xref: /linux/drivers/bluetooth/btintel.c (revision 8e1bb4a41aa78d6105e59186af3dcd545fc66e70)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Bluetooth support for Intel devices
5  *
6  *  Copyright (C) 2015  Intel Corporation
7  */
8 
9 #include <linux/module.h>
10 #include <linux/firmware.h>
11 #include <linux/regmap.h>
12 #include <linux/acpi.h>
13 #include <acpi/acpi_bus.h>
14 #include <asm/unaligned.h>
15 
16 #include <net/bluetooth/bluetooth.h>
17 #include <net/bluetooth/hci_core.h>
18 
19 #include "btintel.h"
20 
21 #define VERSION "0.1"
22 
23 #define BDADDR_INTEL		(&(bdaddr_t){{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}})
24 #define RSA_HEADER_LEN		644
25 #define CSS_HEADER_OFFSET	8
26 #define ECDSA_OFFSET		644
27 #define ECDSA_HEADER_LEN	320
28 
29 enum {
30 	DSM_SET_WDISABLE2_DELAY = 1,
31 	DSM_SET_RESET_METHOD = 3,
32 };
33 
34 #define CMD_WRITE_BOOT_PARAMS	0xfc0e
35 struct cmd_write_boot_params {
36 	__le32 boot_addr;
37 	u8  fw_build_num;
38 	u8  fw_build_ww;
39 	u8  fw_build_yy;
40 } __packed;
41 
42 static struct {
43 	const char *driver_name;
44 	u8         hw_variant;
45 	u32        fw_build_num;
46 } coredump_info;
47 
48 static const guid_t btintel_guid_dsm =
49 	GUID_INIT(0xaa10f4e0, 0x81ac, 0x4233,
50 		  0xab, 0xf6, 0x3b, 0x2a, 0xc5, 0x0e, 0x28, 0xd9);
51 
52 int btintel_check_bdaddr(struct hci_dev *hdev)
53 {
54 	struct hci_rp_read_bd_addr *bda;
55 	struct sk_buff *skb;
56 
57 	skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
58 			     HCI_INIT_TIMEOUT);
59 	if (IS_ERR(skb)) {
60 		int err = PTR_ERR(skb);
61 		bt_dev_err(hdev, "Reading Intel device address failed (%d)",
62 			   err);
63 		return err;
64 	}
65 
66 	if (skb->len != sizeof(*bda)) {
67 		bt_dev_err(hdev, "Intel device address length mismatch");
68 		kfree_skb(skb);
69 		return -EIO;
70 	}
71 
72 	bda = (struct hci_rp_read_bd_addr *)skb->data;
73 
74 	/* For some Intel based controllers, the default Bluetooth device
75 	 * address 00:03:19:9E:8B:00 can be found. These controllers are
76 	 * fully operational, but have the danger of duplicate addresses
77 	 * and that in turn can cause problems with Bluetooth operation.
78 	 */
79 	if (!bacmp(&bda->bdaddr, BDADDR_INTEL)) {
80 		bt_dev_err(hdev, "Found Intel default device address (%pMR)",
81 			   &bda->bdaddr);
82 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
83 	}
84 
85 	kfree_skb(skb);
86 
87 	return 0;
88 }
89 EXPORT_SYMBOL_GPL(btintel_check_bdaddr);
90 
91 int btintel_enter_mfg(struct hci_dev *hdev)
92 {
93 	static const u8 param[] = { 0x01, 0x00 };
94 	struct sk_buff *skb;
95 
96 	skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
97 	if (IS_ERR(skb)) {
98 		bt_dev_err(hdev, "Entering manufacturer mode failed (%ld)",
99 			   PTR_ERR(skb));
100 		return PTR_ERR(skb);
101 	}
102 	kfree_skb(skb);
103 
104 	return 0;
105 }
106 EXPORT_SYMBOL_GPL(btintel_enter_mfg);
107 
108 int btintel_exit_mfg(struct hci_dev *hdev, bool reset, bool patched)
109 {
110 	u8 param[] = { 0x00, 0x00 };
111 	struct sk_buff *skb;
112 
113 	/* The 2nd command parameter specifies the manufacturing exit method:
114 	 * 0x00: Just disable the manufacturing mode (0x00).
115 	 * 0x01: Disable manufacturing mode and reset with patches deactivated.
116 	 * 0x02: Disable manufacturing mode and reset with patches activated.
117 	 */
118 	if (reset)
119 		param[1] |= patched ? 0x02 : 0x01;
120 
121 	skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
122 	if (IS_ERR(skb)) {
123 		bt_dev_err(hdev, "Exiting manufacturer mode failed (%ld)",
124 			   PTR_ERR(skb));
125 		return PTR_ERR(skb);
126 	}
127 	kfree_skb(skb);
128 
129 	return 0;
130 }
131 EXPORT_SYMBOL_GPL(btintel_exit_mfg);
132 
133 int btintel_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
134 {
135 	struct sk_buff *skb;
136 	int err;
137 
138 	skb = __hci_cmd_sync(hdev, 0xfc31, 6, bdaddr, HCI_INIT_TIMEOUT);
139 	if (IS_ERR(skb)) {
140 		err = PTR_ERR(skb);
141 		bt_dev_err(hdev, "Changing Intel device address failed (%d)",
142 			   err);
143 		return err;
144 	}
145 	kfree_skb(skb);
146 
147 	return 0;
148 }
149 EXPORT_SYMBOL_GPL(btintel_set_bdaddr);
150 
151 static int btintel_set_event_mask(struct hci_dev *hdev, bool debug)
152 {
153 	u8 mask[8] = { 0x87, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
154 	struct sk_buff *skb;
155 	int err;
156 
157 	if (debug)
158 		mask[1] |= 0x62;
159 
160 	skb = __hci_cmd_sync(hdev, 0xfc52, 8, mask, HCI_INIT_TIMEOUT);
161 	if (IS_ERR(skb)) {
162 		err = PTR_ERR(skb);
163 		bt_dev_err(hdev, "Setting Intel event mask failed (%d)", err);
164 		return err;
165 	}
166 	kfree_skb(skb);
167 
168 	return 0;
169 }
170 
171 int btintel_set_diag(struct hci_dev *hdev, bool enable)
172 {
173 	struct sk_buff *skb;
174 	u8 param[3];
175 	int err;
176 
177 	if (enable) {
178 		param[0] = 0x03;
179 		param[1] = 0x03;
180 		param[2] = 0x03;
181 	} else {
182 		param[0] = 0x00;
183 		param[1] = 0x00;
184 		param[2] = 0x00;
185 	}
186 
187 	skb = __hci_cmd_sync(hdev, 0xfc43, 3, param, HCI_INIT_TIMEOUT);
188 	if (IS_ERR(skb)) {
189 		err = PTR_ERR(skb);
190 		if (err == -ENODATA)
191 			goto done;
192 		bt_dev_err(hdev, "Changing Intel diagnostic mode failed (%d)",
193 			   err);
194 		return err;
195 	}
196 	kfree_skb(skb);
197 
198 done:
199 	btintel_set_event_mask(hdev, enable);
200 	return 0;
201 }
202 EXPORT_SYMBOL_GPL(btintel_set_diag);
203 
204 static int btintel_set_diag_mfg(struct hci_dev *hdev, bool enable)
205 {
206 	int err, ret;
207 
208 	err = btintel_enter_mfg(hdev);
209 	if (err)
210 		return err;
211 
212 	ret = btintel_set_diag(hdev, enable);
213 
214 	err = btintel_exit_mfg(hdev, false, false);
215 	if (err)
216 		return err;
217 
218 	return ret;
219 }
220 
221 static int btintel_set_diag_combined(struct hci_dev *hdev, bool enable)
222 {
223 	int ret;
224 
225 	/* Legacy ROM device needs to be in the manufacturer mode to apply
226 	 * diagnostic setting
227 	 *
228 	 * This flag is set after reading the Intel version.
229 	 */
230 	if (btintel_test_flag(hdev, INTEL_ROM_LEGACY))
231 		ret = btintel_set_diag_mfg(hdev, enable);
232 	else
233 		ret = btintel_set_diag(hdev, enable);
234 
235 	return ret;
236 }
237 
238 void btintel_hw_error(struct hci_dev *hdev, u8 code)
239 {
240 	struct sk_buff *skb;
241 	u8 type = 0x00;
242 
243 	bt_dev_err(hdev, "Hardware error 0x%2.2x", code);
244 
245 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
246 	if (IS_ERR(skb)) {
247 		bt_dev_err(hdev, "Reset after hardware error failed (%ld)",
248 			   PTR_ERR(skb));
249 		return;
250 	}
251 	kfree_skb(skb);
252 
253 	skb = __hci_cmd_sync(hdev, 0xfc22, 1, &type, HCI_INIT_TIMEOUT);
254 	if (IS_ERR(skb)) {
255 		bt_dev_err(hdev, "Retrieving Intel exception info failed (%ld)",
256 			   PTR_ERR(skb));
257 		return;
258 	}
259 
260 	if (skb->len != 13) {
261 		bt_dev_err(hdev, "Exception info size mismatch");
262 		kfree_skb(skb);
263 		return;
264 	}
265 
266 	bt_dev_err(hdev, "Exception info %s", (char *)(skb->data + 1));
267 
268 	kfree_skb(skb);
269 }
270 EXPORT_SYMBOL_GPL(btintel_hw_error);
271 
272 int btintel_version_info(struct hci_dev *hdev, struct intel_version *ver)
273 {
274 	const char *variant;
275 
276 	/* The hardware platform number has a fixed value of 0x37 and
277 	 * for now only accept this single value.
278 	 */
279 	if (ver->hw_platform != 0x37) {
280 		bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
281 			   ver->hw_platform);
282 		return -EINVAL;
283 	}
284 
285 	/* Check for supported iBT hardware variants of this firmware
286 	 * loading method.
287 	 *
288 	 * This check has been put in place to ensure correct forward
289 	 * compatibility options when newer hardware variants come along.
290 	 */
291 	switch (ver->hw_variant) {
292 	case 0x07:	/* WP - Legacy ROM */
293 	case 0x08:	/* StP - Legacy ROM */
294 	case 0x0b:      /* SfP */
295 	case 0x0c:      /* WsP */
296 	case 0x11:      /* JfP */
297 	case 0x12:      /* ThP */
298 	case 0x13:      /* HrP */
299 	case 0x14:      /* CcP */
300 		break;
301 	default:
302 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
303 			   ver->hw_variant);
304 		return -EINVAL;
305 	}
306 
307 	switch (ver->fw_variant) {
308 	case 0x01:
309 		variant = "Legacy ROM 2.5";
310 		break;
311 	case 0x06:
312 		variant = "Bootloader";
313 		break;
314 	case 0x22:
315 		variant = "Legacy ROM 2.x";
316 		break;
317 	case 0x23:
318 		variant = "Firmware";
319 		break;
320 	default:
321 		bt_dev_err(hdev, "Unsupported firmware variant(%02x)", ver->fw_variant);
322 		return -EINVAL;
323 	}
324 
325 	coredump_info.hw_variant = ver->hw_variant;
326 	coredump_info.fw_build_num = ver->fw_build_num;
327 
328 	bt_dev_info(hdev, "%s revision %u.%u build %u week %u %u",
329 		    variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f,
330 		    ver->fw_build_num, ver->fw_build_ww,
331 		    2000 + ver->fw_build_yy);
332 
333 	return 0;
334 }
335 EXPORT_SYMBOL_GPL(btintel_version_info);
336 
337 static int btintel_secure_send(struct hci_dev *hdev, u8 fragment_type, u32 plen,
338 			       const void *param)
339 {
340 	while (plen > 0) {
341 		struct sk_buff *skb;
342 		u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen;
343 
344 		cmd_param[0] = fragment_type;
345 		memcpy(cmd_param + 1, param, fragment_len);
346 
347 		skb = __hci_cmd_sync(hdev, 0xfc09, fragment_len + 1,
348 				     cmd_param, HCI_INIT_TIMEOUT);
349 		if (IS_ERR(skb))
350 			return PTR_ERR(skb);
351 
352 		kfree_skb(skb);
353 
354 		plen -= fragment_len;
355 		param += fragment_len;
356 	}
357 
358 	return 0;
359 }
360 
361 int btintel_load_ddc_config(struct hci_dev *hdev, const char *ddc_name)
362 {
363 	const struct firmware *fw;
364 	struct sk_buff *skb;
365 	const u8 *fw_ptr;
366 	int err;
367 
368 	err = request_firmware_direct(&fw, ddc_name, &hdev->dev);
369 	if (err < 0) {
370 		bt_dev_err(hdev, "Failed to load Intel DDC file %s (%d)",
371 			   ddc_name, err);
372 		return err;
373 	}
374 
375 	bt_dev_info(hdev, "Found Intel DDC parameters: %s", ddc_name);
376 
377 	fw_ptr = fw->data;
378 
379 	/* DDC file contains one or more DDC structure which has
380 	 * Length (1 byte), DDC ID (2 bytes), and DDC value (Length - 2).
381 	 */
382 	while (fw->size > fw_ptr - fw->data) {
383 		u8 cmd_plen = fw_ptr[0] + sizeof(u8);
384 
385 		skb = __hci_cmd_sync(hdev, 0xfc8b, cmd_plen, fw_ptr,
386 				     HCI_INIT_TIMEOUT);
387 		if (IS_ERR(skb)) {
388 			bt_dev_err(hdev, "Failed to send Intel_Write_DDC (%ld)",
389 				   PTR_ERR(skb));
390 			release_firmware(fw);
391 			return PTR_ERR(skb);
392 		}
393 
394 		fw_ptr += cmd_plen;
395 		kfree_skb(skb);
396 	}
397 
398 	release_firmware(fw);
399 
400 	bt_dev_info(hdev, "Applying Intel DDC parameters completed");
401 
402 	return 0;
403 }
404 EXPORT_SYMBOL_GPL(btintel_load_ddc_config);
405 
406 int btintel_set_event_mask_mfg(struct hci_dev *hdev, bool debug)
407 {
408 	int err, ret;
409 
410 	err = btintel_enter_mfg(hdev);
411 	if (err)
412 		return err;
413 
414 	ret = btintel_set_event_mask(hdev, debug);
415 
416 	err = btintel_exit_mfg(hdev, false, false);
417 	if (err)
418 		return err;
419 
420 	return ret;
421 }
422 EXPORT_SYMBOL_GPL(btintel_set_event_mask_mfg);
423 
424 int btintel_read_version(struct hci_dev *hdev, struct intel_version *ver)
425 {
426 	struct sk_buff *skb;
427 
428 	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
429 	if (IS_ERR(skb)) {
430 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
431 			   PTR_ERR(skb));
432 		return PTR_ERR(skb);
433 	}
434 
435 	if (!skb || skb->len != sizeof(*ver)) {
436 		bt_dev_err(hdev, "Intel version event size mismatch");
437 		kfree_skb(skb);
438 		return -EILSEQ;
439 	}
440 
441 	memcpy(ver, skb->data, sizeof(*ver));
442 
443 	kfree_skb(skb);
444 
445 	return 0;
446 }
447 EXPORT_SYMBOL_GPL(btintel_read_version);
448 
449 int btintel_version_info_tlv(struct hci_dev *hdev,
450 			     struct intel_version_tlv *version)
451 {
452 	const char *variant;
453 
454 	/* The hardware platform number has a fixed value of 0x37 and
455 	 * for now only accept this single value.
