xref: /linux/drivers/bluetooth/btintel.c (revision 953c03d8cb41d08fe6994f5d94c4393ac9da2f13)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Bluetooth support for Intel devices
5  *
6  *  Copyright (C) 2015  Intel Corporation
7  */
8 
9 #include <linux/module.h>
10 #include <linux/firmware.h>
11 #include <linux/regmap.h>
12 #include <linux/acpi.h>
13 #include <acpi/acpi_bus.h>
14 #include <asm/unaligned.h>
15 #include <linux/efi.h>
16 
17 #include <net/bluetooth/bluetooth.h>
18 #include <net/bluetooth/hci_core.h>
19 
20 #include "btintel.h"
21 
22 #define VERSION "0.1"
23 
24 #define BDADDR_INTEL		(&(bdaddr_t){{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}})
25 #define RSA_HEADER_LEN		644
26 #define CSS_HEADER_OFFSET	8
27 #define ECDSA_OFFSET		644
28 #define ECDSA_HEADER_LEN	320
29 
30 #define BTINTEL_EFI_DSBR	L"UefiCnvCommonDSBR"
31 
32 enum {
33 	DSM_SET_WDISABLE2_DELAY = 1,
34 	DSM_SET_RESET_METHOD = 3,
35 };
36 
37 #define CMD_WRITE_BOOT_PARAMS	0xfc0e
38 struct cmd_write_boot_params {
39 	__le32 boot_addr;
40 	u8  fw_build_num;
41 	u8  fw_build_ww;
42 	u8  fw_build_yy;
43 } __packed;
44 
45 static struct {
46 	const char *driver_name;
47 	u8         hw_variant;
48 	u32        fw_build_num;
49 } coredump_info;
50 
51 static const guid_t btintel_guid_dsm =
52 	GUID_INIT(0xaa10f4e0, 0x81ac, 0x4233,
53 		  0xab, 0xf6, 0x3b, 0x2a, 0xc5, 0x0e, 0x28, 0xd9);
54 
55 int btintel_check_bdaddr(struct hci_dev *hdev)
56 {
57 	struct hci_rp_read_bd_addr *bda;
58 	struct sk_buff *skb;
59 
60 	skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
61 			     HCI_INIT_TIMEOUT);
62 	if (IS_ERR(skb)) {
63 		int err = PTR_ERR(skb);
64 		bt_dev_err(hdev, "Reading Intel device address failed (%d)",
65 			   err);
66 		return err;
67 	}
68 
69 	if (skb->len != sizeof(*bda)) {
70 		bt_dev_err(hdev, "Intel device address length mismatch");
71 		kfree_skb(skb);
72 		return -EIO;
73 	}
74 
75 	bda = (struct hci_rp_read_bd_addr *)skb->data;
76 
77 	/* For some Intel based controllers, the default Bluetooth device
78 	 * address 00:03:19:9E:8B:00 can be found. These controllers are
79 	 * fully operational, but have the danger of duplicate addresses
80 	 * and that in turn can cause problems with Bluetooth operation.
81 	 */
82 	if (!bacmp(&bda->bdaddr, BDADDR_INTEL)) {
83 		bt_dev_err(hdev, "Found Intel default device address (%pMR)",
84 			   &bda->bdaddr);
85 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
86 	}
87 
88 	kfree_skb(skb);
89 
90 	return 0;
91 }
92 EXPORT_SYMBOL_GPL(btintel_check_bdaddr);
93 
94 int btintel_enter_mfg(struct hci_dev *hdev)
95 {
96 	static const u8 param[] = { 0x01, 0x00 };
97 	struct sk_buff *skb;
98 
99 	skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
100 	if (IS_ERR(skb)) {
101 		bt_dev_err(hdev, "Entering manufacturer mode failed (%ld)",
102 			   PTR_ERR(skb));
103 		return PTR_ERR(skb);
104 	}
105 	kfree_skb(skb);
106 
107 	return 0;
108 }
109 EXPORT_SYMBOL_GPL(btintel_enter_mfg);
110 
111 int btintel_exit_mfg(struct hci_dev *hdev, bool reset, bool patched)
112 {
113 	u8 param[] = { 0x00, 0x00 };
114 	struct sk_buff *skb;
115 
116 	/* The 2nd command parameter specifies the manufacturing exit method:
117 	 * 0x00: Just disable the manufacturing mode (0x00).
118 	 * 0x01: Disable manufacturing mode and reset with patches deactivated.
119 	 * 0x02: Disable manufacturing mode and reset with patches activated.
120 	 */
121 	if (reset)
122 		param[1] |= patched ? 0x02 : 0x01;
123 
124 	skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
125 	if (IS_ERR(skb)) {
126 		bt_dev_err(hdev, "Exiting manufacturer mode failed (%ld)",
127 			   PTR_ERR(skb));
128 		return PTR_ERR(skb);
129 	}
130 	kfree_skb(skb);
131 
132 	return 0;
133 }
134 EXPORT_SYMBOL_GPL(btintel_exit_mfg);
135 
136 int btintel_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
137 {
138 	struct sk_buff *skb;
139 	int err;
140 
141 	skb = __hci_cmd_sync(hdev, 0xfc31, 6, bdaddr, HCI_INIT_TIMEOUT);
142 	if (IS_ERR(skb)) {
143 		err = PTR_ERR(skb);
144 		bt_dev_err(hdev, "Changing Intel device address failed (%d)",
145 			   err);
146 		return err;
147 	}
148 	kfree_skb(skb);
149 
150 	return 0;
151 }
152 EXPORT_SYMBOL_GPL(btintel_set_bdaddr);
153 
154 static int btintel_set_event_mask(struct hci_dev *hdev, bool debug)
155 {
156 	u8 mask[8] = { 0x87, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
157 	struct sk_buff *skb;
158 	int err;
159 
160 	if (debug)
161 		mask[1] |= 0x62;
162 
163 	skb = __hci_cmd_sync(hdev, 0xfc52, 8, mask, HCI_INIT_TIMEOUT);
164 	if (IS_ERR(skb)) {
165 		err = PTR_ERR(skb);
166 		bt_dev_err(hdev, "Setting Intel event mask failed (%d)", err);
167 		return err;
168 	}
169 	kfree_skb(skb);
170 
171 	return 0;
172 }
173 
174 int btintel_set_diag(struct hci_dev *hdev, bool enable)
175 {
176 	struct sk_buff *skb;
177 	u8 param[3];
178 	int err;
179 
180 	if (enable) {
181 		param[0] = 0x03;
182 		param[1] = 0x03;
183 		param[2] = 0x03;
184 	} else {
185 		param[0] = 0x00;
186 		param[1] = 0x00;
187 		param[2] = 0x00;
188 	}
189 
190 	skb = __hci_cmd_sync(hdev, 0xfc43, 3, param, HCI_INIT_TIMEOUT);
191 	if (IS_ERR(skb)) {
192 		err = PTR_ERR(skb);
193 		if (err == -ENODATA)
194 			goto done;
195 		bt_dev_err(hdev, "Changing Intel diagnostic mode failed (%d)",
196 			   err);
197 		return err;
198 	}
199 	kfree_skb(skb);
200 
201 done:
202 	btintel_set_event_mask(hdev, enable);
203 	return 0;
204 }
205 EXPORT_SYMBOL_GPL(btintel_set_diag);
206 
207 static int btintel_set_diag_mfg(struct hci_dev *hdev, bool enable)
208 {
209 	int err, ret;
210 
211 	err = btintel_enter_mfg(hdev);
212 	if (err)
213 		return err;
214 
215 	ret = btintel_set_diag(hdev, enable);
216 
217 	err = btintel_exit_mfg(hdev, false, false);
218 	if (err)
219 		return err;
220 
221 	return ret;
222 }
223 
224 static int btintel_set_diag_combined(struct hci_dev *hdev, bool enable)
225 {
226 	int ret;
227 
228 	/* Legacy ROM device needs to be in the manufacturer mode to apply
229 	 * diagnostic setting
230 	 *
231 	 * This flag is set after reading the Intel version.
232 	 */
233 	if (btintel_test_flag(hdev, INTEL_ROM_LEGACY))
234 		ret = btintel_set_diag_mfg(hdev, enable);
235 	else
236 		ret = btintel_set_diag(hdev, enable);
237 
238 	return ret;
239 }
240 
241 void btintel_hw_error(struct hci_dev *hdev, u8 code)
242 {
243 	struct sk_buff *skb;
244 	u8 type = 0x00;
245 
246 	bt_dev_err(hdev, "Hardware error 0x%2.2x", code);
247 
248 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
249 	if (IS_ERR(skb)) {
250 		bt_dev_err(hdev, "Reset after hardware error failed (%ld)",
251 			   PTR_ERR(skb));
252 		return;
253 	}
254 	kfree_skb(skb);
255 
256 	skb = __hci_cmd_sync(hdev, 0xfc22, 1, &type, HCI_INIT_TIMEOUT);
257 	if (IS_ERR(skb)) {
258 		bt_dev_err(hdev, "Retrieving Intel exception info failed (%ld)",
259 			   PTR_ERR(skb));
260 		return;
261 	}
262 
263 	if (skb->len != 13) {
264 		bt_dev_err(hdev, "Exception info size mismatch");
265 		kfree_skb(skb);
266 		return;
267 	}
268 
269 	bt_dev_err(hdev, "Exception info %s", (char *)(skb->data + 1));
270 
271 	kfree_skb(skb);
272 }
273 EXPORT_SYMBOL_GPL(btintel_hw_error);
274 
275 int btintel_version_info(struct hci_dev *hdev, struct intel_version *ver)
276 {
277 	const char *variant;
278 
279 	/* The hardware platform number has a fixed value of 0x37 and
280 	 * for now only accept this single value.
281 	 */
282 	if (ver->hw_platform != 0x37) {
283 		bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
284 			   ver->hw_platform);
285 		return -EINVAL;
286 	}
287 
288 	/* Check for supported iBT hardware variants of this firmware
289 	 * loading method.
290 	 *
291 	 * This check has been put in place to ensure correct forward
292 	 * compatibility options when newer hardware variants come along.
293 	 */
294 	switch (ver->hw_variant) {
295 	case 0x07:	/* WP - Legacy ROM */
296 	case 0x08:	/* StP - Legacy ROM */
297 	case 0x0b:      /* SfP */
298 	case 0x0c:      /* WsP */
299 	case 0x11:      /* JfP */
300 	case 0x12:      /* ThP */
301 	case 0x13:      /* HrP */
302 	case 0x14:      /* CcP */
303 		break;
304 	default:
305 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
306 			   ver->hw_variant);
307 		return -EINVAL;
308 	}
309 
310 	switch (ver->fw_variant) {
311 	case 0x01:
312 		variant = "Legacy ROM 2.5";
313 		break;
314 	case 0x06:
315 		variant = "Bootloader";
316 		break;
317 	case 0x22:
318 		variant = "Legacy ROM 2.x";
319 		break;
320 	case 0x23:
321 		variant = "Firmware";
322 		break;
323 	default:
324 		bt_dev_err(hdev, "Unsupported firmware variant(%02x)", ver->fw_variant);
325 		return -EINVAL;
326 	}
327 
328 	coredump_info.hw_variant = ver->hw_variant;
329 	coredump_info.fw_build_num = ver->fw_build_num;
330 
331 	bt_dev_info(hdev, "%s revision %u.%u build %u week %u %u",
332 		    variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f,
333 		    ver->fw_build_num, ver->fw_build_ww,
334 		    2000 + ver->fw_build_yy);
335 
336 	return 0;
337 }
338 EXPORT_SYMBOL_GPL(btintel_version_info);
339 
340 static int btintel_secure_send(struct hci_dev *hdev, u8 fragment_type, u32 plen,
341 			       const void *param)
342 {
343 	while (plen > 0) {
344 		struct sk_buff *skb;
345 		u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen;
346 
347 		cmd_param[0] = fragment_type;
348 		memcpy(cmd_param + 1, param, fragment_len);
349 
350 		skb = __hci_cmd_sync(hdev, 0xfc09, fragment_len + 1,
351 				     cmd_param, HCI_INIT_TIMEOUT);
352 		if (IS_ERR(skb))
353 			return PTR_ERR(skb);
354 
355 		kfree_skb(skb);
356 
357 		plen -= fragment_len;
358 		param += fragment_len;
359 	}
360 
361 	return 0;
362 }
363 
364 int btintel_load_ddc_config(struct hci_dev *hdev, const char *ddc_name)
365 {
366 	const struct firmware *fw;
367 	struct sk_buff *skb;
368 	const u8 *fw_ptr;
369 	int err;
370 
371 	err = request_firmware_direct(&fw, ddc_name, &hdev->dev);
372 	if (err < 0) {
373 		bt_dev_err(hdev, "Failed to load Intel DDC file %s (%d)",
374 			   ddc_name, err);
375 		return err;
376 	}
377 
378 	bt_dev_info(hdev, "Found Intel DDC parameters: %s", ddc_name);
379 
380 	fw_ptr = fw->data;
381 
382 	/* DDC file contains one or more DDC structure which has
383 	 * Length (1 byte), DDC ID (2 bytes), and DDC value (Length - 2).
384 	 */
385 	while (fw->size > fw_ptr - fw->data) {
386 		u8 cmd_plen = fw_ptr[0] + sizeof(u8);
387 
388 		skb = __hci_cmd_sync(hdev, 0xfc8b, cmd_plen, fw_ptr,
389 				     HCI_INIT_TIMEOUT);
390 		if (IS_ERR(skb)) {
391 			bt_dev_err(hdev, "Failed to send Intel_Write_DDC (%ld)",
392 				   PTR_ERR(skb));
393 			release_firmware(fw);
394 			return PTR_ERR(skb);
395 		}
396 
397 		fw_ptr += cmd_plen;
398 		kfree_skb(skb);
399 	}
400 
401 	release_firmware(fw);
402 
403 	bt_dev_info(hdev, "Applying Intel DDC parameters completed");
404 
405 	return 0;
406 }
407 EXPORT_SYMBOL_GPL(btintel_load_ddc_config);
408 
409 int btintel_set_event_mask_mfg(struct hci_dev *hdev, bool debug)
410 {
411 	int err, ret;
412 
413 	err = btintel_enter_mfg(hdev);
414 	if (err)
415 		return err;
416 
417 	ret = btintel_set_event_mask(hdev, debug);
418 
419 	err = btintel_exit_mfg(hdev, false, false);
420 	if (err)
421 		return err;
422 
423 	return ret;
424 }
425 EXPORT_SYMBOL_GPL(btintel_set_event_mask_mfg);
426 
427 int btintel_read_version(struct hci_dev *hdev, struct intel_version *ver)
428 {
429 	struct sk_buff *skb;
430 
431 	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
432 	if (IS_ERR(skb)) {
433 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
434 			   PTR_ERR(skb));
435 		return PTR_ERR(skb);
436 	}
437 
438 	if (!skb || skb->len != sizeof(*ver)) {
439 		bt_dev_err(hdev, "Intel version event size mismatch");
440 		kfree_skb(skb);
441 		return -EILSEQ;
442 	}
443 
444 	memcpy(ver, skb->data, sizeof(*ver));
445 
446 	kfree_skb(skb);
447 
448 	return 0;
449 }
450 EXPORT_SYMBOL_GPL(btintel_read_version);
451 
452 int btintel_version_info_tlv(struct hci_dev *hdev,
453 			     struct intel_version_tlv *version)
454 {
455 	const char *variant;
456 
457 	/* The hardware platform number has a fixed value of 0x37 and
458 	 * for now only accept this single value.
459 	 */
460 	if (INTEL_HW_PLATFORM(version->cnvi_bt) != 0x37) {
461 		bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
462 			   INTEL_HW_PLATFORM(version->cnvi_bt));
463 		return -EINVAL;
464 	}
465 
466 	/* Check for supported iBT hardware variants of this firmware
467 	 * loading method.
