1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/bitops.h> 22 #include <linux/blkdev.h> 23 #include <linux/buffer_head.h> 24 #include <linux/device.h> 25 #include <linux/genhd.h> 26 #include <linux/highmem.h> 27 #include <linux/slab.h> 28 #include <linux/backing-dev.h> 29 #include <linux/string.h> 30 #include <linux/vmalloc.h> 31 #include <linux/err.h> 32 #include <linux/idr.h> 33 #include <linux/sysfs.h> 34 #include <linux/debugfs.h> 35 #include <linux/cpuhotplug.h> 36 37 #include "zram_drv.h" 38 39 static DEFINE_IDR(zram_index_idr); 40 /* idr index must be protected */ 41 static DEFINE_MUTEX(zram_index_mutex); 42 43 static int zram_major; 44 static const char *default_compressor = "lzo-rle"; 45 46 /* Module params (documentation at end) */ 47 static unsigned int num_devices = 1; 48 /* 49 * Pages that compress to sizes equals or greater than this are stored 50 * uncompressed in memory. 51 */ 52 static size_t huge_class_size; 53 54 static void zram_free_page(struct zram *zram, size_t index); 55 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 56 u32 index, int offset, struct bio *bio); 57 58 59 static int zram_slot_trylock(struct zram *zram, u32 index) 60 { 61 return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags); 62 } 63 64 static void zram_slot_lock(struct zram *zram, u32 index) 65 { 66 bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags); 67 } 68 69 static void zram_slot_unlock(struct zram *zram, u32 index) 70 { 71 bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags); 72 } 73 74 static inline bool init_done(struct zram *zram) 75 { 76 return zram->disksize; 77 } 78 79 static inline struct zram *dev_to_zram(struct device *dev) 80 { 81 return (struct zram *)dev_to_disk(dev)->private_data; 82 } 83 84 static unsigned long zram_get_handle(struct zram *zram, u32 index) 85 { 86 return zram->table[index].handle; 87 } 88 89 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle) 90 { 91 zram->table[index].handle = handle; 92 } 93 94 /* flag operations require table entry bit_spin_lock() being held */ 95 static bool zram_test_flag(struct zram *zram, u32 index, 96 enum zram_pageflags flag) 97 { 98 return zram->table[index].flags & BIT(flag); 99 } 100 101 static void zram_set_flag(struct zram *zram, u32 index, 102 enum zram_pageflags flag) 103 { 104 zram->table[index].flags |= BIT(flag); 105 } 106 107 static void zram_clear_flag(struct zram *zram, u32 index, 108 enum zram_pageflags flag) 109 { 110 zram->table[index].flags &= ~BIT(flag); 111 } 112 113 static inline void zram_set_element(struct zram *zram, u32 index, 114 unsigned long element) 115 { 116 zram->table[index].element = element; 117 } 118 119 static unsigned long zram_get_element(struct zram *zram, u32 index) 120 { 121 return zram->table[index].element; 122 } 123 124 static size_t zram_get_obj_size(struct zram *zram, u32 index) 125 { 126 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1); 127 } 128 129 static void zram_set_obj_size(struct zram *zram, 130 u32 index, size_t size) 131 { 132 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT; 133 134 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size; 135 } 136 137 static inline bool zram_allocated(struct zram *zram, u32 index) 138 { 139 return zram_get_obj_size(zram, index) || 140 zram_test_flag(zram, index, ZRAM_SAME) || 141 zram_test_flag(zram, index, ZRAM_WB); 142 } 143 144 #if PAGE_SIZE != 4096 145 static inline bool is_partial_io(struct bio_vec *bvec) 146 { 147 return bvec->bv_len != PAGE_SIZE; 148 } 149 #else 150 static inline bool is_partial_io(struct bio_vec *bvec) 151 { 152 return false; 153 } 154 #endif 155 156 /* 157 * Check if request is within bounds and aligned on zram logical blocks. 158 */ 159 static inline bool valid_io_request(struct zram *zram, 160 sector_t start, unsigned int size) 161 { 162 u64 end, bound; 163 164 /* unaligned request */ 165 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1))) 166 return false; 167 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1))) 168 return false; 169 170 end = start + (size >> SECTOR_SHIFT); 171 bound = zram->disksize >> SECTOR_SHIFT; 172 /* out of range range */ 173 if (unlikely(start >= bound || end > bound || start > end)) 174 return false; 175 176 /* I/O request is valid */ 177 return true; 178 } 179 180 static void update_position(u32 *index, int *offset, struct bio_vec *bvec) 181 { 182 *index += (*offset + bvec->bv_len) / PAGE_SIZE; 183 *offset = (*offset + bvec->bv_len) % PAGE_SIZE; 184 } 185 186 static inline void update_used_max(struct zram *zram, 187 const unsigned long pages) 188 { 189 unsigned long old_max, cur_max; 190 191 old_max = atomic_long_read(&zram->stats.max_used_pages); 192 193 do { 194 cur_max = old_max; 195 if (pages > cur_max) 196 old_max = atomic_long_cmpxchg( 197 &zram->stats.max_used_pages, cur_max, pages); 198 } while (old_max != cur_max); 199 } 200 201 static inline void zram_fill_page(void *ptr, unsigned long len, 202 unsigned long value) 203 { 204 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long))); 205 memset_l(ptr, value, len / sizeof(unsigned long)); 206 } 207 208 static bool page_same_filled(void *ptr, unsigned long *element) 209 { 210 unsigned int pos; 211 unsigned long *page; 212 unsigned long val; 213 214 page = (unsigned long *)ptr; 215 val = page[0]; 216 217 for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) { 218 if (val != page[pos]) 219 return false; 220 } 221 222 *element = val; 223 224 return true; 225 } 226 227 static ssize_t initstate_show(struct device *dev, 228 struct device_attribute *attr, char *buf) 229 { 230 u32 val; 231 struct zram *zram = dev_to_zram(dev); 232 233 down_read(&zram->init_lock); 234 val = init_done(zram); 235 up_read(&zram->init_lock); 236 237 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 238 } 239 240 static ssize_t disksize_show(struct device *dev, 241 struct device_attribute *attr, char *buf) 242 { 243 struct zram *zram = dev_to_zram(dev); 244 245 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 246 } 247 248 static ssize_t mem_limit_store(struct device *dev, 249 struct device_attribute *attr, const char *buf, size_t len) 250 { 251 u64 limit; 252 char *tmp; 253 struct zram *zram = dev_to_zram(dev); 254 255 limit = memparse(buf, &tmp); 256 if (buf == tmp) /* no chars parsed, invalid input */ 257 return -EINVAL; 258 259 down_write(&zram->init_lock); 260 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; 261 up_write(&zram->init_lock); 262 263 return len; 264 } 265 266 static ssize_t mem_used_max_store(struct device *dev, 267 struct device_attribute *attr, const char *buf, size_t len) 268 { 269 int err; 270 unsigned long val; 271 struct zram *zram = dev_to_zram(dev); 272 273 err = kstrtoul(buf, 10, &val); 274 if (err || val != 0) 275 return -EINVAL; 276 277 down_read(&zram->init_lock); 278 if (init_done(zram)) { 279 atomic_long_set(&zram->stats.max_used_pages, 280 zs_get_total_pages(zram->mem_pool)); 281 } 282 up_read(&zram->init_lock); 283 284 return len; 285 } 286 287 static ssize_t idle_store(struct device *dev, 288 struct device_attribute *attr, const char *buf, size_t len) 289 { 290 struct zram *zram = dev_to_zram(dev); 291 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 292 int index; 293 294 if (!sysfs_streq(buf, "all")) 295 return -EINVAL; 296 297 down_read(&zram->init_lock); 298 if (!init_done(zram)) { 299 up_read(&zram->init_lock); 300 return -EINVAL; 301 } 302 303 for (index = 0; index < nr_pages; index++) { 304 /* 305 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race. 306 * See the comment in writeback_store. 