456 	 */
457 	if (INTEL_HW_PLATFORM(version->cnvi_bt) != 0x37) {
458 		bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
459 			   INTEL_HW_PLATFORM(version->cnvi_bt));
460 		return -EINVAL;
461 	}
462 
463 	/* Check for supported iBT hardware variants of this firmware
464 	 * loading method.
465 	 *
466 	 * This check has been put in place to ensure correct forward
467 	 * compatibility options when newer hardware variants come along.
468 	 */
469 	switch (INTEL_HW_VARIANT(version->cnvi_bt)) {
470 	case 0x17:	/* TyP */
471 	case 0x18:	/* Slr */
472 	case 0x19:	/* Slr-F */
473 	case 0x1b:      /* Mgr */
474 	case 0x1c:	/* Gale Peak (GaP) */
475 	case 0x1d:	/* BlazarU (BzrU) */
476 	case 0x1e:	/* BlazarI (Bzr) */
477 		break;
478 	default:
479 		bt_dev_err(hdev, "Unsupported Intel hardware variant (0x%x)",
480 			   INTEL_HW_VARIANT(version->cnvi_bt));
481 		return -EINVAL;
482 	}
483 
484 	switch (version->img_type) {
485 	case BTINTEL_IMG_BOOTLOADER:
486 		variant = "Bootloader";
487 		/* It is required that every single firmware fragment is acknowledged
488 		 * with a command complete event. If the boot parameters indicate
489 		 * that this bootloader does not send them, then abort the setup.
490 		 */
491 		if (version->limited_cce != 0x00) {
492 			bt_dev_err(hdev, "Unsupported Intel firmware loading method (0x%x)",
493 				   version->limited_cce);
494 			return -EINVAL;
495 		}
496 
497 		/* Secure boot engine type should be either 1 (ECDSA) or 0 (RSA) */
498 		if (version->sbe_type > 0x01) {
499 			bt_dev_err(hdev, "Unsupported Intel secure boot engine type (0x%x)",
500 				   version->sbe_type);
501 			return -EINVAL;
502 		}
503 
504 		bt_dev_info(hdev, "Device revision is %u", version->dev_rev_id);
505 		bt_dev_info(hdev, "Secure boot is %s",
506 			    version->secure_boot ? "enabled" : "disabled");
507 		bt_dev_info(hdev, "OTP lock is %s",
508 			    version->otp_lock ? "enabled" : "disabled");
509 		bt_dev_info(hdev, "API lock is %s",
510 			    version->api_lock ? "enabled" : "disabled");
511 		bt_dev_info(hdev, "Debug lock is %s",
512 			    version->debug_lock ? "enabled" : "disabled");
513 		bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
514 			    version->min_fw_build_nn, version->min_fw_build_cw,
515 			    2000 + version->min_fw_build_yy);
516 		break;
517 	case BTINTEL_IMG_IML:
518 		variant = "Intermediate loader";
519 		break;
520 	case BTINTEL_IMG_OP:
521 		variant = "Firmware";
522 		break;
523 	default:
524 		bt_dev_err(hdev, "Unsupported image type(%02x)", version->img_type);
525 		return -EINVAL;
526 	}
527 
528 	coredump_info.hw_variant = INTEL_HW_VARIANT(version->cnvi_bt);
529 	coredump_info.fw_build_num = version->build_num;
530 
531 	bt_dev_info(hdev, "%s timestamp %u.%u buildtype %u build %u", variant,
532 		    2000 + (version->timestamp >> 8), version->timestamp & 0xff,
533 		    version->build_type, version->build_num);
534 	if (version->img_type == BTINTEL_IMG_OP)
535 		bt_dev_info(hdev, "Firmware SHA1: 0x%8.8x", version->git_sha1);
536 
537 	return 0;
538 }
539 EXPORT_SYMBOL_GPL(btintel_version_info_tlv);
540 
541 int btintel_parse_version_tlv(struct hci_dev *hdev,
542 			      struct intel_version_tlv *version,
543 			      struct sk_buff *skb)
544 {
545 	/* Consume Command Complete Status field */
546 	skb_pull(skb, 1);
547 
548 	/* Event parameters contatin multiple TLVs. Read each of them
549 	 * and only keep the required data. Also, it use existing legacy
550 	 * version field like hw_platform, hw_variant, and fw_variant
551 	 * to keep the existing setup flow
552 	 */
553 	while (skb->len) {
554 		struct intel_tlv *tlv;
555 
556 		/* Make sure skb has a minimum length of the header */
557 		if (skb->len < sizeof(*tlv))
558 			return -EINVAL;
559 
560 		tlv = (struct intel_tlv *)skb->data;
561 
562 		/* Make sure skb has a enough data */
563 		if (skb->len < tlv->len + sizeof(*tlv))
564 			return -EINVAL;
565 
566 		switch (tlv->type) {
567 		case INTEL_TLV_CNVI_TOP:
568 			version->cnvi_top = get_unaligned_le32(tlv->val);
569 			break;
570 		case INTEL_TLV_CNVR_TOP:
571 			version->cnvr_top = get_unaligned_le32(tlv->val);
572 			break;
573 		case INTEL_TLV_CNVI_BT:
574 			version->cnvi_bt = get_unaligned_le32(tlv->val);
575 			break;
576 		case INTEL_TLV_CNVR_BT:
577 			version->cnvr_bt = get_unaligned_le32(tlv->val);
578 			break;
579 		case INTEL_TLV_DEV_REV_ID:
580 			version->dev_rev_id = get_unaligned_le16(tlv->val);
581 			break;
582 		case INTEL_TLV_IMAGE_TYPE:
583 			version->img_type = tlv->val[0];
584 			break;
585 		case INTEL_TLV_TIME_STAMP:
586 			/* If image type is Operational firmware (0x03), then
587 			 * running FW Calendar Week and Year information can
588 			 * be extracted from Timestamp information
589 			 */
590 			version->min_fw_build_cw = tlv->val[0];
591 			version->min_fw_build_yy = tlv->val[1];
592 			version->timestamp = get_unaligned_le16(tlv->val);
593 			break;
594 		case INTEL_TLV_BUILD_TYPE:
595 			version->build_type = tlv->val[0];
596 			break;
597 		case INTEL_TLV_BUILD_NUM:
598 			/* If image type is Operational firmware (0x03), then
599 			 * running FW build number can be extracted from the
600 			 * Build information
601 			 */
602 			version->min_fw_build_nn = tlv->val[0];
603 			version->build_num = get_unaligned_le32(tlv->val);
604 			break;
605 		case INTEL_TLV_SECURE_BOOT:
606 			version->secure_boot = tlv->val[0];
607 			break;
608 		case INTEL_TLV_OTP_LOCK:
609 			version->otp_lock = tlv->val[0];
610 			break;
611 		case INTEL_TLV_API_LOCK:
612 			version->api_lock = tlv->val[0];
613 			break;
614 		case INTEL_TLV_DEBUG_LOCK:
615 			version->debug_lock = tlv->val[0];
616 			break;
617 		case INTEL_TLV_MIN_FW:
618 			version->min_fw_build_nn = tlv->val[0];
619 			version->min_fw_build_cw = tlv->val[1];
620 			version->min_fw_build_yy = tlv->val[2];
621 			break;
622 		case INTEL_TLV_LIMITED_CCE:
623 			version->limited_cce = tlv->val[0];
624 			break;
625 		case INTEL_TLV_SBE_TYPE:
626 			version->sbe_type = tlv->val[0];
627 			break;
628 		case INTEL_TLV_OTP_BDADDR:
629 			memcpy(&version->otp_bd_addr, tlv->val,
630 							sizeof(bdaddr_t));
631 			break;
632 		case INTEL_TLV_GIT_SHA1:
633 			version->git_sha1 = get_unaligned_le32(tlv->val);
634 			break;
635 		case INTEL_TLV_FW_ID:
636 			snprintf(version->fw_id, sizeof(version->fw_id),
637 				 "%s", tlv->val);
638 			break;
639 		default:
640 			/* Ignore rest of information */
641 			break;
642 		}
643 		/* consume the current tlv and move to next*/
644 		skb_pull(skb, tlv->len + sizeof(*tlv));
645 	}
646 
647 	return 0;
648 }
649 EXPORT_SYMBOL_GPL(btintel_parse_version_tlv);
650 
651 static int btintel_read_version_tlv(struct hci_dev *hdev,
652 				    struct intel_version_tlv *version)
653 {
654 	struct sk_buff *skb;
655 	const u8 param[1] = { 0xFF };
656 
657 	if (!version)
658 		return -EINVAL;
659 
660 	skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
661 	if (IS_ERR(skb)) {
662 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
663 			   PTR_ERR(skb));
664 		return PTR_ERR(skb);
665 	}
666 
667 	if (skb->data[0]) {
668 		bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
669 			   skb->data[0]);
670 		kfree_skb(skb);
671 		return -EIO;
672 	}
673 
674 	btintel_parse_version_tlv(hdev, version, skb);
675 
676 	kfree_skb(skb);
677 	return 0;
678 }
679 
680 /* ------- REGMAP IBT SUPPORT ------- */
681 
682 #define IBT_REG_MODE_8BIT  0x00
683 #define IBT_REG_MODE_16BIT 0x01
684 #define IBT_REG_MODE_32BIT 0x02
685 
686 struct regmap_ibt_context {
687 	struct hci_dev *hdev;
688 	__u16 op_write;
689 	__u16 op_read;
690 };
691 
692 struct ibt_cp_reg_access {
693 	__le32  addr;
694 	__u8    mode;
695 	__u8    len;
696 	__u8    data[];
697 } __packed;
698 
699 struct ibt_rp_reg_access {
700 	__u8    status;
701 	__le32  addr;
702 	__u8    data[];
703 } __packed;
704 
705 static int regmap_ibt_read(void *context, const void *addr, size_t reg_size,
706 			   void *val, size_t val_size)
707 {
708 	struct regmap_ibt_context *ctx = context;
709 	struct ibt_cp_reg_access cp;
710 	struct ibt_rp_reg_access *rp;
711 	struct sk_buff *skb;
712 	int err = 0;
713 
714 	if (reg_size != sizeof(__le32))
715 		return -EINVAL;
716 
717 	switch (val_size) {
718 	case 1:
719 		cp.mode = IBT_REG_MODE_8BIT;
720 		break;
721 	case 2:
722 		cp.mode = IBT_REG_MODE_16BIT;
723 		break;
724 	case 4:
725 		cp.mode = IBT_REG_MODE_32BIT;
726 		break;
727 	default:
728 		return -EINVAL;
729 	}
730 
731 	/* regmap provides a little-endian formatted addr */
732 	cp.addr = *(__le32 *)addr;
733 	cp.len = val_size;
734 
735 	bt_dev_dbg(ctx->hdev, "Register (0x%x) read", le32_to_cpu(cp.addr));
736 
737 	skb = hci_cmd_sync(ctx->hdev, ctx->op_read, sizeof(cp), &cp,
738 			   HCI_CMD_TIMEOUT);
739 	if (IS_ERR(skb)) {
740 		err = PTR_ERR(skb);
741 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error (%d)",
742 			   le32_to_cpu(cp.addr), err);
743 		return err;
744 	}
745 
746 	if (skb->len != sizeof(*rp) + val_size) {
747 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad len",
748 			   le32_to_cpu(cp.addr));
749 		err = -EINVAL;
750 		goto done;
751 	}
752 
753 	rp = (struct ibt_rp_reg_access *)skb->data;
754 
755 	if (rp->addr != cp.addr) {
756 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad addr",
757 			   le32_to_cpu(rp->addr));
758 		err = -EINVAL;
759 		goto done;
760 	}
761 
762 	memcpy(val, rp->data, val_size);
763 
764 done:
765 	kfree_skb(skb);
766 	return err;
767 }
768 
769 static int regmap_ibt_gather_write(void *context,
770 				   const void *addr, size_t reg_size,
771 				   const void *val, size_t val_size)
772 {
773 	struct regmap_ibt_context *ctx = context;
774 	struct ibt_cp_reg_access *cp;
775 	struct sk_buff *skb;
776 	int plen = sizeof(*cp) + val_size;
777 	u8 mode;
778 	int err = 0;
779 
780 	if (reg_size != sizeof(__le32))
781 		return -EINVAL;
782 
783 	switch (val_size) {
784 	case 1:
785 		mode = IBT_REG_MODE_8BIT;
786 		break;
787 	case 2:
788 		mode = IBT_REG_MODE_16BIT;
789 		break;
790 	case 4:
791 		mode = IBT_REG_MODE_32BIT;
792 		break;
793 	default:
794 		return -EINVAL;
795 	}
796 
797 	cp = kmalloc(plen, GFP_KERNEL);
798 	if (!cp)
799 		return -ENOMEM;
800 
801 	/* regmap provides a little-endian formatted addr/value */
802 	cp->addr = *(__le32 *)addr;
803 	cp->mode = mode;
804 	cp->len = val_size;
805 	memcpy(&cp->data, val, val_size);
806 
807 	bt_dev_dbg(ctx->hdev, "Register (0x%x) write", le32_to_cpu(cp->addr));
808 
809 	skb = hci_cmd_sync(ctx->hdev, ctx->op_write, plen, cp, HCI_CMD_TIMEOUT);
810 	if (IS_ERR(skb)) {
811 		err = PTR_ERR(skb);
812 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) write error (%d)",
813 			   le32_to_cpu(cp->addr), err);
814 		goto done;
815 	}
816 	kfree_skb(skb);
817 
818 done:
819 	kfree(cp);
820 	return err;
821 }
822 
823 static int regmap_ibt_write(void *context, const void *data, size_t count)
824 {
825 	/* data contains register+value, since we only support 32bit addr,
826 	 * minimum data size is 4 bytes.
