xref: /linux/drivers/block/zram/zram_drv.c (revision c01044cc819160323f3ca4acd44fca487c4432e6)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/debugfs.h>
35 #include <linux/cpuhotplug.h>
36 #include <linux/part_stat.h>
37 
38 #include "zram_drv.h"
39 
40 static DEFINE_IDR(zram_index_idr);
41 /* idr index must be protected */
42 static DEFINE_MUTEX(zram_index_mutex);
43 
44 static int zram_major;
45 static const char *default_compressor = "lzo-rle";
46 
47 /* Module params (documentation at end) */
48 static unsigned int num_devices = 1;
49 /*
50  * Pages that compress to sizes equals or greater than this are stored
51  * uncompressed in memory.
52  */
53 static size_t huge_class_size;
54 
55 static const struct block_device_operations zram_devops;
56 static const struct block_device_operations zram_wb_devops;
57 
58 static void zram_free_page(struct zram *zram, size_t index);
59 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
60 				u32 index, int offset, struct bio *bio);
61 
62 
63 static int zram_slot_trylock(struct zram *zram, u32 index)
64 {
65 	return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags);
66 }
67 
68 static void zram_slot_lock(struct zram *zram, u32 index)
69 {
70 	bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags);
71 }
72 
73 static void zram_slot_unlock(struct zram *zram, u32 index)
74 {
75 	bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags);
76 }
77 
78 static inline bool init_done(struct zram *zram)
79 {
80 	return zram->disksize;
81 }
82 
83 static inline struct zram *dev_to_zram(struct device *dev)
84 {
85 	return (struct zram *)dev_to_disk(dev)->private_data;
86 }
87 
88 static unsigned long zram_get_handle(struct zram *zram, u32 index)
89 {
90 	return zram->table[index].handle;
91 }
92 
93 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
94 {
95 	zram->table[index].handle = handle;
96 }
97 
98 /* flag operations require table entry bit_spin_lock() being held */
99 static bool zram_test_flag(struct zram *zram, u32 index,
100 			enum zram_pageflags flag)
101 {
102 	return zram->table[index].flags & BIT(flag);
103 }
104 
105 static void zram_set_flag(struct zram *zram, u32 index,
106 			enum zram_pageflags flag)
107 {
108 	zram->table[index].flags |= BIT(flag);
109 }
110 
111 static void zram_clear_flag(struct zram *zram, u32 index,
112 			enum zram_pageflags flag)
113 {
114 	zram->table[index].flags &= ~BIT(flag);
115 }
116 
117 static inline void zram_set_element(struct zram *zram, u32 index,
118 			unsigned long element)
119 {
120 	zram->table[index].element = element;
121 }
122 
123 static unsigned long zram_get_element(struct zram *zram, u32 index)
124 {
125 	return zram->table[index].element;
126 }
127 
128 static size_t zram_get_obj_size(struct zram *zram, u32 index)
129 {
130 	return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
131 }
132 
133 static void zram_set_obj_size(struct zram *zram,
134 					u32 index, size_t size)
135 {
136 	unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
137 
138 	zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
139 }
140 
141 static inline bool zram_allocated(struct zram *zram, u32 index)
142 {
143 	return zram_get_obj_size(zram, index) ||
144 			zram_test_flag(zram, index, ZRAM_SAME) ||
145 			zram_test_flag(zram, index, ZRAM_WB);
146 }
147 
148 #if PAGE_SIZE != 4096
149 static inline bool is_partial_io(struct bio_vec *bvec)
150 {
151 	return bvec->bv_len != PAGE_SIZE;
152 }
153 #else
154 static inline bool is_partial_io(struct bio_vec *bvec)
155 {
156 	return false;
157 }
158 #endif
159 
160 /*
161  * Check if request is within bounds and aligned on zram logical blocks.
