xref: /linux/drivers/block/zram/zram_drv.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/cpuhotplug.h>
35 
36 #include "zram_drv.h"
37 
38 static DEFINE_IDR(zram_index_idr);
39 /* idr index must be protected */
40 static DEFINE_MUTEX(zram_index_mutex);
41 
42 static int zram_major;
43 static const char *default_compressor = "lzo";
44 
45 /* Module params (documentation at end) */
46 static unsigned int num_devices = 1;
47 
48 static inline bool init_done(struct zram *zram)
49 {
50 	return zram->disksize;
51 }
52 
53 static inline struct zram *dev_to_zram(struct device *dev)
54 {
55 	return (struct zram *)dev_to_disk(dev)->private_data;
56 }
57 
58 /* flag operations require table entry bit_spin_lock() being held */
59 static int zram_test_flag(struct zram_meta *meta, u32 index,
60 			enum zram_pageflags flag)
61 {
62 	return meta->table[index].value & BIT(flag);
63 }
64 
65 static void zram_set_flag(struct zram_meta *meta, u32 index,
66 			enum zram_pageflags flag)
67 {
68 	meta->table[index].value |= BIT(flag);
69 }
70 
71 static void zram_clear_flag(struct zram_meta *meta, u32 index,
72 			enum zram_pageflags flag)
73 {
74 	meta->table[index].value &= ~BIT(flag);
75 }
76 
77 static inline void zram_set_element(struct zram_meta *meta, u32 index,
78 			unsigned long element)
79 {
80 	meta->table[index].element = element;
81 }
82 
83 static inline void zram_clear_element(struct zram_meta *meta, u32 index)
84 {
85 	meta->table[index].element = 0;
86 }
87 
88 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
89 {
90 	return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
91 }
92 
93 static void zram_set_obj_size(struct zram_meta *meta,
94 					u32 index, size_t size)
95 {
96 	unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
97 
98 	meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
99 }
100 
101 static inline bool is_partial_io(struct bio_vec *bvec)
102 {
103 	return bvec->bv_len != PAGE_SIZE;
104 }
105 
106 static void zram_revalidate_disk(struct zram *zram)
107 {
108 	revalidate_disk(zram->disk);
109 	/* revalidate_disk reset the BDI_CAP_STABLE_WRITES so set again */
110 	zram->disk->queue->backing_dev_info->capabilities |=
111 		BDI_CAP_STABLE_WRITES;
112 }
113 
114 /*
115  * Check if request is within bounds and aligned on zram logical blocks.
116  */
117 static inline bool valid_io_request(struct zram *zram,
118 		sector_t start, unsigned int size)
119 {
120 	u64 end, bound;
121 
122 	/* unaligned request */
123 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
124 		return false;
125 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
126 		return false;
127 
128 	end = start + (size >> SECTOR_SHIFT);
129 	bound = zram->disksize >> SECTOR_SHIFT;
130 	/* out of range range */
131 	if (unlikely(start >= bound || end > bound || start > end))
132 		return false;
133 
134 	/* I/O request is valid */
135 	return true;
136 }
137 
138 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
139 {
140 	if (*offset + bvec->bv_len >= PAGE_SIZE)
141 		(*index)++;
142 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
143 }
144 
145 static inline void update_used_max(struct zram *zram,
146 					const unsigned long pages)
147 {
148 	unsigned long old_max, cur_max;
149 
150 	old_max = atomic_long_read(&zram->stats.max_used_pages);
151 
152 	do {
153 		cur_max = old_max;
154 		if (pages > cur_max)
155 			old_max = atomic_long_cmpxchg(
156 				&zram->stats.max_used_pages, cur_max, pages);
157 	} while (old_max != cur_max);
158 }
159 
160 static inline void zram_fill_page(char *ptr, unsigned long len,
161 					unsigned long value)
162 {
163 	int i;
164 	unsigned long *page = (unsigned long *)ptr;
165 
166 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
167 
168 	if (likely(value == 0)) {
169 		memset(ptr, 0, len);
170 	} else {
171 		for (i = 0; i < len / sizeof(*page); i++)
172 			page[i] = value;
173 	}
174 }
175 
176 static bool page_same_filled(void *ptr, unsigned long *element)
177 {
178 	unsigned int pos;
179 	unsigned long *page;
180 
181 	page = (unsigned long *)ptr;
182 
183 	for (pos = 0; pos < PAGE_SIZE / sizeof(*page) - 1; pos++) {
184 		if (page[pos] != page[pos + 1])
185 			return false;
186 	}
187 
188 	*element = page[pos];
189 
190 	return true;
191 }
192 
193 static void handle_same_page(struct bio_vec *bvec, unsigned long element)
194 {
195 	struct page *page = bvec->bv_page;
196 	void *user_mem;
197 
198 	user_mem = kmap_atomic(page);
199 	zram_fill_page(user_mem + bvec->bv_offset, bvec->bv_len, element);
200 	kunmap_atomic(user_mem);
201 
202 	flush_dcache_page(page);
203 }
204 
205 static ssize_t initstate_show(struct device *dev,
206 		struct device_attribute *attr, char *buf)
207 {
208 	u32 val;
209 	struct zram *zram = dev_to_zram(dev);
210 
211 	down_read(&zram->init_lock);
212 	val = init_done(zram);
213 	up_read(&zram->init_lock);
214 
215 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
216 }
217 
218 static ssize_t disksize_show(struct device *dev,
219 		struct device_attribute *attr, char *buf)
220 {
221 	struct zram *zram = dev_to_zram(dev);
222 
223 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
224 }
225 
226 static ssize_t mem_limit_store(struct device *dev,
227 		struct device_attribute *attr, const char *buf, size_t len)
228 {
229 	u64 limit;
230 	char *tmp;
231 	struct zram *zram = dev_to_zram(dev);
232 
233 	limit = memparse(buf, &tmp);
234 	if (buf == tmp) /* no chars parsed, invalid input */
235 		return -EINVAL;
236 
237 	down_write(&zram->init_lock);
238 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
239 	up_write(&zram->init_lock);
240 
241 	return len;
242 }
243 
244 static ssize_t mem_used_max_store(struct device *dev,
245 		struct device_attribute *attr, const char *buf, size_t len)
246 {
247 	int err;
248 	unsigned long val;
249 	struct zram *zram = dev_to_zram(dev);
250 
251 	err = kstrtoul(buf, 10, &val);
252 	if (err || val != 0)
253 		return -EINVAL;
254 
255 	down_read(&zram->init_lock);
256 	if (init_done(zram)) {
257 		struct zram_meta *meta = zram->meta;
258 		atomic_long_set(&zram->stats.max_used_pages,
259 				zs_get_total_pages(meta->mem_pool));
260 	}
261 	up_read(&zram->init_lock);
262 
263 	return len;
264 }
265 
266 /*
267  * We switched to per-cpu streams and this attr is not needed anymore.
