xref: /linux/drivers/block/zram/zram_drv.c (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
33 
34 #include "zram_drv.h"
35 
36 static DEFINE_IDR(zram_index_idr);
37 /* idr index must be protected */
38 static DEFINE_MUTEX(zram_index_mutex);
39 
40 static int zram_major;
41 static const char *default_compressor = "lzo";
42 
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
45 
46 static inline void deprecated_attr_warn(const char *name)
47 {
48 	pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
49 			task_pid_nr(current),
50 			current->comm,
51 			name,
52 			"See zram documentation.");
53 }
54 
55 #define ZRAM_ATTR_RO(name)						\
56 static ssize_t name##_show(struct device *d,				\
57 				struct device_attribute *attr, char *b)	\
58 {									\
59 	struct zram *zram = dev_to_zram(d);				\
60 									\
61 	deprecated_attr_warn(__stringify(name));			\
62 	return scnprintf(b, PAGE_SIZE, "%llu\n",			\
63 		(u64)atomic64_read(&zram->stats.name));			\
64 }									\
65 static DEVICE_ATTR_RO(name);
66 
67 static inline bool init_done(struct zram *zram)
68 {
69 	return zram->disksize;
70 }
71 
72 static inline struct zram *dev_to_zram(struct device *dev)
73 {
74 	return (struct zram *)dev_to_disk(dev)->private_data;
75 }
76 
77 /* flag operations require table entry bit_spin_lock() being held */
78 static int zram_test_flag(struct zram_meta *meta, u32 index,
79 			enum zram_pageflags flag)
80 {
81 	return meta->table[index].value & BIT(flag);
82 }
83 
84 static void zram_set_flag(struct zram_meta *meta, u32 index,
85 			enum zram_pageflags flag)
86 {
87 	meta->table[index].value |= BIT(flag);
88 }
89 
90 static void zram_clear_flag(struct zram_meta *meta, u32 index,
91 			enum zram_pageflags flag)
92 {
93 	meta->table[index].value &= ~BIT(flag);
94 }
95 
96 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
97 {
98 	return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
99 }
100 
101 static void zram_set_obj_size(struct zram_meta *meta,
102 					u32 index, size_t size)
103 {
104 	unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
105 
106 	meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
107 }
108 
109 static inline int is_partial_io(struct bio_vec *bvec)
110 {
111 	return bvec->bv_len != PAGE_SIZE;
112 }
113 
114 /*
115  * Check if request is within bounds and aligned on zram logical blocks.
116  */
117 static inline int valid_io_request(struct zram *zram,
118 		sector_t start, unsigned int size)
119 {
120 	u64 end, bound;
121 
122 	/* unaligned request */
123 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
124 		return 0;
125 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
126 		return 0;
127 
128 	end = start + (size >> SECTOR_SHIFT);
129 	bound = zram->disksize >> SECTOR_SHIFT;
130 	/* out of range range */
131 	if (unlikely(start >= bound || end > bound || start > end))
132 		return 0;
133 
134 	/* I/O request is valid */
135 	return 1;
136 }
137 
138 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
139 {
140 	if (*offset + bvec->bv_len >= PAGE_SIZE)
141 		(*index)++;
142 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
143 }
144 
145 static inline void update_used_max(struct zram *zram,
146 					const unsigned long pages)
147 {
148 	unsigned long old_max, cur_max;
149 
150 	old_max = atomic_long_read(&zram->stats.max_used_pages);
151 
152 	do {
153 		cur_max = old_max;
154 		if (pages > cur_max)
155 			old_max = atomic_long_cmpxchg(
156 				&zram->stats.max_used_pages, cur_max, pages);
157 	} while (old_max != cur_max);
158 }
159 
160 static int page_zero_filled(void *ptr)
161 {
162 	unsigned int pos;
163 	unsigned long *page;
164 
165 	page = (unsigned long *)ptr;
166 
167 	for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
168 		if (page[pos])
169 			return 0;
170 	}
171 
172 	return 1;
173 }
174 
175 static void handle_zero_page(struct bio_vec *bvec)
176 {
177 	struct page *page = bvec->bv_page;
178 	void *user_mem;
179 
180 	user_mem = kmap_atomic(page);
181 	if (is_partial_io(bvec))
182 		memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
183 	else
184 		clear_page(user_mem);
185 	kunmap_atomic(user_mem);
186 
187 	flush_dcache_page(page);
188 }
189 
190 static ssize_t initstate_show(struct device *dev,
191 		struct device_attribute *attr, char *buf)
192 {
193 	u32 val;
194 	struct zram *zram = dev_to_zram(dev);
195 
196 	down_read(&zram->init_lock);
197 	val = init_done(zram);
198 	up_read(&zram->init_lock);
199 
200 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
201 }
202 
203 static ssize_t disksize_show(struct device *dev,
204 		struct device_attribute *attr, char *buf)
205 {
