xref: /linux/drivers/bluetooth/btintel.c (revision 0ad53fe3ae82443c74ff8cfd7bd13377cc1134a3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Bluetooth support for Intel devices
5  *
6  *  Copyright (C) 2015  Intel Corporation
7  */
8 
9 #include <linux/module.h>
10 #include <linux/firmware.h>
11 #include <linux/regmap.h>
12 #include <asm/unaligned.h>
13 
14 #include <net/bluetooth/bluetooth.h>
15 #include <net/bluetooth/hci_core.h>
16 
17 #include "btintel.h"
18 
19 #define VERSION "0.1"
20 
21 #define BDADDR_INTEL		(&(bdaddr_t){{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}})
22 #define RSA_HEADER_LEN		644
23 #define CSS_HEADER_OFFSET	8
24 #define ECDSA_OFFSET		644
25 #define ECDSA_HEADER_LEN	320
26 
27 #define CMD_WRITE_BOOT_PARAMS	0xfc0e
28 struct cmd_write_boot_params {
29 	u32 boot_addr;
30 	u8  fw_build_num;
31 	u8  fw_build_ww;
32 	u8  fw_build_yy;
33 } __packed;
34 
35 int btintel_check_bdaddr(struct hci_dev *hdev)
36 {
37 	struct hci_rp_read_bd_addr *bda;
38 	struct sk_buff *skb;
39 
40 	skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
41 			     HCI_INIT_TIMEOUT);
42 	if (IS_ERR(skb)) {
43 		int err = PTR_ERR(skb);
44 		bt_dev_err(hdev, "Reading Intel device address failed (%d)",
45 			   err);
46 		return err;
47 	}
48 
49 	if (skb->len != sizeof(*bda)) {
50 		bt_dev_err(hdev, "Intel device address length mismatch");
51 		kfree_skb(skb);
52 		return -EIO;
53 	}
54 
55 	bda = (struct hci_rp_read_bd_addr *)skb->data;
56 
57 	/* For some Intel based controllers, the default Bluetooth device
58 	 * address 00:03:19:9E:8B:00 can be found. These controllers are
59 	 * fully operational, but have the danger of duplicate addresses
60 	 * and that in turn can cause problems with Bluetooth operation.
61 	 */
62 	if (!bacmp(&bda->bdaddr, BDADDR_INTEL)) {
63 		bt_dev_err(hdev, "Found Intel default device address (%pMR)",
64 			   &bda->bdaddr);
65 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
66 	}
67 
68 	kfree_skb(skb);
69 
70 	return 0;
71 }
72 EXPORT_SYMBOL_GPL(btintel_check_bdaddr);
73 
74 int btintel_enter_mfg(struct hci_dev *hdev)
75 {
76 	static const u8 param[] = { 0x01, 0x00 };
77 	struct sk_buff *skb;
78 
79 	skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
80 	if (IS_ERR(skb)) {
81 		bt_dev_err(hdev, "Entering manufacturer mode failed (%ld)",
82 			   PTR_ERR(skb));
83 		return PTR_ERR(skb);
84 	}
85 	kfree_skb(skb);
86 
87 	return 0;
88 }
89 EXPORT_SYMBOL_GPL(btintel_enter_mfg);
90 
91 int btintel_exit_mfg(struct hci_dev *hdev, bool reset, bool patched)
92 {
93 	u8 param[] = { 0x00, 0x00 };
94 	struct sk_buff *skb;
95 
96 	/* The 2nd command parameter specifies the manufacturing exit method:
97 	 * 0x00: Just disable the manufacturing mode (0x00).
98 	 * 0x01: Disable manufacturing mode and reset with patches deactivated.
99 	 * 0x02: Disable manufacturing mode and reset with patches activated.
100 	 */
101 	if (reset)
102 		param[1] |= patched ? 0x02 : 0x01;
103 
104 	skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
105 	if (IS_ERR(skb)) {
106 		bt_dev_err(hdev, "Exiting manufacturer mode failed (%ld)",
107 			   PTR_ERR(skb));
108 		return PTR_ERR(skb);
109 	}
110 	kfree_skb(skb);
111 
112 	return 0;
113 }
114 EXPORT_SYMBOL_GPL(btintel_exit_mfg);
115 
116 int btintel_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
117 {
118 	struct sk_buff *skb;
119 	int err;
120 
121 	skb = __hci_cmd_sync(hdev, 0xfc31, 6, bdaddr, HCI_INIT_TIMEOUT);
122 	if (IS_ERR(skb)) {
123 		err = PTR_ERR(skb);
124 		bt_dev_err(hdev, "Changing Intel device address failed (%d)",
125 			   err);
126 		return err;
127 	}
128 	kfree_skb(skb);
129 
130 	return 0;
131 }
132 EXPORT_SYMBOL_GPL(btintel_set_bdaddr);
133 
134 static int btintel_set_event_mask(struct hci_dev *hdev, bool debug)
135 {
136 	u8 mask[8] = { 0x87, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
137 	struct sk_buff *skb;
138 	int err;
139 
140 	if (debug)
141 		mask[1] |= 0x62;
142 
143 	skb = __hci_cmd_sync(hdev, 0xfc52, 8, mask, HCI_INIT_TIMEOUT);
144 	if (IS_ERR(skb)) {
145 		err = PTR_ERR(skb);
146 		bt_dev_err(hdev, "Setting Intel event mask failed (%d)", err);
147 		return err;
148 	}
149 	kfree_skb(skb);
150 
151 	return 0;
152 }
153 
154 int btintel_set_diag(struct hci_dev *hdev, bool enable)
155 {
156 	struct sk_buff *skb;
157 	u8 param[3];
158 	int err;
159 
160 	if (enable) {
161 		param[0] = 0x03;
162 		param[1] = 0x03;
163 		param[2] = 0x03;
164 	} else {
165 		param[0] = 0x00;
166 		param[1] = 0x00;
167 		param[2] = 0x00;
168 	}
169 
170 	skb = __hci_cmd_sync(hdev, 0xfc43, 3, param, HCI_INIT_TIMEOUT);
171 	if (IS_ERR(skb)) {
172 		err = PTR_ERR(skb);
173 		if (err == -ENODATA)
174 			goto done;
175 		bt_dev_err(hdev, "Changing Intel diagnostic mode failed (%d)",
176 			   err);
177 		return err;
178 	}
179 	kfree_skb(skb);
180 
181 done:
182 	btintel_set_event_mask(hdev, enable);
183 	return 0;
184 }
185 EXPORT_SYMBOL_GPL(btintel_set_diag);
186 
187 static int btintel_set_diag_mfg(struct hci_dev *hdev, bool enable)
188 {
189 	int err, ret;
190 
191 	err = btintel_enter_mfg(hdev);
192 	if (err)
193 		return err;
194 
195 	ret = btintel_set_diag(hdev, enable);
196 
197 	err = btintel_exit_mfg(hdev, false, false);
198 	if (err)
199 		return err;
200 
201 	return ret;
202 }
203 
204 static int btintel_set_diag_combined(struct hci_dev *hdev, bool enable)
205 {
206 	int ret;
207 
208 	/* Legacy ROM device needs to be in the manufacturer mode to apply
209 	 * diagnostic setting
210 	 *
211 	 * This flag is set after reading the Intel version.
212 	 */
213 	if (btintel_test_flag(hdev, INTEL_ROM_LEGACY))
214 		ret = btintel_set_diag_mfg(hdev, enable);
215 	else
216 		ret = btintel_set_diag(hdev, enable);
217 
218 	return ret;
219 }
220 
221 static void btintel_hw_error(struct hci_dev *hdev, u8 code)
222 {
223 	struct sk_buff *skb;
224 	u8 type = 0x00;
225 
226 	bt_dev_err(hdev, "Hardware error 0x%2.2x", code);
227 
228 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
229 	if (IS_ERR(skb)) {
230 		bt_dev_err(hdev, "Reset after hardware error failed (%ld)",
231 			   PTR_ERR(skb));
232 		return;
233 	}
234 	kfree_skb(skb);
235 
236 	skb = __hci_cmd_sync(hdev, 0xfc22, 1, &type, HCI_INIT_TIMEOUT);
237 	if (IS_ERR(skb)) {
238 		bt_dev_err(hdev, "Retrieving Intel exception info failed (%ld)",
239 			   PTR_ERR(skb));
240 		return;
241 	}
242 
243 	if (skb->len != 13) {
244 		bt_dev_err(hdev, "Exception info size mismatch");
245 		kfree_skb(skb);
246 		return;
247 	}
248 
249 	bt_dev_err(hdev, "Exception info %s", (char *)(skb->data + 1));
250 
251 	kfree_skb(skb);
252 }
253 
254 int btintel_version_info(struct hci_dev *hdev, struct intel_version *ver)
255 {
256 	const char *variant;
257 
258 	/* The hardware platform number has a fixed value of 0x37 and
259 	 * for now only accept this single value.
260 	 */
261 	if (ver->hw_platform != 0x37) {
262 		bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
263 			   ver->hw_platform);
264 		return -EINVAL;
265 	}
266 
267 	/* Check for supported iBT hardware variants of this firmware
268 	 * loading method.
269 	 *
270 	 * This check has been put in place to ensure correct forward
271 	 * compatibility options when newer hardware variants come along.
272 	 */
273 	switch (ver->hw_variant) {
274 	case 0x07:	/* WP - Legacy ROM */
275 	case 0x08:	/* StP - Legacy ROM */
276 	case 0x0b:      /* SfP */
277 	case 0x0c:      /* WsP */
278 	case 0x11:      /* JfP */
279 	case 0x12:      /* ThP */
280 	case 0x13:      /* HrP */
281 	case 0x14:      /* CcP */
282 		break;
283 	default:
284 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
285 			   ver->hw_variant);
286 		return -EINVAL;
287 	}
288 
289 	switch (ver->fw_variant) {
290 	case 0x01:
291 		variant = "Legacy ROM 2.5";
292 		break;
293 	case 0x06:
294 		variant = "Bootloader";
295 		break;
296 	case 0x22:
297 		variant = "Legacy ROM 2.x";
298 		break;
299 	case 0x23:
300 		variant = "Firmware";
301 		break;
302 	default:
303 		bt_dev_err(hdev, "Unsupported firmware variant(%02x)", ver->fw_variant);
304 		return -EINVAL;
305 	}
306 
307 	bt_dev_info(hdev, "%s revision %u.%u build %u week %u %u",
308 		    variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f,
309 		    ver->fw_build_num, ver->fw_build_ww,
310 		    2000 + ver->fw_build_yy);
311 
312 	return 0;
313 }
314 EXPORT_SYMBOL_GPL(btintel_version_info);
315 
316 static int btintel_secure_send(struct hci_dev *hdev, u8 fragment_type, u32 plen,
317 			       const void *param)
318 {
319 	while (plen > 0) {
320 		struct sk_buff *skb;
321 		u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen;
322 
323 		cmd_param[0] = fragment_type;
324 		memcpy(cmd_param + 1, param, fragment_len);
325 
326 		skb = __hci_cmd_sync(hdev, 0xfc09, fragment_len + 1,
327 				     cmd_param, HCI_INIT_TIMEOUT);
328 		if (IS_ERR(skb))
329 			return PTR_ERR(skb);
330 
331 		kfree_skb(skb);
332 
333 		plen -= fragment_len;
334 		param += fragment_len;
335 	}
336 
337 	return 0;
338 }
339 
340 int btintel_load_ddc_config(struct hci_dev *hdev, const char *ddc_name)
341 {
342 	const struct firmware *fw;
343 	struct sk_buff *skb;
344 	const u8 *fw_ptr;
345 	int err;
346 
347 	err = request_firmware_direct(&fw, ddc_name, &hdev->dev);
348 	if (err < 0) {
349 		bt_dev_err(hdev, "Failed to load Intel DDC file %s (%d)",
350 			   ddc_name, err);
351 		return err;
352 	}
353 
354 	bt_dev_info(hdev, "Found Intel DDC parameters: %s", ddc_name);
355 
356 	fw_ptr = fw->data;
357 
358 	/* DDC file contains one or more DDC structure which has
359 	 * Length (1 byte), DDC ID (2 bytes), and DDC value (Length - 2).
