xref: /linux/drivers/block/zram/zram_drv.c (revision df9c299371054cb725eef730fd0f1d0fe2ed6bb0)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
33 #include <linux/debugfs.h>
34 #include <linux/cpuhotplug.h>
35 #include <linux/part_stat.h>
36 #include <linux/kernel_read_file.h>
37 
38 #include "zram_drv.h"
39 
40 static DEFINE_IDR(zram_index_idr);
41 /* idr index must be protected */
42 static DEFINE_MUTEX(zram_index_mutex);
43 
44 static int zram_major;
45 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP;
46 
47 #define ZRAM_MAX_ALGO_NAME_SZ	128
48 
49 /* Module params (documentation at end) */
50 static unsigned int num_devices = 1;
51 /*
52  * Pages that compress to sizes equals or greater than this are stored
53  * uncompressed in memory.
54  */
55 static size_t huge_class_size;
56 
57 static const struct block_device_operations zram_devops;
58 
59 static void zram_free_page(struct zram *zram, size_t index);
60 static int zram_read_from_zspool(struct zram *zram, struct page *page,
61 				 u32 index);
62 
63 #define slot_dep_map(zram, index) (&(zram)->table[(index)].dep_map)
64 
65 static void zram_slot_lock_init(struct zram *zram, u32 index)
66 {
67 	static struct lock_class_key __key;
68 
69 	lockdep_init_map(slot_dep_map(zram, index), "zram->table[index].lock",
70 			 &__key, 0);
71 }
72 
73 /*
74  * entry locking rules:
75  *
76  * 1) Lock is exclusive
77  *
78  * 2) lock() function can sleep waiting for the lock
79  *
80  * 3) Lock owner can sleep
81  *
82  * 4) Use TRY lock variant when in atomic context
83  *    - must check return value and handle locking failers
84  */
85 static __must_check bool zram_slot_trylock(struct zram *zram, u32 index)
86 {
87 	unsigned long *lock = &zram->table[index].flags;
88 
89 	if (!test_and_set_bit_lock(ZRAM_ENTRY_LOCK, lock)) {
90 		mutex_acquire(slot_dep_map(zram, index), 0, 1, _RET_IP_);
91 		lock_acquired(slot_dep_map(zram, index), _RET_IP_);
92 		return true;
93 	}
94 
95 	return false;
96 }
97 
98 static void zram_slot_lock(struct zram *zram, u32 index)
99 {
100 	unsigned long *lock = &zram->table[index].flags;
101 
102 	mutex_acquire(slot_dep_map(zram, index), 0, 0, _RET_IP_);
103 	wait_on_bit_lock(lock, ZRAM_ENTRY_LOCK, TASK_UNINTERRUPTIBLE);
104 	lock_acquired(slot_dep_map(zram, index), _RET_IP_);
105 }
106 
107 static void zram_slot_unlock(struct zram *zram, u32 index)
108 {
109 	unsigned long *lock = &zram->table[index].flags;
110 
111 	mutex_release(slot_dep_map(zram, index), _RET_IP_);
112 	clear_and_wake_up_bit(ZRAM_ENTRY_LOCK, lock);
113 }
114 
115 static inline bool init_done(struct zram *zram)
116 {
117 	return zram->disksize;
118 }
119 
120 static inline struct zram *dev_to_zram(struct device *dev)
121 {
122 	return (struct zram *)dev_to_disk(dev)->private_data;
123 }
124 
125 static unsigned long zram_get_handle(struct zram *zram, u32 index)
126 {
127 	return zram->table[index].handle;
128 }
129 
130 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
131 {
132 	zram->table[index].handle = handle;
133 }
134 
135 static bool zram_test_flag(struct zram *zram, u32 index,
136 			enum zram_pageflags flag)
137 {
138 	return zram->table[index].flags & BIT(flag);
139 }
140 
141 static void zram_set_flag(struct zram *zram, u32 index,
142 			enum zram_pageflags flag)
143 {
144 	zram->table[index].flags |= BIT(flag);
145 }
146 
147 static void zram_clear_flag(struct zram *zram, u32 index,
148 			enum zram_pageflags flag)
149 {
150 	zram->table[index].flags &= ~BIT(flag);
151 }
152 
153 static size_t zram_get_obj_size(struct zram *zram, u32 index)
154 {
155 	return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
156 }
157 
158 static void zram_set_obj_size(struct zram *zram,
159 					u32 index, size_t size)
160 {
161 	unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
162 
163 	zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
164 }
165 
166 static inline bool zram_allocated(struct zram *zram, u32 index)
167 {
168 	return zram_get_obj_size(zram, index) ||
169 			zram_test_flag(zram, index, ZRAM_SAME) ||
170 			zram_test_flag(zram, index, ZRAM_WB);
171 }
172 
173 static inline void update_used_max(struct zram *zram, const unsigned long pages)
174 {
175 	unsigned long cur_max = atomic_long_read(&zram->stats.max_used_pages);
176 
177 	do {
178 		if (cur_max >= pages)
179 			return;
180 	} while (!atomic_long_try_cmpxchg(&zram->stats.max_used_pages,
181 					  &cur_max, pages));
182 }
183 
184 static bool zram_can_store_page(struct zram *zram)
185 {
186 	unsigned long alloced_pages;
187 
188 	alloced_pages = zs_get_total_pages(zram->mem_pool);
189 	update_used_max(zram, alloced_pages);
190 
191 	return !zram->limit_pages || alloced_pages <= zram->limit_pages;
192 }
193 
194 #if PAGE_SIZE != 4096
195 static inline bool is_partial_io(struct bio_vec *bvec)
196 {
197 	return bvec->bv_len != PAGE_SIZE;
198 }
199 #define ZRAM_PARTIAL_IO		1
200 #else
201 static inline bool is_partial_io(struct bio_vec *bvec)
202 {
203 	return false;
204 }
205 #endif
206 
207 static inline void zram_set_priority(struct zram *zram, u32 index, u32 prio)
208 {
209 	prio &= ZRAM_COMP_PRIORITY_MASK;
210 	/*
211 	 * Clear previous priority value first, in case if we recompress
212 	 * further an already recompressed page
213 	 */
214 	zram->table[index].flags &= ~(ZRAM_COMP_PRIORITY_MASK <<
215 				      ZRAM_COMP_PRIORITY_BIT1);
216 	zram->table[index].flags |= (prio << ZRAM_COMP_PRIORITY_BIT1);
217 }
218 
219 static inline u32 zram_get_priority(struct zram *zram, u32 index)
220 {
221 	u32 prio = zram->table[index].flags >> ZRAM_COMP_PRIORITY_BIT1;
222 
223 	return prio & ZRAM_COMP_PRIORITY_MASK;
224 }
225 
226 static void zram_accessed(struct zram *zram, u32 index)
227 {
228 	zram_clear_flag(zram, index, ZRAM_IDLE);
229 	zram_clear_flag(zram, index, ZRAM_PP_SLOT);
230 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
231 	zram->table[index].ac_time = ktime_get_boottime();
232 #endif
233 }
234 
235 #if defined CONFIG_ZRAM_WRITEBACK || defined CONFIG_ZRAM_MULTI_COMP
236 struct zram_pp_slot {
237 	unsigned long		index;
238 	struct list_head	entry;
239 };
240 
241 /*
242  * A post-processing bucket is, essentially, a size class, this defines
243  * the range (in bytes) of pp-slots sizes in particular bucket.
244  */
245 #define PP_BUCKET_SIZE_RANGE	64
246 #define NUM_PP_BUCKETS		((PAGE_SIZE / PP_BUCKET_SIZE_RANGE) + 1)
247 
248 struct zram_pp_ctl {
249 	struct list_head	pp_buckets[NUM_PP_BUCKETS];
250 };
251 
252 static struct zram_pp_ctl *init_pp_ctl(void)
253 {
254 	struct zram_pp_ctl *ctl;
255 	u32 idx;
256 
257 	ctl = kmalloc(sizeof(*ctl), GFP_KERNEL);
258 	if (!ctl)
259 		return NULL;
260 
261 	for (idx = 0; idx < NUM_PP_BUCKETS; idx++)
262 		INIT_LIST_HEAD(&ctl->pp_buckets[idx]);
263 	return ctl;
264 }
265 
266 static void release_pp_slot(struct zram *zram, struct zram_pp_slot *pps)
267 {
268 	list_del_init(&pps->entry);
269 
270 	zram_slot_lock(zram, pps->index);
271 	zram_clear_flag(zram, pps->index, ZRAM_PP_SLOT);
272 	zram_slot_unlock(zram, pps->index);
273 
274 	kfree(pps);
275 }
276 
277 static void release_pp_ctl(struct zram *zram, struct zram_pp_ctl *ctl)
278 {
279 	u32 idx;
280 
281 	if (!ctl)
282 		return;
283 
284 	for (idx = 0; idx < NUM_PP_BUCKETS; idx++) {
285 		while (!list_empty(&ctl->pp_buckets[idx])) {
286 			struct zram_pp_slot *pps;
287 
288 			pps = list_first_entry(&ctl->pp_buckets[idx],
289 					       struct zram_pp_slot,
290 					       entry);
291 			release_pp_slot(zram, pps);
292 		}
293 	}
294 
295 	kfree(ctl);
296 }
297 
298 static bool place_pp_slot(struct zram *zram, struct zram_pp_ctl *ctl,
299 			  u32 index)
300 {
301 	struct zram_pp_slot *pps;
302 	u32 bid;
303 
304 	pps = kmalloc(sizeof(*pps), GFP_NOIO | __GFP_NOWARN);
305 	if (!pps)
306 		return false;
307 
308 	INIT_LIST_HEAD(&pps->entry);
309 	pps->index = index;
310 
311 	bid = zram_get_obj_size(zram, pps->index) / PP_BUCKET_SIZE_RANGE;
312 	list_add(&pps->entry, &ctl->pp_buckets[bid]);
313 
314 	zram_set_flag(zram, pps->index, ZRAM_PP_SLOT);
315 	return true;
316 }
317 
318 static struct zram_pp_slot *select_pp_slot(struct zram_pp_ctl *ctl)
319 {
320 	struct zram_pp_slot *pps = NULL;
321 	s32 idx = NUM_PP_BUCKETS - 1;
322 
323 	/* The higher the bucket id the more optimal slot post-processing is */
324 	while (idx >= 0) {
325 		pps = list_first_entry_or_null(&ctl->pp_buckets[idx],
326 					       struct zram_pp_slot,
327 					       entry);
328 		if (pps)
329 			break;
330 
331 		idx--;
332 	}
333 	return pps;
334 }
335 #endif
336 
337 static inline void zram_fill_page(void *ptr, unsigned long len,
338 					unsigned long value)
339 {
340 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
341 	memset_l(ptr, value, len / sizeof(unsigned long));
342 }
343 
344 static bool page_same_filled(void *ptr, unsigned long *element)
345 {
346 	unsigned long *page;
347 	unsigned long val;
348 	unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
349 
350 	page = (unsigned long *)ptr;
351 	val = page[0];
352 
353 	if (val != page[last_pos])
354 		return false;
355 
356 	for (pos = 1; pos < last_pos; pos++) {
357 		if (val != page[pos])
358 			return false;
359 	}
360 
361 	*element = val;
362 
363 	return true;
364 }
365 
366 static ssize_t initstate_show(struct device *dev,
367 		struct device_attribute *attr, char *buf)
368 {
369 	u32 val;
370 	struct zram *zram = dev_to_zram(dev);
371 
372 	down_read(&zram->init_lock);
373 	val = init_done(zram);
374 	up_read(&zram->init_lock);
375 
376 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
377 }
378 
379 static ssize_t disksize_show(struct device *dev,
380 		struct device_attribute *attr, char *buf)
381 {
382 	struct zram *zram = dev_to_zram(dev);
383 
384 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
385 }
386 
387 static ssize_t mem_limit_store(struct device *dev,
388 		struct device_attribute *attr, const char *buf, size_t len)
389 {
390 	u64 limit;
391 	char *tmp;
392 	struct zram *zram = dev_to_zram(dev);
393 
394 	limit = memparse(buf, &tmp);
395 	if (buf == tmp) /* no chars parsed, invalid input */
396 		return -EINVAL;
397 
398 	down_write(&zram->init_lock);
399 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
400 	up_write(&zram->init_lock);
401 
402 	return len;
403 }
404 
405 static ssize_t mem_used_max_store(struct device *dev,
406 		struct device_attribute *attr, const char *buf, size_t len)
407 {
408 	int err;
409 	unsigned long val;
410 	struct zram *zram = dev_to_zram(dev);
411 
412 	err = kstrtoul(buf, 10, &val);
413 	if (err || val != 0)
414 		return -EINVAL;
415 
416 	down_read(&zram->init_lock);
417 	if (init_done(zram)) {
418 		atomic_long_set(&zram->stats.max_used_pages,
419 				zs_get_total_pages(zram->mem_pool));
420 	}
421 	up_read(&zram->init_lock);
422 
423 	return len;
424 }
425 
426 /*
427  * Mark all pages which are older than or equal to cutoff as IDLE.