206 	struct zram *zram = dev_to_zram(dev);
207 
208 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
209 }
210 
211 static ssize_t orig_data_size_show(struct device *dev,
212 		struct device_attribute *attr, char *buf)
213 {
214 	struct zram *zram = dev_to_zram(dev);
215 
216 	deprecated_attr_warn("orig_data_size");
217 	return scnprintf(buf, PAGE_SIZE, "%llu\n",
218 		(u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
219 }
220 
221 static ssize_t mem_used_total_show(struct device *dev,
222 		struct device_attribute *attr, char *buf)
223 {
224 	u64 val = 0;
225 	struct zram *zram = dev_to_zram(dev);
226 
227 	deprecated_attr_warn("mem_used_total");
228 	down_read(&zram->init_lock);
229 	if (init_done(zram)) {
230 		struct zram_meta *meta = zram->meta;
231 		val = zs_get_total_pages(meta->mem_pool);
232 	}
233 	up_read(&zram->init_lock);
234 
235 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
236 }
237 
238 static ssize_t mem_limit_show(struct device *dev,
239 		struct device_attribute *attr, char *buf)
240 {
241 	u64 val;
242 	struct zram *zram = dev_to_zram(dev);
243 
244 	deprecated_attr_warn("mem_limit");
245 	down_read(&zram->init_lock);
246 	val = zram->limit_pages;
247 	up_read(&zram->init_lock);
248 
249 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
250 }
251 
252 static ssize_t mem_limit_store(struct device *dev,
253 		struct device_attribute *attr, const char *buf, size_t len)
254 {
255 	u64 limit;
256 	char *tmp;
257 	struct zram *zram = dev_to_zram(dev);
258 
259 	limit = memparse(buf, &tmp);
260 	if (buf == tmp) /* no chars parsed, invalid input */
261 		return -EINVAL;
262 
263 	down_write(&zram->init_lock);
264 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
265 	up_write(&zram->init_lock);
266 
267 	return len;
268 }
269 
270 static ssize_t mem_used_max_show(struct device *dev,
271 		struct device_attribute *attr, char *buf)
272 {
273 	u64 val = 0;
274 	struct zram *zram = dev_to_zram(dev);
275 
276 	deprecated_attr_warn("mem_used_max");
277 	down_read(&zram->init_lock);
278 	if (init_done(zram))
279 		val = atomic_long_read(&zram->stats.max_used_pages);
280 	up_read(&zram->init_lock);
281 
282 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
283 }
284 
285 static ssize_t mem_used_max_store(struct device *dev,
286 		struct device_attribute *attr, const char *buf, size_t len)
287 {
288 	int err;
289 	unsigned long val;
290 	struct zram *zram = dev_to_zram(dev);
291 
292 	err = kstrtoul(buf, 10, &val);
293 	if (err || val != 0)
294 		return -EINVAL;
295 
296 	down_read(&zram->init_lock);
297 	if (init_done(zram)) {
298 		struct zram_meta *meta = zram->meta;
299 		atomic_long_set(&zram->stats.max_used_pages,
300 				zs_get_total_pages(meta->mem_pool));
301 	}
302 	up_read(&zram->init_lock);
303 
304 	return len;
305 }
306 
307 static ssize_t max_comp_streams_show(struct device *dev,
308 		struct device_attribute *attr, char *buf)
309 {
310 	int val;
311 	struct zram *zram = dev_to_zram(dev);
312 
313 	down_read(&zram->init_lock);
314 	val = zram->max_comp_streams;
315 	up_read(&zram->init_lock);
316 
317 	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
318 }
319 
320 static ssize_t max_comp_streams_store(struct device *dev,
321 		struct device_attribute *attr, const char *buf, size_t len)
322 {
323 	int num;
324 	struct zram *zram = dev_to_zram(dev);
325 	int ret;
326 
327 	ret = kstrtoint(buf, 0, &num);
328 	if (ret < 0)
329 		return ret;
330 	if (num < 1)
331 		return -EINVAL;
332 
333 	down_write(&zram->init_lock);
334 	if (init_done(zram)) {
335 		if (!zcomp_set_max_streams(zram->comp, num)) {
336 			pr_info("Cannot change max compression streams\n");
337 			ret = -EINVAL;
338 			goto out;
339 		}
340 	}
341 
342 	zram->max_comp_streams = num;
343 	ret = len;
344 out:
345 	up_write(&zram->init_lock);
346 	return ret;
347 }
348 
349 static ssize_t comp_algorithm_show(struct device *dev,
350 		struct device_attribute *attr, char *buf)
351 {
352 	size_t sz;
353 	struct zram *zram = dev_to_zram(dev);
354 
355 	down_read(&zram->init_lock);
356 	sz = zcomp_available_show(zram->compressor, buf);
357 	up_read(&zram->init_lock);
358 
359 	return sz;
360 }
361 
362 static ssize_t comp_algorithm_store(struct device *dev,
363 		struct device_attribute *attr, const char *buf, size_t len)
364 {
365 	struct zram *zram = dev_to_zram(dev);
366 	size_t sz;
367 
368 	down_write(&zram->init_lock);
369 	if (init_done(zram)) {
370 		up_write(&zram->init_lock);
371 		pr_info("Can't change algorithm for initialized device\n");
372 		return -EBUSY;
373 	}
374 	strlcpy(zram->compressor, buf, sizeof(zram->compressor));
375 