827 	 */
828 	if (WARN_ONCE(count < 4, "Invalid register access"))
829 		return -EINVAL;
830 
831 	return regmap_ibt_gather_write(context, data, 4, data + 4, count - 4);
832 }
833 
834 static void regmap_ibt_free_context(void *context)
835 {
836 	kfree(context);
837 }
838 
839 static const struct regmap_bus regmap_ibt = {
840 	.read = regmap_ibt_read,
841 	.write = regmap_ibt_write,
842 	.gather_write = regmap_ibt_gather_write,
843 	.free_context = regmap_ibt_free_context,
844 	.reg_format_endian_default = REGMAP_ENDIAN_LITTLE,
845 	.val_format_endian_default = REGMAP_ENDIAN_LITTLE,
846 };
847 
848 /* Config is the same for all register regions */
849 static const struct regmap_config regmap_ibt_cfg = {
850 	.name      = "btintel_regmap",
851 	.reg_bits  = 32,
852 	.val_bits  = 32,
853 };
854 
855 struct regmap *btintel_regmap_init(struct hci_dev *hdev, u16 opcode_read,
856 				   u16 opcode_write)
857 {
858 	struct regmap_ibt_context *ctx;
859 
860 	bt_dev_info(hdev, "regmap: Init R%x-W%x region", opcode_read,
861 		    opcode_write);
862 
863 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
864 	if (!ctx)
865 		return ERR_PTR(-ENOMEM);
866 
867 	ctx->op_read = opcode_read;
868 	ctx->op_write = opcode_write;
869 	ctx->hdev = hdev;
870 
871 	return regmap_init(&hdev->dev, &regmap_ibt, ctx, &regmap_ibt_cfg);
872 }
873 EXPORT_SYMBOL_GPL(btintel_regmap_init);
874 
875 int btintel_send_intel_reset(struct hci_dev *hdev, u32 boot_param)
876 {
877 	struct intel_reset params = { 0x00, 0x01, 0x00, 0x01, 0x00000000 };
878 	struct sk_buff *skb;
879 
880 	params.boot_param = cpu_to_le32(boot_param);
881 
882 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), &params,
883 			     HCI_INIT_TIMEOUT);
884 	if (IS_ERR(skb)) {
885 		bt_dev_err(hdev, "Failed to send Intel Reset command");
886 		return PTR_ERR(skb);
887 	}
888 
889 	kfree_skb(skb);
890 
891 	return 0;
892 }
893 EXPORT_SYMBOL_GPL(btintel_send_intel_reset);
894 
895 int btintel_read_boot_params(struct hci_dev *hdev,
896 			     struct intel_boot_params *params)
897 {
898 	struct sk_buff *skb;
899 
900 	skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
901 	if (IS_ERR(skb)) {
902 		bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
903 			   PTR_ERR(skb));
904 		return PTR_ERR(skb);
905 	}
906 
907 	if (skb->len != sizeof(*params)) {
908 		bt_dev_err(hdev, "Intel boot parameters size mismatch");
909 		kfree_skb(skb);
910 		return -EILSEQ;
911 	}
912 
913 	memcpy(params, skb->data, sizeof(*params));
914 
915 	kfree_skb(skb);
916 
917 	if (params->status) {
918 		bt_dev_err(hdev, "Intel boot parameters command failed (%02x)",
919 			   params->status);
920 		return -bt_to_errno(params->status);
921 	}
922 
923 	bt_dev_info(hdev, "Device revision is %u",
924 		    le16_to_cpu(params->dev_revid));
925 
926 	bt_dev_info(hdev, "Secure boot is %s",
927 		    params->secure_boot ? "enabled" : "disabled");
928 
929 	bt_dev_info(hdev, "OTP lock is %s",
930 		    params->otp_lock ? "enabled" : "disabled");
931 
932 	bt_dev_info(hdev, "API lock is %s",
933 		    params->api_lock ? "enabled" : "disabled");
934 
935 	bt_dev_info(hdev, "Debug lock is %s",
936 		    params->debug_lock ? "enabled" : "disabled");
937 
938 	bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
939 		    params->min_fw_build_nn, params->min_fw_build_cw,
940 		    2000 + params->min_fw_build_yy);
941 
942 	return 0;
943 }
944 EXPORT_SYMBOL_GPL(btintel_read_boot_params);
945 
946 static int btintel_sfi_rsa_header_secure_send(struct hci_dev *hdev,
947 					      const struct firmware *fw)
948 {
949 	int err;
950 
951 	/* Start the firmware download transaction with the Init fragment
952 	 * represented by the 128 bytes of CSS header.
953 	 */
954 	err = btintel_secure_send(hdev, 0x00, 128, fw->data);
955 	if (err < 0) {
956 		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
957 		goto done;
958 	}
959 
960 	/* Send the 256 bytes of public key information from the firmware
961 	 * as the PKey fragment.
962 	 */
963 	err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
964 	if (err < 0) {
965 		bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
966 		goto done;
967 	}
968 
969 	/* Send the 256 bytes of signature information from the firmware
970 	 * as the Sign fragment.
971 	 */
972 	err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
973 	if (err < 0) {
974 		bt_dev_err(hdev, "Failed to send firmware signature (%d)", err);
975 		goto done;
976 	}
977 
978 done:
979 	return err;
980 }
981 
982 static int btintel_sfi_ecdsa_header_secure_send(struct hci_dev *hdev,
983 						const struct firmware *fw)
984 {
985 	int err;
986 
987 	/* Start the firmware download transaction with the Init fragment
988 	 * represented by the 128 bytes of CSS header.
989 	 */
990 	err = btintel_secure_send(hdev, 0x00, 128, fw->data + 644);
991 	if (err < 0) {
992 		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
993 		return err;
994 	}
995 
996 	/* Send the 96 bytes of public key information from the firmware
997 	 * as the PKey fragment.
998 	 */
999 	err = btintel_secure_send(hdev, 0x03, 96, fw->data + 644 + 128);
1000 	if (err < 0) {
1001 		bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
1002 		return err;
1003 	}
1004 
1005 	/* Send the 96 bytes of signature information from the firmware
1006 	 * as the Sign fragment
1007 	 */
1008 	err = btintel_secure_send(hdev, 0x02, 96, fw->data + 644 + 224);
1009 	if (err < 0) {
1010 		bt_dev_err(hdev, "Failed to send firmware signature (%d)",
1011 			   err);
1012 		return err;
1013 	}
1014 	return 0;
1015 }
1016 
1017 static int btintel_download_firmware_payload(struct hci_dev *hdev,
1018 					     const struct firmware *fw,
1019 					     size_t offset)
1020 {
1021 	int err;
1022 	const u8 *fw_ptr;
1023 	u32 frag_len;
1024 
1025 	fw_ptr = fw->data + offset;
1026 	frag_len = 0;
1027 	err = -EINVAL;
1028 
1029 	while (fw_ptr - fw->data < fw->size) {
1030 		struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
1031 
1032 		frag_len += sizeof(*cmd) + cmd->plen;
1033 
1034 		/* The parameter length of the secure send command requires
1035 		 * a 4 byte alignment. It happens so that the firmware file
1036 		 * contains proper Intel_NOP commands to align the fragments
1037 		 * as needed.
1038 		 *
1039 		 * Send set of commands with 4 byte alignment from the
1040 		 * firmware data buffer as a single Data fragement.
1041 		 */
1042 		if (!(frag_len % 4)) {
1043 			err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
1044 			if (err < 0) {
1045 				bt_dev_err(hdev,
1046 					   "Failed to send firmware data (%d)",
1047 					   err);
1048 				goto done;
1049 			}
1050 
1051 			fw_ptr += frag_len;
1052 			frag_len = 0;
1053 		}
1054 	}
1055 
1056 done:
1057 	return err;
1058 }
1059 
1060 static bool btintel_firmware_version(struct hci_dev *hdev,
1061 				     u8 num, u8 ww, u8 yy,
1062 				     const struct firmware *fw,
1063 				     u32 *boot_addr)
1064 {
1065 	const u8 *fw_ptr;
1066 
1067 	fw_ptr = fw->data;
1068 
1069 	while (fw_ptr - fw->data < fw->size) {
1070 		struct hci_command_hdr *cmd = (void *)(fw_ptr);
1071 
1072 		/* Each SKU has a different reset parameter to use in the
1073 		 * HCI_Intel_Reset command and it is embedded in the firmware
1074 		 * data. So, instead of using static value per SKU, check
1075 		 * the firmware data and save it for later use.
1076 		 */
1077 		if (le16_to_cpu(cmd->opcode) == CMD_WRITE_BOOT_PARAMS) {
1078 			struct cmd_write_boot_params *params;
1079 
1080 			params = (void *)(fw_ptr + sizeof(*cmd));
1081 
1082 			*boot_addr = le32_to_cpu(params->boot_addr);
1083 
1084 			bt_dev_info(hdev, "Boot Address: 0x%x", *boot_addr);
1085 
1086 			bt_dev_info(hdev, "Firmware Version: %u-%u.%u",
1087 				    params->fw_build_num, params->fw_build_ww,
1088 				    params->fw_build_yy);
1089 
1090 			return (num == params->fw_build_num &&
1091 				ww == params->fw_build_ww &&
1092 				yy == params->fw_build_yy);
1093 		}
1094 
1095 		fw_ptr += sizeof(*cmd) + cmd->plen;
1096 	}
1097 
1098 	return false;
1099 }
1100 
1101 int btintel_download_firmware(struct hci_dev *hdev,
1102 			      struct intel_version *ver,
1103 			      const struct firmware *fw,
1104 			      u32 *boot_param)
1105 {
1106 	int err;
1107 
1108 	/* SfP and WsP don't seem to update the firmware version on file
1109 	 * so version checking is currently not possible.
1110 	 */
1111 	switch (ver->hw_variant) {
1112 	case 0x0b:	/* SfP */
1113 	case 0x0c:	/* WsP */
1114 		/* Skip version checking */
1115 		break;
1116 	default:
1117 
1118 		/* Skip download if firmware has the same version */
1119 		if (btintel_firmware_version(hdev, ver->fw_build_num,
1120 					     ver->fw_build_ww, ver->fw_build_yy,
1121 					     fw, boot_param)) {
1122 			bt_dev_info(hdev, "Firmware already loaded");
1123 			/* Return -EALREADY to indicate that the firmware has
1124 			 * already been loaded.
1125 			 */
1126 			return -EALREADY;
1127 		}
1128 	}
1129 
1130 	/* The firmware variant determines if the device is in bootloader
1131 	 * mode or is running operational firmware. The value 0x06 identifies
1132 	 * the bootloader and the value 0x23 identifies the operational
1133 	 * firmware.
1134 	 *
1135 	 * If the firmware version has changed that means it needs to be reset
1136 	 * to bootloader when operational so the new firmware can be loaded.
1137 	 */
1138 	if (ver->fw_variant == 0x23)
1139 		return -EINVAL;
1140 
1141 	err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1142 	if (err)
1143 		return err;
1144 
1145 	return btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
1146 }
1147 EXPORT_SYMBOL_GPL(btintel_download_firmware);
1148 
1149 static int btintel_download_fw_tlv(struct hci_dev *hdev,
1150 				   struct intel_version_tlv *ver,
1151 				   const struct firmware *fw, u32 *boot_param,
1152 				   u8 hw_variant, u8 sbe_type)
1153 {
1154 	int err;
1155 	u32 css_header_ver;
1156 
1157 	/* Skip download if firmware has the same version */
1158 	if (btintel_firmware_version(hdev, ver->min_fw_build_nn,
1159 				     ver->min_fw_build_cw,
1160 				     ver->min_fw_build_yy,
1161 				     fw, boot_param)) {
1162 		bt_dev_info(hdev, "Firmware already loaded");
1163 		/* Return -EALREADY to indicate that firmware has
1164 		 * already been loaded.
1165 		 */
1166 		return -EALREADY;
1167 	}
1168 
1169 	/* The firmware variant determines if the device is in bootloader
1170 	 * mode or is running operational firmware. The value 0x01 identifies
1171 	 * the bootloader and the value 0x03 identifies the operational
1172 	 * firmware.
1173 	 *
1174 	 * If the firmware version has changed that means it needs to be reset
1175 	 * to bootloader when operational so the new firmware can be loaded.
1176 	 */
1177 	if (ver->img_type == BTINTEL_IMG_OP)
1178 		return -EINVAL;
1179 
1180 	/* iBT hardware variants 0x0b, 0x0c, 0x11, 0x12, 0x13, 0x14 support
1181 	 * only RSA secure boot engine. Hence, the corresponding sfi file will
1182 	 * have RSA header of 644 bytes followed by Command Buffer.
1183 	 *
1184 	 * iBT hardware variants 0x17, 0x18 onwards support both RSA and ECDSA
1185 	 * secure boot engine. As a result, the corresponding sfi file will
1186 	 * have RSA header of 644, ECDSA header of 320 bytes followed by
1187 	 * Command Buffer.
1188 	 *
1189 	 * CSS Header byte positions 0x08 to 0x0B represent the CSS Header
1190 	 * version: RSA(0x00010000) , ECDSA (0x00020000)
1191 	 */
1192 	css_header_ver = get_unaligned_le32(fw->data + CSS_HEADER_OFFSET);
1193 	if (css_header_ver != 0x00010000) {
1194 		bt_dev_err(hdev, "Invalid CSS Header version");
1195 		return -EINVAL;
1196 	}
1197 
1198 	if (hw_variant <= 0x14) {
1199 		if (sbe_type != 0x00) {
1200 			bt_dev_err(hdev, "Invalid SBE type for hardware variant (%d)",
1201 				   hw_variant);
1202 			return -EINVAL;
1203 		}
1204 
1205 		err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1206 		if (err)
1207 			return err;
1208 
1209 		err = btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
1210 		if (err)
1211 			return err;
1212 	} else if (hw_variant >= 0x17) {
1213 		/* Check if CSS header for ECDSA follows the RSA header */
1214 		if (fw->data[ECDSA_OFFSET] != 0x06)
1215 			return -EINVAL;
1216 
1217 		/* Check if the CSS Header version is ECDSA(0x00020000) */
1218 		css_header_ver = get_unaligned_le32(fw->data + ECDSA_OFFSET + CSS_HEADER_OFFSET);
1219 		if (css_header_ver != 0x00020000) {
1220 			bt_dev_err(hdev, "Invalid CSS Header version");
1221 			return -EINVAL;
1222 		}
1223 
1224 		if (sbe_type == 0x00) {
1225 			err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1226 			if (err)
1227 				return err;
1228 
1229 			err = btintel_download_firmware_payload(hdev, fw,
1230 								RSA_HEADER_LEN + ECDSA_HEADER_LEN);
1231 			if (err)
1232 				return err;
1233 		} else if (sbe_type == 0x01) {
1234 			err = btintel_sfi_ecdsa_header_secure_send(hdev, fw);
1235 			if (err)
1236 				return err;
1237 
1238 			err = btintel_download_firmware_payload(hdev, fw,
1239 								RSA_HEADER_LEN + ECDSA_HEADER_LEN);
1240 			if (err)
1241 				return err;
1242 		}
1243 	}
1244 	return 0;
1245 }
1246 
1247 static void btintel_reset_to_bootloader(struct hci_dev *hdev)
1248 {
1249 	struct intel_reset params;
1250 	struct sk_buff *skb;
1251 
1252 	/* Send Intel Reset command. This will result in
1253 	 * re-enumeration of BT controller.
1254 	 *
1255 	 * Intel Reset parameter description:
1256 	 * reset_type :   0x00 (Soft reset),
1257 	 *		  0x01 (Hard reset)
1258 	 * patch_enable : 0x00 (Do not enable),
1259 	 *		  0x01 (Enable)
1260 	 * ddc_reload :   0x00 (Do not reload),
1261 	 *		  0x01 (Reload)
1262 	 * boot_option:   0x00 (Current image),
1263 	 *                0x01 (Specified boot address)
1264 	 * boot_param:    Boot address
1265 	 *
1266 	 */
1267 	params.reset_type = 0x01;
1268 	params.patch_enable = 0x01;
1269 	params.ddc_reload = 0x01;
1270 	params.boot_option = 0x00;
1271 	params.boot_param = cpu_to_le32(0x00000000);
1272 
1273 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params),
1274 			     &params, HCI_INIT_TIMEOUT);
1275 	if (IS_ERR(skb)) {
1276 		bt_dev_err(hdev, "FW download error recovery failed (%ld)",
1277 			   PTR_ERR(skb));
1278 		return;
1279 	}
1280 	bt_dev_info(hdev, "Intel reset sent to retry FW download");
1281 	kfree_skb(skb);
1282 
1283 	/* Current Intel BT controllers(ThP/JfP) hold the USB reset
1284 	 * lines for 2ms when it receives Intel Reset in bootloader mode.