162  */
163 static inline bool valid_io_request(struct zram *zram,
164 		sector_t start, unsigned int size)
165 {
166 	u64 end, bound;
167 
168 	/* unaligned request */
169 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
170 		return false;
171 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
172 		return false;
173 
174 	end = start + (size >> SECTOR_SHIFT);
175 	bound = zram->disksize >> SECTOR_SHIFT;
176 	/* out of range range */
177 	if (unlikely(start >= bound || end > bound || start > end))
178 		return false;
179 
180 	/* I/O request is valid */
181 	return true;
182 }
183 
184 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
185 {
186 	*index  += (*offset + bvec->bv_len) / PAGE_SIZE;
187 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
188 }
189 
190 static inline void update_used_max(struct zram *zram,
191 					const unsigned long pages)
192 {
193 	unsigned long old_max, cur_max;
194 
195 	old_max = atomic_long_read(&zram->stats.max_used_pages);
196 
197 	do {
198 		cur_max = old_max;
199 		if (pages > cur_max)
200 			old_max = atomic_long_cmpxchg(
201 				&zram->stats.max_used_pages, cur_max, pages);
202 	} while (old_max != cur_max);
203 }
204 
205 static inline void zram_fill_page(void *ptr, unsigned long len,
206 					unsigned long value)
207 {
208 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
209 	memset_l(ptr, value, len / sizeof(unsigned long));
210 }
211 
212 static bool page_same_filled(void *ptr, unsigned long *element)
213 {
214 	unsigned long *page;
215 	unsigned long val;
216 	unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
217 
218 	page = (unsigned long *)ptr;
219 	val = page[0];
220 
221 	if (val != page[last_pos])
222 		return false;
223 
224 	for (pos = 1; pos < last_pos; pos++) {
225 		if (val != page[pos])
226 			return false;
227 	}
228 
229 	*element = val;
230 
231 	return true;
232 }
233 
234 static ssize_t initstate_show(struct device *dev,
235 		struct device_attribute *attr, char *buf)
236 {
237 	u32 val;
238 	struct zram *zram = dev_to_zram(dev);
239 
240 	down_read(&zram->init_lock);
241 	val = init_done(zram);
242 	up_read(&zram->init_lock);
243 
244 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
245 }
246 
247 static ssize_t disksize_show(struct device *dev,
248 		struct device_attribute *attr, char *buf)
249 {
250 	struct zram *zram = dev_to_zram(dev);
251 
252 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
253 }
254 
255 static ssize_t mem_limit_store(struct device *dev,
256 		struct device_attribute *attr, const char *buf, size_t len)
257 {
258 	u64 limit;
259 	char *tmp;
260 	struct zram *zram = dev_to_zram(dev);
261 
262 	limit = memparse(buf, &tmp);
263 	if (buf == tmp) /* no chars parsed, invalid input */
264 		return -EINVAL;
265 
266 	down_write(&zram->init_lock);
267 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
268 	up_write(&zram->init_lock);
269 
270 	return len;
271 }
272 
273 static ssize_t mem_used_max_store(struct device *dev,
274 		struct device_attribute *attr, const char *buf, size_t len)
275 {
276 	int err;
277 	unsigned long val;
278 	struct zram *zram = dev_to_zram(dev);
279 
280 	err = kstrtoul(buf, 10, &val);
281 	if (err || val != 0)
282 		return -EINVAL;
283 
284 	down_read(&zram->init_lock);
285 	if (init_done(zram)) {
286 		atomic_long_set(&zram->stats.max_used_pages,
287 				zs_get_total_pages(zram->mem_pool));
288 	}
289 	up_read(&zram->init_lock);
290 
291 	return len;
292 }
293 
294 static ssize_t idle_store(struct device *dev,
295 		struct device_attribute *attr, const char *buf, size_t len)
296 {
297 	struct zram *zram = dev_to_zram(dev);
298 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
299 	int index;
300 
301 	if (!sysfs_streq(buf, "all"))
302 		return -EINVAL;
303 
304 	down_read(&zram->init_lock);
305 	if (!init_done(zram)) {
306 		up_read(&zram->init_lock);
307 		return -EINVAL;
308 	}
309 
310 	for (index = 0; index < nr_pages; index++) {
311 		/*
312 		 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race.
313 		 * See the comment in writeback_store.