307 */ 308 zram_slot_lock(zram, index); 309 if (zram_allocated(zram, index) && 310 !zram_test_flag(zram, index, ZRAM_UNDER_WB)) 311 zram_set_flag(zram, index, ZRAM_IDLE); 312 zram_slot_unlock(zram, index); 313 } 314 315 up_read(&zram->init_lock); 316 317 return len; 318 } 319 320 #ifdef CONFIG_ZRAM_WRITEBACK 321 static ssize_t writeback_limit_enable_store(struct device *dev, 322 struct device_attribute *attr, const char *buf, size_t len) 323 { 324 struct zram *zram = dev_to_zram(dev); 325 u64 val; 326 ssize_t ret = -EINVAL; 327 328 if (kstrtoull(buf, 10, &val)) 329 return ret; 330 331 down_read(&zram->init_lock); 332 spin_lock(&zram->wb_limit_lock); 333 zram->wb_limit_enable = val; 334 spin_unlock(&zram->wb_limit_lock); 335 up_read(&zram->init_lock); 336 ret = len; 337 338 return ret; 339 } 340 341 static ssize_t writeback_limit_enable_show(struct device *dev, 342 struct device_attribute *attr, char *buf) 343 { 344 bool val; 345 struct zram *zram = dev_to_zram(dev); 346 347 down_read(&zram->init_lock); 348 spin_lock(&zram->wb_limit_lock); 349 val = zram->wb_limit_enable; 350 spin_unlock(&zram->wb_limit_lock); 351 up_read(&zram->init_lock); 352 353 return scnprintf(buf, PAGE_SIZE, "%d\n", val); 354 } 355 356 static ssize_t writeback_limit_store(struct device *dev, 357 struct device_attribute *attr, const char *buf, size_t len) 358 { 359 struct zram *zram = dev_to_zram(dev); 360 u64 val; 361 ssize_t ret = -EINVAL; 362 363 if (kstrtoull(buf, 10, &val)) 364 return ret; 365 366 down_read(&zram->init_lock); 367 spin_lock(&zram->wb_limit_lock); 368 zram->bd_wb_limit = val; 369 spin_unlock(&zram->wb_limit_lock); 370 up_read(&zram->init_lock); 371 ret = len; 372 373 return ret; 374 } 375 376 static ssize_t writeback_limit_show(struct device *dev, 377 struct device_attribute *attr, char *buf) 378 { 379 u64 val; 380 struct zram *zram = dev_to_zram(dev); 381 382 down_read(&zram->init_lock); 383 spin_lock(&zram->wb_limit_lock); 384 val = zram->bd_wb_limit; 385 spin_unlock(&zram->wb_limit_lock); 386 up_read(&zram->init_lock); 387 388 return scnprintf(buf, PAGE_SIZE, "%llu\n", val); 389 } 390 391 static void reset_bdev(struct zram *zram) 392 { 393 struct block_device *bdev; 394 395 if (!zram->backing_dev) 396 return; 397 398 bdev = zram->bdev; 399 if (zram->old_block_size) 400 set_blocksize(bdev, zram->old_block_size); 401 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 402 /* hope filp_close flush all of IO */ 403 filp_close(zram->backing_dev, NULL); 404 zram->backing_dev = NULL; 405 zram->old_block_size = 0; 406 zram->bdev = NULL; 407 zram->disk->queue->backing_dev_info->capabilities |= 408 BDI_CAP_SYNCHRONOUS_IO; 409 kvfree(zram->bitmap); 410 zram->bitmap = NULL; 411 } 412 413 static ssize_t backing_dev_show(struct device *dev, 414 struct device_attribute *attr, char *buf) 415 { 416 struct zram *zram = dev_to_zram(dev); 417 struct file *file = zram->backing_dev; 418 char *p; 419 ssize_t ret; 420 421 down_read(&zram->init_lock); 422 if (!zram->backing_dev) { 423 memcpy(buf, "none\n", 5); 424 up_read(&zram->init_lock); 425 return 5; 426 } 427 428 p = file_path(file, buf, PAGE_SIZE - 1); 429 if (IS_ERR(p)) { 430 ret = PTR_ERR(p); 431 goto out; 432 } 433 434 ret = strlen(p); 435 memmove(buf, p, ret); 436 buf[ret++] = '\n'; 437 out: 438 up_read(&zram->init_lock); 439 return ret; 440 } 441 442 static ssize_t backing_dev_store(struct device *dev, 443 struct device_attribute *attr, const char *buf, size_t len) 444 { 445 char *file_name; 446 size_t sz; 447 struct file *backing_dev = NULL; 448 struct inode *inode; 449 struct address_space *mapping; 450 unsigned int bitmap_sz, old_block_size = 0; 451 unsigned long nr_pages, *bitmap = NULL; 452 struct block_device *bdev = NULL; 453 int err; 454 struct zram *zram = dev_to_zram(dev); 455 456 file_name = kmalloc(PATH_MAX, GFP_KERNEL); 457 if (!file_name) 458 return -ENOMEM; 459 460 down_write(&zram->init_lock); 461 if (init_done(zram)) { 462 pr_info("Can't setup backing device for initialized device\n"); 463 err = -EBUSY; 464 goto out; 465 } 466 467 strlcpy(file_name, buf, PATH_MAX); 468 /* ignore trailing newline */ 469 sz = strlen(file_name); 470 if (sz > 0 && file_name[sz - 1] == '\n') 471 file_name[sz - 1] = 0x00; 472 473 backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0); 474 if (IS_ERR(backing_dev)) { 475 err = PTR_ERR(backing_dev); 476 backing_dev = NULL; 477 goto out; 478 } 479 480 mapping = backing_dev->f_mapping; 481 inode = mapping->host; 482 483 /* Support only block device in this moment */ 484 if (!S_ISBLK(inode->i_mode)) { 485 err = -ENOTBLK; 486 goto out; 487 } 488 489 bdev = bdgrab(I_BDEV(inode)); 490 err = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram); 491 if (err < 0) { 492 bdev = NULL; 493 goto out; 494 } 495 496 nr_pages = i_size_read(inode) >> PAGE_SHIFT; 497 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long); 498 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL); 499 if (!bitmap) { 500 err = -ENOMEM; 501 goto out; 502 } 503 504 old_block_size = block_size(bdev); 505 err = set_blocksize(bdev, PAGE_SIZE); 506 if (err) 507 goto out; 508 509 reset_bdev(zram); 510 511 zram->old_block_size = old_block_size; 512 zram->bdev = bdev; 513 zram->backing_dev = backing_dev; 514 zram->bitmap = bitmap; 515 zram->nr_pages = nr_pages; 516 /* 517 * With writeback feature, zram does asynchronous IO so it's no longer 518 * synchronous device so let's remove synchronous io flag. Othewise, 519 * upper layer(e.g., swap) could wait IO completion rather than 520 * (submit and return), which will cause system sluggish. 521 * Furthermore, when the IO function returns(e.g., swap_readpage), 522 * upper layer expects IO was done so it could deallocate the page 523 * freely but in fact, IO is going on so finally could cause 524 * use-after-free when the IO is really done. 525 */ 526 zram->disk->queue->backing_dev_info->capabilities &= 527 ~BDI_CAP_SYNCHRONOUS_IO; 528 up_write(&zram->init_lock); 529 530 pr_info("setup backing device %s\n", file_name); 531 kfree(file_name); 532 533 return len; 534 out: 535 if (bitmap) 536 kvfree(bitmap); 537 538 if (bdev) 539 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 540 541 if (backing_dev) 542 filp_close(backing_dev, NULL); 543 544 up_write(&zram->init_lock); 545 546 kfree(file_name); 547 548 return err; 549 } 550 551 static unsigned long alloc_block_bdev(struct zram *zram) 552 { 553 unsigned long blk_idx = 1; 554 retry: 555 /* skip 0 bit to confuse zram.handle = 0 */ 556 blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx); 557 if (blk_idx == zram->nr_pages) 558 return 0; 559 560 if (test_and_set_bit(blk_idx, zram->bitmap)) 561 goto retry; 562 563 atomic64_inc(&zram->stats.bd_count); 564 return blk_idx; 565 } 566 567 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) 568 { 569 int was_set; 570 571 was_set = test_and_clear_bit(blk_idx, zram->bitmap); 572 WARN_ON_ONCE(!was_set); 573 atomic64_dec(&zram->stats.bd_count); 574 } 575 576 static void zram_page_end_io(struct bio *bio) 577 { 578 struct page *page = bio_first_page_all(bio); 579 580 page_endio(page, op_is_write(bio_op(bio)), 581 blk_status_to_errno(bio->bi_status)); 582 bio_put(bio); 583 } 584 585 /* 586 * Returns 1 if the submission is successful. 