428  * Callers should hold the zram init lock in read mode
429  */
430 static void mark_idle(struct zram *zram, ktime_t cutoff)
431 {
432 	int is_idle = 1;
433 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
434 	int index;
435 
436 	for (index = 0; index < nr_pages; index++) {
437 		/*
438 		 * Do not mark ZRAM_SAME slots as ZRAM_IDLE, because no
439 		 * post-processing (recompress, writeback) happens to the
440 		 * ZRAM_SAME slot.
441 		 *
442 		 * And ZRAM_WB slots simply cannot be ZRAM_IDLE.
443 		 */
444 		zram_slot_lock(zram, index);
445 		if (!zram_allocated(zram, index) ||
446 		    zram_test_flag(zram, index, ZRAM_WB) ||
447 		    zram_test_flag(zram, index, ZRAM_SAME)) {
448 			zram_slot_unlock(zram, index);
449 			continue;
450 		}
451 
452 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
453 		is_idle = !cutoff ||
454 			ktime_after(cutoff, zram->table[index].ac_time);
455 #endif
456 		if (is_idle)
457 			zram_set_flag(zram, index, ZRAM_IDLE);
458 		else
459 			zram_clear_flag(zram, index, ZRAM_IDLE);
460 		zram_slot_unlock(zram, index);
461 	}
462 }
463 
464 static ssize_t idle_store(struct device *dev,
465 		struct device_attribute *attr, const char *buf, size_t len)
466 {
467 	struct zram *zram = dev_to_zram(dev);
468 	ktime_t cutoff_time = 0;
469 	ssize_t rv = -EINVAL;
470 
471 	if (!sysfs_streq(buf, "all")) {
472 		/*
473 		 * If it did not parse as 'all' try to treat it as an integer
474 		 * when we have memory tracking enabled.
475 		 */
476 		u64 age_sec;
477 
478 		if (IS_ENABLED(CONFIG_ZRAM_TRACK_ENTRY_ACTIME) && !kstrtoull(buf, 0, &age_sec))
479 			cutoff_time = ktime_sub(ktime_get_boottime(),
480 					ns_to_ktime(age_sec * NSEC_PER_SEC));
481 		else
482 			goto out;
483 	}
484 
485 	down_read(&zram->init_lock);
486 	if (!init_done(zram))
487 		goto out_unlock;
488 
489 	/*
490 	 * A cutoff_time of 0 marks everything as idle, this is the
491 	 * "all" behavior.
492 	 */
493 	mark_idle(zram, cutoff_time);
494 	rv = len;
495 
496 out_unlock:
497 	up_read(&zram->init_lock);
498 out:
499 	return rv;
500 }
501 
502 #ifdef CONFIG_ZRAM_WRITEBACK
503 static ssize_t writeback_limit_enable_store(struct device *dev,
504 		struct device_attribute *attr, const char *buf, size_t len)
505 {
506 	struct zram *zram = dev_to_zram(dev);
507 	u64 val;
508 	ssize_t ret = -EINVAL;
509 
510 	if (kstrtoull(buf, 10, &val))
511 		return ret;
512 
513 	down_read(&zram->init_lock);
514 	spin_lock(&zram->wb_limit_lock);
515 	zram->wb_limit_enable = val;
516 	spin_unlock(&zram->wb_limit_lock);
517 	up_read(&zram->init_lock);
518 	ret = len;
519 
520 	return ret;
521 }
522 
523 static ssize_t writeback_limit_enable_show(struct device *dev,
524 		struct device_attribute *attr, char *buf)
525 {
526 	bool val;
527 	struct zram *zram = dev_to_zram(dev);
528 
529 	down_read(&zram->init_lock);
530 	spin_lock(&zram->wb_limit_lock);
531 	val = zram->wb_limit_enable;
532 	spin_unlock(&zram->wb_limit_lock);
533 	up_read(&zram->init_lock);
534 
535 	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
536 }
537 
538 static ssize_t writeback_limit_store(struct device *dev,
539 		struct device_attribute *attr, const char *buf, size_t len)
540 {
541 	struct zram *zram = dev_to_zram(dev);
542 	u64 val;
543 	ssize_t ret = -EINVAL;
544 
545 	if (kstrtoull(buf, 10, &val))
546 		return ret;
547 
548 	down_read(&zram->init_lock);
549 	spin_lock(&zram->wb_limit_lock);
550 	zram->bd_wb_limit = val;
551 	spin_unlock(&zram->wb_limit_lock);
552 	up_read(&zram->init_lock);
553 	ret = len;
554 
555 	return ret;
556 }
557 
558 static ssize_t writeback_limit_show(struct device *dev,
559 		struct device_attribute *attr, char *buf)
560 {
561 	u64 val;
562 	struct zram *zram = dev_to_zram(dev);
563 
564 	down_read(&zram->init_lock);
565 	spin_lock(&zram->wb_limit_lock);
566 	val = zram->bd_wb_limit;
567 	spin_unlock(&zram->wb_limit_lock);
568 	up_read(&zram->init_lock);
569 
570 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
571 }
572 
573 static void reset_bdev(struct zram *zram)
574 {
575 	if (!zram->backing_dev)
576 		return;
577 
578 	/* hope filp_close flush all of IO */
579 	filp_close(zram->backing_dev, NULL);
580 	zram->backing_dev = NULL;
581 	zram->bdev = NULL;
582 	zram->disk->fops = &zram_devops;
583 	kvfree(zram->bitmap);
584 	zram->bitmap = NULL;
585 }
586 
587 static ssize_t backing_dev_show(struct device *dev,
588 		struct device_attribute *attr, char *buf)
589 {
590 	struct file *file;
591 	struct zram *zram = dev_to_zram(dev);
592 	char *p;
593 	ssize_t ret;
594 
595 	down_read(&zram->init_lock);
596 	file = zram->backing_dev;
597 	if (!file) {
598 		memcpy(buf, "none\n", 5);
599 		up_read(&zram->init_lock);
600 		return 5;
601 	}
602 
603 	p = file_path(file, buf, PAGE_SIZE - 1);
604 	if (IS_ERR(p)) {
605 		ret = PTR_ERR(p);
606 		goto out;
607 	}
608 
609 	ret = strlen(p);
610 	memmove(buf, p, ret);
611 	buf[ret++] = '\n';
612 out:
613 	up_read(&zram->init_lock);
614 	return ret;
615 }
616 
617 static ssize_t backing_dev_store(struct device *dev,
618 		struct device_attribute *attr, const char *buf, size_t len)
619 {
620 	char *file_name;
621 	size_t sz;
622 	struct file *backing_dev = NULL;
623 	struct inode *inode;
624 	unsigned int bitmap_sz;
625 	unsigned long nr_pages, *bitmap = NULL;
626 	int err;
627 	struct zram *zram = dev_to_zram(dev);
628 
629 	file_name = kmalloc(PATH_MAX, GFP_KERNEL);
630 	if (!file_name)
631 		return -ENOMEM;
632 
633 	down_write(&zram->init_lock);
634 	if (init_done(zram)) {
635 		pr_info("Can't setup backing device for initialized device\n");
636 		err = -EBUSY;
637 		goto out;
638 	}
639 
640 	strscpy(file_name, buf, PATH_MAX);
641 	/* ignore trailing newline */
642 	sz = strlen(file_name);
643 	if (sz > 0 && file_name[sz - 1] == '\n')
644 		file_name[sz - 1] = 0x00;
645 
646 	backing_dev = filp_open(file_name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
647 	if (IS_ERR(backing_dev)) {
648 		err = PTR_ERR(backing_dev);
649 		backing_dev = NULL;
650 		goto out;
651 	}
652 
653 	inode = backing_dev->f_mapping->host;
654 
655 	/* Support only block device in this moment */
656 	if (!S_ISBLK(inode->i_mode)) {
657 		err = -ENOTBLK;
658 		goto out;
659 	}
660 
661 	nr_pages = i_size_read(inode) >> PAGE_SHIFT;
662 	/* Refuse to use zero sized device (also prevents self reference) */
663 	if (!nr_pages) {
664 		err = -EINVAL;
665 		goto out;
666 	}
667 
668 	bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
669 	bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
670 	if (!bitmap) {
671 		err = -ENOMEM;
672 		goto out;
673 	}
674 
675 	reset_bdev(zram);
676 
677 	zram->bdev = I_BDEV(inode);
678 	zram->backing_dev = backing_dev;
679 	zram->bitmap = bitmap;
680 	zram->nr_pages = nr_pages;
681 	up_write(&zram->init_lock);
682 
683 	pr_info("setup backing device %s\n", file_name);
684 	kfree(file_name);
685 
686 	return len;
687 out:
688 	kvfree(bitmap);
689 
690 	if (backing_dev)
691 		filp_close(backing_dev, NULL);
692 
693 	up_write(&zram->init_lock);
694 
695 	kfree(file_name);
696 
697 	return err;
698 }
699 
700 static unsigned long alloc_block_bdev(struct zram *zram)
701 {
702 	unsigned long blk_idx = 1;
703 retry:
704 	/* skip 0 bit to confuse zram.handle = 0 */
705 	blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
706 	if (blk_idx == zram->nr_pages)
707 		return 0;
708 
709 	if (test_and_set_bit(blk_idx, zram->bitmap))
710 		goto retry;
711 
712 	atomic64_inc(&zram->stats.bd_count);
713 	return blk_idx;
714 }
715 
716 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
717 {
718 	int was_set;
719 
720 	was_set = test_and_clear_bit(blk_idx, zram->bitmap);
721 	WARN_ON_ONCE(!was_set);
722 	atomic64_dec(&zram->stats.bd_count);
723 }
724 
725 static void read_from_bdev_async(struct zram *zram, struct page *page,
726 			unsigned long entry, struct bio *parent)
727 {
728 	struct bio *bio;
729 
730 	bio = bio_alloc(zram->bdev, 1, parent->bi_opf, GFP_NOIO);
731 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
732 	__bio_add_page(bio, page, PAGE_SIZE, 0);
733 	bio_chain(bio, parent);
734 	submit_bio(bio);
735 }
736 
737 static int zram_writeback_slots(struct zram *zram, struct zram_pp_ctl *ctl)
738 {
739 	unsigned long blk_idx = 0;
740 	struct page *page = NULL;
741 	struct zram_pp_slot *pps;
742 	struct bio_vec bio_vec;
743 	struct bio bio;
744 	int ret = 0, err;
745 	u32 index;
746 
747 	page = alloc_page(GFP_KERNEL);
748 	if (!page)
749 		return -ENOMEM;
750 
751 	while ((pps = select_pp_slot(ctl))) {
752 		spin_lock(&zram->wb_limit_lock);
753 		if (zram->wb_limit_enable && !zram->bd_wb_limit) {
754 			spin_unlock(&zram->wb_limit_lock);
755 			ret = -EIO;
756 			break;
757 		}
758 		spin_unlock(&zram->wb_limit_lock);
759 
760 		if (!blk_idx) {
761 			blk_idx = alloc_block_bdev(zram);
762 			if (!blk_idx) {
763 				ret = -ENOSPC;
764 				break;
765 			}
766 		}
767 
768 		index = pps->index;
769 		zram_slot_lock(zram, index);
770 		/*
771 		 * scan_slots() sets ZRAM_PP_SLOT and relases slot lock, so
772 		 * slots can change in the meantime. If slots are accessed or
773 		 * freed they lose ZRAM_PP_SLOT flag and hence we don't
774 		 * post-process them.
775 		 */
776 		if (!zram_test_flag(zram, index, ZRAM_PP_SLOT))
777 			goto next;
778 		if (zram_read_from_zspool(zram, page, index))
779 			goto next;
780 		zram_slot_unlock(zram, index);
781 
782 		bio_init(&bio, zram->bdev, &bio_vec, 1,
783 			 REQ_OP_WRITE | REQ_SYNC);
784 		bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
785 		__bio_add_page(&bio, page, PAGE_SIZE, 0);
786 
787 		/*
788 		 * XXX: A single page IO would be inefficient for write
789 		 * but it would be not bad as starter.