314 		 */
315 		zram_slot_lock(zram, index);
316 		if (zram_allocated(zram, index) &&
317 				!zram_test_flag(zram, index, ZRAM_UNDER_WB))
318 			zram_set_flag(zram, index, ZRAM_IDLE);
319 		zram_slot_unlock(zram, index);
320 	}
321 
322 	up_read(&zram->init_lock);
323 
324 	return len;
325 }
326 
327 #ifdef CONFIG_ZRAM_WRITEBACK
328 static ssize_t writeback_limit_enable_store(struct device *dev,
329 		struct device_attribute *attr, const char *buf, size_t len)
330 {
331 	struct zram *zram = dev_to_zram(dev);
332 	u64 val;
333 	ssize_t ret = -EINVAL;
334 
335 	if (kstrtoull(buf, 10, &val))
336 		return ret;
337 
338 	down_read(&zram->init_lock);
339 	spin_lock(&zram->wb_limit_lock);
340 	zram->wb_limit_enable = val;
341 	spin_unlock(&zram->wb_limit_lock);
342 	up_read(&zram->init_lock);
343 	ret = len;
344 
345 	return ret;
346 }
347 
348 static ssize_t writeback_limit_enable_show(struct device *dev,
349 		struct device_attribute *attr, char *buf)
350 {
351 	bool val;
352 	struct zram *zram = dev_to_zram(dev);
353 
354 	down_read(&zram->init_lock);
355 	spin_lock(&zram->wb_limit_lock);
356 	val = zram->wb_limit_enable;
357 	spin_unlock(&zram->wb_limit_lock);
358 	up_read(&zram->init_lock);
359 
360 	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
361 }
362 
363 static ssize_t writeback_limit_store(struct device *dev,
364 		struct device_attribute *attr, const char *buf, size_t len)
365 {
366 	struct zram *zram = dev_to_zram(dev);
367 	u64 val;
368 	ssize_t ret = -EINVAL;
369 
370 	if (kstrtoull(buf, 10, &val))
371 		return ret;
372 
373 	down_read(&zram->init_lock);
374 	spin_lock(&zram->wb_limit_lock);
375 	zram->bd_wb_limit = val;
376 	spin_unlock(&zram->wb_limit_lock);
377 	up_read(&zram->init_lock);
378 	ret = len;
379 
380 	return ret;
381 }
382 
383 static ssize_t writeback_limit_show(struct device *dev,
384 		struct device_attribute *attr, char *buf)
385 {
386 	u64 val;
387 	struct zram *zram = dev_to_zram(dev);
388 
389 	down_read(&zram->init_lock);
390 	spin_lock(&zram->wb_limit_lock);
391 	val = zram->bd_wb_limit;
392 	spin_unlock(&zram->wb_limit_lock);
393 	up_read(&zram->init_lock);
394 
395 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
396 }
397 
398 static void reset_bdev(struct zram *zram)
399 {
400 	struct block_device *bdev;
401 
402 	if (!zram->backing_dev)
403 		return;
404 
405 	bdev = zram->bdev;
406 	if (zram->old_block_size)
407 		set_blocksize(bdev, zram->old_block_size);
408 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
409 	/* hope filp_close flush all of IO */
410 	filp_close(zram->backing_dev, NULL);
411 	zram->backing_dev = NULL;
412 	zram->old_block_size = 0;
413 	zram->bdev = NULL;
414 	zram->disk->fops = &zram_devops;
415 	kvfree(zram->bitmap);
416 	zram->bitmap = NULL;
417 }
418 
419 static ssize_t backing_dev_show(struct device *dev,
420 		struct device_attribute *attr, char *buf)
421 {
422 	struct file *file;
423 	struct zram *zram = dev_to_zram(dev);
424 	char *p;
425 	ssize_t ret;
426 
427 	down_read(&zram->init_lock);
428 	file = zram->backing_dev;
429 	if (!file) {
430 		memcpy(buf, "none\n", 5);
431 		up_read(&zram->init_lock);
432 		return 5;
433 	}
434 
435 	p = file_path(file, buf, PAGE_SIZE - 1);
436 	if (IS_ERR(p)) {
437 		ret = PTR_ERR(p);
438 		goto out;
439 	}
440 
441 	ret = strlen(p);
442 	memmove(buf, p, ret);
443 	buf[ret++] = '\n';
444 out:
445 	up_read(&zram->init_lock);
446 	return ret;
447 }
448 
449 static ssize_t backing_dev_store(struct device *dev,
450 		struct device_attribute *attr, const char *buf, size_t len)
451 {
452 	char *file_name;
453 	size_t sz;
454 	struct file *backing_dev = NULL;
455 	struct inode *inode;
456 	struct address_space *mapping;
457 	unsigned int bitmap_sz, old_block_size = 0;