468 	 *
469 	 * This check has been put in place to ensure correct forward
470 	 * compatibility options when newer hardware variants come along.
471 	 */
472 	switch (INTEL_HW_VARIANT(version->cnvi_bt)) {
473 	case 0x17:	/* TyP */
474 	case 0x18:	/* Slr */
475 	case 0x19:	/* Slr-F */
476 	case 0x1b:      /* Mgr */
477 	case 0x1c:	/* Gale Peak (GaP) */
478 	case 0x1d:	/* BlazarU (BzrU) */
479 	case 0x1e:	/* BlazarI (Bzr) */
480 		break;
481 	default:
482 		bt_dev_err(hdev, "Unsupported Intel hardware variant (0x%x)",
483 			   INTEL_HW_VARIANT(version->cnvi_bt));
484 		return -EINVAL;
485 	}
486 
487 	switch (version->img_type) {
488 	case BTINTEL_IMG_BOOTLOADER:
489 		variant = "Bootloader";
490 		/* It is required that every single firmware fragment is acknowledged
491 		 * with a command complete event. If the boot parameters indicate
492 		 * that this bootloader does not send them, then abort the setup.
493 		 */
494 		if (version->limited_cce != 0x00) {
495 			bt_dev_err(hdev, "Unsupported Intel firmware loading method (0x%x)",
496 				   version->limited_cce);
497 			return -EINVAL;
498 		}
499 
500 		/* Secure boot engine type should be either 1 (ECDSA) or 0 (RSA) */
501 		if (version->sbe_type > 0x01) {
502 			bt_dev_err(hdev, "Unsupported Intel secure boot engine type (0x%x)",
503 				   version->sbe_type);
504 			return -EINVAL;
505 		}
506 
507 		bt_dev_info(hdev, "Device revision is %u", version->dev_rev_id);
508 		bt_dev_info(hdev, "Secure boot is %s",
509 			    version->secure_boot ? "enabled" : "disabled");
510 		bt_dev_info(hdev, "OTP lock is %s",
511 			    version->otp_lock ? "enabled" : "disabled");
512 		bt_dev_info(hdev, "API lock is %s",
513 			    version->api_lock ? "enabled" : "disabled");
514 		bt_dev_info(hdev, "Debug lock is %s",
515 			    version->debug_lock ? "enabled" : "disabled");
516 		bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
517 			    version->min_fw_build_nn, version->min_fw_build_cw,
518 			    2000 + version->min_fw_build_yy);
519 		break;
520 	case BTINTEL_IMG_IML:
521 		variant = "Intermediate loader";
522 		break;
523 	case BTINTEL_IMG_OP:
524 		variant = "Firmware";
525 		break;
526 	default:
527 		bt_dev_err(hdev, "Unsupported image type(%02x)", version->img_type);
528 		return -EINVAL;
529 	}
530 
531 	coredump_info.hw_variant = INTEL_HW_VARIANT(version->cnvi_bt);
532 	coredump_info.fw_build_num = version->build_num;
533 
534 	bt_dev_info(hdev, "%s timestamp %u.%u buildtype %u build %u", variant,
535 		    2000 + (version->timestamp >> 8), version->timestamp & 0xff,
536 		    version->build_type, version->build_num);
537 	if (version->img_type == BTINTEL_IMG_OP)
538 		bt_dev_info(hdev, "Firmware SHA1: 0x%8.8x", version->git_sha1);
539 
540 	return 0;
541 }
542 EXPORT_SYMBOL_GPL(btintel_version_info_tlv);
543 
544 int btintel_parse_version_tlv(struct hci_dev *hdev,
545 			      struct intel_version_tlv *version,
546 			      struct sk_buff *skb)
547 {
548 	/* Consume Command Complete Status field */
549 	skb_pull(skb, 1);
550 
551 	/* Event parameters contatin multiple TLVs. Read each of them
552 	 * and only keep the required data. Also, it use existing legacy
553 	 * version field like hw_platform, hw_variant, and fw_variant
554 	 * to keep the existing setup flow
555 	 */
556 	while (skb->len) {
557 		struct intel_tlv *tlv;
558 
559 		/* Make sure skb has a minimum length of the header */
560 		if (skb->len < sizeof(*tlv))
561 			return -EINVAL;
562 
563 		tlv = (struct intel_tlv *)skb->data;
564 
565 		/* Make sure skb has a enough data */
566 		if (skb->len < tlv->len + sizeof(*tlv))
567 			return -EINVAL;
568 
569 		switch (tlv->type) {
570 		case INTEL_TLV_CNVI_TOP:
571 			version->cnvi_top = get_unaligned_le32(tlv->val);
572 			break;
573 		case INTEL_TLV_CNVR_TOP:
574 			version->cnvr_top = get_unaligned_le32(tlv->val);
575 			break;
576 		case INTEL_TLV_CNVI_BT:
577 			version->cnvi_bt = get_unaligned_le32(tlv->val);
578 			break;
579 		case INTEL_TLV_CNVR_BT:
580 			version->cnvr_bt = get_unaligned_le32(tlv->val);
581 			break;
582 		case INTEL_TLV_DEV_REV_ID:
583 			version->dev_rev_id = get_unaligned_le16(tlv->val);
584 			break;
585 		case INTEL_TLV_IMAGE_TYPE:
586 			version->img_type = tlv->val[0];
587 			break;
588 		case INTEL_TLV_TIME_STAMP:
589 			/* If image type is Operational firmware (0x03), then
590 			 * running FW Calendar Week and Year information can
591 			 * be extracted from Timestamp information
592 			 */
593 			version->min_fw_build_cw = tlv->val[0];
594 			version->min_fw_build_yy = tlv->val[1];
595 			version->timestamp = get_unaligned_le16(tlv->val);
596 			break;
597 		case INTEL_TLV_BUILD_TYPE:
598 			version->build_type = tlv->val[0];
599 			break;
600 		case INTEL_TLV_BUILD_NUM:
601 			/* If image type is Operational firmware (0x03), then
602 			 * running FW build number can be extracted from the
603 			 * Build information
604 			 */
605 			version->min_fw_build_nn = tlv->val[0];
606 			version->build_num = get_unaligned_le32(tlv->val);
607 			break;
608 		case INTEL_TLV_SECURE_BOOT:
609 			version->secure_boot = tlv->val[0];
610 			break;
611 		case INTEL_TLV_OTP_LOCK:
612 			version->otp_lock = tlv->val[0];
613 			break;
614 		case INTEL_TLV_API_LOCK:
615 			version->api_lock = tlv->val[0];
616 			break;
617 		case INTEL_TLV_DEBUG_LOCK:
618 			version->debug_lock = tlv->val[0];
619 			break;
620 		case INTEL_TLV_MIN_FW:
621 			version->min_fw_build_nn = tlv->val[0];
622 			version->min_fw_build_cw = tlv->val[1];
623 			version->min_fw_build_yy = tlv->val[2];
624 			break;
625 		case INTEL_TLV_LIMITED_CCE:
626 			version->limited_cce = tlv->val[0];
627 			break;
628 		case INTEL_TLV_SBE_TYPE:
629 			version->sbe_type = tlv->val[0];
630 			break;
631 		case INTEL_TLV_OTP_BDADDR:
632 			memcpy(&version->otp_bd_addr, tlv->val,
633 							sizeof(bdaddr_t));
634 			break;
635 		case INTEL_TLV_GIT_SHA1:
636 			version->git_sha1 = get_unaligned_le32(tlv->val);
637 			break;
638 		case INTEL_TLV_FW_ID:
639 			snprintf(version->fw_id, sizeof(version->fw_id),
640 				 "%s", tlv->val);
641 			break;
642 		default:
643 			/* Ignore rest of information */
644 			break;
645 		}
646 		/* consume the current tlv and move to next*/
647 		skb_pull(skb, tlv->len + sizeof(*tlv));
648 	}
649 
650 	return 0;
651 }
652 EXPORT_SYMBOL_GPL(btintel_parse_version_tlv);
653 
654 static int btintel_read_version_tlv(struct hci_dev *hdev,
655 				    struct intel_version_tlv *version)
656 {
657 	struct sk_buff *skb;
658 	const u8 param[1] = { 0xFF };
659 
660 	if (!version)
661 		return -EINVAL;
662 
663 	skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
664 	if (IS_ERR(skb)) {
665 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
666 			   PTR_ERR(skb));
667 		return PTR_ERR(skb);
668 	}
669 
670 	if (skb->data[0]) {
671 		bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
672 			   skb->data[0]);
673 		kfree_skb(skb);
674 		return -EIO;
675 	}
676 
677 	btintel_parse_version_tlv(hdev, version, skb);
678 
679 	kfree_skb(skb);
680 	return 0;
681 }
682 
683 /* ------- REGMAP IBT SUPPORT ------- */
684 
685 #define IBT_REG_MODE_8BIT  0x00
686 #define IBT_REG_MODE_16BIT 0x01
687 #define IBT_REG_MODE_32BIT 0x02
688 
689 struct regmap_ibt_context {
690 	struct hci_dev *hdev;
691 	__u16 op_write;
692 	__u16 op_read;
693 };
694 
695 struct ibt_cp_reg_access {
696 	__le32  addr;
697 	__u8    mode;
698 	__u8    len;
699 	__u8    data[];
700 } __packed;
701 
702 struct ibt_rp_reg_access {
703 	__u8    status;
704 	__le32  addr;
705 	__u8    data[];
706 } __packed;
707 
708 static int regmap_ibt_read(void *context, const void *addr, size_t reg_size,
709 			   void *val, size_t val_size)
710 {
711 	struct regmap_ibt_context *ctx = context;
712 	struct ibt_cp_reg_access cp;
713 	struct ibt_rp_reg_access *rp;
714 	struct sk_buff *skb;
715 	int err = 0;
716 
717 	if (reg_size != sizeof(__le32))
718 		return -EINVAL;
719 
720 	switch (val_size) {
721 	case 1:
722 		cp.mode = IBT_REG_MODE_8BIT;
723 		break;
724 	case 2:
725 		cp.mode = IBT_REG_MODE_16BIT;
726 		break;
727 	case 4:
728 		cp.mode = IBT_REG_MODE_32BIT;
729 		break;
730 	default:
731 		return -EINVAL;
732 	}
733 
734 	/* regmap provides a little-endian formatted addr */
735 	cp.addr = *(__le32 *)addr;
736 	cp.len = val_size;
737 
738 	bt_dev_dbg(ctx->hdev, "Register (0x%x) read", le32_to_cpu(cp.addr));
739 
740 	skb = hci_cmd_sync(ctx->hdev, ctx->op_read, sizeof(cp), &cp,
741 			   HCI_CMD_TIMEOUT);
742 	if (IS_ERR(skb)) {
743 		err = PTR_ERR(skb);
744 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error (%d)",
745 			   le32_to_cpu(cp.addr), err);
746 		return err;
747 	}
748 
749 	if (skb->len != sizeof(*rp) + val_size) {
750 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad len",
751 			   le32_to_cpu(cp.addr));
752 		err = -EINVAL;
753 		goto done;
754 	}
755 
756 	rp = (struct ibt_rp_reg_access *)skb->data;
757 
758 	if (rp->addr != cp.addr) {
759 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad addr",
760 			   le32_to_cpu(rp->addr));
761 		err = -EINVAL;
762 		goto done;
763 	}
764 
765 	memcpy(val, rp->data, val_size);
766 
767 done:
768 	kfree_skb(skb);
769 	return err;
770 }
771 
772 static int regmap_ibt_gather_write(void *context,
773 				   const void *addr, size_t reg_size,
774 				   const void *val, size_t val_size)
775 {
776 	struct regmap_ibt_context *ctx = context;
777 	struct ibt_cp_reg_access *cp;
778 	struct sk_buff *skb;
779 	int plen = sizeof(*cp) + val_size;
780 	u8 mode;
781 	int err = 0;
782 
783 	if (reg_size != sizeof(__le32))
784 		return -EINVAL;
785 
786 	switch (val_size) {
787 	case 1:
788 		mode = IBT_REG_MODE_8BIT;
789 		break;
790 	case 2:
791 		mode = IBT_REG_MODE_16BIT;
792 		break;
793 	case 4:
794 		mode = IBT_REG_MODE_32BIT;
795 		break;
796 	default:
797 		return -EINVAL;
798 	}
799 
800 	cp = kmalloc(plen, GFP_KERNEL);
801 	if (!cp)
802 		return -ENOMEM;
803 
804 	/* regmap provides a little-endian formatted addr/value */
805 	cp->addr = *(__le32 *)addr;
806 	cp->mode = mode;
807 	cp->len = val_size;
808 	memcpy(&cp->data, val, val_size);
809 
810 	bt_dev_dbg(ctx->hdev, "Register (0x%x) write", le32_to_cpu(cp->addr));
811 
812 	skb = hci_cmd_sync(ctx->hdev, ctx->op_write, plen, cp, HCI_CMD_TIMEOUT);
813 	if (IS_ERR(skb)) {
814 		err = PTR_ERR(skb);
815 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) write error (%d)",
816 			   le32_to_cpu(cp->addr), err);
817 		goto done;
818 	}
819 	kfree_skb(skb);
820 
821 done:
822 	kfree(cp);
823 	return err;
824 }
825 
826 static int regmap_ibt_write(void *context, const void *data, size_t count)
827 {
828 	/* data contains register+value, since we only support 32bit addr,
829 	 * minimum data size is 4 bytes.
830 	 */
831 	if (WARN_ONCE(count < 4, "Invalid register access"))
832 		return -EINVAL;
833 
834 	return regmap_ibt_gather_write(context, data, 4, data + 4, count - 4);
835 }
836 
837 static void regmap_ibt_free_context(void *context)
838 {
839 	kfree(context);
840 }
841 
842 static const struct regmap_bus regmap_ibt = {
843 	.read = regmap_ibt_read,
844 	.write = regmap_ibt_write,
845 	.gather_write = regmap_ibt_gather_write,
846 	.free_context = regmap_ibt_free_context,
847 	.reg_format_endian_default = REGMAP_ENDIAN_LITTLE,
848 	.val_format_endian_default = REGMAP_ENDIAN_LITTLE,
849 };
850 
851 /* Config is the same for all register regions */
852 static const struct regmap_config regmap_ibt_cfg = {
853 	.name      = "btintel_regmap",
854 	.reg_bits  = 32,
855 	.val_bits  = 32,
856 };
857 
858 struct regmap *btintel_regmap_init(struct hci_dev *hdev, u16 opcode_read,
859 				   u16 opcode_write)
860 {
861 	struct regmap_ibt_context *ctx;
862 
863 	bt_dev_info(hdev, "regmap: Init R%x-W%x region", opcode_read,
864 		    opcode_write);
865 
866 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
867 	if (!ctx)
868 		return ERR_PTR(-ENOMEM);
869 
870 	ctx->op_read = opcode_read;
871 	ctx->op_write = opcode_write;
872 	ctx->hdev = hdev;
873 
874 	return regmap_init(&hdev->dev, &regmap_ibt, ctx, &regmap_ibt_cfg);
875 }
876 EXPORT_SYMBOL_GPL(btintel_regmap_init);
877 
878 int btintel_send_intel_reset(struct hci_dev *hdev, u32 boot_param)
879 {
880 	struct intel_reset params = { 0x00, 0x01, 0x00, 0x01, 0x00000000 };
881 	struct sk_buff *skb;
882 
883 	params.boot_param = cpu_to_le32(boot_param);
884 
885 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), &params,
886 			     HCI_INIT_TIMEOUT);
887 	if (IS_ERR(skb)) {
888 		bt_dev_err(hdev, "Failed to send Intel Reset command");
889 		return PTR_ERR(skb);
890 	}
891 
892 	kfree_skb(skb);
893 
894 	return 0;
895 }
896 EXPORT_SYMBOL_GPL(btintel_send_intel_reset);
897 
898 int btintel_read_boot_params(struct hci_dev *hdev,
899 			     struct intel_boot_params *params)
900 {
901 	struct sk_buff *skb;
902 
903 	skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
904 	if (IS_ERR(skb)) {
905 		bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
906 			   PTR_ERR(skb));
907 		return PTR_ERR(skb);
908 	}
909 
910 	if (skb->len != sizeof(*params)) {
911 		bt_dev_err(hdev, "Intel boot parameters size mismatch");
912 		kfree_skb(skb);
913 		return -EILSEQ;
914 	}
915 
916 	memcpy(params, skb->data, sizeof(*params));
917 
918 	kfree_skb(skb);
919 
920 	if (params->status) {
921 		bt_dev_err(hdev, "Intel boot parameters command failed (%02x)",
922 			   params->status);
923 		return -bt_to_errno(params->status);
924 	}
925 
926 	bt_dev_info(hdev, "Device revision is %u",
927 		    le16_to_cpu(params->dev_revid));
928 
929 	bt_dev_info(hdev, "Secure boot is %s",
930 		    params->secure_boot ? "enabled" : "disabled");
931 
932 	bt_dev_info(hdev, "OTP lock is %s",
933 		    params->otp_lock ? "enabled" : "disabled");
934 
935 	bt_dev_info(hdev, "API lock is %s",
936 		    params->api_lock ? "enabled" : "disabled");
937 
938 	bt_dev_info(hdev, "Debug lock is %s",
939 		    params->debug_lock ? "enabled" : "disabled");
940 
941 	bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
942 		    params->min_fw_build_nn, params->min_fw_build_cw,
943 		    2000 + params->min_fw_build_yy);
944 
945 	return 0;
946 }
947 EXPORT_SYMBOL_GPL(btintel_read_boot_params);
948 
949 static int btintel_sfi_rsa_header_secure_send(struct hci_dev *hdev,
950 					      const struct firmware *fw)
951 {
952 	int err;
953 
954 	/* Start the firmware download transaction with the Init fragment
955 	 * represented by the 128 bytes of CSS header.