790 		 */
791 		err = submit_bio_wait(&bio);
792 		if (err) {
793 			release_pp_slot(zram, pps);
794 			/*
795 			 * BIO errors are not fatal, we continue and simply
796 			 * attempt to writeback the remaining objects (pages).
797 			 * At the same time we need to signal user-space that
798 			 * some writes (at least one, but also could be all of
799 			 * them) were not successful and we do so by returning
800 			 * the most recent BIO error.
801 			 */
802 			ret = err;
803 			continue;
804 		}
805 
806 		atomic64_inc(&zram->stats.bd_writes);
807 		zram_slot_lock(zram, index);
808 		/*
809 		 * Same as above, we release slot lock during writeback so
810 		 * slot can change under us: slot_free() or slot_free() and
811 		 * reallocation (zram_write_page()). In both cases slot loses
812 		 * ZRAM_PP_SLOT flag. No concurrent post-processing can set
813 		 * ZRAM_PP_SLOT on such slots until current post-processing
814 		 * finishes.
815 		 */
816 		if (!zram_test_flag(zram, index, ZRAM_PP_SLOT))
817 			goto next;
818 
819 		zram_free_page(zram, index);
820 		zram_set_flag(zram, index, ZRAM_WB);
821 		zram_set_handle(zram, index, blk_idx);
822 		blk_idx = 0;
823 		atomic64_inc(&zram->stats.pages_stored);
824 		spin_lock(&zram->wb_limit_lock);
825 		if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
826 			zram->bd_wb_limit -=  1UL << (PAGE_SHIFT - 12);
827 		spin_unlock(&zram->wb_limit_lock);
828 next:
829 		zram_slot_unlock(zram, index);
830 		release_pp_slot(zram, pps);
831 
832 		cond_resched();
833 	}
834 
835 	if (blk_idx)
836 		free_block_bdev(zram, blk_idx);
837 	if (page)
838 		__free_page(page);
839 
840 	return ret;
841 }
842 
843 #define PAGE_WRITEBACK			0
844 #define HUGE_WRITEBACK			(1 << 0)
845 #define IDLE_WRITEBACK			(1 << 1)
846 #define INCOMPRESSIBLE_WRITEBACK	(1 << 2)
847 
848 static int parse_page_index(char *val, unsigned long nr_pages,
849 			    unsigned long *lo, unsigned long *hi)
850 {
851 	int ret;
852 
853 	ret = kstrtoul(val, 10, lo);
854 	if (ret)
855 		return ret;
856 	if (*lo >= nr_pages)
857 		return -ERANGE;
858 	*hi = *lo + 1;
859 	return 0;
860 }
861 
862 static int parse_page_indexes(char *val, unsigned long nr_pages,
863 			      unsigned long *lo, unsigned long *hi)
864 {
865 	char *delim;
866 	int ret;
867 
868 	delim = strchr(val, '-');
869 	if (!delim)
870 		return -EINVAL;
871 
872 	*delim = 0x00;
873 	ret = kstrtoul(val, 10, lo);
874 	if (ret)
875 		return ret;
876 	if (*lo >= nr_pages)
877 		return -ERANGE;
878 
879 	ret = kstrtoul(delim + 1, 10, hi);
880 	if (ret)
881 		return ret;
882 	if (*hi >= nr_pages || *lo > *hi)
883 		return -ERANGE;
884 	*hi += 1;
885 	return 0;
886 }
887 
888 static int parse_mode(char *val, u32 *mode)
889 {
890 	*mode = 0;
891 
892 	if (!strcmp(val, "idle"))
893 		*mode = IDLE_WRITEBACK;
894 	if (!strcmp(val, "huge"))
895 		*mode = HUGE_WRITEBACK;
896 	if (!strcmp(val, "huge_idle"))
897 		*mode = IDLE_WRITEBACK | HUGE_WRITEBACK;
898 	if (!strcmp(val, "incompressible"))
899 		*mode = INCOMPRESSIBLE_WRITEBACK;
900 
901 	if (*mode == 0)
902 		return -EINVAL;
903 	return 0;
904 }
905 
906 static int scan_slots_for_writeback(struct zram *zram, u32 mode,
907 				    unsigned long lo, unsigned long hi,
908 				    struct zram_pp_ctl *ctl)
909 {
910 	u32 index = lo;
911 
912 	while (index < hi) {
913 		bool ok = true;
914 
915 		zram_slot_lock(zram, index);
916 		if (!zram_allocated(zram, index))
917 			goto next;
918 
919 		if (zram_test_flag(zram, index, ZRAM_WB) ||
920 		    zram_test_flag(zram, index, ZRAM_SAME))
921 			goto next;
922 
923 		if (mode & IDLE_WRITEBACK &&
924 		    !zram_test_flag(zram, index, ZRAM_IDLE))
925 			goto next;
926 		if (mode & HUGE_WRITEBACK &&
927 		    !zram_test_flag(zram, index, ZRAM_HUGE))
928 			goto next;
929 		if (mode & INCOMPRESSIBLE_WRITEBACK &&
930 		    !zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE))
931 			goto next;
932 
933 		ok = place_pp_slot(zram, ctl, index);
934 next:
935 		zram_slot_unlock(zram, index);
936 		if (!ok)
937 			break;
938 		index++;
939 	}
940 
941 	return 0;
942 }
943 
944 static ssize_t writeback_store(struct device *dev,
945 			       struct device_attribute *attr,
946 			       const char *buf, size_t len)
947 {
948 	struct zram *zram = dev_to_zram(dev);
949 	u64 nr_pages = zram->disksize >> PAGE_SHIFT;
950 	unsigned long lo = 0, hi = nr_pages;
951 	struct zram_pp_ctl *ctl = NULL;
952 	char *args, *param, *val;
953 	ssize_t ret = len;
954 	int err, mode = 0;
955 
956 	down_read(&zram->init_lock);
957 	if (!init_done(zram)) {
958 		up_read(&zram->init_lock);
959 		return -EINVAL;
960 	}
961 
962 	/* Do not permit concurrent post-processing actions. */
963 	if (atomic_xchg(&zram->pp_in_progress, 1)) {
964 		up_read(&zram->init_lock);
965 		return -EAGAIN;
966 	}
967 
968 	if (!zram->backing_dev) {
969 		ret = -ENODEV;
970 		goto release_init_lock;
971 	}
972 
973 	ctl = init_pp_ctl();
974 	if (!ctl) {
975 		ret = -ENOMEM;
976 		goto release_init_lock;
977 	}
978 
979 	args = skip_spaces(buf);
980 	while (*args) {
981 		args = next_arg(args, &param, &val);
982 
983 		/*
984 		 * Workaround to support the old writeback interface.
985 		 *
986 		 * The old writeback interface has a minor inconsistency and
987 		 * requires key=value only for page_index parameter, while the
988 		 * writeback mode is a valueless parameter.
989 		 *
990 		 * This is not the case anymore and now all parameters are
991 		 * required to have values, however, we need to support the
992 		 * legacy writeback interface format so we check if we can
993 		 * recognize a valueless parameter as the (legacy) writeback
994 		 * mode.
995 		 */
996 		if (!val || !*val) {
997 			err = parse_mode(param, &mode);
998 			if (err) {
999 				ret = err;
1000 				goto release_init_lock;
1001 			}
1002 
1003 			scan_slots_for_writeback(zram, mode, lo, hi, ctl);
1004 			break;
1005 		}
1006 
1007 		if (!strcmp(param, "type")) {
1008 			err = parse_mode(val, &mode);
1009 			if (err) {
1010 				ret = err;
1011 				goto release_init_lock;
1012 			}
1013 
1014 			scan_slots_for_writeback(zram, mode, lo, hi, ctl);
1015 			break;
1016 		}
1017 
1018 		if (!strcmp(param, "page_index")) {
1019 			err = parse_page_index(val, nr_pages, &lo, &hi);
1020 			if (err) {
1021 				ret = err;
1022 				goto release_init_lock;
1023 			}
1024 
1025 			scan_slots_for_writeback(zram, mode, lo, hi, ctl);
1026 			continue;
1027 		}
1028 
1029 		if (!strcmp(param, "page_indexes")) {
1030 			err = parse_page_indexes(val, nr_pages, &lo, &hi);
1031 			if (err) {
1032 				ret = err;
1033 				goto release_init_lock;
1034 			}
1035 
1036 			scan_slots_for_writeback(zram, mode, lo, hi, ctl);
1037 			continue;
1038 		}
1039 	}
1040 
1041 	err = zram_writeback_slots(zram, ctl);
1042 	if (err)
1043 		ret = err;
1044 
1045 release_init_lock:
1046 	release_pp_ctl(zram, ctl);
1047 	atomic_set(&zram->pp_in_progress, 0);
1048 	up_read(&zram->init_lock);
1049 
1050 	return ret;
1051 }
1052 
1053 struct zram_work {
1054 	struct work_struct work;
1055 	struct zram *zram;
1056 	unsigned long entry;
1057 	struct page *page;
1058 	int error;
1059 };
1060 
1061 static void zram_sync_read(struct work_struct *work)
1062 {
1063 	struct zram_work *zw = container_of(work, struct zram_work, work);
1064 	struct bio_vec bv;
1065 	struct bio bio;
1066 
1067 	bio_init(&bio, zw->zram->bdev, &bv, 1, REQ_OP_READ);
1068 	bio.bi_iter.bi_sector = zw->entry * (PAGE_SIZE >> 9);
1069 	__bio_add_page(&bio, zw->page, PAGE_SIZE, 0);
1070 	zw->error = submit_bio_wait(&bio);
1071 }
1072 
1073 /*
1074  * Block layer want one ->submit_bio to be active at a time, so if we use
1075  * chained IO with parent IO in same context, it's a deadlock. To avoid that,
1076  * use a worker thread context.
