xref: /linux/drivers/bluetooth/btintel.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Bluetooth support for Intel devices
5  *
6  *  Copyright (C) 2015  Intel Corporation
7  */
8 
9 #include <linux/module.h>
10 #include <linux/firmware.h>
11 #include <linux/regmap.h>
12 #include <linux/acpi.h>
13 #include <acpi/acpi_bus.h>
14 #include <asm/unaligned.h>
15 
16 #include <net/bluetooth/bluetooth.h>
17 #include <net/bluetooth/hci_core.h>
18 
19 #include "btintel.h"
20 
21 #define VERSION "0.1"
22 
23 #define BDADDR_INTEL		(&(bdaddr_t){{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}})
24 #define RSA_HEADER_LEN		644
25 #define CSS_HEADER_OFFSET	8
26 #define ECDSA_OFFSET		644
27 #define ECDSA_HEADER_LEN	320
28 
29 #define BTINTEL_PPAG_NAME   "PPAG"
30 
31 enum {
32 	DSM_SET_WDISABLE2_DELAY = 1,
33 	DSM_SET_RESET_METHOD = 3,
34 };
35 
36 /* structure to store the PPAG data read from ACPI table */
37 struct btintel_ppag {
38 	u32	domain;
39 	u32     mode;
40 	acpi_status status;
41 	struct hci_dev *hdev;
42 };
43 
44 #define CMD_WRITE_BOOT_PARAMS	0xfc0e
45 struct cmd_write_boot_params {
46 	__le32 boot_addr;
47 	u8  fw_build_num;
48 	u8  fw_build_ww;
49 	u8  fw_build_yy;
50 } __packed;
51 
52 static struct {
53 	const char *driver_name;
54 	u8         hw_variant;
55 	u32        fw_build_num;
56 } coredump_info;
57 
58 static const guid_t btintel_guid_dsm =
59 	GUID_INIT(0xaa10f4e0, 0x81ac, 0x4233,
60 		  0xab, 0xf6, 0x3b, 0x2a, 0xc5, 0x0e, 0x28, 0xd9);
61 
62 int btintel_check_bdaddr(struct hci_dev *hdev)
63 {
64 	struct hci_rp_read_bd_addr *bda;
65 	struct sk_buff *skb;
66 
67 	skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
68 			     HCI_INIT_TIMEOUT);
69 	if (IS_ERR(skb)) {
70 		int err = PTR_ERR(skb);
71 		bt_dev_err(hdev, "Reading Intel device address failed (%d)",
72 			   err);
73 		return err;
74 	}
75 
76 	if (skb->len != sizeof(*bda)) {
77 		bt_dev_err(hdev, "Intel device address length mismatch");
78 		kfree_skb(skb);
79 		return -EIO;
80 	}
81 
82 	bda = (struct hci_rp_read_bd_addr *)skb->data;
83 
84 	/* For some Intel based controllers, the default Bluetooth device
85 	 * address 00:03:19:9E:8B:00 can be found. These controllers are
86 	 * fully operational, but have the danger of duplicate addresses
87 	 * and that in turn can cause problems with Bluetooth operation.
88 	 */
89 	if (!bacmp(&bda->bdaddr, BDADDR_INTEL)) {
90 		bt_dev_err(hdev, "Found Intel default device address (%pMR)",
91 			   &bda->bdaddr);
92 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
93 	}
94 
95 	kfree_skb(skb);
96 
97 	return 0;
98 }
99 EXPORT_SYMBOL_GPL(btintel_check_bdaddr);
100 
101 int btintel_enter_mfg(struct hci_dev *hdev)
102 {
103 	static const u8 param[] = { 0x01, 0x00 };
104 	struct sk_buff *skb;
105 
106 	skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
107 	if (IS_ERR(skb)) {
108 		bt_dev_err(hdev, "Entering manufacturer mode failed (%ld)",
109 			   PTR_ERR(skb));
110 		return PTR_ERR(skb);
111 	}
112 	kfree_skb(skb);
113 
114 	return 0;
115 }
116 EXPORT_SYMBOL_GPL(btintel_enter_mfg);
117 
118 int btintel_exit_mfg(struct hci_dev *hdev, bool reset, bool patched)
119 {
120 	u8 param[] = { 0x00, 0x00 };
121 	struct sk_buff *skb;
122 
123 	/* The 2nd command parameter specifies the manufacturing exit method:
124 	 * 0x00: Just disable the manufacturing mode (0x00).
125 	 * 0x01: Disable manufacturing mode and reset with patches deactivated.
126 	 * 0x02: Disable manufacturing mode and reset with patches activated.
127 	 */
128 	if (reset)
129 		param[1] |= patched ? 0x02 : 0x01;
130 
131 	skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
132 	if (IS_ERR(skb)) {
133 		bt_dev_err(hdev, "Exiting manufacturer mode failed (%ld)",
134 			   PTR_ERR(skb));
135 		return PTR_ERR(skb);
136 	}
137 	kfree_skb(skb);
138 
139 	return 0;
140 }
141 EXPORT_SYMBOL_GPL(btintel_exit_mfg);
142 
143 int btintel_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
144 {
145 	struct sk_buff *skb;
146 	int err;
147 
148 	skb = __hci_cmd_sync(hdev, 0xfc31, 6, bdaddr, HCI_INIT_TIMEOUT);
149 	if (IS_ERR(skb)) {
150 		err = PTR_ERR(skb);
151 		bt_dev_err(hdev, "Changing Intel device address failed (%d)",
152 			   err);
153 		return err;
154 	}
155 	kfree_skb(skb);
156 
157 	return 0;
158 }
159 EXPORT_SYMBOL_GPL(btintel_set_bdaddr);
160 
161 static int btintel_set_event_mask(struct hci_dev *hdev, bool debug)
162 {
163 	u8 mask[8] = { 0x87, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
164 	struct sk_buff *skb;
165 	int err;
166 
167 	if (debug)
168 		mask[1] |= 0x62;
169 
170 	skb = __hci_cmd_sync(hdev, 0xfc52, 8, mask, HCI_INIT_TIMEOUT);
171 	if (IS_ERR(skb)) {
172 		err = PTR_ERR(skb);
173 		bt_dev_err(hdev, "Setting Intel event mask failed (%d)", err);
174 		return err;
175 	}
176 	kfree_skb(skb);
177 
178 	return 0;
179 }
180 
181 int btintel_set_diag(struct hci_dev *hdev, bool enable)
182 {
183 	struct sk_buff *skb;
184 	u8 param[3];
185 	int err;
186 
187 	if (enable) {
188 		param[0] = 0x03;
189 		param[1] = 0x03;
190 		param[2] = 0x03;
191 	} else {
192 		param[0] = 0x00;
193 		param[1] = 0x00;
194 		param[2] = 0x00;
195 	}
196 
197 	skb = __hci_cmd_sync(hdev, 0xfc43, 3, param, HCI_INIT_TIMEOUT);
198 	if (IS_ERR(skb)) {
199 		err = PTR_ERR(skb);
200 		if (err == -ENODATA)
201 			goto done;
202 		bt_dev_err(hdev, "Changing Intel diagnostic mode failed (%d)",
203 			   err);
204 		return err;
205 	}
206 	kfree_skb(skb);
207 
208 done:
209 	btintel_set_event_mask(hdev, enable);
210 	return 0;
211 }
212 EXPORT_SYMBOL_GPL(btintel_set_diag);
213 
214 static int btintel_set_diag_mfg(struct hci_dev *hdev, bool enable)
215 {
216 	int err, ret;
217 
218 	err = btintel_enter_mfg(hdev);
219 	if (err)
220 		return err;
221 
222 	ret = btintel_set_diag(hdev, enable);
223 
224 	err = btintel_exit_mfg(hdev, false, false);
225 	if (err)
226 		return err;
227 
228 	return ret;
229 }
230 
231 static int btintel_set_diag_combined(struct hci_dev *hdev, bool enable)
232 {
233 	int ret;
234 
235 	/* Legacy ROM device needs to be in the manufacturer mode to apply
236 	 * diagnostic setting
237 	 *
238 	 * This flag is set after reading the Intel version.
239 	 */
240 	if (btintel_test_flag(hdev, INTEL_ROM_LEGACY))
241 		ret = btintel_set_diag_mfg(hdev, enable);
242 	else
243 		ret = btintel_set_diag(hdev, enable);
244 
245 	return ret;
246 }
247 
248 void btintel_hw_error(struct hci_dev *hdev, u8 code)
249 {
250 	struct sk_buff *skb;
251 	u8 type = 0x00;
252 
253 	bt_dev_err(hdev, "Hardware error 0x%2.2x", code);
254 
255 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
256 	if (IS_ERR(skb)) {
257 		bt_dev_err(hdev, "Reset after hardware error failed (%ld)",
258 			   PTR_ERR(skb));
259 		return;
260 	}
261 	kfree_skb(skb);
262 
263 	skb = __hci_cmd_sync(hdev, 0xfc22, 1, &type, HCI_INIT_TIMEOUT);
264 	if (IS_ERR(skb)) {
265 		bt_dev_err(hdev, "Retrieving Intel exception info failed (%ld)",
266 			   PTR_ERR(skb));
267 		return;
268 	}
269 
270 	if (skb->len != 13) {
271 		bt_dev_err(hdev, "Exception info size mismatch");
272 		kfree_skb(skb);
273 		return;
274 	}
275 
276 	bt_dev_err(hdev, "Exception info %s", (char *)(skb->data + 1));
277 
278 	kfree_skb(skb);
279 }
280 EXPORT_SYMBOL_GPL(btintel_hw_error);
281 
282 int btintel_version_info(struct hci_dev *hdev, struct intel_version *ver)
283 {
284 	const char *variant;
285 
286 	/* The hardware platform number has a fixed value of 0x37 and
287 	 * for now only accept this single value.
288 	 */
289 	if (ver->hw_platform != 0x37) {
290 		bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
291 			   ver->hw_platform);
292 		return -EINVAL;
293 	}
294 
295 	/* Check for supported iBT hardware variants of this firmware
296 	 * loading method.
297 	 *
298 	 * This check has been put in place to ensure correct forward
299 	 * compatibility options when newer hardware variants come along.
300 	 */
301 	switch (ver->hw_variant) {
302 	case 0x07:	/* WP - Legacy ROM */
303 	case 0x08:	/* StP - Legacy ROM */
304 	case 0x0b:      /* SfP */
305 	case 0x0c:      /* WsP */
306 	case 0x11:      /* JfP */
307 	case 0x12:      /* ThP */
308 	case 0x13:      /* HrP */
309 	case 0x14:      /* CcP */
310 		break;
311 	default:
312 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
313 			   ver->hw_variant);
314 		return -EINVAL;
315 	}
316 
317 	switch (ver->fw_variant) {
318 	case 0x01:
319 		variant = "Legacy ROM 2.5";
320 		break;
321 	case 0x06:
322 		variant = "Bootloader";
323 		break;
324 	case 0x22:
325 		variant = "Legacy ROM 2.x";
326 		break;
327 	case 0x23:
328 		variant = "Firmware";
329 		break;
330 	default:
331 		bt_dev_err(hdev, "Unsupported firmware variant(%02x)", ver->fw_variant);
332 		return -EINVAL;
333 	}
334 
335 	coredump_info.hw_variant = ver->hw_variant;
336 	coredump_info.fw_build_num = ver->fw_build_num;
337 
338 	bt_dev_info(hdev, "%s revision %u.%u build %u week %u %u",
339 		    variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f,
340 		    ver->fw_build_num, ver->fw_build_ww,
341 		    2000 + ver->fw_build_yy);
342 
343 	return 0;
344 }
345 EXPORT_SYMBOL_GPL(btintel_version_info);
346 
347 static int btintel_secure_send(struct hci_dev *hdev, u8 fragment_type, u32 plen,
348 			       const void *param)
349 {
350 	while (plen > 0) {
351 		struct sk_buff *skb;
352 		u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen;
353 
354 		cmd_param[0] = fragment_type;
355 		memcpy(cmd_param + 1, param, fragment_len);
356 
357 		skb = __hci_cmd_sync(hdev, 0xfc09, fragment_len + 1,
358 				     cmd_param, HCI_INIT_TIMEOUT);
359 		if (IS_ERR(skb))
360 			return PTR_ERR(skb);
361 
362 		kfree_skb(skb);
363 
364 		plen -= fragment_len;
365 		param += fragment_len;
366 	}
367 
368 	return 0;
369 }
370 
371 int btintel_load_ddc_config(struct hci_dev *hdev, const char *ddc_name)
372 {
373 	const struct firmware *fw;
374 	struct sk_buff *skb;
375 	const u8 *fw_ptr;
376 	int err;
377 
378 	err = request_firmware_direct(&fw, ddc_name, &hdev->dev);
379 	if (err < 0) {
380 		bt_dev_err(hdev, "Failed to load Intel DDC file %s (%d)",
381 			   ddc_name, err);
382 		return err;
383 	}
384 
385 	bt_dev_info(hdev, "Found Intel DDC parameters: %s", ddc_name);
386 
387 	fw_ptr = fw->data;
388 
389 	/* DDC file contains one or more DDC structure which has
390 	 * Length (1 byte), DDC ID (2 bytes), and DDC value (Length - 2).
391 	 */
392 	while (fw->size > fw_ptr - fw->data) {
393 		u8 cmd_plen = fw_ptr[0] + sizeof(u8);
394 
395 		skb = __hci_cmd_sync(hdev, 0xfc8b, cmd_plen, fw_ptr,
396 				     HCI_INIT_TIMEOUT);
397 		if (IS_ERR(skb)) {
398 			bt_dev_err(hdev, "Failed to send Intel_Write_DDC (%ld)",
399 				   PTR_ERR(skb));
400 			release_firmware(fw);
401 			return PTR_ERR(skb);
402 		}
403 
404 		fw_ptr += cmd_plen;
405 		kfree_skb(skb);
406 	}
407 
408 	release_firmware(fw);
409 
410 	bt_dev_info(hdev, "Applying Intel DDC parameters completed");
411 
412 	return 0;
413 }
414 EXPORT_SYMBOL_GPL(btintel_load_ddc_config);
415 
416 int btintel_set_event_mask_mfg(struct hci_dev *hdev, bool debug)
417 {
418 	int err, ret;
419 
420 	err = btintel_enter_mfg(hdev);
421 	if (err)
422 		return err;
423 
424 	ret = btintel_set_event_mask(hdev, debug);
425 
426 	err = btintel_exit_mfg(hdev, false, false);
427 	if (err)
428 		return err;
429 
430 	return ret;
431 }
432 EXPORT_SYMBOL_GPL(btintel_set_event_mask_mfg);
433 
434 int btintel_read_version(struct hci_dev *hdev, struct intel_version *ver)
435 {
436 	struct sk_buff *skb;
437 
438 	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
439 	if (IS_ERR(skb)) {
440 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
441 			   PTR_ERR(skb));
442 		return PTR_ERR(skb);
443 	}
444 
445 	if (!skb || skb->len != sizeof(*ver)) {
446 		bt_dev_err(hdev, "Intel version event size mismatch");
447 		kfree_skb(skb);
448 		return -EILSEQ;
449 	}
450 
451 	memcpy(ver, skb->data, sizeof(*ver));
452 
453 	kfree_skb(skb);
454 
455 	return 0;
456 }
457 EXPORT_SYMBOL_GPL(btintel_read_version);
458 
459 int btintel_version_info_tlv(struct hci_dev *hdev,
460 			     struct intel_version_tlv *version)
461 {
462 	const char *variant;
463 
464 	/* The hardware platform number has a fixed value of 0x37 and
465 	 * for now only accept this single value.