956 	 */
957 	err = btintel_secure_send(hdev, 0x00, 128, fw->data);
958 	if (err < 0) {
959 		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
960 		goto done;
961 	}
962 
963 	/* Send the 256 bytes of public key information from the firmware
964 	 * as the PKey fragment.
965 	 */
966 	err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
967 	if (err < 0) {
968 		bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
969 		goto done;
970 	}
971 
972 	/* Send the 256 bytes of signature information from the firmware
973 	 * as the Sign fragment.
974 	 */
975 	err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
976 	if (err < 0) {
977 		bt_dev_err(hdev, "Failed to send firmware signature (%d)", err);
978 		goto done;
979 	}
980 
981 done:
982 	return err;
983 }
984 
985 static int btintel_sfi_ecdsa_header_secure_send(struct hci_dev *hdev,
986 						const struct firmware *fw)
987 {
988 	int err;
989 
990 	/* Start the firmware download transaction with the Init fragment
991 	 * represented by the 128 bytes of CSS header.
992 	 */
993 	err = btintel_secure_send(hdev, 0x00, 128, fw->data + 644);
994 	if (err < 0) {
995 		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
996 		return err;
997 	}
998 
999 	/* Send the 96 bytes of public key information from the firmware
1000 	 * as the PKey fragment.
1001 	 */
1002 	err = btintel_secure_send(hdev, 0x03, 96, fw->data + 644 + 128);
1003 	if (err < 0) {
1004 		bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
1005 		return err;
1006 	}
1007 
1008 	/* Send the 96 bytes of signature information from the firmware
1009 	 * as the Sign fragment
1010 	 */
1011 	err = btintel_secure_send(hdev, 0x02, 96, fw->data + 644 + 224);
1012 	if (err < 0) {
1013 		bt_dev_err(hdev, "Failed to send firmware signature (%d)",
1014 			   err);
1015 		return err;
1016 	}
1017 	return 0;
1018 }
1019 
1020 static int btintel_download_firmware_payload(struct hci_dev *hdev,
1021 					     const struct firmware *fw,
1022 					     size_t offset)
1023 {
1024 	int err;
1025 	const u8 *fw_ptr;
1026 	u32 frag_len;
1027 
1028 	fw_ptr = fw->data + offset;
1029 	frag_len = 0;
1030 	err = -EINVAL;
1031 
1032 	while (fw_ptr - fw->data < fw->size) {
1033 		struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
1034 
1035 		frag_len += sizeof(*cmd) + cmd->plen;
1036 
1037 		/* The parameter length of the secure send command requires
1038 		 * a 4 byte alignment. It happens so that the firmware file
1039 		 * contains proper Intel_NOP commands to align the fragments
1040 		 * as needed.
1041 		 *
1042 		 * Send set of commands with 4 byte alignment from the
1043 		 * firmware data buffer as a single Data fragement.
1044 		 */
1045 		if (!(frag_len % 4)) {
1046 			err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
1047 			if (err < 0) {
1048 				bt_dev_err(hdev,
1049 					   "Failed to send firmware data (%d)",
1050 					   err);
1051 				goto done;
1052 			}
1053 
1054 			fw_ptr += frag_len;
1055 			frag_len = 0;
1056 		}
1057 	}
1058 
1059 done:
1060 	return err;
1061 }
1062 
1063 static bool btintel_firmware_version(struct hci_dev *hdev,
1064 				     u8 num, u8 ww, u8 yy,
1065 				     const struct firmware *fw,
1066 				     u32 *boot_addr)
1067 {
1068 	const u8 *fw_ptr;
1069 
1070 	fw_ptr = fw->data;
1071 
1072 	while (fw_ptr - fw->data < fw->size) {
1073 		struct hci_command_hdr *cmd = (void *)(fw_ptr);
1074 
1075 		/* Each SKU has a different reset parameter to use in the
1076 		 * HCI_Intel_Reset command and it is embedded in the firmware
1077 		 * data. So, instead of using static value per SKU, check
1078 		 * the firmware data and save it for later use.
1079 		 */
1080 		if (le16_to_cpu(cmd->opcode) == CMD_WRITE_BOOT_PARAMS) {
1081 			struct cmd_write_boot_params *params;
1082 
1083 			params = (void *)(fw_ptr + sizeof(*cmd));
1084 
1085 			*boot_addr = le32_to_cpu(params->boot_addr);
1086 
1087 			bt_dev_info(hdev, "Boot Address: 0x%x", *boot_addr);
1088 
1089 			bt_dev_info(hdev, "Firmware Version: %u-%u.%u",
1090 				    params->fw_build_num, params->fw_build_ww,
1091 				    params->fw_build_yy);
1092 
1093 			return (num == params->fw_build_num &&
1094 				ww == params->fw_build_ww &&
1095 				yy == params->fw_build_yy);
1096 		}
1097 
1098 		fw_ptr += sizeof(*cmd) + cmd->plen;
1099 	}
1100 
1101 	return false;
1102 }
1103 
1104 int btintel_download_firmware(struct hci_dev *hdev,
1105 			      struct intel_version *ver,
1106 			      const struct firmware *fw,
1107 			      u32 *boot_param)
1108 {
1109 	int err;
1110 
1111 	/* SfP and WsP don't seem to update the firmware version on file
1112 	 * so version checking is currently not possible.
1113 	 */
1114 	switch (ver->hw_variant) {
1115 	case 0x0b:	/* SfP */
1116 	case 0x0c:	/* WsP */
1117 		/* Skip version checking */
1118 		break;
1119 	default:
1120 
1121 		/* Skip download if firmware has the same version */
1122 		if (btintel_firmware_version(hdev, ver->fw_build_num,
1123 					     ver->fw_build_ww, ver->fw_build_yy,
1124 					     fw, boot_param)) {
1125 			bt_dev_info(hdev, "Firmware already loaded");
1126 			/* Return -EALREADY to indicate that the firmware has
1127 			 * already been loaded.
1128 			 */
1129 			return -EALREADY;
1130 		}
1131 	}
1132 
1133 	/* The firmware variant determines if the device is in bootloader
1134 	 * mode or is running operational firmware. The value 0x06 identifies
1135 	 * the bootloader and the value 0x23 identifies the operational
1136 	 * firmware.
1137 	 *
1138 	 * If the firmware version has changed that means it needs to be reset
1139 	 * to bootloader when operational so the new firmware can be loaded.
1140 	 */
1141 	if (ver->fw_variant == 0x23)
1142 		return -EINVAL;
1143 
1144 	err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1145 	if (err)
1146 		return err;
1147 
1148 	return btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
1149 }
1150 EXPORT_SYMBOL_GPL(btintel_download_firmware);
1151 
1152 static int btintel_download_fw_tlv(struct hci_dev *hdev,
1153 				   struct intel_version_tlv *ver,
1154 				   const struct firmware *fw, u32 *boot_param,
1155 				   u8 hw_variant, u8 sbe_type)
1156 {
1157 	int err;
1158 	u32 css_header_ver;
1159 
1160 	/* Skip download if firmware has the same version */
1161 	if (btintel_firmware_version(hdev, ver->min_fw_build_nn,
1162 				     ver->min_fw_build_cw,
1163 				     ver->min_fw_build_yy,
1164 				     fw, boot_param)) {
1165 		bt_dev_info(hdev, "Firmware already loaded");
1166 		/* Return -EALREADY to indicate that firmware has
1167 		 * already been loaded.
1168 		 */
1169 		return -EALREADY;
1170 	}
1171 
1172 	/* The firmware variant determines if the device is in bootloader
1173 	 * mode or is running operational firmware. The value 0x01 identifies
1174 	 * the bootloader and the value 0x03 identifies the operational
1175 	 * firmware.
1176 	 *
1177 	 * If the firmware version has changed that means it needs to be reset
1178 	 * to bootloader when operational so the new firmware can be loaded.
1179 	 */
1180 	if (ver->img_type == BTINTEL_IMG_OP)
1181 		return -EINVAL;
1182 
1183 	/* iBT hardware variants 0x0b, 0x0c, 0x11, 0x12, 0x13, 0x14 support
1184 	 * only RSA secure boot engine. Hence, the corresponding sfi file will
1185 	 * have RSA header of 644 bytes followed by Command Buffer.
1186 	 *
1187 	 * iBT hardware variants 0x17, 0x18 onwards support both RSA and ECDSA
1188 	 * secure boot engine. As a result, the corresponding sfi file will
1189 	 * have RSA header of 644, ECDSA header of 320 bytes followed by
1190 	 * Command Buffer.
1191 	 *
1192 	 * CSS Header byte positions 0x08 to 0x0B represent the CSS Header
1193 	 * version: RSA(0x00010000) , ECDSA (0x00020000)
1194 	 */
1195 	css_header_ver = get_unaligned_le32(fw->data + CSS_HEADER_OFFSET);
1196 	if (css_header_ver != 0x00010000) {
1197 		bt_dev_err(hdev, "Invalid CSS Header version");
1198 		return -EINVAL;
1199 	}
1200 
1201 	if (hw_variant <= 0x14) {
1202 		if (sbe_type != 0x00) {
1203 			bt_dev_err(hdev, "Invalid SBE type for hardware variant (%d)",
1204 				   hw_variant);
1205 			return -EINVAL;
1206 		}
1207 
1208 		err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1209 		if (err)
1210 			return err;
1211 
1212 		err = btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
1213 		if (err)
1214 			return err;
1215 	} else if (hw_variant >= 0x17) {
1216 		/* Check if CSS header for ECDSA follows the RSA header */
1217 		if (fw->data[ECDSA_OFFSET] != 0x06)
1218 			return -EINVAL;
1219 
1220 		/* Check if the CSS Header version is ECDSA(0x00020000) */
1221 		css_header_ver = get_unaligned_le32(fw->data + ECDSA_OFFSET + CSS_HEADER_OFFSET);
1222 		if (css_header_ver != 0x00020000) {
1223 			bt_dev_err(hdev, "Invalid CSS Header version");
1224 			return -EINVAL;
1225 		}
1226 
1227 		if (sbe_type == 0x00) {
1228 			err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1229 			if (err)
1230 				return err;
1231 
1232 			err = btintel_download_firmware_payload(hdev, fw,
1233 								RSA_HEADER_LEN + ECDSA_HEADER_LEN);
1234 			if (err)
1235 				return err;
1236 		} else if (sbe_type == 0x01) {
1237 			err = btintel_sfi_ecdsa_header_secure_send(hdev, fw);
1238 			if (err)
1239 				return err;
1240 
1241 			err = btintel_download_firmware_payload(hdev, fw,
1242 								RSA_HEADER_LEN + ECDSA_HEADER_LEN);
1243 			if (err)
1244 				return err;
1245 		}
1246 	}
1247 	return 0;
1248 }
1249 
1250 static void btintel_reset_to_bootloader(struct hci_dev *hdev)
1251 {
1252 	struct intel_reset params;
1253 	struct sk_buff *skb;
1254 
1255 	/* Send Intel Reset command. This will result in
1256 	 * re-enumeration of BT controller.
1257 	 *
1258 	 * Intel Reset parameter description:
1259 	 * reset_type :   0x00 (Soft reset),
1260 	 *		  0x01 (Hard reset)
1261 	 * patch_enable : 0x00 (Do not enable),
1262 	 *		  0x01 (Enable)
1263 	 * ddc_reload :   0x00 (Do not reload),
1264 	 *		  0x01 (Reload)
1265 	 * boot_option:   0x00 (Current image),
1266 	 *                0x01 (Specified boot address)
1267 	 * boot_param:    Boot address
1268 	 *
1269 	 */
1270 	params.reset_type = 0x01;
1271 	params.patch_enable = 0x01;
1272 	params.ddc_reload = 0x01;
1273 	params.boot_option = 0x00;
1274 	params.boot_param = cpu_to_le32(0x00000000);
1275 
1276 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params),
1277 			     &params, HCI_INIT_TIMEOUT);
1278 	if (IS_ERR(skb)) {
1279 		bt_dev_err(hdev, "FW download error recovery failed (%ld)",
1280 			   PTR_ERR(skb));
1281 		return;
1282 	}
1283 	bt_dev_info(hdev, "Intel reset sent to retry FW download");
1284 	kfree_skb(skb);
1285 
1286 	/* Current Intel BT controllers(ThP/JfP) hold the USB reset
1287 	 * lines for 2ms when it receives Intel Reset in bootloader mode.
1288 	 * Whereas, the upcoming Intel BT controllers will hold USB reset
1289 	 * for 150ms. To keep the delay generic, 150ms is chosen here.
1290 	 */
1291 	msleep(150);
1292 }
1293 
1294 static int btintel_read_debug_features(struct hci_dev *hdev,
1295 				       struct intel_debug_features *features)
1296 {
1297 	struct sk_buff *skb;
1298 	u8 page_no = 1;
1299 
1300 	/* Intel controller supports two pages, each page is of 128-bit
1301 	 * feature bit mask. And each bit defines specific feature support
1302 	 */
1303 	skb = __hci_cmd_sync(hdev, 0xfca6, sizeof(page_no), &page_no,
1304 			     HCI_INIT_TIMEOUT);
1305 	if (IS_ERR(skb)) {
1306 		bt_dev_err(hdev, "Reading supported features failed (%ld)",
1307 			   PTR_ERR(skb));
1308 		return PTR_ERR(skb);
1309 	}
1310 
1311 	if (skb->len != (sizeof(features->page1) + 3)) {
1312 		bt_dev_err(hdev, "Supported features event size mismatch");
1313 		kfree_skb(skb);
1314 		return -EILSEQ;
1315 	}
1316 
1317 	memcpy(features->page1, skb->data + 3, sizeof(features->page1));
1318 
1319 	/* Read the supported features page2 if required in future.