1077  */
1078 static int read_from_bdev_sync(struct zram *zram, struct page *page,
1079 				unsigned long entry)
1080 {
1081 	struct zram_work work;
1082 
1083 	work.page = page;
1084 	work.zram = zram;
1085 	work.entry = entry;
1086 
1087 	INIT_WORK_ONSTACK(&work.work, zram_sync_read);
1088 	queue_work(system_unbound_wq, &work.work);
1089 	flush_work(&work.work);
1090 	destroy_work_on_stack(&work.work);
1091 
1092 	return work.error;
1093 }
1094 
1095 static int read_from_bdev(struct zram *zram, struct page *page,
1096 			unsigned long entry, struct bio *parent)
1097 {
1098 	atomic64_inc(&zram->stats.bd_reads);
1099 	if (!parent) {
1100 		if (WARN_ON_ONCE(!IS_ENABLED(ZRAM_PARTIAL_IO)))
1101 			return -EIO;
1102 		return read_from_bdev_sync(zram, page, entry);
1103 	}
1104 	read_from_bdev_async(zram, page, entry, parent);
1105 	return 0;
1106 }
1107 #else
1108 static inline void reset_bdev(struct zram *zram) {};
1109 static int read_from_bdev(struct zram *zram, struct page *page,
1110 			unsigned long entry, struct bio *parent)
1111 {
1112 	return -EIO;
1113 }
1114 
1115 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
1116 #endif
1117 
1118 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
1119 
1120 static struct dentry *zram_debugfs_root;
1121 
1122 static void zram_debugfs_create(void)
1123 {
1124 	zram_debugfs_root = debugfs_create_dir("zram", NULL);
1125 }
1126 
1127 static void zram_debugfs_destroy(void)
1128 {
1129 	debugfs_remove_recursive(zram_debugfs_root);
1130 }
1131 
1132 static ssize_t read_block_state(struct file *file, char __user *buf,
1133 				size_t count, loff_t *ppos)
1134 {
1135 	char *kbuf;
1136 	ssize_t index, written = 0;
1137 	struct zram *zram = file->private_data;
1138 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
1139 	struct timespec64 ts;
1140 
1141 	kbuf = kvmalloc(count, GFP_KERNEL);
1142 	if (!kbuf)
1143 		return -ENOMEM;
1144 
1145 	down_read(&zram->init_lock);
1146 	if (!init_done(zram)) {
1147 		up_read(&zram->init_lock);
1148 		kvfree(kbuf);
1149 		return -EINVAL;
1150 	}
1151 
1152 	for (index = *ppos; index < nr_pages; index++) {
1153 		int copied;
1154 
1155 		zram_slot_lock(zram, index);
1156 		if (!zram_allocated(zram, index))
1157 			goto next;
1158 
1159 		ts = ktime_to_timespec64(zram->table[index].ac_time);
1160 		copied = snprintf(kbuf + written, count,
1161 			"%12zd %12lld.%06lu %c%c%c%c%c%c\n",
1162 			index, (s64)ts.tv_sec,
1163 			ts.tv_nsec / NSEC_PER_USEC,
1164 			zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
1165 			zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
1166 			zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
1167 			zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.',
1168 			zram_get_priority(zram, index) ? 'r' : '.',
1169 			zram_test_flag(zram, index,
1170 				       ZRAM_INCOMPRESSIBLE) ? 'n' : '.');
1171 
1172 		if (count <= copied) {
1173 			zram_slot_unlock(zram, index);
1174 			break;
1175 		}
1176 		written += copied;
1177 		count -= copied;
1178 next:
1179 		zram_slot_unlock(zram, index);
1180 		*ppos += 1;
1181 	}
1182 
1183 	up_read(&zram->init_lock);
1184 	if (copy_to_user(buf, kbuf, written))
1185 		written = -EFAULT;
1186 	kvfree(kbuf);
1187 
1188 	return written;
1189 }
1190 
1191 static const struct file_operations proc_zram_block_state_op = {
1192 	.open = simple_open,
1193 	.read = read_block_state,
1194 	.llseek = default_llseek,
1195 };
1196 
1197 static void zram_debugfs_register(struct zram *zram)
1198 {
1199 	if (!zram_debugfs_root)
1200 		return;
1201 
1202 	zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
1203 						zram_debugfs_root);
1204 	debugfs_create_file("block_state", 0400, zram->debugfs_dir,
1205 				zram, &proc_zram_block_state_op);
1206 }
1207 
1208 static void zram_debugfs_unregister(struct zram *zram)
1209 {
1210 	debugfs_remove_recursive(zram->debugfs_dir);
1211 }
1212 #else
1213 static void zram_debugfs_create(void) {};
1214 static void zram_debugfs_destroy(void) {};
1215 static void zram_debugfs_register(struct zram *zram) {};
1216 static void zram_debugfs_unregister(struct zram *zram) {};
1217 #endif
1218 
1219 static void comp_algorithm_set(struct zram *zram, u32 prio, const char *alg)
1220 {
1221 	/* Do not free statically defined compression algorithms */
1222 	if (zram->comp_algs[prio] != default_compressor)
1223 		kfree(zram->comp_algs[prio]);
1224 
1225 	zram->comp_algs[prio] = alg;
1226 }
1227 
1228 static ssize_t __comp_algorithm_show(struct zram *zram, u32 prio, char *buf)
1229 {
1230 	ssize_t sz;
1231 
1232 	down_read(&zram->init_lock);
1233 	sz = zcomp_available_show(zram->comp_algs[prio], buf);
1234 	up_read(&zram->init_lock);
1235 
1236 	return sz;
1237 }
1238 
1239 static int __comp_algorithm_store(struct zram *zram, u32 prio, const char *buf)
1240 {
1241 	char *compressor;
1242 	size_t sz;
1243 
1244 	sz = strlen(buf);
1245 	if (sz >= ZRAM_MAX_ALGO_NAME_SZ)
1246 		return -E2BIG;
1247 
1248 	compressor = kstrdup(buf, GFP_KERNEL);
1249 	if (!compressor)
1250 		return -ENOMEM;
1251 
1252 	/* ignore trailing newline */
1253 	if (sz > 0 && compressor[sz - 1] == '\n')
1254 		compressor[sz - 1] = 0x00;
1255 
1256 	if (!zcomp_available_algorithm(compressor)) {
1257 		kfree(compressor);
1258 		return -EINVAL;
1259 	}
1260 
1261 	down_write(&zram->init_lock);
1262 	if (init_done(zram)) {
1263 		up_write(&zram->init_lock);
1264 		kfree(compressor);
1265 		pr_info("Can't change algorithm for initialized device\n");
1266 		return -EBUSY;
1267 	}
1268 
1269 	comp_algorithm_set(zram, prio, compressor);
1270 	up_write(&zram->init_lock);
1271 	return 0;
1272 }
1273 
1274 static void comp_params_reset(struct zram *zram, u32 prio)
1275 {
1276 	struct zcomp_params *params = &zram->params[prio];
1277 
1278 	vfree(params->dict);
1279 	params->level = ZCOMP_PARAM_NOT_SET;
1280 	params->deflate.winbits = ZCOMP_PARAM_NOT_SET;
1281 	params->dict_sz = 0;
1282 	params->dict = NULL;
1283 }
1284 
1285 static int comp_params_store(struct zram *zram, u32 prio, s32 level,
1286 			     const char *dict_path,
1287 			     struct deflate_params *deflate_params)
1288 {
1289 	ssize_t sz = 0;
1290 
1291 	comp_params_reset(zram, prio);
1292 
1293 	if (dict_path) {
1294 		sz = kernel_read_file_from_path(dict_path, 0,
1295 						&zram->params[prio].dict,
1296 						INT_MAX,
1297 						NULL,
1298 						READING_POLICY);
1299 		if (sz < 0)
1300 			return -EINVAL;
1301 	}
1302 
1303 	zram->params[prio].dict_sz = sz;
1304 	zram->params[prio].level = level;
1305 	zram->params[prio].deflate.winbits = deflate_params->winbits;
1306 	return 0;
1307 }
1308 
1309 static ssize_t algorithm_params_store(struct device *dev,
1310 				      struct device_attribute *attr,
1311 				      const char *buf,
1312 				      size_t len)
1313 {
1314 	s32 prio = ZRAM_PRIMARY_COMP, level = ZCOMP_PARAM_NOT_SET;
1315 	char *args, *param, *val, *algo = NULL, *dict_path = NULL;
1316 	struct deflate_params deflate_params;
1317 	struct zram *zram = dev_to_zram(dev);
1318 	int ret;
1319 
1320 	deflate_params.winbits = ZCOMP_PARAM_NOT_SET;
1321 
1322 	args = skip_spaces(buf);
1323 	while (*args) {
1324 		args = next_arg(args, &param, &val);
1325 
1326 		if (!val || !*val)
1327 			return -EINVAL;
1328 
1329 		if (!strcmp(param, "priority")) {
1330 			ret = kstrtoint(val, 10, &prio);
1331 			if (ret)
1332 				return ret;
1333 			continue;
1334 		}
1335 
1336 		if (!strcmp(param, "level")) {
1337 			ret = kstrtoint(val, 10, &level);
1338 			if (ret)
1339 				return ret;
1340 			continue;
1341 		}
1342 
1343 		if (!strcmp(param, "algo")) {
1344 			algo = val;
1345 			continue;
1346 		}
1347 
1348 		if (!strcmp(param, "dict")) {
1349 			dict_path = val;
1350 			continue;
1351 		}
1352 
1353 		if (!strcmp(param, "deflate.winbits")) {
1354 			ret = kstrtoint(val, 10, &deflate_params.winbits);
1355 			if (ret)
1356 				return ret;
1357 			continue;
1358 		}
1359 	}
1360 
1361 	/* Lookup priority by algorithm name */
1362 	if (algo) {
1363 		s32 p;
1364 
1365 		prio = -EINVAL;
1366 		for (p = ZRAM_PRIMARY_COMP; p < ZRAM_MAX_COMPS; p++) {
1367 			if (!zram->comp_algs[p])
1368 				continue;
1369 
1370 			if (!strcmp(zram->comp_algs[p], algo)) {
1371 				prio = p;
1372 				break;
1373 			}
1374 		}
1375 	}
1376 
1377 	if (prio < ZRAM_PRIMARY_COMP || prio >= ZRAM_MAX_COMPS)
1378 		return -EINVAL;
1379 
1380 	ret = comp_params_store(zram, prio, level, dict_path, &deflate_params);
1381 	return ret ? ret : len;
1382 }
1383 
1384 static ssize_t comp_algorithm_show(struct device *dev,
1385 				   struct device_attribute *attr,
1386 				   char *buf)
1387 {
1388 	struct zram *zram = dev_to_zram(dev);
1389 
1390 	return __comp_algorithm_show(zram, ZRAM_PRIMARY_COMP, buf);
1391 }
1392 
1393 static ssize_t comp_algorithm_store(struct device *dev,
1394 				    struct device_attribute *attr,
1395 				    const char *buf,
1396 				    size_t len)
1397 {
1398 	struct zram *zram = dev_to_zram(dev);
1399 	int ret;
1400 
1401 	ret = __comp_algorithm_store(zram, ZRAM_PRIMARY_COMP, buf);
1402 	return ret ? ret : len;
1403 }
1404 
1405 #ifdef CONFIG_ZRAM_MULTI_COMP
1406 static ssize_t recomp_algorithm_show(struct device *dev,
1407 				     struct device_attribute *attr,
1408 				     char *buf)
1409 {
1410 	struct zram *zram = dev_to_zram(dev);
1411 	ssize_t sz = 0;
1412 	u32 prio;
1413 
1414 	for (prio = ZRAM_SECONDARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
1415 		if (!zram->comp_algs[prio])
1416 			continue;
1417 
1418 		sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2, "#%d: ", prio);
1419 		sz += __comp_algorithm_show(zram, prio, buf + sz);
1420 	}
1421 
1422 	return sz;
1423 }
1424 
1425 static ssize_t recomp_algorithm_store(struct device *dev,
1426 				      struct device_attribute *attr,
1427 				      const char *buf,
1428 				      size_t len)
1429 {
1430 	struct zram *zram = dev_to_zram(dev);
1431 	int prio = ZRAM_SECONDARY_COMP;
1432 	char *args, *param, *val;
1433 	char *alg = NULL;
1434 	int ret;
1435 
1436 	args = skip_spaces(buf);
1437 	while (*args) {
1438 		args = next_arg(args, &param, &val);
1439 
1440 		if (!val || !*val)
1441 			return -EINVAL;
1442 
1443 		if (!strcmp(param, "algo")) {
1444 			alg = val;
1445 			continue;
1446 		}
1447 
1448 		if (!strcmp(param, "priority")) {
1449 			ret = kstrtoint(val, 10, &prio);
1450 			if (ret)
1451 				return ret;
1452 			continue;
1453 		}
1454 	}
1455 
1456 	if (!alg)
1457 		return -EINVAL;
1458 
1459 	if (prio < ZRAM_SECONDARY_COMP || prio >= ZRAM_MAX_COMPS)
1460 		return -EINVAL;
1461 
1462 	ret = __comp_algorithm_store(zram, prio, alg);
1463 	return ret ? ret : len;
1464 }
1465 #endif
1466 
1467 static ssize_t compact_store(struct device *dev,
1468 		struct device_attribute *attr, const char *buf, size_t len)
1469 {
1470 	struct zram *zram = dev_to_zram(dev);
1471 
1472 	down_read(&zram->init_lock);
1473 	if (!init_done(zram)) {
1474 		up_read(&zram->init_lock);
1475 		return -EINVAL;
1476 	}
1477 
1478 	zs_compact(zram->mem_pool);
1479 	up_read(&zram->init_lock);
1480 
1481 	return len;
1482 }
1483 
1484 static ssize_t io_stat_show(struct device *dev,
1485 		struct device_attribute *attr, char *buf)
1486 {
1487 	struct zram *zram = dev_to_zram(dev);
1488 	ssize_t ret;
1489 
1490 	down_read(&zram->init_lock);
1491 	ret = scnprintf(buf, PAGE_SIZE,
1492 			"%8llu %8llu 0 %8llu\n",
1493 			(u64)atomic64_read(&zram->stats.failed_reads),
1494 			(u64)atomic64_read(&zram->stats.failed_writes),
1495 			(u64)atomic64_read(&zram->stats.notify_free));
1496 	up_read(&zram->init_lock);
1497 
1498 	return ret;
1499 }
1500 
1501 static ssize_t mm_stat_show(struct device *dev,
1502 		struct device_attribute *attr, char *buf)
1503 {
1504 	struct zram *zram = dev_to_zram(dev);
1505 	struct zs_pool_stats pool_stats;
1506 	u64 orig_size, mem_used = 0;
1507 	long max_used;
1508 	ssize_t ret;
1509 
1510 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1511 
1512 	down_read(&zram->init_lock);
1513 	if (init_done(zram)) {
1514 		mem_used = zs_get_total_pages(zram->mem_pool);
1515 		zs_pool_stats(zram->mem_pool, &pool_stats);
1516 	}
1517 