466 	 */
467 	if (INTEL_HW_PLATFORM(version->cnvi_bt) != 0x37) {
468 		bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
469 			   INTEL_HW_PLATFORM(version->cnvi_bt));
470 		return -EINVAL;
471 	}
472 
473 	/* Check for supported iBT hardware variants of this firmware
474 	 * loading method.
475 	 *
476 	 * This check has been put in place to ensure correct forward
477 	 * compatibility options when newer hardware variants come along.
478 	 */
479 	switch (INTEL_HW_VARIANT(version->cnvi_bt)) {
480 	case 0x17:	/* TyP */
481 	case 0x18:	/* Slr */
482 	case 0x19:	/* Slr-F */
483 	case 0x1b:      /* Mgr */
484 	case 0x1c:	/* Gale Peak (GaP) */
485 	case 0x1e:	/* BlazarI (Bzr) */
486 		break;
487 	default:
488 		bt_dev_err(hdev, "Unsupported Intel hardware variant (0x%x)",
489 			   INTEL_HW_VARIANT(version->cnvi_bt));
490 		return -EINVAL;
491 	}
492 
493 	switch (version->img_type) {
494 	case BTINTEL_IMG_BOOTLOADER:
495 		variant = "Bootloader";
496 		/* It is required that every single firmware fragment is acknowledged
497 		 * with a command complete event. If the boot parameters indicate
498 		 * that this bootloader does not send them, then abort the setup.
499 		 */
500 		if (version->limited_cce != 0x00) {
501 			bt_dev_err(hdev, "Unsupported Intel firmware loading method (0x%x)",
502 				   version->limited_cce);
503 			return -EINVAL;
504 		}
505 
506 		/* Secure boot engine type should be either 1 (ECDSA) or 0 (RSA) */
507 		if (version->sbe_type > 0x01) {
508 			bt_dev_err(hdev, "Unsupported Intel secure boot engine type (0x%x)",
509 				   version->sbe_type);
510 			return -EINVAL;
511 		}
512 
513 		bt_dev_info(hdev, "Device revision is %u", version->dev_rev_id);
514 		bt_dev_info(hdev, "Secure boot is %s",
515 			    version->secure_boot ? "enabled" : "disabled");
516 		bt_dev_info(hdev, "OTP lock is %s",
517 			    version->otp_lock ? "enabled" : "disabled");
518 		bt_dev_info(hdev, "API lock is %s",
519 			    version->api_lock ? "enabled" : "disabled");
520 		bt_dev_info(hdev, "Debug lock is %s",
521 			    version->debug_lock ? "enabled" : "disabled");
522 		bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
523 			    version->min_fw_build_nn, version->min_fw_build_cw,
524 			    2000 + version->min_fw_build_yy);
525 		break;
526 	case BTINTEL_IMG_IML:
527 		variant = "Intermediate loader";
528 		break;
529 	case BTINTEL_IMG_OP:
530 		variant = "Firmware";
531 		break;
532 	default:
533 		bt_dev_err(hdev, "Unsupported image type(%02x)", version->img_type);
534 		return -EINVAL;
535 	}
536 
537 	coredump_info.hw_variant = INTEL_HW_VARIANT(version->cnvi_bt);
538 	coredump_info.fw_build_num = version->build_num;
539 
540 	bt_dev_info(hdev, "%s timestamp %u.%u buildtype %u build %u", variant,
541 		    2000 + (version->timestamp >> 8), version->timestamp & 0xff,
542 		    version->build_type, version->build_num);
543 	if (version->img_type == BTINTEL_IMG_OP)
544 		bt_dev_info(hdev, "Firmware SHA1: 0x%8.8x", version->git_sha1);
545 
546 	return 0;
547 }
548 EXPORT_SYMBOL_GPL(btintel_version_info_tlv);
549 
550 int btintel_parse_version_tlv(struct hci_dev *hdev,
551 			      struct intel_version_tlv *version,
552 			      struct sk_buff *skb)
553 {
554 	/* Consume Command Complete Status field */
555 	skb_pull(skb, 1);
556 
557 	/* Event parameters contatin multiple TLVs. Read each of them
558 	 * and only keep the required data. Also, it use existing legacy
559 	 * version field like hw_platform, hw_variant, and fw_variant
560 	 * to keep the existing setup flow
561 	 */
562 	while (skb->len) {
563 		struct intel_tlv *tlv;
564 
565 		/* Make sure skb has a minimum length of the header */
566 		if (skb->len < sizeof(*tlv))
567 			return -EINVAL;
568 
569 		tlv = (struct intel_tlv *)skb->data;
570 
571 		/* Make sure skb has a enough data */
572 		if (skb->len < tlv->len + sizeof(*tlv))
573 			return -EINVAL;
574 
575 		switch (tlv->type) {
576 		case INTEL_TLV_CNVI_TOP:
577 			version->cnvi_top = get_unaligned_le32(tlv->val);
578 			break;
579 		case INTEL_TLV_CNVR_TOP:
580 			version->cnvr_top = get_unaligned_le32(tlv->val);
581 			break;
582 		case INTEL_TLV_CNVI_BT:
583 			version->cnvi_bt = get_unaligned_le32(tlv->val);
584 			break;
585 		case INTEL_TLV_CNVR_BT:
586 			version->cnvr_bt = get_unaligned_le32(tlv->val);
587 			break;
588 		case INTEL_TLV_DEV_REV_ID:
589 			version->dev_rev_id = get_unaligned_le16(tlv->val);
590 			break;
591 		case INTEL_TLV_IMAGE_TYPE:
592 			version->img_type = tlv->val[0];
593 			break;
594 		case INTEL_TLV_TIME_STAMP:
595 			/* If image type is Operational firmware (0x03), then
596 			 * running FW Calendar Week and Year information can
597 			 * be extracted from Timestamp information
598 			 */
599 			version->min_fw_build_cw = tlv->val[0];
600 			version->min_fw_build_yy = tlv->val[1];
601 			version->timestamp = get_unaligned_le16(tlv->val);
602 			break;
603 		case INTEL_TLV_BUILD_TYPE:
604 			version->build_type = tlv->val[0];
605 			break;
606 		case INTEL_TLV_BUILD_NUM:
607 			/* If image type is Operational firmware (0x03), then
608 			 * running FW build number can be extracted from the
609 			 * Build information
610 			 */
611 			version->min_fw_build_nn = tlv->val[0];
612 			version->build_num = get_unaligned_le32(tlv->val);
613 			break;
614 		case INTEL_TLV_SECURE_BOOT:
615 			version->secure_boot = tlv->val[0];
616 			break;
617 		case INTEL_TLV_OTP_LOCK:
618 			version->otp_lock = tlv->val[0];
619 			break;
620 		case INTEL_TLV_API_LOCK:
621 			version->api_lock = tlv->val[0];
622 			break;
623 		case INTEL_TLV_DEBUG_LOCK:
624 			version->debug_lock = tlv->val[0];
625 			break;
626 		case INTEL_TLV_MIN_FW:
627 			version->min_fw_build_nn = tlv->val[0];
628 			version->min_fw_build_cw = tlv->val[1];
629 			version->min_fw_build_yy = tlv->val[2];
630 			break;
631 		case INTEL_TLV_LIMITED_CCE:
632 			version->limited_cce = tlv->val[0];
633 			break;
634 		case INTEL_TLV_SBE_TYPE:
635 			version->sbe_type = tlv->val[0];
636 			break;
637 		case INTEL_TLV_OTP_BDADDR:
638 			memcpy(&version->otp_bd_addr, tlv->val,
639 							sizeof(bdaddr_t));
640 			break;
641 		case INTEL_TLV_GIT_SHA1:
642 			version->git_sha1 = get_unaligned_le32(tlv->val);
643 			break;
644 		default:
645 			/* Ignore rest of information */
646 			break;
647 		}
648 		/* consume the current tlv and move to next*/
649 		skb_pull(skb, tlv->len + sizeof(*tlv));
650 	}
651 
652 	return 0;
653 }
654 EXPORT_SYMBOL_GPL(btintel_parse_version_tlv);
655 
656 static int btintel_read_version_tlv(struct hci_dev *hdev,
657 				    struct intel_version_tlv *version)
658 {
659 	struct sk_buff *skb;
660 	const u8 param[1] = { 0xFF };
661 
662 	if (!version)
663 		return -EINVAL;
664 
665 	skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
666 	if (IS_ERR(skb)) {
667 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
668 			   PTR_ERR(skb));
669 		return PTR_ERR(skb);
670 	}
671 
672 	if (skb->data[0]) {
673 		bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
674 			   skb->data[0]);
675 		kfree_skb(skb);
676 		return -EIO;
677 	}
678 
679 	btintel_parse_version_tlv(hdev, version, skb);
680 
681 	kfree_skb(skb);
682 	return 0;
683 }
684 
685 /* ------- REGMAP IBT SUPPORT ------- */
686 
687 #define IBT_REG_MODE_8BIT  0x00
688 #define IBT_REG_MODE_16BIT 0x01
689 #define IBT_REG_MODE_32BIT 0x02
690 
691 struct regmap_ibt_context {
692 	struct hci_dev *hdev;
693 	__u16 op_write;
694 	__u16 op_read;
695 };
696 
697 struct ibt_cp_reg_access {
698 	__le32  addr;
699 	__u8    mode;
700 	__u8    len;
701 	__u8    data[];
702 } __packed;
703 
704 struct ibt_rp_reg_access {
705 	__u8    status;
706 	__le32  addr;
707 	__u8    data[];
708 } __packed;
709 
710 static int regmap_ibt_read(void *context, const void *addr, size_t reg_size,
711 			   void *val, size_t val_size)
712 {
713 	struct regmap_ibt_context *ctx = context;
714 	struct ibt_cp_reg_access cp;
715 	struct ibt_rp_reg_access *rp;
716 	struct sk_buff *skb;
717 	int err = 0;
718 
719 	if (reg_size != sizeof(__le32))
720 		return -EINVAL;
721 
722 	switch (val_size) {
723 	case 1:
724 		cp.mode = IBT_REG_MODE_8BIT;
725 		break;
726 	case 2:
727 		cp.mode = IBT_REG_MODE_16BIT;
728 		break;
729 	case 4:
730 		cp.mode = IBT_REG_MODE_32BIT;
731 		break;
732 	default:
733 		return -EINVAL;
734 	}
735 
736 	/* regmap provides a little-endian formatted addr */
737 	cp.addr = *(__le32 *)addr;
738 	cp.len = val_size;
739 
740 	bt_dev_dbg(ctx->hdev, "Register (0x%x) read", le32_to_cpu(cp.addr));
741 
742 	skb = hci_cmd_sync(ctx->hdev, ctx->op_read, sizeof(cp), &cp,
743 			   HCI_CMD_TIMEOUT);
744 	if (IS_ERR(skb)) {
745 		err = PTR_ERR(skb);
746 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error (%d)",
747 			   le32_to_cpu(cp.addr), err);
748 		return err;
749 	}
750 
751 	if (skb->len != sizeof(*rp) + val_size) {
752 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad len",
753 			   le32_to_cpu(cp.addr));
754 		err = -EINVAL;
755 		goto done;
756 	}
757 
758 	rp = (struct ibt_rp_reg_access *)skb->data;
759 
760 	if (rp->addr != cp.addr) {
761 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad addr",
762 			   le32_to_cpu(rp->addr));
763 		err = -EINVAL;
764 		goto done;
765 	}
766 
767 	memcpy(val, rp->data, val_size);
768 
769 done:
770 	kfree_skb(skb);
771 	return err;
772 }
773 
774 static int regmap_ibt_gather_write(void *context,
775 				   const void *addr, size_t reg_size,
776 				   const void *val, size_t val_size)
777 {
778 	struct regmap_ibt_context *ctx = context;
779 	struct ibt_cp_reg_access *cp;
780 	struct sk_buff *skb;
781 	int plen = sizeof(*cp) + val_size;
782 	u8 mode;
783 	int err = 0;
784 
785 	if (reg_size != sizeof(__le32))
786 		return -EINVAL;
787 
788 	switch (val_size) {
789 	case 1:
790 		mode = IBT_REG_MODE_8BIT;
791 		break;
792 	case 2:
793 		mode = IBT_REG_MODE_16BIT;
794 		break;
795 	case 4:
796 		mode = IBT_REG_MODE_32BIT;
797 		break;
798 	default:
799 		return -EINVAL;
800 	}
801 
802 	cp = kmalloc(plen, GFP_KERNEL);
803 	if (!cp)
804 		return -ENOMEM;
805 
806 	/* regmap provides a little-endian formatted addr/value */
807 	cp->addr = *(__le32 *)addr;
808 	cp->mode = mode;
809 	cp->len = val_size;
810 	memcpy(&cp->data, val, val_size);
811 
812 	bt_dev_dbg(ctx->hdev, "Register (0x%x) write", le32_to_cpu(cp->addr));
813 
814 	skb = hci_cmd_sync(ctx->hdev, ctx->op_write, plen, cp, HCI_CMD_TIMEOUT);
815 	if (IS_ERR(skb)) {
816 		err = PTR_ERR(skb);
817 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) write error (%d)",
818 			   le32_to_cpu(cp->addr), err);
819 		goto done;
820 	}
821 	kfree_skb(skb);
822 
823 done:
824 	kfree(cp);
825 	return err;
826 }
827 
828 static int regmap_ibt_write(void *context, const void *data, size_t count)
829 {
830 	/* data contains register+value, since we only support 32bit addr,
831 	 * minimum data size is 4 bytes.