360 	 */
361 	while (fw->size > fw_ptr - fw->data) {
362 		u8 cmd_plen = fw_ptr[0] + sizeof(u8);
363 
364 		skb = __hci_cmd_sync(hdev, 0xfc8b, cmd_plen, fw_ptr,
365 				     HCI_INIT_TIMEOUT);
366 		if (IS_ERR(skb)) {
367 			bt_dev_err(hdev, "Failed to send Intel_Write_DDC (%ld)",
368 				   PTR_ERR(skb));
369 			release_firmware(fw);
370 			return PTR_ERR(skb);
371 		}
372 
373 		fw_ptr += cmd_plen;
374 		kfree_skb(skb);
375 	}
376 
377 	release_firmware(fw);
378 
379 	bt_dev_info(hdev, "Applying Intel DDC parameters completed");
380 
381 	return 0;
382 }
383 EXPORT_SYMBOL_GPL(btintel_load_ddc_config);
384 
385 int btintel_set_event_mask_mfg(struct hci_dev *hdev, bool debug)
386 {
387 	int err, ret;
388 
389 	err = btintel_enter_mfg(hdev);
390 	if (err)
391 		return err;
392 
393 	ret = btintel_set_event_mask(hdev, debug);
394 
395 	err = btintel_exit_mfg(hdev, false, false);
396 	if (err)
397 		return err;
398 
399 	return ret;
400 }
401 EXPORT_SYMBOL_GPL(btintel_set_event_mask_mfg);
402 
403 int btintel_read_version(struct hci_dev *hdev, struct intel_version *ver)
404 {
405 	struct sk_buff *skb;
406 
407 	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
408 	if (IS_ERR(skb)) {
409 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
410 			   PTR_ERR(skb));
411 		return PTR_ERR(skb);
412 	}
413 
414 	if (skb->len != sizeof(*ver)) {
415 		bt_dev_err(hdev, "Intel version event size mismatch");
416 		kfree_skb(skb);
417 		return -EILSEQ;
418 	}
419 
420 	memcpy(ver, skb->data, sizeof(*ver));
421 
422 	kfree_skb(skb);
423 
424 	return 0;
425 }
426 EXPORT_SYMBOL_GPL(btintel_read_version);
427 
428 static int btintel_version_info_tlv(struct hci_dev *hdev,
429 				    struct intel_version_tlv *version)
430 {
431 	const char *variant;
432 
433 	/* The hardware platform number has a fixed value of 0x37 and
434 	 * for now only accept this single value.
435 	 */
436 	if (INTEL_HW_PLATFORM(version->cnvi_bt) != 0x37) {
437 		bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
438 			   INTEL_HW_PLATFORM(version->cnvi_bt));
439 		return -EINVAL;
440 	}
441 
442 	/* Check for supported iBT hardware variants of this firmware
443 	 * loading method.
444 	 *
445 	 * This check has been put in place to ensure correct forward
446 	 * compatibility options when newer hardware variants come along.
447 	 */
448 	switch (INTEL_HW_VARIANT(version->cnvi_bt)) {
449 	case 0x17:	/* TyP */
450 	case 0x18:	/* Slr */
451 	case 0x19:	/* Slr-F */
452 		break;
453 	default:
454 		bt_dev_err(hdev, "Unsupported Intel hardware variant (0x%x)",
455 			   INTEL_HW_VARIANT(version->cnvi_bt));
456 		return -EINVAL;
457 	}
458 
459 	switch (version->img_type) {
460 	case 0x01:
461 		variant = "Bootloader";
462 		/* It is required that every single firmware fragment is acknowledged
463 		 * with a command complete event. If the boot parameters indicate
464 		 * that this bootloader does not send them, then abort the setup.
465 		 */
466 		if (version->limited_cce != 0x00) {
467 			bt_dev_err(hdev, "Unsupported Intel firmware loading method (0x%x)",
468 				   version->limited_cce);
469 			return -EINVAL;
470 		}
471 
472 		/* Secure boot engine type should be either 1 (ECDSA) or 0 (RSA) */
473 		if (version->sbe_type > 0x01) {
474 			bt_dev_err(hdev, "Unsupported Intel secure boot engine type (0x%x)",
475 				   version->sbe_type);
476 			return -EINVAL;
477 		}
478 
479 		bt_dev_info(hdev, "Device revision is %u", version->dev_rev_id);
480 		bt_dev_info(hdev, "Secure boot is %s",
481 			    version->secure_boot ? "enabled" : "disabled");
482 		bt_dev_info(hdev, "OTP lock is %s",
483 			    version->otp_lock ? "enabled" : "disabled");
484 		bt_dev_info(hdev, "API lock is %s",
485 			    version->api_lock ? "enabled" : "disabled");
486 		bt_dev_info(hdev, "Debug lock is %s",
487 			    version->debug_lock ? "enabled" : "disabled");
488 		bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
489 			    version->min_fw_build_nn, version->min_fw_build_cw,
490 			    2000 + version->min_fw_build_yy);
491 		break;
492 	case 0x03:
493 		variant = "Firmware";
494 		break;
495 	default:
496 		bt_dev_err(hdev, "Unsupported image type(%02x)", version->img_type);
497 		return -EINVAL;
498 	}
499 
500 	bt_dev_info(hdev, "%s timestamp %u.%u buildtype %u build %u", variant,
501 		    2000 + (version->timestamp >> 8), version->timestamp & 0xff,
502 		    version->build_type, version->build_num);
503 
504 	return 0;
505 }
506 
507 static int btintel_parse_version_tlv(struct hci_dev *hdev,
508 				     struct intel_version_tlv *version,
509 				     struct sk_buff *skb)
510 {
511 	/* Consume Command Complete Status field */
512 	skb_pull(skb, 1);
513 
514 	/* Event parameters contatin multiple TLVs. Read each of them
515 	 * and only keep the required data. Also, it use existing legacy
516 	 * version field like hw_platform, hw_variant, and fw_variant
517 	 * to keep the existing setup flow
518 	 */
519 	while (skb->len) {
520 		struct intel_tlv *tlv;
521 
522 		/* Make sure skb has a minimum length of the header */
523 		if (skb->len < sizeof(*tlv))
524 			return -EINVAL;
525 
526 		tlv = (struct intel_tlv *)skb->data;
527 
528 		/* Make sure skb has a enough data */
529 		if (skb->len < tlv->len + sizeof(*tlv))
530 			return -EINVAL;
531 
532 		switch (tlv->type) {
533 		case INTEL_TLV_CNVI_TOP:
534 			version->cnvi_top = get_unaligned_le32(tlv->val);
535 			break;
536 		case INTEL_TLV_CNVR_TOP:
537 			version->cnvr_top = get_unaligned_le32(tlv->val);
538 			break;
539 		case INTEL_TLV_CNVI_BT:
540 			version->cnvi_bt = get_unaligned_le32(tlv->val);
541 			break;
542 		case INTEL_TLV_CNVR_BT:
543 			version->cnvr_bt = get_unaligned_le32(tlv->val);
544 			break;
545 		case INTEL_TLV_DEV_REV_ID:
546 			version->dev_rev_id = get_unaligned_le16(tlv->val);
547 			break;
548 		case INTEL_TLV_IMAGE_TYPE:
549 			version->img_type = tlv->val[0];
550 			break;
551 		case INTEL_TLV_TIME_STAMP:
552 			/* If image type is Operational firmware (0x03), then
553 			 * running FW Calendar Week and Year information can
554 			 * be extracted from Timestamp information
555 			 */
556 			version->min_fw_build_cw = tlv->val[0];
557 			version->min_fw_build_yy = tlv->val[1];
558 			version->timestamp = get_unaligned_le16(tlv->val);
559 			break;
560 		case INTEL_TLV_BUILD_TYPE:
561 			version->build_type = tlv->val[0];
562 			break;
563 		case INTEL_TLV_BUILD_NUM:
564 			/* If image type is Operational firmware (0x03), then
565 			 * running FW build number can be extracted from the
566 			 * Build information
567 			 */
568 			version->min_fw_build_nn = tlv->val[0];
569 			version->build_num = get_unaligned_le32(tlv->val);
570 			break;
571 		case INTEL_TLV_SECURE_BOOT:
572 			version->secure_boot = tlv->val[0];
573 			break;
574 		case INTEL_TLV_OTP_LOCK:
575 			version->otp_lock = tlv->val[0];
576 			break;
577 		case INTEL_TLV_API_LOCK:
578 			version->api_lock = tlv->val[0];
579 			break;
580 		case INTEL_TLV_DEBUG_LOCK:
581 			version->debug_lock = tlv->val[0];
582 			break;
583 		case INTEL_TLV_MIN_FW:
584 			version->min_fw_build_nn = tlv->val[0];
585 			version->min_fw_build_cw = tlv->val[1];
586 			version->min_fw_build_yy = tlv->val[2];
587 			break;
588 		case INTEL_TLV_LIMITED_CCE:
589 			version->limited_cce = tlv->val[0];
590 			break;
591 		case INTEL_TLV_SBE_TYPE:
592 			version->sbe_type = tlv->val[0];
593 			break;
594 		case INTEL_TLV_OTP_BDADDR:
595 			memcpy(&version->otp_bd_addr, tlv->val,
596 							sizeof(bdaddr_t));
597 			break;
598 		default:
599 			/* Ignore rest of information */
600 			break;
601 		}
602 		/* consume the current tlv and move to next*/
603 		skb_pull(skb, tlv->len + sizeof(*tlv));
604 	}
605 
606 	return 0;
607 }
608 
609 static int btintel_read_version_tlv(struct hci_dev *hdev,
610 				    struct intel_version_tlv *version)
611 {
612 	struct sk_buff *skb;
613 	const u8 param[1] = { 0xFF };
614 
615 	if (!version)
616 		return -EINVAL;
617 
618 	skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
619 	if (IS_ERR(skb)) {
620 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
621 			   PTR_ERR(skb));
622 		return PTR_ERR(skb);
623 	}
624 
625 	if (skb->data[0]) {
626 		bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
627 			   skb->data[0]);
628 		kfree_skb(skb);
629 		return -EIO;
630 	}
631 
632 	btintel_parse_version_tlv(hdev, version, skb);
633 
634 	kfree_skb(skb);
635 	return 0;
636 }
637 
638 /* ------- REGMAP IBT SUPPORT ------- */
639 
640 #define IBT_REG_MODE_8BIT  0x00
641 #define IBT_REG_MODE_16BIT 0x01
642 #define IBT_REG_MODE_32BIT 0x02