1518 	orig_size = atomic64_read(&zram->stats.pages_stored);
1519 	max_used = atomic_long_read(&zram->stats.max_used_pages);
1520 
1521 	ret = scnprintf(buf, PAGE_SIZE,
1522 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n",
1523 			orig_size << PAGE_SHIFT,
1524 			(u64)atomic64_read(&zram->stats.compr_data_size),
1525 			mem_used << PAGE_SHIFT,
1526 			zram->limit_pages << PAGE_SHIFT,
1527 			max_used << PAGE_SHIFT,
1528 			(u64)atomic64_read(&zram->stats.same_pages),
1529 			atomic_long_read(&pool_stats.pages_compacted),
1530 			(u64)atomic64_read(&zram->stats.huge_pages),
1531 			(u64)atomic64_read(&zram->stats.huge_pages_since));
1532 	up_read(&zram->init_lock);
1533 
1534 	return ret;
1535 }
1536 
1537 #ifdef CONFIG_ZRAM_WRITEBACK
1538 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
1539 static ssize_t bd_stat_show(struct device *dev,
1540 		struct device_attribute *attr, char *buf)
1541 {
1542 	struct zram *zram = dev_to_zram(dev);
1543 	ssize_t ret;
1544 
1545 	down_read(&zram->init_lock);
1546 	ret = scnprintf(buf, PAGE_SIZE,
1547 		"%8llu %8llu %8llu\n",
1548 			FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1549 			FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1550 			FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1551 	up_read(&zram->init_lock);
1552 
1553 	return ret;
1554 }
1555 #endif
1556 
1557 static ssize_t debug_stat_show(struct device *dev,
1558 		struct device_attribute *attr, char *buf)
1559 {
1560 	int version = 1;
1561 	struct zram *zram = dev_to_zram(dev);
1562 	ssize_t ret;
1563 
1564 	down_read(&zram->init_lock);
1565 	ret = scnprintf(buf, PAGE_SIZE,
1566 			"version: %d\n0 %8llu\n",
1567 			version,
1568 			(u64)atomic64_read(&zram->stats.miss_free));
1569 	up_read(&zram->init_lock);
1570 
1571 	return ret;
1572 }
1573 
1574 static DEVICE_ATTR_RO(io_stat);
1575 static DEVICE_ATTR_RO(mm_stat);
1576 #ifdef CONFIG_ZRAM_WRITEBACK
1577 static DEVICE_ATTR_RO(bd_stat);
1578 #endif
1579 static DEVICE_ATTR_RO(debug_stat);
1580 
1581 static void zram_meta_free(struct zram *zram, u64 disksize)
1582 {
1583 	size_t num_pages = disksize >> PAGE_SHIFT;
1584 	size_t index;
1585 
1586 	if (!zram->table)
1587 		return;
1588 
1589 	/* Free all pages that are still in this zram device */
1590 	for (index = 0; index < num_pages; index++)
1591 		zram_free_page(zram, index);
1592 
1593 	zs_destroy_pool(zram->mem_pool);
1594 	vfree(zram->table);
1595 	zram->table = NULL;
1596 }
1597 
1598 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1599 {
1600 	size_t num_pages, index;
1601 
1602 	num_pages = disksize >> PAGE_SHIFT;
1603 	zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1604 	if (!zram->table)
1605 		return false;
1606 
1607 	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1608 	if (!zram->mem_pool) {
1609 		vfree(zram->table);
1610 		zram->table = NULL;
1611 		return false;
1612 	}
1613 
1614 	if (!huge_class_size)
1615 		huge_class_size = zs_huge_class_size(zram->mem_pool);
1616 
1617 	for (index = 0; index < num_pages; index++)
1618 		zram_slot_lock_init(zram, index);
1619 
1620 	return true;
1621 }
1622 
1623 static void zram_free_page(struct zram *zram, size_t index)
1624 {
1625 	unsigned long handle;
1626 
1627 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
1628 	zram->table[index].ac_time = 0;
1629 #endif
1630 
1631 	zram_clear_flag(zram, index, ZRAM_IDLE);
1632 	zram_clear_flag(zram, index, ZRAM_INCOMPRESSIBLE);
1633 	zram_clear_flag(zram, index, ZRAM_PP_SLOT);
1634 	zram_set_priority(zram, index, 0);
1635 
1636 	if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1637 		zram_clear_flag(zram, index, ZRAM_HUGE);
1638 		atomic64_dec(&zram->stats.huge_pages);
1639 	}
1640 
1641 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1642 		zram_clear_flag(zram, index, ZRAM_WB);
1643 		free_block_bdev(zram, zram_get_handle(zram, index));
1644 		goto out;
1645 	}
1646 
1647 	/*
1648 	 * No memory is allocated for same element filled pages.
1649 	 * Simply clear same page flag.
1650 	 */
1651 	if (zram_test_flag(zram, index, ZRAM_SAME)) {
1652 		zram_clear_flag(zram, index, ZRAM_SAME);
1653 		atomic64_dec(&zram->stats.same_pages);
1654 		goto out;
1655 	}
1656 
1657 	handle = zram_get_handle(zram, index);
1658 	if (!handle)
1659 		return;
1660 
1661 	zs_free(zram->mem_pool, handle);
1662 
1663 	atomic64_sub(zram_get_obj_size(zram, index),
1664 		     &zram->stats.compr_data_size);
1665 out:
1666 	atomic64_dec(&zram->stats.pages_stored);
1667 	zram_set_handle(zram, index, 0);
1668 	zram_set_obj_size(zram, index, 0);
1669 }
1670 
1671 static int read_same_filled_page(struct zram *zram, struct page *page,
1672 				 u32 index)
1673 {
1674 	void *mem;
1675 
1676 	mem = kmap_local_page(page);
1677 	zram_fill_page(mem, PAGE_SIZE, zram_get_handle(zram, index));
1678 	kunmap_local(mem);
1679 	return 0;
1680 }
1681 
1682 static int read_incompressible_page(struct zram *zram, struct page *page,
1683 				    u32 index)
1684 {
1685 	unsigned long handle;
1686 	void *src, *dst;
1687 
1688 	handle = zram_get_handle(zram, index);
1689 	src = zs_obj_read_begin(zram->mem_pool, handle, NULL);
1690 	dst = kmap_local_page(page);
1691 	copy_page(dst, src);
1692 	kunmap_local(dst);
1693 	zs_obj_read_end(zram->mem_pool, handle, src);
1694 
1695 	return 0;
1696 }
1697 
1698 static int read_compressed_page(struct zram *zram, struct page *page, u32 index)
1699 {
1700 	struct zcomp_strm *zstrm;
1701 	unsigned long handle;
1702 	unsigned int size;
1703 	void *src, *dst;
1704 	int ret, prio;
1705 
1706 	handle = zram_get_handle(zram, index);
1707 	size = zram_get_obj_size(zram, index);
1708 	prio = zram_get_priority(zram, index);
1709 
1710 	zstrm = zcomp_stream_get(zram->comps[prio]);
1711 	src = zs_obj_read_begin(zram->mem_pool, handle, zstrm->local_copy);
1712 	dst = kmap_local_page(page);
1713 	ret = zcomp_decompress(zram->comps[prio], zstrm, src, size, dst);
1714 	kunmap_local(dst);
1715 	zs_obj_read_end(zram->mem_pool, handle, src);
1716 	zcomp_stream_put(zstrm);
1717 
1718 	return ret;
1719 }
1720 
1721 /*
1722  * Reads (decompresses if needed) a page from zspool (zsmalloc).
1723  * Corresponding ZRAM slot should be locked.
1724  */
1725 static int zram_read_from_zspool(struct zram *zram, struct page *page,
1726 				 u32 index)
1727 {
1728 	if (zram_test_flag(zram, index, ZRAM_SAME) ||
1729 	    !zram_get_handle(zram, index))
1730 		return read_same_filled_page(zram, page, index);
1731 
1732 	if (!zram_test_flag(zram, index, ZRAM_HUGE))
1733 		return read_compressed_page(zram, page, index);
1734 	else
1735 		return read_incompressible_page(zram, page, index);
1736 }
1737 
1738 static int zram_read_page(struct zram *zram, struct page *page, u32 index,
1739 			  struct bio *parent)
1740 {
1741 	int ret;
1742 
1743 	zram_slot_lock(zram, index);
1744 	if (!zram_test_flag(zram, index, ZRAM_WB)) {
1745 		/* Slot should be locked through out the function call */
1746 		ret = zram_read_from_zspool(zram, page, index);
1747 		zram_slot_unlock(zram, index);
1748 	} else {
1749 		/*
1750 		 * The slot should be unlocked before reading from the backing
1751 		 * device.
1752 		 */
1753 		zram_slot_unlock(zram, index);
1754 
1755 		ret = read_from_bdev(zram, page, zram_get_handle(zram, index),
1756 				     parent);
1757 	}
1758 
1759 	/* Should NEVER happen. Return bio error if it does. */
1760 	if (WARN_ON(ret < 0))
1761 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1762 
1763 	return ret;
1764 }
1765 
1766 /*
1767  * Use a temporary buffer to decompress the page, as the decompressor
1768  * always expects a full page for the output.
1769  */
1770 static int zram_bvec_read_partial(struct zram *zram, struct bio_vec *bvec,
1771 				  u32 index, int offset)
1772 {
1773 	struct page *page = alloc_page(GFP_NOIO);
1774 	int ret;
1775 
1776 	if (!page)
1777 		return -ENOMEM;
1778 	ret = zram_read_page(zram, page, index, NULL);
1779 	if (likely(!ret))
1780 		memcpy_to_bvec(bvec, page_address(page) + offset);
1781 	__free_page(page);
1782 	return ret;
1783 }
1784 
1785 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1786 			  u32 index, int offset, struct bio *bio)
1787 {
1788 	if (is_partial_io(bvec))
1789 		return zram_bvec_read_partial(zram, bvec, index, offset);
1790 	return zram_read_page(zram, bvec->bv_page, index, bio);
1791 }
1792 
1793 static int write_same_filled_page(struct zram *zram, unsigned long fill,
1794 				  u32 index)
1795 {
1796 	zram_slot_lock(zram, index);
1797 	zram_set_flag(zram, index, ZRAM_SAME);
1798 	zram_set_handle(zram, index, fill);
1799 	zram_slot_unlock(zram, index);
1800 
1801 	atomic64_inc(&zram->stats.same_pages);
1802 	atomic64_inc(&zram->stats.pages_stored);
1803 
1804 	return 0;
1805 }
1806 
1807 static int write_incompressible_page(struct zram *zram, struct page *page,
1808 				     u32 index)
1809 {
1810 	unsigned long handle;
1811 	void *src;
1812 
1813 	/*
1814 	 * This function is called from preemptible context so we don't need
1815 	 * to do optimistic and fallback to pessimistic handle allocation,
1816 	 * like we do for compressible pages.
1817 	 */
1818 	handle = zs_malloc(zram->mem_pool, PAGE_SIZE,
1819 			   GFP_NOIO | __GFP_NOWARN |
1820 			   __GFP_HIGHMEM | __GFP_MOVABLE, page_to_nid(page));
1821 	if (IS_ERR_VALUE(handle))
1822 		return PTR_ERR((void *)handle);
1823 
1824 	if (!zram_can_store_page(zram)) {
1825 		zs_free(zram->mem_pool, handle);
1826 		return -ENOMEM;
1827 	}
1828 
1829 	src = kmap_local_page(page);
1830 	zs_obj_write(zram->mem_pool, handle, src, PAGE_SIZE);
1831 	kunmap_local(src);
1832 
1833 	zram_slot_lock(zram, index);
1834 	zram_set_flag(zram, index, ZRAM_HUGE);
1835 	zram_set_handle(zram, index, handle);
1836 	zram_set_obj_size(zram, index, PAGE_SIZE);
1837 	zram_slot_unlock(zram, index);
1838 
1839 	atomic64_add(PAGE_SIZE, &zram->stats.compr_data_size);
1840 	atomic64_inc(&zram->stats.huge_pages);
1841 	atomic64_inc(&zram->stats.huge_pages_since);
1842 	atomic64_inc(&zram->stats.pages_stored);
1843 
1844 	return 0;
1845 }
1846 
1847 static int zram_write_page(struct zram *zram, struct page *page, u32 index)
1848 {
1849 	int ret = 0;
1850 	unsigned long handle;
1851 	unsigned int comp_len;
1852 	void *mem;
1853 	struct zcomp_strm *zstrm;
1854 	unsigned long element;
1855 	bool same_filled;
1856 
1857 	/* First, free memory allocated to this slot (if any) */
1858 	zram_slot_lock(zram, index);
1859 	zram_free_page(zram, index);
1860 	zram_slot_unlock(zram, index);
1861 
1862 	mem = kmap_local_page(page);
1863 	same_filled = page_same_filled(mem, &element);
1864 	kunmap_local(mem);
1865 	if (same_filled)
1866 		return write_same_filled_page(zram, element, index);
1867 
1868 	zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]);
1869 	mem = kmap_local_page(page);
1870 	ret = zcomp_compress(zram->comps[ZRAM_PRIMARY_COMP], zstrm,
1871 			     mem, &comp_len);
1872 	kunmap_local(mem);
1873 
1874 	if (unlikely(ret)) {
1875 		zcomp_stream_put(zstrm);
1876 		pr_err("Compression failed! err=%d\n", ret);
1877 		return ret;
1878 	}
1879 
1880 	if (comp_len >= huge_class_size) {
1881 		zcomp_stream_put(zstrm);
1882 		return write_incompressible_page(zram, page, index);
1883 	}
1884 
1885 	handle = zs_malloc(zram->mem_pool, comp_len,
1886 			   GFP_NOIO | __GFP_NOWARN |
1887 			   __GFP_HIGHMEM | __GFP_MOVABLE, page_to_nid(page));
1888 	if (IS_ERR_VALUE(handle)) {
1889 		zcomp_stream_put(zstrm);
1890 		return PTR_ERR((void *)handle);
1891 	}
1892 
1893 	if (!zram_can_store_page(zram)) {
1894 		zcomp_stream_put(zstrm);
1895 		zs_free(zram->mem_pool, handle);
1896 		return -ENOMEM;
1897 	}
1898 
1899 	zs_obj_write(zram->mem_pool, handle, zstrm->buffer, comp_len);
1900 	zcomp_stream_put(zstrm);
1901 
1902 	zram_slot_lock(zram, index);
1903 	zram_set_handle(zram, index, handle);
1904 	zram_set_obj_size(zram, index, comp_len);
1905 	zram_slot_unlock(zram, index);
1906 
1907 	/* Update stats */
1908 	atomic64_inc(&zram->stats.pages_stored);
1909 	atomic64_add(comp_len, &zram->stats.compr_data_size);
1910 
1911 	return ret;
1912 }
1913 
1914 /*
1915  * This is a partial IO. Read the full page before writing the changes.
