and TLV based
3217 		 * HCI_Intel_Read_Version command based on the command
3218 		 * parameter.
3219 		 *
3220 		 * For upgrading firmware case, the TLV based version cannot
3221 		 * be used because the firmware filename for legacy bootloader
3222 		 * is based on the old format.
3223 		 *
3224 		 * Also, it is not easy to convert TLV based version from the
3225 		 * legacy version format.
3226 		 *
3227 		 * So, as a workaround for those devices, use the legacy
3228 		 * HCI_Intel_Read_Version to get the version information and
3229 		 * run the legacy bootloader setup.
3230 		 */
3231 		err = btintel_read_version(hdev, &ver);
3232 		if (err)
3233 			break;
3234 
3235 		/* Apply the device specific HCI quirks
3236 		 *
3237 		 * All Legacy bootloader devices support WBS
3238 		 */
3239 		set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
3240 
3241 		/* These variants don't seem to support LE Coded PHY */
3242 		set_bit(HCI_QUIRK_BROKEN_LE_CODED, &hdev->quirks);
3243 
3244 		/* Setup MSFT Extension support */
3245 		btintel_set_msft_opcode(hdev, ver.hw_variant);
3246 
3247 		err = btintel_bootloader_setup(hdev, &ver);
3248 		btintel_register_devcoredump_support(hdev);
3249 		break;
3250 	case 0x18: /* GfP2 */
3251 	case 0x1c: /* GaP */
3252 		/* Re-classify packet type for controllers with LE audio */
3253 		hdev->classify_pkt_type = btintel_classify_pkt_type;
3254 		fallthrough;
3255 	case 0x17:
3256 	case 0x19:
3257 	case 0x1b:
3258 	case 0x1d:
3259 	case 0x1e:
3260 		/* Display version information of TLV type */
3261 		btintel_version_info_tlv(hdev, &ver_tlv);
3262 
3263 		/* Apply the device specific HCI quirks for TLV based devices
3264 		 *
3265 		 * All TLV based devices support WBS
3266 		 */
3267 		set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
3268 
3269 		/* Setup MSFT Extension support */
3270 		btintel_set_msft_opcode(hdev,
3271 					INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
3272 		btintel_set_dsm_reset_method(hdev, &ver_tlv);
3273 
3274 		err = btintel_bootloader_setup_tlv(hdev, &ver_tlv);
3275 		if (err)
3276 			goto exit_error;
3277 
3278 		btintel_register_devcoredump_support(hdev);
3279 		btintel_print_fseq_info(hdev);
3280 		break;
3281 	default:
3282 		bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
3283 			   INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
3284 		err = -EINVAL;
3285 		break;
3286 	}
3287 
3288 	hci_set_hw_info(hdev, "INTEL platform=%u variant=%u",
3289 			INTEL_HW_PLATFORM(ver_tlv.cnvi_bt),
3290 			INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
3291 
3292 exit_error:
3293 	kfree_skb(skb);
3294 
3295 	return err;
3296 }
3297 
3298 int btintel_shutdown_combined(struct hci_dev *hdev)
3299 {
3300 	struct sk_buff *skb;
3301 	int ret;
3302 
3303 	/* Send HCI Reset to the controller to stop any BT activity which
3304 	 * were triggered. This will help to save power and maintain the
3305 	 * sync b/w Host and controller
3306 	 */
3307 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
3308 	if (IS_ERR(skb)) {
3309 		bt_dev_err(hdev, "HCI reset during shutdown failed");
3310 		return PTR_ERR(skb);
3311 	}
3312 	kfree_skb(skb);
3313 
3314 
3315 	/* Some platforms have an issue with BT LED when the interface is
3316 	 * down or BT radio is turned off, which takes 5 seconds to BT LED
3317 	 * goes off. As a workaround, sends HCI_Intel_SW_RFKILL to put the
3318 	 * device in the RFKILL ON state which turns off the BT LED immediately.