458 	unsigned long nr_pages, *bitmap = NULL;
459 	struct block_device *bdev = NULL;
460 	int err;
461 	struct zram *zram = dev_to_zram(dev);
462 
463 	file_name = kmalloc(PATH_MAX, GFP_KERNEL);
464 	if (!file_name)
465 		return -ENOMEM;
466 
467 	down_write(&zram->init_lock);
468 	if (init_done(zram)) {
469 		pr_info("Can't setup backing device for initialized device\n");
470 		err = -EBUSY;
471 		goto out;
472 	}
473 
474 	strlcpy(file_name, buf, PATH_MAX);
475 	/* ignore trailing newline */
476 	sz = strlen(file_name);
477 	if (sz > 0 && file_name[sz - 1] == '\n')
478 		file_name[sz - 1] = 0x00;
479 
480 	backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
481 	if (IS_ERR(backing_dev)) {
482 		err = PTR_ERR(backing_dev);
483 		backing_dev = NULL;
484 		goto out;
485 	}
486 
487 	mapping = backing_dev->f_mapping;
488 	inode = mapping->host;
489 
490 	/* Support only block device in this moment */
491 	if (!S_ISBLK(inode->i_mode)) {
492 		err = -ENOTBLK;
493 		goto out;
494 	}
495 
496 	bdev = blkdev_get_by_dev(inode->i_rdev,
497 			FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
498 	if (IS_ERR(bdev)) {
499 		err = PTR_ERR(bdev);
500 		bdev = NULL;
501 		goto out;
502 	}
503 
504 	nr_pages = i_size_read(inode) >> PAGE_SHIFT;
505 	bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
506 	bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
507 	if (!bitmap) {
508 		err = -ENOMEM;
509 		goto out;
510 	}
511 
512 	old_block_size = block_size(bdev);
513 	err = set_blocksize(bdev, PAGE_SIZE);
514 	if (err)
515 		goto out;
516 
517 	reset_bdev(zram);
518 
519 	zram->old_block_size = old_block_size;
520 	zram->bdev = bdev;
521 	zram->backing_dev = backing_dev;
522 	zram->bitmap = bitmap;
523 	zram->nr_pages = nr_pages;
524 	/*
525 	 * With writeback feature, zram does asynchronous IO so it's no longer
526 	 * synchronous device so let's remove synchronous io flag. Othewise,
527 	 * upper layer(e.g., swap) could wait IO completion rather than
528 	 * (submit and return), which will cause system sluggish.
529 	 * Furthermore, when the IO function returns(e.g., swap_readpage),
530 	 * upper layer expects IO was done so it could deallocate the page
531 	 * freely but in fact, IO is going on so finally could cause
532 	 * use-after-free when the IO is really done.
533 	 */
534 	zram->disk->fops = &zram_wb_devops;
535 	up_write(&zram->init_lock);
536 
537 	pr_info("setup backing device %s\n", file_name);
538 	kfree(file_name);
539 
540 	return len;
541 out:
542 	if (bitmap)
543 		kvfree(bitmap);
544 
545 	if (bdev)
546 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
547 
548 	if (backing_dev)
549 		filp_close(backing_dev, NULL);
550 
551 	up_write(&zram->init_lock);
552 
553 	kfree(file_name);
554 
555 	return err;
556 }
557 
558 static unsigned long alloc_block_bdev(struct zram *zram)
559 {
560 	unsigned long blk_idx = 1;
561 retry:
562 	/* skip 0 bit to confuse zram.handle = 0 */
563 	blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
564 	if (blk_idx == zram->nr_pages)
565 		return 0;
566 
567 	if (test_and_set_bit(blk_idx, zram->bitmap))
568 		goto retry;
569 
570 	atomic64_inc(&zram->stats.bd_count);
571 	return blk_idx;
572 }
573 
574 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
575 {
576 	int was_set;
577 
578 	was_set = test_and_clear_bit(blk_idx, zram->bitmap);
579 	WARN_ON_ONCE(!was_set);
580 	atomic64_dec(&zram->stats.bd_count);
581 }
582 
583 static void zram_page_end_io(struct bio *bio)
584 {
585 	struct page *page = bio_first_page_all(bio);
586 
587 	page_endio(page, op_is_write(bio_op(bio)),
588 			blk_status_to_errno(bio->bi_status));
589 	bio_put(bio);
590 }
591 
592 /*
593  * Returns 1 if the submission is successful.