1320 	 */
1321 	kfree_skb(skb);
1322 	return 0;
1323 }
1324 
1325 static int btintel_set_debug_features(struct hci_dev *hdev,
1326 			       const struct intel_debug_features *features)
1327 {
1328 	u8 mask[11] = { 0x0a, 0x92, 0x02, 0x7f, 0x00, 0x00, 0x00, 0x00,
1329 			0x00, 0x00, 0x00 };
1330 	u8 period[5] = { 0x04, 0x91, 0x02, 0x05, 0x00 };
1331 	u8 trace_enable = 0x02;
1332 	struct sk_buff *skb;
1333 
1334 	if (!features) {
1335 		bt_dev_warn(hdev, "Debug features not read");
1336 		return -EINVAL;
1337 	}
1338 
1339 	if (!(features->page1[0] & 0x3f)) {
1340 		bt_dev_info(hdev, "Telemetry exception format not supported");
1341 		return 0;
1342 	}
1343 
1344 	skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
1345 	if (IS_ERR(skb)) {
1346 		bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
1347 			   PTR_ERR(skb));
1348 		return PTR_ERR(skb);
1349 	}
1350 	kfree_skb(skb);
1351 
1352 	skb = __hci_cmd_sync(hdev, 0xfc8b, 5, period, HCI_INIT_TIMEOUT);
1353 	if (IS_ERR(skb)) {
1354 		bt_dev_err(hdev, "Setting periodicity for link statistics traces failed (%ld)",
1355 			   PTR_ERR(skb));
1356 		return PTR_ERR(skb);
1357 	}
1358 	kfree_skb(skb);
1359 
1360 	skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT);
1361 	if (IS_ERR(skb)) {
1362 		bt_dev_err(hdev, "Enable tracing of link statistics events failed (%ld)",
1363 			   PTR_ERR(skb));
1364 		return PTR_ERR(skb);
1365 	}
1366 	kfree_skb(skb);
1367 
1368 	bt_dev_info(hdev, "set debug features: trace_enable 0x%02x mask 0x%02x",
1369 		    trace_enable, mask[3]);
1370 
1371 	return 0;
1372 }
1373 
1374 static int btintel_reset_debug_features(struct hci_dev *hdev,
1375 				 const struct intel_debug_features *features)
1376 {
1377 	u8 mask[11] = { 0x0a, 0x92, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,
1378 			0x00, 0x00, 0x00 };
1379 	u8 trace_enable = 0x00;
1380 	struct sk_buff *skb;
1381 
1382 	if (!features) {
1383 		bt_dev_warn(hdev, "Debug features not read");
1384 		return -EINVAL;
1385 	}
1386 
1387 	if (!(features->page1[0] & 0x3f)) {
1388 		bt_dev_info(hdev, "Telemetry exception format not supported");
1389 		return 0;
1390 	}
1391 
1392 	/* Should stop the trace before writing ddc event mask. */
1393 	skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT);
1394 	if (IS_ERR(skb)) {
1395 		bt_dev_err(hdev, "Stop tracing of link statistics events failed (%ld)",
1396 			   PTR_ERR(skb));
1397 		return PTR_ERR(skb);
1398 	}
1399 	kfree_skb(skb);
1400 
1401 	skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
1402 	if (IS_ERR(skb)) {
1403 		bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
1404 			   PTR_ERR(skb));
1405 		return PTR_ERR(skb);
1406 	}
1407 	kfree_skb(skb);
1408 
1409 	bt_dev_info(hdev, "reset debug features: trace_enable 0x%02x mask 0x%02x",
1410 		    trace_enable, mask[3]);
1411 
1412 	return 0;
1413 }
1414 
1415 int btintel_set_quality_report(struct hci_dev *hdev, bool enable)
1416 {
1417 	struct intel_debug_features features;
1418 	int err;
1419 
1420 	bt_dev_dbg(hdev, "enable %d", enable);
1421 
1422 	/* Read the Intel supported features and if new exception formats
1423 	 * supported, need to load the additional DDC config to enable.
1424 	 */
1425 	err = btintel_read_debug_features(hdev, &features);
1426 	if (err)
1427 		return err;
1428 
1429 	/* Set or reset the debug features. */
1430 	if (enable)
1431 		err = btintel_set_debug_features(hdev, &features);
1432 	else
1433 		err = btintel_reset_debug_features(hdev, &features);
1434 
1435 	return err;
1436 }
1437 EXPORT_SYMBOL_GPL(btintel_set_quality_report);
1438 
1439 static void btintel_coredump(struct hci_dev *hdev)
1440 {
1441 	struct sk_buff *skb;
1442 
1443 	skb = __hci_cmd_sync(hdev, 0xfc4e, 0, NULL, HCI_CMD_TIMEOUT);
1444 	if (IS_ERR(skb)) {
1445 		bt_dev_err(hdev, "Coredump failed (%ld)", PTR_ERR(skb));
1446 		return;
1447 	}
1448 
1449 	kfree_skb(skb);
1450 }
1451 
1452 static void btintel_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb)
1453 {
1454 	char buf[80];
1455 
1456 	snprintf(buf, sizeof(buf), "Controller Name: 0x%X\n",
1457 		 coredump_info.hw_variant);
1458 	skb_put_data(skb, buf, strlen(buf));
1459 
1460 	snprintf(buf, sizeof(buf), "Firmware Version: 0x%X\n",
1461 		 coredump_info.fw_build_num);
1462 	skb_put_data(skb, buf, strlen(buf));
1463 
1464 	snprintf(buf, sizeof(buf), "Driver: %s\n", coredump_info.driver_name);
1465 	skb_put_data(skb, buf, strlen(buf));
1466 
1467 	snprintf(buf, sizeof(buf), "Vendor: Intel\n");
1468 	skb_put_data(skb, buf, strlen(buf));
1469 }
1470 
1471 static int btintel_register_devcoredump_support(struct hci_dev *hdev)
1472 {
1473 	struct intel_debug_features features;
1474 	int err;
1475 
1476 	err = btintel_read_debug_features(hdev, &features);
1477 	if (err) {
1478 		bt_dev_info(hdev, "Error reading debug features");
1479 		return err;
1480 	}
1481 
1482 	if (!(features.page1[0] & 0x3f)) {
1483 		bt_dev_dbg(hdev, "Telemetry exception format not supported");
1484 		return -EOPNOTSUPP;
1485 	}
1486 
1487 	hci_devcd_register(hdev, btintel_coredump, btintel_dmp_hdr, NULL);
1488 
1489 	return err;
1490 }
1491 
1492 static const struct firmware *btintel_legacy_rom_get_fw(struct hci_dev *hdev,
1493 					       struct intel_version *ver)
1494 {
1495 	const struct firmware *fw;
1496 	char fwname[64];
1497 	int ret;
1498 
1499 	snprintf(fwname, sizeof(fwname),
1500 		 "intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq",
1501 		 ver->hw_platform, ver->hw_variant, ver->hw_revision,
1502 		 ver->fw_variant,  ver->fw_revision, ver->fw_build_num,
1503 		 ver->fw_build_ww, ver->fw_build_yy);
1504 
1505 	ret = request_firmware(&fw, fwname, &hdev->dev);
1506 	if (ret < 0) {
1507 		if (ret == -EINVAL) {
1508 			bt_dev_err(hdev, "Intel firmware file request failed (%d)",
1509 				   ret);
1510 			return NULL;
1511 		}
1512 
1513 		bt_dev_err(hdev, "failed to open Intel firmware file: %s (%d)",
1514 			   fwname, ret);
1515 
1516 		/* If the correct firmware patch file is not found, use the
1517 		 * default firmware patch file instead
1518 		 */
1519 		snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.bseq",
1520 			 ver->hw_platform, ver->hw_variant);
1521 		if (request_firmware(&fw, fwname, &hdev->dev) < 0) {
1522 			bt_dev_err(hdev, "failed to open default fw file: %s",
1523 				   fwname);
1524 			return NULL;
1525 		}
1526 	}
1527 
1528 	bt_dev_info(hdev, "Intel Bluetooth firmware file: %s", fwname);
1529 
1530 	return fw;
1531 }
1532 
1533 static int btintel_legacy_rom_patching(struct hci_dev *hdev,
1534 				      const struct firmware *fw,
1535 				      const u8 **fw_ptr, int *disable_patch)
1536 {
1537 	struct sk_buff *skb;
1538 	struct hci_command_hdr *cmd;
1539 	const u8 *cmd_param;
1540 	struct hci_event_hdr *evt = NULL;
1541 	const u8 *evt_param = NULL;
1542 	int remain = fw->size - (*fw_ptr - fw->data);
1543 
1544 	/* The first byte indicates the types of the patch command or event.
1545 	 * 0x01 means HCI command and 0x02 is HCI event. If the first bytes
1546 	 * in the current firmware buffer doesn't start with 0x01 or
1547 	 * the size of remain buffer is smaller than HCI command header,
1548 	 * the firmware file is corrupted and it should stop the patching
1549 	 * process.
1550 	 */
1551 	if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) {
1552 		bt_dev_err(hdev, "Intel fw corrupted: invalid cmd read");
1553 		return -EINVAL;
1554 	}
1555 	(*fw_ptr)++;
1556 	remain--;
1557 
1558 	cmd = (struct hci_command_hdr *)(*fw_ptr);
1559 	*fw_ptr += sizeof(*cmd);
1560 	remain -= sizeof(*cmd);
1561 
1562 	/* Ensure that the remain firmware data is long enough than the length
1563 	 * of command parameter. If not, the firmware file is corrupted.
1564 	 */
1565 	if (remain < cmd->plen) {
1566 		bt_dev_err(hdev, "Intel fw corrupted: invalid cmd len");
1567 		return -EFAULT;
1568 	}
1569 
1570 	/* If there is a command that loads a patch in the firmware
1571 	 * file, then enable the patch upon success, otherwise just
1572 	 * disable the manufacturer mode, for example patch activation
1573 	 * is not required when the default firmware patch file is used
1574 	 * because there are no patch data to load.
1575 	 */
1576 	if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e)
1577 		*disable_patch = 0;
1578 
1579 	cmd_param = *fw_ptr;
1580 	*fw_ptr += cmd->plen;
1581 	remain -= cmd->plen;
1582 
1583 	/* This reads the expected events when the above command is sent to the
1584 	 * device. Some vendor commands expects more than one events, for
1585 	 * example command status event followed by vendor specific event.
1586 	 * For this case, it only keeps the last expected event. so the command
1587 	 * can be sent with __hci_cmd_sync_ev() which returns the sk_buff of
1588 	 * last expected event.
1589 	 */
1590 	while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) {
1591 		(*fw_ptr)++;
1592 		remain--;
1593 
1594 		evt = (struct hci_event_hdr *)(*fw_ptr);
1595 		*fw_ptr += sizeof(*evt);
1596 		remain -= sizeof(*evt);
1597 
1598 		if (remain < evt->plen) {
1599 			bt_dev_err(hdev, "Intel fw corrupted: invalid evt len");
1600 			return -EFAULT;
1601 		}
1602 
1603 		evt_param = *fw_ptr;
1604 		*fw_ptr += evt->plen;
1605 		remain -= evt->plen;
1606 	}
1607 
1608 	/* Every HCI commands in the firmware file has its correspond event.
1609 	 * If event is not found or remain is smaller than zero, the firmware
1610 	 * file is corrupted.
1611 	 */
1612 	if (!evt || !evt_param || remain < 0) {
1613 		bt_dev_err(hdev, "Intel fw corrupted: invalid evt read");
1614 		return -EFAULT;
1615 	}
1616 
1617 	skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), cmd->plen,
1618 				cmd_param, evt->evt, HCI_INIT_TIMEOUT);
1619 	if (IS_ERR(skb)) {
1620 		bt_dev_err(hdev, "sending Intel patch command (0x%4.4x) failed (%ld)",
1621 			   cmd->opcode, PTR_ERR(skb));
1622 		return PTR_ERR(skb);
1623 	}
1624 
1625 	/* It ensures that the returned event matches the event data read from
1626 	 * the firmware file. At fist, it checks the length and then
1627 	 * the contents of the event.
1628 	 */
1629 	if (skb->len != evt->plen) {
1630 		bt_dev_err(hdev, "mismatch event length (opcode 0x%4.4x)",
1631 			   le16_to_cpu(cmd->opcode));
1632 		kfree_skb(skb);
1633 		return -EFAULT;
1634 	}
1635 
1636 	if (memcmp(skb->data, evt_param, evt->plen)) {
1637 		bt_dev_err(hdev, "mismatch event parameter (opcode 0x%4.4x)",
1638 			   le16_to_cpu(cmd->opcode));
1639 		kfree_skb(skb);
1640 		return -EFAULT;
1641 	}
1642 	kfree_skb(skb);
1643 
1644 	return 0;
1645 }
1646 
1647 static int btintel_legacy_rom_setup(struct hci_dev *hdev,
1648 				    struct intel_version *ver)
1649 {
1650 	const struct firmware *fw;
1651 	const u8 *fw_ptr;
1652 	int disable_patch, err;
1653 	struct intel_version new_ver;
1654 
1655 	BT_DBG("%s", hdev->name);
1656 
1657 	/* fw_patch_num indicates the version of patch the device currently
1658 	 * have. If there is no patch data in the device, it is always 0x00.
1659 	 * So, if it is other than 0x00, no need to patch the device again.
1660 	 */
1661 	if (ver->fw_patch_num) {
1662 		bt_dev_info(hdev,
1663 			    "Intel device is already patched. patch num: %02x",
1664 			    ver->fw_patch_num);
1665 		goto complete;
1666 	}
1667 
1668 	/* Opens the firmware patch file based on the firmware version read
1669 	 * from the controller. If it fails to open the matching firmware
1670 	 * patch file, it tries to open the default firmware patch file.
1671 	 * If no patch file is found, allow the device to operate without
1672 	 * a patch.
1673 	 */
1674 	fw = btintel_legacy_rom_get_fw(hdev, ver);
1675 	if (!fw)
1676 		goto complete;
1677 	fw_ptr = fw->data;
1678 
1679 	/* Enable the manufacturer mode of the controller.
1680 	 * Only while this mode is enabled, the driver can download the
1681 	 * firmware patch data and configuration parameters.
1682 	 */
1683 	err = btintel_enter_mfg(hdev);
1684 	if (err) {
1685 		release_firmware(fw);
1686 		return err;
1687 	}
1688 
1689 	disable_patch = 1;
1690 
1691 	/* The firmware data file consists of list of Intel specific HCI
1692 	 * commands and its expected events. The first byte indicates the
1693 	 * type of the message, either HCI command or HCI event.
1694 	 *
1695 	 * It reads the command and its expected event from the firmware file,
1696 	 * and send to the controller. Once __hci_cmd_sync_ev() returns,
1697 	 * the returned event is compared with the event read from the firmware
1698 	 * file and it will continue until all the messages are downloaded to
1699 	 * the controller.
1700 	 *
1701 	 * Once the firmware patching is completed successfully,
1702 	 * the manufacturer mode is disabled with reset and activating the
1703 	 * downloaded patch.
1704 	 *
1705 	 * If the firmware patching fails, the manufacturer mode is
1706 	 * disabled with reset and deactivating the patch.
1707 	 *
1708 	 * If the default patch file is used, no reset is done when disabling
1709 	 * the manufacturer.