832 	 */
833 	if (WARN_ONCE(count < 4, "Invalid register access"))
834 		return -EINVAL;
835 
836 	return regmap_ibt_gather_write(context, data, 4, data + 4, count - 4);
837 }
838 
839 static void regmap_ibt_free_context(void *context)
840 {
841 	kfree(context);
842 }
843 
844 static const struct regmap_bus regmap_ibt = {
845 	.read = regmap_ibt_read,
846 	.write = regmap_ibt_write,
847 	.gather_write = regmap_ibt_gather_write,
848 	.free_context = regmap_ibt_free_context,
849 	.reg_format_endian_default = REGMAP_ENDIAN_LITTLE,
850 	.val_format_endian_default = REGMAP_ENDIAN_LITTLE,
851 };
852 
853 /* Config is the same for all register regions */
854 static const struct regmap_config regmap_ibt_cfg = {
855 	.name      = "btintel_regmap",
856 	.reg_bits  = 32,
857 	.val_bits  = 32,
858 };
859 
860 struct regmap *btintel_regmap_init(struct hci_dev *hdev, u16 opcode_read,
861 				   u16 opcode_write)
862 {
863 	struct regmap_ibt_context *ctx;
864 
865 	bt_dev_info(hdev, "regmap: Init R%x-W%x region", opcode_read,
866 		    opcode_write);
867 
868 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
869 	if (!ctx)
870 		return ERR_PTR(-ENOMEM);
871 
872 	ctx->op_read = opcode_read;
873 	ctx->op_write = opcode_write;
874 	ctx->hdev = hdev;
875 
876 	return regmap_init(&hdev->dev, &regmap_ibt, ctx, &regmap_ibt_cfg);
877 }
878 EXPORT_SYMBOL_GPL(btintel_regmap_init);
879 
880 int btintel_send_intel_reset(struct hci_dev *hdev, u32 boot_param)
881 {
882 	struct intel_reset params = { 0x00, 0x01, 0x00, 0x01, 0x00000000 };
883 	struct sk_buff *skb;
884 
885 	params.boot_param = cpu_to_le32(boot_param);
886 
887 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), &params,
888 			     HCI_INIT_TIMEOUT);
889 	if (IS_ERR(skb)) {
890 		bt_dev_err(hdev, "Failed to send Intel Reset command");
891 		return PTR_ERR(skb);
892 	}
893 
894 	kfree_skb(skb);
895 
896 	return 0;
897 }
898 EXPORT_SYMBOL_GPL(btintel_send_intel_reset);
899 
900 int btintel_read_boot_params(struct hci_dev *hdev,
901 			     struct intel_boot_params *params)
902 {
903 	struct sk_buff *skb;
904 
905 	skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
906 	if (IS_ERR(skb)) {
907 		bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
908 			   PTR_ERR(skb));
909 		return PTR_ERR(skb);
910 	}
911 
912 	if (skb->len != sizeof(*params)) {
913 		bt_dev_err(hdev, "Intel boot parameters size mismatch");
914 		kfree_skb(skb);
915 		return -EILSEQ;
916 	}
917 
918 	memcpy(params, skb->data, sizeof(*params));
919 
920 	kfree_skb(skb);
921 
922 	if (params->status) {
923 		bt_dev_err(hdev, "Intel boot parameters command failed (%02x)",
924 			   params->status);
925 		return -bt_to_errno(params->status);
926 	}
927 
928 	bt_dev_info(hdev, "Device revision is %u",
929 		    le16_to_cpu(params->dev_revid));
930 
931 	bt_dev_info(hdev, "Secure boot is %s",
932 		    params->secure_boot ? "enabled" : "disabled");
933 
934 	bt_dev_info(hdev, "OTP lock is %s",
935 		    params->otp_lock ? "enabled" : "disabled");
936 
937 	bt_dev_info(hdev, "API lock is %s",
938 		    params->api_lock ? "enabled" : "disabled");
939 
940 	bt_dev_info(hdev, "Debug lock is %s",
941 		    params->debug_lock ? "enabled" : "disabled");
942 
943 	bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
944 		    params->min_fw_build_nn, params->min_fw_build_cw,
945 		    2000 + params->min_fw_build_yy);
946 
947 	return 0;
948 }
949 EXPORT_SYMBOL_GPL(btintel_read_boot_params);
950 
951 static int btintel_sfi_rsa_header_secure_send(struct hci_dev *hdev,
952 					      const struct firmware *fw)
953 {
954 	int err;
955 
956 	/* Start the firmware download transaction with the Init fragment
957 	 * represented by the 128 bytes of CSS header.
958 	 */
959 	err = btintel_secure_send(hdev, 0x00, 128, fw->data);
960 	if (err < 0) {
961 		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
962 		goto done;
963 	}
964 
965 	/* Send the 256 bytes of public key information from the firmware
966 	 * as the PKey fragment.
967 	 */
968 	err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
969 	if (err < 0) {
970 		bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
971 		goto done;
972 	}
973 
974 	/* Send the 256 bytes of signature information from the firmware
975 	 * as the Sign fragment.
976 	 */
977 	err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
978 	if (err < 0) {
979 		bt_dev_err(hdev, "Failed to send firmware signature (%d)", err);
980 		goto done;
981 	}
982 
983 done:
984 	return err;
985 }
986 
987 static int btintel_sfi_ecdsa_header_secure_send(struct hci_dev *hdev,
988 						const struct firmware *fw)
989 {
990 	int err;
991 
992 	/* Start the firmware download transaction with the Init fragment
993 	 * represented by the 128 bytes of CSS header.
994 	 */
995 	err = btintel_secure_send(hdev, 0x00, 128, fw->data + 644);
996 	if (err < 0) {
997 		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
998 		return err;
999 	}
1000 
1001 	/* Send the 96 bytes of public key information from the firmware
1002 	 * as the PKey fragment.
1003 	 */
1004 	err = btintel_secure_send(hdev, 0x03, 96, fw->data + 644 + 128);
1005 	if (err < 0) {
1006 		bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
1007 		return err;
1008 	}
1009 
1010 	/* Send the 96 bytes of signature information from the firmware
1011 	 * as the Sign fragment
1012 	 */
1013 	err = btintel_secure_send(hdev, 0x02, 96, fw->data + 644 + 224);
1014 	if (err < 0) {
1015 		bt_dev_err(hdev, "Failed to send firmware signature (%d)",
1016 			   err);
1017 		return err;
1018 	}
1019 	return 0;
1020 }
1021 
1022 static int btintel_download_firmware_payload(struct hci_dev *hdev,
1023 					     const struct firmware *fw,
1024 					     size_t offset)
1025 {
1026 	int err;
1027 	const u8 *fw_ptr;
1028 	u32 frag_len;
1029 
1030 	fw_ptr = fw->data + offset;
1031 	frag_len = 0;
1032 	err = -EINVAL;
1033 
1034 	while (fw_ptr - fw->data < fw->size) {
1035 		struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
1036 
1037 		frag_len += sizeof(*cmd) + cmd->plen;
1038 
1039 		/* The parameter length of the secure send command requires
1040 		 * a 4 byte alignment. It happens so that the firmware file
1041 		 * contains proper Intel_NOP commands to align the fragments
1042 		 * as needed.
1043 		 *
1044 		 * Send set of commands with 4 byte alignment from the
1045 		 * firmware data buffer as a single Data fragement.
1046 		 */
1047 		if (!(frag_len % 4)) {
1048 			err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
1049 			if (err < 0) {
1050 				bt_dev_err(hdev,
1051 					   "Failed to send firmware data (%d)",
1052 					   err);
1053 				goto done;
1054 			}
1055 
1056 			fw_ptr += frag_len;
1057 			frag_len = 0;
1058 		}
1059 	}
1060 
1061 done:
1062 	return err;
1063 }
1064 
1065 static bool btintel_firmware_version(struct hci_dev *hdev,
1066 				     u8 num, u8 ww, u8 yy,
1067 				     const struct firmware *fw,
1068 				     u32 *boot_addr)
1069 {
1070 	const u8 *fw_ptr;
1071 
1072 	fw_ptr = fw->data;
1073 
1074 	while (fw_ptr - fw->data < fw->size) {
1075 		struct hci_command_hdr *cmd = (void *)(fw_ptr);
1076 
1077 		/* Each SKU has a different reset parameter to use in the
1078 		 * HCI_Intel_Reset command and it is embedded in the firmware
1079 		 * data. So, instead of using static value per SKU, check
1080 		 * the firmware data and save it for later use.
1081 		 */
1082 		if (le16_to_cpu(cmd->opcode) == CMD_WRITE_BOOT_PARAMS) {
1083 			struct cmd_write_boot_params *params;
1084 
1085 			params = (void *)(fw_ptr + sizeof(*cmd));
1086 
1087 			*boot_addr = le32_to_cpu(params->boot_addr);
1088 
1089 			bt_dev_info(hdev, "Boot Address: 0x%x", *boot_addr);
1090 
1091 			bt_dev_info(hdev, "Firmware Version: %u-%u.%u",
1092 				    params->fw_build_num, params->fw_build_ww,
1093 				    params->fw_build_yy);
1094 
1095 			return (num == params->fw_build_num &&
1096 				ww == params->fw_build_ww &&
1097 				yy == params->fw_build_yy);
1098 		}
1099 
1100 		fw_ptr += sizeof(*cmd) + cmd->plen;
1101 	}
1102 
1103 	return false;
1104 }
1105 
1106 int btintel_download_firmware(struct hci_dev *hdev,
1107 			      struct intel_version *ver,
1108 			      const struct firmware *fw,
1109 			      u32 *boot_param)
1110 {
1111 	int err;
1112 
1113 	/* SfP and WsP don't seem to update the firmware version on file
1114 	 * so version checking is currently not possible.
1115 	 */
1116 	switch (ver->hw_variant) {
1117 	case 0x0b:	/* SfP */
1118 	case 0x0c:	/* WsP */
1119 		/* Skip version checking */
1120 		break;
1121 	default:
1122 
1123 		/* Skip download if firmware has the same version */
1124 		if (btintel_firmware_version(hdev, ver->fw_build_num,
1125 					     ver->fw_build_ww, ver->fw_build_yy,
1126 					     fw, boot_param)) {
1127 			bt_dev_info(hdev, "Firmware already loaded");
1128 			/* Return -EALREADY to indicate that the firmware has
1129 			 * already been loaded.
1130 			 */
1131 			return -EALREADY;
1132 		}
1133 	}
1134 
1135 	/* The firmware variant determines if the device is in bootloader
1136 	 * mode or is running operational firmware. The value 0x06 identifies
1137 	 * the bootloader and the value 0x23 identifies the operational
1138 	 * firmware.
1139 	 *
1140 	 * If the firmware version has changed that means it needs to be reset
1141 	 * to bootloader when operational so the new firmware can be loaded.
1142 	 */
1143 	if (ver->fw_variant == 0x23)
1144 		return -EINVAL;
1145 
1146 	err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1147 	if (err)
1148 		return err;
1149 
1150 	return btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
1151 }
1152 EXPORT_SYMBOL_GPL(btintel_download_firmware);
1153 
1154 static int btintel_download_fw_tlv(struct hci_dev *hdev,
1155 				   struct intel_version_tlv *ver,
1156 				   const struct firmware *fw, u32 *boot_param,
1157 				   u8 hw_variant, u8 sbe_type)
1158 {
1159 	int err;
1160 	u32 css_header_ver;
1161 
1162 	/* Skip download if firmware has the same version */
1163 	if (btintel_firmware_version(hdev, ver->min_fw_build_nn,
1164 				     ver->min_fw_build_cw,
1165 				     ver->min_fw_build_yy,
1166 				     fw, boot_param)) {
1167 		bt_dev_info(hdev, "Firmware already loaded");
1168 		/* Return -EALREADY to indicate that firmware has
1169 		 * already been loaded.
1170 		 */
1171 		return -EALREADY;
1172 	}
1173 
1174 	/* The firmware variant determines if the device is in bootloader
1175 	 * mode or is running operational firmware. The value 0x01 identifies
1176 	 * the bootloader and the value 0x03 identifies the operational
1177 	 * firmware.
1178 	 *
1179 	 * If the firmware version has changed that means it needs to be reset
1180 	 * to bootloader when operational so the new firmware can be loaded.
1181 	 */
1182 	if (ver->img_type == BTINTEL_IMG_OP)
1183 		return -EINVAL;
1184 
1185 	/* iBT hardware variants 0x0b, 0x0c, 0x11, 0x12, 0x13, 0x14 support
1186 	 * only RSA secure boot engine. Hence, the corresponding sfi file will
1187 	 * have RSA header of 644 bytes followed by Command Buffer.
1188 	 *
1189 	 * iBT hardware variants 0x17, 0x18 onwards support both RSA and ECDSA
1190 	 * secure boot engine. As a result, the corresponding sfi file will
1191 	 * have RSA header of 644, ECDSA header of 320 bytes followed by
1192 	 * Command Buffer.
1193 	 *
1194 	 * CSS Header byte positions 0x08 to 0x0B represent the CSS Header
1195 	 * version: RSA(0x00010000) , ECDSA (0x00020000)
1196 	 */
1197 	css_header_ver = get_unaligned_le32(fw->data + CSS_HEADER_OFFSET);
1198 	if (css_header_ver != 0x00010000) {
1199 		bt_dev_err(hdev, "Invalid CSS Header version");
1200 		return -EINVAL;
1201 	}
1202 
1203 	if (hw_variant <= 0x14) {
1204 		if (sbe_type != 0x00) {
1205 			bt_dev_err(hdev, "Invalid SBE type for hardware variant (%d)",
1206 				   hw_variant);
1207 			return -EINVAL;
1208 		}
1209 
1210 		err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1211 		if (err)
1212 			return err;
1213 
1214 		err = btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
1215 		if (err)
1216 			return err;
1217 	} else if (hw_variant >= 0x17) {
1218 		/* Check if CSS header for ECDSA follows the RSA header */
1219 		if (fw->data[ECDSA_OFFSET] != 0x06)
1220 			return -EINVAL;
1221 
1222 		/* Check if the CSS Header version is ECDSA(0x00020000) */
1223 		css_header_ver = get_unaligned_le32(fw->data + ECDSA_OFFSET + CSS_HEADER_OFFSET);
1224 		if (css_header_ver != 0x00020000) {
1225 			bt_dev_err(hdev, "Invalid CSS Header version");
1226 			return -EINVAL;
1227 		}
1228 
1229 		if (sbe_type == 0x00) {
1230 			err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1231 			if (err)
1232 				return err;
1233 
1234 			err = btintel_download_firmware_payload(hdev, fw,
1235 								RSA_HEADER_LEN + ECDSA_HEADER_LEN);
1236 			if (err)
1237 				return err;
1238 		} else if (sbe_type == 0x01) {
1239 			err = btintel_sfi_ecdsa_header_secure_send(hdev, fw);
1240 			if (err)
1241 				return err;
1242 
1243 			err = btintel_download_firmware_payload(hdev, fw,
1244 								RSA_HEADER_LEN + ECDSA_HEADER_LEN);
1245 			if (err)
1246 				return err;
1247 		}
1248 	}
1249 	return 0;
1250 }
1251 
1252 static void btintel_reset_to_bootloader(struct hci_dev *hdev)
1253 {
1254 	struct intel_reset params;
1255 	struct sk_buff *skb;
1256 
1257 	/* Send Intel Reset command. This will result in
1258 	 * re-enumeration of BT controller.