643 
644 struct regmap_ibt_context {
645 	struct hci_dev *hdev;
646 	__u16 op_write;
647 	__u16 op_read;
648 };
649 
650 struct ibt_cp_reg_access {
651 	__le32  addr;
652 	__u8    mode;
653 	__u8    len;
654 	__u8    data[];
655 } __packed;
656 
657 struct ibt_rp_reg_access {
658 	__u8    status;
659 	__le32  addr;
660 	__u8    data[];
661 } __packed;
662 
663 static int regmap_ibt_read(void *context, const void *addr, size_t reg_size,
664 			   void *val, size_t val_size)
665 {
666 	struct regmap_ibt_context *ctx = context;
667 	struct ibt_cp_reg_access cp;
668 	struct ibt_rp_reg_access *rp;
669 	struct sk_buff *skb;
670 	int err = 0;
671 
672 	if (reg_size != sizeof(__le32))
673 		return -EINVAL;
674 
675 	switch (val_size) {
676 	case 1:
677 		cp.mode = IBT_REG_MODE_8BIT;
678 		break;
679 	case 2:
680 		cp.mode = IBT_REG_MODE_16BIT;
681 		break;
682 	case 4:
683 		cp.mode = IBT_REG_MODE_32BIT;
684 		break;
685 	default:
686 		return -EINVAL;
687 	}
688 
689 	/* regmap provides a little-endian formatted addr */
690 	cp.addr = *(__le32 *)addr;
691 	cp.len = val_size;
692 
693 	bt_dev_dbg(ctx->hdev, "Register (0x%x) read", le32_to_cpu(cp.addr));
694 
695 	skb = hci_cmd_sync(ctx->hdev, ctx->op_read, sizeof(cp), &cp,
696 			   HCI_CMD_TIMEOUT);
697 	if (IS_ERR(skb)) {
698 		err = PTR_ERR(skb);
699 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error (%d)",
700 			   le32_to_cpu(cp.addr), err);
701 		return err;
702 	}
703 
704 	if (skb->len != sizeof(*rp) + val_size) {
705 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad len",
706 			   le32_to_cpu(cp.addr));
707 		err = -EINVAL;
708 		goto done;
709 	}
710 
711 	rp = (struct ibt_rp_reg_access *)skb->data;
712 
713 	if (rp->addr != cp.addr) {
714 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad addr",
715 			   le32_to_cpu(rp->addr));
716 		err = -EINVAL;
717 		goto done;
718 	}
719 
720 	memcpy(val, rp->data, val_size);
721 
722 done:
723 	kfree_skb(skb);
724 	return err;
725 }
726 
727 static int regmap_ibt_gather_write(void *context,
728 				   const void *addr, size_t reg_size,
729 				   const void *val, size_t val_size)
730 {
731 	struct regmap_ibt_context *ctx = context;
732 	struct ibt_cp_reg_access *cp;
733 	struct sk_buff *skb;
734 	int plen = sizeof(*cp) + val_size;
735 	u8 mode;
736 	int err = 0;
737 
738 	if (reg_size != sizeof(__le32))
739 		return -EINVAL;
740 
741 	switch (val_size) {
742 	case 1:
743 		mode = IBT_REG_MODE_8BIT;
744 		break;
745 	case 2:
746 		mode = IBT_REG_MODE_16BIT;
747 		break;
748 	case 4:
749 		mode = IBT_REG_MODE_32BIT;
750 		break;
751 	default:
752 		return -EINVAL;
753 	}
754 
755 	cp = kmalloc(plen, GFP_KERNEL);
756 	if (!cp)
757 		return -ENOMEM;
758 
759 	/* regmap provides a little-endian formatted addr/value */
760 	cp->addr = *(__le32 *)addr;
761 	cp->mode = mode;
762 	cp->len = val_size;
763 	memcpy(&cp->data, val, val_size);
764 
765 	bt_dev_dbg(ctx->hdev, "Register (0x%x) write", le32_to_cpu(cp->addr));
766 
767 	skb = hci_cmd_sync(ctx->hdev, ctx->op_write, plen, cp, HCI_CMD_TIMEOUT);
768 	if (IS_ERR(skb)) {
769 		err = PTR_ERR(skb);
770 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) write error (%d)",
771 			   le32_to_cpu(cp->addr), err);
772 		goto done;
773 	}
774 	kfree_skb(skb);
775 
776 done:
777 	kfree(cp);
778 	return err;
779 }
780 
781 static int regmap_ibt_write(void *context, const void *data, size_t count)
782 {
783 	/* data contains register+value, since we only support 32bit addr,
784 	 * minimum data size is 4 bytes.
785 	 */
786 	if (WARN_ONCE(count < 4, "Invalid register access"))
787 		return -EINVAL;
788 
789 	return regmap_ibt_gather_write(context, data, 4, data + 4, count - 4);
790 }
791 
792 static void regmap_ibt_free_context(void *context)
793 {
794 	kfree(context);
795 }
796 
797 static struct regmap_bus regmap_ibt = {
798 	.read = regmap_ibt_read,
799 	.write = regmap_ibt_write,
800 	.gather_write = regmap_ibt_gather_write,
801 	.free_context = regmap_ibt_free_context,
802 	.reg_format_endian_default = REGMAP_ENDIAN_LITTLE,
803 	.val_format_endian_default = REGMAP_ENDIAN_LITTLE,
804 };
805 
806 /* Config is the same for all register regions */
807 static const struct regmap_config regmap_ibt_cfg = {
808 	.name      = "btintel_regmap",
809 	.reg_bits  = 32,
810 	.val_bits  = 32,
811 };
812 
813 struct regmap *btintel_regmap_init(struct hci_dev *hdev, u16 opcode_read,
814 				   u16 opcode_write)
815 {
816 	struct regmap_ibt_context *ctx;
817 
818 	bt_dev_info(hdev, "regmap: Init R%x-W%x region", opcode_read,
819 		    opcode_write);
820 
821 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
822 	if (!ctx)
823 		return ERR_PTR(-ENOMEM);
824 
825 	ctx->op_read = opcode_read;
826 	ctx->op_write = opcode_write;
827 	ctx->hdev = hdev;
828 
829 	return regmap_init(&hdev->dev, &regmap_ibt, ctx, &regmap_ibt_cfg);
830 }
831 EXPORT_SYMBOL_GPL(btintel_regmap_init);
832 
833 int btintel_send_intel_reset(struct hci_dev *hdev, u32 boot_param)
834 {
835 	struct intel_reset params = { 0x00, 0x01, 0x00, 0x01, 0x00000000 };
836 	struct sk_buff *skb;
837 
838 	params.boot_param = cpu_to_le32(boot_param);
839 
840 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), &params,
841 			     HCI_INIT_TIMEOUT);
842 	if (IS_ERR(skb)) {
843 		bt_dev_err(hdev, "Failed to send Intel Reset command");
844 		return PTR_ERR(skb);
845 	}
846 
847 	kfree_skb(skb);
848 
849 	return 0;
850 }
851 EXPORT_SYMBOL_GPL(btintel_send_intel_reset);
852 
853 int btintel_read_boot_params(struct hci_dev *hdev,
854 			     struct intel_boot_params *params)
855 {
856 	struct sk_buff *skb;
857 
858 	skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
859 	if (IS_ERR(skb)) {
860 		bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
861 			   PTR_ERR(skb));
862 		return PTR_ERR(skb);
863 	}
864 
865 	if (skb->len != sizeof(*params)) {
866 		bt_dev_err(hdev, "Intel boot parameters size mismatch");
867 		kfree_skb(skb);
868 		return -EILSEQ;
869 	}
870 
871 	memcpy(params, skb->data, sizeof(*params));
872 
873 	kfree_skb(skb);
874 
875 	if (params->status) {
876 		bt_dev_err(hdev, "Intel boot parameters command failed (%02x)",
877 			   params->status);
878 		return -bt_to_errno(params->status);
879 	}
880 
881 	bt_dev_info(hdev, "Device revision is %u",
882 		    le16_to_cpu(params->dev_revid));
883 
884 	bt_dev_info(hdev, "Secure boot is %s",
885 		    params->secure_boot ? "enabled" : "disabled");
886 
887 	bt_dev_info(hdev, "OTP lock is %s",
888 		    params->otp_lock ? "enabled" : "disabled");
889 
890 	bt_dev_info(hdev, "API lock is %s",
891 		    params->api_lock ? "enabled" : "disabled");
892 
893 	bt_dev_info(hdev, "Debug lock is %s",
894 		    params->debug_lock ? "enabled" : "disabled");
895 
896 	bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
897 		    params->min_fw_build_nn, params->min_fw_build_cw,
898 		    2000 + params->min_fw_build_yy);
899 
900 	return 0;
901 }
902 EXPORT_SYMBOL_GPL(btintel_read_boot_params);
903 
904 static int btintel_sfi_rsa_header_secure_send(struct hci_dev *hdev,
905 					      const struct firmware *fw)
906 {
907 	int err;
908 
909 	/* Start the firmware download transaction with the Init fragment
910 	 * represented by the 128 bytes of CSS header.
911 	 */
912 	err = btintel_secure_send(hdev, 0x00, 128, fw->data);
913 	if (err < 0) {
914 		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
915 		goto done;
916 	}
917 
918 	/* Send the 256 bytes of public key information from the firmware
919 	 * as the PKey fragment.
920 	 */
921 	err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
922 	if (err < 0) {
923 		bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
924 		goto done;
925 	}
926 
927 	/* Send the 256 bytes of signature information from the firmware
928 	 * as the Sign fragment.
929 	 */
930 	err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
931 	if (err < 0) {
932 		bt_dev_err(hdev, "Failed to send firmware signature (%d)", err);
933 		goto done;
934 	}
935 
936 done:
937 	return err;
938 }
939 
940 static int btintel_sfi_ecdsa_header_secure_send(struct hci_dev *hdev,
941 						const struct firmware *fw)
942 {
943 	int err;
944 
945 	/* Start the firmware download transaction with the Init fragment
946 	 * represented by the 128 bytes of CSS header.
947 	 */
948 	err = btintel_secure_send(hdev, 0x00, 128, fw->data + 644);
949 	if (err < 0) {
950 		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
951 		return err;
952 	}
953 
954 	/* Send the 96 bytes of public key information from the firmware
955 	 * as the PKey fragment.