376 	/* ignore trailing newline */
377 	sz = strlen(zram->compressor);
378 	if (sz > 0 && zram->compressor[sz - 1] == '\n')
379 		zram->compressor[sz - 1] = 0x00;
380 
381 	if (!zcomp_available_algorithm(zram->compressor))
382 		len = -EINVAL;
383 
384 	up_write(&zram->init_lock);
385 	return len;
386 }
387 
388 static ssize_t compact_store(struct device *dev,
389 		struct device_attribute *attr, const char *buf, size_t len)
390 {
391 	unsigned long nr_migrated;
392 	struct zram *zram = dev_to_zram(dev);
393 	struct zram_meta *meta;
394 
395 	down_read(&zram->init_lock);
396 	if (!init_done(zram)) {
397 		up_read(&zram->init_lock);
398 		return -EINVAL;
399 	}
400 
401 	meta = zram->meta;
402 	nr_migrated = zs_compact(meta->mem_pool);
403 	atomic64_add(nr_migrated, &zram->stats.num_migrated);
404 	up_read(&zram->init_lock);
405 
406 	return len;
407 }
408 
409 static ssize_t io_stat_show(struct device *dev,
410 		struct device_attribute *attr, char *buf)
411 {
412 	struct zram *zram = dev_to_zram(dev);
413 	ssize_t ret;
414 
415 	down_read(&zram->init_lock);
416 	ret = scnprintf(buf, PAGE_SIZE,
417 			"%8llu %8llu %8llu %8llu\n",
418 			(u64)atomic64_read(&zram->stats.failed_reads),
419 			(u64)atomic64_read(&zram->stats.failed_writes),
420 			(u64)atomic64_read(&zram->stats.invalid_io),
421 			(u64)atomic64_read(&zram->stats.notify_free));
422 	up_read(&zram->init_lock);
423 
424 	return ret;
425 }
426 
427 static ssize_t mm_stat_show(struct device *dev,
428 		struct device_attribute *attr, char *buf)
429 {
430 	struct zram *zram = dev_to_zram(dev);
431 	u64 orig_size, mem_used = 0;
432 	long max_used;
433 	ssize_t ret;
434 
435 	down_read(&zram->init_lock);
436 	if (init_done(zram))
437 		mem_used = zs_get_total_pages(zram->meta->mem_pool);
438 
439 	orig_size = atomic64_read(&zram->stats.pages_stored);
440 	max_used = atomic_long_read(&zram->stats.max_used_pages);
441 
442 	ret = scnprintf(buf, PAGE_SIZE,
443 			"%8llu %8llu %8llu %8lu %8ld %8llu %8llu\n",
444 			orig_size << PAGE_SHIFT,
445 			(u64)atomic64_read(&zram->stats.compr_data_size),
446 			mem_used << PAGE_SHIFT,
447 			zram->limit_pages << PAGE_SHIFT,
448 			max_used << PAGE_SHIFT,
449 			(u64)atomic64_read(&zram->stats.zero_pages),
450 			(u64)atomic64_read(&zram->stats.num_migrated));
451 	up_read(&zram->init_lock);
452 
453 	return ret;
454 }
455 
456 static DEVICE_ATTR_RO(io_stat);
457 static DEVICE_ATTR_RO(mm_stat);
458 ZRAM_ATTR_RO(num_reads);
459 ZRAM_ATTR_RO(num_writes);
460 ZRAM_ATTR_RO(failed_reads);
461 ZRAM_ATTR_RO(failed_writes);
462 ZRAM_ATTR_RO(invalid_io);
463 ZRAM_ATTR_RO(notify_free);
464 ZRAM_ATTR_RO(zero_pages);
465 ZRAM_ATTR_RO(compr_data_size);
466 
467 static inline bool zram_meta_get(struct zram *zram)
468 {
469 	if (atomic_inc_not_zero(&zram->refcount))
470 		return true;
471 	return false;
472 }
473 
474 static inline void zram_meta_put(struct zram *zram)
475 {
476 	atomic_dec(&zram->refcount);
477 }
478 
479 static void zram_meta_free(struct zram_meta *meta, u64 disksize)
480 {
481 	size_t num_pages = disksize >> PAGE_SHIFT;
482 	size_t index;
483 
484 	/* Free all pages that are still in this zram device */
485 	for (index = 0; index < num_pages; index++) {
486 		unsigned long handle = meta->table[index].handle;
487 
488 		if (!handle)
489 			continue;
490 
491 		zs_free(meta->mem_pool, handle);
492 	}
493 
494 	zs_destroy_pool(meta->mem_pool);
495 	vfree(meta->table);
496 	kfree(meta);
497 }
498 
499 static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize)
500 {
501 	size_t num_pages;
502 	struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
503 
504 	if (!meta)
505 		return NULL;
506 
507 	num_pages = disksize >> PAGE_SHIFT;
508 	meta->table = vzalloc(num_pages * sizeof(*meta->table));
509 	if (!meta->table) {
510 		pr_err("Error allocating zram address table\n");
511 		goto out_error;
512 	}
513 
514 	meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM);
515 	if (!meta->mem_pool) {
516 		pr_err("Error creating memory pool\n");
517 		goto out_error;
518 	}
519 
520 	return meta;
521 
522 out_error:
523 	vfree(meta->table);
524 	kfree(meta);
525 	return NULL;
526 }
527 
528 /*
529  * To protect concurrent access to the same index entry,
530  * caller should hold this table index entry's bit_spinlock to
531  * indicate this index entry is accessing.
532  */
533 static void zram_free_page(struct zram *zram, size_t index)
534 {
535 	struct zram_meta *meta = zram->meta;
536 	unsigned long handle = meta->table[index].handle;
537 
538 	if (unlikely(!handle)) {
539 		/*
540 		 * No memory is allocated for zero filled pages.
541 		 * Simply clear zero page flag.