1259 	 *
1260 	 * Intel Reset parameter description:
1261 	 * reset_type :   0x00 (Soft reset),
1262 	 *		  0x01 (Hard reset)
1263 	 * patch_enable : 0x00 (Do not enable),
1264 	 *		  0x01 (Enable)
1265 	 * ddc_reload :   0x00 (Do not reload),
1266 	 *		  0x01 (Reload)
1267 	 * boot_option:   0x00 (Current image),
1268 	 *                0x01 (Specified boot address)
1269 	 * boot_param:    Boot address
1270 	 *
1271 	 */
1272 	params.reset_type = 0x01;
1273 	params.patch_enable = 0x01;
1274 	params.ddc_reload = 0x01;
1275 	params.boot_option = 0x00;
1276 	params.boot_param = cpu_to_le32(0x00000000);
1277 
1278 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params),
1279 			     &params, HCI_INIT_TIMEOUT);
1280 	if (IS_ERR(skb)) {
1281 		bt_dev_err(hdev, "FW download error recovery failed (%ld)",
1282 			   PTR_ERR(skb));
1283 		return;
1284 	}
1285 	bt_dev_info(hdev, "Intel reset sent to retry FW download");
1286 	kfree_skb(skb);
1287 
1288 	/* Current Intel BT controllers(ThP/JfP) hold the USB reset
1289 	 * lines for 2ms when it receives Intel Reset in bootloader mode.
1290 	 * Whereas, the upcoming Intel BT controllers will hold USB reset
1291 	 * for 150ms. To keep the delay generic, 150ms is chosen here.
1292 	 */
1293 	msleep(150);
1294 }
1295 
1296 static int btintel_read_debug_features(struct hci_dev *hdev,
1297 				       struct intel_debug_features *features)
1298 {
1299 	struct sk_buff *skb;
1300 	u8 page_no = 1;
1301 
1302 	/* Intel controller supports two pages, each page is of 128-bit
1303 	 * feature bit mask. And each bit defines specific feature support
1304 	 */
1305 	skb = __hci_cmd_sync(hdev, 0xfca6, sizeof(page_no), &page_no,
1306 			     HCI_INIT_TIMEOUT);
1307 	if (IS_ERR(skb)) {
1308 		bt_dev_err(hdev, "Reading supported features failed (%ld)",
1309 			   PTR_ERR(skb));
1310 		return PTR_ERR(skb);
1311 	}
1312 
1313 	if (skb->len != (sizeof(features->page1) + 3)) {
1314 		bt_dev_err(hdev, "Supported features event size mismatch");
1315 		kfree_skb(skb);
1316 		return -EILSEQ;
1317 	}
1318 
1319 	memcpy(features->page1, skb->data + 3, sizeof(features->page1));
1320 
1321 	/* Read the supported features page2 if required in future.
1322 	 */
1323 	kfree_skb(skb);
1324 	return 0;
1325 }
1326 
1327 static acpi_status btintel_ppag_callback(acpi_handle handle, u32 lvl, void *data,
1328 					 void **ret)
1329 {
1330 	acpi_status status;
1331 	size_t len;
1332 	struct btintel_ppag *ppag = data;
1333 	union acpi_object *p, *elements;
1334 	struct acpi_buffer string = {ACPI_ALLOCATE_BUFFER, NULL};
1335 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
1336 	struct hci_dev *hdev = ppag->hdev;
1337 
1338 	status = acpi_get_name(handle, ACPI_FULL_PATHNAME, &string);
1339 	if (ACPI_FAILURE(status)) {
1340 		bt_dev_warn(hdev, "PPAG-BT: ACPI Failure: %s", acpi_format_exception(status));
1341 		return status;
1342 	}
1343 
1344 	len = strlen(string.pointer);
1345 	if (len < strlen(BTINTEL_PPAG_NAME)) {
1346 		kfree(string.pointer);
1347 		return AE_OK;
1348 	}
1349 
1350 	if (strncmp((char *)string.pointer + len - 4, BTINTEL_PPAG_NAME, 4)) {
1351 		kfree(string.pointer);
1352 		return AE_OK;
1353 	}
1354 	kfree(string.pointer);
1355 
1356 	status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
1357 	if (ACPI_FAILURE(status)) {
1358 		ppag->status = status;
1359 		bt_dev_warn(hdev, "PPAG-BT: ACPI Failure: %s", acpi_format_exception(status));
1360 		return status;
1361 	}
1362 
1363 	p = buffer.pointer;
1364 	ppag = (struct btintel_ppag *)data;
1365 
1366 	if (p->type != ACPI_TYPE_PACKAGE || p->package.count != 2) {
1367 		kfree(buffer.pointer);
1368 		bt_dev_warn(hdev, "PPAG-BT: Invalid object type: %d or package count: %d",
1369 			    p->type, p->package.count);
1370 		ppag->status = AE_ERROR;
1371 		return AE_ERROR;
1372 	}
1373 
1374 	elements = p->package.elements;
1375 
1376 	/* PPAG table is located at element[1] */
1377 	p = &elements[1];
1378 
1379 	ppag->domain = (u32)p->package.elements[0].integer.value;
1380 	ppag->mode = (u32)p->package.elements[1].integer.value;
1381 	ppag->status = AE_OK;
1382 	kfree(buffer.pointer);
1383 	return AE_CTRL_TERMINATE;
1384 }
1385 
1386 static int btintel_set_debug_features(struct hci_dev *hdev,
1387 			       const struct intel_debug_features *features)
1388 {
1389 	u8 mask[11] = { 0x0a, 0x92, 0x02, 0x7f, 0x00, 0x00, 0x00, 0x00,
1390 			0x00, 0x00, 0x00 };
1391 	u8 period[5] = { 0x04, 0x91, 0x02, 0x05, 0x00 };
1392 	u8 trace_enable = 0x02;
1393 	struct sk_buff *skb;
1394 
1395 	if (!features) {
1396 		bt_dev_warn(hdev, "Debug features not read");
1397 		return -EINVAL;
1398 	}
1399 
1400 	if (!(features->page1[0] & 0x3f)) {
1401 		bt_dev_info(hdev, "Telemetry exception format not supported");
1402 		return 0;
1403 	}
1404 
1405 	skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
1406 	if (IS_ERR(skb)) {
1407 		bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
1408 			   PTR_ERR(skb));
1409 		return PTR_ERR(skb);
1410 	}
1411 	kfree_skb(skb);
1412 
1413 	skb = __hci_cmd_sync(hdev, 0xfc8b, 5, period, HCI_INIT_TIMEOUT);
1414 	if (IS_ERR(skb)) {
1415 		bt_dev_err(hdev, "Setting periodicity for link statistics traces failed (%ld)",
1416 			   PTR_ERR(skb));
1417 		return PTR_ERR(skb);
1418 	}
1419 	kfree_skb(skb);
1420 
1421 	skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT);
1422 	if (IS_ERR(skb)) {
1423 		bt_dev_err(hdev, "Enable tracing of link statistics events failed (%ld)",
1424 			   PTR_ERR(skb));
1425 		return PTR_ERR(skb);
1426 	}
1427 	kfree_skb(skb);
1428 
1429 	bt_dev_info(hdev, "set debug features: trace_enable 0x%02x mask 0x%02x",
1430 		    trace_enable, mask[3]);
1431 
1432 	return 0;
1433 }
1434 
1435 static int btintel_reset_debug_features(struct hci_dev *hdev,
1436 				 const struct intel_debug_features *features)
1437 {
1438 	u8 mask[11] = { 0x0a, 0x92, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,
1439 			0x00, 0x00, 0x00 };
1440 	u8 trace_enable = 0x00;
1441 	struct sk_buff *skb;
1442 
1443 	if (!features) {
1444 		bt_dev_warn(hdev, "Debug features not read");
1445 		return -EINVAL;
1446 	}
1447 
1448 	if (!(features->page1[0] & 0x3f)) {
1449 		bt_dev_info(hdev, "Telemetry exception format not supported");
1450 		return 0;
1451 	}
1452 
1453 	/* Should stop the trace before writing ddc event mask. */
1454 	skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT);
1455 	if (IS_ERR(skb)) {
1456 		bt_dev_err(hdev, "Stop tracing of link statistics events failed (%ld)",
1457 			   PTR_ERR(skb));
1458 		return PTR_ERR(skb);
1459 	}
1460 	kfree_skb(skb);
1461 
1462 	skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
1463 	if (IS_ERR(skb)) {
1464 		bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
1465 			   PTR_ERR(skb));
1466 		return PTR_ERR(skb);
1467 	}
1468 	kfree_skb(skb);
1469 
1470 	bt_dev_info(hdev, "reset debug features: trace_enable 0x%02x mask 0x%02x",
1471 		    trace_enable, mask[3]);
1472 
1473 	return 0;
1474 }
1475 
1476 int btintel_set_quality_report(struct hci_dev *hdev, bool enable)
1477 {
1478 	struct intel_debug_features features;
1479 	int err;
1480 
1481 	bt_dev_dbg(hdev, "enable %d", enable);
1482 
1483 	/* Read the Intel supported features and if new exception formats
1484 	 * supported, need to load the additional DDC config to enable.
1485 	 */
1486 	err = btintel_read_debug_features(hdev, &features);
1487 	if (err)
1488 		return err;
1489 
1490 	/* Set or reset the debug features. */
1491 	if (enable)
1492 		err = btintel_set_debug_features(hdev, &features);
1493 	else
1494 		err = btintel_reset_debug_features(hdev, &features);
1495 
1496 	return err;
1497 }
1498 EXPORT_SYMBOL_GPL(btintel_set_quality_report);
1499 
1500 static void btintel_coredump(struct hci_dev *hdev)
1501 {
1502 	struct sk_buff *skb;
1503 
1504 	skb = __hci_cmd_sync(hdev, 0xfc4e, 0, NULL, HCI_CMD_TIMEOUT);
1505 	if (IS_ERR(skb)) {
1506 		bt_dev_err(hdev, "Coredump failed (%ld)", PTR_ERR(skb));
1507 		return;
1508 	}
1509 
1510 	kfree_skb(skb);
1511 }
1512 
1513 static void btintel_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb)
1514 {
1515 	char buf[80];
1516 
1517 	snprintf(buf, sizeof(buf), "Controller Name: 0x%X\n",
1518 		 coredump_info.hw_variant);
1519 	skb_put_data(skb, buf, strlen(buf));
1520 
1521 	snprintf(buf, sizeof(buf), "Firmware Version: 0x%X\n",
1522 		 coredump_info.fw_build_num);
1523 	skb_put_data(skb, buf, strlen(buf));
1524 
1525 	snprintf(buf, sizeof(buf), "Driver: %s\n", coredump_info.driver_name);
1526 	skb_put_data(skb, buf, strlen(buf));
1527 
1528 	snprintf(buf, sizeof(buf), "Vendor: Intel\n");
1529 	skb_put_data(skb, buf, strlen(buf));
1530 }
1531 
1532 static int btintel_register_devcoredump_support(struct hci_dev *hdev)
1533 {
1534 	struct intel_debug_features features;
1535 	int err;
1536 
1537 	err = btintel_read_debug_features(hdev, &features);
1538 	if (err) {
1539 		bt_dev_info(hdev, "Error reading debug features");
1540 		return err;
1541 	}
1542 
1543 	if (!(features.page1[0] & 0x3f)) {
1544 		bt_dev_dbg(hdev, "Telemetry exception format not supported");
1545 		return -EOPNOTSUPP;
1546 	}
1547 
1548 	hci_devcd_register(hdev, btintel_coredump, btintel_dmp_hdr, NULL);
1549 
1550 	return err;
1551 }
1552 
1553 static const struct firmware *btintel_legacy_rom_get_fw(struct hci_dev *hdev,
1554 					       struct intel_version *ver)
1555 {
1556 	const struct firmware *fw;
1557 	char fwname[64];
1558 	int ret;
1559 
1560 	snprintf(fwname, sizeof(fwname),
1561 		 "intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq",
1562 		 ver->hw_platform, ver->hw_variant, ver->hw_revision,
1563 		 ver->fw_variant,  ver->fw_revision, ver->fw_build_num,
1564 		 ver->fw_build_ww, ver->fw_build_yy);
1565 
1566 	ret = request_firmware(&fw, fwname, &hdev->dev);
1567 	if (ret < 0) {
1568 		if (ret == -EINVAL) {
1569 			bt_dev_err(hdev, "Intel firmware file request failed (%d)",
1570 				   ret);
1571 			return NULL;
1572 		}
1573 
1574 		bt_dev_err(hdev, "failed to open Intel firmware file: %s (%d)",
1575 			   fwname, ret);
1576 
1577 		/* If the correct firmware patch file is not found, use the
1578 		 * default firmware patch file instead
1579 		 */
1580 		snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.bseq",
1581 			 ver->hw_platform, ver->hw_variant);
1582 		if (request_firmware(&fw, fwname, &hdev->dev) < 0) {
1583 			bt_dev_err(hdev, "failed to open default fw file: %s",
1584 				   fwname);
1585 			return NULL;
1586 		}
1587 	}
1588 
1589 	bt_dev_info(hdev, "Intel Bluetooth firmware file: %s", fwname);
1590 
1591 	return fw;
1592 }
1593 
1594 static int btintel_legacy_rom_patching(struct hci_dev *hdev,
1595 				      const struct firmware *fw,
1596 				      const u8 **fw_ptr, int *disable_patch)
1597 {
1598 	struct sk_buff *skb;
1599 	struct hci_command_hdr *cmd;
1600 	const u8 *cmd_param;
1601 	struct hci_event_hdr *evt = NULL;
1602 	const u8 *evt_param = NULL;
1603 	int remain = fw->size - (*fw_ptr - fw->data);
1604 
1605 	/* The first byte indicates the types of the patch command or event.
1606 	 * 0x01 means HCI command and 0x02 is HCI event. If the first bytes
1607 	 * in the current firmware buffer doesn't start with 0x01 or
1608 	 * the size of remain buffer is smaller than HCI command header,
1609 	 * the firmware file is corrupted and it should stop the patching
1610 	 * process.
1611 	 */
1612 	if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) {
1613 		bt_dev_err(hdev, "Intel fw corrupted: invalid cmd read");
1614 		return -EINVAL;
1615 	}
1616 	(*fw_ptr)++;
1617 	remain--;
1618 
1619 	cmd = (struct hci_command_hdr *)(*fw_ptr);
1620 	*fw_ptr += sizeof(*cmd);
1621 	remain -= sizeof(*cmd);
1622 
1623 	/* Ensure that the remain firmware data is long enough than the length
1624 	 * of command parameter. If not, the firmware file is corrupted.
1625 	 */
1626 	if (remain < cmd->plen) {
1627 		bt_dev_err(hdev, "Intel fw corrupted: invalid cmd len");
1628 		return -EFAULT;
1629 	}
1630 
1631 	/* If there is a command that loads a patch in the firmware
1632 	 * file, then enable the patch upon success, otherwise just
1633 	 * disable the manufacturer mode, for example patch activation
1634 	 * is not required when the default firmware patch file is used
1635 	 * because there are no patch data to load.
1636 	 */
1637 	if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e)
1638 		*disable_patch = 0;
1639 
1640 	cmd_param = *fw_ptr;
1641 	*fw_ptr += cmd->plen;
1642 	remain -= cmd->plen;
1643 
1644 	/* This reads the expected events when the above command is sent to the
1645 	 * device. Some vendor commands expects more than one events, for
1646 	 * example command status event followed by vendor specific event.