268  * However, we will keep it around for some time, because:
269  * a) we may revert per-cpu streams in the future
270  * b) it's visible to user space and we need to follow our 2 years
271  *    retirement rule; but we already have a number of 'soon to be
272  *    altered' attrs, so max_comp_streams need to wait for the next
273  *    layoff cycle.
274  */
275 static ssize_t max_comp_streams_show(struct device *dev,
276 		struct device_attribute *attr, char *buf)
277 {
278 	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
279 }
280 
281 static ssize_t max_comp_streams_store(struct device *dev,
282 		struct device_attribute *attr, const char *buf, size_t len)
283 {
284 	return len;
285 }
286 
287 static ssize_t comp_algorithm_show(struct device *dev,
288 		struct device_attribute *attr, char *buf)
289 {
290 	size_t sz;
291 	struct zram *zram = dev_to_zram(dev);
292 
293 	down_read(&zram->init_lock);
294 	sz = zcomp_available_show(zram->compressor, buf);
295 	up_read(&zram->init_lock);
296 
297 	return sz;
298 }
299 
300 static ssize_t comp_algorithm_store(struct device *dev,
301 		struct device_attribute *attr, const char *buf, size_t len)
302 {
303 	struct zram *zram = dev_to_zram(dev);
304 	char compressor[CRYPTO_MAX_ALG_NAME];
305 	size_t sz;
306 
307 	strlcpy(compressor, buf, sizeof(compressor));
308 	/* ignore trailing newline */
309 	sz = strlen(compressor);
310 	if (sz > 0 && compressor[sz - 1] == '\n')
311 		compressor[sz - 1] = 0x00;
312 
313 	if (!zcomp_available_algorithm(compressor))
314 		return -EINVAL;
315 
316 	down_write(&zram->init_lock);
317 	if (init_done(zram)) {
318 		up_write(&zram->init_lock);
319 		pr_info("Can't change algorithm for initialized device\n");
320 		return -EBUSY;
321 	}
322 
323 	strlcpy(zram->compressor, compressor, sizeof(compressor));
324 	up_write(&zram->init_lock);
325 	return len;
326 }
327 
328 static ssize_t compact_store(struct device *dev,
329 		struct device_attribute *attr, const char *buf, size_t len)
330 {
331 	struct zram *zram = dev_to_zram(dev);
332 	struct zram_meta *meta;
333 
334 	down_read(&zram->init_lock);
335 	if (!init_done(zram)) {
336 		up_read(&zram->init_lock);
337 		return -EINVAL;
338 	}
339 
340 	meta = zram->meta;
341 	zs_compact(meta->mem_pool);
342 	up_read(&zram->init_lock);
343 
344 	return len;
345 }
346 
347 static ssize_t io_stat_show(struct device *dev,
348 		struct device_attribute *attr, char *buf)
349 {
350 	struct zram *zram = dev_to_zram(dev);
351 	ssize_t ret;
352 
353 	down_read(&zram->init_lock);
354 	ret = scnprintf(buf, PAGE_SIZE,
355 			"%8llu %8llu %8llu %8llu\n",
356 			(u64)atomic64_read(&zram->stats.failed_reads),
357 			(u64)atomic64_read(&zram->stats.failed_writes),
358 			(u64)atomic64_read(&zram->stats.invalid_io),
359 			(u64)atomic64_read(&zram->stats.notify_free));
360 	up_read(&zram->init_lock);
361 
362 	return ret;
363 }
364 
365 static ssize_t mm_stat_show(struct device *dev,
366 		struct device_attribute *attr, char *buf)
367 {
368 	struct zram *zram = dev_to_zram(dev);
369 	struct zs_pool_stats pool_stats;
370 	u64 orig_size, mem_used = 0;
371 	long max_used;
372 	ssize_t ret;
373 
374 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
375 
376 	down_read(&zram->init_lock);
377 	if (init_done(zram)) {
378 		mem_used = zs_get_total_pages(zram->meta->mem_pool);
379 		zs_pool_stats(zram->meta->mem_pool, &pool_stats);
380 	}
381 
382 	orig_size = atomic64_read(&zram->stats.pages_stored);
383 	max_used = atomic_long_read(&zram->stats.max_used_pages);
384 
385 	ret = scnprintf(buf, PAGE_SIZE,
386 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
387 			orig_size << PAGE_SHIFT,
388 			(u64)atomic64_read(&zram->stats.compr_data_size),
389 			mem_used << PAGE_SHIFT,
390 			zram->limit_pages << PAGE_SHIFT,
391 			max_used << PAGE_SHIFT,
392 			(u64)atomic64_read(&zram->stats.same_pages),
393 			pool_stats.pages_compacted);
394 	up_read(&zram->init_lock);
395 
396 	return ret;
397 }
398 
399 static ssize_t debug_stat_show(struct device *dev,
400 		struct device_attribute *attr, char *buf)
401 {
402 	int version = 1;
403 	struct zram *zram = dev_to_zram(dev);
404 	ssize_t ret;
405 
406 	down_read(&zram->init_lock);
407 	ret = scnprintf(buf, PAGE_SIZE,
408 			"version: %d\n%8llu\n",
409 			version,
410 			(u64)atomic64_read(&zram->stats.writestall));
411 	up_read(&zram->init_lock);
412 
413 	return ret;
414 }
415 
416 static DEVICE_ATTR_RO(io_stat);
417 static DEVICE_ATTR_RO(mm_stat);
418 static DEVICE_ATTR_RO(debug_stat);
419 
420 static void zram_meta_free(struct zram_meta *meta, u64 disksize)
421 {
422 	size_t num_pages = disksize >> PAGE_SHIFT;
423 	size_t index;
424 
425 	/* Free all pages that are still in this zram device */
426 	for (index = 0; index < num_pages; index++) {
427 		unsigned long handle = meta->table[index].handle;
428 		/*
429 		 * No memory is allocated for same element filled pages.