3319 	 */
3320 	if (btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) {
3321 		skb = __hci_cmd_sync(hdev, 0xfc3f, 0, NULL, HCI_INIT_TIMEOUT);
3322 		if (IS_ERR(skb)) {
3323 			ret = PTR_ERR(skb);
3324 			bt_dev_err(hdev, "turning off Intel device LED failed");
3325 			return ret;
3326 		}
3327 		kfree_skb(skb);
3328 	}
3329 
3330 	return 0;
3331 }
3332 EXPORT_SYMBOL_GPL(btintel_shutdown_combined);
3333 
3334 int btintel_configure_setup(struct hci_dev *hdev, const char *driver_name)
3335 {
3336 	hdev->manufacturer = 2;
3337 	hdev->setup = btintel_setup_combined;
3338 	hdev->shutdown = btintel_shutdown_combined;
3339 	hdev->hw_error = btintel_hw_error;
3340 	hdev->set_diag = btintel_set_diag_combined;
3341 	hdev->set_bdaddr = btintel_set_bdaddr;
3342 
3343 	coredump_info.driver_name = driver_name;
3344 
3345 	return 0;
3346 }
3347 EXPORT_SYMBOL_GPL(btintel_configure_setup);
3348 
3349 int btintel_diagnostics(struct hci_dev *hdev, struct sk_buff *skb)
3350 {
3351 	struct intel_tlv *tlv = (void *)&skb->data[5];
3352 
3353 	/* The first event is always an event type TLV */
3354 	if (tlv->type != INTEL_TLV_TYPE_ID)
3355 		goto recv_frame;
3356 
3357 	switch (tlv->val[0]) {
3358 	case INTEL_TLV_SYSTEM_EXCEPTION:
3359 	case INTEL_TLV_FATAL_EXCEPTION:
3360 	case INTEL_TLV_DEBUG_EXCEPTION:
3361 	case INTEL_TLV_TEST_EXCEPTION:
3362 		/* Generate devcoredump from exception */
3363 		if (!hci_devcd_init(hdev, skb->len)) {
3364 			hci_devcd_append(hdev, skb_clone(skb, GFP_ATOMIC));
3365 			hci_devcd_complete(hdev);
3366 		} else {
3367 			bt_dev_err(hdev, "Failed to generate devcoredump");
3368 		}
3369 	break;
3370 	default:
3371 		bt_dev_err(hdev, "Invalid exception type %02X", tlv->val[0]);
3372 	}
3373 
3374 recv_frame:
3375 	return hci_recv_frame(hdev, skb);
3376 }
3377 EXPORT_SYMBOL_GPL(btintel_diagnostics);
3378 
3379 int btintel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
3380 {
3381 	struct hci_event_hdr *hdr = (void *)skb->data;
3382 	const char diagnostics_hdr[] = { 0x87, 0x80, 0x03 };
3383 
3384 	if (skb->len > HCI_EVENT_HDR_SIZE && hdr->evt == 0xff &&
3385 	    hdr->plen > 0) {
3386 		const void *ptr = skb->data + HCI_EVENT_HDR_SIZE + 1;
3387 		unsigned int len = skb->len - HCI_EVENT_HDR_SIZE - 1;
3388 
3389 		if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
3390 			switch (skb->data[2]) {
3391 			case 0x02:
3392 				/* When switching to the operational firmware
3393 				 * the device sends a vendor specific event
3394 				 * indicating that the bootup completed.
3395 				 */
3396 				btintel_bootup(hdev, ptr, len);
3397 				kfree_skb(skb);
3398 				return 0;
3399 			case 0x06:
3400 				/* When the firmware loading completes the
3401 				 * device sends out a vendor specific event
3402 				 * indicating the result of the firmware
3403 				 * loading.
3404 				 */
3405 				btintel_secure_send_result(hdev, ptr, len);
3406 				kfree_skb(skb);
3407 				return 0;
3408 			}
3409 		}
3410 
3411 		/* Handle all diagnostics events separately. May still call
3412 		 * hci_recv_frame.
3413 		 */
3414 		if (len >= sizeof(diagnostics_hdr) &&
3415 		    memcmp(&skb->data[2], diagnostics_hdr,
3416 			   sizeof(diagnostics_hdr)) == 0) {
3417 			return btintel_diagnostics(hdev, skb);
3418 		}
3419 	}
3420 
3421 	return hci_recv_frame(hdev, skb);
3422 }
3423 EXPORT_SYMBOL_GPL(btintel_recv_event);
3424 
3425 void btintel_bootup(struct hci_dev *hdev, const void *ptr, unsigned int len)
3426 {
3427 	const struct intel_bootup *evt = ptr;
3428 
3429 	if (len != sizeof(*evt))
3430 		return;
3431 
3432 	if (btintel_test_and_clear_flag(hdev, INTEL_BOOTING))
3433 		btintel_wake_up_flag(hdev, INTEL_BOOTING);
3434 }
3435 EXPORT_SYMBOL_GPL(btintel_bootup);
3436 
3437 void btintel_secure_send_result(struct hci_dev *hdev,
3438 				const void *ptr, unsigned int len)
3439 {
3440 	const struct intel_secure_send_result *evt = ptr;
3441 
3442 	if (len != sizeof(*evt))
3443 		return;
3444 
3445 	if (evt->result)
3446 		btintel_set_flag(hdev, INTEL_FIRMWARE_FAILED);
3447 
3448 	if (btintel_test_and_clear_flag(hdev, INTEL_DOWNLOADING) &&
3449 	    btintel_test_flag(hdev, INTEL_FIRMWARE_LOADED))
3450 		btintel_wake_up_flag(hdev, INTEL_DOWNLOADING);
3451 }
3452 EXPORT_SYMBOL_GPL(btintel_secure_send_result);
3453 
3454 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
3455 MODULE_DESCRIPTION("Bluetooth support for Intel devices ver " VERSION);
3456 MODULE_VERSION(VERSION);
3457 MODULE_LICENSE("GPL");
3458 MODULE_FIRMWARE("intel/ibt-11-5.sfi");
3459 MODULE_FIRMWARE("intel/ibt-11-5.ddc");
3460 MODULE_FIRMWARE("intel/ibt-12-16.sfi");
3461 MODULE_FIRMWARE("intel/ibt-12-16.ddc");
3462