1647 	 * For this case, it only keeps the last expected event. so the command
1648 	 * can be sent with __hci_cmd_sync_ev() which returns the sk_buff of
1649 	 * last expected event.
1650 	 */
1651 	while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) {
1652 		(*fw_ptr)++;
1653 		remain--;
1654 
1655 		evt = (struct hci_event_hdr *)(*fw_ptr);
1656 		*fw_ptr += sizeof(*evt);
1657 		remain -= sizeof(*evt);
1658 
1659 		if (remain < evt->plen) {
1660 			bt_dev_err(hdev, "Intel fw corrupted: invalid evt len");
1661 			return -EFAULT;
1662 		}
1663 
1664 		evt_param = *fw_ptr;
1665 		*fw_ptr += evt->plen;
1666 		remain -= evt->plen;
1667 	}
1668 
1669 	/* Every HCI commands in the firmware file has its correspond event.
1670 	 * If event is not found or remain is smaller than zero, the firmware
1671 	 * file is corrupted.
1672 	 */
1673 	if (!evt || !evt_param || remain < 0) {
1674 		bt_dev_err(hdev, "Intel fw corrupted: invalid evt read");
1675 		return -EFAULT;
1676 	}
1677 
1678 	skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), cmd->plen,
1679 				cmd_param, evt->evt, HCI_INIT_TIMEOUT);
1680 	if (IS_ERR(skb)) {
1681 		bt_dev_err(hdev, "sending Intel patch command (0x%4.4x) failed (%ld)",
1682 			   cmd->opcode, PTR_ERR(skb));
1683 		return PTR_ERR(skb);
1684 	}
1685 
1686 	/* It ensures that the returned event matches the event data read from
1687 	 * the firmware file. At fist, it checks the length and then
1688 	 * the contents of the event.
1689 	 */
1690 	if (skb->len != evt->plen) {
1691 		bt_dev_err(hdev, "mismatch event length (opcode 0x%4.4x)",
1692 			   le16_to_cpu(cmd->opcode));
1693 		kfree_skb(skb);
1694 		return -EFAULT;
1695 	}
1696 
1697 	if (memcmp(skb->data, evt_param, evt->plen)) {
1698 		bt_dev_err(hdev, "mismatch event parameter (opcode 0x%4.4x)",
1699 			   le16_to_cpu(cmd->opcode));
1700 		kfree_skb(skb);
1701 		return -EFAULT;
1702 	}
1703 	kfree_skb(skb);
1704 
1705 	return 0;
1706 }
1707 
1708 static int btintel_legacy_rom_setup(struct hci_dev *hdev,
1709 				    struct intel_version *ver)
1710 {
1711 	const struct firmware *fw;
1712 	const u8 *fw_ptr;
1713 	int disable_patch, err;
1714 	struct intel_version new_ver;
1715 
1716 	BT_DBG("%s", hdev->name);
1717 
1718 	/* fw_patch_num indicates the version of patch the device currently
1719 	 * have. If there is no patch data in the device, it is always 0x00.
1720 	 * So, if it is other than 0x00, no need to patch the device again.
1721 	 */
1722 	if (ver->fw_patch_num) {
1723 		bt_dev_info(hdev,
1724 			    "Intel device is already patched. patch num: %02x",
1725 			    ver->fw_patch_num);
1726 		goto complete;
1727 	}
1728 
1729 	/* Opens the firmware patch file based on the firmware version read
1730 	 * from the controller. If it fails to open the matching firmware
1731 	 * patch file, it tries to open the default firmware patch file.
1732 	 * If no patch file is found, allow the device to operate without
1733 	 * a patch.
1734 	 */
1735 	fw = btintel_legacy_rom_get_fw(hdev, ver);
1736 	if (!fw)
1737 		goto complete;
1738 	fw_ptr = fw->data;
1739 
1740 	/* Enable the manufacturer mode of the controller.
1741 	 * Only while this mode is enabled, the driver can download the
1742 	 * firmware patch data and configuration parameters.
1743 	 */
1744 	err = btintel_enter_mfg(hdev);
1745 	if (err) {
1746 		release_firmware(fw);
1747 		return err;
1748 	}
1749 
1750 	disable_patch = 1;
1751 
1752 	/* The firmware data file consists of list of Intel specific HCI
1753 	 * commands and its expected events. The first byte indicates the
1754 	 * type of the message, either HCI command or HCI event.
1755 	 *
1756 	 * It reads the command and its expected event from the firmware file,
1757 	 * and send to the controller. Once __hci_cmd_sync_ev() returns,
1758 	 * the returned event is compared with the event read from the firmware
1759 	 * file and it will continue until all the messages are downloaded to
1760 	 * the controller.
1761 	 *
1762 	 * Once the firmware patching is completed successfully,
1763 	 * the manufacturer mode is disabled with reset and activating the
1764 	 * downloaded patch.
1765 	 *
1766 	 * If the firmware patching fails, the manufacturer mode is
1767 	 * disabled with reset and deactivating the patch.
1768 	 *
1769 	 * If the default patch file is used, no reset is done when disabling
1770 	 * the manufacturer.
1771 	 */
1772 	while (fw->size > fw_ptr - fw->data) {
1773 		int ret;
1774 
1775 		ret = btintel_legacy_rom_patching(hdev, fw, &fw_ptr,
1776 						 &disable_patch);
1777 		if (ret < 0)
1778 			goto exit_mfg_deactivate;
1779 	}
1780 
1781 	release_firmware(fw);
1782 
1783 	if (disable_patch)
1784 		goto exit_mfg_disable;
1785 
1786 	/* Patching completed successfully and disable the manufacturer mode
1787 	 * with reset and activate the downloaded firmware patches.
1788 	 */
1789 	err = btintel_exit_mfg(hdev, true, true);
1790 	if (err)
1791 		return err;
1792 
1793 	/* Need build number for downloaded fw patches in
1794 	 * every power-on boot
1795 	 */
1796 	err = btintel_read_version(hdev, &new_ver);
1797 	if (err)
1798 		return err;
1799 
1800 	bt_dev_info(hdev, "Intel BT fw patch 0x%02x completed & activated",
1801 		    new_ver.fw_patch_num);
1802 
1803 	goto complete;
1804 
1805 exit_mfg_disable:
1806 	/* Disable the manufacturer mode without reset */
1807 	err = btintel_exit_mfg(hdev, false, false);
1808 	if (err)
1809 		return err;
1810 
1811 	bt_dev_info(hdev, "Intel firmware patch completed");
1812 
1813 	goto complete;
1814 
1815 exit_mfg_deactivate:
1816 	release_firmware(fw);
1817 
1818 	/* Patching failed. Disable the manufacturer mode with reset and
1819 	 * deactivate the downloaded firmware patches.
1820 	 */
1821 	err = btintel_exit_mfg(hdev, true, false);
1822 	if (err)
1823 		return err;
1824 
1825 	bt_dev_info(hdev, "Intel firmware patch completed and deactivated");
1826 
1827 complete:
1828 	/* Set the event mask for Intel specific vendor events. This enables
1829 	 * a few extra events that are useful during general operation.
1830 	 */
1831 	btintel_set_event_mask_mfg(hdev, false);
1832 
1833 	btintel_check_bdaddr(hdev);
1834 
1835 	return 0;
1836 }
1837 
1838 static int btintel_download_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
1839 {
1840 	ktime_t delta, rettime;
1841 	unsigned long long duration;
1842 	int err;
1843 
1844 	btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
1845 
1846 	bt_dev_info(hdev, "Waiting for firmware download to complete");
1847 
1848 	err = btintel_wait_on_flag_timeout(hdev, INTEL_DOWNLOADING,
1849 					   TASK_INTERRUPTIBLE,
1850 					   msecs_to_jiffies(msec));
1851 	if (err == -EINTR) {
1852 		bt_dev_err(hdev, "Firmware loading interrupted");
1853 		return err;
1854 	}
1855 
1856 	if (err) {
1857 		bt_dev_err(hdev, "Firmware loading timeout");
1858 		return -ETIMEDOUT;
1859 	}
1860 
1861 	if (btintel_test_flag(hdev, INTEL_FIRMWARE_FAILED)) {
1862 		bt_dev_err(hdev, "Firmware loading failed");
1863 		return -ENOEXEC;
1864 	}
1865 
1866 	rettime = ktime_get();
1867 	delta = ktime_sub(rettime, calltime);
1868 	duration = (unsigned long long)ktime_to_ns(delta) >> 10;
1869 
1870 	bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
1871 
1872 	return 0;
1873 }
1874 
1875 static int btintel_boot_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
1876 {
1877 	ktime_t delta, rettime;
1878 	unsigned long long duration;
1879 	int err;
1880 
1881 	bt_dev_info(hdev, "Waiting for device to boot");
1882 
1883 	err = btintel_wait_on_flag_timeout(hdev, INTEL_BOOTING,
1884 					   TASK_INTERRUPTIBLE,
1885 					   msecs_to_jiffies(msec));
1886 	if (err == -EINTR) {
1887 		bt_dev_err(hdev, "Device boot interrupted");
1888 		return -EINTR;
1889 	}
1890 
1891 	if (err) {
1892 		bt_dev_err(hdev, "Device boot timeout");
1893 		return -ETIMEDOUT;
1894 	}
1895 
1896 	rettime = ktime_get();
1897 	delta = ktime_sub(rettime, calltime);
1898 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
1899 
1900 	bt_dev_info(hdev, "Device booted in %llu usecs", duration);
1901 
1902 	return 0;
1903 }
1904 
1905 static int btintel_boot(struct hci_dev *hdev, u32 boot_addr)
1906 {
1907 	ktime_t calltime;
1908 	int err;
1909 
1910 	calltime = ktime_get();
1911 
1912 	btintel_set_flag(hdev, INTEL_BOOTING);
1913 
1914 	err = btintel_send_intel_reset(hdev, boot_addr);
1915 	if (err) {
1916 		bt_dev_err(hdev, "Intel Soft Reset failed (%d)", err);
1917 		btintel_reset_to_bootloader(hdev);
1918 		return err;
1919 	}
1920 
1921 	/* The bootloader will not indicate when the device is ready. This
1922 	 * is done by the operational firmware sending bootup notification.
1923 	 *
1924 	 * Booting into operational firmware should not take longer than
1925 	 * 1 second. However if that happens, then just fail the setup
1926 	 * since something went wrong.
1927 	 */
1928 	err = btintel_boot_wait(hdev, calltime, 1000);
1929 	if (err == -ETIMEDOUT)
1930 		btintel_reset_to_bootloader(hdev);
1931 
1932 	return err;
1933 }
1934 
1935 static int btintel_get_fw_name(struct intel_version *ver,
1936 					     struct intel_boot_params *params,
1937 					     char *fw_name, size_t len,
1938 					     const char *suffix)
1939 {
1940 	switch (ver->hw_variant) {
1941 	case 0x0b:	/* SfP */
1942 	case 0x0c:	/* WsP */
1943 		snprintf(fw_name, len, "intel/ibt-%u-%u.%s",
1944 			 ver->hw_variant,
1945 			 le16_to_cpu(params->dev_revid),
1946 			 suffix);
1947 		break;
1948 	case 0x11:	/* JfP */
1949 	case 0x12:	/* ThP */
1950 	case 0x13:	/* HrP */
1951 	case 0x14:	/* CcP */
1952 		snprintf(fw_name, len, "intel/ibt-%u-%u-%u.%s",
1953 			 ver->hw_variant,
1954 			 ver->hw_revision,
1955 			 ver->fw_revision,
1956 			 suffix);
1957 		break;
1958 	default:
1959 		return -EINVAL;
1960 	}
1961 
1962 	return 0;
1963 }
1964 
1965 static int btintel_download_fw(struct hci_dev *hdev,
1966 					 struct intel_version *ver,
1967 					 struct intel_boot_params *params,
1968 					 u32 *boot_param)
1969 {
1970 	const struct firmware *fw;
1971 	char fwname[64];
1972 	int err;
1973 	ktime_t calltime;
1974 
1975 	if (!ver || !params)
1976 		return -EINVAL;
1977 
1978 	/* The firmware variant determines if the device is in bootloader
1979 	 * mode or is running operational firmware. The value 0x06 identifies
1980 	 * the bootloader and the value 0x23 identifies the operational
1981 	 * firmware.
1982 	 *
1983 	 * When the operational firmware is already present, then only
1984 	 * the check for valid Bluetooth device address is needed. This
1985 	 * determines if the device will be added as configured or
1986 	 * unconfigured controller.
1987 	 *
1988 	 * It is not possible to use the Secure Boot Parameters in this
1989 	 * case since that command is only available in bootloader mode.
1990 	 */
1991 	if (ver->fw_variant == 0x23) {
1992 		btintel_clear_flag(hdev, INTEL_BOOTLOADER);
1993 		btintel_check_bdaddr(hdev);
1994 
1995 		/* SfP and WsP don't seem to update the firmware version on file
1996 		 * so version checking is currently possible.
1997 		 */
1998 		switch (ver->hw_variant) {
1999 		case 0x0b:	/* SfP */
2000 		case 0x0c:	/* WsP */
2001 			return 0;
2002 		}
2003 
2004 		/* Proceed to download to check if the version matches */
2005 		goto download;
2006 	}
2007 
2008 	/* Read the secure boot parameters to identify the operating
2009 	 * details of the bootloader.
2010 	 */
2011 	err = btintel_read_boot_params(hdev, params);
2012 	if (err)
2013 		return err;
2014 
2015 	/* It is required that every single firmware fragment is acknowledged
2016 	 * with a command complete event. If the boot parameters indicate
2017 	 * that this bootloader does not send them, then abort the setup.
2018 	 */
2019 	if (params->limited_cce != 0x00) {
2020 		bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
2021 			   params->limited_cce);
2022 		return -EINVAL;
2023 	}
2024 
2025 	/* If the OTP has no valid Bluetooth device address, then there will
2026 	 * also be no valid address for the operational firmware.
2027 	 */
2028 	if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
2029 		bt_dev_info(hdev, "No device address configured");
2030 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
2031 	}
2032 
2033 download:
2034 	/* With this Intel bootloader only the hardware variant and device
2035 	 * revision information are used to select the right firmware for SfP
2036 	 * and WsP.
2037 	 *
2038 	 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
2039 	 *
2040 	 * Currently the supported hardware variants are:
2041 	 *   11 (0x0b) for iBT3.0 (LnP/SfP)
2042 	 *   12 (0x0c) for iBT3.5 (WsP)
2043 	 *
2044 	 * For ThP/JfP and for future SKU's, the FW name varies based on HW
2045 	 * variant, HW revision and FW revision, as these are dependent on CNVi
2046 	 * and RF Combination.