1710 	 */
1711 	while (fw->size > fw_ptr - fw->data) {
1712 		int ret;
1713 
1714 		ret = btintel_legacy_rom_patching(hdev, fw, &fw_ptr,
1715 						 &disable_patch);
1716 		if (ret < 0)
1717 			goto exit_mfg_deactivate;
1718 	}
1719 
1720 	release_firmware(fw);
1721 
1722 	if (disable_patch)
1723 		goto exit_mfg_disable;
1724 
1725 	/* Patching completed successfully and disable the manufacturer mode
1726 	 * with reset and activate the downloaded firmware patches.
1727 	 */
1728 	err = btintel_exit_mfg(hdev, true, true);
1729 	if (err)
1730 		return err;
1731 
1732 	/* Need build number for downloaded fw patches in
1733 	 * every power-on boot
1734 	 */
1735 	err = btintel_read_version(hdev, &new_ver);
1736 	if (err)
1737 		return err;
1738 
1739 	bt_dev_info(hdev, "Intel BT fw patch 0x%02x completed & activated",
1740 		    new_ver.fw_patch_num);
1741 
1742 	goto complete;
1743 
1744 exit_mfg_disable:
1745 	/* Disable the manufacturer mode without reset */
1746 	err = btintel_exit_mfg(hdev, false, false);
1747 	if (err)
1748 		return err;
1749 
1750 	bt_dev_info(hdev, "Intel firmware patch completed");
1751 
1752 	goto complete;
1753 
1754 exit_mfg_deactivate:
1755 	release_firmware(fw);
1756 
1757 	/* Patching failed. Disable the manufacturer mode with reset and
1758 	 * deactivate the downloaded firmware patches.
1759 	 */
1760 	err = btintel_exit_mfg(hdev, true, false);
1761 	if (err)
1762 		return err;
1763 
1764 	bt_dev_info(hdev, "Intel firmware patch completed and deactivated");
1765 
1766 complete:
1767 	/* Set the event mask for Intel specific vendor events. This enables
1768 	 * a few extra events that are useful during general operation.
1769 	 */
1770 	btintel_set_event_mask_mfg(hdev, false);
1771 
1772 	btintel_check_bdaddr(hdev);
1773 
1774 	return 0;
1775 }
1776 
1777 static int btintel_download_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
1778 {
1779 	ktime_t delta, rettime;
1780 	unsigned long long duration;
1781 	int err;
1782 
1783 	btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
1784 
1785 	bt_dev_info(hdev, "Waiting for firmware download to complete");
1786 
1787 	err = btintel_wait_on_flag_timeout(hdev, INTEL_DOWNLOADING,
1788 					   TASK_INTERRUPTIBLE,
1789 					   msecs_to_jiffies(msec));
1790 	if (err == -EINTR) {
1791 		bt_dev_err(hdev, "Firmware loading interrupted");
1792 		return err;
1793 	}
1794 
1795 	if (err) {
1796 		bt_dev_err(hdev, "Firmware loading timeout");
1797 		return -ETIMEDOUT;
1798 	}
1799 
1800 	if (btintel_test_flag(hdev, INTEL_FIRMWARE_FAILED)) {
1801 		bt_dev_err(hdev, "Firmware loading failed");
1802 		return -ENOEXEC;
1803 	}
1804 
1805 	rettime = ktime_get();
1806 	delta = ktime_sub(rettime, calltime);
1807 	duration = (unsigned long long)ktime_to_ns(delta) >> 10;
1808 
1809 	bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
1810 
1811 	return 0;
1812 }
1813 
1814 static int btintel_boot_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
1815 {
1816 	ktime_t delta, rettime;
1817 	unsigned long long duration;
1818 	int err;
1819 
1820 	bt_dev_info(hdev, "Waiting for device to boot");
1821 
1822 	err = btintel_wait_on_flag_timeout(hdev, INTEL_BOOTING,
1823 					   TASK_INTERRUPTIBLE,
1824 					   msecs_to_jiffies(msec));
1825 	if (err == -EINTR) {
1826 		bt_dev_err(hdev, "Device boot interrupted");
1827 		return -EINTR;
1828 	}
1829 
1830 	if (err) {
1831 		bt_dev_err(hdev, "Device boot timeout");
1832 		return -ETIMEDOUT;
1833 	}
1834 
1835 	rettime = ktime_get();
1836 	delta = ktime_sub(rettime, calltime);
1837 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
1838 
1839 	bt_dev_info(hdev, "Device booted in %llu usecs", duration);
1840 
1841 	return 0;
1842 }
1843 
1844 static int btintel_boot(struct hci_dev *hdev, u32 boot_addr)
1845 {
1846 	ktime_t calltime;
1847 	int err;
1848 
1849 	calltime = ktime_get();
1850 
1851 	btintel_set_flag(hdev, INTEL_BOOTING);
1852 
1853 	err = btintel_send_intel_reset(hdev, boot_addr);
1854 	if (err) {
1855 		bt_dev_err(hdev, "Intel Soft Reset failed (%d)", err);
1856 		btintel_reset_to_bootloader(hdev);
1857 		return err;
1858 	}
1859 
1860 	/* The bootloader will not indicate when the device is ready. This
1861 	 * is done by the operational firmware sending bootup notification.
1862 	 *
1863 	 * Booting into operational firmware should not take longer than
1864 	 * 1 second. However if that happens, then just fail the setup
1865 	 * since something went wrong.
1866 	 */
1867 	err = btintel_boot_wait(hdev, calltime, 1000);
1868 	if (err == -ETIMEDOUT)
1869 		btintel_reset_to_bootloader(hdev);
1870 
1871 	return err;
1872 }
1873 
1874 static int btintel_get_fw_name(struct intel_version *ver,
1875 					     struct intel_boot_params *params,
1876 					     char *fw_name, size_t len,
1877 					     const char *suffix)
1878 {
1879 	switch (ver->hw_variant) {
1880 	case 0x0b:	/* SfP */
1881 	case 0x0c:	/* WsP */
1882 		snprintf(fw_name, len, "intel/ibt-%u-%u.%s",
1883 			 ver->hw_variant,
1884 			 le16_to_cpu(params->dev_revid),
1885 			 suffix);
1886 		break;
1887 	case 0x11:	/* JfP */
1888 	case 0x12:	/* ThP */
1889 	case 0x13:	/* HrP */
1890 	case 0x14:	/* CcP */
1891 		snprintf(fw_name, len, "intel/ibt-%u-%u-%u.%s",
1892 			 ver->hw_variant,
1893 			 ver->hw_revision,
1894 			 ver->fw_revision,
1895 			 suffix);
1896 		break;
1897 	default:
1898 		return -EINVAL;
1899 	}
1900 
1901 	return 0;
1902 }
1903 
1904 static int btintel_download_fw(struct hci_dev *hdev,
1905 					 struct intel_version *ver,
1906 					 struct intel_boot_params *params,
1907 					 u32 *boot_param)
1908 {
1909 	const struct firmware *fw;
1910 	char fwname[64];
1911 	int err;
1912 	ktime_t calltime;
1913 
1914 	if (!ver || !params)
1915 		return -EINVAL;
1916 
1917 	/* The firmware variant determines if the device is in bootloader
1918 	 * mode or is running operational firmware. The value 0x06 identifies
1919 	 * the bootloader and the value 0x23 identifies the operational
1920 	 * firmware.
1921 	 *
1922 	 * When the operational firmware is already present, then only
1923 	 * the check for valid Bluetooth device address is needed. This
1924 	 * determines if the device will be added as configured or
1925 	 * unconfigured controller.
1926 	 *
1927 	 * It is not possible to use the Secure Boot Parameters in this
1928 	 * case since that command is only available in bootloader mode.
1929 	 */
1930 	if (ver->fw_variant == 0x23) {
1931 		btintel_clear_flag(hdev, INTEL_BOOTLOADER);
1932 		btintel_check_bdaddr(hdev);
1933 
1934 		/* SfP and WsP don't seem to update the firmware version on file
1935 		 * so version checking is currently possible.
1936 		 */
1937 		switch (ver->hw_variant) {
1938 		case 0x0b:	/* SfP */
1939 		case 0x0c:	/* WsP */
1940 			return 0;
1941 		}
1942 
1943 		/* Proceed to download to check if the version matches */
1944 		goto download;
1945 	}
1946 
1947 	/* Read the secure boot parameters to identify the operating
1948 	 * details of the bootloader.
1949 	 */
1950 	err = btintel_read_boot_params(hdev, params);
1951 	if (err)
1952 		return err;
1953 
1954 	/* It is required that every single firmware fragment is acknowledged
1955 	 * with a command complete event. If the boot parameters indicate
1956 	 * that this bootloader does not send them, then abort the setup.
1957 	 */
1958 	if (params->limited_cce != 0x00) {
1959 		bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
1960 			   params->limited_cce);
1961 		return -EINVAL;
1962 	}
1963 
1964 	/* If the OTP has no valid Bluetooth device address, then there will
1965 	 * also be no valid address for the operational firmware.
1966 	 */
1967 	if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
1968 		bt_dev_info(hdev, "No device address configured");
1969 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
1970 	}
1971 
1972 download:
1973 	/* With this Intel bootloader only the hardware variant and device
1974 	 * revision information are used to select the right firmware for SfP
1975 	 * and WsP.
1976 	 *
1977 	 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
1978 	 *
1979 	 * Currently the supported hardware variants are:
1980 	 *   11 (0x0b) for iBT3.0 (LnP/SfP)
1981 	 *   12 (0x0c) for iBT3.5 (WsP)
1982 	 *
1983 	 * For ThP/JfP and for future SKU's, the FW name varies based on HW
1984 	 * variant, HW revision and FW revision, as these are dependent on CNVi
1985 	 * and RF Combination.
1986 	 *
1987 	 *   17 (0x11) for iBT3.5 (JfP)
1988 	 *   18 (0x12) for iBT3.5 (ThP)
1989 	 *
1990 	 * The firmware file name for these will be
1991 	 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
1992 	 *
1993 	 */
1994 	err = btintel_get_fw_name(ver, params, fwname, sizeof(fwname), "sfi");
1995 	if (err < 0) {
1996 		if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
1997 			/* Firmware has already been loaded */
1998 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
1999 			return 0;
2000 		}
2001 
2002 		bt_dev_err(hdev, "Unsupported Intel firmware naming");
2003 		return -EINVAL;
2004 	}
2005 
2006 	err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
2007 	if (err < 0) {
2008 		if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2009 			/* Firmware has already been loaded */
2010 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2011 			return 0;
2012 		}
2013 
2014 		bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
2015 			   fwname, err);
2016 		return err;
2017 	}
2018 
2019 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
2020 
2021 	if (fw->size < 644) {
2022 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
2023 			   fw->size);
2024 		err = -EBADF;
2025 		goto done;
2026 	}
2027 
2028 	calltime = ktime_get();
2029 
2030 	btintel_set_flag(hdev, INTEL_DOWNLOADING);
2031 
2032 	/* Start firmware downloading and get boot parameter */
2033 	err = btintel_download_firmware(hdev, ver, fw, boot_param);
2034 	if (err < 0) {
2035 		if (err == -EALREADY) {
2036 			/* Firmware has already been loaded */
2037 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2038 			err = 0;
2039 			goto done;
2040 		}
2041 
2042 		/* When FW download fails, send Intel Reset to retry
2043 		 * FW download.
2044 		 */
2045 		btintel_reset_to_bootloader(hdev);
2046 		goto done;
2047 	}
2048 
2049 	/* Before switching the device into operational mode and with that
2050 	 * booting the loaded firmware, wait for the bootloader notification
2051 	 * that all fragments have been successfully received.
2052 	 *
2053 	 * When the event processing receives the notification, then the
2054 	 * INTEL_DOWNLOADING flag will be cleared.
2055 	 *
2056 	 * The firmware loading should not take longer than 5 seconds
2057 	 * and thus just timeout if that happens and fail the setup
2058 	 * of this device.
2059 	 */
2060 	err = btintel_download_wait(hdev, calltime, 5000);
2061 	if (err == -ETIMEDOUT)
2062 		btintel_reset_to_bootloader(hdev);
2063 
2064 done:
2065 	release_firmware(fw);
2066 	return err;
2067 }
2068 
2069 static int btintel_bootloader_setup(struct hci_dev *hdev,
2070 				    struct intel_version *ver)
2071 {
2072 	struct intel_version new_ver;
2073 	struct intel_boot_params params;
2074 	u32 boot_param;
2075 	char ddcname[64];
2076 	int err;
2077 
2078 	BT_DBG("%s", hdev->name);
2079 
2080 	/* Set the default boot parameter to 0x0 and it is updated to
2081 	 * SKU specific boot parameter after reading Intel_Write_Boot_Params
2082 	 * command while downloading the firmware.
2083 	 */
2084 	boot_param = 0x00000000;
2085 
2086 	btintel_set_flag(hdev, INTEL_BOOTLOADER);
2087 
2088 	err = btintel_download_fw(hdev, ver, &params, &boot_param);
2089 	if (err)
2090 		return err;
2091 
2092 	/* controller is already having an operational firmware */
2093 	if (ver->fw_variant == 0x23)
2094 		goto finish;
2095 
2096 	err = btintel_boot(hdev, boot_param);
2097 	if (err)
2098 		return err;
2099 
2100 	btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2101 
2102 	err = btintel_get_fw_name(ver, &params, ddcname,
2103 						sizeof(ddcname), "ddc");
2104 
2105 	if (err < 0) {
2106 		bt_dev_err(hdev, "Unsupported Intel firmware naming");
2107 	} else {
2108 		/* Once the device is running in operational mode, it needs to
2109 		 * apply the device configuration (DDC) parameters.
2110 		 *
2111 		 * The device can work without DDC parameters, so even if it
2112 		 * fails to load the file, no need to fail the setup.
2113 		 */
2114 		btintel_load_ddc_config(hdev, ddcname);
2115 	}
2116 
2117 	hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT);
2118 
2119 	/* Read the Intel version information after loading the FW  */
2120 	err = btintel_read_version(hdev, &new_ver);
2121 	if (err)
2122 		return err;
2123 
2124 	btintel_version_info(hdev, &new_ver);
2125 
2126 finish:
2127 	/* Set the event mask for Intel specific vendor events. This enables
2128 	 * a few extra events that are useful during general operation. It
2129 	 * does not enable any debugging related events.
2130 	 *
2131 	 * The device will function correctly without these events enabled
2132 	 * and thus no need to fail the setup.