1285 	 * Whereas, the upcoming Intel BT controllers will hold USB reset
1286 	 * for 150ms. To keep the delay generic, 150ms is chosen here.
1287 	 */
1288 	msleep(150);
1289 }
1290 
1291 static int btintel_read_debug_features(struct hci_dev *hdev,
1292 				       struct intel_debug_features *features)
1293 {
1294 	struct sk_buff *skb;
1295 	u8 page_no = 1;
1296 
1297 	/* Intel controller supports two pages, each page is of 128-bit
1298 	 * feature bit mask. And each bit defines specific feature support
1299 	 */
1300 	skb = __hci_cmd_sync(hdev, 0xfca6, sizeof(page_no), &page_no,
1301 			     HCI_INIT_TIMEOUT);
1302 	if (IS_ERR(skb)) {
1303 		bt_dev_err(hdev, "Reading supported features failed (%ld)",
1304 			   PTR_ERR(skb));
1305 		return PTR_ERR(skb);
1306 	}
1307 
1308 	if (skb->len != (sizeof(features->page1) + 3)) {
1309 		bt_dev_err(hdev, "Supported features event size mismatch");
1310 		kfree_skb(skb);
1311 		return -EILSEQ;
1312 	}
1313 
1314 	memcpy(features->page1, skb->data + 3, sizeof(features->page1));
1315 
1316 	/* Read the supported features page2 if required in future.
1317 	 */
1318 	kfree_skb(skb);
1319 	return 0;
1320 }
1321 
1322 static int btintel_set_debug_features(struct hci_dev *hdev,
1323 			       const struct intel_debug_features *features)
1324 {
1325 	u8 mask[11] = { 0x0a, 0x92, 0x02, 0x7f, 0x00, 0x00, 0x00, 0x00,
1326 			0x00, 0x00, 0x00 };
1327 	u8 period[5] = { 0x04, 0x91, 0x02, 0x05, 0x00 };
1328 	u8 trace_enable = 0x02;
1329 	struct sk_buff *skb;
1330 
1331 	if (!features) {
1332 		bt_dev_warn(hdev, "Debug features not read");
1333 		return -EINVAL;
1334 	}
1335 
1336 	if (!(features->page1[0] & 0x3f)) {
1337 		bt_dev_info(hdev, "Telemetry exception format not supported");
1338 		return 0;
1339 	}
1340 
1341 	skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
1342 	if (IS_ERR(skb)) {
1343 		bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
1344 			   PTR_ERR(skb));
1345 		return PTR_ERR(skb);
1346 	}
1347 	kfree_skb(skb);
1348 
1349 	skb = __hci_cmd_sync(hdev, 0xfc8b, 5, period, HCI_INIT_TIMEOUT);
1350 	if (IS_ERR(skb)) {
1351 		bt_dev_err(hdev, "Setting periodicity for link statistics traces failed (%ld)",
1352 			   PTR_ERR(skb));
1353 		return PTR_ERR(skb);
1354 	}
1355 	kfree_skb(skb);
1356 
1357 	skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT);
1358 	if (IS_ERR(skb)) {
1359 		bt_dev_err(hdev, "Enable tracing of link statistics events failed (%ld)",
1360 			   PTR_ERR(skb));
1361 		return PTR_ERR(skb);
1362 	}
1363 	kfree_skb(skb);
1364 
1365 	bt_dev_info(hdev, "set debug features: trace_enable 0x%02x mask 0x%02x",
1366 		    trace_enable, mask[3]);
1367 
1368 	return 0;
1369 }
1370 
1371 static int btintel_reset_debug_features(struct hci_dev *hdev,
1372 				 const struct intel_debug_features *features)
1373 {
1374 	u8 mask[11] = { 0x0a, 0x92, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,
1375 			0x00, 0x00, 0x00 };
1376 	u8 trace_enable = 0x00;
1377 	struct sk_buff *skb;
1378 
1379 	if (!features) {
1380 		bt_dev_warn(hdev, "Debug features not read");
1381 		return -EINVAL;
1382 	}
1383 
1384 	if (!(features->page1[0] & 0x3f)) {
1385 		bt_dev_info(hdev, "Telemetry exception format not supported");
1386 		return 0;
1387 	}
1388 
1389 	/* Should stop the trace before writing ddc event mask. */
1390 	skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT);
1391 	if (IS_ERR(skb)) {
1392 		bt_dev_err(hdev, "Stop tracing of link statistics events failed (%ld)",
1393 			   PTR_ERR(skb));
1394 		return PTR_ERR(skb);
1395 	}
1396 	kfree_skb(skb);
1397 
1398 	skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
1399 	if (IS_ERR(skb)) {
1400 		bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
1401 			   PTR_ERR(skb));
1402 		return PTR_ERR(skb);
1403 	}
1404 	kfree_skb(skb);
1405 
1406 	bt_dev_info(hdev, "reset debug features: trace_enable 0x%02x mask 0x%02x",
1407 		    trace_enable, mask[3]);
1408 
1409 	return 0;
1410 }
1411 
1412 int btintel_set_quality_report(struct hci_dev *hdev, bool enable)
1413 {
1414 	struct intel_debug_features features;
1415 	int err;
1416 
1417 	bt_dev_dbg(hdev, "enable %d", enable);
1418 
1419 	/* Read the Intel supported features and if new exception formats
1420 	 * supported, need to load the additional DDC config to enable.
1421 	 */
1422 	err = btintel_read_debug_features(hdev, &features);
1423 	if (err)
1424 		return err;
1425 
1426 	/* Set or reset the debug features. */
1427 	if (enable)
1428 		err = btintel_set_debug_features(hdev, &features);
1429 	else
1430 		err = btintel_reset_debug_features(hdev, &features);
1431 
1432 	return err;
1433 }
1434 EXPORT_SYMBOL_GPL(btintel_set_quality_report);
1435 
1436 static void btintel_coredump(struct hci_dev *hdev)
1437 {
1438 	struct sk_buff *skb;
1439 
1440 	skb = __hci_cmd_sync(hdev, 0xfc4e, 0, NULL, HCI_CMD_TIMEOUT);
1441 	if (IS_ERR(skb)) {
1442 		bt_dev_err(hdev, "Coredump failed (%ld)", PTR_ERR(skb));
1443 		return;
1444 	}
1445 
1446 	kfree_skb(skb);
1447 }
1448 
1449 static void btintel_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb)
1450 {
1451 	char buf[80];
1452 
1453 	snprintf(buf, sizeof(buf), "Controller Name: 0x%X\n",
1454 		 coredump_info.hw_variant);
1455 	skb_put_data(skb, buf, strlen(buf));
1456 
1457 	snprintf(buf, sizeof(buf), "Firmware Version: 0x%X\n",
1458 		 coredump_info.fw_build_num);
1459 	skb_put_data(skb, buf, strlen(buf));
1460 
1461 	snprintf(buf, sizeof(buf), "Driver: %s\n", coredump_info.driver_name);
1462 	skb_put_data(skb, buf, strlen(buf));
1463 
1464 	snprintf(buf, sizeof(buf), "Vendor: Intel\n");
1465 	skb_put_data(skb, buf, strlen(buf));
1466 }
1467 
1468 static int btintel_register_devcoredump_support(struct hci_dev *hdev)
1469 {
1470 	struct intel_debug_features features;
1471 	int err;
1472 
1473 	err = btintel_read_debug_features(hdev, &features);
1474 	if (err) {
1475 		bt_dev_info(hdev, "Error reading debug features");
1476 		return err;
1477 	}
1478 
1479 	if (!(features.page1[0] & 0x3f)) {
1480 		bt_dev_dbg(hdev, "Telemetry exception format not supported");
1481 		return -EOPNOTSUPP;
1482 	}
1483 
1484 	hci_devcd_register(hdev, btintel_coredump, btintel_dmp_hdr, NULL);
1485 
1486 	return err;
1487 }
1488 
1489 static const struct firmware *btintel_legacy_rom_get_fw(struct hci_dev *hdev,
1490 					       struct intel_version *ver)
1491 {
1492 	const struct firmware *fw;
1493 	char fwname[64];
1494 	int ret;
1495 
1496 	snprintf(fwname, sizeof(fwname),
1497 		 "intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq",
1498 		 ver->hw_platform, ver->hw_variant, ver->hw_revision,
1499 		 ver->fw_variant,  ver->fw_revision, ver->fw_build_num,
1500 		 ver->fw_build_ww, ver->fw_build_yy);
1501 
1502 	ret = request_firmware(&fw, fwname, &hdev->dev);
1503 	if (ret < 0) {
1504 		if (ret == -EINVAL) {
1505 			bt_dev_err(hdev, "Intel firmware file request failed (%d)",
1506 				   ret);
1507 			return NULL;
1508 		}
1509 
1510 		bt_dev_err(hdev, "failed to open Intel firmware file: %s (%d)",
1511 			   fwname, ret);
1512 
1513 		/* If the correct firmware patch file is not found, use the
1514 		 * default firmware patch file instead
1515 		 */
1516 		snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.bseq",
1517 			 ver->hw_platform, ver->hw_variant);
1518 		if (request_firmware(&fw, fwname, &hdev->dev) < 0) {
1519 			bt_dev_err(hdev, "failed to open default fw file: %s",
1520 				   fwname);
1521 			return NULL;
1522 		}
1523 	}
1524 
1525 	bt_dev_info(hdev, "Intel Bluetooth firmware file: %s", fwname);
1526 
1527 	return fw;
1528 }
1529 
1530 static int btintel_legacy_rom_patching(struct hci_dev *hdev,
1531 				      const struct firmware *fw,
1532 				      const u8 **fw_ptr, int *disable_patch)
1533 {
1534 	struct sk_buff *skb;
1535 	struct hci_command_hdr *cmd;
1536 	const u8 *cmd_param;
1537 	struct hci_event_hdr *evt = NULL;
1538 	const u8 *evt_param = NULL;
1539 	int remain = fw->size - (*fw_ptr - fw->data);
1540 
1541 	/* The first byte indicates the types of the patch command or event.
1542 	 * 0x01 means HCI command and 0x02 is HCI event. If the first bytes
1543 	 * in the current firmware buffer doesn't start with 0x01 or
1544 	 * the size of remain buffer is smaller than HCI command header,
1545 	 * the firmware file is corrupted and it should stop the patching
1546 	 * process.
1547 	 */
1548 	if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) {
1549 		bt_dev_err(hdev, "Intel fw corrupted: invalid cmd read");
1550 		return -EINVAL;
1551 	}
1552 	(*fw_ptr)++;
1553 	remain--;
1554 
1555 	cmd = (struct hci_command_hdr *)(*fw_ptr);
1556 	*fw_ptr += sizeof(*cmd);
1557 	remain -= sizeof(*cmd);
1558 
1559 	/* Ensure that the remain firmware data is long enough than the length
1560 	 * of command parameter. If not, the firmware file is corrupted.
1561 	 */
1562 	if (remain < cmd->plen) {
1563 		bt_dev_err(hdev, "Intel fw corrupted: invalid cmd len");
1564 		return -EFAULT;
1565 	}
1566 
1567 	/* If there is a command that loads a patch in the firmware
1568 	 * file, then enable the patch upon success, otherwise just
1569 	 * disable the manufacturer mode, for example patch activation
1570 	 * is not required when the default firmware patch file is used
1571 	 * because there are no patch data to load.
1572 	 */
1573 	if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e)
1574 		*disable_patch = 0;
1575 
1576 	cmd_param = *fw_ptr;
1577 	*fw_ptr += cmd->plen;
1578 	remain -= cmd->plen;
1579 
1580 	/* This reads the expected events when the above command is sent to the
1581 	 * device. Some vendor commands expects more than one events, for
1582 	 * example command status event followed by vendor specific event.
1583 	 * For this case, it only keeps the last expected event. so the command
1584 	 * can be sent with __hci_cmd_sync_ev() which returns the sk_buff of
1585 	 * last expected event.
1586 	 */
1587 	while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) {
1588 		(*fw_ptr)++;
1589 		remain--;
1590 
1591 		evt = (struct hci_event_hdr *)(*fw_ptr);
1592 		*fw_ptr += sizeof(*evt);
1593 		remain -= sizeof(*evt);
1594 
1595 		if (remain < evt->plen) {
1596 			bt_dev_err(hdev, "Intel fw corrupted: invalid evt len");
1597 			return -EFAULT;
1598 		}
1599 
1600 		evt_param = *fw_ptr;
1601 		*fw_ptr += evt->plen;
1602 		remain -= evt->plen;
1603 	}
1604 
1605 	/* Every HCI commands in the firmware file has its correspond event.
1606 	 * If event is not found or remain is smaller than zero, the firmware
1607 	 * file is corrupted.
1608 	 */
1609 	if (!evt || !evt_param || remain < 0) {
1610 		bt_dev_err(hdev, "Intel fw corrupted: invalid evt read");
1611 		return -EFAULT;
1612 	}
1613 
1614 	skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), cmd->plen,
1615 				cmd_param, evt->evt, HCI_INIT_TIMEOUT);
1616 	if (IS_ERR(skb)) {
1617 		bt_dev_err(hdev, "sending Intel patch command (0x%4.4x) failed (%ld)",
1618 			   cmd->opcode, PTR_ERR(skb));
1619 		return PTR_ERR(skb);
1620 	}
1621 
1622 	/* It ensures that the returned event matches the event data read from
1623 	 * the firmware file. At fist, it checks the length and then
1624 	 * the contents of the event.
1625 	 */
1626 	if (skb->len != evt->plen) {
1627 		bt_dev_err(hdev, "mismatch event length (opcode 0x%4.4x)",
1628 			   le16_to_cpu(cmd->opcode));
1629 		kfree_skb(skb);
1630 		return -EFAULT;
1631 	}
1632 
1633 	if (memcmp(skb->data, evt_param, evt->plen)) {
1634 		bt_dev_err(hdev, "mismatch event parameter (opcode 0x%4.4x)",
1635 			   le16_to_cpu(cmd->opcode));
1636 		kfree_skb(skb);
1637 		return -EFAULT;
1638 	}
1639 	kfree_skb(skb);
1640 
1641 	return 0;
1642 }
1643 
1644 static int btintel_legacy_rom_setup(struct hci_dev *hdev,
1645 				    struct intel_version *ver)
1646 {
1647 	const struct firmware *fw;
1648 	const u8 *fw_ptr;
1649 	int disable_patch, err;
1650 	struct intel_version new_ver;
1651 
1652 	BT_DBG("%s", hdev->name);
1653 
1654 	/* fw_patch_num indicates the version of patch the device currently
1655 	 * have. If there is no patch data in the device, it is always 0x00.
1656 	 * So, if it is other than 0x00, no need to patch the device again.