594  */
595 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
596 			unsigned long entry, struct bio *parent)
597 {
598 	struct bio *bio;
599 
600 	bio = bio_alloc(GFP_ATOMIC, 1);
601 	if (!bio)
602 		return -ENOMEM;
603 
604 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
605 	bio_set_dev(bio, zram->bdev);
606 	if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
607 		bio_put(bio);
608 		return -EIO;
609 	}
610 
611 	if (!parent) {
612 		bio->bi_opf = REQ_OP_READ;
613 		bio->bi_end_io = zram_page_end_io;
614 	} else {
615 		bio->bi_opf = parent->bi_opf;
616 		bio_chain(bio, parent);
617 	}
618 
619 	submit_bio(bio);
620 	return 1;
621 }
622 
623 #define HUGE_WRITEBACK 1
624 #define IDLE_WRITEBACK 2
625 
626 static ssize_t writeback_store(struct device *dev,
627 		struct device_attribute *attr, const char *buf, size_t len)
628 {
629 	struct zram *zram = dev_to_zram(dev);
630 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
631 	unsigned long index;
632 	struct bio bio;
633 	struct bio_vec bio_vec;
634 	struct page *page;
635 	ssize_t ret = len;
636 	int mode;
637 	unsigned long blk_idx = 0;
638 
639 	if (sysfs_streq(buf, "idle"))
640 		mode = IDLE_WRITEBACK;
641 	else if (sysfs_streq(buf, "huge"))
642 		mode = HUGE_WRITEBACK;
643 	else
644 		return -EINVAL;
645 
646 	down_read(&zram->init_lock);
647 	if (!init_done(zram)) {
648 		ret = -EINVAL;
649 		goto release_init_lock;
650 	}
651 
652 	if (!zram->backing_dev) {
653 		ret = -ENODEV;
654 		goto release_init_lock;
655 	}
656 
657 	page = alloc_page(GFP_KERNEL);
658 	if (!page) {
659 		ret = -ENOMEM;
660 		goto release_init_lock;
661 	}
662 
663 	for (index = 0; index < nr_pages; index++) {
664 		struct bio_vec bvec;
665 
666 		bvec.bv_page = page;
667 		bvec.bv_len = PAGE_SIZE;
668 		bvec.bv_offset = 0;
669 
670 		spin_lock(&zram->wb_limit_lock);
671 		if (zram->wb_limit_enable && !zram->bd_wb_limit) {
672 			spin_unlock(&zram->wb_limit_lock);
673 			ret = -EIO;
674 			break;
675 		}
676 		spin_unlock(&zram->wb_limit_lock);
677 
678 		if (!blk_idx) {
679 			blk_idx = alloc_block_bdev(zram);
680 			if (!blk_idx) {
681 				ret = -ENOSPC;
682 				break;
683 			}
684 		}
685 
686 		zram_slot_lock(zram, index);
687 		if (!zram_allocated(zram, index))
688 			goto next;
689 
690 		if (zram_test_flag(zram, index, ZRAM_WB) ||
691 				zram_test_flag(zram, index, ZRAM_SAME) ||
692 				zram_test_flag(zram, index, ZRAM_UNDER_WB))
693 			goto next;
694 
695 		if (mode == IDLE_WRITEBACK &&
696 			  !zram_test_flag(zram, index, ZRAM_IDLE))
697 			goto next;
698 		if (mode == HUGE_WRITEBACK &&
699 			  !zram_test_flag(zram, index, ZRAM_HUGE))
700 			goto next;
701 		/*
702 		 * Clearing ZRAM_UNDER_WB is duty of caller.
703 		 * IOW, zram_free_page never clear it.
704 		 */
705 		zram_set_flag(zram, index, ZRAM_UNDER_WB);
706 		/* Need for hugepage writeback racing */
707 		zram_set_flag(zram, index, ZRAM_IDLE);
708 		zram_slot_unlock(zram, index);
709 		if (zram_bvec_read(zram, &bvec, index, 0, NULL)) {
710 			zram_slot_lock(zram, index);
711 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
712 			zram_clear_flag(zram, index, ZRAM_IDLE);
713 			zram_slot_unlock(zram, index);
714 			continue;
715 		}
716 
717 		bio_init(&bio, &bio_vec, 1);
718 		bio_set_dev(&bio, zram->bdev);
719 		bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
720 		bio.bi_opf = REQ_OP_WRITE | REQ_SYNC;
721 
722 		bio_add_page(&bio, bvec.bv_page, bvec.bv_len,
723 				bvec.bv_offset);
724 		/*
725 		 * XXX: A single page IO would be inefficient for write
726 		 * but it would be not bad as starter.
727 		 */
728 		ret = submit_bio_wait(&bio);
729 		if (ret) {
730 			zram_slot_lock(zram, index);
731 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
732 			zram_clear_flag(zram, index, ZRAM_IDLE);
733 			zram_slot_unlock(zram, index);
734 			continue;
735 		}
736 
737 		atomic64_inc(&zram->stats.bd_writes);
738 		/*
739 		 * We released zram_slot_lock so need to check if the slot was
740 		 * changed. If there is freeing for the slot, we can catch it
741 		 * easily by zram_allocated.
742 		 * A subtle case is the slot is freed/reallocated/marked as
743 		 * ZRAM_IDLE again. To close the race, idle_store doesn't
744 		 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB.
745 		 * Thus, we could close the race by checking ZRAM_IDLE bit.