956 	 */
957 	err = btintel_secure_send(hdev, 0x03, 96, fw->data + 644 + 128);
958 	if (err < 0) {
959 		bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
960 		return err;
961 	}
962 
963 	/* Send the 96 bytes of signature information from the firmware
964 	 * as the Sign fragment
965 	 */
966 	err = btintel_secure_send(hdev, 0x02, 96, fw->data + 644 + 224);
967 	if (err < 0) {
968 		bt_dev_err(hdev, "Failed to send firmware signature (%d)",
969 			   err);
970 		return err;
971 	}
972 	return 0;
973 }
974 
975 static int btintel_download_firmware_payload(struct hci_dev *hdev,
976 					     const struct firmware *fw,
977 					     size_t offset)
978 {
979 	int err;
980 	const u8 *fw_ptr;
981 	u32 frag_len;
982 
983 	fw_ptr = fw->data + offset;
984 	frag_len = 0;
985 	err = -EINVAL;
986 
987 	while (fw_ptr - fw->data < fw->size) {
988 		struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
989 
990 		frag_len += sizeof(*cmd) + cmd->plen;
991 
992 		/* The parameter length of the secure send command requires
993 		 * a 4 byte alignment. It happens so that the firmware file
994 		 * contains proper Intel_NOP commands to align the fragments
995 		 * as needed.
996 		 *
997 		 * Send set of commands with 4 byte alignment from the
998 		 * firmware data buffer as a single Data fragement.
999 		 */
1000 		if (!(frag_len % 4)) {
1001 			err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
1002 			if (err < 0) {
1003 				bt_dev_err(hdev,
1004 					   "Failed to send firmware data (%d)",
1005 					   err);
1006 				goto done;
1007 			}
1008 
1009 			fw_ptr += frag_len;
1010 			frag_len = 0;
1011 		}
1012 	}
1013 
1014 done:
1015 	return err;
1016 }
1017 
1018 static bool btintel_firmware_version(struct hci_dev *hdev,
1019 				     u8 num, u8 ww, u8 yy,
1020 				     const struct firmware *fw,
1021 				     u32 *boot_addr)
1022 {
1023 	const u8 *fw_ptr;
1024 
1025 	fw_ptr = fw->data;
1026 
1027 	while (fw_ptr - fw->data < fw->size) {
1028 		struct hci_command_hdr *cmd = (void *)(fw_ptr);
1029 
1030 		/* Each SKU has a different reset parameter to use in the
1031 		 * HCI_Intel_Reset command and it is embedded in the firmware
1032 		 * data. So, instead of using static value per SKU, check
1033 		 * the firmware data and save it for later use.
1034 		 */
1035 		if (le16_to_cpu(cmd->opcode) == CMD_WRITE_BOOT_PARAMS) {
1036 			struct cmd_write_boot_params *params;
1037 
1038 			params = (void *)(fw_ptr + sizeof(*cmd));
1039 
1040 			bt_dev_info(hdev, "Boot Address: 0x%x",
1041 				    le32_to_cpu(params->boot_addr));
1042 
1043 			bt_dev_info(hdev, "Firmware Version: %u-%u.%u",
1044 				    params->fw_build_num, params->fw_build_ww,
1045 				    params->fw_build_yy);
1046 
1047 			return (num == params->fw_build_num &&
1048 				ww == params->fw_build_ww &&
1049 				yy == params->fw_build_yy);
1050 		}
1051 
1052 		fw_ptr += sizeof(*cmd) + cmd->plen;
1053 	}
1054 
1055 	return false;
1056 }
1057 
1058 int btintel_download_firmware(struct hci_dev *hdev,
1059 			      struct intel_version *ver,
1060 			      const struct firmware *fw,
1061 			      u32 *boot_param)
1062 {
1063 	int err;
1064 
1065 	/* SfP and WsP don't seem to update the firmware version on file
1066 	 * so version checking is currently not possible.
1067 	 */
1068 	switch (ver->hw_variant) {
1069 	case 0x0b:	/* SfP */
1070 	case 0x0c:	/* WsP */
1071 		/* Skip version checking */
1072 		break;
1073 	default:
1074 		/* Skip reading firmware file version in bootloader mode */
1075 		if (ver->fw_variant == 0x06)
1076 			break;
1077 
1078 		/* Skip download if firmware has the same version */
1079 		if (btintel_firmware_version(hdev, ver->fw_build_num,
1080 					     ver->fw_build_ww, ver->fw_build_yy,
1081 					     fw, boot_param)) {
1082 			bt_dev_info(hdev, "Firmware already loaded");
1083 			/* Return -EALREADY to indicate that the firmware has
1084 			 * already been loaded.
1085 			 */
1086 			return -EALREADY;
1087 		}
1088 	}
1089 
1090 	/* The firmware variant determines if the device is in bootloader
1091 	 * mode or is running operational firmware. The value 0x06 identifies
1092 	 * the bootloader and the value 0x23 identifies the operational
1093 	 * firmware.
1094 	 *
1095 	 * If the firmware version has changed that means it needs to be reset
1096 	 * to bootloader when operational so the new firmware can be loaded.
1097 	 */
1098 	if (ver->fw_variant == 0x23)
1099 		return -EINVAL;
1100 
1101 	err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1102 	if (err)
1103 		return err;
1104 
1105 	return btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
1106 }
1107 EXPORT_SYMBOL_GPL(btintel_download_firmware);
1108 
1109 static int btintel_download_fw_tlv(struct hci_dev *hdev,
1110 				   struct intel_version_tlv *ver,
1111 				   const struct firmware *fw, u32 *boot_param,
1112 				   u8 hw_variant, u8 sbe_type)
1113 {
1114 	int err;
1115 	u32 css_header_ver;
1116 
1117 	/* Skip reading firmware file version in bootloader mode */
1118 	if (ver->img_type != 0x01) {
1119 		/* Skip download if firmware has the same version */
1120 		if (btintel_firmware_version(hdev, ver->min_fw_build_nn,
1121 					     ver->min_fw_build_cw,
1122 					     ver->min_fw_build_yy,
1123 					     fw, boot_param)) {
1124 			bt_dev_info(hdev, "Firmware already loaded");
1125 			/* Return -EALREADY to indicate that firmware has
1126 			 * already been loaded.
1127 			 */
1128 			return -EALREADY;
1129 		}
1130 	}
1131 
1132 	/* The firmware variant determines if the device is in bootloader
1133 	 * mode or is running operational firmware. The value 0x01 identifies
1134 	 * the bootloader and the value 0x03 identifies the operational
1135 	 * firmware.
1136 	 *
1137 	 * If the firmware version has changed that means it needs to be reset
1138 	 * to bootloader when operational so the new firmware can be loaded.
1139 	 */
1140 	if (ver->img_type == 0x03)
1141 		return -EINVAL;
1142 
1143 	/* iBT hardware variants 0x0b, 0x0c, 0x11, 0x12, 0x13, 0x14 support
1144 	 * only RSA secure boot engine. Hence, the corresponding sfi file will
1145 	 * have RSA header of 644 bytes followed by Command Buffer.
1146 	 *
1147 	 * iBT hardware variants 0x17, 0x18 onwards support both RSA and ECDSA
1148 	 * secure boot engine. As a result, the corresponding sfi file will
1149 	 * have RSA header of 644, ECDSA header of 320 bytes followed by
1150 	 * Command Buffer.
1151 	 *
1152 	 * CSS Header byte positions 0x08 to 0x0B represent the CSS Header
1153 	 * version: RSA(0x00010000) , ECDSA (0x00020000)
1154 	 */
1155 	css_header_ver = get_unaligned_le32(fw->data + CSS_HEADER_OFFSET);
1156 	if (css_header_ver != 0x00010000) {
1157 		bt_dev_err(hdev, "Invalid CSS Header version");
1158 		return -EINVAL;
1159 	}
1160 
1161 	if (hw_variant <= 0x14) {
1162 		if (sbe_type != 0x00) {
1163 			bt_dev_err(hdev, "Invalid SBE type for hardware variant (%d)",
1164 				   hw_variant);
1165 			return -EINVAL;
1166 		}
1167 
1168 		err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1169 		if (err)
1170 			return err;
1171 
1172 		err = btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
1173 		if (err)
1174 			return err;
1175 	} else if (hw_variant >= 0x17) {
1176 		/* Check if CSS header for ECDSA follows the RSA header */
1177 		if (fw->data[ECDSA_OFFSET] != 0x06)
1178 			return -EINVAL;
1179 
1180 		/* Check if the CSS Header version is ECDSA(0x00020000) */
1181 		css_header_ver = get_unaligned_le32(fw->data + ECDSA_OFFSET + CSS_HEADER_OFFSET);
1182 		if (css_header_ver != 0x00020000) {
1183 			bt_dev_err(hdev, "Invalid CSS Header version");
1184 			return -EINVAL;
1185 		}
1186 
1187 		if (sbe_type == 0x00) {
1188 			err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1189 			if (err)
1190 				return err;
1191 
1192 			err = btintel_download_firmware_payload(hdev, fw,
1193 								RSA_HEADER_LEN + ECDSA_HEADER_LEN);
1194 			if (err)
1195 				return err;
1196 		} else if (sbe_type == 0x01) {
1197 			err = btintel_sfi_ecdsa_header_secure_send(hdev, fw);
1198 			if (err)
1199 				return err;
1200 
1201 			err = btintel_download_firmware_payload(hdev, fw,
1202 								RSA_HEADER_LEN + ECDSA_HEADER_LEN);
1203 			if (err)
1204 				return err;
1205 		}
1206 	}
1207 	return 0;
1208 }
1209 
1210 static void btintel_reset_to_bootloader(struct hci_dev *hdev)
1211 {
1212 	struct intel_reset params;
1213 	struct sk_buff *skb;
1214 
1215 	/* Send Intel Reset command. This will result in
1216 	 * re-enumeration of BT controller.
1217 	 *
1218 	 * Intel Reset parameter description:
1219 	 * reset_type :   0x00 (Soft reset),
1220 	 *		  0x01 (Hard reset)
1221 	 * patch_enable : 0x00 (Do not enable),
1222 	 *		  0x01 (Enable)
1223 	 * ddc_reload :   0x00 (Do not reload),
1224 	 *		  0x01 (Reload)
1225 	 * boot_option:   0x00 (Current image),
1226 	 *                0x01 (Specified boot address)
1227 	 * boot_param:    Boot address
1228 	 *
1229 	 */
1230 	params.reset_type = 0x01;
1231 	params.patch_enable = 0x01;
1232 	params.ddc_reload = 0x01;
1233 	params.boot_option = 0x00;
1234 	params.boot_param = cpu_to_le32(0x00000000);
1235 
1236 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params),
1237 			     &params, HCI_INIT_TIMEOUT);
1238 	if (IS_ERR(skb)) {
1239 		bt_dev_err(hdev, "FW download error recovery failed (%ld)",
1240 			   PTR_ERR(skb));
1241 		return;
1242 	}
1243 	bt_dev_info(hdev, "Intel reset sent to retry FW download");
1244 	kfree_skb(skb);
1245 
1246 	/* Current Intel BT controllers(ThP/JfP) hold the USB reset
1247 	 * lines for 2ms when it receives Intel Reset in bootloader mode.
1248 	 * Whereas, the upcoming Intel BT controllers will hold USB reset
1249 	 * for 150ms. To keep the delay generic, 150ms is chosen here.