430 		 * Simply clear same page flag.
431 		 */
432 		if (!handle || zram_test_flag(meta, index, ZRAM_SAME))
433 			continue;
434 
435 		zs_free(meta->mem_pool, handle);
436 	}
437 
438 	zs_destroy_pool(meta->mem_pool);
439 	vfree(meta->table);
440 	kfree(meta);
441 }
442 
443 static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize)
444 {
445 	size_t num_pages;
446 	struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
447 
448 	if (!meta)
449 		return NULL;
450 
451 	num_pages = disksize >> PAGE_SHIFT;
452 	meta->table = vzalloc(num_pages * sizeof(*meta->table));
453 	if (!meta->table) {
454 		pr_err("Error allocating zram address table\n");
455 		goto out_error;
456 	}
457 
458 	meta->mem_pool = zs_create_pool(pool_name);
459 	if (!meta->mem_pool) {
460 		pr_err("Error creating memory pool\n");
461 		goto out_error;
462 	}
463 
464 	return meta;
465 
466 out_error:
467 	vfree(meta->table);
468 	kfree(meta);
469 	return NULL;
470 }
471 
472 /*
473  * To protect concurrent access to the same index entry,
474  * caller should hold this table index entry's bit_spinlock to
475  * indicate this index entry is accessing.
476  */
477 static void zram_free_page(struct zram *zram, size_t index)
478 {
479 	struct zram_meta *meta = zram->meta;
480 	unsigned long handle = meta->table[index].handle;
481 
482 	/*
483 	 * No memory is allocated for same element filled pages.
484 	 * Simply clear same page flag.
485 	 */
486 	if (zram_test_flag(meta, index, ZRAM_SAME)) {
487 		zram_clear_flag(meta, index, ZRAM_SAME);
488 		zram_clear_element(meta, index);
489 		atomic64_dec(&zram->stats.same_pages);
490 		return;
491 	}
492 
493 	if (!handle)
494 		return;
495 
496 	zs_free(meta->mem_pool, handle);
497 
498 	atomic64_sub(zram_get_obj_size(meta, index),
499 			&zram->stats.compr_data_size);
500 	atomic64_dec(&zram->stats.pages_stored);
501 
502 	meta->table[index].handle = 0;
503 	zram_set_obj_size(meta, index, 0);
504 }
505 
506 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
507 {
508 	int ret = 0;
509 	unsigned char *cmem;
510 	struct zram_meta *meta = zram->meta;
511 	unsigned long handle;
512 	unsigned int size;
513 
514 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
515 	handle = meta->table[index].handle;
516 	size = zram_get_obj_size(meta, index);
517 
518 	if (!handle || zram_test_flag(meta, index, ZRAM_SAME)) {
519 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
520 		zram_fill_page(mem, PAGE_SIZE, meta->table[index].element);
521 		return 0;
522 	}
523 
524 	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
525 	if (size == PAGE_SIZE) {
526 		memcpy(mem, cmem, PAGE_SIZE);
527 	} else {
528 		struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
529 
530 		ret = zcomp_decompress(zstrm, cmem, size, mem);
531 		zcomp_stream_put(zram->comp);
532 	}
533 	zs_unmap_object(meta->mem_pool, handle);
534 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
535 
536 	/* Should NEVER happen. Return bio error if it does. */
537 	if (unlikely(ret)) {
538 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
539 		return ret;
540 	}
541 
542 	return 0;
543 }
544 
545 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
546 			  u32 index, int offset)
547 {
548 	int ret;
549 	struct page *page;
550 	unsigned char *user_mem, *uncmem = NULL;
551 	struct zram_meta *meta = zram->meta;
552 	page = bvec->bv_page;
553 
554 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
555 	if (unlikely(!meta->table[index].handle) ||
556 			zram_test_flag(meta, index, ZRAM_SAME)) {
557 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
558 		handle_same_page(bvec, meta->table[index].element);
559 		return 0;
560 	}
561 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
562 
563 	if (is_partial_io(bvec))
564 		/* Use  a temporary buffer to decompress the page */
565 		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
566 
567 	user_mem = kmap_atomic(page);
568 	if (!is_partial_io(bvec))
569 		uncmem = user_mem;
570 
571 	if (!uncmem) {
572 		pr_err("Unable to allocate temp memory\n");
573 		ret = -ENOMEM;
574 		goto out_cleanup;
575 	}
576 
577 	ret = zram_decompress_page(zram, uncmem, index);
578 	/* Should NEVER happen. Return bio error if it does. */
579 	if (unlikely(ret))
580 		goto out_cleanup;
581 
582 	if (is_partial_io(bvec))
583 		memcpy(user_mem + bvec->bv_offset, uncmem + offset,
584 				bvec->bv_len);
585 
586 	flush_dcache_page(page);
587 	ret = 0;
588 out_cleanup:
589 	kunmap_atomic(user_mem);
590 	if (is_partial_io(bvec))
591 		kfree(uncmem);
592 	return ret;
593 }
594 
595 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
596 			   int offset)
597 {
598 	int ret = 0;
599 	unsigned int clen;
600 	unsigned long handle = 0;
601 	struct page *page;
602 	unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
603 	struct zram_meta *meta = zram->meta;
604 	struct zcomp_strm *zstrm = NULL;
605 	unsigned long alloced_pages;
606 	unsigned long element;
607 
608 	page = bvec->bv_page;
609 	if (is_partial_io(bvec)) {
610 		/*
611 		 * This is a partial IO. We need to read the full page
612 		 * before to write the changes.