1657 	 */
1658 	if (ver->fw_patch_num) {
1659 		bt_dev_info(hdev,
1660 			    "Intel device is already patched. patch num: %02x",
1661 			    ver->fw_patch_num);
1662 		goto complete;
1663 	}
1664 
1665 	/* Opens the firmware patch file based on the firmware version read
1666 	 * from the controller. If it fails to open the matching firmware
1667 	 * patch file, it tries to open the default firmware patch file.
1668 	 * If no patch file is found, allow the device to operate without
1669 	 * a patch.
1670 	 */
1671 	fw = btintel_legacy_rom_get_fw(hdev, ver);
1672 	if (!fw)
1673 		goto complete;
1674 	fw_ptr = fw->data;
1675 
1676 	/* Enable the manufacturer mode of the controller.
1677 	 * Only while this mode is enabled, the driver can download the
1678 	 * firmware patch data and configuration parameters.
1679 	 */
1680 	err = btintel_enter_mfg(hdev);
1681 	if (err) {
1682 		release_firmware(fw);
1683 		return err;
1684 	}
1685 
1686 	disable_patch = 1;
1687 
1688 	/* The firmware data file consists of list of Intel specific HCI
1689 	 * commands and its expected events. The first byte indicates the
1690 	 * type of the message, either HCI command or HCI event.
1691 	 *
1692 	 * It reads the command and its expected event from the firmware file,
1693 	 * and send to the controller. Once __hci_cmd_sync_ev() returns,
1694 	 * the returned event is compared with the event read from the firmware
1695 	 * file and it will continue until all the messages are downloaded to
1696 	 * the controller.
1697 	 *
1698 	 * Once the firmware patching is completed successfully,
1699 	 * the manufacturer mode is disabled with reset and activating the
1700 	 * downloaded patch.
1701 	 *
1702 	 * If the firmware patching fails, the manufacturer mode is
1703 	 * disabled with reset and deactivating the patch.
1704 	 *
1705 	 * If the default patch file is used, no reset is done when disabling
1706 	 * the manufacturer.
1707 	 */
1708 	while (fw->size > fw_ptr - fw->data) {
1709 		int ret;
1710 
1711 		ret = btintel_legacy_rom_patching(hdev, fw, &fw_ptr,
1712 						 &disable_patch);
1713 		if (ret < 0)
1714 			goto exit_mfg_deactivate;
1715 	}
1716 
1717 	release_firmware(fw);
1718 
1719 	if (disable_patch)
1720 		goto exit_mfg_disable;
1721 
1722 	/* Patching completed successfully and disable the manufacturer mode
1723 	 * with reset and activate the downloaded firmware patches.
1724 	 */
1725 	err = btintel_exit_mfg(hdev, true, true);
1726 	if (err)
1727 		return err;
1728 
1729 	/* Need build number for downloaded fw patches in
1730 	 * every power-on boot
1731 	 */
1732 	err = btintel_read_version(hdev, &new_ver);
1733 	if (err)
1734 		return err;
1735 
1736 	bt_dev_info(hdev, "Intel BT fw patch 0x%02x completed & activated",
1737 		    new_ver.fw_patch_num);
1738 
1739 	goto complete;
1740 
1741 exit_mfg_disable:
1742 	/* Disable the manufacturer mode without reset */
1743 	err = btintel_exit_mfg(hdev, false, false);
1744 	if (err)
1745 		return err;
1746 
1747 	bt_dev_info(hdev, "Intel firmware patch completed");
1748 
1749 	goto complete;
1750 
1751 exit_mfg_deactivate:
1752 	release_firmware(fw);
1753 
1754 	/* Patching failed. Disable the manufacturer mode with reset and
1755 	 * deactivate the downloaded firmware patches.
1756 	 */
1757 	err = btintel_exit_mfg(hdev, true, false);
1758 	if (err)
1759 		return err;
1760 
1761 	bt_dev_info(hdev, "Intel firmware patch completed and deactivated");
1762 
1763 complete:
1764 	/* Set the event mask for Intel specific vendor events. This enables
1765 	 * a few extra events that are useful during general operation.
1766 	 */
1767 	btintel_set_event_mask_mfg(hdev, false);
1768 
1769 	btintel_check_bdaddr(hdev);
1770 
1771 	return 0;
1772 }
1773 
1774 static int btintel_download_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
1775 {
1776 	ktime_t delta, rettime;
1777 	unsigned long long duration;
1778 	int err;
1779 
1780 	btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
1781 
1782 	bt_dev_info(hdev, "Waiting for firmware download to complete");
1783 
1784 	err = btintel_wait_on_flag_timeout(hdev, INTEL_DOWNLOADING,
1785 					   TASK_INTERRUPTIBLE,
1786 					   msecs_to_jiffies(msec));
1787 	if (err == -EINTR) {
1788 		bt_dev_err(hdev, "Firmware loading interrupted");
1789 		return err;
1790 	}
1791 
1792 	if (err) {
1793 		bt_dev_err(hdev, "Firmware loading timeout");
1794 		return -ETIMEDOUT;
1795 	}
1796 
1797 	if (btintel_test_flag(hdev, INTEL_FIRMWARE_FAILED)) {
1798 		bt_dev_err(hdev, "Firmware loading failed");
1799 		return -ENOEXEC;
1800 	}
1801 
1802 	rettime = ktime_get();
1803 	delta = ktime_sub(rettime, calltime);
1804 	duration = (unsigned long long)ktime_to_ns(delta) >> 10;
1805 
1806 	bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
1807 
1808 	return 0;
1809 }
1810 
1811 static int btintel_boot_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
1812 {
1813 	ktime_t delta, rettime;
1814 	unsigned long long duration;
1815 	int err;
1816 
1817 	bt_dev_info(hdev, "Waiting for device to boot");
1818 
1819 	err = btintel_wait_on_flag_timeout(hdev, INTEL_BOOTING,
1820 					   TASK_INTERRUPTIBLE,
1821 					   msecs_to_jiffies(msec));
1822 	if (err == -EINTR) {
1823 		bt_dev_err(hdev, "Device boot interrupted");
1824 		return -EINTR;
1825 	}
1826 
1827 	if (err) {
1828 		bt_dev_err(hdev, "Device boot timeout");
1829 		return -ETIMEDOUT;
1830 	}
1831 
1832 	rettime = ktime_get();
1833 	delta = ktime_sub(rettime, calltime);
1834 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
1835 
1836 	bt_dev_info(hdev, "Device booted in %llu usecs", duration);
1837 
1838 	return 0;
1839 }
1840 
1841 static int btintel_boot(struct hci_dev *hdev, u32 boot_addr)
1842 {
1843 	ktime_t calltime;
1844 	int err;
1845 
1846 	calltime = ktime_get();
1847 
1848 	btintel_set_flag(hdev, INTEL_BOOTING);
1849 
1850 	err = btintel_send_intel_reset(hdev, boot_addr);
1851 	if (err) {
1852 		bt_dev_err(hdev, "Intel Soft Reset failed (%d)", err);
1853 		btintel_reset_to_bootloader(hdev);
1854 		return err;
1855 	}
1856 
1857 	/* The bootloader will not indicate when the device is ready. This
1858 	 * is done by the operational firmware sending bootup notification.
1859 	 *
1860 	 * Booting into operational firmware should not take longer than
1861 	 * 1 second. However if that happens, then just fail the setup
1862 	 * since something went wrong.
1863 	 */
1864 	err = btintel_boot_wait(hdev, calltime, 1000);
1865 	if (err == -ETIMEDOUT)
1866 		btintel_reset_to_bootloader(hdev);
1867 
1868 	return err;
1869 }
1870 
1871 static int btintel_get_fw_name(struct intel_version *ver,
1872 					     struct intel_boot_params *params,
1873 					     char *fw_name, size_t len,
1874 					     const char *suffix)
1875 {
1876 	switch (ver->hw_variant) {
1877 	case 0x0b:	/* SfP */
1878 	case 0x0c:	/* WsP */
1879 		snprintf(fw_name, len, "intel/ibt-%u-%u.%s",
1880 			 ver->hw_variant,
1881 			 le16_to_cpu(params->dev_revid),
1882 			 suffix);
1883 		break;
1884 	case 0x11:	/* JfP */
1885 	case 0x12:	/* ThP */
1886 	case 0x13:	/* HrP */
1887 	case 0x14:	/* CcP */
1888 		snprintf(fw_name, len, "intel/ibt-%u-%u-%u.%s",
1889 			 ver->hw_variant,
1890 			 ver->hw_revision,
1891 			 ver->fw_revision,
1892 			 suffix);
1893 		break;
1894 	default:
1895 		return -EINVAL;
1896 	}
1897 
1898 	return 0;
1899 }
1900 
1901 static int btintel_download_fw(struct hci_dev *hdev,
1902 					 struct intel_version *ver,
1903 					 struct intel_boot_params *params,
1904 					 u32 *boot_param)
1905 {
1906 	const struct firmware *fw;
1907 	char fwname[64];
1908 	int err;
1909 	ktime_t calltime;
1910 
1911 	if (!ver || !params)
1912 		return -EINVAL;
1913 
1914 	/* The firmware variant determines if the device is in bootloader
1915 	 * mode or is running operational firmware. The value 0x06 identifies
1916 	 * the bootloader and the value 0x23 identifies the operational
1917 	 * firmware.
1918 	 *
1919 	 * When the operational firmware is already present, then only
1920 	 * the check for valid Bluetooth device address is needed. This
1921 	 * determines if the device will be added as configured or
1922 	 * unconfigured controller.
1923 	 *
1924 	 * It is not possible to use the Secure Boot Parameters in this
1925 	 * case since that command is only available in bootloader mode.
1926 	 */
1927 	if (ver->fw_variant == 0x23) {
1928 		btintel_clear_flag(hdev, INTEL_BOOTLOADER);
1929 		btintel_check_bdaddr(hdev);
1930 
1931 		/* SfP and WsP don't seem to update the firmware version on file
1932 		 * so version checking is currently possible.
1933 		 */
1934 		switch (ver->hw_variant) {
1935 		case 0x0b:	/* SfP */
1936 		case 0x0c:	/* WsP */
1937 			return 0;
1938 		}
1939 
1940 		/* Proceed to download to check if the version matches */
1941 		goto download;
1942 	}
1943 
1944 	/* Read the secure boot parameters to identify the operating
1945 	 * details of the bootloader.
1946 	 */
1947 	err = btintel_read_boot_params(hdev, params);
1948 	if (err)
1949 		return err;
1950 
1951 	/* It is required that every single firmware fragment is acknowledged
1952 	 * with a command complete event. If the boot parameters indicate
1953 	 * that this bootloader does not send them, then abort the setup.
1954 	 */
1955 	if (params->limited_cce != 0x00) {
1956 		bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
1957 			   params->limited_cce);
1958 		return -EINVAL;
1959 	}
1960 
1961 	/* If the OTP has no valid Bluetooth device address, then there will
1962 	 * also be no valid address for the operational firmware.
1963 	 */
1964 	if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
1965 		bt_dev_info(hdev, "No device address configured");
1966 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
1967 	}
1968 
1969 download:
1970 	/* With this Intel bootloader only the hardware variant and device
1971 	 * revision information are used to select the right firmware for SfP
1972 	 * and WsP.
1973 	 *
1974 	 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
1975 	 *
1976 	 * Currently the supported hardware variants are:
1977 	 *   11 (0x0b) for iBT3.0 (LnP/SfP)
1978 	 *   12 (0x0c) for iBT3.5 (WsP)
1979 	 *
1980 	 * For ThP/JfP and for future SKU's, the FW name varies based on HW
1981 	 * variant, HW revision and FW revision, as these are dependent on CNVi
1982 	 * and RF Combination.
1983 	 *
1984 	 *   17 (0x11) for iBT3.5 (JfP)
1985 	 *   18 (0x12) for iBT3.5 (ThP)
1986 	 *
1987 	 * The firmware file name for these will be
1988 	 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
1989 	 *
1990 	 */
1991 	err = btintel_get_fw_name(ver, params, fwname, sizeof(fwname), "sfi");
1992 	if (err < 0) {
1993 		if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
1994 			/* Firmware has already been loaded */
1995 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
1996 			return 0;
1997 		}
1998 
1999 		bt_dev_err(hdev, "Unsupported Intel firmware naming");
2000 		return -EINVAL;
2001 	}
2002 
2003 	err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
2004 	if (err < 0) {
2005 		if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2006 			/* Firmware has already been loaded */
2007 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2008 			return 0;
2009 		}
2010 
2011 		bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
2012 			   fwname, err);
2013 		return err;
2014 	}
2015 
2016 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
2017 
2018 	if (fw->size < 644) {
2019 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
2020 			   fw->size);
2021 		err = -EBADF;
2022 		goto done;
2023 	}
2024 
2025 	calltime = ktime_get();
2026 
2027 	btintel_set_flag(hdev, INTEL_DOWNLOADING);
2028 
2029 	/* Start firmware downloading and get boot parameter */
2030 	err = btintel_download_firmware(hdev, ver, fw, boot_param);
2031 	if (err < 0) {
2032 		if (err == -EALREADY) {
2033 			/* Firmware has already been loaded */
2034 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2035 			err = 0;
2036 			goto done;
2037 		}
2038 
2039 		/* When FW download fails, send Intel Reset to retry
2040 		 * FW download.
2041 		 */
2042 		btintel_reset_to_bootloader(hdev);
2043 		goto done;
2044 	}
2045 
2046 	/* Before switching the device into operational mode and with that
2047 	 * booting the loaded firmware, wait for the bootloader notification
2048 	 * that all fragments have been successfully received.
2049 	 *
2050 	 * When the event processing receives the notification, then the
2051 	 * INTEL_DOWNLOADING flag will be cleared.
2052 	 *
2053 	 * The firmware loading should not take longer than 5 seconds
2054 	 * and thus just timeout if that happens and fail the setup
2055 	 * of this device.
2056 	 */
2057 	err = btintel_download_wait(hdev, calltime, 5000);
2058 	if (err == -ETIMEDOUT)
2059 		btintel_reset_to_bootloader(hdev);
2060 
2061 done:
2062 	release_firmware(fw);
2063 	return err;
2064 }
2065 
2066 static int btintel_bootloader_setup(struct hci_dev *hdev,
2067 				    struct intel_version *ver)
2068 {
2069 	struct intel_version new_ver;
2070 	struct intel_boot_params params;
2071 	u32 boot_param;
2072 	char ddcname[64];
2073 	int err;
2074 
2075 	BT_DBG("%s", hdev->name);
2076 
2077 	/* Set the default boot parameter to 0x0 and it is updated to
2078 	 * SKU specific boot parameter after reading Intel_Write_Boot_Params
2079 	 * command while downloading the firmware.