587 */ 588 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec, 589 unsigned long entry, struct bio *parent) 590 { 591 struct bio *bio; 592 593 bio = bio_alloc(GFP_ATOMIC, 1); 594 if (!bio) 595 return -ENOMEM; 596 597 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9); 598 bio_set_dev(bio, zram->bdev); 599 if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) { 600 bio_put(bio); 601 return -EIO; 602 } 603 604 if (!parent) { 605 bio->bi_opf = REQ_OP_READ; 606 bio->bi_end_io = zram_page_end_io; 607 } else { 608 bio->bi_opf = parent->bi_opf; 609 bio_chain(bio, parent); 610 } 611 612 submit_bio(bio); 613 return 1; 614 } 615 616 #define HUGE_WRITEBACK 1 617 #define IDLE_WRITEBACK 2 618 619 static ssize_t writeback_store(struct device *dev, 620 struct device_attribute *attr, const char *buf, size_t len) 621 { 622 struct zram *zram = dev_to_zram(dev); 623 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 624 unsigned long index; 625 struct bio bio; 626 struct bio_vec bio_vec; 627 struct page *page; 628 ssize_t ret; 629 int mode; 630 unsigned long blk_idx = 0; 631 632 if (sysfs_streq(buf, "idle")) 633 mode = IDLE_WRITEBACK; 634 else if (sysfs_streq(buf, "huge")) 635 mode = HUGE_WRITEBACK; 636 else 637 return -EINVAL; 638 639 down_read(&zram->init_lock); 640 if (!init_done(zram)) { 641 ret = -EINVAL; 642 goto release_init_lock; 643 } 644 645 if (!zram->backing_dev) { 646 ret = -ENODEV; 647 goto release_init_lock; 648 } 649 650 page = alloc_page(GFP_KERNEL); 651 if (!page) { 652 ret = -ENOMEM; 653 goto release_init_lock; 654 } 655 656 for (index = 0; index < nr_pages; index++) { 657 struct bio_vec bvec; 658 659 bvec.bv_page = page; 660 bvec.bv_len = PAGE_SIZE; 661 bvec.bv_offset = 0; 662 663 spin_lock(&zram->wb_limit_lock); 664 if (zram->wb_limit_enable && !zram->bd_wb_limit) { 665 spin_unlock(&zram->wb_limit_lock); 666 ret = -EIO; 667 break; 668 } 669 spin_unlock(&zram->wb_limit_lock); 670 671 if (!blk_idx) { 672 blk_idx = alloc_block_bdev(zram); 673 if (!blk_idx) { 674 ret = -ENOSPC; 675 break; 676 } 677 } 678 679 zram_slot_lock(zram, index); 680 if (!zram_allocated(zram, index)) 681 goto next; 682 683 if (zram_test_flag(zram, index, ZRAM_WB) || 684 zram_test_flag(zram, index, ZRAM_SAME) || 685 zram_test_flag(zram, index, ZRAM_UNDER_WB)) 686 goto next; 687 688 if (mode == IDLE_WRITEBACK && 689 !zram_test_flag(zram, index, ZRAM_IDLE)) 690 goto next; 691 if (mode == HUGE_WRITEBACK && 692 !zram_test_flag(zram, index, ZRAM_HUGE)) 693 goto next; 694 /* 695 * Clearing ZRAM_UNDER_WB is duty of caller. 696 * IOW, zram_free_page never clear it. 697 */ 698 zram_set_flag(zram, index, ZRAM_UNDER_WB); 699 /* Need for hugepage writeback racing */ 700 zram_set_flag(zram, index, ZRAM_IDLE); 701 zram_slot_unlock(zram, index); 702 if (zram_bvec_read(zram, &bvec, index, 0, NULL)) { 703 zram_slot_lock(zram, index); 704 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 705 zram_clear_flag(zram, index, ZRAM_IDLE); 706 zram_slot_unlock(zram, index); 707 continue; 708 } 709 710 bio_init(&bio, &bio_vec, 1); 711 bio_set_dev(&bio, zram->bdev); 712 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9); 713 bio.bi_opf = REQ_OP_WRITE | REQ_SYNC; 714 715 bio_add_page(&bio, bvec.bv_page, bvec.bv_len, 716 bvec.bv_offset); 717 /* 718 * XXX: A single page IO would be inefficient for write 719 * but it would be not bad as starter. 720 */ 721 ret = submit_bio_wait(&bio); 722 if (ret) { 723 zram_slot_lock(zram, index); 724 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 725 zram_clear_flag(zram, index, ZRAM_IDLE); 726 zram_slot_unlock(zram, index); 727 continue; 728 } 729 730 atomic64_inc(&zram->stats.bd_writes); 731 /* 732 * We released zram_slot_lock so need to check if the slot was 733 * changed. If there is freeing for the slot, we can catch it 734 * easily by zram_allocated. 735 * A subtle case is the slot is freed/reallocated/marked as 736 * ZRAM_IDLE again. To close the race, idle_store doesn't 737 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB. 738 * Thus, we could close the race by checking ZRAM_IDLE bit. 739 */ 740 zram_slot_lock(zram, index); 741 if (!zram_allocated(zram, index) || 742 !zram_test_flag(zram, index, ZRAM_IDLE)) { 743 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 744 zram_clear_flag(zram, index, ZRAM_IDLE); 745 goto next; 746 } 747 748 zram_free_page(zram, index); 749 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 750 zram_set_flag(zram, index, ZRAM_WB); 751 zram_set_element(zram, index, blk_idx); 752 blk_idx = 0; 753 atomic64_inc(&zram->stats.pages_stored); 754 spin_lock(&zram->wb_limit_lock); 755 if (zram->wb_limit_enable && zram->bd_wb_limit > 0) 756 zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12); 757 spin_unlock(&zram->wb_limit_lock); 758 next: 759 zram_slot_unlock(zram, index); 760 } 761 762 if (blk_idx) 763 free_block_bdev(zram, blk_idx); 764 ret = len; 765 __free_page(page); 766 release_init_lock: 767 up_read(&zram->init_lock); 768 769 return ret; 770 } 771 772 struct zram_work { 773 struct work_struct work; 774 struct zram *zram; 775 unsigned long entry; 776 struct bio *bio; 777 struct bio_vec bvec; 778 }; 779 780 #if PAGE_SIZE != 4096 781 static void zram_sync_read(struct work_struct *work) 782 { 783 struct zram_work *zw = container_of(work, struct zram_work, work); 784 struct zram *zram = zw->zram; 785 unsigned long entry = zw->entry; 786 struct bio *bio = zw->bio; 787 788 read_from_bdev_async(zram, &zw->bvec, entry, bio); 789 } 790 791 /* 792 * Block layer want one ->make_request_fn to be active at a time 793 * so if we use chained IO with parent IO in same context, 794 * it's a deadlock. To avoid, it, it uses worker thread context. 795 */ 796 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec, 797 unsigned long entry, struct bio *bio) 798 { 799 struct zram_work work; 800 801 work.bvec = *bvec; 802 work.zram = zram; 803 work.entry = entry; 804 work.bio = bio; 805 806 INIT_WORK_ONSTACK(&work.work, zram_sync_read); 807 queue_work(system_unbound_wq, &work.work); 808 flush_work(&work.work); 809 destroy_work_on_stack(&work.work); 810 811 return 1; 812 } 813 #else 814 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec, 815 unsigned long entry, struct bio *bio) 816 { 817 WARN_ON(1); 818 return -EIO; 819 } 820 #endif 821 822 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec, 823 unsigned long entry, struct bio *parent, bool sync) 824 { 825 atomic64_inc(&zram->stats.bd_reads); 826 if (sync) 827 return read_from_bdev_sync(zram, bvec, entry, parent); 828 else 829 return read_from_bdev_async(zram, bvec, entry, parent); 830 } 831 #else 832 static inline void reset_bdev(struct zram *zram) {}; 833 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec, 834 unsigned long entry, struct bio *parent, bool sync) 835 { 836 return -EIO; 837 } 838 839 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {}; 840 #endif 