613 		 */
614 		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
615 		if (!uncmem) {
616 			ret = -ENOMEM;
617 			goto out;
618 		}
619 		ret = zram_decompress_page(zram, uncmem, index);
620 		if (ret)
621 			goto out;
622 	}
623 
624 compress_again:
625 	user_mem = kmap_atomic(page);
626 	if (is_partial_io(bvec)) {
627 		memcpy(uncmem + offset, user_mem + bvec->bv_offset,
628 		       bvec->bv_len);
629 		kunmap_atomic(user_mem);
630 		user_mem = NULL;
631 	} else {
632 		uncmem = user_mem;
633 	}
634 
635 	if (page_same_filled(uncmem, &element)) {
636 		if (user_mem)
637 			kunmap_atomic(user_mem);
638 		/* Free memory associated with this sector now. */
639 		bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
640 		zram_free_page(zram, index);
641 		zram_set_flag(meta, index, ZRAM_SAME);
642 		zram_set_element(meta, index, element);
643 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
644 
645 		atomic64_inc(&zram->stats.same_pages);
646 		ret = 0;
647 		goto out;
648 	}
649 
650 	zstrm = zcomp_stream_get(zram->comp);
651 	ret = zcomp_compress(zstrm, uncmem, &clen);
652 	if (!is_partial_io(bvec)) {
653 		kunmap_atomic(user_mem);
654 		user_mem = NULL;
655 		uncmem = NULL;
656 	}
657 
658 	if (unlikely(ret)) {
659 		pr_err("Compression failed! err=%d\n", ret);
660 		goto out;
661 	}
662 
663 	src = zstrm->buffer;
664 	if (unlikely(clen > max_zpage_size)) {
665 		clen = PAGE_SIZE;
666 		if (is_partial_io(bvec))
667 			src = uncmem;
668 	}
669 
670 	/*
671 	 * handle allocation has 2 paths:
672 	 * a) fast path is executed with preemption disabled (for
673 	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
674 	 *  since we can't sleep;
675 	 * b) slow path enables preemption and attempts to allocate
676 	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
677 	 *  put per-cpu compression stream and, thus, to re-do
678 	 *  the compression once handle is allocated.
679 	 *
680 	 * if we have a 'non-null' handle here then we are coming
681 	 * from the slow path and handle has already been allocated.
682 	 */
683 	if (!handle)
684 		handle = zs_malloc(meta->mem_pool, clen,
685 				__GFP_KSWAPD_RECLAIM |
686 				__GFP_NOWARN |
687 				__GFP_HIGHMEM |
688 				__GFP_MOVABLE);
689 	if (!handle) {
690 		zcomp_stream_put(zram->comp);
691 		zstrm = NULL;
692 
693 		atomic64_inc(&zram->stats.writestall);
694 
695 		handle = zs_malloc(meta->mem_pool, clen,
696 				GFP_NOIO | __GFP_HIGHMEM |
697 				__GFP_MOVABLE);
698 		if (handle)
699 			goto compress_again;
700 
701 		pr_err("Error allocating memory for compressed page: %u, size=%u\n",
702 			index, clen);
703 		ret = -ENOMEM;
704 		goto out;
705 	}
706 
707 	alloced_pages = zs_get_total_pages(meta->mem_pool);
708 	update_used_max(zram, alloced_pages);
709 
710 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
711 		zs_free(meta->mem_pool, handle);
712 		ret = -ENOMEM;
713 		goto out;
714 	}
715 
716 	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
717 
718 	if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
719 		src = kmap_atomic(page);
720 		memcpy(cmem, src, PAGE_SIZE);
721 		kunmap_atomic(src);
722 	} else {
723 		memcpy(cmem, src, clen);
724 	}
725 
726 	zcomp_stream_put(zram->comp);
727 	zstrm = NULL;
728 	zs_unmap_object(meta->mem_pool, handle);
729 
730 	/*
731 	 * Free memory associated with this sector
732 	 * before overwriting unused sectors.