2133 	 */
2134 	btintel_set_event_mask(hdev, false);
2135 
2136 	return 0;
2137 }
2138 
2139 static void btintel_get_fw_name_tlv(const struct intel_version_tlv *ver,
2140 				    char *fw_name, size_t len,
2141 				    const char *suffix)
2142 {
2143 	const char *format;
2144 	u32 cnvi, cnvr;
2145 
2146 	cnvi = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top),
2147 					INTEL_CNVX_TOP_STEP(ver->cnvi_top));
2148 
2149 	cnvr = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top),
2150 					INTEL_CNVX_TOP_STEP(ver->cnvr_top));
2151 
2152 	/* Only Blazar  product supports downloading of intermediate loader
2153 	 * image
2154 	 */
2155 	if (INTEL_HW_VARIANT(ver->cnvi_bt) >= 0x1e) {
2156 		u8 zero[BTINTEL_FWID_MAXLEN];
2157 
2158 		if (ver->img_type == BTINTEL_IMG_BOOTLOADER) {
2159 			format = "intel/ibt-%04x-%04x-iml.%s";
2160 			snprintf(fw_name, len, format, cnvi, cnvr, suffix);
2161 			return;
2162 		}
2163 
2164 		memset(zero, 0, sizeof(zero));
2165 
2166 		/* ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step-fw_id> */
2167 		if (memcmp(ver->fw_id, zero, sizeof(zero))) {
2168 			format = "intel/ibt-%04x-%04x-%s.%s";
2169 			snprintf(fw_name, len, format, cnvi, cnvr,
2170 				 ver->fw_id, suffix);
2171 			return;
2172 		}
2173 		/* If firmware id is not present, fallback to legacy naming
2174 		 * convention
2175 		 */
2176 	}
2177 	/* Fallback to legacy naming convention for other controllers
2178 	 * ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step>
2179 	 */
2180 	format = "intel/ibt-%04x-%04x.%s";
2181 	snprintf(fw_name, len, format, cnvi, cnvr, suffix);
2182 }
2183 
2184 static void btintel_get_iml_tlv(const struct intel_version_tlv *ver,
2185 				char *fw_name, size_t len,
2186 				const char *suffix)
2187 {
2188 	const char *format;
2189 	u32 cnvi, cnvr;
2190 
2191 	cnvi = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top),
2192 					INTEL_CNVX_TOP_STEP(ver->cnvi_top));
2193 
2194 	cnvr = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top),
2195 					INTEL_CNVX_TOP_STEP(ver->cnvr_top));
2196 
2197 	format = "intel/ibt-%04x-%04x-iml.%s";
2198 	snprintf(fw_name, len, format, cnvi, cnvr, suffix);
2199 }
2200 
2201 static int btintel_prepare_fw_download_tlv(struct hci_dev *hdev,
2202 					   struct intel_version_tlv *ver,
2203 					   u32 *boot_param)
2204 {
2205 	const struct firmware *fw;
2206 	char fwname[128];
2207 	int err;
2208 	ktime_t calltime;
2209 
2210 	if (!ver || !boot_param)
2211 		return -EINVAL;
2212 
2213 	/* The firmware variant determines if the device is in bootloader
2214 	 * mode or is running operational firmware. The value 0x03 identifies
2215 	 * the bootloader and the value 0x23 identifies the operational
2216 	 * firmware.
2217 	 *
2218 	 * When the operational firmware is already present, then only
2219 	 * the check for valid Bluetooth device address is needed. This
2220 	 * determines if the device will be added as configured or
2221 	 * unconfigured controller.
2222 	 *
2223 	 * It is not possible to use the Secure Boot Parameters in this
2224 	 * case since that command is only available in bootloader mode.
2225 	 */
2226 	if (ver->img_type == BTINTEL_IMG_OP) {
2227 		btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2228 		btintel_check_bdaddr(hdev);
2229 	} else {
2230 		/*
2231 		 * Check for valid bd address in boot loader mode. Device
2232 		 * will be marked as unconfigured if empty bd address is
2233 		 * found.
2234 		 */
2235 		if (!bacmp(&ver->otp_bd_addr, BDADDR_ANY)) {
2236 			bt_dev_info(hdev, "No device address configured");
2237 			set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
2238 		}
2239 	}
2240 
2241 	if (ver->img_type == BTINTEL_IMG_OP) {
2242 		/* Controller running OP image. In case of FW downgrade,
2243 		 * FWID TLV may not be present and driver may attempt to load
2244 		 * firmware image which doesn't exist. Lets compare the version
2245 		 * of IML image
2246 		 */
2247 		if (INTEL_HW_VARIANT(ver->cnvi_bt) >= 0x1e)
2248 			btintel_get_iml_tlv(ver, fwname, sizeof(fwname), "sfi");
2249 		else
2250 			btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi");
2251 	} else {
2252 		btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi");
2253 	}
2254 
2255 	err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
2256 	if (err < 0) {
2257 		if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2258 			/* Firmware has already been loaded */
2259 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2260 			return 0;
2261 		}
2262 
2263 		bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
2264 			   fwname, err);
2265 
2266 		return err;
2267 	}
2268 
2269 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
2270 
2271 	if (fw->size < 644) {
2272 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
2273 			   fw->size);
2274 		err = -EBADF;
2275 		goto done;
2276 	}
2277 
2278 	calltime = ktime_get();
2279 
2280 	btintel_set_flag(hdev, INTEL_DOWNLOADING);
2281 
2282 	/* Start firmware downloading and get boot parameter */
2283 	err = btintel_download_fw_tlv(hdev, ver, fw, boot_param,
2284 					       INTEL_HW_VARIANT(ver->cnvi_bt),
2285 					       ver->sbe_type);
2286 	if (err < 0) {
2287 		if (err == -EALREADY) {
2288 			/* Firmware has already been loaded */
2289 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2290 			err = 0;
2291 			goto done;
2292 		}
2293 
2294 		/* When FW download fails, send Intel Reset to retry
2295 		 * FW download.
2296 		 */
2297 		btintel_reset_to_bootloader(hdev);
2298 		goto done;
2299 	}
2300 
2301 	/* Before switching the device into operational mode and with that
2302 	 * booting the loaded firmware, wait for the bootloader notification
2303 	 * that all fragments have been successfully received.
2304 	 *
2305 	 * When the event processing receives the notification, then the
2306 	 * BTUSB_DOWNLOADING flag will be cleared.
2307 	 *
2308 	 * The firmware loading should not take longer than 5 seconds
2309 	 * and thus just timeout if that happens and fail the setup
2310 	 * of this device.
2311 	 */
2312 	err = btintel_download_wait(hdev, calltime, 5000);
2313 	if (err == -ETIMEDOUT)
2314 		btintel_reset_to_bootloader(hdev);
2315 
2316 done:
2317 	release_firmware(fw);
2318 	return err;
2319 }
2320 
2321 static int btintel_get_codec_config_data(struct hci_dev *hdev,
2322 					 __u8 link, struct bt_codec *codec,
2323 					 __u8 *ven_len, __u8 **ven_data)
2324 {
2325 	int err = 0;
2326 
2327 	if (!ven_data || !ven_len)
2328 		return -EINVAL;
2329 
2330 	*ven_len = 0;
2331 	*ven_data = NULL;
2332 
2333 	if (link != ESCO_LINK) {
2334 		bt_dev_err(hdev, "Invalid link type(%u)", link);
2335 		return -EINVAL;
2336 	}
2337 
2338 	*ven_data = kmalloc(sizeof(__u8), GFP_KERNEL);
2339 	if (!*ven_data) {
2340 		err = -ENOMEM;
2341 		goto error;
2342 	}
2343 
2344 	/* supports only CVSD and mSBC offload codecs */
2345 	switch (codec->id) {
2346 	case 0x02:
2347 		**ven_data = 0x00;
2348 		break;
2349 	case 0x05:
2350 		**ven_data = 0x01;
2351 		break;
2352 	default:
2353 		err = -EINVAL;
2354 		bt_dev_err(hdev, "Invalid codec id(%u)", codec->id);
2355 		goto error;
2356 	}
2357 	/* codec and its capabilities are pre-defined to ids
2358 	 * preset id = 0x00 represents CVSD codec with sampling rate 8K
2359 	 * preset id = 0x01 represents mSBC codec with sampling rate 16K
2360 	 */
2361 	*ven_len = sizeof(__u8);
2362 	return err;
2363 
2364 error:
2365 	kfree(*ven_data);
2366 	*ven_data = NULL;
2367 	return err;
2368 }
2369 
2370 static int btintel_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id)
2371 {
2372 	/* Intel uses 1 as data path id for all the usecases */
2373 	*data_path_id = 1;
2374 	return 0;
2375 }
2376 
2377 static int btintel_configure_offload(struct hci_dev *hdev)
2378 {
2379 	struct sk_buff *skb;
2380 	int err = 0;
2381 	struct intel_offload_use_cases *use_cases;
2382 
2383 	skb = __hci_cmd_sync(hdev, 0xfc86, 0, NULL, HCI_INIT_TIMEOUT);
2384 	if (IS_ERR(skb)) {
2385 		bt_dev_err(hdev, "Reading offload use cases failed (%ld)",
2386 			   PTR_ERR(skb));
2387 		return PTR_ERR(skb);
2388 	}
2389 
2390 	if (skb->len < sizeof(*use_cases)) {
2391 		err = -EIO;
2392 		goto error;
2393 	}
2394 
2395 	use_cases = (void *)skb->data;
2396 
2397 	if (use_cases->status) {
2398 		err = -bt_to_errno(skb->data[0]);
2399 		goto error;
2400 	}
2401 
2402 	if (use_cases->preset[0] & 0x03) {
2403 		hdev->get_data_path_id = btintel_get_data_path_id;
2404 		hdev->get_codec_config_data = btintel_get_codec_config_data;
2405 	}
2406 error:
2407 	kfree_skb(skb);
2408 	return err;
2409 }
2410 
2411 static void btintel_set_ppag(struct hci_dev *hdev, struct intel_version_tlv *ver)
2412 {
2413 	struct sk_buff *skb;
2414 	struct hci_ppag_enable_cmd ppag_cmd;
2415 	acpi_handle handle;
2416 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
2417 	union acpi_object *p, *elements;
2418 	u32 domain, mode;
2419 	acpi_status status;
2420 
2421 	/* PPAG is not supported if CRF is HrP2, Jfp2, JfP1 */
2422 	switch (ver->cnvr_top & 0xFFF) {
2423 	case 0x504:     /* Hrp2 */
2424 	case 0x202:     /* Jfp2 */
2425 	case 0x201:     /* Jfp1 */
2426 		bt_dev_dbg(hdev, "PPAG not supported for Intel CNVr (0x%3x)",
2427 			   ver->cnvr_top & 0xFFF);
2428 		return;
2429 	}
2430 
2431 	handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2432 	if (!handle) {
2433 		bt_dev_info(hdev, "No support for BT device in ACPI firmware");
2434 		return;
2435 	}
2436 
2437 	status = acpi_evaluate_object(handle, "PPAG", NULL, &buffer);
2438 	if (ACPI_FAILURE(status)) {
2439 		if (status == AE_NOT_FOUND) {
2440 			bt_dev_dbg(hdev, "PPAG-BT: ACPI entry not found");
2441 			return;
2442 		}
2443 		bt_dev_warn(hdev, "PPAG-BT: ACPI Failure: %s", acpi_format_exception(status));
2444 		return;
2445 	}
2446 
2447 	p = buffer.pointer;
2448 	if (p->type != ACPI_TYPE_PACKAGE || p->package.count != 2) {
2449 		bt_dev_warn(hdev, "PPAG-BT: Invalid object type: %d or package count: %d",
2450 			    p->type, p->package.count);
2451 		kfree(buffer.pointer);
2452 		return;
2453 	}
2454 
2455 	elements = p->package.elements;
2456 
2457 	/* PPAG table is located at element[1] */
2458 	p = &elements[1];
2459 
2460 	domain = (u32)p->package.elements[0].integer.value;
2461 	mode = (u32)p->package.elements[1].integer.value;
2462 	kfree(buffer.pointer);
2463 
2464 	if (domain != 0x12) {
2465 		bt_dev_dbg(hdev, "PPAG-BT: Bluetooth domain is disabled in ACPI firmware");
2466 		return;
2467 	}
2468 
2469 	/* PPAG mode
2470 	 * BIT 0 : 0 Disabled in EU
2471 	 *         1 Enabled in EU
2472 	 * BIT 1 : 0 Disabled in China
2473 	 *         1 Enabled in China
2474 	 */
2475 	mode &= 0x03;
2476 
2477 	if (!mode) {
2478 		bt_dev_dbg(hdev, "PPAG-BT: EU, China mode are disabled in BIOS");
2479 		return;
2480 	}
2481 
2482 	ppag_cmd.ppag_enable_flags = cpu_to_le32(mode);
2483 
2484 	skb = __hci_cmd_sync(hdev, INTEL_OP_PPAG_CMD, sizeof(ppag_cmd),
2485 			     &ppag_cmd, HCI_CMD_TIMEOUT);
2486 	if (IS_ERR(skb)) {
2487 		bt_dev_warn(hdev, "Failed to send PPAG Enable (%ld)", PTR_ERR(skb));
2488 		return;
2489 	}
2490 	bt_dev_info(hdev, "PPAG-BT: Enabled (Mode %d)", mode);
2491 	kfree_skb(skb);
2492 }
2493 
2494 static int btintel_acpi_reset_method(struct hci_dev *hdev)
2495 {
2496 	int ret = 0;
2497 	acpi_status status;
2498 	union acpi_object *p, *ref;
2499 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2500 
2501 	status = acpi_evaluate_object(ACPI_HANDLE(GET_HCIDEV_DEV(hdev)), "_PRR", NULL, &buffer);
2502 	if (ACPI_FAILURE(status)) {
2503 		bt_dev_err(hdev, "Failed to run _PRR method");
2504 		ret = -ENODEV;
2505 		return ret;
2506 	}
2507 	p = buffer.pointer;
2508 
2509 	if (p->package.count != 1 || p->type != ACPI_TYPE_PACKAGE) {
2510 		bt_dev_err(hdev, "Invalid arguments");
2511 		ret = -EINVAL;
2512 		goto exit_on_error;
2513 	}
2514 
2515 	ref = &p->package.elements[0];
2516 	if (ref->type != ACPI_TYPE_LOCAL_REFERENCE) {
2517 		bt_dev_err(hdev, "Invalid object type: 0x%x", ref->type);
2518 		ret = -EINVAL;
2519 		goto exit_on_error;
2520 	}
2521 
2522 	status = acpi_evaluate_object(ref->reference.handle, "_RST", NULL, NULL);
2523 	if (ACPI_FAILURE(status)) {
2524 		bt_dev_err(hdev, "Failed to run_RST method");
2525 		ret = -ENODEV;
2526 		goto exit_on_error;
2527 	}
2528 
2529 exit_on_error:
2530 	kfree(buffer.pointer);
2531 	return ret;
2532 }
2533 
2534 static void btintel_set_dsm_reset_method(struct hci_dev *hdev,
2535 					 struct intel_version_tlv *ver_tlv)
2536 {
2537 	struct btintel_data *data = hci_get_priv(hdev);
2538 	acpi_handle handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2539 	u8 reset_payload[4] = {0x01, 0x00, 0x01, 0x00};
2540 	union acpi_object *obj, argv4;
2541 	enum {
2542 		RESET_TYPE_WDISABLE2,
2543 		RESET_TYPE_VSEC
2544 	};
2545 
2546 	handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2547 
2548 	if (!handle) {
2549 		bt_dev_dbg(hdev, "No support for bluetooth device in ACPI firmware");
2550 		return;
2551 	}
2552 
2553 	if (!acpi_has_method(handle, "_PRR")) {
2554 		bt_dev_err(hdev, "No support for _PRR ACPI method");
2555 		return;
2556 	}
2557 
2558 	switch (ver_tlv->cnvi_top & 0xfff) {
2559 	case 0x910: /* GalePeak2 */
2560 		reset_payload[2] = RESET_TYPE_VSEC;
2561 		break;
2562 	default:
2563 		/* WDISABLE2 is the default reset method */
2564 		reset_payload[2] = RESET_TYPE_WDISABLE2;
2565 
2566 		if (!acpi_check_dsm(handle, &btintel_guid_dsm, 0,
2567 				    BIT(DSM_SET_WDISABLE2_DELAY))) {
2568 			bt_dev_err(hdev, "No dsm support to set reset delay");
2569 			return;
2570 		}
2571 		argv4.integer.type = ACPI_TYPE_INTEGER;
2572 		/* delay required to toggle BT power */
2573 		argv4.integer.value = 160;
2574 		obj = acpi_evaluate_dsm(handle, &btintel_guid_dsm, 0,
2575 					DSM_SET_WDISABLE2_DELAY, &argv4);
2576 		if (!obj) {
2577 			bt_dev_err(hdev, "Failed to call dsm to set reset delay");
2578 			return;
2579 		}
2580 		ACPI_FREE(obj);
2581 	}
2582 
2583 	bt_dev_info(hdev, "DSM reset method type: 0x%02x", reset_payload[2]);
2584 
2585 	if (!acpi_check_dsm(handle, &btintel_guid_dsm, 0,
2586 			    DSM_SET_RESET_METHOD)) {
2587 		bt_dev_warn(hdev, "No support for dsm to set reset method");
2588 		return;
2589 	}
2590 	argv4.buffer.type = ACPI_TYPE_BUFFER;
2591 	argv4.buffer.length = sizeof(reset_payload);
2592 	argv4.buffer.pointer = reset_payload;
2593 
2594 	obj = acpi_evaluate_dsm(handle, &btintel_guid_dsm, 0,
2595 				DSM_SET_RESET_METHOD, &argv4);
2596 	if (!obj) {
2597 		bt_dev_err(hdev, "Failed to call dsm to set reset method");
2598 		return;
2599 	}
2600 	ACPI_FREE(obj);
2601 	data->acpi_reset_method = btintel_acpi_reset_method;
2602 }
2603 
2604 #define BTINTEL_ISODATA_HANDLE_BASE 0x900
2605 
2606 static u8 btintel_classify_pkt_type(struct hci_dev *hdev, struct sk_buff *skb)
2607 {
2608 	/*
2609 	 * Distinguish ISO data packets form ACL data packets
2610 	 * based on their connection handle value range.