1250 	 */
1251 	msleep(150);
1252 }
1253 
1254 static int btintel_read_debug_features(struct hci_dev *hdev,
1255 				       struct intel_debug_features *features)
1256 {
1257 	struct sk_buff *skb;
1258 	u8 page_no = 1;
1259 
1260 	/* Intel controller supports two pages, each page is of 128-bit
1261 	 * feature bit mask. And each bit defines specific feature support
1262 	 */
1263 	skb = __hci_cmd_sync(hdev, 0xfca6, sizeof(page_no), &page_no,
1264 			     HCI_INIT_TIMEOUT);
1265 	if (IS_ERR(skb)) {
1266 		bt_dev_err(hdev, "Reading supported features failed (%ld)",
1267 			   PTR_ERR(skb));
1268 		return PTR_ERR(skb);
1269 	}
1270 
1271 	if (skb->len != (sizeof(features->page1) + 3)) {
1272 		bt_dev_err(hdev, "Supported features event size mismatch");
1273 		kfree_skb(skb);
1274 		return -EILSEQ;
1275 	}
1276 
1277 	memcpy(features->page1, skb->data + 3, sizeof(features->page1));
1278 
1279 	/* Read the supported features page2 if required in future.
1280 	 */
1281 	kfree_skb(skb);
1282 	return 0;
1283 }
1284 
1285 static int btintel_set_debug_features(struct hci_dev *hdev,
1286 			       const struct intel_debug_features *features)
1287 {
1288 	u8 mask[11] = { 0x0a, 0x92, 0x02, 0x07, 0x00, 0x00, 0x00, 0x00,
1289 			0x00, 0x00, 0x00 };
1290 	struct sk_buff *skb;
1291 
1292 	if (!features)
1293 		return -EINVAL;
1294 
1295 	if (!(features->page1[0] & 0x3f)) {
1296 		bt_dev_info(hdev, "Telemetry exception format not supported");
1297 		return 0;
1298 	}
1299 
1300 	skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
1301 	if (IS_ERR(skb)) {
1302 		bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
1303 			   PTR_ERR(skb));
1304 		return PTR_ERR(skb);
1305 	}
1306 
1307 	kfree_skb(skb);
1308 	return 0;
1309 }
1310 
1311 static const struct firmware *btintel_legacy_rom_get_fw(struct hci_dev *hdev,
1312 					       struct intel_version *ver)
1313 {
1314 	const struct firmware *fw;
1315 	char fwname[64];
1316 	int ret;
1317 
1318 	snprintf(fwname, sizeof(fwname),
1319 		 "intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq",
1320 		 ver->hw_platform, ver->hw_variant, ver->hw_revision,
1321 		 ver->fw_variant,  ver->fw_revision, ver->fw_build_num,
1322 		 ver->fw_build_ww, ver->fw_build_yy);
1323 
1324 	ret = request_firmware(&fw, fwname, &hdev->dev);
1325 	if (ret < 0) {
1326 		if (ret == -EINVAL) {
1327 			bt_dev_err(hdev, "Intel firmware file request failed (%d)",
1328 				   ret);
1329 			return NULL;
1330 		}
1331 
1332 		bt_dev_err(hdev, "failed to open Intel firmware file: %s (%d)",
1333 			   fwname, ret);
1334 
1335 		/* If the correct firmware patch file is not found, use the
1336 		 * default firmware patch file instead
1337 		 */
1338 		snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.bseq",
1339 			 ver->hw_platform, ver->hw_variant);
1340 		if (request_firmware(&fw, fwname, &hdev->dev) < 0) {
1341 			bt_dev_err(hdev, "failed to open default fw file: %s",
1342 				   fwname);
1343 			return NULL;
1344 		}
1345 	}
1346 
1347 	bt_dev_info(hdev, "Intel Bluetooth firmware file: %s", fwname);
1348 
1349 	return fw;
1350 }
1351 
1352 static int btintel_legacy_rom_patching(struct hci_dev *hdev,
1353 				      const struct firmware *fw,
1354 				      const u8 **fw_ptr, int *disable_patch)
1355 {
1356 	struct sk_buff *skb;
1357 	struct hci_command_hdr *cmd;
1358 	const u8 *cmd_param;
1359 	struct hci_event_hdr *evt = NULL;
1360 	const u8 *evt_param = NULL;
1361 	int remain = fw->size - (*fw_ptr - fw->data);
1362 
1363 	/* The first byte indicates the types of the patch command or event.
1364 	 * 0x01 means HCI command and 0x02 is HCI event. If the first bytes
1365 	 * in the current firmware buffer doesn't start with 0x01 or
1366 	 * the size of remain buffer is smaller than HCI command header,
1367 	 * the firmware file is corrupted and it should stop the patching
1368 	 * process.
1369 	 */
1370 	if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) {
1371 		bt_dev_err(hdev, "Intel fw corrupted: invalid cmd read");
1372 		return -EINVAL;
1373 	}
1374 	(*fw_ptr)++;
1375 	remain--;
1376 
1377 	cmd = (struct hci_command_hdr *)(*fw_ptr);
1378 	*fw_ptr += sizeof(*cmd);
1379 	remain -= sizeof(*cmd);
1380 
1381 	/* Ensure that the remain firmware data is long enough than the length
1382 	 * of command parameter. If not, the firmware file is corrupted.
1383 	 */
1384 	if (remain < cmd->plen) {
1385 		bt_dev_err(hdev, "Intel fw corrupted: invalid cmd len");
1386 		return -EFAULT;
1387 	}
1388 
1389 	/* If there is a command that loads a patch in the firmware
1390 	 * file, then enable the patch upon success, otherwise just
1391 	 * disable the manufacturer mode, for example patch activation
1392 	 * is not required when the default firmware patch file is used
1393 	 * because there are no patch data to load.
1394 	 */
1395 	if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e)
1396 		*disable_patch = 0;
1397 
1398 	cmd_param = *fw_ptr;
1399 	*fw_ptr += cmd->plen;
1400 	remain -= cmd->plen;
1401 
1402 	/* This reads the expected events when the above command is sent to the
1403 	 * device. Some vendor commands expects more than one events, for
1404 	 * example command status event followed by vendor specific event.
1405 	 * For this case, it only keeps the last expected event. so the command
1406 	 * can be sent with __hci_cmd_sync_ev() which returns the sk_buff of
1407 	 * last expected event.
1408 	 */
1409 	while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) {
1410 		(*fw_ptr)++;
1411 		remain--;
1412 
1413 		evt = (struct hci_event_hdr *)(*fw_ptr);
1414 		*fw_ptr += sizeof(*evt);
1415 		remain -= sizeof(*evt);
1416 
1417 		if (remain < evt->plen) {
1418 			bt_dev_err(hdev, "Intel fw corrupted: invalid evt len");
1419 			return -EFAULT;
1420 		}
1421 
1422 		evt_param = *fw_ptr;
1423 		*fw_ptr += evt->plen;
1424 		remain -= evt->plen;
1425 	}
1426 
1427 	/* Every HCI commands in the firmware file has its correspond event.
1428 	 * If event is not found or remain is smaller than zero, the firmware
1429 	 * file is corrupted.
1430 	 */
1431 	if (!evt || !evt_param || remain < 0) {
1432 		bt_dev_err(hdev, "Intel fw corrupted: invalid evt read");
1433 		return -EFAULT;
1434 	}
1435 
1436 	skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), cmd->plen,
1437 				cmd_param, evt->evt, HCI_INIT_TIMEOUT);
1438 	if (IS_ERR(skb)) {
1439 		bt_dev_err(hdev, "sending Intel patch command (0x%4.4x) failed (%ld)",
1440 			   cmd->opcode, PTR_ERR(skb));
1441 		return PTR_ERR(skb);
1442 	}
1443 
1444 	/* It ensures that the returned event matches the event data read from
1445 	 * the firmware file. At fist, it checks the length and then
1446 	 * the contents of the event.
1447 	 */
1448 	if (skb->len != evt->plen) {
1449 		bt_dev_err(hdev, "mismatch event length (opcode 0x%4.4x)",
1450 			   le16_to_cpu(cmd->opcode));
1451 		kfree_skb(skb);
1452 		return -EFAULT;
1453 	}
1454 
1455 	if (memcmp(skb->data, evt_param, evt->plen)) {
1456 		bt_dev_err(hdev, "mismatch event parameter (opcode 0x%4.4x)",
1457 			   le16_to_cpu(cmd->opcode));
1458 		kfree_skb(skb);
1459 		return -EFAULT;
1460 	}
1461 	kfree_skb(skb);
1462 
1463 	return 0;
1464 }
1465 
1466 static int btintel_legacy_rom_setup(struct hci_dev *hdev,
1467 				    struct intel_version *ver)
1468 {
1469 	const struct firmware *fw;
1470 	const u8 *fw_ptr;
1471 	int disable_patch, err;
1472 	struct intel_version new_ver;
1473 
1474 	BT_DBG("%s", hdev->name);
1475 
1476 	/* fw_patch_num indicates the version of patch the device currently
1477 	 * have. If there is no patch data in the device, it is always 0x00.
1478 	 * So, if it is other than 0x00, no need to patch the device again.
1479 	 */
1480 	if (ver->fw_patch_num) {
1481 		bt_dev_info(hdev,
1482 			    "Intel device is already patched. patch num: %02x",
1483 			    ver->fw_patch_num);
1484 		goto complete;
1485 	}
1486 
1487 	/* Opens the firmware patch file based on the firmware version read
1488 	 * from the controller. If it fails to open the matching firmware
1489 	 * patch file, it tries to open the default firmware patch file.
1490 	 * If no patch file is found, allow the device to operate without
1491 	 * a patch.
1492 	 */
1493 	fw = btintel_legacy_rom_get_fw(hdev, ver);
1494 	if (!fw)
1495 		goto complete;
1496 	fw_ptr = fw->data;
1497 
1498 	/* Enable the manufacturer mode of the controller.
1499 	 * Only while this mode is enabled, the driver can download the
1500 	 * firmware patch data and configuration parameters.
1501 	 */
1502 	err = btintel_enter_mfg(hdev);
1503 	if (err) {
1504 		release_firmware(fw);
1505 		return err;
1506 	}
1507 
1508 	disable_patch = 1;
1509 
1510 	/* The firmware data file consists of list of Intel specific HCI
1511 	 * commands and its expected events. The first byte indicates the
1512 	 * type of the message, either HCI command or HCI event.
1513 	 *
1514 	 * It reads the command and its expected event from the firmware file,
1515 	 * and send to the controller. Once __hci_cmd_sync_ev() returns,
1516 	 * the returned event is compared with the event read from the firmware
1517 	 * file and it will continue until all the messages are downloaded to
1518 	 * the controller.
1519 	 *
1520 	 * Once the firmware patching is completed successfully,
1521 	 * the manufacturer mode is disabled with reset and activating the
1522 	 * downloaded patch.
1523 	 *
1524 	 * If the firmware patching fails, the manufacturer mode is
1525 	 * disabled with reset and deactivating the patch.
1526 	 *
1527 	 * If the default patch file is used, no reset is done when disabling
1528 	 * the manufacturer.
1529 	 */
1530 	while (fw->size > fw_ptr - fw->data) {
1531 		int ret;
1532 
1533 		ret = btintel_legacy_rom_patching(hdev, fw, &fw_ptr,
1534 						 &disable_patch);
1535 		if (ret < 0)
1536 			goto exit_mfg_deactivate;
1537 	}
1538 
1539 	release_firmware(fw);
1540 
1541 	if (disable_patch)
1542 		goto exit_mfg_disable;
1543 
1544 	/* Patching completed successfully and disable the manufacturer mode
1545 	 * with reset and activate the downloaded firmware patches.