746 		 */
747 		zram_slot_lock(zram, index);
748 		if (!zram_allocated(zram, index) ||
749 			  !zram_test_flag(zram, index, ZRAM_IDLE)) {
750 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
751 			zram_clear_flag(zram, index, ZRAM_IDLE);
752 			goto next;
753 		}
754 
755 		zram_free_page(zram, index);
756 		zram_clear_flag(zram, index, ZRAM_UNDER_WB);
757 		zram_set_flag(zram, index, ZRAM_WB);
758 		zram_set_element(zram, index, blk_idx);
759 		blk_idx = 0;
760 		atomic64_inc(&zram->stats.pages_stored);
761 		spin_lock(&zram->wb_limit_lock);
762 		if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
763 			zram->bd_wb_limit -=  1UL << (PAGE_SHIFT - 12);
764 		spin_unlock(&zram->wb_limit_lock);
765 next:
766 		zram_slot_unlock(zram, index);
767 	}
768 
769 	if (blk_idx)
770 		free_block_bdev(zram, blk_idx);
771 	__free_page(page);
772 release_init_lock:
773 	up_read(&zram->init_lock);
774 
775 	return ret;
776 }
777 
778 struct zram_work {
779 	struct work_struct work;
780 	struct zram *zram;
781 	unsigned long entry;
782 	struct bio *bio;
783 	struct bio_vec bvec;
784 };
785 
786 #if PAGE_SIZE != 4096
787 static void zram_sync_read(struct work_struct *work)
788 {
789 	struct zram_work *zw = container_of(work, struct zram_work, work);
790 	struct zram *zram = zw->zram;
791 	unsigned long entry = zw->entry;
792 	struct bio *bio = zw->bio;
793 
794 	read_from_bdev_async(zram, &zw->bvec, entry, bio);
795 }
796 
797 /*
798  * Block layer want one ->submit_bio to be active at a time, so if we use
799  * chained IO with parent IO in same context, it's a deadlock. To avoid that,
800  * use a worker thread context.
801  */
802 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
803 				unsigned long entry, struct bio *bio)
804 {
805 	struct zram_work work;
806 
807 	work.bvec = *bvec;
808 	work.zram = zram;
809 	work.entry = entry;
810 	work.bio = bio;
811 
812 	INIT_WORK_ONSTACK(&work.work, zram_sync_read);
813 	queue_work(system_unbound_wq, &work.work);
814 	flush_work(&work.work);
815 	destroy_work_on_stack(&work.work);
816 
817 	return 1;
818 }
819 #else
820 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
821 				unsigned long entry, struct bio *bio)
822 {
823 	WARN_ON(1);
824 	return -EIO;
825 }
826 #endif
827 
828 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
829 			unsigned long entry, struct bio *parent, bool sync)
830 {
831 	atomic64_inc(&zram->stats.bd_reads);
832 	if (sync)
833 		return read_from_bdev_sync(zram, bvec, entry, parent);
834 	else
835 		return read_from_bdev_async(zram, bvec, entry, parent);
836 }
837 #else
838 static inline void reset_bdev(struct zram *zram) {};
839 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
840 			unsigned long entry, struct bio *parent, bool sync)
841 {
842 	return -EIO;
843 }
844 
845 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
846 #endif
847 
848 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
849 
850 static struct dentry *zram_debugfs_root;
851 
852 static void zram_debugfs_create(void)
853 {
854 	zram_debugfs_root = debugfs_create_dir("zram", NULL);
855 }
856 
857 static void zram_debugfs_destroy(void)
858 {
859 	debugfs_remove_recursive(zram_debugfs_root);
860 }
861 
862 static void zram_accessed(struct zram *zram, u32 index)
863 {
864 	zram_clear_flag(zram, index, ZRAM_IDLE);
865 	zram->table[index].ac_time = ktime_get_boottime();
866 }
867 
868 static ssize_t read_block_state(struct file *file, char __user *buf,
869 				size_t count, loff_t *ppos)
870 {
871 	char *kbuf;
872 	ssize_t index, written = 0;
873 	struct zram *zram = file->private_data;
874 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
875 	struct timespec64 ts;
876 
877 	kbuf = kvmalloc(count, GFP_KERNEL);
878 	if (!kbuf)
879 		return -ENOMEM;
880 
881 	down_read(&zram->init_lock);
882 	if (!init_done(zram)) {
883 		up_read(&zram->init_lock);
884 		kvfree(kbuf);
885 		return -EINVAL;
886 	}
887 
888 	for (index = *ppos; index < nr_pages; index++) {