841 842 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 843 844 static struct dentry *zram_debugfs_root; 845 846 static void zram_debugfs_create(void) 847 { 848 zram_debugfs_root = debugfs_create_dir("zram", NULL); 849 } 850 851 static void zram_debugfs_destroy(void) 852 { 853 debugfs_remove_recursive(zram_debugfs_root); 854 } 855 856 static void zram_accessed(struct zram *zram, u32 index) 857 { 858 zram_clear_flag(zram, index, ZRAM_IDLE); 859 zram->table[index].ac_time = ktime_get_boottime(); 860 } 861 862 static ssize_t read_block_state(struct file *file, char __user *buf, 863 size_t count, loff_t *ppos) 864 { 865 char *kbuf; 866 ssize_t index, written = 0; 867 struct zram *zram = file->private_data; 868 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 869 struct timespec64 ts; 870 871 kbuf = kvmalloc(count, GFP_KERNEL); 872 if (!kbuf) 873 return -ENOMEM; 874 875 down_read(&zram->init_lock); 876 if (!init_done(zram)) { 877 up_read(&zram->init_lock); 878 kvfree(kbuf); 879 return -EINVAL; 880 } 881 882 for (index = *ppos; index < nr_pages; index++) { 883 int copied; 884 885 zram_slot_lock(zram, index); 886 if (!zram_allocated(zram, index)) 887 goto next; 888 889 ts = ktime_to_timespec64(zram->table[index].ac_time); 890 copied = snprintf(kbuf + written, count, 891 "%12zd %12lld.%06lu %c%c%c%c\n", 892 index, (s64)ts.tv_sec, 893 ts.tv_nsec / NSEC_PER_USEC, 894 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.', 895 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.', 896 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.', 897 zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.'); 898 899 if (count < copied) { 900 zram_slot_unlock(zram, index); 901 break; 902 } 903 written += copied; 904 count -= copied; 905 next: 906 zram_slot_unlock(zram, index); 907 *ppos += 1; 908 } 909 910 up_read(&zram->init_lock); 911 if (copy_to_user(buf, kbuf, written)) 912 written = -EFAULT; 913 kvfree(kbuf); 914 915 return written; 916 } 917 918 static const struct file_operations proc_zram_block_state_op = { 919 .open = simple_open, 920 .read = read_block_state, 921 .llseek = default_llseek, 922 }; 923 924 static void zram_debugfs_register(struct zram *zram) 925 { 926 if (!zram_debugfs_root) 927 return; 928 929 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name, 930 zram_debugfs_root); 931 debugfs_create_file("block_state", 0400, zram->debugfs_dir, 932 zram, &proc_zram_block_state_op); 933 } 934 935 static void zram_debugfs_unregister(struct zram *zram) 936 { 937 debugfs_remove_recursive(zram->debugfs_dir); 938 } 939 #else 940 static void zram_debugfs_create(void) {}; 941 static void zram_debugfs_destroy(void) {}; 942 static void zram_accessed(struct zram *zram, u32 index) 943 { 944 zram_clear_flag(zram, index, ZRAM_IDLE); 945 }; 946 static void zram_debugfs_register(struct zram *zram) {}; 947 static void zram_debugfs_unregister(struct zram *zram) {}; 948 #endif 949 950 /* 951 * We switched to per-cpu streams and this attr is not needed anymore. 952 * However, we will keep it around for some time, because: 953 * a) we may revert per-cpu streams in the future 954 * b) it's visible to user space and we need to follow our 2 years 955 * retirement rule; but we already have a number of 'soon to be 956 * altered' attrs, so max_comp_streams need to wait for the next 957 * layoff cycle. 958 */ 959 static ssize_t max_comp_streams_show(struct device *dev, 960 struct device_attribute *attr, char *buf) 961 { 962 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus()); 963 } 964 965 static ssize_t max_comp_streams_store(struct device *dev, 966 struct device_attribute *attr, const char *buf, size_t len) 967 { 968 return len; 969 } 970 971 static ssize_t comp_algorithm_show(struct device *dev, 972 struct device_attribute *attr, char *buf) 973 { 974 size_t sz; 975 struct zram *zram = dev_to_zram(dev); 976 977 down_read(&zram->init_lock); 978 sz = zcomp_available_show(zram->compressor, buf); 979 up_read(&zram->init_lock); 980 981 return sz; 982 } 983 984 static ssize_t comp_algorithm_store(struct device *dev, 985 struct device_attribute *attr, const char *buf, size_t len) 986 { 987 struct zram *zram = dev_to_zram(dev); 988 char compressor[ARRAY_SIZE(zram->compressor)]; 989 size_t sz; 990 991 strlcpy(compressor, buf, sizeof(compressor)); 992 /* ignore trailing newline */ 993 sz = strlen(compressor); 994 if (sz > 0 && compressor[sz - 1] == '\n') 995 compressor[sz - 1] = 0x00; 996 997 if (!zcomp_available_algorithm(compressor)) 998 return -EINVAL; 999 1000 down_write(&zram->init_lock); 1001 if (init_done(zram)) { 1002 up_write(&zram->init_lock); 1003 pr_info("Can't change algorithm for initialized device\n"); 1004 return -EBUSY; 1005 } 1006 1007 strcpy(zram->compressor, compressor); 1008 up_write(&zram->init_lock); 1009 return len; 1010 } 1011 1012 static ssize_t compact_store(struct device *dev, 1013 struct device_attribute *attr, const char *buf, size_t len) 1014 { 1015 struct zram *zram = dev_to_zram(dev); 1016 1017 down_read(&zram->init_lock); 1018 if (!init_done(zram)) { 1019 up_read(&zram->init_lock); 1020 return -EINVAL; 1021 } 1022 1023 zs_compact(zram->mem_pool); 1024 up_read(&zram->init_lock); 1025 1026 return len; 1027 } 1028 1029 static ssize_t io_stat_show(struct device *dev, 1030 struct device_attribute *attr, char *buf) 1031 { 1032 struct zram *zram = dev_to_zram(dev); 1033 ssize_t ret; 1034 1035 down_read(&zram->init_lock); 1036 ret = scnprintf(buf, PAGE_SIZE, 1037 "%8llu %8llu %8llu %8llu\n", 1038 (u64)atomic64_read(&zram->stats.failed_reads), 1039 (u64)atomic64_read(&zram->stats.failed_writes), 1040 (u64)atomic64_read(&zram->stats.invalid_io), 1041 (u64)atomic64_read(&zram->stats.notify_free)); 1042 up_read(&zram->init_lock); 1043 1044 return ret; 1045 } 1046 1047 static ssize_t mm_stat_show(struct device *dev, 1048 struct device_attribute *attr, char *buf) 1049 { 1050 struct zram *zram = dev_to_zram(dev); 1051 struct zs_pool_stats pool_stats; 1052 u64 orig_size, mem_used = 0; 1053 long max_used; 1054 ssize_t ret; 1055 1056 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); 1057 1058 down_read(&zram->init_lock); 1059 if (init_done(zram)) { 1060 mem_used = zs_get_total_pages(zram->mem_pool); 1061 zs_pool_stats(zram->mem_pool, &pool_stats); 1062 } 1063 1064 orig_size = atomic64_read(&zram->stats.pages_stored); 1065 max_used = atomic_long_read(&zram->stats.max_used_pages); 1066 1067 ret = scnprintf(buf, PAGE_SIZE, 1068 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu\n", 1069 orig_size << PAGE_SHIFT, 1070 (u64)atomic64_read(&zram->stats.compr_data_size), 1071 mem_used << PAGE_SHIFT, 1072 zram->limit_pages << PAGE_SHIFT, 1073 max_used << PAGE_SHIFT, 1074 (u64)atomic64_read(&zram->stats.same_pages), 1075 pool_stats.pages_compacted, 1076 (u64)atomic64_read(&zram->stats.huge_pages)); 1077 up_read(&zram->init_lock); 1078 1079 return ret; 1080 } 1081 1082 #ifdef CONFIG_ZRAM_WRITEBACK 1083 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12))) 1084 static ssize_t bd_stat_show(struct device *dev, 1085 struct device_attribute *attr, char *buf) 1086 { 1087 struct zram *zram = dev_to_zram(dev); 1088 ssize_t ret; 1089 1090 down_read(&zram->init_lock); 1091 ret = scnprintf(buf, PAGE_SIZE, 1092 "%8llu %8llu %8llu\n", 1093 FOUR_K((u64)atomic64_read(&zram->stats.bd_count)), 1094 FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)), 1095 FOUR_K((u64)atomic64_read(&zram->stats.bd_writes))); 1096 up_read(&zram->init_lock); 1097 1098 return ret; 1099 } 1100 #endif 1101 1102 static ssize_t debug_stat_show(struct device *dev, 1103 struct device_attribute *attr, char *buf) 1104 { 1105 int version = 1; 1106 struct zram *zram = dev_to_zram(dev); 1107 ssize_t ret; 1108 1109 down_read(&zram->init_lock); 1110 ret = scnprintf(buf, PAGE_SIZE, 1111 "version: %d\n%8llu %8llu\n", 1112 version, 1113 (u64)atomic64_read(&zram->stats.writestall), 1114 (u64)atomic64_read(&zram->stats.miss_free)); 1115 up_read(&zram->init_lock); 1116 1117 return ret; 1118 } 1119 1120 static DEVICE_ATTR_RO(io_stat); 1121 static DEVICE_ATTR_RO(mm_stat); 1122 #ifdef CONFIG_ZRAM_WRITEBACK 1123 static DEVICE_ATTR_RO(bd_stat); 1124 #endif 1125 static DEVICE_ATTR_RO(debug_stat); 1126 1127 static void zram_meta_free(struct zram *zram, u64 disksize) 1128 { 1129 size_t num_pages = disksize >> PAGE_SHIFT; 1130 size_t index; 1131 1132 /* Free all pages that are still in this zram device */ 1133 for (index = 0; index < num_pages; index++) 1134 zram_free_page(zram, index); 1135 1136 zs_destroy_pool(zram->mem_pool); 1137 vfree(zram->table); 1138 } 1139 1140 static bool zram_meta_alloc(struct zram *zram, u64 disksize) 1141 { 1142 size_t num_pages; 1143 1144 num_pages = disksize >> PAGE_SHIFT; 1145 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table))); 1146 if (!zram->table) 1147 return false; 1148 1149 zram->mem_pool = zs_create_pool(zram->disk->disk_name); 1150 if (!zram->mem_pool) { 1151 vfree(zram->table); 1152 return false; 1153 } 1154 1155 if (!huge_class_size) 1156 huge_class_size = zs_huge_class_size(zram->mem_pool); 1157 return true; 1158 } 1159 1160 /* 1161 * To protect concurrent access to the same index entry, 1162 * caller should hold this table index entry's bit_spinlock to 1163 * indicate this index entry is accessing. 1164 */ 1165 static void zram_free_page(struct zram *zram, size_t index) 1166 { 1167 unsigned long handle; 1168 1169 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 1170 zram->table[index].ac_time = 0; 1171 #endif 1172 if (zram_test_flag(zram, index, ZRAM_IDLE)) 1173 zram_clear_flag(zram, index, ZRAM_IDLE); 1174 1175 if (zram_test_flag(zram, index, ZRAM_HUGE)) { 1176 zram_clear_flag(zram, index, ZRAM_HUGE); 1177 atomic64_dec(&zram->stats.huge_pages); 1178 } 1179 1180 if (zram_test_flag(zram, index, ZRAM_WB)) { 1181 zram_clear_flag(zram, index, ZRAM_WB); 1182 free_block_bdev(zram, zram_get_element(zram, index)); 1183 goto out; 1184 } 1185 1186 /* 1187 * No memory is allocated for same element filled pages. 1188 * Simply clear same page flag. 1189 */ 1190 if (zram_test_flag(zram, index, ZRAM_SAME)) { 1191 zram_clear_flag(zram, index, ZRAM_SAME); 1192 atomic64_dec(&zram->stats.same_pages); 1193 goto out; 1194 } 1195 1196 handle = zram_get_handle(zram, index); 1197 if (!handle) 1198 return; 1199 1200 zs_free(zram->mem_pool, handle); 1201 1202 atomic64_sub(zram_get_obj_size(zram, index), 1203 &zram->stats.compr_data_size); 1204 out: 1205 atomic64_dec(&zram->stats.pages_stored); 1206 zram_set_handle(zram, index, 0); 1207 zram_set_obj_size(zram, index, 0); 1208 WARN_ON_ONCE(zram->table[index].flags & 1209 ~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB)); 1210 } 1211 1212 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index, 1213 struct bio *bio, bool partial_io) 1214 { 1215 int ret; 1216 unsigned long handle; 1217 unsigned int size; 1218 void *src, *dst; 1219 1220 zram_slot_lock(zram, index); 1221 if (zram_test_flag(zram, index, ZRAM_WB)) { 1222 struct bio_vec bvec; 1223 1224 zram_slot_unlock(zram, index); 1225 1226 bvec.bv_page = page; 1227 bvec.bv_len = PAGE_SIZE; 1228 bvec.bv_offset = 0; 1229 return read_from_bdev(zram, &bvec, 1230 zram_get_element(zram, index), 1231 bio, partial_io); 1232 } 1233 1234 handle = zram_get_handle(zram, index); 1235 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) { 1236 unsigned long value; 1237 void *mem; 1238 1239 value = handle ? zram_get_element(zram, index) : 0; 1240 mem = kmap_atomic(page); 1241 zram_fill_page(mem, PAGE_SIZE, value); 1242 kunmap_atomic(mem); 1243 zram_slot_unlock(zram, index); 1244 return 0; 1245 } 1246 1247 size = zram_get_obj_size(zram, index); 1248 1249 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO); 1250 if (size == PAGE_SIZE) { 1251 dst = kmap_atomic(page); 1252 memcpy(dst, src, PAGE_SIZE); 1253 kunmap_atomic(dst); 1254 ret = 0; 1255 } else { 1256 struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp); 1257 1258 dst = kmap_atomic(page); 1259 ret = zcomp_decompress(zstrm, src, size, dst); 1260 kunmap_atomic(dst); 1261 zcomp_stream_put(zram->comp); 1262 } 1263 zs_unmap_object(zram->mem_pool, handle); 1264 zram_slot_unlock(zram, index); 1265 1266 /* Should NEVER happen. Return bio error if it does. */ 1267 if (unlikely(ret)) 1268 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 1269 1270 return ret; 1271 } 1272 1273 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 1274 u32 index, int offset, struct bio *bio) 1275 { 1276 int ret; 1277 struct page *page; 1278 1279 page = bvec->bv_page; 1280 if (is_partial_io(bvec)) { 1281 /* Use a temporary buffer to decompress the page */ 1282 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM); 1283 if (!page) 1284 return -ENOMEM; 1285 } 1286 1287 ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec)); 1288 if (unlikely(ret)) 1289 goto out; 1290 1291 if (is_partial_io(bvec)) { 1292 void *dst = kmap_atomic(bvec->bv_page); 1293 void *src = kmap_atomic(page); 1294 1295 memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len); 1296 kunmap_atomic(src); 1297 kunmap_atomic(dst); 1298 } 1299 out: 1300 if (is_partial_io(bvec)) 1301 __free_page(page); 1302 1303 return ret; 1304 } 1305 1306 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1307 u32 index, struct bio *bio) 1308 { 1309 int ret = 0; 1310 unsigned long alloced_pages; 1311 unsigned long handle = 0; 1312 unsigned int comp_len = 0; 1313 void *src, *dst, *mem; 1314 struct zcomp_strm *zstrm; 1315 struct page *page = bvec->bv_page; 1316 unsigned long element = 0; 1317 enum zram_pageflags flags = 0; 1318 1319 mem = kmap_atomic(page); 1320 if (page_same_filled(mem, &element)) { 1321 kunmap_atomic(mem); 1322 /* Free memory associated with this sector now. */ 1323 flags = ZRAM_SAME; 1324 atomic64_inc(&zram->stats.same_pages); 1325 goto out; 1326 } 1327 kunmap_atomic(mem); 1328 1329 compress_again: 1330 zstrm = zcomp_stream_get(zram->comp); 1331 src = kmap_atomic(page); 1332 ret = zcomp_compress(zstrm, src, &comp_len); 1333 kunmap_atomic(src); 1334 1335 if (unlikely(ret)) { 1336 zcomp_stream_put(zram->comp); 1337 pr_err("Compression failed! err=%d\n", ret); 1338 zs_free(zram->mem_pool, handle); 1339 return ret; 1340 } 1341 1342 if (comp_len >= huge_class_size) 1343 comp_len = PAGE_SIZE; 1344 /* 1345 * handle allocation has 2 paths: 1346 * a) fast path is executed with preemption disabled (for 1347 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear, 1348 * since we can't sleep; 1349 * b) slow path enables preemption and attempts to allocate 1350 * the page with __GFP_DIRECT_RECLAIM bit set. we have to 1351 * put per-cpu compression stream and, thus, to re-do 1352 * the compression once handle is allocated. 