733 	 */
734 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
735 	zram_free_page(zram, index);
736 
737 	meta->table[index].handle = handle;
738 	zram_set_obj_size(meta, index, clen);
739 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
740 
741 	/* Update stats */
742 	atomic64_add(clen, &zram->stats.compr_data_size);
743 	atomic64_inc(&zram->stats.pages_stored);
744 out:
745 	if (zstrm)
746 		zcomp_stream_put(zram->comp);
747 	if (is_partial_io(bvec))
748 		kfree(uncmem);
749 	return ret;
750 }
751 
752 /*
753  * zram_bio_discard - handler on discard request
754  * @index: physical block index in PAGE_SIZE units
755  * @offset: byte offset within physical block
756  */
757 static void zram_bio_discard(struct zram *zram, u32 index,
758 			     int offset, struct bio *bio)
759 {
760 	size_t n = bio->bi_iter.bi_size;
761 	struct zram_meta *meta = zram->meta;
762 
763 	/*
764 	 * zram manages data in physical block size units. Because logical block
765 	 * size isn't identical with physical block size on some arch, we
766 	 * could get a discard request pointing to a specific offset within a
767 	 * certain physical block.  Although we can handle this request by
768 	 * reading that physiclal block and decompressing and partially zeroing
769 	 * and re-compressing and then re-storing it, this isn't reasonable
770 	 * because our intent with a discard request is to save memory.  So
771 	 * skipping this logical block is appropriate here.
772 	 */
773 	if (offset) {
774 		if (n <= (PAGE_SIZE - offset))
775 			return;
776 
777 		n -= (PAGE_SIZE - offset);
778 		index++;
779 	}
780 
781 	while (n >= PAGE_SIZE) {
782 		bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
783 		zram_free_page(zram, index);
784 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
785 		atomic64_inc(&zram->stats.notify_free);
786 		index++;
787 		n -= PAGE_SIZE;
788 	}
789 }
790 
791 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
792 			int offset, bool is_write)
793 {
794 	unsigned long start_time = jiffies;
795 	int rw_acct = is_write ? REQ_OP_WRITE : REQ_OP_READ;
796 	int ret;
797 
798 	generic_start_io_acct(rw_acct, bvec->bv_len >> SECTOR_SHIFT,
799 			&zram->disk->part0);
800 
801 	if (!is_write) {
802 		atomic64_inc(&zram->stats.num_reads);
803 		ret = zram_bvec_read(zram, bvec, index, offset);
804 	} else {
805 		atomic64_inc(&zram->stats.num_writes);
806 		ret = zram_bvec_write(zram, bvec, index, offset);
807 	}
808 
809 	generic_end_io_acct(rw_acct, &zram->disk->part0, start_time);
810 
811 	if (unlikely(ret)) {
812 		if (!is_write)
813 			atomic64_inc(&zram->stats.failed_reads);
814 		else
815 			atomic64_inc(&zram->stats.failed_writes);
816 	}
817 
818 	return ret;
819 }
820 
821 static void __zram_make_request(struct zram *zram, struct bio *bio)
822 {
823 	int offset;
824 	u32 index;
825 	struct bio_vec bvec;
826 	struct bvec_iter iter;
827 
828 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
829 	offset = (bio->bi_iter.bi_sector &
830 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
831 
832 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
833 		zram_bio_discard(zram, index, offset, bio);
834 		bio_endio(bio);
835 		return;
836 	}
837 
838 	bio_for_each_segment(bvec, bio, iter) {
839 		int max_transfer_size = PAGE_SIZE - offset;
840 
841 		if (bvec.bv_len > max_transfer_size) {
842 			/*
843 			 * zram_bvec_rw() can only make operation on a single
844 			 * zram page. Split the bio vector.
845 			 */
846 			struct bio_vec bv;
847 
848 			bv.bv_page = bvec.bv_page;
849 			bv.bv_len = max_transfer_size;
850 			bv.bv_offset = bvec.bv_offset;
851 
852 			if (zram_bvec_rw(zram, &bv, index, offset,
853 					 op_is_write(bio_op(bio))) < 0)
854 				goto out;
855 
856 			bv.bv_len = bvec.bv_len - max_transfer_size;
857 			bv.bv_offset += max_transfer_size;
858 			if (zram_bvec_rw(zram, &bv, index + 1, 0,
859 					 op_is_write(bio_op(bio))) < 0)
860 				goto out;
861 		} else
862 			if (zram_bvec_rw(zram, &bvec, index, offset,
863 					 op_is_write(bio_op(bio))) < 0)
864 				goto out;
865 
866 		update_position(&index, &offset, &bvec);
867 	}
868 
869 	bio_endio(bio);
870 	return;
871 
872 out:
873 	bio_io_error(bio);
874 }
875 
876 /*
877  * Handler function for all zram I/O requests.