1916  */
1917 static int zram_bvec_write_partial(struct zram *zram, struct bio_vec *bvec,
1918 				   u32 index, int offset, struct bio *bio)
1919 {
1920 	struct page *page = alloc_page(GFP_NOIO);
1921 	int ret;
1922 
1923 	if (!page)
1924 		return -ENOMEM;
1925 
1926 	ret = zram_read_page(zram, page, index, bio);
1927 	if (!ret) {
1928 		memcpy_from_bvec(page_address(page) + offset, bvec);
1929 		ret = zram_write_page(zram, page, index);
1930 	}
1931 	__free_page(page);
1932 	return ret;
1933 }
1934 
1935 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1936 			   u32 index, int offset, struct bio *bio)
1937 {
1938 	if (is_partial_io(bvec))
1939 		return zram_bvec_write_partial(zram, bvec, index, offset, bio);
1940 	return zram_write_page(zram, bvec->bv_page, index);
1941 }
1942 
1943 #ifdef CONFIG_ZRAM_MULTI_COMP
1944 #define RECOMPRESS_IDLE		(1 << 0)
1945 #define RECOMPRESS_HUGE		(1 << 1)
1946 
1947 static int scan_slots_for_recompress(struct zram *zram, u32 mode, u32 prio_max,
1948 				     struct zram_pp_ctl *ctl)
1949 {
1950 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
1951 	unsigned long index;
1952 
1953 	for (index = 0; index < nr_pages; index++) {
1954 		bool ok = true;
1955 
1956 		zram_slot_lock(zram, index);
1957 		if (!zram_allocated(zram, index))
1958 			goto next;
1959 
1960 		if (mode & RECOMPRESS_IDLE &&
1961 		    !zram_test_flag(zram, index, ZRAM_IDLE))
1962 			goto next;
1963 
1964 		if (mode & RECOMPRESS_HUGE &&
1965 		    !zram_test_flag(zram, index, ZRAM_HUGE))
1966 			goto next;
1967 
1968 		if (zram_test_flag(zram, index, ZRAM_WB) ||
1969 		    zram_test_flag(zram, index, ZRAM_SAME) ||
1970 		    zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE))
1971 			goto next;
1972 
1973 		/* Already compressed with same of higher priority */
1974 		if (zram_get_priority(zram, index) + 1 >= prio_max)
1975 			goto next;
1976 
1977 		ok = place_pp_slot(zram, ctl, index);
1978 next:
1979 		zram_slot_unlock(zram, index);
1980 		if (!ok)
1981 			break;
1982 	}
1983 
1984 	return 0;
1985 }
1986 
1987 /*
1988  * This function will decompress (unless it's ZRAM_HUGE) the page and then
1989  * attempt to compress it using provided compression algorithm priority
1990  * (which is potentially more effective).
1991  *
1992  * Corresponding ZRAM slot should be locked.
1993  */
1994 static int recompress_slot(struct zram *zram, u32 index, struct page *page,
1995 			   u64 *num_recomp_pages, u32 threshold, u32 prio,
1996 			   u32 prio_max)
1997 {
1998 	struct zcomp_strm *zstrm = NULL;
1999 	unsigned long handle_old;
2000 	unsigned long handle_new;
2001 	unsigned int comp_len_old;
2002 	unsigned int comp_len_new;
2003 	unsigned int class_index_old;
2004 	unsigned int class_index_new;
2005 	void *src;
2006 	int ret = 0;
2007 
2008 	handle_old = zram_get_handle(zram, index);
2009 	if (!handle_old)
2010 		return -EINVAL;
2011 
2012 	comp_len_old = zram_get_obj_size(zram, index);
2013 	/*
2014 	 * Do not recompress objects that are already "small enough".
2015 	 */
2016 	if (comp_len_old < threshold)
2017 		return 0;
2018 
2019 	ret = zram_read_from_zspool(zram, page, index);
2020 	if (ret)
2021 		return ret;
2022 
2023 	/*
2024 	 * We touched this entry so mark it as non-IDLE. This makes sure that
2025 	 * we don't preserve IDLE flag and don't incorrectly pick this entry
2026 	 * for different post-processing type (e.g. writeback).
2027 	 */
2028 	zram_clear_flag(zram, index, ZRAM_IDLE);
2029 
2030 	class_index_old = zs_lookup_class_index(zram->mem_pool, comp_len_old);
2031 
2032 	prio = max(prio, zram_get_priority(zram, index) + 1);
2033 	/*
2034 	 * Recompression slots scan should not select slots that are
2035 	 * already compressed with a higher priority algorithm, but
2036 	 * just in case
2037 	 */
2038 	if (prio >= prio_max)
2039 		return 0;
2040 
2041 	/*
2042 	 * Iterate the secondary comp algorithms list (in order of priority)
2043 	 * and try to recompress the page.
2044 	 */
2045 	for (; prio < prio_max; prio++) {
2046 		if (!zram->comps[prio])
2047 			continue;
2048 
2049 		zstrm = zcomp_stream_get(zram->comps[prio]);
2050 		src = kmap_local_page(page);
2051 		ret = zcomp_compress(zram->comps[prio], zstrm,
2052 				     src, &comp_len_new);
2053 		kunmap_local(src);
2054 
2055 		if (ret) {
2056 			zcomp_stream_put(zstrm);
2057 			zstrm = NULL;
2058 			break;
2059 		}
2060 
2061 		class_index_new = zs_lookup_class_index(zram->mem_pool,
2062 							comp_len_new);
2063 
2064 		/* Continue until we make progress */
2065 		if (class_index_new >= class_index_old ||
2066 		    (threshold && comp_len_new >= threshold)) {
2067 			zcomp_stream_put(zstrm);
2068 			zstrm = NULL;
2069 			continue;
2070 		}
2071 
2072 		/* Recompression was successful so break out */
2073 		break;
2074 	}
2075 
2076 	/*
2077 	 * Decrement the limit (if set) on pages we can recompress, even
2078 	 * when current recompression was unsuccessful or did not compress
2079 	 * the page below the threshold, because we still spent resources
2080 	 * on it.
2081 	 */
2082 	if (*num_recomp_pages)
2083 		*num_recomp_pages -= 1;
2084 
2085 	/* Compression error */
2086 	if (ret)
2087 		return ret;
2088 
2089 	if (!zstrm) {
2090 		/*
2091 		 * Secondary algorithms failed to re-compress the page
2092 		 * in a way that would save memory.
2093 		 *
2094 		 * Mark the object incompressible if the max-priority
2095 		 * algorithm couldn't re-compress it.
2096 		 */
2097 		if (prio < zram->num_active_comps)
2098 			return 0;
2099 		zram_set_flag(zram, index, ZRAM_INCOMPRESSIBLE);
2100 		return 0;
2101 	}
2102 
2103 	/*
2104 	 * We are holding per-CPU stream mutex and entry lock so better
2105 	 * avoid direct reclaim.  Allocation error is not fatal since
2106 	 * we still have the old object in the mem_pool.
2107 	 *
2108 	 * XXX: technically, the node we really want here is the node that holds
2109 	 * the original compressed data. But that would require us to modify
2110 	 * zsmalloc API to return this information. For now, we will make do with
2111 	 * the node of the page allocated for recompression.
2112 	 */
2113 	handle_new = zs_malloc(zram->mem_pool, comp_len_new,
2114 			       GFP_NOIO | __GFP_NOWARN |
2115 			       __GFP_HIGHMEM | __GFP_MOVABLE, page_to_nid(page));
2116 	if (IS_ERR_VALUE(handle_new)) {
2117 		zcomp_stream_put(zstrm);
2118 		return PTR_ERR((void *)handle_new);
2119 	}
2120 
2121 	zs_obj_write(zram->mem_pool, handle_new, zstrm->buffer, comp_len_new);
2122 	zcomp_stream_put(zstrm);
2123 
2124 	zram_free_page(zram, index);
2125 	zram_set_handle(zram, index, handle_new);
2126 	zram_set_obj_size(zram, index, comp_len_new);
2127 	zram_set_priority(zram, index, prio);
2128 
2129 	atomic64_add(comp_len_new, &zram->stats.compr_data_size);
2130 	atomic64_inc(&zram->stats.pages_stored);
2131 
2132 	return 0;
2133 }
2134 
2135 static ssize_t recompress_store(struct device *dev,
2136 				struct device_attribute *attr,
2137 				const char *buf, size_t len)
2138 {
2139 	struct zram *zram = dev_to_zram(dev);
2140 	char *args, *param, *val, *algo = NULL;
2141 	u64 num_recomp_pages = ULLONG_MAX;
2142 	struct zram_pp_ctl *ctl = NULL;
2143 	struct zram_pp_slot *pps;
2144 	u32 mode = 0, threshold = 0;
2145 	u32 prio, prio_max;
2146 	struct page *page = NULL;
2147 	ssize_t ret;
2148 
2149 	prio = ZRAM_SECONDARY_COMP;
2150 	prio_max = zram->num_active_comps;
2151 
2152 	args = skip_spaces(buf);
2153 	while (*args) {
2154 		args = next_arg(args, &param, &val);
2155 
2156 		if (!val || !*val)
2157 			return -EINVAL;
2158 
2159 		if (!strcmp(param, "type")) {
2160 			if (!strcmp(val, "idle"))
2161 				mode = RECOMPRESS_IDLE;
2162 			if (!strcmp(val, "huge"))
2163 				mode = RECOMPRESS_HUGE;
2164 			if (!strcmp(val, "huge_idle"))
2165 				mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE;
2166 			continue;
2167 		}
2168 
2169 		if (!strcmp(param, "max_pages")) {
2170 			/*
2171 			 * Limit the number of entries (pages) we attempt to
2172 			 * recompress.
2173 			 */
2174 			ret = kstrtoull(val, 10, &num_recomp_pages);
2175 			if (ret)
2176 				return ret;
2177 			continue;
2178 		}
2179 
2180 		if (!strcmp(param, "threshold")) {
2181 			/*
2182 			 * We will re-compress only idle objects equal or
2183 			 * greater in size than watermark.