1353 * 1354 * if we have a 'non-null' handle here then we are coming 1355 * from the slow path and handle has already been allocated. 1356 */ 1357 if (!handle) 1358 handle = zs_malloc(zram->mem_pool, comp_len, 1359 __GFP_KSWAPD_RECLAIM | 1360 __GFP_NOWARN | 1361 __GFP_HIGHMEM | 1362 __GFP_MOVABLE); 1363 if (!handle) { 1364 zcomp_stream_put(zram->comp); 1365 atomic64_inc(&zram->stats.writestall); 1366 handle = zs_malloc(zram->mem_pool, comp_len, 1367 GFP_NOIO | __GFP_HIGHMEM | 1368 __GFP_MOVABLE); 1369 if (handle) 1370 goto compress_again; 1371 return -ENOMEM; 1372 } 1373 1374 alloced_pages = zs_get_total_pages(zram->mem_pool); 1375 update_used_max(zram, alloced_pages); 1376 1377 if (zram->limit_pages && alloced_pages > zram->limit_pages) { 1378 zcomp_stream_put(zram->comp); 1379 zs_free(zram->mem_pool, handle); 1380 return -ENOMEM; 1381 } 1382 1383 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO); 1384 1385 src = zstrm->buffer; 1386 if (comp_len == PAGE_SIZE) 1387 src = kmap_atomic(page); 1388 memcpy(dst, src, comp_len); 1389 if (comp_len == PAGE_SIZE) 1390 kunmap_atomic(src); 1391 1392 zcomp_stream_put(zram->comp); 1393 zs_unmap_object(zram->mem_pool, handle); 1394 atomic64_add(comp_len, &zram->stats.compr_data_size); 1395 out: 1396 /* 1397 * Free memory associated with this sector 1398 * before overwriting unused sectors. 1399 */ 1400 zram_slot_lock(zram, index); 1401 zram_free_page(zram, index); 1402 1403 if (comp_len == PAGE_SIZE) { 1404 zram_set_flag(zram, index, ZRAM_HUGE); 1405 atomic64_inc(&zram->stats.huge_pages); 1406 } 1407 1408 if (flags) { 1409 zram_set_flag(zram, index, flags); 1410 zram_set_element(zram, index, element); 1411 } else { 1412 zram_set_handle(zram, index, handle); 1413 zram_set_obj_size(zram, index, comp_len); 1414 } 1415 zram_slot_unlock(zram, index); 1416 1417 /* Update stats */ 1418 atomic64_inc(&zram->stats.pages_stored); 1419 return ret; 1420 } 1421 1422 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1423 u32 index, int offset, struct bio *bio) 1424 { 1425 int ret; 1426 struct page *page = NULL; 1427 void *src; 1428 struct bio_vec vec; 1429 1430 vec = *bvec; 1431 if (is_partial_io(bvec)) { 1432 void *dst; 1433 /* 1434 * This is a partial IO. We need to read the full page 1435 * before to write the changes. 1436 */ 1437 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM); 1438 if (!page) 1439 return -ENOMEM; 1440 1441 ret = __zram_bvec_read(zram, page, index, bio, true); 1442 if (ret) 1443 goto out; 1444 1445 src = kmap_atomic(bvec->bv_page); 1446 dst = kmap_atomic(page); 1447 memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len); 1448 kunmap_atomic(dst); 1449 kunmap_atomic(src); 1450 1451 vec.bv_page = page; 1452 vec.bv_len = PAGE_SIZE; 1453 vec.bv_offset = 0; 1454 } 1455 1456 ret = __zram_bvec_write(zram, &vec, index, bio); 1457 out: 1458 if (is_partial_io(bvec)) 1459 __free_page(page); 1460 return ret; 1461 } 1462 1463 /* 1464 * zram_bio_discard - handler on discard request 1465 * @index: physical block index in PAGE_SIZE units 1466 * @offset: byte offset within physical block 1467 */ 1468 static void zram_bio_discard(struct zram *zram, u32 index, 1469 int offset, struct bio *bio) 1470 { 1471 size_t n = bio->bi_iter.bi_size; 1472 1473 /* 1474 * zram manages data in physical block size units. Because logical block 1475 * size isn't identical with physical block size on some arch, we 1476 * could get a discard request pointing to a specific offset within a 1477 * certain physical block. Although we can handle this request by 1478 * reading that physiclal block and decompressing and partially zeroing 1479 * and re-compressing and then re-storing it, this isn't reasonable 1480 * because our intent with a discard request is to save memory. So 1481 * skipping this logical block is appropriate here. 1482 */ 1483 if (offset) { 1484 if (n <= (PAGE_SIZE - offset)) 1485 return; 1486 1487 n -= (PAGE_SIZE - offset); 1488 index++; 1489 } 1490 1491 while (n >= PAGE_SIZE) { 1492 zram_slot_lock(zram, index); 1493 zram_free_page(zram, index); 1494 zram_slot_unlock(zram, index); 1495 atomic64_inc(&zram->stats.notify_free); 1496 index++; 1497 n -= PAGE_SIZE; 1498 } 1499 } 1500 1501 /* 1502 * Returns errno if it has some problem. Otherwise return 0 or 1. 1503 * Returns 0 if IO request was done synchronously 1504 * Returns 1 if IO request was successfully submitted. 1505 */ 1506 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index, 1507 int offset, unsigned int op, struct bio *bio) 1508 { 1509 unsigned long start_time = jiffies; 1510 struct request_queue *q = zram->disk->queue; 1511 int ret; 1512 1513 generic_start_io_acct(q, op, bvec->bv_len >> SECTOR_SHIFT, 1514 &zram->disk->part0); 1515 1516 if (!op_is_write(op)) { 1517 atomic64_inc(&zram->stats.num_reads); 1518 ret = zram_bvec_read(zram, bvec, index, offset, bio); 1519 flush_dcache_page(bvec->bv_page); 1520 } else { 1521 atomic64_inc(&zram->stats.num_writes); 1522 ret = zram_bvec_write(zram, bvec, index, offset, bio); 1523 } 1524 1525 generic_end_io_acct(q, op, &zram->disk->part0, start_time); 1526 1527 zram_slot_lock(zram, index); 1528 zram_accessed(zram, index); 1529 zram_slot_unlock(zram, index); 1530 1531 if (unlikely(ret < 0)) { 1532 if (!op_is_write(op)) 1533 atomic64_inc(&zram->stats.failed_reads); 1534 else 1535 atomic64_inc(&zram->stats.failed_writes); 1536 } 1537 1538 return ret; 1539 } 1540 1541 static void __zram_make_request(struct zram *zram, struct bio *bio) 1542 { 1543 int offset; 1544 u32 index; 1545 struct bio_vec bvec; 1546 struct bvec_iter iter; 1547 1548 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 1549 offset = (bio->bi_iter.bi_sector & 1550 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 1551 1552 switch (bio_op(bio)) { 1553 case REQ_OP_DISCARD: 1554 case REQ_OP_WRITE_ZEROES: 1555 zram_bio_discard(zram, index, offset, bio); 1556 bio_endio(bio); 1557 return; 1558 default: 1559 break; 1560 } 1561 1562 bio_for_each_segment(bvec, bio, iter) { 1563 struct bio_vec bv = bvec; 1564 unsigned int unwritten = bvec.bv_len; 1565 1566 do { 1567 bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset, 1568 unwritten); 1569 if (zram_bvec_rw(zram, &bv, index, offset, 1570 bio_op(bio), bio) < 0) 1571 goto out; 1572 1573 bv.bv_offset += bv.bv_len; 1574 unwritten -= bv.bv_len; 1575 1576 update_position(&index, &offset, &bv); 1577 } while (unwritten); 1578 } 1579 1580 bio_endio(bio); 1581 return; 1582 1583 out: 1584 bio_io_error(bio); 1585 } 1586 1587 /* 1588 * Handler function for all zram I/O requests. 