1546 	 */
1547 	err = btintel_exit_mfg(hdev, true, true);
1548 	if (err)
1549 		return err;
1550 
1551 	/* Need build number for downloaded fw patches in
1552 	 * every power-on boot
1553 	 */
1554 	err = btintel_read_version(hdev, &new_ver);
1555 	if (err)
1556 		return err;
1557 
1558 	bt_dev_info(hdev, "Intel BT fw patch 0x%02x completed & activated",
1559 		    new_ver.fw_patch_num);
1560 
1561 	goto complete;
1562 
1563 exit_mfg_disable:
1564 	/* Disable the manufacturer mode without reset */
1565 	err = btintel_exit_mfg(hdev, false, false);
1566 	if (err)
1567 		return err;
1568 
1569 	bt_dev_info(hdev, "Intel firmware patch completed");
1570 
1571 	goto complete;
1572 
1573 exit_mfg_deactivate:
1574 	release_firmware(fw);
1575 
1576 	/* Patching failed. Disable the manufacturer mode with reset and
1577 	 * deactivate the downloaded firmware patches.
1578 	 */
1579 	err = btintel_exit_mfg(hdev, true, false);
1580 	if (err)
1581 		return err;
1582 
1583 	bt_dev_info(hdev, "Intel firmware patch completed and deactivated");
1584 
1585 complete:
1586 	/* Set the event mask for Intel specific vendor events. This enables
1587 	 * a few extra events that are useful during general operation.
1588 	 */
1589 	btintel_set_event_mask_mfg(hdev, false);
1590 
1591 	btintel_check_bdaddr(hdev);
1592 
1593 	return 0;
1594 }
1595 
1596 static int btintel_download_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
1597 {
1598 	ktime_t delta, rettime;
1599 	unsigned long long duration;
1600 	int err;
1601 
1602 	btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
1603 
1604 	bt_dev_info(hdev, "Waiting for firmware download to complete");
1605 
1606 	err = btintel_wait_on_flag_timeout(hdev, INTEL_DOWNLOADING,
1607 					   TASK_INTERRUPTIBLE,
1608 					   msecs_to_jiffies(msec));
1609 	if (err == -EINTR) {
1610 		bt_dev_err(hdev, "Firmware loading interrupted");
1611 		return err;
1612 	}
1613 
1614 	if (err) {
1615 		bt_dev_err(hdev, "Firmware loading timeout");
1616 		return -ETIMEDOUT;
1617 	}
1618 
1619 	if (btintel_test_flag(hdev, INTEL_FIRMWARE_FAILED)) {
1620 		bt_dev_err(hdev, "Firmware loading failed");
1621 		return -ENOEXEC;
1622 	}
1623 
1624 	rettime = ktime_get();
1625 	delta = ktime_sub(rettime, calltime);
1626 	duration = (unsigned long long)ktime_to_ns(delta) >> 10;
1627 
1628 	bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
1629 
1630 	return 0;
1631 }
1632 
1633 static int btintel_boot_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
1634 {
1635 	ktime_t delta, rettime;
1636 	unsigned long long duration;
1637 	int err;
1638 
1639 	bt_dev_info(hdev, "Waiting for device to boot");
1640 
1641 	err = btintel_wait_on_flag_timeout(hdev, INTEL_BOOTING,
1642 					   TASK_INTERRUPTIBLE,
1643 					   msecs_to_jiffies(msec));
1644 	if (err == -EINTR) {
1645 		bt_dev_err(hdev, "Device boot interrupted");
1646 		return -EINTR;
1647 	}
1648 
1649 	if (err) {
1650 		bt_dev_err(hdev, "Device boot timeout");
1651 		return -ETIMEDOUT;
1652 	}
1653 
1654 	rettime = ktime_get();
1655 	delta = ktime_sub(rettime, calltime);
1656 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
1657 
1658 	bt_dev_info(hdev, "Device booted in %llu usecs", duration);
1659 
1660 	return 0;
1661 }
1662 
1663 static int btintel_boot(struct hci_dev *hdev, u32 boot_addr)
1664 {
1665 	ktime_t calltime;
1666 	int err;
1667 
1668 	calltime = ktime_get();
1669 
1670 	btintel_set_flag(hdev, INTEL_BOOTING);
1671 
1672 	err = btintel_send_intel_reset(hdev, boot_addr);
1673 	if (err) {
1674 		bt_dev_err(hdev, "Intel Soft Reset failed (%d)", err);
1675 		btintel_reset_to_bootloader(hdev);
1676 		return err;
1677 	}
1678 
1679 	/* The bootloader will not indicate when the device is ready. This
1680 	 * is done by the operational firmware sending bootup notification.
1681 	 *
1682 	 * Booting into operational firmware should not take longer than
1683 	 * 1 second. However if that happens, then just fail the setup
1684 	 * since something went wrong.
1685 	 */
1686 	err = btintel_boot_wait(hdev, calltime, 1000);
1687 	if (err == -ETIMEDOUT)
1688 		btintel_reset_to_bootloader(hdev);
1689 
1690 	return err;
1691 }
1692 
1693 static int btintel_get_fw_name(struct intel_version *ver,
1694 					     struct intel_boot_params *params,
1695 					     char *fw_name, size_t len,
1696 					     const char *suffix)
1697 {
1698 	switch (ver->hw_variant) {
1699 	case 0x0b:	/* SfP */
1700 	case 0x0c:	/* WsP */
1701 		snprintf(fw_name, len, "intel/ibt-%u-%u.%s",
1702 			le16_to_cpu(ver->hw_variant),
1703 			le16_to_cpu(params->dev_revid),
1704 			suffix);
1705 		break;
1706 	case 0x11:	/* JfP */
1707 	case 0x12:	/* ThP */
1708 	case 0x13:	/* HrP */
1709 	case 0x14:	/* CcP */
1710 		snprintf(fw_name, len, "intel/ibt-%u-%u-%u.%s",
1711 			le16_to_cpu(ver->hw_variant),
1712 			le16_to_cpu(ver->hw_revision),
1713 			le16_to_cpu(ver->fw_revision),
1714 			suffix);
1715 		break;
1716 	default:
1717 		return -EINVAL;
1718 	}
1719 
1720 	return 0;
1721 }
1722 
1723 static int btintel_download_fw(struct hci_dev *hdev,
1724 					 struct intel_version *ver,
1725 					 struct intel_boot_params *params,
1726 					 u32 *boot_param)
1727 {
1728 	const struct firmware *fw;
1729 	char fwname[64];
1730 	int err;
1731 	ktime_t calltime;
1732 
1733 	if (!ver || !params)
1734 		return -EINVAL;
1735 
1736 	/* The firmware variant determines if the device is in bootloader
1737 	 * mode or is running operational firmware. The value 0x06 identifies
1738 	 * the bootloader and the value 0x23 identifies the operational
1739 	 * firmware.
1740 	 *
1741 	 * When the operational firmware is already present, then only
1742 	 * the check for valid Bluetooth device address is needed. This
1743 	 * determines if the device will be added as configured or
1744 	 * unconfigured controller.
1745 	 *
1746 	 * It is not possible to use the Secure Boot Parameters in this
1747 	 * case since that command is only available in bootloader mode.
1748 	 */
1749 	if (ver->fw_variant == 0x23) {
1750 		btintel_clear_flag(hdev, INTEL_BOOTLOADER);
1751 		btintel_check_bdaddr(hdev);
1752 
1753 		/* SfP and WsP don't seem to update the firmware version on file
1754 		 * so version checking is currently possible.
1755 		 */
1756 		switch (ver->hw_variant) {
1757 		case 0x0b:	/* SfP */
1758 		case 0x0c:	/* WsP */
1759 			return 0;
1760 		}
1761 
1762 		/* Proceed to download to check if the version matches */
1763 		goto download;
1764 	}
1765 
1766 	/* Read the secure boot parameters to identify the operating
1767 	 * details of the bootloader.
1768 	 */
1769 	err = btintel_read_boot_params(hdev, params);
1770 	if (err)
1771 		return err;
1772 
1773 	/* It is required that every single firmware fragment is acknowledged
1774 	 * with a command complete event. If the boot parameters indicate
1775 	 * that this bootloader does not send them, then abort the setup.
1776 	 */
1777 	if (params->limited_cce != 0x00) {
1778 		bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
1779 			   params->limited_cce);
1780 		return -EINVAL;
1781 	}
1782 
1783 	/* If the OTP has no valid Bluetooth device address, then there will
1784 	 * also be no valid address for the operational firmware.
1785 	 */
1786 	if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
1787 		bt_dev_info(hdev, "No device address configured");
1788 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
1789 	}
1790 
1791 download:
1792 	/* With this Intel bootloader only the hardware variant and device
1793 	 * revision information are used to select the right firmware for SfP
1794 	 * and WsP.
1795 	 *
1796 	 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
1797 	 *
1798 	 * Currently the supported hardware variants are:
1799 	 *   11 (0x0b) for iBT3.0 (LnP/SfP)
1800 	 *   12 (0x0c) for iBT3.5 (WsP)
1801 	 *
1802 	 * For ThP/JfP and for future SKU's, the FW name varies based on HW
1803 	 * variant, HW revision and FW revision, as these are dependent on CNVi
1804 	 * and RF Combination.
1805 	 *
1806 	 *   17 (0x11) for iBT3.5 (JfP)
1807 	 *   18 (0x12) for iBT3.5 (ThP)
1808 	 *
1809 	 * The firmware file name for these will be
1810 	 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
1811 	 *
1812 	 */
1813 	err = btintel_get_fw_name(ver, params, fwname, sizeof(fwname), "sfi");
1814 	if (err < 0) {
1815 		if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
1816 			/* Firmware has already been loaded */
1817 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
1818 			return 0;
1819 		}
1820 
1821 		bt_dev_err(hdev, "Unsupported Intel firmware naming");
1822 		return -EINVAL;
1823 	}
1824 
1825 	err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
1826 	if (err < 0) {
1827 		if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
1828 			/* Firmware has already been loaded */
1829 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
1830 			return 0;
1831 		}
1832 
1833 		bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
1834 			   fwname, err);
1835 		return err;
1836 	}
1837 
1838 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
1839 
1840 	if (fw->size < 644) {
1841 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
1842 			   fw->size);
1843 		err = -EBADF;
1844 		goto done;
1845 	}
1846 
1847 	calltime = ktime_get();
1848 
1849 	btintel_set_flag(hdev, INTEL_DOWNLOADING);
1850 
1851 	/* Start firmware downloading and get boot parameter */
1852 	err = btintel_download_firmware(hdev, ver, fw, boot_param);
1853 	if (err < 0) {
1854 		if (err == -EALREADY) {
1855 			/* Firmware has already been loaded */
1856 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
1857 			err = 0;
1858 			goto done;
1859 		}
1860 
1861 		/* When FW download fails, send Intel Reset to retry
1862 		 * FW download.