2047 	 *
2048 	 *   17 (0x11) for iBT3.5 (JfP)
2049 	 *   18 (0x12) for iBT3.5 (ThP)
2050 	 *
2051 	 * The firmware file name for these will be
2052 	 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
2053 	 *
2054 	 */
2055 	err = btintel_get_fw_name(ver, params, fwname, sizeof(fwname), "sfi");
2056 	if (err < 0) {
2057 		if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2058 			/* Firmware has already been loaded */
2059 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2060 			return 0;
2061 		}
2062 
2063 		bt_dev_err(hdev, "Unsupported Intel firmware naming");
2064 		return -EINVAL;
2065 	}
2066 
2067 	err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
2068 	if (err < 0) {
2069 		if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2070 			/* Firmware has already been loaded */
2071 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2072 			return 0;
2073 		}
2074 
2075 		bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
2076 			   fwname, err);
2077 		return err;
2078 	}
2079 
2080 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
2081 
2082 	if (fw->size < 644) {
2083 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
2084 			   fw->size);
2085 		err = -EBADF;
2086 		goto done;
2087 	}
2088 
2089 	calltime = ktime_get();
2090 
2091 	btintel_set_flag(hdev, INTEL_DOWNLOADING);
2092 
2093 	/* Start firmware downloading and get boot parameter */
2094 	err = btintel_download_firmware(hdev, ver, fw, boot_param);
2095 	if (err < 0) {
2096 		if (err == -EALREADY) {
2097 			/* Firmware has already been loaded */
2098 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2099 			err = 0;
2100 			goto done;
2101 		}
2102 
2103 		/* When FW download fails, send Intel Reset to retry
2104 		 * FW download.
2105 		 */
2106 		btintel_reset_to_bootloader(hdev);
2107 		goto done;
2108 	}
2109 
2110 	/* Before switching the device into operational mode and with that
2111 	 * booting the loaded firmware, wait for the bootloader notification
2112 	 * that all fragments have been successfully received.
2113 	 *
2114 	 * When the event processing receives the notification, then the
2115 	 * INTEL_DOWNLOADING flag will be cleared.
2116 	 *
2117 	 * The firmware loading should not take longer than 5 seconds
2118 	 * and thus just timeout if that happens and fail the setup
2119 	 * of this device.
2120 	 */
2121 	err = btintel_download_wait(hdev, calltime, 5000);
2122 	if (err == -ETIMEDOUT)
2123 		btintel_reset_to_bootloader(hdev);
2124 
2125 done:
2126 	release_firmware(fw);
2127 	return err;
2128 }
2129 
2130 static int btintel_bootloader_setup(struct hci_dev *hdev,
2131 				    struct intel_version *ver)
2132 {
2133 	struct intel_version new_ver;
2134 	struct intel_boot_params params;
2135 	u32 boot_param;
2136 	char ddcname[64];
2137 	int err;
2138 
2139 	BT_DBG("%s", hdev->name);
2140 
2141 	/* Set the default boot parameter to 0x0 and it is updated to
2142 	 * SKU specific boot parameter after reading Intel_Write_Boot_Params
2143 	 * command while downloading the firmware.
2144 	 */
2145 	boot_param = 0x00000000;
2146 
2147 	btintel_set_flag(hdev, INTEL_BOOTLOADER);
2148 
2149 	err = btintel_download_fw(hdev, ver, &params, &boot_param);
2150 	if (err)
2151 		return err;
2152 
2153 	/* controller is already having an operational firmware */
2154 	if (ver->fw_variant == 0x23)
2155 		goto finish;
2156 
2157 	err = btintel_boot(hdev, boot_param);
2158 	if (err)
2159 		return err;
2160 
2161 	btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2162 
2163 	err = btintel_get_fw_name(ver, &params, ddcname,
2164 						sizeof(ddcname), "ddc");
2165 
2166 	if (err < 0) {
2167 		bt_dev_err(hdev, "Unsupported Intel firmware naming");
2168 	} else {
2169 		/* Once the device is running in operational mode, it needs to
2170 		 * apply the device configuration (DDC) parameters.
2171 		 *
2172 		 * The device can work without DDC parameters, so even if it
2173 		 * fails to load the file, no need to fail the setup.
2174 		 */
2175 		btintel_load_ddc_config(hdev, ddcname);
2176 	}
2177 
2178 	hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT);
2179 
2180 	/* Read the Intel version information after loading the FW  */
2181 	err = btintel_read_version(hdev, &new_ver);
2182 	if (err)
2183 		return err;
2184 
2185 	btintel_version_info(hdev, &new_ver);
2186 
2187 finish:
2188 	/* Set the event mask for Intel specific vendor events. This enables
2189 	 * a few extra events that are useful during general operation. It
2190 	 * does not enable any debugging related events.
2191 	 *
2192 	 * The device will function correctly without these events enabled
2193 	 * and thus no need to fail the setup.
2194 	 */
2195 	btintel_set_event_mask(hdev, false);
2196 
2197 	return 0;
2198 }
2199 
2200 static void btintel_get_fw_name_tlv(const struct intel_version_tlv *ver,
2201 				    char *fw_name, size_t len,
2202 				    const char *suffix)
2203 {
2204 	const char *format;
2205 	/* The firmware file name for new generation controllers will be
2206 	 * ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step>
2207 	 */
2208 	switch (ver->cnvi_top & 0xfff) {
2209 	/* Only Blazar  product supports downloading of intermediate loader
2210 	 * image
2211 	 */
2212 	case BTINTEL_CNVI_BLAZARI:
2213 		if (ver->img_type == BTINTEL_IMG_BOOTLOADER)
2214 			format = "intel/ibt-%04x-%04x-iml.%s";
2215 		else
2216 			format = "intel/ibt-%04x-%04x.%s";
2217 		break;
2218 	default:
2219 			format = "intel/ibt-%04x-%04x.%s";
2220 		break;
2221 	}
2222 
2223 	snprintf(fw_name, len, format,
2224 		 INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top),
2225 					  INTEL_CNVX_TOP_STEP(ver->cnvi_top)),
2226 		 INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top),
2227 					  INTEL_CNVX_TOP_STEP(ver->cnvr_top)),
2228 		 suffix);
2229 }
2230 
2231 static int btintel_prepare_fw_download_tlv(struct hci_dev *hdev,
2232 					   struct intel_version_tlv *ver,
2233 					   u32 *boot_param)
2234 {
2235 	const struct firmware *fw;
2236 	char fwname[64];
2237 	int err;
2238 	ktime_t calltime;
2239 
2240 	if (!ver || !boot_param)
2241 		return -EINVAL;
2242 
2243 	/* The firmware variant determines if the device is in bootloader
2244 	 * mode or is running operational firmware. The value 0x03 identifies
2245 	 * the bootloader and the value 0x23 identifies the operational
2246 	 * firmware.
2247 	 *
2248 	 * When the operational firmware is already present, then only
2249 	 * the check for valid Bluetooth device address is needed. This
2250 	 * determines if the device will be added as configured or
2251 	 * unconfigured controller.
2252 	 *
2253 	 * It is not possible to use the Secure Boot Parameters in this
2254 	 * case since that command is only available in bootloader mode.
2255 	 */
2256 	if (ver->img_type == BTINTEL_IMG_OP) {
2257 		btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2258 		btintel_check_bdaddr(hdev);
2259 	} else {
2260 		/*
2261 		 * Check for valid bd address in boot loader mode. Device
2262 		 * will be marked as unconfigured if empty bd address is
2263 		 * found.
2264 		 */
2265 		if (!bacmp(&ver->otp_bd_addr, BDADDR_ANY)) {
2266 			bt_dev_info(hdev, "No device address configured");
2267 			set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
2268 		}
2269 	}
2270 
2271 	btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi");
2272 	err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
2273 	if (err < 0) {
2274 		if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2275 			/* Firmware has already been loaded */
2276 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2277 			return 0;
2278 		}
2279 
2280 		bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
2281 			   fwname, err);
2282 
2283 		return err;
2284 	}
2285 
2286 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
2287 
2288 	if (fw->size < 644) {
2289 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
2290 			   fw->size);
2291 		err = -EBADF;
2292 		goto done;
2293 	}
2294 
2295 	calltime = ktime_get();
2296 
2297 	btintel_set_flag(hdev, INTEL_DOWNLOADING);
2298 
2299 	/* Start firmware downloading and get boot parameter */
2300 	err = btintel_download_fw_tlv(hdev, ver, fw, boot_param,
2301 					       INTEL_HW_VARIANT(ver->cnvi_bt),
2302 					       ver->sbe_type);
2303 	if (err < 0) {
2304 		if (err == -EALREADY) {
2305 			/* Firmware has already been loaded */
2306 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2307 			err = 0;
2308 			goto done;
2309 		}
2310 
2311 		/* When FW download fails, send Intel Reset to retry
2312 		 * FW download.
2313 		 */
2314 		btintel_reset_to_bootloader(hdev);
2315 		goto done;
2316 	}
2317 
2318 	/* Before switching the device into operational mode and with that
2319 	 * booting the loaded firmware, wait for the bootloader notification
2320 	 * that all fragments have been successfully received.
2321 	 *
2322 	 * When the event processing receives the notification, then the
2323 	 * BTUSB_DOWNLOADING flag will be cleared.
2324 	 *
2325 	 * The firmware loading should not take longer than 5 seconds
2326 	 * and thus just timeout if that happens and fail the setup
2327 	 * of this device.
2328 	 */
2329 	err = btintel_download_wait(hdev, calltime, 5000);
2330 	if (err == -ETIMEDOUT)
2331 		btintel_reset_to_bootloader(hdev);
2332 
2333 done:
2334 	release_firmware(fw);
2335 	return err;
2336 }
2337 
2338 static int btintel_get_codec_config_data(struct hci_dev *hdev,
2339 					 __u8 link, struct bt_codec *codec,
2340 					 __u8 *ven_len, __u8 **ven_data)
2341 {
2342 	int err = 0;
2343 
2344 	if (!ven_data || !ven_len)
2345 		return -EINVAL;
2346 
2347 	*ven_len = 0;
2348 	*ven_data = NULL;
2349 
2350 	if (link != ESCO_LINK) {
2351 		bt_dev_err(hdev, "Invalid link type(%u)", link);
2352 		return -EINVAL;
2353 	}
2354 
2355 	*ven_data = kmalloc(sizeof(__u8), GFP_KERNEL);
2356 	if (!*ven_data) {
2357 		err = -ENOMEM;
2358 		goto error;
2359 	}
2360 
2361 	/* supports only CVSD and mSBC offload codecs */
2362 	switch (codec->id) {
2363 	case 0x02:
2364 		**ven_data = 0x00;
2365 		break;
2366 	case 0x05:
2367 		**ven_data = 0x01;
2368 		break;
2369 	default:
2370 		err = -EINVAL;
2371 		bt_dev_err(hdev, "Invalid codec id(%u)", codec->id);
2372 		goto error;
2373 	}
2374 	/* codec and its capabilities are pre-defined to ids
2375 	 * preset id = 0x00 represents CVSD codec with sampling rate 8K
2376 	 * preset id = 0x01 represents mSBC codec with sampling rate 16K
2377 	 */
2378 	*ven_len = sizeof(__u8);
2379 	return err;
2380 
2381 error:
2382 	kfree(*ven_data);
2383 	*ven_data = NULL;
2384 	return err;
2385 }
2386 
2387 static int btintel_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id)
2388 {
2389 	/* Intel uses 1 as data path id for all the usecases */
2390 	*data_path_id = 1;
2391 	return 0;
2392 }
2393 
2394 static int btintel_configure_offload(struct hci_dev *hdev)
2395 {
2396 	struct sk_buff *skb;
2397 	int err = 0;
2398 	struct intel_offload_use_cases *use_cases;
2399 
2400 	skb = __hci_cmd_sync(hdev, 0xfc86, 0, NULL, HCI_INIT_TIMEOUT);
2401 	if (IS_ERR(skb)) {
2402 		bt_dev_err(hdev, "Reading offload use cases failed (%ld)",
2403 			   PTR_ERR(skb));
2404 		return PTR_ERR(skb);
2405 	}
2406 
2407 	if (skb->len < sizeof(*use_cases)) {
2408 		err = -EIO;
2409 		goto error;
2410 	}
2411 
2412 	use_cases = (void *)skb->data;
2413 
2414 	if (use_cases->status) {
2415 		err = -bt_to_errno(skb->data[0]);
2416 		goto error;
2417 	}
2418 
2419 	if (use_cases->preset[0] & 0x03) {
2420 		hdev->get_data_path_id = btintel_get_data_path_id;
2421 		hdev->get_codec_config_data = btintel_get_codec_config_data;
2422 	}
2423 error:
2424 	kfree_skb(skb);
2425 	return err;
2426 }
2427 
2428 static void btintel_set_ppag(struct hci_dev *hdev, struct intel_version_tlv *ver)
2429 {
2430 	struct btintel_ppag ppag;
2431 	struct sk_buff *skb;
2432 	struct hci_ppag_enable_cmd ppag_cmd;
2433 	acpi_handle handle;
2434 
2435 	/* PPAG is not supported if CRF is HrP2, Jfp2, JfP1 */
2436 	switch (ver->cnvr_top & 0xFFF) {
2437 	case 0x504:     /* Hrp2 */
2438 	case 0x202:     /* Jfp2 */
2439 	case 0x201:     /* Jfp1 */
2440 		bt_dev_dbg(hdev, "PPAG not supported for Intel CNVr (0x%3x)",
2441 			   ver->cnvr_top & 0xFFF);
2442 		return;
2443 	}
2444 
2445 	handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2446 	if (!handle) {
2447 		bt_dev_info(hdev, "No support for BT device in ACPI firmware");
2448 		return;
2449 	}
2450 
2451 	memset(&ppag, 0, sizeof(ppag));
2452 
2453 	ppag.hdev = hdev;
2454 	ppag.status = AE_NOT_FOUND;
2455 	acpi_walk_namespace(ACPI_TYPE_PACKAGE, handle, 1, NULL,
2456 			    btintel_ppag_callback, &ppag, NULL);
2457 
2458 	if (ACPI_FAILURE(ppag.status)) {
2459 		if (ppag.status == AE_NOT_FOUND) {
2460 			bt_dev_dbg(hdev, "PPAG-BT: ACPI entry not found");
2461 			return;
2462 		}
2463 		return;
2464 	}
2465 
2466 	if (ppag.domain != 0x12) {
2467 		bt_dev_dbg(hdev, "PPAG-BT: Bluetooth domain is disabled in ACPI firmware");