889 		int copied;
890 
891 		zram_slot_lock(zram, index);
892 		if (!zram_allocated(zram, index))
893 			goto next;
894 
895 		ts = ktime_to_timespec64(zram->table[index].ac_time);
896 		copied = snprintf(kbuf + written, count,
897 			"%12zd %12lld.%06lu %c%c%c%c\n",
898 			index, (s64)ts.tv_sec,
899 			ts.tv_nsec / NSEC_PER_USEC,
900 			zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
901 			zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
902 			zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
903 			zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.');
904 
905 		if (count < copied) {
906 			zram_slot_unlock(zram, index);
907 			break;
908 		}
909 		written += copied;
910 		count -= copied;
911 next:
912 		zram_slot_unlock(zram, index);
913 		*ppos += 1;
914 	}
915 
916 	up_read(&zram->init_lock);
917 	if (copy_to_user(buf, kbuf, written))
918 		written = -EFAULT;
919 	kvfree(kbuf);
920 
921 	return written;
922 }
923 
924 static const struct file_operations proc_zram_block_state_op = {
925 	.open = simple_open,
926 	.read = read_block_state,
927 	.llseek = default_llseek,
928 };
929 
930 static void zram_debugfs_register(struct zram *zram)
931 {
932 	if (!zram_debugfs_root)
933 		return;
934 
935 	zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
936 						zram_debugfs_root);
937 	debugfs_create_file("block_state", 0400, zram->debugfs_dir,
938 				zram, &proc_zram_block_state_op);
939 }
940 
941 static void zram_debugfs_unregister(struct zram *zram)
942 {
943 	debugfs_remove_recursive(zram->debugfs_dir);
944 }
945 #else
946 static void zram_debugfs_create(void) {};
947 static void zram_debugfs_destroy(void) {};
948 static void zram_accessed(struct zram *zram, u32 index)
949 {
950 	zram_clear_flag(zram, index, ZRAM_IDLE);
951 };
952 static void zram_debugfs_register(struct zram *zram) {};
953 static void zram_debugfs_unregister(struct zram *zram) {};
954 #endif
955 
956 /*
957  * We switched to per-cpu streams and this attr is not needed anymore.
958  * However, we will keep it around for some time, because:
959  * a) we may revert per-cpu streams in the future
960  * b) it's visible to user space and we need to follow our 2 years
961  *    retirement rule; but we already have a number of 'soon to be
962  *    altered' attrs, so max_comp_streams need to wait for the next
963  *    layoff cycle.
964  */
965 static ssize_t max_comp_streams_show(struct device *dev,
966 		struct device_attribute *attr, char *buf)
967 {
968 	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
969 }
970 
971 static ssize_t max_comp_streams_store(struct device *dev,
972 		struct device_attribute *attr, const char *buf, size_t len)
973 {
974 	return len;
975 }
976 
977 static ssize_t comp_algorithm_show(struct device *dev,
978 		struct device_attribute *attr, char *buf)
979 {
980 	size_t sz;
981 	struct zram *zram = dev_to_zram(dev);
982 
983 	down_read(&zram->init_lock);
984 	sz = zcomp_available_show(zram->compressor, buf);
985 	up_read(&zram->init_lock);
986 
987 	return sz;
988 }
989 
990 static ssize_t comp_algorithm_store(struct device *dev,
991 		struct device_attribute *attr, const char *buf, size_t len)
992 {
993 	struct zram *zram = dev_to_zram(dev);
994 	char compressor[ARRAY_SIZE(zram->compressor)];
995 	size_t sz;
996 
997 	strlcpy(compressor, buf, sizeof(compressor));
998 	/* ignore trailing newline */
999 	sz = strlen(compressor);
1000 	if (sz > 0 && compressor[sz - 1] == '\n')
1001 		compressor[sz - 1] = 0x00;
1002 
1003 	if (!zcomp_available_algorithm(compressor))
1004 		return -EINVAL;
1005 
1006 	down_write(&zram->init_lock);
1007 	if (init_done(zram)) {
1008 		up_write(&zram->init_lock);
1009 		pr_info("Can't change algorithm for initialized device\n");
1010 		return -EBUSY;
1011 	}
1012 
1013 	strcpy(zram->compressor, compressor);
1014 	up_write(&zram->init_lock);
1015 	return len;
1016 }
1017 
1018 static ssize_t compact_store(struct device *dev,