2184 			 */
2185 			ret = kstrtouint(val, 10, &threshold);
2186 			if (ret)
2187 				return ret;
2188 			continue;
2189 		}
2190 
2191 		if (!strcmp(param, "algo")) {
2192 			algo = val;
2193 			continue;
2194 		}
2195 
2196 		if (!strcmp(param, "priority")) {
2197 			ret = kstrtouint(val, 10, &prio);
2198 			if (ret)
2199 				return ret;
2200 
2201 			if (prio == ZRAM_PRIMARY_COMP)
2202 				prio = ZRAM_SECONDARY_COMP;
2203 
2204 			prio_max = prio + 1;
2205 			continue;
2206 		}
2207 	}
2208 
2209 	if (threshold >= huge_class_size)
2210 		return -EINVAL;
2211 
2212 	down_read(&zram->init_lock);
2213 	if (!init_done(zram)) {
2214 		ret = -EINVAL;
2215 		goto release_init_lock;
2216 	}
2217 
2218 	/* Do not permit concurrent post-processing actions. */
2219 	if (atomic_xchg(&zram->pp_in_progress, 1)) {
2220 		up_read(&zram->init_lock);
2221 		return -EAGAIN;
2222 	}
2223 
2224 	if (algo) {
2225 		bool found = false;
2226 
2227 		for (; prio < ZRAM_MAX_COMPS; prio++) {
2228 			if (!zram->comp_algs[prio])
2229 				continue;
2230 
2231 			if (!strcmp(zram->comp_algs[prio], algo)) {
2232 				prio_max = prio + 1;
2233 				found = true;
2234 				break;
2235 			}
2236 		}
2237 
2238 		if (!found) {
2239 			ret = -EINVAL;
2240 			goto release_init_lock;
2241 		}
2242 	}
2243 
2244 	prio_max = min(prio_max, (u32)zram->num_active_comps);
2245 	if (prio >= prio_max) {
2246 		ret = -EINVAL;
2247 		goto release_init_lock;
2248 	}
2249 
2250 	page = alloc_page(GFP_KERNEL);
2251 	if (!page) {
2252 		ret = -ENOMEM;
2253 		goto release_init_lock;
2254 	}
2255 
2256 	ctl = init_pp_ctl();
2257 	if (!ctl) {
2258 		ret = -ENOMEM;
2259 		goto release_init_lock;
2260 	}
2261 
2262 	scan_slots_for_recompress(zram, mode, prio_max, ctl);
2263 
2264 	ret = len;
2265 	while ((pps = select_pp_slot(ctl))) {
2266 		int err = 0;
2267 
2268 		if (!num_recomp_pages)
2269 			break;
2270 
2271 		zram_slot_lock(zram, pps->index);
2272 		if (!zram_test_flag(zram, pps->index, ZRAM_PP_SLOT))
2273 			goto next;
2274 
2275 		err = recompress_slot(zram, pps->index, page,
2276 				      &num_recomp_pages, threshold,
2277 				      prio, prio_max);
2278 next:
2279 		zram_slot_unlock(zram, pps->index);
2280 		release_pp_slot(zram, pps);
2281 
2282 		if (err) {
2283 			ret = err;
2284 			break;
2285 		}
2286 
2287 		cond_resched();
2288 	}
2289 
2290 release_init_lock:
2291 	if (page)
2292 		__free_page(page);
2293 	release_pp_ctl(zram, ctl);
2294 	atomic_set(&zram->pp_in_progress, 0);
2295 	up_read(&zram->init_lock);
2296 	return ret;
2297 }
2298 #endif
2299 
2300 static void zram_bio_discard(struct zram *zram, struct bio *bio)
2301 {
2302 	size_t n = bio->bi_iter.bi_size;
2303 	u32 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
2304 	u32 offset = (bio->bi_iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
2305 			SECTOR_SHIFT;
2306 
2307 	/*
2308 	 * zram manages data in physical block size units. Because logical block
2309 	 * size isn't identical with physical block size on some arch, we
2310 	 * could get a discard request pointing to a specific offset within a
2311 	 * certain physical block.  Although we can handle this request by
2312 	 * reading that physiclal block and decompressing and partially zeroing
2313 	 * and re-compressing and then re-storing it, this isn't reasonable
2314 	 * because our intent with a discard request is to save memory.  So
2315 	 * skipping this logical block is appropriate here.
2316 	 */
2317 	if (offset) {
2318 		if (n <= (PAGE_SIZE - offset))
2319 			return;
2320 
2321 		n -= (PAGE_SIZE - offset);
2322 		index++;
2323 	}
2324 
2325 	while (n >= PAGE_SIZE) {
2326 		zram_slot_lock(zram, index);
2327 		zram_free_page(zram, index);
2328 		zram_slot_unlock(zram, index);
2329 		atomic64_inc(&zram->stats.notify_free);
2330 		index++;
2331 		n -= PAGE_SIZE;
2332 	}
2333 
2334 	bio_endio(bio);
2335 }
2336 
2337 static void zram_bio_read(struct zram *zram, struct bio *bio)
2338 {
2339 	unsigned long start_time = bio_start_io_acct(bio);
2340 	struct bvec_iter iter = bio->bi_iter;
2341 
2342 	do {
2343 		u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
2344 		u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
2345 				SECTOR_SHIFT;
2346 		struct bio_vec bv = bio_iter_iovec(bio, iter);
2347 
2348 		bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
2349 
2350 		if (zram_bvec_read(zram, &bv, index, offset, bio) < 0) {
2351 			atomic64_inc(&zram->stats.failed_reads);
2352 			bio->bi_status = BLK_STS_IOERR;
2353 			break;
2354 		}
2355 		flush_dcache_page(bv.bv_page);
2356 
2357 		zram_slot_lock(zram, index);
2358 		zram_accessed(zram, index);
2359 		zram_slot_unlock(zram, index);
2360 
2361 		bio_advance_iter_single(bio, &iter, bv.bv_len);
2362 	} while (iter.bi_size);
2363 
2364 	bio_end_io_acct(bio, start_time);
2365 	bio_endio(bio);
2366 }
2367 
2368 static void zram_bio_write(struct zram *zram, struct bio *bio)
2369 {
2370 	unsigned long start_time = bio_start_io_acct(bio);
2371 	struct bvec_iter iter = bio->bi_iter;
2372 
2373 	do {
2374 		u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
2375 		u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
2376 				SECTOR_SHIFT;
2377 		struct bio_vec bv = bio_iter_iovec(bio, iter);
2378 
2379 		bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
2380 
2381 		if (zram_bvec_write(zram, &bv, index, offset, bio) < 0) {
2382 			atomic64_inc(&zram->stats.failed_writes);
2383 			bio->bi_status = BLK_STS_IOERR;
2384 			break;
2385 		}
2386 
2387 		zram_slot_lock(zram, index);
2388 		zram_accessed(zram, index);
2389 		zram_slot_unlock(zram, index);
2390 
2391 		bio_advance_iter_single(bio, &iter, bv.bv_len);
2392 	} while (iter.bi_size);
2393 
2394 	bio_end_io_acct(bio, start_time);
2395 	bio_endio(bio);
2396 }
2397 
2398 /*
2399  * Handler function for all zram I/O requests.
2400  */
2401 static void zram_submit_bio(struct bio *bio)
2402 {
2403 	struct zram *zram = bio->bi_bdev->bd_disk->private_data;
2404 
2405 	switch (bio_op(bio)) {
2406 	case REQ_OP_READ:
2407 		zram_bio_read(zram, bio);
2408 		break;
2409 	case REQ_OP_WRITE:
2410 		zram_bio_write(zram, bio);
2411 		break;
2412 	case REQ_OP_DISCARD:
2413 	case REQ_OP_WRITE_ZEROES:
2414 		zram_bio_discard(zram, bio);
2415 		break;
2416 	default:
2417 		WARN_ON_ONCE(1);
2418 		bio_endio(bio);
2419 	}
2420 }
2421 
2422 static void zram_slot_free_notify(struct block_device *bdev,
2423 				unsigned long index)
2424 {
2425 	struct zram *zram;
2426 
2427 	zram = bdev->bd_disk->private_data;
2428 
2429 	atomic64_inc(&zram->stats.notify_free);
2430 	if (!zram_slot_trylock(zram, index)) {
2431 		atomic64_inc(&zram->stats.miss_free);
2432 		return;
2433 	}
2434 
2435 	zram_free_page(zram, index);
2436 	zram_slot_unlock(zram, index);
2437 }
2438 
2439 static void zram_comp_params_reset(struct zram *zram)
2440 {
2441 	u32 prio;
2442 
2443 	for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
2444 		comp_params_reset(zram, prio);
2445 	}
2446 }
2447 
2448 static void zram_destroy_comps(struct zram *zram)
2449 {
2450 	u32 prio;
2451 
2452 	for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
2453 		struct zcomp *comp = zram->comps[prio];
2454 
2455 		zram->comps[prio] = NULL;
2456 		if (!comp)
2457 			continue;
2458 		zcomp_destroy(comp);
2459 		zram->num_active_comps--;
2460 	}
2461 
2462 	for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
2463 		/* Do not free statically defined compression algorithms */
2464 		if (zram->comp_algs[prio] != default_compressor)
2465 			kfree(zram->comp_algs[prio]);
2466 		zram->comp_algs[prio] = NULL;
2467 	}
2468 
2469 	zram_comp_params_reset(zram);
2470 }
2471 
2472 static void zram_reset_device(struct zram *zram)
2473 {
2474 	down_write(&zram->init_lock);
2475 
2476 	zram->limit_pages = 0;
2477 
2478 	set_capacity_and_notify(zram->disk, 0);
2479 	part_stat_set_all(zram->disk->part0, 0);
2480 
2481 	/* I/O operation under all of CPU are done so let's free */
2482 	zram_meta_free(zram, zram->disksize);
2483 	zram->disksize = 0;
2484 	zram_destroy_comps(zram);
2485 	memset(&zram->stats, 0, sizeof(zram->stats));
2486 	atomic_set(&zram->pp_in_progress, 0);
2487 	reset_bdev(zram);
2488 
2489 	comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor);
2490 	up_write(&zram->init_lock);
2491 }
2492 
2493 static ssize_t disksize_store(struct device *dev,
2494 		struct device_attribute *attr, const char *buf, size_t len)
2495 {
2496 	u64 disksize;
2497 	struct zcomp *comp;
2498 	struct zram *zram = dev_to_zram(dev);
2499 	int err;
2500 	u32 prio;
2501 
2502 	disksize = memparse(buf, NULL);
2503 	if (!disksize)
2504 		return -EINVAL;
2505 
2506 	down_write(&zram->init_lock);
2507 	if (init_done(zram)) {
2508 		pr_info("Cannot change disksize for initialized device\n");
2509 		err = -EBUSY;
2510 		goto out_unlock;
2511 	}
2512 
2513 	disksize = PAGE_ALIGN(disksize);
2514 	if (!zram_meta_alloc(zram, disksize)) {
2515 		err = -ENOMEM;
2516 		goto out_unlock;
2517 	}
2518 
2519 	for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
2520 		if (!zram->comp_algs[prio])
2521 			continue;
2522 
2523 		comp = zcomp_create(zram->comp_algs[prio],
2524 				    &zram->params[prio]);
2525 		if (IS_ERR(comp)) {
2526 			pr_err("Cannot initialise %s compressing backend\n",
2527 			       zram->comp_algs[prio]);
2528 			err = PTR_ERR(comp);
2529 			goto out_free_comps;
2530 		}
2531 
2532 		zram->comps[prio] = comp;
2533 		zram->num_active_comps++;
2534 	}
2535 	zram->disksize = disksize;
2536 	set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT);
2537 	up_write(&zram->init_lock);
2538 
2539 	return len;
2540 
2541 out_free_comps:
2542 	zram_destroy_comps(zram);
2543 	zram_meta_free(zram, disksize);
2544 out_unlock:
2545 	up_write(&zram->init_lock);
2546 	return err;
2547 }
2548 
2549 static ssize_t reset_store(struct device *dev,
2550 		struct device_attribute *attr, const char *buf, size_t len)
2551 {
2552 	int ret;
2553 	unsigned short do_reset;
2554 	struct zram *zram;
2555 	struct gendisk *disk;
2556 
2557 	ret = kstrtou16(buf, 10, &do_reset);
2558 	if (ret)
2559 		return ret;
2560 
2561 	if (!do_reset)
2562 		return -EINVAL;
2563 
2564 	zram = dev_to_zram(dev);
2565 	disk = zram->disk;
2566 
2567 	mutex_lock(&disk->open_mutex);
2568 	/* Do not reset an active device or claimed device */
2569 	if (disk_openers(disk) || zram->claim) {
2570 		mutex_unlock(&disk->open_mutex);
2571 		return -EBUSY;
2572 	}
2573 
2574 	/* From now on, anyone can't open /dev/zram[0-9] */
2575 	zram->claim = true;
2576 	mutex_unlock(&disk->open_mutex);
2577 
2578 	/* Make sure all the pending I/O are finished */
2579 	sync_blockdev(disk->part0);
2580 	zram_reset_device(zram);
2581 
2582 	mutex_lock(&disk->open_mutex);
2583 	zram->claim = false;
2584 	mutex_unlock(&disk->open_mutex);
2585 
2586 	return len;
2587 }
2588 
2589 static int zram_open(struct gendisk *disk, blk_mode_t mode)
2590 {
2591 	struct zram *zram = disk->private_data;
2592 
2593 	WARN_ON(!mutex_is_locked(&disk->open_mutex));
2594 
2595 	/* zram was claimed to reset so open request fails */
2596 	if (zram->claim)
2597 		return -EBUSY;
2598 	return 0;
2599 }
2600 
2601 static const struct block_device_operations zram_devops = {
2602 	.open = zram_open,
2603 	.submit_bio = zram_submit_bio,
2604 	.swap_slot_free_notify = zram_slot_free_notify,
2605 	.owner = THIS_MODULE
2606 };
2607 
2608 static DEVICE_ATTR_WO(compact);
2609 static DEVICE_ATTR_RW(disksize);
2610 static DEVICE_ATTR_RO(initstate);
2611 static DEVICE_ATTR_WO(reset);
2612 static DEVICE_ATTR_WO(mem_limit);
2613 static DEVICE_ATTR_WO(mem_used_max);
2614 static DEVICE_ATTR_WO(idle);
2615 static DEVICE_ATTR_RW(comp_algorithm);
2616 #ifdef CONFIG_ZRAM_WRITEBACK
2617 static DEVICE_ATTR_RW(backing_dev);
2618 static DEVICE_ATTR_WO(writeback);
2619 static DEVICE_ATTR_RW(writeback_limit);
2620 static DEVICE_ATTR_RW(writeback_limit_enable);
2621 #endif
2622 #ifdef CONFIG_ZRAM_MULTI_COMP
2623 static DEVICE_ATTR_RW(recomp_algorithm);
2624 static DEVICE_ATTR_WO(recompress);
2625 #endif
2626 static DEVICE_ATTR_WO(algorithm_params);
2627 
2628 static struct attribute *zram_disk_attrs[] = {
2629 	&dev_attr_disksize.attr,
2630 	&dev_attr_initstate.attr,
2631 	&dev_attr_reset.attr,
2632 	&dev_attr_compact.attr,
2633 	&dev_attr_mem_limit.attr,
2634 	&dev_attr_mem_used_max.attr,
2635 	&dev_attr_idle.attr,
2636 	&dev_attr_comp_algorithm.attr,
2637 #ifdef CONFIG_ZRAM_WRITEBACK
2638 	&dev_attr_backing_dev.attr,
2639 	&dev_attr_writeback.attr,
2640 	&dev_attr_writeback_limit.attr,
2641 	&dev_attr_writeback_limit_enable.attr,
2642 #endif
2643 	&dev_attr_io_stat.attr,
2644 	&dev_attr_mm_stat.attr,
2645 #ifdef CONFIG_ZRAM_WRITEBACK
2646 	&dev_attr_bd_stat.attr,
2647 #endif
2648 	&dev_attr_debug_stat.attr,
2649 #ifdef CONFIG_ZRAM_MULTI_COMP
2650 	&dev_attr_recomp_algorithm.attr,
2651 	&dev_attr_recompress.attr,
2652 #endif
2653 	&dev_attr_algorithm_params.attr,
2654 	NULL,
2655 };
2656 
2657 ATTRIBUTE_GROUPS(zram_disk);
2658 
2659 /*
2660  * Allocate and initialize new zram device. the function returns
2661  * '>= 0' device_id upon success, and negative value otherwise.