542 		 */
543 		if (zram_test_flag(meta, index, ZRAM_ZERO)) {
544 			zram_clear_flag(meta, index, ZRAM_ZERO);
545 			atomic64_dec(&zram->stats.zero_pages);
546 		}
547 		return;
548 	}
549 
550 	zs_free(meta->mem_pool, handle);
551 
552 	atomic64_sub(zram_get_obj_size(meta, index),
553 			&zram->stats.compr_data_size);
554 	atomic64_dec(&zram->stats.pages_stored);
555 
556 	meta->table[index].handle = 0;
557 	zram_set_obj_size(meta, index, 0);
558 }
559 
560 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
561 {
562 	int ret = 0;
563 	unsigned char *cmem;
564 	struct zram_meta *meta = zram->meta;
565 	unsigned long handle;
566 	size_t size;
567 
568 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
569 	handle = meta->table[index].handle;
570 	size = zram_get_obj_size(meta, index);
571 
572 	if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
573 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
574 		clear_page(mem);
575 		return 0;
576 	}
577 
578 	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
579 	if (size == PAGE_SIZE)
580 		copy_page(mem, cmem);
581 	else
582 		ret = zcomp_decompress(zram->comp, cmem, size, mem);
583 	zs_unmap_object(meta->mem_pool, handle);
584 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
585 
586 	/* Should NEVER happen. Return bio error if it does. */
587 	if (unlikely(ret)) {
588 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
589 		return ret;
590 	}
591 
592 	return 0;
593 }
594 
595 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
596 			  u32 index, int offset)
597 {
598 	int ret;
599 	struct page *page;
600 	unsigned char *user_mem, *uncmem = NULL;
601 	struct zram_meta *meta = zram->meta;
602 	page = bvec->bv_page;
603 
604 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
605 	if (unlikely(!meta->table[index].handle) ||
606 			zram_test_flag(meta, index, ZRAM_ZERO)) {
607 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
608 		handle_zero_page(bvec);
609 		return 0;
610 	}
611 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
612 
613 	if (is_partial_io(bvec))
614 		/* Use  a temporary buffer to decompress the page */
615 		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
616 
617 	user_mem = kmap_atomic(page);
618 	if (!is_partial_io(bvec))
619 		uncmem = user_mem;
620 
621 	if (!uncmem) {
622 		pr_info("Unable to allocate temp memory\n");
623 		ret = -ENOMEM;
624 		goto out_cleanup;
625 	}
626 
627 	ret = zram_decompress_page(zram, uncmem, index);
628 	/* Should NEVER happen. Return bio error if it does. */
629 	if (unlikely(ret))
630 		goto out_cleanup;
631 
632 	if (is_partial_io(bvec))
633 		memcpy(user_mem + bvec->bv_offset, uncmem + offset,
634 				bvec->bv_len);
635 
636 	flush_dcache_page(page);
637 	ret = 0;
638 out_cleanup:
639 	kunmap_atomic(user_mem);
640 	if (is_partial_io(bvec))
641 		kfree(uncmem);
642 	return ret;
643 }
644 
645 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
646 			   int offset)
647 {
648 	int ret = 0;
649 	size_t clen;
650 	unsigned long handle;
651 	struct page *page;
652 	unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
653 	struct zram_meta *meta = zram->meta;
654 	struct zcomp_strm *zstrm = NULL;
655 	unsigned long alloced_pages;
656 
657 	page = bvec->bv_page;
658 	if (is_partial_io(bvec)) {
659 		/*
660 		 * This is a partial IO. We need to read the full page
661 		 * before to write the changes.
662 		 */
663 		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
664 		if (!uncmem) {
665 			ret = -ENOMEM;
666 			goto out;
667 		}
668 		ret = zram_decompress_page(zram, uncmem, index);
669 		if (ret)
670 			goto out;
671 	}
672 
673 	zstrm = zcomp_strm_find(zram->comp);
674 	user_mem = kmap_atomic(page);
675 
676 	if (is_partial_io(bvec)) {
677 		memcpy(uncmem + offset, user_mem + bvec->bv_offset,
678 		       bvec->bv_len);
679 		kunmap_atomic(user_mem);
680 		user_mem = NULL;
681 	} else {
682 		uncmem = user_mem;
683 	}
684 
685 	if (page_zero_filled(uncmem)) {
686 		if (user_mem)
687 			kunmap_atomic(user_mem);
688 		/* Free memory associated with this sector now. */
689 		bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
690 		zram_free_page(zram, index);
691 		zram_set_flag(meta, index, ZRAM_ZERO);
692 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
693 
694 		atomic64_inc(&zram->stats.zero_pages);
695 		ret = 0;
696 		goto out;
697 	}
698 
699 	ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
700 	if (!is_partial_io(bvec)) {
701 		kunmap_atomic(user_mem);
702 		user_mem = NULL;
703 		uncmem = NULL;
704 	}
705 
706 	if (unlikely(ret)) {
707 		pr_err("Compression failed! err=%d\n", ret);
708 		goto out;
709 	}
710 	src = zstrm->buffer;
711 	if (unlikely(clen > max_zpage_size)) {
712 		clen = PAGE_SIZE;
713 		if (is_partial_io(bvec))
714 			src = uncmem;
715 	}
716 
717 	handle = zs_malloc(meta->mem_pool, clen);
718 	if (!handle) {
719 		pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
720 			index, clen);
721 		ret = -ENOMEM;
722 		goto out;
723 	}
724 
725 	alloced_pages = zs_get_total_pages(meta->mem_pool);
726 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
727 		zs_free(meta->mem_pool, handle);
728 		ret = -ENOMEM;
729 		goto out;
730 	}
731 
732 	update_used_max(zram, alloced_pages);
733 
734 	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
735 
736 	if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
737 		src = kmap_atomic(page);
738 		copy_page(cmem, src);
739 		kunmap_atomic(src);
740 	} else {
741 		memcpy(cmem, src, clen);
742 	}
743 
744 	zcomp_strm_release(zram->comp, zstrm);
745 	zstrm = NULL;
746 	zs_unmap_object(meta->mem_pool, handle);
747 
748 	/*
749 	 * Free memory associated with this sector
750 	 * before overwriting unused sectors.