1863 		 */
1864 		btintel_reset_to_bootloader(hdev);
1865 		goto done;
1866 	}
1867 
1868 	/* Before switching the device into operational mode and with that
1869 	 * booting the loaded firmware, wait for the bootloader notification
1870 	 * that all fragments have been successfully received.
1871 	 *
1872 	 * When the event processing receives the notification, then the
1873 	 * INTEL_DOWNLOADING flag will be cleared.
1874 	 *
1875 	 * The firmware loading should not take longer than 5 seconds
1876 	 * and thus just timeout if that happens and fail the setup
1877 	 * of this device.
1878 	 */
1879 	err = btintel_download_wait(hdev, calltime, 5000);
1880 	if (err == -ETIMEDOUT)
1881 		btintel_reset_to_bootloader(hdev);
1882 
1883 done:
1884 	release_firmware(fw);
1885 	return err;
1886 }
1887 
1888 static int btintel_bootloader_setup(struct hci_dev *hdev,
1889 				    struct intel_version *ver)
1890 {
1891 	struct intel_version new_ver;
1892 	struct intel_boot_params params;
1893 	u32 boot_param;
1894 	char ddcname[64];
1895 	int err;
1896 	struct intel_debug_features features;
1897 
1898 	BT_DBG("%s", hdev->name);
1899 
1900 	/* Set the default boot parameter to 0x0 and it is updated to
1901 	 * SKU specific boot parameter after reading Intel_Write_Boot_Params
1902 	 * command while downloading the firmware.
1903 	 */
1904 	boot_param = 0x00000000;
1905 
1906 	btintel_set_flag(hdev, INTEL_BOOTLOADER);
1907 
1908 	err = btintel_download_fw(hdev, ver, &params, &boot_param);
1909 	if (err)
1910 		return err;
1911 
1912 	/* controller is already having an operational firmware */
1913 	if (ver->fw_variant == 0x23)
1914 		goto finish;
1915 
1916 	err = btintel_boot(hdev, boot_param);
1917 	if (err)
1918 		return err;
1919 
1920 	btintel_clear_flag(hdev, INTEL_BOOTLOADER);
1921 
1922 	err = btintel_get_fw_name(ver, &params, ddcname,
1923 						sizeof(ddcname), "ddc");
1924 
1925 	if (err < 0) {
1926 		bt_dev_err(hdev, "Unsupported Intel firmware naming");
1927 	} else {
1928 		/* Once the device is running in operational mode, it needs to
1929 		 * apply the device configuration (DDC) parameters.
1930 		 *
1931 		 * The device can work without DDC parameters, so even if it
1932 		 * fails to load the file, no need to fail the setup.
1933 		 */
1934 		btintel_load_ddc_config(hdev, ddcname);
1935 	}
1936 
1937 	/* Read the Intel supported features and if new exception formats
1938 	 * supported, need to load the additional DDC config to enable.
1939 	 */
1940 	err = btintel_read_debug_features(hdev, &features);
1941 	if (!err) {
1942 		/* Set DDC mask for available debug features */
1943 		btintel_set_debug_features(hdev, &features);
1944 	}
1945 
1946 	/* Read the Intel version information after loading the FW  */
1947 	err = btintel_read_version(hdev, &new_ver);
1948 	if (err)
1949 		return err;
1950 
1951 	btintel_version_info(hdev, &new_ver);
1952 
1953 finish:
1954 	/* Set the event mask for Intel specific vendor events. This enables
1955 	 * a few extra events that are useful during general operation. It
1956 	 * does not enable any debugging related events.
1957 	 *
1958 	 * The device will function correctly without these events enabled
1959 	 * and thus no need to fail the setup.
1960 	 */
1961 	btintel_set_event_mask(hdev, false);
1962 
1963 	return 0;
1964 }
1965 
1966 static void btintel_get_fw_name_tlv(const struct intel_version_tlv *ver,
1967 				    char *fw_name, size_t len,
1968 				    const char *suffix)
1969 {
1970 	/* The firmware file name for new generation controllers will be
1971 	 * ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step>
1972 	 */
1973 	snprintf(fw_name, len, "intel/ibt-%04x-%04x.%s",
1974 		 INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top),
1975 					  INTEL_CNVX_TOP_STEP(ver->cnvi_top)),
1976 		 INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top),
1977 					  INTEL_CNVX_TOP_STEP(ver->cnvr_top)),
1978 		 suffix);
1979 }
1980 
1981 static int btintel_prepare_fw_download_tlv(struct hci_dev *hdev,
1982 					   struct intel_version_tlv *ver,
1983 					   u32 *boot_param)
1984 {
1985 	const struct firmware *fw;
1986 	char fwname[64];
1987 	int err;
1988 	ktime_t calltime;
1989 
1990 	if (!ver || !boot_param)
1991 		return -EINVAL;
1992 
1993 	/* The firmware variant determines if the device is in bootloader
1994 	 * mode or is running operational firmware. The value 0x03 identifies
1995 	 * the bootloader and the value 0x23 identifies the operational
1996 	 * firmware.
1997 	 *
1998 	 * When the operational firmware is already present, then only
1999 	 * the check for valid Bluetooth device address is needed. This
2000 	 * determines if the device will be added as configured or
2001 	 * unconfigured controller.
2002 	 *
2003 	 * It is not possible to use the Secure Boot Parameters in this
2004 	 * case since that command is only available in bootloader mode.
2005 	 */
2006 	if (ver->img_type == 0x03) {
2007 		btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2008 		btintel_check_bdaddr(hdev);
2009 	}
2010 
2011 	/* If the OTP has no valid Bluetooth device address, then there will
2012 	 * also be no valid address for the operational firmware.
2013 	 */
2014 	if (!bacmp(&ver->otp_bd_addr, BDADDR_ANY)) {
2015 		bt_dev_info(hdev, "No device address configured");
2016 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
2017 	}
2018 
2019 	btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi");
2020 	err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
2021 	if (err < 0) {
2022 		if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2023 			/* Firmware has already been loaded */
2024 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2025 			return 0;
2026 		}
2027 
2028 		bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
2029 			   fwname, err);
2030 
2031 		return err;
2032 	}
2033 
2034 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
2035 
2036 	if (fw->size < 644) {
2037 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
2038 			   fw->size);
2039 		err = -EBADF;
2040 		goto done;
2041 	}
2042 
2043 	calltime = ktime_get();
2044 
2045 	btintel_set_flag(hdev, INTEL_DOWNLOADING);
2046 
2047 	/* Start firmware downloading and get boot parameter */
2048 	err = btintel_download_fw_tlv(hdev, ver, fw, boot_param,
2049 					       INTEL_HW_VARIANT(ver->cnvi_bt),
2050 					       ver->sbe_type);
2051 	if (err < 0) {
2052 		if (err == -EALREADY) {
2053 			/* Firmware has already been loaded */
2054 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2055 			err = 0;
2056 			goto done;
2057 		}
2058 
2059 		/* When FW download fails, send Intel Reset to retry
2060 		 * FW download.
2061 		 */
2062 		btintel_reset_to_bootloader(hdev);
2063 		goto done;
2064 	}
2065 
2066 	/* Before switching the device into operational mode and with that
2067 	 * booting the loaded firmware, wait for the bootloader notification
2068 	 * that all fragments have been successfully received.
2069 	 *
2070 	 * When the event processing receives the notification, then the
2071 	 * BTUSB_DOWNLOADING flag will be cleared.
2072 	 *
2073 	 * The firmware loading should not take longer than 5 seconds
2074 	 * and thus just timeout if that happens and fail the setup
2075 	 * of this device.
2076 	 */
2077 	err = btintel_download_wait(hdev, calltime, 5000);
2078 	if (err == -ETIMEDOUT)
2079 		btintel_reset_to_bootloader(hdev);
2080 
2081 done:
2082 	release_firmware(fw);
2083 	return err;
2084 }
2085 
2086 static int btintel_bootloader_setup_tlv(struct hci_dev *hdev,
2087 					struct intel_version_tlv *ver)
2088 {
2089 	u32 boot_param;
2090 	char ddcname[64];
2091 	int err;
2092 	struct intel_debug_features features;
2093 	struct intel_version_tlv new_ver;
2094 
2095 	bt_dev_dbg(hdev, "");
2096 
2097 	/* Set the default boot parameter to 0x0 and it is updated to
2098 	 * SKU specific boot parameter after reading Intel_Write_Boot_Params
2099 	 * command while downloading the firmware.
2100 	 */
2101 	boot_param = 0x00000000;
2102 
2103 	btintel_set_flag(hdev, INTEL_BOOTLOADER);
2104 
2105 	err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param);
2106 	if (err)
2107 		return err;
2108 
2109 	/* check if controller is already having an operational firmware */
2110 	if (ver->img_type == 0x03)
2111 		goto finish;
2112 
2113 	err = btintel_boot(hdev, boot_param);
2114 	if (err)
2115 		return err;
2116 
2117 	btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2118 
2119 	btintel_get_fw_name_tlv(ver, ddcname, sizeof(ddcname), "ddc");
2120 	/* Once the device is running in operational mode, it needs to
2121 	 * apply the device configuration (DDC) parameters.
2122 	 *
2123 	 * The device can work without DDC parameters, so even if it
2124 	 * fails to load the file, no need to fail the setup.
2125 	 */
2126 	btintel_load_ddc_config(hdev, ddcname);
2127 
2128 	/* Read the Intel supported features and if new exception formats
2129 	 * supported, need to load the additional DDC config to enable.
2130 	 */
2131 	err = btintel_read_debug_features(hdev, &features);
2132 	if (!err) {
2133 		/* Set DDC mask for available debug features */
2134 		btintel_set_debug_features(hdev, &features);
2135 	}
2136 
2137 	/* Read the Intel version information after loading the FW  */
2138 	err = btintel_read_version_tlv(hdev, &new_ver);
2139 	if (err)
2140 		return err;
2141 
2142 	btintel_version_info_tlv(hdev, &new_ver);
2143 
2144 finish:
2145 	/* Set the event mask for Intel specific vendor events. This enables
2146 	 * a few extra events that are useful during general operation. It
2147 	 * does not enable any debugging related events.
2148 	 *
2149 	 * The device will function correctly without these events enabled
2150 	 * and thus no need to fail the setup.
2151 	 */
2152 	btintel_set_event_mask(hdev, false);
2153 
2154 	return 0;
2155 }
2156 
2157 static void btintel_set_msft_opcode(struct hci_dev *hdev, u8 hw_variant)
2158 {
2159 	switch (hw_variant) {
2160 	/* Legacy bootloader devices that supports MSFT Extension */
2161 	case 0x11:	/* JfP */
2162 	case 0x12:	/* ThP */
2163 	case 0x13:	/* HrP */
2164 	case 0x14:	/* CcP */
2165 	/* All Intel new genration controllers support the Microsoft vendor
2166 	 * extension are using 0xFC1E for VsMsftOpCode.