2080 	 */
2081 	boot_param = 0x00000000;
2082 
2083 	btintel_set_flag(hdev, INTEL_BOOTLOADER);
2084 
2085 	err = btintel_download_fw(hdev, ver, &params, &boot_param);
2086 	if (err)
2087 		return err;
2088 
2089 	/* controller is already having an operational firmware */
2090 	if (ver->fw_variant == 0x23)
2091 		goto finish;
2092 
2093 	err = btintel_boot(hdev, boot_param);
2094 	if (err)
2095 		return err;
2096 
2097 	btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2098 
2099 	err = btintel_get_fw_name(ver, &params, ddcname,
2100 						sizeof(ddcname), "ddc");
2101 
2102 	if (err < 0) {
2103 		bt_dev_err(hdev, "Unsupported Intel firmware naming");
2104 	} else {
2105 		/* Once the device is running in operational mode, it needs to
2106 		 * apply the device configuration (DDC) parameters.
2107 		 *
2108 		 * The device can work without DDC parameters, so even if it
2109 		 * fails to load the file, no need to fail the setup.
2110 		 */
2111 		btintel_load_ddc_config(hdev, ddcname);
2112 	}
2113 
2114 	hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT);
2115 
2116 	/* Read the Intel version information after loading the FW  */
2117 	err = btintel_read_version(hdev, &new_ver);
2118 	if (err)
2119 		return err;
2120 
2121 	btintel_version_info(hdev, &new_ver);
2122 
2123 finish:
2124 	/* Set the event mask for Intel specific vendor events. This enables
2125 	 * a few extra events that are useful during general operation. It
2126 	 * does not enable any debugging related events.
2127 	 *
2128 	 * The device will function correctly without these events enabled
2129 	 * and thus no need to fail the setup.
2130 	 */
2131 	btintel_set_event_mask(hdev, false);
2132 
2133 	return 0;
2134 }
2135 
2136 static void btintel_get_fw_name_tlv(const struct intel_version_tlv *ver,
2137 				    char *fw_name, size_t len,
2138 				    const char *suffix)
2139 {
2140 	const char *format;
2141 	u32 cnvi, cnvr;
2142 
2143 	cnvi = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top),
2144 					INTEL_CNVX_TOP_STEP(ver->cnvi_top));
2145 
2146 	cnvr = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top),
2147 					INTEL_CNVX_TOP_STEP(ver->cnvr_top));
2148 
2149 	/* Only Blazar  product supports downloading of intermediate loader
2150 	 * image
2151 	 */
2152 	if (INTEL_HW_VARIANT(ver->cnvi_bt) >= 0x1e) {
2153 		u8 zero[BTINTEL_FWID_MAXLEN];
2154 
2155 		if (ver->img_type == BTINTEL_IMG_BOOTLOADER) {
2156 			format = "intel/ibt-%04x-%04x-iml.%s";
2157 			snprintf(fw_name, len, format, cnvi, cnvr, suffix);
2158 			return;
2159 		}
2160 
2161 		memset(zero, 0, sizeof(zero));
2162 
2163 		/* ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step-fw_id> */
2164 		if (memcmp(ver->fw_id, zero, sizeof(zero))) {
2165 			format = "intel/ibt-%04x-%04x-%s.%s";
2166 			snprintf(fw_name, len, format, cnvi, cnvr,
2167 				 ver->fw_id, suffix);
2168 			return;
2169 		}
2170 		/* If firmware id is not present, fallback to legacy naming
2171 		 * convention
2172 		 */
2173 	}
2174 	/* Fallback to legacy naming convention for other controllers
2175 	 * ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step>
2176 	 */
2177 	format = "intel/ibt-%04x-%04x.%s";
2178 	snprintf(fw_name, len, format, cnvi, cnvr, suffix);
2179 }
2180 
2181 static void btintel_get_iml_tlv(const struct intel_version_tlv *ver,
2182 				char *fw_name, size_t len,
2183 				const char *suffix)
2184 {
2185 	const char *format;
2186 	u32 cnvi, cnvr;
2187 
2188 	cnvi = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top),
2189 					INTEL_CNVX_TOP_STEP(ver->cnvi_top));
2190 
2191 	cnvr = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top),
2192 					INTEL_CNVX_TOP_STEP(ver->cnvr_top));
2193 
2194 	format = "intel/ibt-%04x-%04x-iml.%s";
2195 	snprintf(fw_name, len, format, cnvi, cnvr, suffix);
2196 }
2197 
2198 static int btintel_prepare_fw_download_tlv(struct hci_dev *hdev,
2199 					   struct intel_version_tlv *ver,
2200 					   u32 *boot_param)
2201 {
2202 	const struct firmware *fw;
2203 	char fwname[128];
2204 	int err;
2205 	ktime_t calltime;
2206 
2207 	if (!ver || !boot_param)
2208 		return -EINVAL;
2209 
2210 	/* The firmware variant determines if the device is in bootloader
2211 	 * mode or is running operational firmware. The value 0x03 identifies
2212 	 * the bootloader and the value 0x23 identifies the operational
2213 	 * firmware.
2214 	 *
2215 	 * When the operational firmware is already present, then only
2216 	 * the check for valid Bluetooth device address is needed. This
2217 	 * determines if the device will be added as configured or
2218 	 * unconfigured controller.
2219 	 *
2220 	 * It is not possible to use the Secure Boot Parameters in this
2221 	 * case since that command is only available in bootloader mode.
2222 	 */
2223 	if (ver->img_type == BTINTEL_IMG_OP) {
2224 		btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2225 		btintel_check_bdaddr(hdev);
2226 	} else {
2227 		/*
2228 		 * Check for valid bd address in boot loader mode. Device
2229 		 * will be marked as unconfigured if empty bd address is
2230 		 * found.
2231 		 */
2232 		if (!bacmp(&ver->otp_bd_addr, BDADDR_ANY)) {
2233 			bt_dev_info(hdev, "No device address configured");
2234 			set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
2235 		}
2236 	}
2237 
2238 	if (ver->img_type == BTINTEL_IMG_OP) {
2239 		/* Controller running OP image. In case of FW downgrade,
2240 		 * FWID TLV may not be present and driver may attempt to load
2241 		 * firmware image which doesn't exist. Lets compare the version
2242 		 * of IML image
2243 		 */
2244 		if (INTEL_HW_VARIANT(ver->cnvi_bt) >= 0x1e)
2245 			btintel_get_iml_tlv(ver, fwname, sizeof(fwname), "sfi");
2246 		else
2247 			btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi");
2248 	} else {
2249 		btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi");
2250 	}
2251 
2252 	err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
2253 	if (err < 0) {
2254 		if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2255 			/* Firmware has already been loaded */
2256 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2257 			return 0;
2258 		}
2259 
2260 		bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
2261 			   fwname, err);
2262 
2263 		return err;
2264 	}
2265 
2266 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
2267 
2268 	if (fw->size < 644) {
2269 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
2270 			   fw->size);
2271 		err = -EBADF;
2272 		goto done;
2273 	}
2274 
2275 	calltime = ktime_get();
2276 
2277 	btintel_set_flag(hdev, INTEL_DOWNLOADING);
2278 
2279 	/* Start firmware downloading and get boot parameter */
2280 	err = btintel_download_fw_tlv(hdev, ver, fw, boot_param,
2281 					       INTEL_HW_VARIANT(ver->cnvi_bt),
2282 					       ver->sbe_type);
2283 	if (err < 0) {
2284 		if (err == -EALREADY) {
2285 			/* Firmware has already been loaded */
2286 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2287 			err = 0;
2288 			goto done;
2289 		}
2290 
2291 		/* When FW download fails, send Intel Reset to retry
2292 		 * FW download.
2293 		 */
2294 		btintel_reset_to_bootloader(hdev);
2295 		goto done;
2296 	}
2297 
2298 	/* Before switching the device into operational mode and with that
2299 	 * booting the loaded firmware, wait for the bootloader notification
2300 	 * that all fragments have been successfully received.
2301 	 *
2302 	 * When the event processing receives the notification, then the
2303 	 * BTUSB_DOWNLOADING flag will be cleared.
2304 	 *
2305 	 * The firmware loading should not take longer than 5 seconds
2306 	 * and thus just timeout if that happens and fail the setup
2307 	 * of this device.
2308 	 */
2309 	err = btintel_download_wait(hdev, calltime, 5000);
2310 	if (err == -ETIMEDOUT)
2311 		btintel_reset_to_bootloader(hdev);
2312 
2313 done:
2314 	release_firmware(fw);
2315 	return err;
2316 }
2317 
2318 static int btintel_get_codec_config_data(struct hci_dev *hdev,
2319 					 __u8 link, struct bt_codec *codec,
2320 					 __u8 *ven_len, __u8 **ven_data)
2321 {
2322 	int err = 0;
2323 
2324 	if (!ven_data || !ven_len)
2325 		return -EINVAL;
2326 
2327 	*ven_len = 0;
2328 	*ven_data = NULL;
2329 
2330 	if (link != ESCO_LINK) {
2331 		bt_dev_err(hdev, "Invalid link type(%u)", link);
2332 		return -EINVAL;
2333 	}
2334 
2335 	*ven_data = kmalloc(sizeof(__u8), GFP_KERNEL);
2336 	if (!*ven_data) {
2337 		err = -ENOMEM;
2338 		goto error;
2339 	}
2340 
2341 	/* supports only CVSD and mSBC offload codecs */
2342 	switch (codec->id) {
2343 	case 0x02:
2344 		**ven_data = 0x00;
2345 		break;
2346 	case 0x05:
2347 		**ven_data = 0x01;
2348 		break;
2349 	default:
2350 		err = -EINVAL;
2351 		bt_dev_err(hdev, "Invalid codec id(%u)", codec->id);
2352 		goto error;
2353 	}
2354 	/* codec and its capabilities are pre-defined to ids
2355 	 * preset id = 0x00 represents CVSD codec with sampling rate 8K
2356 	 * preset id = 0x01 represents mSBC codec with sampling rate 16K
2357 	 */
2358 	*ven_len = sizeof(__u8);
2359 	return err;
2360 
2361 error:
2362 	kfree(*ven_data);
2363 	*ven_data = NULL;
2364 	return err;
2365 }
2366 
2367 static int btintel_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id)
2368 {
2369 	/* Intel uses 1 as data path id for all the usecases */
2370 	*data_path_id = 1;
2371 	return 0;
2372 }
2373 
2374 static int btintel_configure_offload(struct hci_dev *hdev)
2375 {
2376 	struct sk_buff *skb;
2377 	int err = 0;
2378 	struct intel_offload_use_cases *use_cases;
2379 
2380 	skb = __hci_cmd_sync(hdev, 0xfc86, 0, NULL, HCI_INIT_TIMEOUT);
2381 	if (IS_ERR(skb)) {
2382 		bt_dev_err(hdev, "Reading offload use cases failed (%ld)",
2383 			   PTR_ERR(skb));
2384 		return PTR_ERR(skb);
2385 	}
2386 
2387 	if (skb->len < sizeof(*use_cases)) {
2388 		err = -EIO;
2389 		goto error;
2390 	}
2391 
2392 	use_cases = (void *)skb->data;
2393 
2394 	if (use_cases->status) {
2395 		err = -bt_to_errno(skb->data[0]);
2396 		goto error;
2397 	}
2398 
2399 	if (use_cases->preset[0] & 0x03) {
2400 		hdev->get_data_path_id = btintel_get_data_path_id;
2401 		hdev->get_codec_config_data = btintel_get_codec_config_data;
2402 	}
2403 error:
2404 	kfree_skb(skb);
2405 	return err;
2406 }
2407 
2408 static void btintel_set_ppag(struct hci_dev *hdev, struct intel_version_tlv *ver)
2409 {
2410 	struct sk_buff *skb;
2411 	struct hci_ppag_enable_cmd ppag_cmd;
2412 	acpi_handle handle;
2413 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
2414 	union acpi_object *p, *elements;
2415 	u32 domain, mode;
2416 	acpi_status status;
2417 
2418 	/* PPAG is not supported if CRF is HrP2, Jfp2, JfP1 */
2419 	switch (ver->cnvr_top & 0xFFF) {
2420 	case 0x504:     /* Hrp2 */
2421 	case 0x202:     /* Jfp2 */
2422 	case 0x201:     /* Jfp1 */
2423 		bt_dev_dbg(hdev, "PPAG not supported for Intel CNVr (0x%3x)",
2424 			   ver->cnvr_top & 0xFFF);
2425 		return;
2426 	}
2427 
2428 	handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2429 	if (!handle) {
2430 		bt_dev_info(hdev, "No support for BT device in ACPI firmware");
2431 		return;
2432 	}
2433 
2434 	status = acpi_evaluate_object(handle, "PPAG", NULL, &buffer);
2435 	if (ACPI_FAILURE(status)) {
2436 		if (status == AE_NOT_FOUND) {
2437 			bt_dev_dbg(hdev, "PPAG-BT: ACPI entry not found");
2438 			return;
2439 		}
2440 		bt_dev_warn(hdev, "PPAG-BT: ACPI Failure: %s", acpi_format_exception(status));
2441 		return;
2442 	}
2443 
2444 	p = buffer.pointer;
2445 	if (p->type != ACPI_TYPE_PACKAGE || p->package.count != 2) {
2446 		bt_dev_warn(hdev, "PPAG-BT: Invalid object type: %d or package count: %d",
2447 			    p->type, p->package.count);
2448 		kfree(buffer.pointer);
2449 		return;
2450 	}
2451 
2452 	elements = p->package.elements;
2453 
2454 	/* PPAG table is located at element[1] */
2455 	p = &elements[1];
2456 
2457 	domain = (u32)p->package.elements[0].integer.value;
2458 	mode = (u32)p->package.elements[1].integer.value;
2459 	kfree(buffer.pointer);
2460 
2461 	if (domain != 0x12) {
2462 		bt_dev_dbg(hdev, "PPAG-BT: Bluetooth domain is disabled in ACPI firmware");
2463 		return;
2464 	}
2465 
2466 	/* PPAG mode
2467 	 * BIT 0 : 0 Disabled in EU
2468 	 *         1 Enabled in EU
2469 	 * BIT 1 : 0 Disabled in China
2470 	 *         1 Enabled in China
2471 	 */
2472 	mode &= 0x03;
2473 
2474 	if (!mode) {
2475 		bt_dev_dbg(hdev, "PPAG-BT: EU, China mode are disabled in BIOS");
2476 		return;
2477 	}
2478 
2479 	ppag_cmd.ppag_enable_flags = cpu_to_le32(mode);
2480 
2481 	skb = __hci_cmd_sync(hdev, INTEL_OP_PPAG_CMD, sizeof(ppag_cmd),
2482 			     &ppag_cmd, HCI_CMD_TIMEOUT);
2483 	if (IS_ERR(skb)) {
2484 		bt_dev_warn(hdev, "Failed to send PPAG Enable (%ld)", PTR_ERR(skb));
2485 		return;
2486 	}
2487 	bt_dev_info(hdev, "PPAG-BT: Enabled (Mode %d)", mode);
2488 	kfree_skb(skb);
2489 }
2490 
2491 static int btintel_acpi_reset_method(struct hci_dev *hdev)
2492 {
2493 	int ret = 0;
2494 	acpi_status status;
2495 	union acpi_object *p, *ref;
2496 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2497 
2498 	status = acpi_evaluate_object(ACPI_HANDLE(GET_HCIDEV_DEV(hdev)), "_PRR", NULL, &buffer);
2499 	if (ACPI_FAILURE(status)) {
2500 		bt_dev_err(hdev, "Failed to run _PRR method");
2501 		ret = -ENODEV;
2502 		return ret;
2503 	}
2504 	p = buffer.pointer;
2505 
2506 	if (p->package.count != 1 || p->type != ACPI_TYPE_PACKAGE) {
2507 		bt_dev_err(hdev, "Invalid arguments");
2508 		ret = -EINVAL;
2509 		goto exit_on_error;
2510 	}
2511 
2512 	ref = &p->package.elements[0];
2513 	if (ref->type != ACPI_TYPE_LOCAL_REFERENCE) {
2514 		bt_dev_err(hdev, "Invalid object type: 0x%x", ref->type);
2515 		ret = -EINVAL;
2516 		goto exit_on_error;
2517 	}
2518 
2519 	status = acpi_evaluate_object(ref->reference.handle, "_RST", NULL, NULL);
2520 	if (ACPI_FAILURE(status)) {
2521 		bt_dev_err(hdev, "Failed to run_RST method");
2522 		ret = -ENODEV;
2523 		goto exit_on_error;
2524 	}
2525 
2526 exit_on_error:
2527 	kfree(buffer.pointer);
2528 	return ret;
2529 }
2530 
2531 static void btintel_set_dsm_reset_method(struct hci_dev *hdev,
2532 					 struct intel_version_tlv *ver_tlv)
2533 {
2534 	struct btintel_data *data = hci_get_priv(hdev);
2535 	acpi_handle handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2536 	u8 reset_payload[4] = {0x01, 0x00, 0x01, 0x00};
2537 	union acpi_object *obj, argv4;
2538 	enum {
2539 		RESET_TYPE_WDISABLE2,
2540 		RESET_TYPE_VSEC
2541 	};
2542 
2543 	handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2544 
2545 	if (!handle) {
2546 		bt_dev_dbg(hdev, "No support for bluetooth device in ACPI firmware");
2547 		return;
2548 	}
2549 
2550 	if (!acpi_has_method(handle, "_PRR")) {
2551 		bt_dev_err(hdev, "No support for _PRR ACPI method");
2552 		return;
2553 	}
2554 
2555 	switch (ver_tlv->cnvi_top & 0xfff) {
2556 	case 0x910: /* GalePeak2 */
2557 		reset_payload[2] = RESET_TYPE_VSEC;
2558 		break;
2559 	default:
2560 		/* WDISABLE2 is the default reset method */
2561 		reset_payload[2] = RESET_TYPE_WDISABLE2;
2562 
2563 		if (!acpi_check_dsm(handle, &btintel_guid_dsm, 0,
2564 				    BIT(DSM_SET_WDISABLE2_DELAY))) {
2565 			bt_dev_err(hdev, "No dsm support to set reset delay");
2566 			return;
2567 		}
2568 		argv4.integer.type = ACPI_TYPE_INTEGER;
2569 		/* delay required to toggle BT power */
2570 		argv4.integer.value = 160;
2571 		obj = acpi_evaluate_dsm(handle, &btintel_guid_dsm, 0,
2572 					DSM_SET_WDISABLE2_DELAY, &argv4);
2573 		if (!obj) {
2574 			bt_dev_err(hdev, "Failed to call dsm to set reset delay");
2575 			return;
2576 		}
2577 		ACPI_FREE(obj);
2578 	}
2579 
2580 	bt_dev_info(hdev, "DSM reset method type: 0x%02x", reset_payload[2]);
2581 
2582 	if (!acpi_check_dsm(handle, &btintel_guid_dsm, 0,
2583 			    DSM_SET_RESET_METHOD)) {
2584 		bt_dev_warn(hdev, "No support for dsm to set reset method");
2585 		return;
2586 	}
2587 	argv4.buffer.type = ACPI_TYPE_BUFFER;
2588 	argv4.buffer.length = sizeof(reset_payload);
2589 	argv4.buffer.pointer = reset_payload;
2590 
2591 	obj = acpi_evaluate_dsm(handle, &btintel_guid_dsm, 0,
2592 				DSM_SET_RESET_METHOD, &argv4);
2593 	if (!obj) {
2594 		bt_dev_err(hdev, "Failed to call dsm to set reset method");
2595 		return;
2596 	}
2597 	ACPI_FREE(obj);
2598 	data->acpi_reset_method = btintel_acpi_reset_method;
2599 }
2600 
2601 #define BTINTEL_ISODATA_HANDLE_BASE 0x900
2602 
2603 static u8 btintel_classify_pkt_type(struct hci_dev *hdev, struct sk_buff *skb)
2604 {
2605 	/*
2606 	 * Distinguish ISO data packets form ACL data packets
2607 	 * based on their connection handle value range.