1589 */ 1590 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio) 1591 { 1592 struct zram *zram = queue->queuedata; 1593 1594 if (!valid_io_request(zram, bio->bi_iter.bi_sector, 1595 bio->bi_iter.bi_size)) { 1596 atomic64_inc(&zram->stats.invalid_io); 1597 goto error; 1598 } 1599 1600 __zram_make_request(zram, bio); 1601 return BLK_QC_T_NONE; 1602 1603 error: 1604 bio_io_error(bio); 1605 return BLK_QC_T_NONE; 1606 } 1607 1608 static void zram_slot_free_notify(struct block_device *bdev, 1609 unsigned long index) 1610 { 1611 struct zram *zram; 1612 1613 zram = bdev->bd_disk->private_data; 1614 1615 atomic64_inc(&zram->stats.notify_free); 1616 if (!zram_slot_trylock(zram, index)) { 1617 atomic64_inc(&zram->stats.miss_free); 1618 return; 1619 } 1620 1621 zram_free_page(zram, index); 1622 zram_slot_unlock(zram, index); 1623 } 1624 1625 static int zram_rw_page(struct block_device *bdev, sector_t sector, 1626 struct page *page, unsigned int op) 1627 { 1628 int offset, ret; 1629 u32 index; 1630 struct zram *zram; 1631 struct bio_vec bv; 1632 1633 if (PageTransHuge(page)) 1634 return -ENOTSUPP; 1635 zram = bdev->bd_disk->private_data; 1636 1637 if (!valid_io_request(zram, sector, PAGE_SIZE)) { 1638 atomic64_inc(&zram->stats.invalid_io); 1639 ret = -EINVAL; 1640 goto out; 1641 } 1642 1643 index = sector >> SECTORS_PER_PAGE_SHIFT; 1644 offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 1645 1646 bv.bv_page = page; 1647 bv.bv_len = PAGE_SIZE; 1648 bv.bv_offset = 0; 1649 1650 ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL); 1651 out: 1652 /* 1653 * If I/O fails, just return error(ie, non-zero) without 1654 * calling page_endio. 1655 * It causes resubmit the I/O with bio request by upper functions 1656 * of rw_page(e.g., swap_readpage, __swap_writepage) and 1657 * bio->bi_end_io does things to handle the error 1658 * (e.g., SetPageError, set_page_dirty and extra works). 1659 */ 1660 if (unlikely(ret < 0)) 1661 return ret; 1662 1663 switch (ret) { 1664 case 0: 1665 page_endio(page, op_is_write(op), 0); 1666 break; 1667 case 1: 1668 ret = 0; 1669 break; 1670 default: 1671 WARN_ON(1); 1672 } 1673 return ret; 1674 } 1675 1676 static void zram_reset_device(struct zram *zram) 1677 { 1678 struct zcomp *comp; 1679 u64 disksize; 1680 1681 down_write(&zram->init_lock); 1682 1683 zram->limit_pages = 0; 1684 1685 if (!init_done(zram)) { 1686 up_write(&zram->init_lock); 1687 return; 1688 } 1689 1690 comp = zram->comp; 1691 disksize = zram->disksize; 1692 zram->disksize = 0; 1693 1694 set_capacity(zram->disk, 0); 1695 part_stat_set_all(&zram->disk->part0, 0); 1696 1697 up_write(&zram->init_lock); 1698 /* I/O operation under all of CPU are done so let's free */ 1699 zram_meta_free(zram, disksize); 1700 memset(&zram->stats, 0, sizeof(zram->stats)); 1701 zcomp_destroy(comp); 1702 reset_bdev(zram); 1703 } 1704 1705 static ssize_t disksize_store(struct device *dev, 1706 struct device_attribute *attr, const char *buf, size_t len) 1707 { 1708 u64 disksize; 1709 struct zcomp *comp; 1710 struct zram *zram = dev_to_zram(dev); 1711 int err; 1712 1713 disksize = memparse(buf, NULL); 1714 if (!disksize) 1715 return -EINVAL; 1716 1717 down_write(&zram->init_lock); 1718 if (init_done(zram)) { 1719 pr_info("Cannot change disksize for initialized device\n"); 1720 err = -EBUSY; 1721 goto out_unlock; 1722 } 1723 1724 disksize = PAGE_ALIGN(disksize); 1725 if (!zram_meta_alloc(zram, disksize)) { 1726 err = -ENOMEM; 1727 goto out_unlock; 1728 } 1729 1730 comp = zcomp_create(zram->compressor); 1731 if (IS_ERR(comp)) { 1732 pr_err("Cannot initialise %s compressing backend\n", 1733 zram->compressor); 1734 err = PTR_ERR(comp); 1735 goto out_free_meta; 1736 } 1737 1738 zram->comp = comp; 1739 zram->disksize = disksize; 1740 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT); 1741 1742 revalidate_disk(zram->disk); 1743 up_write(&zram->init_lock); 1744 1745 return len; 1746 1747 out_free_meta: 1748 zram_meta_free(zram, disksize); 1749 out_unlock: 1750 up_write(&zram->init_lock); 1751 return err; 1752 } 1753 1754 static ssize_t reset_store(struct device *dev, 1755 struct device_attribute *attr, const char *buf, size_t len) 1756 { 1757 int ret; 1758 unsigned short do_reset; 1759 struct zram *zram; 1760 struct block_device *bdev; 1761 1762 ret = kstrtou16(buf, 10, &do_reset); 1763 if (ret) 1764 return ret; 1765 1766 if (!do_reset) 1767 return -EINVAL; 1768 1769 zram = dev_to_zram(dev); 1770 bdev = bdget_disk(zram->disk, 0); 1771 if (!bdev) 1772 return -ENOMEM; 1773 1774 mutex_lock(&bdev->bd_mutex); 1775 /* Do not reset an active device or claimed device */ 1776 if (bdev->bd_openers || zram->claim) { 1777 mutex_unlock(&bdev->bd_mutex); 1778 bdput(bdev); 1779 return -EBUSY; 1780 } 1781 1782 /* From now on, anyone can't open /dev/zram[0-9] */ 1783 zram->claim = true; 1784 mutex_unlock(&bdev->bd_mutex); 1785 1786 /* Make sure all the pending I/O are finished */ 1787 fsync_bdev(bdev); 1788 zram_reset_device(zram); 1789 revalidate_disk(zram->disk); 1790 bdput(bdev); 1791 1792 mutex_lock(&bdev->bd_mutex); 1793 zram->claim = false; 1794 mutex_unlock(&bdev->bd_mutex); 1795 1796 return len; 1797 } 1798 1799 static int zram_open(struct block_device *bdev, fmode_t mode) 1800 { 1801 int ret = 0; 1802 struct zram *zram; 1803 1804 WARN_ON(!mutex_is_locked(&bdev->bd_mutex)); 1805 1806 zram = bdev->bd_disk->private_data; 1807 /* zram was claimed to reset so open request fails */ 1808 if (zram->claim) 1809 ret = -EBUSY; 1810 1811 return ret; 1812 } 1813 1814 static const struct block_device_operations zram_devops = { 1815 .open = zram_open, 1816 .swap_slot_free_notify = zram_slot_free_notify, 1817 .rw_page = zram_rw_page, 1818 .owner = THIS_MODULE 1819 }; 1820 1821 static DEVICE_ATTR_WO(compact); 1822 static DEVICE_ATTR_RW(disksize); 1823 static DEVICE_ATTR_RO(initstate); 1824 static DEVICE_ATTR_WO(reset); 1825 static DEVICE_ATTR_WO(mem_limit); 1826 static DEVICE_ATTR_WO(mem_used_max); 1827 static DEVICE_ATTR_WO(idle); 1828 static DEVICE_ATTR_RW(max_comp_streams); 1829 static DEVICE_ATTR_RW(comp_algorithm); 1830 #ifdef CONFIG_ZRAM_WRITEBACK 1831 static DEVICE_ATTR_RW(backing_dev); 1832 static DEVICE_ATTR_WO(writeback); 1833 static DEVICE_ATTR_RW(writeback_limit); 1834 static DEVICE_ATTR_RW(writeback_limit_enable); 1835 #endif 1836 1837 static struct attribute *zram_disk_attrs[] = { 1838 &dev_attr_disksize.attr, 1839 &dev_attr_initstate.attr, 1840 &dev_attr_reset.attr, 1841 &dev_attr_compact.attr, 1842 &dev_attr_mem_limit.attr, 1843 &dev_attr_mem_used_max.attr, 1844 &dev_attr_idle.attr, 1845 &dev_attr_max_comp_streams.attr, 1846 &dev_attr_comp_algorithm.attr, 1847 #ifdef CONFIG_ZRAM_WRITEBACK 1848 &dev_attr_backing_dev.attr, 1849 &dev_attr_writeback.attr, 1850 &dev_attr_writeback_limit.attr, 1851 &dev_attr_writeback_limit_enable.attr, 1852 #endif 1853 &dev_attr_io_stat.attr, 1854 &dev_attr_mm_stat.attr, 1855 #ifdef CONFIG_ZRAM_WRITEBACK 1856 &dev_attr_bd_stat.attr, 1857 #endif 1858 &dev_attr_debug_stat.attr, 1859 NULL, 1860 }; 1861 1862 static const struct attribute_group zram_disk_attr_group = { 1863 .attrs = zram_disk_attrs, 1864 }; 1865 1866 static const struct attribute_group *zram_disk_attr_groups[] = { 1867 &zram_disk_attr_group, 1868 NULL, 1869 }; 1870 1871 /* 1872 * Allocate and initialize new zram device. the function returns 1873 * '>= 0' device_id upon success, and negative value otherwise. 