878  */
879 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
880 {
881 	struct zram *zram = queue->queuedata;
882 
883 	blk_queue_split(queue, &bio, queue->bio_split);
884 
885 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
886 					bio->bi_iter.bi_size)) {
887 		atomic64_inc(&zram->stats.invalid_io);
888 		goto error;
889 	}
890 
891 	__zram_make_request(zram, bio);
892 	return BLK_QC_T_NONE;
893 
894 error:
895 	bio_io_error(bio);
896 	return BLK_QC_T_NONE;
897 }
898 
899 static void zram_slot_free_notify(struct block_device *bdev,
900 				unsigned long index)
901 {
902 	struct zram *zram;
903 	struct zram_meta *meta;
904 
905 	zram = bdev->bd_disk->private_data;
906 	meta = zram->meta;
907 
908 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
909 	zram_free_page(zram, index);
910 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
911 	atomic64_inc(&zram->stats.notify_free);
912 }
913 
914 static int zram_rw_page(struct block_device *bdev, sector_t sector,
915 		       struct page *page, bool is_write)
916 {
917 	int offset, err = -EIO;
918 	u32 index;
919 	struct zram *zram;
920 	struct bio_vec bv;
921 
922 	zram = bdev->bd_disk->private_data;
923 
924 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
925 		atomic64_inc(&zram->stats.invalid_io);
926 		err = -EINVAL;
927 		goto out;
928 	}
929 
930 	index = sector >> SECTORS_PER_PAGE_SHIFT;
931 	offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
932 
933 	bv.bv_page = page;
934 	bv.bv_len = PAGE_SIZE;
935 	bv.bv_offset = 0;
936 
937 	err = zram_bvec_rw(zram, &bv, index, offset, is_write);
938 out:
939 	/*
940 	 * If I/O fails, just return error(ie, non-zero) without
941 	 * calling page_endio.
942 	 * It causes resubmit the I/O with bio request by upper functions
943 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
944 	 * bio->bi_end_io does things to handle the error
945 	 * (e.g., SetPageError, set_page_dirty and extra works).
946 	 */
947 	if (err == 0)
948 		page_endio(page, is_write, 0);
949 	return err;
950 }
951 
952 static void zram_reset_device(struct zram *zram)
953 {
954 	struct zram_meta *meta;
955 	struct zcomp *comp;
956 	u64 disksize;
957 
958 	down_write(&zram->init_lock);
959 
960 	zram->limit_pages = 0;
961 
962 	if (!init_done(zram)) {
963 		up_write(&zram->init_lock);
964 		return;
965 	}
966 
967 	meta = zram->meta;
968 	comp = zram->comp;
969 	disksize = zram->disksize;
970 
971 	/* Reset stats */
972 	memset(&zram->stats, 0, sizeof(zram->stats));
973 	zram->disksize = 0;
974 
975 	set_capacity(zram->disk, 0);
976 	part_stat_set_all(&zram->disk->part0, 0);
977 
978 	up_write(&zram->init_lock);
979 	/* I/O operation under all of CPU are done so let's free */
980 	zram_meta_free(meta, disksize);
981 	zcomp_destroy(comp);
982 }
983 
984 static ssize_t disksize_store(struct device *dev,
985 		struct device_attribute *attr, const char *buf, size_t len)
986 {
987 	u64 disksize;
988 	struct zcomp *comp;
989 	struct zram_meta *meta;
990 	struct zram *zram = dev_to_zram(dev);
991 	int err;
992 
993 	disksize = memparse(buf, NULL);
994 	if (!disksize)
995 		return -EINVAL;
996 
997 	disksize = PAGE_ALIGN(disksize);
998 	meta = zram_meta_alloc(zram->disk->disk_name, disksize);
999 	if (!meta)
1000 		return -ENOMEM;
1001 
1002 	comp = zcomp_create(zram->compressor);
1003 	if (IS_ERR(comp)) {
1004 		pr_err("Cannot initialise %s compressing backend\n",
1005 				zram->compressor);
1006 		err = PTR_ERR(comp);
1007 		goto out_free_meta;
1008 	}
1009 
1010 	down_write(&zram->init_lock);
1011 	if (init_done(zram)) {
1012 		pr_info("Cannot change disksize for initialized device\n");
1013 		err = -EBUSY;
1014 		goto out_destroy_comp;
1015 	}
1016 
1017 	zram->meta = meta;
1018 	zram->comp = comp;
1019 	zram->disksize = disksize;
1020 	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1021 	zram_revalidate_disk(zram);
1022 	up_write(&zram->init_lock);
1023 
1024 	return len;
1025 
1026 out_destroy_comp:
1027 	up_write(&zram->init_lock);
1028 	zcomp_destroy(comp);
1029 out_free_meta:
1030 	zram_meta_free(meta, disksize);
1031 	return err;
1032 }
1033 
1034 static ssize_t reset_store(struct device *dev,
1035 		struct device_attribute *attr, const char *buf, size_t len)
1036 {
1037 	int ret;
1038 	unsigned short do_reset;
1039 	struct zram *zram;
1040 	struct block_device *bdev;
1041 
1042 	ret = kstrtou16(buf, 10, &do_reset);
1043 	if (ret)
1044 		return ret;
1045 
1046 	if (!do_reset)
1047 		return -EINVAL;
1048 
1049 	zram = dev_to_zram(dev);
1050 	bdev = bdget_disk(zram->disk, 0);
1051 	if (!bdev)
1052 		return -ENOMEM;
1053 
1054 	mutex_lock(&bdev->bd_mutex);
1055 	/* Do not reset an active device or claimed device */
1056 	if (bdev->bd_openers || zram->claim) {
1057 		mutex_unlock(&bdev->bd_mutex);
1058 		bdput(bdev);
1059 		return -EBUSY;
1060 	}
1061 
1062 	/* From now on, anyone can't open /dev/zram[0-9] */
1063 	zram->claim = true;
1064 	mutex_unlock(&bdev->bd_mutex);
1065 
1066 	/* Make sure all the pending I/O are finished */
1067 	fsync_bdev(bdev);
1068 	zram_reset_device(zram);
1069 	zram_revalidate_disk(zram);
1070 	bdput(bdev);
1071 
1072 	mutex_lock(&bdev->bd_mutex);
1073 	zram->claim = false;
1074 	mutex_unlock(&bdev->bd_mutex);
1075 
1076 	return len;
1077 }
1078 
1079 static int zram_open(struct block_device *bdev, fmode_t mode)
1080 {
1081 	int ret = 0;
1082 	struct zram *zram;
1083 
1084 	WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1085 
1086 	zram = bdev->bd_disk->private_data;
1087 	/* zram was claimed to reset so open request fails */