2608 	 */
2609 	if (hci_skb_pkt_type(skb) == HCI_ACLDATA_PKT) {
2610 		__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2611 
2612 		if (hci_handle(handle) >= BTINTEL_ISODATA_HANDLE_BASE)
2613 			return HCI_ISODATA_PKT;
2614 	}
2615 
2616 	return hci_skb_pkt_type(skb);
2617 }
2618 
2619 int btintel_bootloader_setup_tlv(struct hci_dev *hdev,
2620 				 struct intel_version_tlv *ver)
2621 {
2622 	u32 boot_param;
2623 	char ddcname[64];
2624 	int err;
2625 	struct intel_version_tlv new_ver;
2626 
2627 	bt_dev_dbg(hdev, "");
2628 
2629 	/* Set the default boot parameter to 0x0 and it is updated to
2630 	 * SKU specific boot parameter after reading Intel_Write_Boot_Params
2631 	 * command while downloading the firmware.
2632 	 */
2633 	boot_param = 0x00000000;
2634 
2635 	btintel_set_flag(hdev, INTEL_BOOTLOADER);
2636 
2637 	err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param);
2638 	if (err)
2639 		return err;
2640 
2641 	/* check if controller is already having an operational firmware */
2642 	if (ver->img_type == BTINTEL_IMG_OP)
2643 		goto finish;
2644 
2645 	err = btintel_boot(hdev, boot_param);
2646 	if (err)
2647 		return err;
2648 
2649 	err = btintel_read_version_tlv(hdev, ver);
2650 	if (err)
2651 		return err;
2652 
2653 	/* If image type returned is BTINTEL_IMG_IML, then controller supports
2654 	 * intermediate loader image
2655 	 */
2656 	if (ver->img_type == BTINTEL_IMG_IML) {
2657 		err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param);
2658 		if (err)
2659 			return err;
2660 
2661 		err = btintel_boot(hdev, boot_param);
2662 		if (err)
2663 			return err;
2664 	}
2665 
2666 	btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2667 
2668 	btintel_get_fw_name_tlv(ver, ddcname, sizeof(ddcname), "ddc");
2669 	/* Once the device is running in operational mode, it needs to
2670 	 * apply the device configuration (DDC) parameters.
2671 	 *
2672 	 * The device can work without DDC parameters, so even if it
2673 	 * fails to load the file, no need to fail the setup.
2674 	 */
2675 	btintel_load_ddc_config(hdev, ddcname);
2676 
2677 	/* Read supported use cases and set callbacks to fetch datapath id */
2678 	btintel_configure_offload(hdev);
2679 
2680 	hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT);
2681 
2682 	/* Set PPAG feature */
2683 	btintel_set_ppag(hdev, ver);
2684 
2685 	/* Read the Intel version information after loading the FW  */
2686 	err = btintel_read_version_tlv(hdev, &new_ver);
2687 	if (err)
2688 		return err;
2689 
2690 	btintel_version_info_tlv(hdev, &new_ver);
2691 
2692 finish:
2693 	/* Set the event mask for Intel specific vendor events. This enables
2694 	 * a few extra events that are useful during general operation. It
2695 	 * does not enable any debugging related events.
2696 	 *
2697 	 * The device will function correctly without these events enabled
2698 	 * and thus no need to fail the setup.
2699 	 */
2700 	btintel_set_event_mask(hdev, false);
2701 
2702 	return 0;
2703 }
2704 EXPORT_SYMBOL_GPL(btintel_bootloader_setup_tlv);
2705 
2706 void btintel_set_msft_opcode(struct hci_dev *hdev, u8 hw_variant)
2707 {
2708 	switch (hw_variant) {
2709 	/* Legacy bootloader devices that supports MSFT Extension */
2710 	case 0x11:	/* JfP */
2711 	case 0x12:	/* ThP */
2712 	case 0x13:	/* HrP */
2713 	case 0x14:	/* CcP */
2714 	/* All Intel new genration controllers support the Microsoft vendor
2715 	 * extension are using 0xFC1E for VsMsftOpCode.
2716 	 */
2717 	case 0x17:
2718 	case 0x18:
2719 	case 0x19:
2720 	case 0x1b:
2721 	case 0x1c:
2722 	case 0x1d:
2723 	case 0x1e:
2724 		hci_set_msft_opcode(hdev, 0xFC1E);
2725 		break;
2726 	default:
2727 		/* Not supported */
2728 		break;
2729 	}
2730 }
2731 EXPORT_SYMBOL_GPL(btintel_set_msft_opcode);
2732 
2733 void btintel_print_fseq_info(struct hci_dev *hdev)
2734 {
2735 	struct sk_buff *skb;
2736 	u8 *p;
2737 	u32 val;
2738 	const char *str;
2739 
2740 	skb = __hci_cmd_sync(hdev, 0xfcb3, 0, NULL, HCI_CMD_TIMEOUT);
2741 	if (IS_ERR(skb)) {
2742 		bt_dev_dbg(hdev, "Reading fseq status command failed (%ld)",
2743 			   PTR_ERR(skb));
2744 		return;
2745 	}
2746 
2747 	if (skb->len < (sizeof(u32) * 16 + 2)) {
2748 		bt_dev_dbg(hdev, "Malformed packet of length %u received",
2749 			   skb->len);
2750 		kfree_skb(skb);
2751 		return;
2752 	}
2753 
2754 	p = skb_pull_data(skb, 1);
2755 	if (*p) {
2756 		bt_dev_dbg(hdev, "Failed to get fseq status (0x%2.2x)", *p);
2757 		kfree_skb(skb);
2758 		return;
2759 	}
2760 
2761 	p = skb_pull_data(skb, 1);
2762 	switch (*p) {
2763 	case 0:
2764 		str = "Success";
2765 		break;
2766 	case 1:
2767 		str = "Fatal error";
2768 		break;
2769 	case 2:
2770 		str = "Semaphore acquire error";
2771 		break;
2772 	default:
2773 		str = "Unknown error";
2774 		break;
2775 	}
2776 
2777 	if (*p) {
2778 		bt_dev_err(hdev, "Fseq status: %s (0x%2.2x)", str, *p);
2779 		kfree_skb(skb);
2780 		return;
2781 	}
2782 
2783 	bt_dev_info(hdev, "Fseq status: %s (0x%2.2x)", str, *p);
2784 
2785 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2786 	bt_dev_dbg(hdev, "Reason: 0x%8.8x", val);
2787 
2788 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2789 	bt_dev_dbg(hdev, "Global version: 0x%8.8x", val);
2790 
2791 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2792 	bt_dev_dbg(hdev, "Installed version: 0x%8.8x", val);
2793 
2794 	p = skb->data;
2795 	skb_pull_data(skb, 4);
2796 	bt_dev_info(hdev, "Fseq executed: %2.2u.%2.2u.%2.2u.%2.2u", p[0], p[1],
2797 		    p[2], p[3]);
2798 
2799 	p = skb->data;
2800 	skb_pull_data(skb, 4);
2801 	bt_dev_info(hdev, "Fseq BT Top: %2.2u.%2.2u.%2.2u.%2.2u", p[0], p[1],
2802 		    p[2], p[3]);
2803 
2804 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2805 	bt_dev_dbg(hdev, "Fseq Top init version: 0x%8.8x", val);
2806 
2807 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2808 	bt_dev_dbg(hdev, "Fseq Cnvio init version: 0x%8.8x", val);
2809 
2810 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2811 	bt_dev_dbg(hdev, "Fseq MBX Wifi file version: 0x%8.8x", val);
2812 
2813 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2814 	bt_dev_dbg(hdev, "Fseq BT version: 0x%8.8x", val);
2815 
2816 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2817 	bt_dev_dbg(hdev, "Fseq Top reset address: 0x%8.8x", val);
2818 
2819 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2820 	bt_dev_dbg(hdev, "Fseq MBX timeout: 0x%8.8x", val);
2821 
2822 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2823 	bt_dev_dbg(hdev, "Fseq MBX ack: 0x%8.8x", val);
2824 
2825 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2826 	bt_dev_dbg(hdev, "Fseq CNVi id: 0x%8.8x", val);
2827 
2828 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2829 	bt_dev_dbg(hdev, "Fseq CNVr id: 0x%8.8x", val);
2830 
2831 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2832 	bt_dev_dbg(hdev, "Fseq Error handle: 0x%8.8x", val);
2833 
2834 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2835 	bt_dev_dbg(hdev, "Fseq Magic noalive indication: 0x%8.8x", val);
2836 
2837 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2838 	bt_dev_dbg(hdev, "Fseq OTP version: 0x%8.8x", val);
2839 
2840 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2841 	bt_dev_dbg(hdev, "Fseq MBX otp version: 0x%8.8x", val);
2842 
2843 	kfree_skb(skb);
2844 }
2845 EXPORT_SYMBOL_GPL(btintel_print_fseq_info);
2846 
2847 static int btintel_setup_combined(struct hci_dev *hdev)
2848 {
2849 	const u8 param[1] = { 0xFF };
2850 	struct intel_version ver;
2851 	struct intel_version_tlv ver_tlv;
2852 	struct sk_buff *skb;
2853 	int err;
2854 
2855 	BT_DBG("%s", hdev->name);
2856 
2857 	/* The some controllers have a bug with the first HCI command sent to it
2858 	 * returning number of completed commands as zero. This would stall the
2859 	 * command processing in the Bluetooth core.
2860 	 *
2861 	 * As a workaround, send HCI Reset command first which will reset the
2862 	 * number of completed commands and allow normal command processing
2863 	 * from now on.
2864 	 *
2865 	 * Regarding the INTEL_BROKEN_SHUTDOWN_LED flag, these devices maybe
2866 	 * in the SW_RFKILL ON state as a workaround of fixing LED issue during
2867 	 * the shutdown() procedure, and once the device is in SW_RFKILL ON
2868 	 * state, the only way to exit out of it is sending the HCI_Reset
2869 	 * command.
2870 	 */
2871 	if (btintel_test_flag(hdev, INTEL_BROKEN_INITIAL_NCMD) ||
2872 	    btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) {
2873 		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
2874 				     HCI_INIT_TIMEOUT);
2875 		if (IS_ERR(skb)) {
2876 			bt_dev_err(hdev,
2877 				   "sending initial HCI reset failed (%ld)",
2878 				   PTR_ERR(skb));
2879 			return PTR_ERR(skb);
2880 		}
2881 		kfree_skb(skb);
2882 	}
2883 
2884 	/* Starting from TyP device, the command parameter and response are
2885 	 * changed even though the OCF for HCI_Intel_Read_Version command
2886 	 * remains same. The legacy devices can handle even if the
2887 	 * command has a parameter and returns a correct version information.