751 	 */
752 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
753 	zram_free_page(zram, index);
754 
755 	meta->table[index].handle = handle;
756 	zram_set_obj_size(meta, index, clen);
757 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
758 
759 	/* Update stats */
760 	atomic64_add(clen, &zram->stats.compr_data_size);
761 	atomic64_inc(&zram->stats.pages_stored);
762 out:
763 	if (zstrm)
764 		zcomp_strm_release(zram->comp, zstrm);
765 	if (is_partial_io(bvec))
766 		kfree(uncmem);
767 	return ret;
768 }
769 
770 /*
771  * zram_bio_discard - handler on discard request
772  * @index: physical block index in PAGE_SIZE units
773  * @offset: byte offset within physical block
774  */
775 static void zram_bio_discard(struct zram *zram, u32 index,
776 			     int offset, struct bio *bio)
777 {
778 	size_t n = bio->bi_iter.bi_size;
779 	struct zram_meta *meta = zram->meta;
780 
781 	/*
782 	 * zram manages data in physical block size units. Because logical block
783 	 * size isn't identical with physical block size on some arch, we
784 	 * could get a discard request pointing to a specific offset within a
785 	 * certain physical block.  Although we can handle this request by
786 	 * reading that physiclal block and decompressing and partially zeroing
787 	 * and re-compressing and then re-storing it, this isn't reasonable
788 	 * because our intent with a discard request is to save memory.  So
789 	 * skipping this logical block is appropriate here.
790 	 */
791 	if (offset) {
792 		if (n <= (PAGE_SIZE - offset))
793 			return;
794 
795 		n -= (PAGE_SIZE - offset);
796 		index++;
797 	}
798 
799 	while (n >= PAGE_SIZE) {
800 		bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
801 		zram_free_page(zram, index);
802 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
803 		atomic64_inc(&zram->stats.notify_free);
804 		index++;
805 		n -= PAGE_SIZE;
806 	}
807 }
808 
809 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
810 			int offset, int rw)
811 {
812 	unsigned long start_time = jiffies;
813 	int ret;
814 
815 	generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
816 			&zram->disk->part0);
817 
818 	if (rw == READ) {
819 		atomic64_inc(&zram->stats.num_reads);
820 		ret = zram_bvec_read(zram, bvec, index, offset);
821 	} else {
822 		atomic64_inc(&zram->stats.num_writes);
823 		ret = zram_bvec_write(zram, bvec, index, offset);
824 	}
825 
826 	generic_end_io_acct(rw, &zram->disk->part0, start_time);
827 
828 	if (unlikely(ret)) {
829 		if (rw == READ)
830 			atomic64_inc(&zram->stats.failed_reads);
831 		else
832 			atomic64_inc(&zram->stats.failed_writes);
833 	}
834 
835 	return ret;
836 }
837 
838 static void __zram_make_request(struct zram *zram, struct bio *bio)
839 {
840 	int offset, rw;
841 	u32 index;
842 	struct bio_vec bvec;
843 	struct bvec_iter iter;
844 
845 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
846 	offset = (bio->bi_iter.bi_sector &
847 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
848 
849 	if (unlikely(bio->bi_rw & REQ_DISCARD)) {
850 		zram_bio_discard(zram, index, offset, bio);
851 		bio_endio(bio, 0);
852 		return;
853 	}
854 
855 	rw = bio_data_dir(bio);
856 	bio_for_each_segment(bvec, bio, iter) {
857 		int max_transfer_size = PAGE_SIZE - offset;
858 
859 		if (bvec.bv_len > max_transfer_size) {
860 			/*
861 			 * zram_bvec_rw() can only make operation on a single
862 			 * zram page. Split the bio vector.
863 			 */
864 			struct bio_vec bv;
865 
866 			bv.bv_page = bvec.bv_page;
867 			bv.bv_len = max_transfer_size;
868 			bv.bv_offset = bvec.bv_offset;
869 
870 			if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
871 				goto out;
872 
873 			bv.bv_len = bvec.bv_len - max_transfer_size;
874 			bv.bv_offset += max_transfer_size;
875 			if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
876 				goto out;
877 		} else
878 			if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
879 				goto out;
880 
881 		update_position(&index, &offset, &bvec);
882 	}
883 
884 	set_bit(BIO_UPTODATE, &bio->bi_flags);
885 	bio_endio(bio, 0);
886 	return;
887 
888 out:
889 	bio_io_error(bio);
890 }
891 
892 /*
893  * Handler function for all zram I/O requests.
894  */
895 static void zram_make_request(struct request_queue *queue, struct bio *bio)
896 {
897 	struct zram *zram = queue->queuedata;
898 
899 	if (unlikely(!zram_meta_get(zram)))
900 		goto error;
901 
902 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
903 					bio->bi_iter.bi_size)) {
904 		atomic64_inc(&zram->stats.invalid_io);
905 		goto put_zram;
906 	}
907 
908 	__zram_make_request(zram, bio);
909 	zram_meta_put(zram);
910 	return;
911 put_zram:
912 	zram_meta_put(zram);
913 error:
914 	bio_io_error(bio);
915 }
916 
917 static void zram_slot_free_notify(struct block_device *bdev,
918 				unsigned long index)
919 {
920 	struct zram *zram;
921 	struct zram_meta *meta;
922 
923 	zram = bdev->bd_disk->private_data;
924 	meta = zram->meta;
925 
926 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
927 	zram_free_page(zram, index);
928 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
929 	atomic64_inc(&zram->stats.notify_free);
930 }
931 
932 static int zram_rw_page(struct block_device *bdev, sector_t sector,
933 		       struct page *page, int rw)
934 {
935 	int offset, err = -EIO;
936 	u32 index;
937 	struct zram *zram;
938 	struct bio_vec bv;
939 
940 	zram = bdev->bd_disk->private_data;
941 	if (unlikely(!zram_meta_get(zram)))
942 		goto out;
943 
944 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
945 		atomic64_inc(&zram->stats.invalid_io);
946 		err = -EINVAL;
947 		goto put_zram;
948 	}
949 
950 	index = sector >> SECTORS_PER_PAGE_SHIFT;
951 	offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
952 
953 	bv.bv_page = page;
954 	bv.bv_len = PAGE_SIZE;
955 	bv.bv_offset = 0;
956 
957 	err = zram_bvec_rw(zram, &bv, index, offset, rw);
958 put_zram:
959 	zram_meta_put(zram);
960 out:
961 	/*
962 	 * If I/O fails, just return error(ie, non-zero) without
963 	 * calling page_endio.