2611 	 */
2612 	if (hci_skb_pkt_type(skb) == HCI_ACLDATA_PKT) {
2613 		__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2614 
2615 		if (hci_handle(handle) >= BTINTEL_ISODATA_HANDLE_BASE)
2616 			return HCI_ISODATA_PKT;
2617 	}
2618 
2619 	return hci_skb_pkt_type(skb);
2620 }
2621 
2622 /*
2623  * UefiCnvCommonDSBR UEFI variable provides information from the OEM platforms
2624  * if they have replaced the BRI (Bluetooth Radio Interface) resistor to
2625  * overcome the potential STEP errors on their designs. Based on the
2626  * configauration, bluetooth firmware shall adjust the BRI response line drive
2627  * strength. The below structure represents DSBR data.
2628  * struct {
2629  *	u8 header;
2630  *	u32 dsbr;
2631  * } __packed;
2632  *
2633  * header - defines revision number of the structure
2634  * dsbr - defines drive strength BRI response
2635  *	bit0
2636  *		0 - instructs bluetooth firmware to use default values
2637  *		1 - instructs bluetooth firmware to override default values
2638  *	bit3:1
2639  *		Reserved
2640  *	bit7:4
2641  *		DSBR override values (only if bit0 is set. Default value is 0xF
2642  *	bit31:7
2643  *		Reserved
2644  * Expected values for dsbr field:
2645  *	1. 0xF1 - indicates that the resistor on board is 33 Ohm
2646  *	2. 0x00 or 0xB1 - indicates that the resistor on board is 10 Ohm
2647  *	3. Non existing UEFI variable or invalid (none of the above) - indicates
2648  *	   that the resistor on board is 10 Ohm
2649  * Even if uefi variable is not present, driver shall send 0xfc0a command to
2650  * firmware to use default values.
2651  *
2652  */
2653 static int btintel_uefi_get_dsbr(u32 *dsbr_var)
2654 {
2655 	struct btintel_dsbr {
2656 		u8 header;
2657 		u32 dsbr;
2658 	} __packed data;
2659 
2660 	efi_status_t status;
2661 	unsigned long data_size = 0;
2662 	efi_guid_t guid = EFI_GUID(0xe65d8884, 0xd4af, 0x4b20, 0x8d, 0x03,
2663 				   0x77, 0x2e, 0xcc, 0x3d, 0xa5, 0x31);
2664 
2665 	if (!IS_ENABLED(CONFIG_EFI))
2666 		return -EOPNOTSUPP;
2667 
2668 	if (!efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE))
2669 		return -EOPNOTSUPP;
2670 
2671 	status = efi.get_variable(BTINTEL_EFI_DSBR, &guid, NULL, &data_size,
2672 				  NULL);
2673 
2674 	if (status != EFI_BUFFER_TOO_SMALL || !data_size)
2675 		return -EIO;
2676 
2677 	status = efi.get_variable(BTINTEL_EFI_DSBR, &guid, NULL, &data_size,
2678 				  &data);
2679 
2680 	if (status != EFI_SUCCESS)
2681 		return -ENXIO;
2682 
2683 	*dsbr_var = data.dsbr;
2684 	return 0;
2685 }
2686 
2687 static int btintel_set_dsbr(struct hci_dev *hdev, struct intel_version_tlv *ver)
2688 {
2689 	struct btintel_dsbr_cmd {
2690 		u8 enable;
2691 		u8 dsbr;
2692 	} __packed;
2693 
2694 	struct btintel_dsbr_cmd cmd;
2695 	struct sk_buff *skb;
2696 	u8 status;
2697 	u32 dsbr;
2698 	bool apply_dsbr;
2699 	int err;
2700 
2701 	/* DSBR command needs to be sent for BlazarI + B0 step product after
2702 	 * downloading IML image.
2703 	 */
2704 	apply_dsbr = (ver->img_type == BTINTEL_IMG_IML &&
2705 		((ver->cnvi_top & 0xfff) == BTINTEL_CNVI_BLAZARI) &&
2706 		INTEL_CNVX_TOP_STEP(ver->cnvi_top) == 0x01);
2707 
2708 	if (!apply_dsbr)
2709 		return 0;
2710 
2711 	dsbr = 0;
2712 	err = btintel_uefi_get_dsbr(&dsbr);
2713 	if (err < 0)
2714 		bt_dev_dbg(hdev, "Error reading efi: %ls  (%d)",
2715 			   BTINTEL_EFI_DSBR, err);
2716 
2717 	cmd.enable = dsbr & BIT(0);
2718 	cmd.dsbr = dsbr >> 4 & 0xF;
2719 
2720 	bt_dev_info(hdev, "dsbr: enable: 0x%2.2x value: 0x%2.2x", cmd.enable,
2721 		    cmd.dsbr);
2722 
2723 	skb = __hci_cmd_sync(hdev, 0xfc0a, sizeof(cmd), &cmd,  HCI_CMD_TIMEOUT);
2724 	if (IS_ERR(skb))
2725 		return -bt_to_errno(PTR_ERR(skb));
2726 
2727 	status = skb->data[0];
2728 	kfree_skb(skb);
2729 
2730 	if (status)
2731 		return -bt_to_errno(status);
2732 
2733 	return 0;
2734 }
2735 
2736 int btintel_bootloader_setup_tlv(struct hci_dev *hdev,
2737 				 struct intel_version_tlv *ver)
2738 {
2739 	u32 boot_param;
2740 	char ddcname[64];
2741 	int err;
2742 	struct intel_version_tlv new_ver;
2743 
2744 	bt_dev_dbg(hdev, "");
2745 
2746 	/* Set the default boot parameter to 0x0 and it is updated to
2747 	 * SKU specific boot parameter after reading Intel_Write_Boot_Params
2748 	 * command while downloading the firmware.
2749 	 */
2750 	boot_param = 0x00000000;
2751 
2752 	btintel_set_flag(hdev, INTEL_BOOTLOADER);
2753 
2754 	err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param);
2755 	if (err)
2756 		return err;
2757 
2758 	/* check if controller is already having an operational firmware */
2759 	if (ver->img_type == BTINTEL_IMG_OP)
2760 		goto finish;
2761 
2762 	err = btintel_boot(hdev, boot_param);
2763 	if (err)
2764 		return err;
2765 
2766 	err = btintel_read_version_tlv(hdev, ver);
2767 	if (err)
2768 		return err;
2769 
2770 	/* set drive strength of BRI response */
2771 	err = btintel_set_dsbr(hdev, ver);
2772 	if (err) {
2773 		bt_dev_err(hdev, "Failed to send dsbr command (%d)", err);
2774 		return err;
2775 	}
2776 
2777 	/* If image type returned is BTINTEL_IMG_IML, then controller supports
2778 	 * intermediate loader image
2779 	 */
2780 	if (ver->img_type == BTINTEL_IMG_IML) {
2781 		err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param);
2782 		if (err)
2783 			return err;
2784 
2785 		err = btintel_boot(hdev, boot_param);
2786 		if (err)
2787 			return err;
2788 	}
2789 
2790 	btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2791 
2792 	btintel_get_fw_name_tlv(ver, ddcname, sizeof(ddcname), "ddc");
2793 	/* Once the device is running in operational mode, it needs to
2794 	 * apply the device configuration (DDC) parameters.
2795 	 *
2796 	 * The device can work without DDC parameters, so even if it
2797 	 * fails to load the file, no need to fail the setup.
2798 	 */
2799 	btintel_load_ddc_config(hdev, ddcname);
2800 
2801 	/* Read supported use cases and set callbacks to fetch datapath id */
2802 	btintel_configure_offload(hdev);
2803 
2804 	hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT);
2805 
2806 	/* Set PPAG feature */
2807 	btintel_set_ppag(hdev, ver);
2808 
2809 	/* Read the Intel version information after loading the FW  */
2810 	err = btintel_read_version_tlv(hdev, &new_ver);
2811 	if (err)
2812 		return err;
2813 
2814 	btintel_version_info_tlv(hdev, &new_ver);
2815 
2816 finish:
2817 	/* Set the event mask for Intel specific vendor events. This enables
2818 	 * a few extra events that are useful during general operation. It
2819 	 * does not enable any debugging related events.
2820 	 *
2821 	 * The device will function correctly without these events enabled
2822 	 * and thus no need to fail the setup.
2823 	 */
2824 	btintel_set_event_mask(hdev, false);
2825 
2826 	return 0;
2827 }
2828 EXPORT_SYMBOL_GPL(btintel_bootloader_setup_tlv);
2829 
2830 void btintel_set_msft_opcode(struct hci_dev *hdev, u8 hw_variant)
2831 {
2832 	switch (hw_variant) {
2833 	/* Legacy bootloader devices that supports MSFT Extension */
2834 	case 0x11:	/* JfP */
2835 	case 0x12:	/* ThP */
2836 	case 0x13:	/* HrP */
2837 	case 0x14:	/* CcP */
2838 	/* All Intel new genration controllers support the Microsoft vendor
2839 	 * extension are using 0xFC1E for VsMsftOpCode.
2840 	 */
2841 	case 0x17:
2842 	case 0x18:
2843 	case 0x19:
2844 	case 0x1b:
2845 	case 0x1c:
2846 	case 0x1d:
2847 	case 0x1e:
2848 		hci_set_msft_opcode(hdev, 0xFC1E);
2849 		break;
2850 	default:
2851 		/* Not supported */
2852 		break;
2853 	}
2854 }
2855 EXPORT_SYMBOL_GPL(btintel_set_msft_opcode);
2856 
2857 void btintel_print_fseq_info(struct hci_dev *hdev)
2858 {
2859 	struct sk_buff *skb;
2860 	u8 *p;
2861 	u32 val;
2862 	const char *str;
2863 
2864 	skb = __hci_cmd_sync(hdev, 0xfcb3, 0, NULL, HCI_CMD_TIMEOUT);
2865 	if (IS_ERR(skb)) {
2866 		bt_dev_dbg(hdev, "Reading fseq status command failed (%ld)",
2867 			   PTR_ERR(skb));
2868 		return;
2869 	}
2870 
2871 	if (skb->len < (sizeof(u32) * 16 + 2)) {
2872 		bt_dev_dbg(hdev, "Malformed packet of length %u received",
2873 			   skb->len);
2874 		kfree_skb(skb);
2875 		return;
2876 	}
2877 
2878 	p = skb_pull_data(skb, 1);
2879 	if (*p) {
2880 		bt_dev_dbg(hdev, "Failed to get fseq status (0x%2.2x)", *p);
2881 		kfree_skb(skb);
2882 		return;
2883 	}
2884 
2885 	p = skb_pull_data(skb, 1);
2886 	switch (*p) {
2887 	case 0:
2888 		str = "Success";
2889 		break;
2890 	case 1:
2891 		str = "Fatal error";
2892 		break;
2893 	case 2:
2894 		str = "Semaphore acquire error";
2895 		break;
2896 	default:
2897 		str = "Unknown error";
2898 		break;
2899 	}
2900 
2901 	if (*p) {
2902 		bt_dev_err(hdev, "Fseq status: %s (0x%2.2x)", str, *p);
2903 		kfree_skb(skb);
2904 		return;
2905 	}
2906 
2907 	bt_dev_info(hdev, "Fseq status: %s (0x%2.2x)", str, *p);
2908 
2909 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2910 	bt_dev_dbg(hdev, "Reason: 0x%8.8x", val);
2911 
2912 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2913 	bt_dev_dbg(hdev, "Global version: 0x%8.8x", val);
2914 
2915 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2916 	bt_dev_dbg(hdev, "Installed version: 0x%8.8x", val);
2917 
2918 	p = skb->data;
2919 	skb_pull_data(skb, 4);
2920 	bt_dev_info(hdev, "Fseq executed: %2.2u.%2.2u.%2.2u.%2.2u", p[0], p[1],
2921 		    p[2], p[3]);
2922 
2923 	p = skb->data;
2924 	skb_pull_data(skb, 4);
2925 	bt_dev_info(hdev, "Fseq BT Top: %2.2u.%2.2u.%2.2u.%2.2u", p[0], p[1],
2926 		    p[2], p[3]);
2927 
2928 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2929 	bt_dev_dbg(hdev, "Fseq Top init version: 0x%8.8x", val);
2930 
2931 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2932 	bt_dev_dbg(hdev, "Fseq Cnvio init version: 0x%8.8x", val);
2933 
2934 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2935 	bt_dev_dbg(hdev, "Fseq MBX Wifi file version: 0x%8.8x", val);
2936 
2937 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2938 	bt_dev_dbg(hdev, "Fseq BT version: 0x%8.8x", val);
2939 
2940 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2941 	bt_dev_dbg(hdev, "Fseq Top reset address: 0x%8.8x", val);
2942 
2943 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2944 	bt_dev_dbg(hdev, "Fseq MBX timeout: 0x%8.8x", val);
2945 
2946 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2947 	bt_dev_dbg(hdev, "Fseq MBX ack: 0x%8.8x", val);
2948 
2949 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2950 	bt_dev_dbg(hdev, "Fseq CNVi id: 0x%8.8x", val);
2951 
2952 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2953 	bt_dev_dbg(hdev, "Fseq CNVr id: 0x%8.8x", val);
2954 
2955 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2956 	bt_dev_dbg(hdev, "Fseq Error handle: 0x%8.8x", val);
2957 
2958 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2959 	bt_dev_dbg(hdev, "Fseq Magic noalive indication: 0x%8.8x", val);
2960 
2961 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2962 	bt_dev_dbg(hdev, "Fseq OTP version: 0x%8.8x", val);
2963 
2964 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2965 	bt_dev_dbg(hdev, "Fseq MBX otp version: 0x%8.8x", val);
2966 
2967 	kfree_skb(skb);
2968 }
2969 EXPORT_SYMBOL_GPL(btintel_print_fseq_info);
2970 
2971 static int btintel_setup_combined(struct hci_dev *hdev)
2972 {
2973 	const u8 param[1] = { 0xFF };
2974 	struct intel_version ver;
2975 	struct intel_version_tlv ver_tlv;
2976 	struct sk_buff *skb;
2977 	int err;
2978 
2979 	BT_DBG("%s", hdev->name);
2980 
2981 	/* The some controllers have a bug with the first HCI command sent to it
2982 	 * returning number of completed commands as zero. This would stall the
2983 	 * command processing in the Bluetooth core.
2984 	 *
2985 	 * As a workaround, send HCI Reset command first which will reset the
2986 	 * number of completed commands and allow normal command processing
2987 	 * from now on.
2988 	 *
2989 	 * Regarding the INTEL_BROKEN_SHUTDOWN_LED flag, these devices maybe
2990 	 * in the SW_RFKILL ON state as a workaround of fixing LED issue during
2991 	 * the shutdown() procedure, and once the device is in SW_RFKILL ON
2992 	 * state, the only way to exit out of it is sending the HCI_Reset
2993 	 * command.