1088 	if (zram->claim)
1089 		ret = -EBUSY;
1090 
1091 	return ret;
1092 }
1093 
1094 static const struct block_device_operations zram_devops = {
1095 	.open = zram_open,
1096 	.swap_slot_free_notify = zram_slot_free_notify,
1097 	.rw_page = zram_rw_page,
1098 	.owner = THIS_MODULE
1099 };
1100 
1101 static DEVICE_ATTR_WO(compact);
1102 static DEVICE_ATTR_RW(disksize);
1103 static DEVICE_ATTR_RO(initstate);
1104 static DEVICE_ATTR_WO(reset);
1105 static DEVICE_ATTR_WO(mem_limit);
1106 static DEVICE_ATTR_WO(mem_used_max);
1107 static DEVICE_ATTR_RW(max_comp_streams);
1108 static DEVICE_ATTR_RW(comp_algorithm);
1109 
1110 static struct attribute *zram_disk_attrs[] = {
1111 	&dev_attr_disksize.attr,
1112 	&dev_attr_initstate.attr,
1113 	&dev_attr_reset.attr,
1114 	&dev_attr_compact.attr,
1115 	&dev_attr_mem_limit.attr,
1116 	&dev_attr_mem_used_max.attr,
1117 	&dev_attr_max_comp_streams.attr,
1118 	&dev_attr_comp_algorithm.attr,
1119 	&dev_attr_io_stat.attr,
1120 	&dev_attr_mm_stat.attr,
1121 	&dev_attr_debug_stat.attr,
1122 	NULL,
1123 };
1124 
1125 static struct attribute_group zram_disk_attr_group = {
1126 	.attrs = zram_disk_attrs,
1127 };
1128 
1129 /*
1130  * Allocate and initialize new zram device. the function returns
1131  * '>= 0' device_id upon success, and negative value otherwise.
1132  */
1133 static int zram_add(void)
1134 {
1135 	struct zram *zram;
1136 	struct request_queue *queue;
1137 	int ret, device_id;
1138 
1139 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1140 	if (!zram)
1141 		return -ENOMEM;
1142 
1143 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1144 	if (ret < 0)
1145 		goto out_free_dev;
1146 	device_id = ret;
1147 
1148 	init_rwsem(&zram->init_lock);
1149 
1150 	queue = blk_alloc_queue(GFP_KERNEL);
1151 	if (!queue) {
1152 		pr_err("Error allocating disk queue for device %d\n",
1153 			device_id);
1154 		ret = -ENOMEM;
1155 		goto out_free_idr;
1156 	}
1157 
1158 	blk_queue_make_request(queue, zram_make_request);
1159 
1160 	/* gendisk structure */
1161 	zram->disk = alloc_disk(1);
1162 	if (!zram->disk) {
1163 		pr_err("Error allocating disk structure for device %d\n",
1164 			device_id);
1165 		ret = -ENOMEM;
1166 		goto out_free_queue;
1167 	}
1168 
1169 	zram->disk->major = zram_major;
1170 	zram->disk->first_minor = device_id;
1171 	zram->disk->fops = &zram_devops;
1172 	zram->disk->queue = queue;
1173 	zram->disk->queue->queuedata = zram;
1174 	zram->disk->private_data = zram;
1175 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1176 
1177 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1178 	set_capacity(zram->disk, 0);
1179 	/* zram devices sort of resembles non-rotational disks */
1180 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1181 	queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1182 	/*
1183 	 * To ensure that we always get PAGE_SIZE aligned
1184 	 * and n*PAGE_SIZED sized I/O requests.
1185 	 */
1186 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1187 	blk_queue_logical_block_size(zram->disk->queue,
1188 					ZRAM_LOGICAL_BLOCK_SIZE);
1189 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1190 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1191 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1192 	zram->disk->queue->limits.max_sectors = SECTORS_PER_PAGE;
1193 	zram->disk->queue->limits.chunk_sectors = 0;
1194 	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1195 	/*
1196 	 * zram_bio_discard() will clear all logical blocks if logical block
1197 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1198 	 * different, we will skip discarding some parts of logical blocks in
1199 	 * the part of the request range which isn't aligned to physical block
1200 	 * size.  So we can't ensure that all discarded logical blocks are
1201 	 * zeroed.
1202 	 */
1203 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1204 		zram->disk->queue->limits.discard_zeroes_data = 1;
1205 	else
1206 		zram->disk->queue->limits.discard_zeroes_data = 0;
1207 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1208 
1209 	add_disk(zram->disk);
1210 
1211 	ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1212 				&zram_disk_attr_group);
1213 	if (ret < 0) {
1214 		pr_err("Error creating sysfs group for device %d\n",
1215 				device_id);
1216 		goto out_free_disk;
1217 	}
1218 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1219 	zram->meta = NULL;
1220 
1221 	pr_info("Added device: %s\n", zram->disk->disk_name);
1222 	return device_id;
1223 
1224 out_free_disk:
1225 	del_gendisk(zram->disk);
1226 	put_disk(zram->disk);
1227 out_free_queue:
1228 	blk_cleanup_queue(queue);
1229 out_free_idr:
1230 	idr_remove(&zram_index_idr, device_id);
1231 out_free_dev:
1232 	kfree(zram);
1233 	return ret;
1234 }
1235 
1236 static int zram_remove(struct zram *zram)
1237 {
1238 	struct block_device *bdev;
1239 
1240 	bdev = bdget_disk(zram->disk, 0);
1241 	if (!bdev)
1242 		return -ENOMEM;
1243 
1244 	mutex_lock(&bdev->bd_mutex);
1245 	if (bdev->bd_openers || zram->claim) {
1246 		mutex_unlock(&bdev->bd_mutex);
1247 		bdput(bdev);
1248 		return -EBUSY;
1249 	}
1250 
1251 	zram->claim = true;
1252 	mutex_unlock(&bdev->bd_mutex);
1253 
1254 	/*
1255 	 * Remove sysfs first, so no one will perform a disksize
1256 	 * store while we destroy the devices. This also helps during
1257 	 * hot_remove -- zram_reset_device() is the last holder of
1258 	 * ->init_lock, no later/concurrent disksize_store() or any
1259 	 * other sysfs handlers are possible.