2167 	 */
2168 	case 0x17:
2169 	case 0x18:
2170 	case 0x19:
2171 		hci_set_msft_opcode(hdev, 0xFC1E);
2172 		break;
2173 	default:
2174 		/* Not supported */
2175 		break;
2176 	}
2177 }
2178 
2179 static int btintel_setup_combined(struct hci_dev *hdev)
2180 {
2181 	const u8 param[1] = { 0xFF };
2182 	struct intel_version ver;
2183 	struct intel_version_tlv ver_tlv;
2184 	struct sk_buff *skb;
2185 	int err;
2186 
2187 	BT_DBG("%s", hdev->name);
2188 
2189 	/* The some controllers have a bug with the first HCI command sent to it
2190 	 * returning number of completed commands as zero. This would stall the
2191 	 * command processing in the Bluetooth core.
2192 	 *
2193 	 * As a workaround, send HCI Reset command first which will reset the
2194 	 * number of completed commands and allow normal command processing
2195 	 * from now on.
2196 	 */
2197 	if (btintel_test_flag(hdev, INTEL_BROKEN_INITIAL_NCMD)) {
2198 		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
2199 				     HCI_INIT_TIMEOUT);
2200 		if (IS_ERR(skb)) {
2201 			bt_dev_err(hdev,
2202 				   "sending initial HCI reset failed (%ld)",
2203 				   PTR_ERR(skb));
2204 			return PTR_ERR(skb);
2205 		}
2206 		kfree_skb(skb);
2207 	}
2208 
2209 	/* Starting from TyP device, the command parameter and response are
2210 	 * changed even though the OCF for HCI_Intel_Read_Version command
2211 	 * remains same. The legacy devices can handle even if the
2212 	 * command has a parameter and returns a correct version information.
2213 	 * So, it uses new format to support both legacy and new format.
2214 	 */
2215 	skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
2216 	if (IS_ERR(skb)) {
2217 		bt_dev_err(hdev, "Reading Intel version command failed (%ld)",
2218 			   PTR_ERR(skb));
2219 		return PTR_ERR(skb);
2220 	}
2221 
2222 	/* Check the status */
2223 	if (skb->data[0]) {
2224 		bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
2225 			   skb->data[0]);
2226 		err = -EIO;
2227 		goto exit_error;
2228 	}
2229 
2230 	/* Apply the common HCI quirks for Intel device */
2231 	set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
2232 	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
2233 	set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
2234 
2235 	/* For Legacy device, check the HW platform value and size */
2236 	if (skb->len == sizeof(ver) && skb->data[1] == 0x37) {
2237 		bt_dev_dbg(hdev, "Read the legacy Intel version information");
2238 
2239 		memcpy(&ver, skb->data, sizeof(ver));
2240 
2241 		/* Display version information */
2242 		btintel_version_info(hdev, &ver);
2243 
2244 		/* Check for supported iBT hardware variants of this firmware
2245 		 * loading method.
2246 		 *
2247 		 * This check has been put in place to ensure correct forward
2248 		 * compatibility options when newer hardware variants come
2249 		 * along.
2250 		 */
2251 		switch (ver.hw_variant) {
2252 		case 0x07:	/* WP */
2253 		case 0x08:	/* StP */
2254 			/* Legacy ROM product */
2255 			btintel_set_flag(hdev, INTEL_ROM_LEGACY);
2256 
2257 			/* Apply the device specific HCI quirks
2258 			 *
2259 			 * WBS for SdP - SdP and Stp have a same hw_varaint but
2260 			 * different fw_variant
2261 			 */
2262 			if (ver.hw_variant == 0x08 && ver.fw_variant == 0x22)
2263 				set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2264 					&hdev->quirks);
2265 
2266 			/* These devices have an issue with LED which doesn't
2267 			 * go off immediately during shutdown. Set the flag
2268 			 * here to send the LED OFF command during shutdown.
2269 			 */
2270 			btintel_set_flag(hdev, INTEL_BROKEN_LED);
2271 
2272 			err = btintel_legacy_rom_setup(hdev, &ver);
2273 			break;
2274 		case 0x0b:      /* SfP */
2275 		case 0x0c:      /* WsP */
2276 		case 0x11:      /* JfP */
2277 		case 0x12:      /* ThP */
2278 		case 0x13:      /* HrP */
2279 		case 0x14:      /* CcP */
2280 			/* Apply the device specific HCI quirks
2281 			 *
2282 			 * All Legacy bootloader devices support WBS
2283 			 */
2284 			set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2285 				&hdev->quirks);
2286 
2287 			/* Valid LE States quirk for JfP/ThP familiy */
2288 			if (ver.hw_variant == 0x11 || ver.hw_variant == 0x12)
2289 				set_bit(HCI_QUIRK_VALID_LE_STATES,
2290 					&hdev->quirks);
2291 
2292 			/* Setup MSFT Extension support */
2293 			btintel_set_msft_opcode(hdev, ver.hw_variant);
2294 
2295 			err = btintel_bootloader_setup(hdev, &ver);
2296 			break;
2297 		default:
2298 			bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
2299 				   ver.hw_variant);
2300 			err = -EINVAL;
2301 		}
2302 
2303 		goto exit_error;
2304 	}
2305 
2306 	/* For TLV type device, parse the tlv data */
2307 	err = btintel_parse_version_tlv(hdev, &ver_tlv, skb);
2308 	if (err) {
2309 		bt_dev_err(hdev, "Failed to parse TLV version information");
2310 		goto exit_error;
2311 	}
2312 
2313 	if (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt) != 0x37) {
2314 		bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
2315 			   INTEL_HW_PLATFORM(ver_tlv.cnvi_bt));
2316 		err = -EINVAL;
2317 		goto exit_error;
2318 	}
2319 
2320 	/* Check for supported iBT hardware variants of this firmware
2321 	 * loading method.
2322 	 *
2323 	 * This check has been put in place to ensure correct forward
2324 	 * compatibility options when newer hardware variants come
2325 	 * along.
2326 	 */
2327 	switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) {
2328 	case 0x11:      /* JfP */
2329 	case 0x12:      /* ThP */
2330 	case 0x13:      /* HrP */
2331 	case 0x14:      /* CcP */
2332 		/* Some legacy bootloader devices from JfP supports both old
2333 		 * and TLV based HCI_Intel_Read_Version command. But we don't
2334 		 * want to use the TLV based setup routines for those legacy
2335 		 * bootloader device.
2336 		 *
2337 		 * Also, it is not easy to convert TLV based version from the
2338 		 * legacy version format.
2339 		 *
2340 		 * So, as a workaround for those devices, use the legacy
2341 		 * HCI_Intel_Read_Version to get the version information and
2342 		 * run the legacy bootloader setup.
2343 		 */
2344 		err = btintel_read_version(hdev, &ver);
2345 		if (err)
2346 			return err;
2347 		err = btintel_bootloader_setup(hdev, &ver);
2348 		break;
2349 	case 0x17:
2350 	case 0x18:
2351 	case 0x19:
2352 		/* Display version information of TLV type */
2353 		btintel_version_info_tlv(hdev, &ver_tlv);
2354 
2355 		/* Apply the device specific HCI quirks for TLV based devices
2356 		 *
2357 		 * All TLV based devices support WBS
2358 		 */
2359 		set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
2360 
2361 		/* Valid LE States quirk for GfP */
2362 		if (INTEL_HW_VARIANT(ver_tlv.cnvi_bt) == 0x18)
2363 			set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
2364 
2365 		/* Setup MSFT Extension support */
2366 		btintel_set_msft_opcode(hdev,
2367 					INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
2368 
2369 		err = btintel_bootloader_setup_tlv(hdev, &ver_tlv);
2370 		break;
2371 	default:
2372 		bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
2373 			   INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
2374 		return -EINVAL;
2375 	}
2376 
2377 exit_error:
2378 	kfree_skb(skb);
2379 
2380 	return err;
2381 }
2382 
2383 static int btintel_shutdown_combined(struct hci_dev *hdev)
2384 {
2385 	struct sk_buff *skb;
2386 	int ret;
2387 
2388 	/* Send HCI Reset to the controller to stop any BT activity which
2389 	 * were triggered. This will help to save power and maintain the
2390 	 * sync b/w Host and controller
2391 	 */
2392 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
2393 	if (IS_ERR(skb)) {
2394 		bt_dev_err(hdev, "HCI reset during shutdown failed");
2395 		return PTR_ERR(skb);
2396 	}
2397 	kfree_skb(skb);
2398 
2399 
2400 	/* Some platforms have an issue with BT LED when the interface is
2401 	 * down or BT radio is turned off, which takes 5 seconds to BT LED
2402 	 * goes off. This command turns off the BT LED immediately.
2403 	 */
2404 	if (btintel_test_flag(hdev, INTEL_BROKEN_LED)) {
2405 		skb = __hci_cmd_sync(hdev, 0xfc3f, 0, NULL, HCI_INIT_TIMEOUT);
2406 		if (IS_ERR(skb)) {
2407 			ret = PTR_ERR(skb);
2408 			bt_dev_err(hdev, "turning off Intel device LED failed");
2409 			return ret;
2410 		}
2411 		kfree_skb(skb);
2412 	}
2413 
2414 	return 0;
2415 }
2416 
2417 int btintel_configure_setup(struct hci_dev *hdev)
2418 {
2419 	hdev->manufacturer = 2;
2420 	hdev->setup = btintel_setup_combined;
2421 	hdev->shutdown = btintel_shutdown_combined;
2422 	hdev->hw_error = btintel_hw_error;
2423 	hdev->set_diag = btintel_set_diag_combined;
2424 	hdev->set_bdaddr = btintel_set_bdaddr;
2425 
2426 	return 0;
2427 }
2428 EXPORT_SYMBOL_GPL(btintel_configure_setup);
2429 
2430 void btintel_bootup(struct hci_dev *hdev, const void *ptr, unsigned int len)
2431 {
2432 	const struct intel_bootup *evt = ptr;
2433 
2434 	if (len != sizeof(*evt))
2435 		return;
2436 
2437 	if (btintel_test_and_clear_flag(hdev, INTEL_BOOTING))
2438 		btintel_wake_up_flag(hdev, INTEL_BOOTING);
2439 }
2440 EXPORT_SYMBOL_GPL(btintel_bootup);
2441 
2442 void btintel_secure_send_result(struct hci_dev *hdev,
2443 				const void *ptr, unsigned int len)
2444 {
2445 	const struct intel_secure_send_result *evt = ptr;
2446 
2447 	if (len != sizeof(*evt))
2448 		return;
2449 
2450 	if (evt->result)
2451 		btintel_set_flag(hdev, INTEL_FIRMWARE_FAILED);
2452 
2453 	if (btintel_test_and_clear_flag(hdev, INTEL_DOWNLOADING) &&
2454 	    btintel_test_flag(hdev, INTEL_FIRMWARE_LOADED))
2455 		btintel_wake_up_flag(hdev, INTEL_DOWNLOADING);
2456 }
2457 EXPORT_SYMBOL_GPL(btintel_secure_send_result);
2458 
2459 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
2460 MODULE_DESCRIPTION("Bluetooth support for Intel devices ver " VERSION);
2461 MODULE_VERSION(VERSION);
2462 MODULE_LICENSE("GPL");
2463 MODULE_FIRMWARE("intel/ibt-11-5.sfi");
2464 MODULE_FIRMWARE("intel/ibt-11-5.ddc");
2465 MODULE_FIRMWARE("intel/ibt-12-16.sfi");
2466 MODULE_FIRMWARE("intel/ibt-12-16.ddc");
2467