964 	 * It causes resubmit the I/O with bio request by upper functions
965 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
966 	 * bio->bi_end_io does things to handle the error
967 	 * (e.g., SetPageError, set_page_dirty and extra works).
968 	 */
969 	if (err == 0)
970 		page_endio(page, rw, 0);
971 	return err;
972 }
973 
974 static void zram_reset_device(struct zram *zram)
975 {
976 	struct zram_meta *meta;
977 	struct zcomp *comp;
978 	u64 disksize;
979 
980 	down_write(&zram->init_lock);
981 
982 	zram->limit_pages = 0;
983 
984 	if (!init_done(zram)) {
985 		up_write(&zram->init_lock);
986 		return;
987 	}
988 
989 	meta = zram->meta;
990 	comp = zram->comp;
991 	disksize = zram->disksize;
992 	/*
993 	 * Refcount will go down to 0 eventually and r/w handler
994 	 * cannot handle further I/O so it will bail out by
995 	 * check zram_meta_get.
996 	 */
997 	zram_meta_put(zram);
998 	/*
999 	 * We want to free zram_meta in process context to avoid
1000 	 * deadlock between reclaim path and any other locks.
1001 	 */
1002 	wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
1003 
1004 	/* Reset stats */
1005 	memset(&zram->stats, 0, sizeof(zram->stats));
1006 	zram->disksize = 0;
1007 	zram->max_comp_streams = 1;
1008 
1009 	set_capacity(zram->disk, 0);
1010 	part_stat_set_all(&zram->disk->part0, 0);
1011 
1012 	up_write(&zram->init_lock);
1013 	/* I/O operation under all of CPU are done so let's free */
1014 	zram_meta_free(meta, disksize);
1015 	zcomp_destroy(comp);
1016 }
1017 
1018 static ssize_t disksize_store(struct device *dev,
1019 		struct device_attribute *attr, const char *buf, size_t len)
1020 {
1021 	u64 disksize;
1022 	struct zcomp *comp;
1023 	struct zram_meta *meta;
1024 	struct zram *zram = dev_to_zram(dev);
1025 	int err;
1026 
1027 	disksize = memparse(buf, NULL);
1028 	if (!disksize)
1029 		return -EINVAL;
1030 
1031 	disksize = PAGE_ALIGN(disksize);
1032 	meta = zram_meta_alloc(zram->disk->disk_name, disksize);
1033 	if (!meta)
1034 		return -ENOMEM;
1035 
1036 	comp = zcomp_create(zram->compressor, zram->max_comp_streams);
1037 	if (IS_ERR(comp)) {
1038 		pr_info("Cannot initialise %s compressing backend\n",
1039 				zram->compressor);
1040 		err = PTR_ERR(comp);
1041 		goto out_free_meta;
1042 	}
1043 
1044 	down_write(&zram->init_lock);
1045 	if (init_done(zram)) {
1046 		pr_info("Cannot change disksize for initialized device\n");
1047 		err = -EBUSY;
1048 		goto out_destroy_comp;
1049 	}
1050 
1051 	init_waitqueue_head(&zram->io_done);
1052 	atomic_set(&zram->refcount, 1);
1053 	zram->meta = meta;
1054 	zram->comp = comp;
1055 	zram->disksize = disksize;
1056 	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1057 	up_write(&zram->init_lock);
1058 
1059 	/*
1060 	 * Revalidate disk out of the init_lock to avoid lockdep splat.
1061 	 * It's okay because disk's capacity is protected by init_lock
1062 	 * so that revalidate_disk always sees up-to-date capacity.
1063 	 */
1064 	revalidate_disk(zram->disk);
1065 
1066 	return len;
1067 
1068 out_destroy_comp:
1069 	up_write(&zram->init_lock);
1070 	zcomp_destroy(comp);
1071 out_free_meta:
1072 	zram_meta_free(meta, disksize);
1073 	return err;
1074 }
1075 
1076 static ssize_t reset_store(struct device *dev,
1077 		struct device_attribute *attr, const char *buf, size_t len)
1078 {
1079 	int ret;
1080 	unsigned short do_reset;
1081 	struct zram *zram;
1082 	struct block_device *bdev;
1083 
1084 	ret = kstrtou16(buf, 10, &do_reset);
1085 	if (ret)
1086 		return ret;
1087 
1088 	if (!do_reset)
1089 		return -EINVAL;
1090 
1091 	zram = dev_to_zram(dev);
1092 	bdev = bdget_disk(zram->disk, 0);
1093 	if (!bdev)
1094 		return -ENOMEM;
1095 
1096 	mutex_lock(&bdev->bd_mutex);
1097 	/* Do not reset an active device or claimed device */
1098 	if (bdev->bd_openers || zram->claim) {
1099 		mutex_unlock(&bdev->bd_mutex);
1100 		bdput(bdev);
1101 		return -EBUSY;
1102 	}
1103 
1104 	/* From now on, anyone can't open /dev/zram[0-9] */
1105 	zram->claim = true;
1106 	mutex_unlock(&bdev->bd_mutex);
1107 
1108 	/* Make sure all the pending I/O are finished */
1109 	fsync_bdev(bdev);
1110 	zram_reset_device(zram);
1111 	revalidate_disk(zram->disk);
1112 	bdput(bdev);
1113 
1114 	mutex_lock(&bdev->bd_mutex);
1115 	zram->claim = false;
1116 	mutex_unlock(&bdev->bd_mutex);
1117 
1118 	return len;
1119 }
1120 