2994 	 */
2995 	if (btintel_test_flag(hdev, INTEL_BROKEN_INITIAL_NCMD) ||
2996 	    btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) {
2997 		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
2998 				     HCI_INIT_TIMEOUT);
2999 		if (IS_ERR(skb)) {
3000 			bt_dev_err(hdev,
3001 				   "sending initial HCI reset failed (%ld)",
3002 				   PTR_ERR(skb));
3003 			return PTR_ERR(skb);
3004 		}
3005 		kfree_skb(skb);
3006 	}
3007 
3008 	/* Starting from TyP device, the command parameter and response are
3009 	 * changed even though the OCF for HCI_Intel_Read_Version command
3010 	 * remains same. The legacy devices can handle even if the
3011 	 * command has a parameter and returns a correct version information.
3012 	 * So, it uses new format to support both legacy and new format.
3013 	 */
3014 	skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
3015 	if (IS_ERR(skb)) {
3016 		bt_dev_err(hdev, "Reading Intel version command failed (%ld)",
3017 			   PTR_ERR(skb));
3018 		return PTR_ERR(skb);
3019 	}
3020 
3021 	/* Check the status */
3022 	if (skb->data[0]) {
3023 		bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
3024 			   skb->data[0]);
3025 		err = -EIO;
3026 		goto exit_error;
3027 	}
3028 
3029 	/* Apply the common HCI quirks for Intel device */
3030 	set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
3031 	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
3032 	set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
3033 
3034 	/* Set up the quality report callback for Intel devices */
3035 	hdev->set_quality_report = btintel_set_quality_report;
3036 
3037 	/* For Legacy device, check the HW platform value and size */
3038 	if (skb->len == sizeof(ver) && skb->data[1] == 0x37) {
3039 		bt_dev_dbg(hdev, "Read the legacy Intel version information");
3040 
3041 		memcpy(&ver, skb->data, sizeof(ver));
3042 
3043 		/* Display version information */
3044 		btintel_version_info(hdev, &ver);
3045 
3046 		/* Check for supported iBT hardware variants of this firmware
3047 		 * loading method.
3048 		 *
3049 		 * This check has been put in place to ensure correct forward
3050 		 * compatibility options when newer hardware variants come
3051 		 * along.
3052 		 */
3053 		switch (ver.hw_variant) {
3054 		case 0x07:	/* WP */
3055 		case 0x08:	/* StP */
3056 			/* Legacy ROM product */
3057 			btintel_set_flag(hdev, INTEL_ROM_LEGACY);
3058 
3059 			/* Apply the device specific HCI quirks
3060 			 *
3061 			 * WBS for SdP - For the Legacy ROM products, only SdP
3062 			 * supports the WBS. But the version information is not
3063 			 * enough to use here because the StP2 and SdP have same
3064 			 * hw_variant and fw_variant. So, this flag is set by
3065 			 * the transport driver (btusb) based on the HW info
3066 			 * (idProduct)
3067 			 */
3068 			if (!btintel_test_flag(hdev,
3069 					       INTEL_ROM_LEGACY_NO_WBS_SUPPORT))
3070 				set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
3071 					&hdev->quirks);
3072 
3073 			err = btintel_legacy_rom_setup(hdev, &ver);
3074 			break;
3075 		case 0x0b:      /* SfP */
3076 		case 0x11:      /* JfP */
3077 		case 0x12:      /* ThP */
3078 		case 0x13:      /* HrP */
3079 		case 0x14:      /* CcP */
3080 			fallthrough;
3081 		case 0x0c:	/* WsP */
3082 			/* Apply the device specific HCI quirks
3083 			 *
3084 			 * All Legacy bootloader devices support WBS
3085 			 */
3086 			set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
3087 				&hdev->quirks);
3088 
3089 			/* These variants don't seem to support LE Coded PHY */
3090 			set_bit(HCI_QUIRK_BROKEN_LE_CODED, &hdev->quirks);
3091 
3092 			/* Setup MSFT Extension support */
3093 			btintel_set_msft_opcode(hdev, ver.hw_variant);
3094 
3095 			err = btintel_bootloader_setup(hdev, &ver);
3096 			btintel_register_devcoredump_support(hdev);
3097 			break;
3098 		default:
3099 			bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
3100 				   ver.hw_variant);
3101 			err = -EINVAL;
3102 		}
3103 
3104 		hci_set_hw_info(hdev,
3105 				"INTEL platform=%u variant=%u revision=%u",
3106 				ver.hw_platform, ver.hw_variant,
3107 				ver.hw_revision);
3108 
3109 		goto exit_error;
3110 	}
3111 
3112 	/* memset ver_tlv to start with clean state as few fields are exclusive
3113 	 * to bootloader mode and are not populated in operational mode
3114 	 */
3115 	memset(&ver_tlv, 0, sizeof(ver_tlv));
3116 	/* For TLV type device, parse the tlv data */
3117 	err = btintel_parse_version_tlv(hdev, &ver_tlv, skb);
3118 	if (err) {
3119 		bt_dev_err(hdev, "Failed to parse TLV version information");
3120 		goto exit_error;
3121 	}
3122 
3123 	if (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt) != 0x37) {
3124 		bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
3125 			   INTEL_HW_PLATFORM(ver_tlv.cnvi_bt));
3126 		err = -EINVAL;
3127 		goto exit_error;
3128 	}
3129 
3130 	/* Check for supported iBT hardware variants of this firmware
3131 	 * loading method.
3132 	 *
3133 	 * This check has been put in place to ensure correct forward
3134 	 * compatibility options when newer hardware variants come
3135 	 * along.
3136 	 */
3137 	switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) {
3138 	case 0x11:      /* JfP */
3139 	case 0x12:      /* ThP */
3140 	case 0x13:      /* HrP */
3141 	case 0x14:      /* CcP */
3142 		/* Some legacy bootloader devices starting from JfP,
3143 		 * the operational firmware supports both old and TLV based
3144 		 * HCI_Intel_Read_Version command based on the command
3145 		 * parameter.
3146 		 *
3147 		 * For upgrading firmware case, the TLV based version cannot
3148 		 * be used because the firmware filename for legacy bootloader
3149 		 * is based on the old format.
3150 		 *
3151 		 * Also, it is not easy to convert TLV based version from the
3152 		 * legacy version format.
3153 		 *
3154 		 * So, as a workaround for those devices, use the legacy
3155 		 * HCI_Intel_Read_Version to get the version information and
3156 		 * run the legacy bootloader setup.
3157 		 */
3158 		err = btintel_read_version(hdev, &ver);
3159 		if (err)
3160 			break;
3161 
3162 		/* Apply the device specific HCI quirks
3163 		 *
3164 		 * All Legacy bootloader devices support WBS
3165 		 */
3166 		set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
3167 
3168 		/* These variants don't seem to support LE Coded PHY */
3169 		set_bit(HCI_QUIRK_BROKEN_LE_CODED, &hdev->quirks);
3170 
3171 		/* Setup MSFT Extension support */
3172 		btintel_set_msft_opcode(hdev, ver.hw_variant);
3173 
3174 		err = btintel_bootloader_setup(hdev, &ver);
3175 		btintel_register_devcoredump_support(hdev);
3176 		break;
3177 	case 0x18: /* GfP2 */
3178 	case 0x1c: /* GaP */
3179 		/* Re-classify packet type for controllers with LE audio */
3180 		hdev->classify_pkt_type = btintel_classify_pkt_type;
3181 		fallthrough;
3182 	case 0x17:
3183 	case 0x19:
3184 	case 0x1b:
3185 	case 0x1d:
3186 	case 0x1e:
3187 		/* Display version information of TLV type */
3188 		btintel_version_info_tlv(hdev, &ver_tlv);
3189 
3190 		/* Apply the device specific HCI quirks for TLV based devices
3191 		 *
3192 		 * All TLV based devices support WBS
3193 		 */
3194 		set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
3195 
3196 		/* Setup MSFT Extension support */
3197 		btintel_set_msft_opcode(hdev,
3198 					INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
3199 		btintel_set_dsm_reset_method(hdev, &ver_tlv);
3200 
3201 		err = btintel_bootloader_setup_tlv(hdev, &ver_tlv);
3202 		if (err)
3203 			goto exit_error;
3204 
3205 		btintel_register_devcoredump_support(hdev);
3206 		btintel_print_fseq_info(hdev);
3207 		break;
3208 	default:
3209 		bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
3210 			   INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
3211 		err = -EINVAL;
3212 		break;
3213 	}
3214 
3215 	hci_set_hw_info(hdev, "INTEL platform=%u variant=%u",
3216 			INTEL_HW_PLATFORM(ver_tlv.cnvi_bt),
3217 			INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
3218 
3219 exit_error:
3220 	kfree_skb(skb);
3221 
3222 	return err;
3223 }
3224 
3225 int btintel_shutdown_combined(struct hci_dev *hdev)
3226 {
3227 	struct sk_buff *skb;
3228 	int ret;
3229 
3230 	/* Send HCI Reset to the controller to stop any BT activity which
3231 	 * were triggered. This will help to save power and maintain the
3232 	 * sync b/w Host and controller
3233 	 */
3234 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
3235 	if (IS_ERR(skb)) {
3236 		bt_dev_err(hdev, "HCI reset during shutdown failed");
3237 		return PTR_ERR(skb);
3238 	}
3239 	kfree_skb(skb);
3240 
3241 
3242 	/* Some platforms have an issue with BT LED when the interface is
3243 	 * down or BT radio is turned off, which takes 5 seconds to BT LED
3244 	 * goes off. As a workaround, sends HCI_Intel_SW_RFKILL to put the
3245 	 * device in the RFKILL ON state which turns off the BT LED immediately.
3246 	 */
3247 	if (btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) {
3248 		skb = __hci_cmd_sync(hdev, 0xfc3f, 0, NULL, HCI_INIT_TIMEOUT);
3249 		if (IS_ERR(skb)) {
3250 			ret = PTR_ERR(skb);
3251 			bt_dev_err(hdev, "turning off Intel device LED failed");
3252 			return ret;
3253 		}
3254 		kfree_skb(skb);
3255 	}
3256 
3257 	return 0;
3258 }
3259 EXPORT_SYMBOL_GPL(btintel_shutdown_combined);
3260 
3261 int btintel_configure_setup(struct hci_dev *hdev, const char *driver_name)
3262 {
3263 	hdev->manufacturer = 2;
3264 	hdev->setup = btintel_setup_combined;
3265 	hdev->shutdown = btintel_shutdown_combined;
3266 	hdev->hw_error = btintel_hw_error;
3267 	hdev->set_diag = btintel_set_diag_combined;
3268 	hdev->set_bdaddr = btintel_set_bdaddr;
3269 
3270 	coredump_info.driver_name = driver_name;
3271 
3272 	return 0;
3273 }
3274 EXPORT_SYMBOL_GPL(btintel_configure_setup);
3275 
3276 static int btintel_diagnostics(struct hci_dev *hdev, struct sk_buff *skb)
3277 {
3278 	struct intel_tlv *tlv = (void *)&skb->data[5];
3279 
3280 	/* The first event is always an event type TLV */
3281 	if (tlv->type != INTEL_TLV_TYPE_ID)
3282 		goto recv_frame;
3283 
3284 	switch (tlv->val[0]) {
3285 	case INTEL_TLV_SYSTEM_EXCEPTION:
3286 	case INTEL_TLV_FATAL_EXCEPTION:
3287 	case INTEL_TLV_DEBUG_EXCEPTION:
3288 	case INTEL_TLV_TEST_EXCEPTION:
3289 		/* Generate devcoredump from exception */
3290 		if (!hci_devcd_init(hdev, skb->len)) {
3291 			hci_devcd_append(hdev, skb);
3292 			hci_devcd_complete(hdev);
3293 		} else {
3294 			bt_dev_err(hdev, "Failed to generate devcoredump");
3295 			kfree_skb(skb);
3296 		}
3297 		return 0;
3298 	default:
3299 		bt_dev_err(hdev, "Invalid exception type %02X", tlv->val[0]);
3300 	}
3301 
3302 recv_frame:
3303 	return hci_recv_frame(hdev, skb);
3304 }
3305 
3306 int btintel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
3307 {
3308 	struct hci_event_hdr *hdr = (void *)skb->data;
3309 	const char diagnostics_hdr[] = { 0x87, 0x80, 0x03 };
3310 
3311 	if (skb->len > HCI_EVENT_HDR_SIZE && hdr->evt == 0xff &&
3312 	    hdr->plen > 0) {
3313 		const void *ptr = skb->data + HCI_EVENT_HDR_SIZE + 1;
3314 		unsigned int len = skb->len - HCI_EVENT_HDR_SIZE - 1;
3315 
3316 		if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
3317 			switch (skb->data[2]) {
3318 			case 0x02:
3319 				/* When switching to the operational firmware
3320 				 * the device sends a vendor specific event
3321 				 * indicating that the bootup completed.
3322 				 */
3323 				btintel_bootup(hdev, ptr, len);
3324 				break;
3325 			case 0x06:
3326 				/* When the firmware loading completes the
3327 				 * device sends out a vendor specific event
3328 				 * indicating the result of the firmware
3329 				 * loading.
3330 				 */
3331 				btintel_secure_send_result(hdev, ptr, len);
3332 				break;
3333 			}
3334 		}
3335 
3336 		/* Handle all diagnostics events separately. May still call
3337 		 * hci_recv_frame.
3338 		 */
3339 		if (len >= sizeof(diagnostics_hdr) &&
3340 		    memcmp(&skb->data[2], diagnostics_hdr,
3341 			   sizeof(diagnostics_hdr)) == 0) {
3342 			return btintel_diagnostics(hdev, skb);
3343 		}
3344 	}
3345 
3346 	return hci_recv_frame(hdev, skb);
3347 }
3348 EXPORT_SYMBOL_GPL(btintel_recv_event);
3349 
3350 void btintel_bootup(struct hci_dev *hdev, const void *ptr, unsigned int len)
3351 {
3352 	const struct intel_bootup *evt = ptr;
3353 
3354 	if (len != sizeof(*evt))
3355 		return;
3356 
3357 	if (btintel_test_and_clear_flag(hdev, INTEL_BOOTING))
3358 		btintel_wake_up_flag(hdev, INTEL_BOOTING);
3359 }
3360 EXPORT_SYMBOL_GPL(btintel_bootup);
3361 
3362 void btintel_secure_send_result(struct hci_dev *hdev,
3363 				const void *ptr, unsigned int len)
3364 {
3365 	const struct intel_secure_send_result *evt = ptr;
3366 
3367 	if (len != sizeof(*evt))
3368 		return;
3369 
3370 	if (evt->result)
3371 		btintel_set_flag(hdev, INTEL_FIRMWARE_FAILED);
3372 
3373 	if (btintel_test_and_clear_flag(hdev, INTEL_DOWNLOADING) &&
3374 	    btintel_test_flag(hdev, INTEL_FIRMWARE_LOADED))
3375 		btintel_wake_up_flag(hdev, INTEL_DOWNLOADING);
3376 }
3377 EXPORT_SYMBOL_GPL(btintel_secure_send_result);
3378 
3379 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
3380 MODULE_DESCRIPTION("Bluetooth support for Intel devices ver " VERSION);
3381 MODULE_VERSION(VERSION);
3382 MODULE_LICENSE("GPL");
3383 MODULE_FIRMWARE("intel/ibt-11-5.sfi");
3384 MODULE_FIRMWARE("intel/ibt-11-5.ddc");
3385 MODULE_FIRMWARE("intel/ibt-12-16.sfi");
3386 MODULE_FIRMWARE("intel/ibt-12-16.ddc");
3387