1874 */ 1875 static int zram_add(void) 1876 { 1877 struct zram *zram; 1878 struct request_queue *queue; 1879 int ret, device_id; 1880 1881 zram = kzalloc(sizeof(struct zram), GFP_KERNEL); 1882 if (!zram) 1883 return -ENOMEM; 1884 1885 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); 1886 if (ret < 0) 1887 goto out_free_dev; 1888 device_id = ret; 1889 1890 init_rwsem(&zram->init_lock); 1891 #ifdef CONFIG_ZRAM_WRITEBACK 1892 spin_lock_init(&zram->wb_limit_lock); 1893 #endif 1894 queue = blk_alloc_queue(GFP_KERNEL); 1895 if (!queue) { 1896 pr_err("Error allocating disk queue for device %d\n", 1897 device_id); 1898 ret = -ENOMEM; 1899 goto out_free_idr; 1900 } 1901 1902 blk_queue_make_request(queue, zram_make_request); 1903 1904 /* gendisk structure */ 1905 zram->disk = alloc_disk(1); 1906 if (!zram->disk) { 1907 pr_err("Error allocating disk structure for device %d\n", 1908 device_id); 1909 ret = -ENOMEM; 1910 goto out_free_queue; 1911 } 1912 1913 zram->disk->major = zram_major; 1914 zram->disk->first_minor = device_id; 1915 zram->disk->fops = &zram_devops; 1916 zram->disk->queue = queue; 1917 zram->disk->queue->queuedata = zram; 1918 zram->disk->private_data = zram; 1919 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 1920 1921 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */ 1922 set_capacity(zram->disk, 0); 1923 /* zram devices sort of resembles non-rotational disks */ 1924 blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue); 1925 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue); 1926 1927 /* 1928 * To ensure that we always get PAGE_SIZE aligned 1929 * and n*PAGE_SIZED sized I/O requests. 1930 */ 1931 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); 1932 blk_queue_logical_block_size(zram->disk->queue, 1933 ZRAM_LOGICAL_BLOCK_SIZE); 1934 blk_queue_io_min(zram->disk->queue, PAGE_SIZE); 1935 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); 1936 zram->disk->queue->limits.discard_granularity = PAGE_SIZE; 1937 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX); 1938 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue); 1939 1940 /* 1941 * zram_bio_discard() will clear all logical blocks if logical block 1942 * size is identical with physical block size(PAGE_SIZE). But if it is 1943 * different, we will skip discarding some parts of logical blocks in 1944 * the part of the request range which isn't aligned to physical block 1945 * size. So we can't ensure that all discarded logical blocks are 1946 * zeroed. 1947 */ 1948 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) 1949 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX); 1950 1951 zram->disk->queue->backing_dev_info->capabilities |= 1952 (BDI_CAP_STABLE_WRITES | BDI_CAP_SYNCHRONOUS_IO); 1953 device_add_disk(NULL, zram->disk, zram_disk_attr_groups); 1954 1955 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor)); 1956 1957 zram_debugfs_register(zram); 1958 pr_info("Added device: %s\n", zram->disk->disk_name); 1959 return device_id; 1960 1961 out_free_queue: 1962 blk_cleanup_queue(queue); 1963 out_free_idr: 1964 idr_remove(&zram_index_idr, device_id); 1965 out_free_dev: 1966 kfree(zram); 1967 return ret; 1968 } 1969 1970 static int zram_remove(struct zram *zram) 1971 { 1972 struct block_device *bdev; 1973 1974 bdev = bdget_disk(zram->disk, 0); 1975 if (!bdev) 1976 return -ENOMEM; 1977 1978 mutex_lock(&bdev->bd_mutex); 1979 if (bdev->bd_openers || zram->claim) { 1980 mutex_unlock(&bdev->bd_mutex); 1981 bdput(bdev); 1982 return -EBUSY; 1983 } 1984 1985 zram->claim = true; 1986 mutex_unlock(&bdev->bd_mutex); 1987 1988 zram_debugfs_unregister(zram); 1989 1990 /* Make sure all the pending I/O are finished */ 1991 fsync_bdev(bdev); 1992 zram_reset_device(zram); 1993 bdput(bdev); 1994 1995 pr_info("Removed device: %s\n", zram->disk->disk_name); 1996 1997 del_gendisk(zram->disk); 1998 blk_cleanup_queue(zram->disk->queue); 1999 put_disk(zram->disk); 2000 kfree(zram); 2001 return 0; 2002 } 2003 2004 /* zram-control sysfs attributes */ 2005 2006 /* 2007 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a 2008 * sense that reading from this file does alter the state of your system -- it 2009 * creates a new un-initialized zram device and returns back this device's 2010 * device_id (or an error code if it fails to create a new device). 2011 */ 2012 static ssize_t hot_add_show(struct class *class, 2013 struct class_attribute *attr, 2014 char *buf) 2015 { 2016 int ret; 2017 2018 mutex_lock(&zram_index_mutex); 2019 ret = zram_add(); 2020 mutex_unlock(&zram_index_mutex); 2021 2022 if (ret < 0) 2023 return ret; 2024 return scnprintf(buf, PAGE_SIZE, "%d\n", ret); 2025 } 2026 static CLASS_ATTR_RO(hot_add); 2027 2028 static ssize_t hot_remove_store(struct class *class, 2029 struct class_attribute *attr, 2030 const char *buf, 2031 size_t count) 2032 { 2033 struct zram *zram; 2034 int ret, dev_id; 2035 2036 /* dev_id is gendisk->first_minor, which is `int' */ 2037 ret = kstrtoint(buf, 10, &dev_id); 2038 if (ret) 2039 return ret; 2040 if (dev_id < 0) 2041 return -EINVAL; 2042 2043 mutex_lock(&zram_index_mutex); 2044 2045 zram = idr_find(&zram_index_idr, dev_id); 2046 if (zram) { 2047 ret = zram_remove(zram); 2048 if (!ret) 2049 idr_remove(&zram_index_idr, dev_id); 2050 } else { 2051 ret = -ENODEV; 2052 } 2053 2054 mutex_unlock(&zram_index_mutex); 2055 return ret ? ret : count; 2056 } 2057 static CLASS_ATTR_WO(hot_remove); 2058 2059 static struct attribute *zram_control_class_attrs[] = { 2060 &class_attr_hot_add.attr, 2061 &class_attr_hot_remove.attr, 2062 NULL, 2063 }; 2064 ATTRIBUTE_GROUPS(zram_control_class); 2065 2066 static struct class zram_control_class = { 2067 .name = "zram-control", 2068 .owner = THIS_MODULE, 2069 .class_groups = zram_control_class_groups, 2070 }; 2071 2072 static int zram_remove_cb(int id, void *ptr, void *data) 2073 { 2074 zram_remove(ptr); 2075 return 0; 2076 } 2077 2078 static void destroy_devices(void) 2079 { 2080 class_unregister(&zram_control_class); 2081 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); 2082 zram_debugfs_destroy(); 2083 idr_destroy(&zram_index_idr); 2084 unregister_blkdev(zram_major, "zram"); 2085 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2086 } 2087 2088 static int __init zram_init(void) 2089 { 2090 int ret; 2091 2092 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare", 2093 zcomp_cpu_up_prepare, zcomp_cpu_dead); 2094 if (ret < 0) 2095 return ret; 2096 2097 ret = class_register(&zram_control_class); 2098 if (ret) { 2099 pr_err("Unable to register zram-control class\n"); 2100 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2101 return ret; 2102 } 2103 2104 zram_debugfs_create(); 2105 zram_major = register_blkdev(0, "zram"); 2106 if (zram_major <= 0) { 2107 pr_err("Unable to get major number\n"); 2108 class_unregister(&zram_control_class); 2109 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2110 return -EBUSY; 2111 } 2112 2113 while (num_devices != 0) { 2114 mutex_lock(&zram_index_mutex); 2115 ret = zram_add(); 2116 mutex_unlock(&zram_index_mutex); 2117 if (ret < 0) 2118 goto out_error; 2119 num_devices--; 2120 } 2121 2122 return 0; 2123 2124 out_error: 2125 destroy_devices(); 2126 return ret; 2127 } 2128 2129 static void __exit zram_exit(void) 2130 { 2131 destroy_devices(); 2132 } 2133 2134 module_init(zram_init); 2135 module_exit(zram_exit); 2136 2137 module_param(num_devices, uint, 0); 2138 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); 2139 2140 MODULE_LICENSE("Dual BSD/GPL"); 2141 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2142 MODULE_DESCRIPTION("Compressed RAM Block Device"); 2143