1121 static int zram_open(struct block_device *bdev, fmode_t mode)
1122 {
1123 	int ret = 0;
1124 	struct zram *zram;
1125 
1126 	WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1127 
1128 	zram = bdev->bd_disk->private_data;
1129 	/* zram was claimed to reset so open request fails */
1130 	if (zram->claim)
1131 		ret = -EBUSY;
1132 
1133 	return ret;
1134 }
1135 
1136 static const struct block_device_operations zram_devops = {
1137 	.open = zram_open,
1138 	.swap_slot_free_notify = zram_slot_free_notify,
1139 	.rw_page = zram_rw_page,
1140 	.owner = THIS_MODULE
1141 };
1142 
1143 static DEVICE_ATTR_WO(compact);
1144 static DEVICE_ATTR_RW(disksize);
1145 static DEVICE_ATTR_RO(initstate);
1146 static DEVICE_ATTR_WO(reset);
1147 static DEVICE_ATTR_RO(orig_data_size);
1148 static DEVICE_ATTR_RO(mem_used_total);
1149 static DEVICE_ATTR_RW(mem_limit);
1150 static DEVICE_ATTR_RW(mem_used_max);
1151 static DEVICE_ATTR_RW(max_comp_streams);
1152 static DEVICE_ATTR_RW(comp_algorithm);
1153 
1154 static struct attribute *zram_disk_attrs[] = {
1155 	&dev_attr_disksize.attr,
1156 	&dev_attr_initstate.attr,
1157 	&dev_attr_reset.attr,
1158 	&dev_attr_num_reads.attr,
1159 	&dev_attr_num_writes.attr,
1160 	&dev_attr_failed_reads.attr,
1161 	&dev_attr_failed_writes.attr,
1162 	&dev_attr_compact.attr,
1163 	&dev_attr_invalid_io.attr,
1164 	&dev_attr_notify_free.attr,
1165 	&dev_attr_zero_pages.attr,
1166 	&dev_attr_orig_data_size.attr,
1167 	&dev_attr_compr_data_size.attr,
1168 	&dev_attr_mem_used_total.attr,
1169 	&dev_attr_mem_limit.attr,
1170 	&dev_attr_mem_used_max.attr,
1171 	&dev_attr_max_comp_streams.attr,
1172 	&dev_attr_comp_algorithm.attr,
1173 	&dev_attr_io_stat.attr,
1174 	&dev_attr_mm_stat.attr,
1175 	NULL,
1176 };
1177 
1178 static struct attribute_group zram_disk_attr_group = {
1179 	.attrs = zram_disk_attrs,
1180 };
1181 
1182 /*
1183  * Allocate and initialize new zram device. the function returns
1184  * '>= 0' device_id upon success, and negative value otherwise.
1185  */
1186 static int zram_add(void)
1187 {
1188 	struct zram *zram;
1189 	struct request_queue *queue;
1190 	int ret, device_id;
1191 
1192 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1193 	if (!zram)
1194 		return -ENOMEM;
1195 
1196 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1197 	if (ret < 0)
1198 		goto out_free_dev;
1199 	device_id = ret;
1200 
1201 	init_rwsem(&zram->init_lock);
1202 
1203 	queue = blk_alloc_queue(GFP_KERNEL);
1204 	if (!queue) {
1205 		pr_err("Error allocating disk queue for device %d\n",
1206 			device_id);
1207 		ret = -ENOMEM;
1208 		goto out_free_idr;
1209 	}
1210 
1211 	blk_queue_make_request(queue, zram_make_request);
1212 
1213 	/* gendisk structure */
1214 	zram->disk = alloc_disk(1);
1215 	if (!zram->disk) {
1216 		pr_warn("Error allocating disk structure for device %d\n",
1217 			device_id);
1218 		ret = -ENOMEM;
1219 		goto out_free_queue;
1220 	}
1221 
1222 	zram->disk->major = zram_major;
1223 	zram->disk->first_minor = device_id;
1224 	zram->disk->fops = &zram_devops;
1225 	zram->disk->queue = queue;
1226 	zram->disk->queue->queuedata = zram;
1227 	zram->disk->private_data = zram;
1228 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1229 
1230 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1231 	set_capacity(zram->disk, 0);
1232 	/* zram devices sort of resembles non-rotational disks */
1233 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1234 	queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1235 	/*
1236 	 * To ensure that we always get PAGE_SIZE aligned
1237 	 * and n*PAGE_SIZED sized I/O requests.
1238 	 */
1239 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1240 	blk_queue_logical_block_size(zram->disk->queue,
1241 					ZRAM_LOGICAL_BLOCK_SIZE);
1242 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1243 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1244 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1245 	zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
1246 	/*
1247 	 * zram_bio_discard() will clear all logical blocks if logical block
1248 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1249 	 * different, we will skip discarding some parts of logical blocks in
1250 	 * the part of the request range which isn't aligned to physical block
1251 	 * size.  So we can't ensure that all discarded logical blocks are
1252 	 * zeroed.