1260 	 */
1261 	sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1262 			&zram_disk_attr_group);
1263 
1264 	/* Make sure all the pending I/O are finished */
1265 	fsync_bdev(bdev);
1266 	zram_reset_device(zram);
1267 	bdput(bdev);
1268 
1269 	pr_info("Removed device: %s\n", zram->disk->disk_name);
1270 
1271 	blk_cleanup_queue(zram->disk->queue);
1272 	del_gendisk(zram->disk);
1273 	put_disk(zram->disk);
1274 	kfree(zram);
1275 	return 0;
1276 }
1277 
1278 /* zram-control sysfs attributes */
1279 static ssize_t hot_add_show(struct class *class,
1280 			struct class_attribute *attr,
1281 			char *buf)
1282 {
1283 	int ret;
1284 
1285 	mutex_lock(&zram_index_mutex);
1286 	ret = zram_add();
1287 	mutex_unlock(&zram_index_mutex);
1288 
1289 	if (ret < 0)
1290 		return ret;
1291 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1292 }
1293 
1294 static ssize_t hot_remove_store(struct class *class,
1295 			struct class_attribute *attr,
1296 			const char *buf,
1297 			size_t count)
1298 {
1299 	struct zram *zram;
1300 	int ret, dev_id;
1301 
1302 	/* dev_id is gendisk->first_minor, which is `int' */
1303 	ret = kstrtoint(buf, 10, &dev_id);
1304 	if (ret)
1305 		return ret;
1306 	if (dev_id < 0)
1307 		return -EINVAL;
1308 
1309 	mutex_lock(&zram_index_mutex);
1310 
1311 	zram = idr_find(&zram_index_idr, dev_id);
1312 	if (zram) {
1313 		ret = zram_remove(zram);
1314 		if (!ret)
1315 			idr_remove(&zram_index_idr, dev_id);
1316 	} else {
1317 		ret = -ENODEV;
1318 	}
1319 
1320 	mutex_unlock(&zram_index_mutex);
1321 	return ret ? ret : count;
1322 }
1323 
1324 /*
1325  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
1326  * sense that reading from this file does alter the state of your system -- it
1327  * creates a new un-initialized zram device and returns back this device's
1328  * device_id (or an error code if it fails to create a new device).
1329  */
1330 static struct class_attribute zram_control_class_attrs[] = {
1331 	__ATTR(hot_add, 0400, hot_add_show, NULL),
1332 	__ATTR_WO(hot_remove),
1333 	__ATTR_NULL,
1334 };
1335 
1336 static struct class zram_control_class = {
1337 	.name		= "zram-control",
1338 	.owner		= THIS_MODULE,
1339 	.class_attrs	= zram_control_class_attrs,
1340 };
1341 
1342 static int zram_remove_cb(int id, void *ptr, void *data)
1343 {
1344 	zram_remove(ptr);
1345 	return 0;
1346 }
1347 
1348 static void destroy_devices(void)
1349 {
1350 	class_unregister(&zram_control_class);
1351 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1352 	idr_destroy(&zram_index_idr);
1353 	unregister_blkdev(zram_major, "zram");
1354 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1355 }
1356 
1357 static int __init zram_init(void)
1358 {
1359 	int ret;
1360 
1361 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
1362 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
1363 	if (ret < 0)
1364 		return ret;
1365 
1366 	ret = class_register(&zram_control_class);
1367 	if (ret) {
1368 		pr_err("Unable to register zram-control class\n");
1369 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1370 		return ret;
1371 	}
1372 
1373 	zram_major = register_blkdev(0, "zram");
1374 	if (zram_major <= 0) {
1375 		pr_err("Unable to get major number\n");
1376 		class_unregister(&zram_control_class);
1377 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1378 		return -EBUSY;
1379 	}
1380 
1381 	while (num_devices != 0) {
1382 		mutex_lock(&zram_index_mutex);
1383 		ret = zram_add();
1384 		mutex_unlock(&zram_index_mutex);
1385 		if (ret < 0)
1386 			goto out_error;
1387 		num_devices--;
1388 	}
1389 
1390 	return 0;
1391 
1392 out_error:
1393 	destroy_devices();
1394 	return ret;
1395 }
1396 
1397 static void __exit zram_exit(void)
1398 {
1399 	destroy_devices();
1400 }
1401 
1402 module_init(zram_init);
1403 module_exit(zram_exit);
1404 
1405 module_param(num_devices, uint, 0);
1406 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1407 
1408 MODULE_LICENSE("Dual BSD/GPL");
1409 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1410 MODULE_DESCRIPTION("Compressed RAM Block Device");
1411