2888 	 * So, it uses new format to support both legacy and new format.
2889 	 */
2890 	skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
2891 	if (IS_ERR(skb)) {
2892 		bt_dev_err(hdev, "Reading Intel version command failed (%ld)",
2893 			   PTR_ERR(skb));
2894 		return PTR_ERR(skb);
2895 	}
2896 
2897 	/* Check the status */
2898 	if (skb->data[0]) {
2899 		bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
2900 			   skb->data[0]);
2901 		err = -EIO;
2902 		goto exit_error;
2903 	}
2904 
2905 	/* Apply the common HCI quirks for Intel device */
2906 	set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
2907 	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
2908 	set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
2909 
2910 	/* Set up the quality report callback for Intel devices */
2911 	hdev->set_quality_report = btintel_set_quality_report;
2912 
2913 	/* For Legacy device, check the HW platform value and size */
2914 	if (skb->len == sizeof(ver) && skb->data[1] == 0x37) {
2915 		bt_dev_dbg(hdev, "Read the legacy Intel version information");
2916 
2917 		memcpy(&ver, skb->data, sizeof(ver));
2918 
2919 		/* Display version information */
2920 		btintel_version_info(hdev, &ver);
2921 
2922 		/* Check for supported iBT hardware variants of this firmware
2923 		 * loading method.
2924 		 *
2925 		 * This check has been put in place to ensure correct forward
2926 		 * compatibility options when newer hardware variants come
2927 		 * along.
2928 		 */
2929 		switch (ver.hw_variant) {
2930 		case 0x07:	/* WP */
2931 		case 0x08:	/* StP */
2932 			/* Legacy ROM product */
2933 			btintel_set_flag(hdev, INTEL_ROM_LEGACY);
2934 
2935 			/* Apply the device specific HCI quirks
2936 			 *
2937 			 * WBS for SdP - For the Legacy ROM products, only SdP
2938 			 * supports the WBS. But the version information is not
2939 			 * enough to use here because the StP2 and SdP have same
2940 			 * hw_variant and fw_variant. So, this flag is set by
2941 			 * the transport driver (btusb) based on the HW info
2942 			 * (idProduct)
2943 			 */
2944 			if (!btintel_test_flag(hdev,
2945 					       INTEL_ROM_LEGACY_NO_WBS_SUPPORT))
2946 				set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2947 					&hdev->quirks);
2948 			if (ver.hw_variant == 0x08 && ver.fw_variant == 0x22)
2949 				set_bit(HCI_QUIRK_VALID_LE_STATES,
2950 					&hdev->quirks);
2951 
2952 			err = btintel_legacy_rom_setup(hdev, &ver);
2953 			break;
2954 		case 0x0b:      /* SfP */
2955 		case 0x11:      /* JfP */
2956 		case 0x12:      /* ThP */
2957 		case 0x13:      /* HrP */
2958 		case 0x14:      /* CcP */
2959 			set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
2960 			fallthrough;
2961 		case 0x0c:	/* WsP */
2962 			/* Apply the device specific HCI quirks
2963 			 *
2964 			 * All Legacy bootloader devices support WBS
2965 			 */
2966 			set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2967 				&hdev->quirks);
2968 
2969 			/* These variants don't seem to support LE Coded PHY */
2970 			set_bit(HCI_QUIRK_BROKEN_LE_CODED, &hdev->quirks);
2971 
2972 			/* Setup MSFT Extension support */
2973 			btintel_set_msft_opcode(hdev, ver.hw_variant);
2974 
2975 			err = btintel_bootloader_setup(hdev, &ver);
2976 			btintel_register_devcoredump_support(hdev);
2977 			break;
2978 		default:
2979 			bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
2980 				   ver.hw_variant);
2981 			err = -EINVAL;
2982 		}
2983 
2984 		hci_set_hw_info(hdev,
2985 				"INTEL platform=%u variant=%u revision=%u",
2986 				ver.hw_platform, ver.hw_variant,
2987 				ver.hw_revision);
2988 
2989 		goto exit_error;
2990 	}
2991 
2992 	/* memset ver_tlv to start with clean state as few fields are exclusive
2993 	 * to bootloader mode and are not populated in operational mode
2994 	 */
2995 	memset(&ver_tlv, 0, sizeof(ver_tlv));
2996 	/* For TLV type device, parse the tlv data */
2997 	err = btintel_parse_version_tlv(hdev, &ver_tlv, skb);
2998 	if (err) {
2999 		bt_dev_err(hdev, "Failed to parse TLV version information");
3000 		goto exit_error;
3001 	}
3002 
3003 	if (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt) != 0x37) {
3004 		bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
3005 			   INTEL_HW_PLATFORM(ver_tlv.cnvi_bt));
3006 		err = -EINVAL;
3007 		goto exit_error;
3008 	}
3009 
3010 	/* Check for supported iBT hardware variants of this firmware
3011 	 * loading method.
3012 	 *
3013 	 * This check has been put in place to ensure correct forward
3014 	 * compatibility options when newer hardware variants come
3015 	 * along.
3016 	 */
3017 	switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) {
3018 	case 0x11:      /* JfP */
3019 	case 0x12:      /* ThP */
3020 	case 0x13:      /* HrP */
3021 	case 0x14:      /* CcP */
3022 		/* Some legacy bootloader devices starting from JfP,
3023 		 * the operational firmware supports both old and TLV based
3024 		 * HCI_Intel_Read_Version command based on the command
3025 		 * parameter.
3026 		 *
3027 		 * For upgrading firmware case, the TLV based version cannot
3028 		 * be used because the firmware filename for legacy bootloader
3029 		 * is based on the old format.
3030 		 *
3031 		 * Also, it is not easy to convert TLV based version from the
3032 		 * legacy version format.
3033 		 *
3034 		 * So, as a workaround for those devices, use the legacy
3035 		 * HCI_Intel_Read_Version to get the version information and
3036 		 * run the legacy bootloader setup.
3037 		 */
3038 		err = btintel_read_version(hdev, &ver);
3039 		if (err)
3040 			break;
3041 
3042 		/* Apply the device specific HCI quirks
3043 		 *
3044 		 * All Legacy bootloader devices support WBS
3045 		 */
3046 		set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
3047 
3048 		/* These variants don't seem to support LE Coded PHY */
3049 		set_bit(HCI_QUIRK_BROKEN_LE_CODED, &hdev->quirks);
3050 
3051 		/* Set Valid LE States quirk */
3052 		set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
3053 
3054 		/* Setup MSFT Extension support */
3055 		btintel_set_msft_opcode(hdev, ver.hw_variant);
3056 
3057 		err = btintel_bootloader_setup(hdev, &ver);
3058 		btintel_register_devcoredump_support(hdev);
3059 		break;
3060 	case 0x18: /* GfP2 */
3061 	case 0x1c: /* GaP */
3062 		/* Re-classify packet type for controllers with LE audio */
3063 		hdev->classify_pkt_type = btintel_classify_pkt_type;
3064 		fallthrough;
3065 	case 0x17:
3066 	case 0x19:
3067 	case 0x1b:
3068 	case 0x1d:
3069 	case 0x1e:
3070 		/* Display version information of TLV type */
3071 		btintel_version_info_tlv(hdev, &ver_tlv);
3072 
3073 		/* Apply the device specific HCI quirks for TLV based devices
3074 		 *
3075 		 * All TLV based devices support WBS
3076 		 */
3077 		set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
3078 
3079 		/* Apply LE States quirk from solar onwards */
3080 		set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
3081 
3082 		/* Setup MSFT Extension support */
3083 		btintel_set_msft_opcode(hdev,
3084 					INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
3085 		btintel_set_dsm_reset_method(hdev, &ver_tlv);
3086 
3087 		err = btintel_bootloader_setup_tlv(hdev, &ver_tlv);
3088 		btintel_register_devcoredump_support(hdev);
3089 		btintel_print_fseq_info(hdev);
3090 		break;
3091 	default:
3092 		bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
3093 			   INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
3094 		err = -EINVAL;
3095 		break;
3096 	}
3097 
3098 	hci_set_hw_info(hdev, "INTEL platform=%u variant=%u",
3099 			INTEL_HW_PLATFORM(ver_tlv.cnvi_bt),
3100 			INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
3101 
3102 exit_error:
3103 	kfree_skb(skb);
3104 
3105 	return err;
3106 }
3107 
3108 int btintel_shutdown_combined(struct hci_dev *hdev)
3109 {
3110 	struct sk_buff *skb;
3111 	int ret;
3112 
3113 	/* Send HCI Reset to the controller to stop any BT activity which
3114 	 * were triggered. This will help to save power and maintain the
3115 	 * sync b/w Host and controller
3116 	 */
3117 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
3118 	if (IS_ERR(skb)) {
3119 		bt_dev_err(hdev, "HCI reset during shutdown failed");
3120 		return PTR_ERR(skb);
3121 	}
3122 	kfree_skb(skb);
3123 
3124 
3125 	/* Some platforms have an issue with BT LED when the interface is
3126 	 * down or BT radio is turned off, which takes 5 seconds to BT LED
3127 	 * goes off. As a workaround, sends HCI_Intel_SW_RFKILL to put the
3128 	 * device in the RFKILL ON state which turns off the BT LED immediately.
3129 	 */
3130 	if (btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) {
3131 		skb = __hci_cmd_sync(hdev, 0xfc3f, 0, NULL, HCI_INIT_TIMEOUT);
3132 		if (IS_ERR(skb)) {
3133 			ret = PTR_ERR(skb);
3134 			bt_dev_err(hdev, "turning off Intel device LED failed");
3135 			return ret;
3136 		}
3137 		kfree_skb(skb);
3138 	}
3139 
3140 	return 0;
3141 }
3142 EXPORT_SYMBOL_GPL(btintel_shutdown_combined);
3143 
3144 int btintel_configure_setup(struct hci_dev *hdev, const char *driver_name)
3145 {
3146 	hdev->manufacturer = 2;
3147 	hdev->setup = btintel_setup_combined;
3148 	hdev->shutdown = btintel_shutdown_combined;
3149 	hdev->hw_error = btintel_hw_error;
3150 	hdev->set_diag = btintel_set_diag_combined;
3151 	hdev->set_bdaddr = btintel_set_bdaddr;
3152 
3153 	coredump_info.driver_name = driver_name;
3154 
3155 	return 0;
3156 }
3157 EXPORT_SYMBOL_GPL(btintel_configure_setup);
3158 
3159 static int btintel_diagnostics(struct hci_dev *hdev, struct sk_buff *skb)
3160 {
3161 	struct intel_tlv *tlv = (void *)&skb->data[5];
3162 
3163 	/* The first event is always an event type TLV */
3164 	if (tlv->type != INTEL_TLV_TYPE_ID)
3165 		goto recv_frame;
3166 
3167 	switch (tlv->val[0]) {
3168 	case INTEL_TLV_SYSTEM_EXCEPTION:
3169 	case INTEL_TLV_FATAL_EXCEPTION:
3170 	case INTEL_TLV_DEBUG_EXCEPTION:
3171 	case INTEL_TLV_TEST_EXCEPTION:
3172 		/* Generate devcoredump from exception */
3173 		if (!hci_devcd_init(hdev, skb->len)) {
3174 			hci_devcd_append(hdev, skb);
3175 			hci_devcd_complete(hdev);
3176 		} else {
3177 			bt_dev_err(hdev, "Failed to generate devcoredump");
3178 			kfree_skb(skb);
3179 		}
3180 		return 0;
3181 	default:
3182 		bt_dev_err(hdev, "Invalid exception type %02X", tlv->val[0]);
3183 	}
3184 
3185 recv_frame:
3186 	return hci_recv_frame(hdev, skb);
3187 }
3188 
3189 int btintel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
3190 {
3191 	struct hci_event_hdr *hdr = (void *)skb->data;
3192 	const char diagnostics_hdr[] = { 0x87, 0x80, 0x03 };
3193 
3194 	if (skb->len > HCI_EVENT_HDR_SIZE && hdr->evt == 0xff &&
3195 	    hdr->plen > 0) {
3196 		const void *ptr = skb->data + HCI_EVENT_HDR_SIZE + 1;
3197 		unsigned int len = skb->len - HCI_EVENT_HDR_SIZE - 1;
3198 
3199 		if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
3200 			switch (skb->data[2]) {
3201 			case 0x02:
3202 				/* When switching to the operational firmware
3203 				 * the device sends a vendor specific event
3204 				 * indicating that the bootup completed.
3205 				 */
3206 				btintel_bootup(hdev, ptr, len);
3207 				break;
3208 			case 0x06:
3209 				/* When the firmware loading completes the
3210 				 * device sends out a vendor specific event
3211 				 * indicating the result of the firmware
3212 				 * loading.
3213 				 */
3214 				btintel_secure_send_result(hdev, ptr, len);
3215 				break;
3216 			}
3217 		}
3218 
3219 		/* Handle all diagnostics events separately. May still call
3220 		 * hci_recv_frame.
3221 		 */
3222 		if (len >= sizeof(diagnostics_hdr) &&
3223 		    memcmp(&skb->data[2], diagnostics_hdr,
3224 			   sizeof(diagnostics_hdr)) == 0) {
3225 			return btintel_diagnostics(hdev, skb);
3226 		}
3227 	}
3228 
3229 	return hci_recv_frame(hdev, skb);
3230 }
3231 EXPORT_SYMBOL_GPL(btintel_recv_event);
3232 
3233 void btintel_bootup(struct hci_dev *hdev, const void *ptr, unsigned int len)
3234 {
3235 	const struct intel_bootup *evt = ptr;
3236 
3237 	if (len != sizeof(*evt))
3238 		return;
3239 
3240 	if (btintel_test_and_clear_flag(hdev, INTEL_BOOTING))
3241 		btintel_wake_up_flag(hdev, INTEL_BOOTING);
3242 }
3243 EXPORT_SYMBOL_GPL(btintel_bootup);
3244 
3245 void btintel_secure_send_result(struct hci_dev *hdev,
3246 				const void *ptr, unsigned int len)
3247 {
3248 	const struct intel_secure_send_result *evt = ptr;
3249 
3250 	if (len != sizeof(*evt))
3251 		return;
3252 
3253 	if (evt->result)
3254 		btintel_set_flag(hdev, INTEL_FIRMWARE_FAILED);
3255 
3256 	if (btintel_test_and_clear_flag(hdev, INTEL_DOWNLOADING) &&
3257 	    btintel_test_flag(hdev, INTEL_FIRMWARE_LOADED))
3258 		btintel_wake_up_flag(hdev, INTEL_DOWNLOADING);
3259 }
3260 EXPORT_SYMBOL_GPL(btintel_secure_send_result);
3261 
3262 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
3263 MODULE_DESCRIPTION("Bluetooth support for Intel devices ver " VERSION);
3264 MODULE_VERSION(VERSION);
3265 MODULE_LICENSE("GPL");
3266 MODULE_FIRMWARE("intel/ibt-11-5.sfi");
3267 MODULE_FIRMWARE("intel/ibt-11-5.ddc");
3268 MODULE_FIRMWARE("intel/ibt-12-16.sfi");
3269 MODULE_FIRMWARE("intel/ibt-12-16.ddc");
3270