2468 		return;
2469 	}
2470 
2471 	/* PPAG mode
2472 	 * BIT 0 : 0 Disabled in EU
2473 	 *         1 Enabled in EU
2474 	 * BIT 1 : 0 Disabled in China
2475 	 *         1 Enabled in China
2476 	 */
2477 	if ((ppag.mode & 0x01) != BIT(0) && (ppag.mode & 0x02) != BIT(1)) {
2478 		bt_dev_dbg(hdev, "PPAG-BT: EU, China mode are disabled in CB/BIOS");
2479 		return;
2480 	}
2481 
2482 	ppag_cmd.ppag_enable_flags = cpu_to_le32(ppag.mode);
2483 
2484 	skb = __hci_cmd_sync(hdev, INTEL_OP_PPAG_CMD, sizeof(ppag_cmd), &ppag_cmd, HCI_CMD_TIMEOUT);
2485 	if (IS_ERR(skb)) {
2486 		bt_dev_warn(hdev, "Failed to send PPAG Enable (%ld)", PTR_ERR(skb));
2487 		return;
2488 	}
2489 	bt_dev_info(hdev, "PPAG-BT: Enabled (Mode %d)", ppag.mode);
2490 	kfree_skb(skb);
2491 }
2492 
2493 static int btintel_acpi_reset_method(struct hci_dev *hdev)
2494 {
2495 	int ret = 0;
2496 	acpi_status status;
2497 	union acpi_object *p, *ref;
2498 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2499 
2500 	status = acpi_evaluate_object(ACPI_HANDLE(GET_HCIDEV_DEV(hdev)), "_PRR", NULL, &buffer);
2501 	if (ACPI_FAILURE(status)) {
2502 		bt_dev_err(hdev, "Failed to run _PRR method");
2503 		ret = -ENODEV;
2504 		return ret;
2505 	}
2506 	p = buffer.pointer;
2507 
2508 	if (p->package.count != 1 || p->type != ACPI_TYPE_PACKAGE) {
2509 		bt_dev_err(hdev, "Invalid arguments");
2510 		ret = -EINVAL;
2511 		goto exit_on_error;
2512 	}
2513 
2514 	ref = &p->package.elements[0];
2515 	if (ref->type != ACPI_TYPE_LOCAL_REFERENCE) {
2516 		bt_dev_err(hdev, "Invalid object type: 0x%x", ref->type);
2517 		ret = -EINVAL;
2518 		goto exit_on_error;
2519 	}
2520 
2521 	status = acpi_evaluate_object(ref->reference.handle, "_RST", NULL, NULL);
2522 	if (ACPI_FAILURE(status)) {
2523 		bt_dev_err(hdev, "Failed to run_RST method");
2524 		ret = -ENODEV;
2525 		goto exit_on_error;
2526 	}
2527 
2528 exit_on_error:
2529 	kfree(buffer.pointer);
2530 	return ret;
2531 }
2532 
2533 static void btintel_set_dsm_reset_method(struct hci_dev *hdev,
2534 					 struct intel_version_tlv *ver_tlv)
2535 {
2536 	struct btintel_data *data = hci_get_priv(hdev);
2537 	acpi_handle handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2538 	u8 reset_payload[4] = {0x01, 0x00, 0x01, 0x00};
2539 	union acpi_object *obj, argv4;
2540 	enum {
2541 		RESET_TYPE_WDISABLE2,
2542 		RESET_TYPE_VSEC
2543 	};
2544 
2545 	handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2546 
2547 	if (!handle) {
2548 		bt_dev_dbg(hdev, "No support for bluetooth device in ACPI firmware");
2549 		return;
2550 	}
2551 
2552 	if (!acpi_has_method(handle, "_PRR")) {
2553 		bt_dev_err(hdev, "No support for _PRR ACPI method");
2554 		return;
2555 	}
2556 
2557 	switch (ver_tlv->cnvi_top & 0xfff) {
2558 	case 0x910: /* GalePeak2 */
2559 		reset_payload[2] = RESET_TYPE_VSEC;
2560 		break;
2561 	default:
2562 		/* WDISABLE2 is the default reset method */
2563 		reset_payload[2] = RESET_TYPE_WDISABLE2;
2564 
2565 		if (!acpi_check_dsm(handle, &btintel_guid_dsm, 0,
2566 				    BIT(DSM_SET_WDISABLE2_DELAY))) {
2567 			bt_dev_err(hdev, "No dsm support to set reset delay");
2568 			return;
2569 		}
2570 		argv4.integer.type = ACPI_TYPE_INTEGER;
2571 		/* delay required to toggle BT power */
2572 		argv4.integer.value = 160;
2573 		obj = acpi_evaluate_dsm(handle, &btintel_guid_dsm, 0,
2574 					DSM_SET_WDISABLE2_DELAY, &argv4);
2575 		if (!obj) {
2576 			bt_dev_err(hdev, "Failed to call dsm to set reset delay");
2577 			return;
2578 		}
2579 		ACPI_FREE(obj);
2580 	}
2581 
2582 	bt_dev_info(hdev, "DSM reset method type: 0x%02x", reset_payload[2]);
2583 
2584 	if (!acpi_check_dsm(handle, &btintel_guid_dsm, 0,
2585 			    DSM_SET_RESET_METHOD)) {
2586 		bt_dev_warn(hdev, "No support for dsm to set reset method");
2587 		return;
2588 	}
2589 	argv4.buffer.type = ACPI_TYPE_BUFFER;
2590 	argv4.buffer.length = sizeof(reset_payload);
2591 	argv4.buffer.pointer = reset_payload;
2592 
2593 	obj = acpi_evaluate_dsm(handle, &btintel_guid_dsm, 0,
2594 				DSM_SET_RESET_METHOD, &argv4);
2595 	if (!obj) {
2596 		bt_dev_err(hdev, "Failed to call dsm to set reset method");
2597 		return;
2598 	}
2599 	ACPI_FREE(obj);
2600 	data->acpi_reset_method = btintel_acpi_reset_method;
2601 }
2602 
2603 int btintel_bootloader_setup_tlv(struct hci_dev *hdev,
2604 				 struct intel_version_tlv *ver)
2605 {
2606 	u32 boot_param;
2607 	char ddcname[64];
2608 	int err;
2609 	struct intel_version_tlv new_ver;
2610 
2611 	bt_dev_dbg(hdev, "");
2612 
2613 	/* Set the default boot parameter to 0x0 and it is updated to
2614 	 * SKU specific boot parameter after reading Intel_Write_Boot_Params
2615 	 * command while downloading the firmware.
2616 	 */
2617 	boot_param = 0x00000000;
2618 
2619 	btintel_set_flag(hdev, INTEL_BOOTLOADER);
2620 
2621 	err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param);
2622 	if (err)
2623 		return err;
2624 
2625 	/* check if controller is already having an operational firmware */
2626 	if (ver->img_type == BTINTEL_IMG_OP)
2627 		goto finish;
2628 
2629 	err = btintel_boot(hdev, boot_param);
2630 	if (err)
2631 		return err;
2632 
2633 	err = btintel_read_version_tlv(hdev, ver);
2634 	if (err)
2635 		return err;
2636 
2637 	/* If image type returned is BTINTEL_IMG_IML, then controller supports
2638 	 * intermediae loader image
2639 	 */
2640 	if (ver->img_type == BTINTEL_IMG_IML) {
2641 		err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param);
2642 		if (err)
2643 			return err;
2644 
2645 		err = btintel_boot(hdev, boot_param);
2646 		if (err)
2647 			return err;
2648 	}
2649 
2650 	btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2651 
2652 	btintel_get_fw_name_tlv(ver, ddcname, sizeof(ddcname), "ddc");
2653 	/* Once the device is running in operational mode, it needs to
2654 	 * apply the device configuration (DDC) parameters.
2655 	 *
2656 	 * The device can work without DDC parameters, so even if it
2657 	 * fails to load the file, no need to fail the setup.
2658 	 */
2659 	btintel_load_ddc_config(hdev, ddcname);
2660 
2661 	/* Read supported use cases and set callbacks to fetch datapath id */
2662 	btintel_configure_offload(hdev);
2663 
2664 	hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT);
2665 
2666 	/* Set PPAG feature */
2667 	btintel_set_ppag(hdev, ver);
2668 
2669 	/* Read the Intel version information after loading the FW  */
2670 	err = btintel_read_version_tlv(hdev, &new_ver);
2671 	if (err)
2672 		return err;
2673 
2674 	btintel_version_info_tlv(hdev, &new_ver);
2675 
2676 finish:
2677 	/* Set the event mask for Intel specific vendor events. This enables
2678 	 * a few extra events that are useful during general operation. It
2679 	 * does not enable any debugging related events.
2680 	 *
2681 	 * The device will function correctly without these events enabled
2682 	 * and thus no need to fail the setup.
2683 	 */
2684 	btintel_set_event_mask(hdev, false);
2685 
2686 	return 0;
2687 }
2688 EXPORT_SYMBOL_GPL(btintel_bootloader_setup_tlv);
2689 
2690 void btintel_set_msft_opcode(struct hci_dev *hdev, u8 hw_variant)
2691 {
2692 	switch (hw_variant) {
2693 	/* Legacy bootloader devices that supports MSFT Extension */
2694 	case 0x11:	/* JfP */
2695 	case 0x12:	/* ThP */
2696 	case 0x13:	/* HrP */
2697 	case 0x14:	/* CcP */
2698 	/* All Intel new genration controllers support the Microsoft vendor
2699 	 * extension are using 0xFC1E for VsMsftOpCode.
2700 	 */
2701 	case 0x17:
2702 	case 0x18:
2703 	case 0x19:
2704 	case 0x1b:
2705 	case 0x1c:
2706 	case 0x1e:
2707 		hci_set_msft_opcode(hdev, 0xFC1E);
2708 		break;
2709 	default:
2710 		/* Not supported */
2711 		break;
2712 	}
2713 }
2714 EXPORT_SYMBOL_GPL(btintel_set_msft_opcode);
2715 
2716 static void btintel_print_fseq_info(struct hci_dev *hdev)
2717 {
2718 	struct sk_buff *skb;
2719 	u8 *p;
2720 	u32 val;
2721 	const char *str;
2722 
2723 	skb = __hci_cmd_sync(hdev, 0xfcb3, 0, NULL, HCI_CMD_TIMEOUT);
2724 	if (IS_ERR(skb)) {
2725 		bt_dev_dbg(hdev, "Reading fseq status command failed (%ld)",
2726 			   PTR_ERR(skb));
2727 		return;
2728 	}
2729 
2730 	if (skb->len < (sizeof(u32) * 16 + 2)) {
2731 		bt_dev_dbg(hdev, "Malformed packet of length %u received",
2732 			   skb->len);
2733 		kfree_skb(skb);
2734 		return;
2735 	}
2736 
2737 	p = skb_pull_data(skb, 1);
2738 	if (*p) {
2739 		bt_dev_dbg(hdev, "Failed to get fseq status (0x%2.2x)", *p);
2740 		kfree_skb(skb);
2741 		return;
2742 	}
2743 
2744 	p = skb_pull_data(skb, 1);
2745 	switch (*p) {
2746 	case 0:
2747 		str = "Success";
2748 		break;
2749 	case 1:
2750 		str = "Fatal error";
2751 		break;
2752 	case 2:
2753 		str = "Semaphore acquire error";
2754 		break;
2755 	default:
2756 		str = "Unknown error";
2757 		break;
2758 	}
2759 
2760 	if (*p) {
2761 		bt_dev_err(hdev, "Fseq status: %s (0x%2.2x)", str, *p);
2762 		kfree_skb(skb);
2763 		return;
2764 	}
2765 
2766 	bt_dev_info(hdev, "Fseq status: %s (0x%2.2x)", str, *p);
2767 
2768 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2769 	bt_dev_dbg(hdev, "Reason: 0x%8.8x", val);
2770 
2771 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2772 	bt_dev_dbg(hdev, "Global version: 0x%8.8x", val);
2773 
2774 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2775 	bt_dev_dbg(hdev, "Installed version: 0x%8.8x", val);
2776 
2777 	p = skb->data;
2778 	skb_pull_data(skb, 4);
2779 	bt_dev_info(hdev, "Fseq executed: %2.2u.%2.2u.%2.2u.%2.2u", p[0], p[1],
2780 		    p[2], p[3]);
2781 
2782 	p = skb->data;
2783 	skb_pull_data(skb, 4);
2784 	bt_dev_info(hdev, "Fseq BT Top: %2.2u.%2.2u.%2.2u.%2.2u", p[0], p[1],
2785 		    p[2], p[3]);
2786 
2787 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2788 	bt_dev_dbg(hdev, "Fseq Top init version: 0x%8.8x", val);
2789 
2790 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2791 	bt_dev_dbg(hdev, "Fseq Cnvio init version: 0x%8.8x", val);
2792 
2793 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2794 	bt_dev_dbg(hdev, "Fseq MBX Wifi file version: 0x%8.8x", val);
2795 
2796 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2797 	bt_dev_dbg(hdev, "Fseq BT version: 0x%8.8x", val);
2798 
2799 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2800 	bt_dev_dbg(hdev, "Fseq Top reset address: 0x%8.8x", val);
2801 
2802 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2803 	bt_dev_dbg(hdev, "Fseq MBX timeout: 0x%8.8x", val);
2804 
2805 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2806 	bt_dev_dbg(hdev, "Fseq MBX ack: 0x%8.8x", val);
2807 
2808 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2809 	bt_dev_dbg(hdev, "Fseq CNVi id: 0x%8.8x", val);
2810 
2811 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2812 	bt_dev_dbg(hdev, "Fseq CNVr id: 0x%8.8x", val);
2813 
2814 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2815 	bt_dev_dbg(hdev, "Fseq Error handle: 0x%8.8x", val);
2816 
2817 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2818 	bt_dev_dbg(hdev, "Fseq Magic noalive indication: 0x%8.8x", val);
2819 
2820 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2821 	bt_dev_dbg(hdev, "Fseq OTP version: 0x%8.8x", val);
2822 
2823 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2824 	bt_dev_dbg(hdev, "Fseq MBX otp version: 0x%8.8x", val);
2825 
2826 	kfree_skb(skb);
2827 }
2828 
2829 static int btintel_setup_combined(struct hci_dev *hdev)
2830 {
2831 	const u8 param[1] = { 0xFF };
2832 	struct intel_version ver;
2833 	struct intel_version_tlv ver_tlv;
2834 	struct sk_buff *skb;
2835 	int err;
2836 
2837 	BT_DBG("%s", hdev->name);
2838 
2839 	/* The some controllers have a bug with the first HCI command sent to it
2840 	 * returning number of completed commands as zero. This would stall the
2841 	 * command processing in the Bluetooth core.
2842 	 *
2843 	 * As a workaround, send HCI Reset command first which will reset the
2844 	 * number of completed commands and allow normal command processing
2845 	 * from now on.
2846 	 *
2847 	 * Regarding the INTEL_BROKEN_SHUTDOWN_LED flag, these devices maybe
2848 	 * in the SW_RFKILL ON state as a workaround of fixing LED issue during
2849 	 * the shutdown() procedure, and once the device is in SW_RFKILL ON
2850 	 * state, the only way to exit out of it is sending the HCI_Reset
2851 	 * command.
2852 	 */
2853 	if (btintel_test_flag(hdev, INTEL_BROKEN_INITIAL_NCMD) ||
2854 	    btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) {
2855 		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
2856 				     HCI_INIT_TIMEOUT);
2857 		if (IS_ERR(skb)) {
2858 			bt_dev_err(hdev,
2859 				   "sending initial HCI reset failed (%ld)",
2860 				   PTR_ERR(skb));
2861 			return PTR_ERR(skb);
2862 		}
2863 		kfree_skb(skb);
2864 	}
2865 
2866 	/* Starting from TyP device, the command parameter and response are
2867 	 * changed even though the OCF for HCI_Intel_Read_Version command
2868 	 * remains same. The legacy devices can handle even if the
2869 	 * command has a parameter and returns a correct version information.