2662  */
2663 static int zram_add(void)
2664 {
2665 	struct queue_limits lim = {
2666 		.logical_block_size		= ZRAM_LOGICAL_BLOCK_SIZE,
2667 		/*
2668 		 * To ensure that we always get PAGE_SIZE aligned and
2669 		 * n*PAGE_SIZED sized I/O requests.
2670 		 */
2671 		.physical_block_size		= PAGE_SIZE,
2672 		.io_min				= PAGE_SIZE,
2673 		.io_opt				= PAGE_SIZE,
2674 		.max_hw_discard_sectors		= UINT_MAX,
2675 		/*
2676 		 * zram_bio_discard() will clear all logical blocks if logical
2677 		 * block size is identical with physical block size(PAGE_SIZE).
2678 		 * But if it is different, we will skip discarding some parts of
2679 		 * logical blocks in the part of the request range which isn't
2680 		 * aligned to physical block size.  So we can't ensure that all
2681 		 * discarded logical blocks are zeroed.
2682 		 */
2683 #if ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE
2684 		.max_write_zeroes_sectors	= UINT_MAX,
2685 #endif
2686 		.features			= BLK_FEAT_STABLE_WRITES |
2687 						  BLK_FEAT_SYNCHRONOUS,
2688 	};
2689 	struct zram *zram;
2690 	int ret, device_id;
2691 
2692 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
2693 	if (!zram)
2694 		return -ENOMEM;
2695 
2696 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
2697 	if (ret < 0)
2698 		goto out_free_dev;
2699 	device_id = ret;
2700 
2701 	init_rwsem(&zram->init_lock);
2702 #ifdef CONFIG_ZRAM_WRITEBACK
2703 	spin_lock_init(&zram->wb_limit_lock);
2704 #endif
2705 
2706 	/* gendisk structure */
2707 	zram->disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
2708 	if (IS_ERR(zram->disk)) {
2709 		pr_err("Error allocating disk structure for device %d\n",
2710 			device_id);
2711 		ret = PTR_ERR(zram->disk);
2712 		goto out_free_idr;
2713 	}
2714 
2715 	zram->disk->major = zram_major;
2716 	zram->disk->first_minor = device_id;
2717 	zram->disk->minors = 1;
2718 	zram->disk->flags |= GENHD_FL_NO_PART;
2719 	zram->disk->fops = &zram_devops;
2720 	zram->disk->private_data = zram;
2721 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
2722 	atomic_set(&zram->pp_in_progress, 0);
2723 	zram_comp_params_reset(zram);
2724 	comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor);
2725 
2726 	/* Actual capacity set using sysfs (/sys/block/zram<id>/disksize */
2727 	set_capacity(zram->disk, 0);
2728 	ret = device_add_disk(NULL, zram->disk, zram_disk_groups);
2729 	if (ret)
2730 		goto out_cleanup_disk;
2731 
2732 	zram_debugfs_register(zram);
2733 	pr_info("Added device: %s\n", zram->disk->disk_name);
2734 	return device_id;
2735 
2736 out_cleanup_disk:
2737 	put_disk(zram->disk);
2738 out_free_idr:
2739 	idr_remove(&zram_index_idr, device_id);
2740 out_free_dev:
2741 	kfree(zram);
2742 	return ret;
2743 }
2744 
2745 static int zram_remove(struct zram *zram)
2746 {
2747 	bool claimed;
2748 
2749 	mutex_lock(&zram->disk->open_mutex);
2750 	if (disk_openers(zram->disk)) {
2751 		mutex_unlock(&zram->disk->open_mutex);
2752 		return -EBUSY;
2753 	}
2754 
2755 	claimed = zram->claim;
2756 	if (!claimed)
2757 		zram->claim = true;
2758 	mutex_unlock(&zram->disk->open_mutex);
2759 
2760 	zram_debugfs_unregister(zram);
2761 
2762 	if (claimed) {
2763 		/*
2764 		 * If we were claimed by reset_store(), del_gendisk() will
2765 		 * wait until reset_store() is done, so nothing need to do.
2766 		 */
2767 		;
2768 	} else {
2769 		/* Make sure all the pending I/O are finished */
2770 		sync_blockdev(zram->disk->part0);
2771 		zram_reset_device(zram);
2772 	}
2773 
2774 	pr_info("Removed device: %s\n", zram->disk->disk_name);
2775 
2776 	del_gendisk(zram->disk);
2777 
2778 	/* del_gendisk drains pending reset_store */
2779 	WARN_ON_ONCE(claimed && zram->claim);
2780 
2781 	/*
2782 	 * disksize_store() may be called in between zram_reset_device()
2783 	 * and del_gendisk(), so run the last reset to avoid leaking
2784 	 * anything allocated with disksize_store()
2785 	 */
2786 	zram_reset_device(zram);
2787 
2788 	put_disk(zram->disk);
2789 	kfree(zram);
2790 	return 0;
2791 }
2792 
2793 /* zram-control sysfs attributes */
2794 
2795 /*
2796  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2797  * sense that reading from this file does alter the state of your system -- it
2798  * creates a new un-initialized zram device and returns back this device's
2799  * device_id (or an error code if it fails to create a new device).
2800  */
2801 static ssize_t hot_add_show(const struct class *class,
2802 			const struct class_attribute *attr,
2803 			char *buf)
2804 {
2805 	int ret;
2806 
2807 	mutex_lock(&zram_index_mutex);
2808 	ret = zram_add();
2809 	mutex_unlock(&zram_index_mutex);
2810 
2811 	if (ret < 0)
2812 		return ret;
2813 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
2814 }
2815 /* This attribute must be set to 0400, so CLASS_ATTR_RO() can not be used */
2816 static struct class_attribute class_attr_hot_add =
2817 	__ATTR(hot_add, 0400, hot_add_show, NULL);
2818 
2819 static ssize_t hot_remove_store(const struct class *class,
2820 			const struct class_attribute *attr,
2821 			const char *buf,
2822 			size_t count)
2823 {
2824 	struct zram *zram;
2825 	int ret, dev_id;
2826 
2827 	/* dev_id is gendisk->first_minor, which is `int' */
2828 	ret = kstrtoint(buf, 10, &dev_id);
2829 	if (ret)
2830 		return ret;
2831 	if (dev_id < 0)
2832 		return -EINVAL;
2833 
2834 	mutex_lock(&zram_index_mutex);
2835 
2836 	zram = idr_find(&zram_index_idr, dev_id);
2837 	if (zram) {
2838 		ret = zram_remove(zram);
2839 		if (!ret)
2840 			idr_remove(&zram_index_idr, dev_id);
2841 	} else {
2842 		ret = -ENODEV;
2843 	}
2844 
2845 	mutex_unlock(&zram_index_mutex);
2846 	return ret ? ret : count;
2847 }
2848 static CLASS_ATTR_WO(hot_remove);
2849 
2850 static struct attribute *zram_control_class_attrs[] = {
2851 	&class_attr_hot_add.attr,
2852 	&class_attr_hot_remove.attr,
2853 	NULL,
2854 };
2855 ATTRIBUTE_GROUPS(zram_control_class);
2856 
2857 static struct class zram_control_class = {
2858 	.name		= "zram-control",
2859 	.class_groups	= zram_control_class_groups,
2860 };
2861 
2862 static int zram_remove_cb(int id, void *ptr, void *data)
2863 {
2864 	WARN_ON_ONCE(zram_remove(ptr));
2865 	return 0;
2866 }
2867 
2868 static void destroy_devices(void)
2869 {
2870 	class_unregister(&zram_control_class);
2871 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2872 	zram_debugfs_destroy();
2873 	idr_destroy(&zram_index_idr);
2874 	unregister_blkdev(zram_major, "zram");
2875 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2876 }
2877 
2878 static int __init zram_init(void)
2879 {
2880 	struct zram_table_entry zram_te;
2881 	int ret;
2882 
2883 	BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > sizeof(zram_te.flags) * 8);
2884 
2885 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2886 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
2887 	if (ret < 0)
2888 		return ret;
2889 
2890 	ret = class_register(&zram_control_class);
2891 	if (ret) {
2892 		pr_err("Unable to register zram-control class\n");
2893 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2894 		return ret;
2895 	}
2896 
2897 	zram_debugfs_create();
2898 	zram_major = register_blkdev(0, "zram");
2899 	if (zram_major <= 0) {
2900 		pr_err("Unable to get major number\n");
2901 		class_unregister(&zram_control_class);
2902 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2903 		return -EBUSY;
2904 	}
2905 
2906 	while (num_devices != 0) {
2907 		mutex_lock(&zram_index_mutex);
2908 		ret = zram_add();
2909 		mutex_unlock(&zram_index_mutex);
2910 		if (ret < 0)
2911 			goto out_error;
2912 		num_devices--;
2913 	}
2914 
2915 	return 0;
2916 
2917 out_error:
2918 	destroy_devices();
2919 	return ret;
2920 }
2921 
2922 static void __exit zram_exit(void)
2923 {
2924 	destroy_devices();
2925 }
2926 
2927 module_init(zram_init);
2928 module_exit(zram_exit);
2929 
2930 module_param(num_devices, uint, 0);
2931 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2932 
2933 MODULE_LICENSE("Dual BSD/GPL");
2934 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2935 MODULE_DESCRIPTION("Compressed RAM Block Device");
2936