1253 	 */
1254 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1255 		zram->disk->queue->limits.discard_zeroes_data = 1;
1256 	else
1257 		zram->disk->queue->limits.discard_zeroes_data = 0;
1258 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1259 
1260 	add_disk(zram->disk);
1261 
1262 	ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1263 				&zram_disk_attr_group);
1264 	if (ret < 0) {
1265 		pr_warn("Error creating sysfs group");
1266 		goto out_free_disk;
1267 	}
1268 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1269 	zram->meta = NULL;
1270 	zram->max_comp_streams = 1;
1271 
1272 	pr_info("Added device: %s\n", zram->disk->disk_name);
1273 	return device_id;
1274 
1275 out_free_disk:
1276 	del_gendisk(zram->disk);
1277 	put_disk(zram->disk);
1278 out_free_queue:
1279 	blk_cleanup_queue(queue);
1280 out_free_idr:
1281 	idr_remove(&zram_index_idr, device_id);
1282 out_free_dev:
1283 	kfree(zram);
1284 	return ret;
1285 }
1286 
1287 static int zram_remove(struct zram *zram)
1288 {
1289 	struct block_device *bdev;
1290 
1291 	bdev = bdget_disk(zram->disk, 0);
1292 	if (!bdev)
1293 		return -ENOMEM;
1294 
1295 	mutex_lock(&bdev->bd_mutex);
1296 	if (bdev->bd_openers || zram->claim) {
1297 		mutex_unlock(&bdev->bd_mutex);
1298 		bdput(bdev);
1299 		return -EBUSY;
1300 	}
1301 
1302 	zram->claim = true;
1303 	mutex_unlock(&bdev->bd_mutex);
1304 
1305 	/*
1306 	 * Remove sysfs first, so no one will perform a disksize
1307 	 * store while we destroy the devices. This also helps during
1308 	 * hot_remove -- zram_reset_device() is the last holder of
1309 	 * ->init_lock, no later/concurrent disksize_store() or any
1310 	 * other sysfs handlers are possible.
1311 	 */
1312 	sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1313 			&zram_disk_attr_group);
1314 
1315 	/* Make sure all the pending I/O are finished */
1316 	fsync_bdev(bdev);
1317 	zram_reset_device(zram);
1318 	bdput(bdev);
1319 
1320 	pr_info("Removed device: %s\n", zram->disk->disk_name);
1321 
1322 	idr_remove(&zram_index_idr, zram->disk->first_minor);
1323 	blk_cleanup_queue(zram->disk->queue);
1324 	del_gendisk(zram->disk);
1325 	put_disk(zram->disk);
1326 	kfree(zram);
1327 	return 0;
1328 }
1329 
1330 /* zram-control sysfs attributes */
1331 static ssize_t hot_add_show(struct class *class,
1332 			struct class_attribute *attr,
1333 			char *buf)
1334 {
1335 	int ret;
1336 
1337 	mutex_lock(&zram_index_mutex);
1338 	ret = zram_add();
1339 	mutex_unlock(&zram_index_mutex);
1340 
1341 	if (ret < 0)
1342 		return ret;
1343 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1344 }
1345 
1346 static ssize_t hot_remove_store(struct class *class,
1347 			struct class_attribute *attr,
1348 			const char *buf,
1349 			size_t count)
1350 {
1351 	struct zram *zram;
1352 	int ret, dev_id;
1353 
1354 	/* dev_id is gendisk->first_minor, which is `int' */
1355 	ret = kstrtoint(buf, 10, &dev_id);
1356 	if (ret)
1357 		return ret;
1358 	if (dev_id < 0)
1359 		return -EINVAL;
1360 
1361 	mutex_lock(&zram_index_mutex);
1362 
1363 	zram = idr_find(&zram_index_idr, dev_id);
1364 	if (zram)
1365 		ret = zram_remove(zram);
1366 	else
1367 		ret = -ENODEV;
1368 
1369 	mutex_unlock(&zram_index_mutex);
1370 	return ret ? ret : count;
1371 }
1372 
1373 static struct class_attribute zram_control_class_attrs[] = {
1374 	__ATTR_RO(hot_add),
1375 	__ATTR_WO(hot_remove),
1376 	__ATTR_NULL,
1377 };
1378 
1379 static struct class zram_control_class = {
1380 	.name		= "zram-control",
1381 	.owner		= THIS_MODULE,
1382 	.class_attrs	= zram_control_class_attrs,
1383 };
1384 
1385 static int zram_remove_cb(int id, void *ptr, void *data)
1386 {
1387 	zram_remove(ptr);
1388 	return 0;
1389 }
1390 
1391 static void destroy_devices(void)
1392 {
1393 	class_unregister(&zram_control_class);
1394 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1395 	idr_destroy(&zram_index_idr);
1396 	unregister_blkdev(zram_major, "zram");
1397 }
1398 
1399 static int __init zram_init(void)
1400 {
1401 	int ret;
1402 
1403 	ret = class_register(&zram_control_class);
1404 	if (ret) {
1405 		pr_warn("Unable to register zram-control class\n");
1406 		return ret;
1407 	}
1408 
1409 	zram_major = register_blkdev(0, "zram");
1410 	if (zram_major <= 0) {
1411 		pr_warn("Unable to get major number\n");
1412 		class_unregister(&zram_control_class);
1413 		return -EBUSY;
1414 	}
1415 
1416 	while (num_devices != 0) {
1417 		mutex_lock(&zram_index_mutex);
1418 		ret = zram_add();
1419 		mutex_unlock(&zram_index_mutex);
1420 		if (ret < 0)
1421 			goto out_error;
1422 		num_devices--;
1423 	}
1424 
1425 	return 0;
1426 
1427 out_error:
1428 	destroy_devices();
1429 	return ret;
1430 }
1431 
1432 static void __exit zram_exit(void)
1433 {
1434 	destroy_devices();
1435 }
1436 
1437 module_init(zram_init);
1438 module_exit(zram_exit);
1439 
1440 module_param(num_devices, uint, 0);
1441 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1442 
1443 MODULE_LICENSE("Dual BSD/GPL");
1444 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1445 MODULE_DESCRIPTION("Compressed RAM Block Device");
1446