2870 	 * So, it uses new format to support both legacy and new format.
2871 	 */
2872 	skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
2873 	if (IS_ERR(skb)) {
2874 		bt_dev_err(hdev, "Reading Intel version command failed (%ld)",
2875 			   PTR_ERR(skb));
2876 		return PTR_ERR(skb);
2877 	}
2878 
2879 	/* Check the status */
2880 	if (skb->data[0]) {
2881 		bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
2882 			   skb->data[0]);
2883 		err = -EIO;
2884 		goto exit_error;
2885 	}
2886 
2887 	/* Apply the common HCI quirks for Intel device */
2888 	set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
2889 	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
2890 	set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
2891 
2892 	/* Set up the quality report callback for Intel devices */
2893 	hdev->set_quality_report = btintel_set_quality_report;
2894 
2895 	/* For Legacy device, check the HW platform value and size */
2896 	if (skb->len == sizeof(ver) && skb->data[1] == 0x37) {
2897 		bt_dev_dbg(hdev, "Read the legacy Intel version information");
2898 
2899 		memcpy(&ver, skb->data, sizeof(ver));
2900 
2901 		/* Display version information */
2902 		btintel_version_info(hdev, &ver);
2903 
2904 		/* Check for supported iBT hardware variants of this firmware
2905 		 * loading method.
2906 		 *
2907 		 * This check has been put in place to ensure correct forward
2908 		 * compatibility options when newer hardware variants come
2909 		 * along.
2910 		 */
2911 		switch (ver.hw_variant) {
2912 		case 0x07:	/* WP */
2913 		case 0x08:	/* StP */
2914 			/* Legacy ROM product */
2915 			btintel_set_flag(hdev, INTEL_ROM_LEGACY);
2916 
2917 			/* Apply the device specific HCI quirks
2918 			 *
2919 			 * WBS for SdP - For the Legacy ROM products, only SdP
2920 			 * supports the WBS. But the version information is not
2921 			 * enough to use here because the StP2 and SdP have same
2922 			 * hw_variant and fw_variant. So, this flag is set by
2923 			 * the transport driver (btusb) based on the HW info
2924 			 * (idProduct)
2925 			 */
2926 			if (!btintel_test_flag(hdev,
2927 					       INTEL_ROM_LEGACY_NO_WBS_SUPPORT))
2928 				set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2929 					&hdev->quirks);
2930 			if (ver.hw_variant == 0x08 && ver.fw_variant == 0x22)
2931 				set_bit(HCI_QUIRK_VALID_LE_STATES,
2932 					&hdev->quirks);
2933 
2934 			err = btintel_legacy_rom_setup(hdev, &ver);
2935 			break;
2936 		case 0x0b:      /* SfP */
2937 		case 0x11:      /* JfP */
2938 		case 0x12:      /* ThP */
2939 		case 0x13:      /* HrP */
2940 		case 0x14:      /* CcP */
2941 			set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
2942 			fallthrough;
2943 		case 0x0c:	/* WsP */
2944 			/* Apply the device specific HCI quirks
2945 			 *
2946 			 * All Legacy bootloader devices support WBS
2947 			 */
2948 			set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2949 				&hdev->quirks);
2950 
2951 			/* These variants don't seem to support LE Coded PHY */
2952 			set_bit(HCI_QUIRK_BROKEN_LE_CODED, &hdev->quirks);
2953 
2954 			/* Setup MSFT Extension support */
2955 			btintel_set_msft_opcode(hdev, ver.hw_variant);
2956 
2957 			err = btintel_bootloader_setup(hdev, &ver);
2958 			btintel_register_devcoredump_support(hdev);
2959 			break;
2960 		default:
2961 			bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
2962 				   ver.hw_variant);
2963 			err = -EINVAL;
2964 		}
2965 
2966 		hci_set_hw_info(hdev,
2967 				"INTEL platform=%u variant=%u revision=%u",
2968 				ver.hw_platform, ver.hw_variant,
2969 				ver.hw_revision);
2970 
2971 		goto exit_error;
2972 	}
2973 
2974 	/* memset ver_tlv to start with clean state as few fields are exclusive
2975 	 * to bootloader mode and are not populated in operational mode
2976 	 */
2977 	memset(&ver_tlv, 0, sizeof(ver_tlv));
2978 	/* For TLV type device, parse the tlv data */
2979 	err = btintel_parse_version_tlv(hdev, &ver_tlv, skb);
2980 	if (err) {
2981 		bt_dev_err(hdev, "Failed to parse TLV version information");
2982 		goto exit_error;
2983 	}
2984 
2985 	if (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt) != 0x37) {
2986 		bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
2987 			   INTEL_HW_PLATFORM(ver_tlv.cnvi_bt));
2988 		err = -EINVAL;
2989 		goto exit_error;
2990 	}
2991 
2992 	/* Check for supported iBT hardware variants of this firmware
2993 	 * loading method.
2994 	 *
2995 	 * This check has been put in place to ensure correct forward
2996 	 * compatibility options when newer hardware variants come
2997 	 * along.
2998 	 */
2999 	switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) {
3000 	case 0x11:      /* JfP */
3001 	case 0x12:      /* ThP */
3002 	case 0x13:      /* HrP */
3003 	case 0x14:      /* CcP */
3004 		/* Some legacy bootloader devices starting from JfP,
3005 		 * the operational firmware supports both old and TLV based
3006 		 * HCI_Intel_Read_Version command based on the command
3007 		 * parameter.
3008 		 *
3009 		 * For upgrading firmware case, the TLV based version cannot
3010 		 * be used because the firmware filename for legacy bootloader
3011 		 * is based on the old format.
3012 		 *
3013 		 * Also, it is not easy to convert TLV based version from the
3014 		 * legacy version format.
3015 		 *
3016 		 * So, as a workaround for those devices, use the legacy
3017 		 * HCI_Intel_Read_Version to get the version information and
3018 		 * run the legacy bootloader setup.
3019 		 */
3020 		err = btintel_read_version(hdev, &ver);
3021 		if (err)
3022 			break;
3023 
3024 		/* Apply the device specific HCI quirks
3025 		 *
3026 		 * All Legacy bootloader devices support WBS
3027 		 */
3028 		set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
3029 
3030 		/* These variants don't seem to support LE Coded PHY */
3031 		set_bit(HCI_QUIRK_BROKEN_LE_CODED, &hdev->quirks);
3032 
3033 		/* Set Valid LE States quirk */
3034 		set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
3035 
3036 		/* Setup MSFT Extension support */
3037 		btintel_set_msft_opcode(hdev, ver.hw_variant);
3038 
3039 		err = btintel_bootloader_setup(hdev, &ver);
3040 		btintel_register_devcoredump_support(hdev);
3041 		break;
3042 	case 0x17:
3043 	case 0x18:
3044 	case 0x19:
3045 	case 0x1b:
3046 	case 0x1c:
3047 	case 0x1e:
3048 		/* Display version information of TLV type */
3049 		btintel_version_info_tlv(hdev, &ver_tlv);
3050 
3051 		/* Apply the device specific HCI quirks for TLV based devices
3052 		 *
3053 		 * All TLV based devices support WBS
3054 		 */
3055 		set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
3056 
3057 		/* Apply LE States quirk from solar onwards */
3058 		set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
3059 
3060 		/* Setup MSFT Extension support */
3061 		btintel_set_msft_opcode(hdev,
3062 					INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
3063 		btintel_set_dsm_reset_method(hdev, &ver_tlv);
3064 
3065 		err = btintel_bootloader_setup_tlv(hdev, &ver_tlv);
3066 		btintel_register_devcoredump_support(hdev);
3067 		btintel_print_fseq_info(hdev);
3068 		break;
3069 	default:
3070 		bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
3071 			   INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
3072 		err = -EINVAL;
3073 		break;
3074 	}
3075 
3076 	hci_set_hw_info(hdev, "INTEL platform=%u variant=%u",
3077 			INTEL_HW_PLATFORM(ver_tlv.cnvi_bt),
3078 			INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
3079 
3080 exit_error:
3081 	kfree_skb(skb);
3082 
3083 	return err;
3084 }
3085 
3086 int btintel_shutdown_combined(struct hci_dev *hdev)
3087 {
3088 	struct sk_buff *skb;
3089 	int ret;
3090 
3091 	/* Send HCI Reset to the controller to stop any BT activity which
3092 	 * were triggered. This will help to save power and maintain the
3093 	 * sync b/w Host and controller
3094 	 */
3095 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
3096 	if (IS_ERR(skb)) {
3097 		bt_dev_err(hdev, "HCI reset during shutdown failed");
3098 		return PTR_ERR(skb);
3099 	}
3100 	kfree_skb(skb);
3101 
3102 
3103 	/* Some platforms have an issue with BT LED when the interface is
3104 	 * down or BT radio is turned off, which takes 5 seconds to BT LED
3105 	 * goes off. As a workaround, sends HCI_Intel_SW_RFKILL to put the
3106 	 * device in the RFKILL ON state which turns off the BT LED immediately.
3107 	 */
3108 	if (btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) {
3109 		skb = __hci_cmd_sync(hdev, 0xfc3f, 0, NULL, HCI_INIT_TIMEOUT);
3110 		if (IS_ERR(skb)) {
3111 			ret = PTR_ERR(skb);
3112 			bt_dev_err(hdev, "turning off Intel device LED failed");
3113 			return ret;
3114 		}
3115 		kfree_skb(skb);
3116 	}
3117 
3118 	return 0;
3119 }
3120 EXPORT_SYMBOL_GPL(btintel_shutdown_combined);
3121 
3122 int btintel_configure_setup(struct hci_dev *hdev, const char *driver_name)
3123 {
3124 	hdev->manufacturer = 2;
3125 	hdev->setup = btintel_setup_combined;
3126 	hdev->shutdown = btintel_shutdown_combined;
3127 	hdev->hw_error = btintel_hw_error;
3128 	hdev->set_diag = btintel_set_diag_combined;
3129 	hdev->set_bdaddr = btintel_set_bdaddr;
3130 
3131 	coredump_info.driver_name = driver_name;
3132 
3133 	return 0;
3134 }
3135 EXPORT_SYMBOL_GPL(btintel_configure_setup);
3136 
3137 static int btintel_diagnostics(struct hci_dev *hdev, struct sk_buff *skb)
3138 {
3139 	struct intel_tlv *tlv = (void *)&skb->data[5];
3140 
3141 	/* The first event is always an event type TLV */
3142 	if (tlv->type != INTEL_TLV_TYPE_ID)
3143 		goto recv_frame;
3144 
3145 	switch (tlv->val[0]) {
3146 	case INTEL_TLV_SYSTEM_EXCEPTION:
3147 	case INTEL_TLV_FATAL_EXCEPTION:
3148 	case INTEL_TLV_DEBUG_EXCEPTION:
3149 	case INTEL_TLV_TEST_EXCEPTION:
3150 		/* Generate devcoredump from exception */
3151 		if (!hci_devcd_init(hdev, skb->len)) {
3152 			hci_devcd_append(hdev, skb);
3153 			hci_devcd_complete(hdev);
3154 		} else {
3155 			bt_dev_err(hdev, "Failed to generate devcoredump");
3156 			kfree_skb(skb);
3157 		}
3158 		return 0;
3159 	default:
3160 		bt_dev_err(hdev, "Invalid exception type %02X", tlv->val[0]);
3161 	}
3162 
3163 recv_frame:
3164 	return hci_recv_frame(hdev, skb);
3165 }
3166 
3167 int btintel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
3168 {
3169 	struct hci_event_hdr *hdr = (void *)skb->data;
3170 	const char diagnostics_hdr[] = { 0x87, 0x80, 0x03 };
3171 
3172 	if (skb->len > HCI_EVENT_HDR_SIZE && hdr->evt == 0xff &&
3173 	    hdr->plen > 0) {
3174 		const void *ptr = skb->data + HCI_EVENT_HDR_SIZE + 1;
3175 		unsigned int len = skb->len - HCI_EVENT_HDR_SIZE - 1;
3176 
3177 		if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
3178 			switch (skb->data[2]) {
3179 			case 0x02:
3180 				/* When switching to the operational firmware
3181 				 * the device sends a vendor specific event
3182 				 * indicating that the bootup completed.
3183 				 */
3184 				btintel_bootup(hdev, ptr, len);
3185 				break;
3186 			case 0x06:
3187 				/* When the firmware loading completes the
3188 				 * device sends out a vendor specific event
3189 				 * indicating the result of the firmware
3190 				 * loading.
3191 				 */
3192 				btintel_secure_send_result(hdev, ptr, len);
3193 				break;
3194 			}
3195 		}
3196 
3197 		/* Handle all diagnostics events separately. May still call
3198 		 * hci_recv_frame.
3199 		 */
3200 		if (len >= sizeof(diagnostics_hdr) &&
3201 		    memcmp(&skb->data[2], diagnostics_hdr,
3202 			   sizeof(diagnostics_hdr)) == 0) {
3203 			return btintel_diagnostics(hdev, skb);
3204 		}
3205 	}
3206 
3207 	return hci_recv_frame(hdev, skb);
3208 }
3209 EXPORT_SYMBOL_GPL(btintel_recv_event);
3210 
3211 void btintel_bootup(struct hci_dev *hdev, const void *ptr, unsigned int len)
3212 {
3213 	const struct intel_bootup *evt = ptr;
3214 
3215 	if (len != sizeof(*evt))
3216 		return;
3217 
3218 	if (btintel_test_and_clear_flag(hdev, INTEL_BOOTING))
3219 		btintel_wake_up_flag(hdev, INTEL_BOOTING);
3220 }
3221 EXPORT_SYMBOL_GPL(btintel_bootup);
3222 
3223 void btintel_secure_send_result(struct hci_dev *hdev,
3224 				const void *ptr, unsigned int len)
3225 {
3226 	const struct intel_secure_send_result *evt = ptr;
3227 
3228 	if (len != sizeof(*evt))
3229 		return;
3230 
3231 	if (evt->result)
3232 		btintel_set_flag(hdev, INTEL_FIRMWARE_FAILED);
3233 
3234 	if (btintel_test_and_clear_flag(hdev, INTEL_DOWNLOADING) &&
3235 	    btintel_test_flag(hdev, INTEL_FIRMWARE_LOADED))
3236 		btintel_wake_up_flag(hdev, INTEL_DOWNLOADING);
3237 }
3238 EXPORT_SYMBOL_GPL(btintel_secure_send_result);
3239 
3240 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
3241 MODULE_DESCRIPTION("Bluetooth support for Intel devices ver " VERSION);
3242 MODULE_VERSION(VERSION);
3243 MODULE_LICENSE("GPL");
3244 MODULE_FIRMWARE("intel/ibt-11-5.sfi");
3245 MODULE_FIRMWARE("intel/ibt-11-5.ddc");
3246 MODULE_FIRMWARE("intel/ibt-12-16.sfi");
3247 MODULE_FIRMWARE("intel/ibt-12-16.ddc");
3248