1019 		struct device_attribute *attr, const char *buf, size_t len)
1020 {
1021 	struct zram *zram = dev_to_zram(dev);
1022 
1023 	down_read(&zram->init_lock);
1024 	if (!init_done(zram)) {
1025 		up_read(&zram->init_lock);
1026 		return -EINVAL;
1027 	}
1028 
1029 	zs_compact(zram->mem_pool);
1030 	up_read(&zram->init_lock);
1031 
1032 	return len;
1033 }
1034 
1035 static ssize_t io_stat_show(struct device *dev,
1036 		struct device_attribute *attr, char *buf)
1037 {
1038 	struct zram *zram = dev_to_zram(dev);
1039 	ssize_t ret;
1040 
1041 	down_read(&zram->init_lock);
1042 	ret = scnprintf(buf, PAGE_SIZE,
1043 			"%8llu %8llu %8llu %8llu\n",
1044 			(u64)atomic64_read(&zram->stats.failed_reads),
1045 			(u64)atomic64_read(&zram->stats.failed_writes),
1046 			(u64)atomic64_read(&zram->stats.invalid_io),
1047 			(u64)atomic64_read(&zram->stats.notify_free));
1048 	up_read(&zram->init_lock);
1049 
1050 	return ret;
1051 }
1052 
1053 static ssize_t mm_stat_show(struct device *dev,
1054 		struct device_attribute *attr, char *buf)
1055 {
1056 	struct zram *zram = dev_to_zram(dev);
1057 	struct zs_pool_stats pool_stats;
1058 	u64 orig_size, mem_used = 0;
1059 	long max_used;
1060 	ssize_t ret;
1061 
1062 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1063 
1064 	down_read(&zram->init_lock);
1065 	if (init_done(zram)) {
1066 		mem_used = zs_get_total_pages(zram->mem_pool);
1067 		zs_pool_stats(zram->mem_pool, &pool_stats);
1068 	}
1069 
1070 	orig_size = atomic64_read(&zram->stats.pages_stored);
1071 	max_used = atomic_long_read(&zram->stats.max_used_pages);
1072 
1073 	ret = scnprintf(buf, PAGE_SIZE,
1074 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu\n",
1075 			orig_size << PAGE_SHIFT,
1076 			(u64)atomic64_read(&zram->stats.compr_data_size),
1077 			mem_used << PAGE_SHIFT,
1078 			zram->limit_pages << PAGE_SHIFT,
1079 			max_used << PAGE_SHIFT,
1080 			(u64)atomic64_read(&zram->stats.same_pages),
1081 			pool_stats.pages_compacted,
1082 			(u64)atomic64_read(&zram->stats.huge_pages));
1083 	up_read(&zram->init_lock);
1084 
1085 	return ret;
1086 }
1087 
1088 #ifdef CONFIG_ZRAM_WRITEBACK
1089 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
1090 static ssize_t bd_stat_show(struct device *dev,
1091 		struct device_attribute *attr, char *buf)
1092 {
1093 	struct zram *zram = dev_to_zram(dev);
1094 	ssize_t ret;
1095 
1096 	down_read(&zram->init_lock);
1097 	ret = scnprintf(buf, PAGE_SIZE,
1098 		"%8llu %8llu %8llu\n",
1099 			FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1100 			FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1101 			FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1102 	up_read(&zram->init_lock);
1103 
1104 	return ret;
1105 }
1106 #endif
1107 
1108 static ssize_t debug_stat_show(struct device *dev,
1109 		struct device_attribute *attr, char *buf)
1110 {
1111 	int version = 1;
1112 	struct zram *zram = dev_to_zram(dev);
1113 	ssize_t ret;
1114 
1115 	down_read(&zram->init_lock);
1116 	ret = scnprintf(buf, PAGE_SIZE,
1117 			"version: %d\n%8llu %8llu\n",
1118 			version,
1119 			(u64)atomic64_read(&zram->stats.writestall),
1120 			(u64)atomic64_read(&zram->stats.miss_free));
1121 	up_read(&zram->init_lock);
1122 
1123 	return ret;
1124 }
1125 
1126 static DEVICE_ATTR_RO(io_stat);
1127 static DEVICE_ATTR_RO(mm_stat);
1128 #ifdef CONFIG_ZRAM_WRITEBACK
1129 static DEVICE_ATTR_RO(bd_stat);
1130 #endif
1131 static DEVICE_ATTR_RO(debug_stat);
1132 
1133 static void zram_meta_free(struct zram *zram, u64 disksize)
1134 {
1135 	size_t num_pages = disksize >> PAGE_SHIFT;
1136 	size_t index;
1137 
1138 	/* Free all pages that are still in this zram device */
1139 	for (index = 0; index < num_pages; index++)
1140 		zram_free_page(zram, index);
1141 
1142 	zs_destroy_pool(zram->mem_pool);
1143 	vfree(zram->table);
1144 }
1145 
1146 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1147 {
1148 	size_t num_pages;
1149 
1150 	num_pages = disksize >> PAGE_SHIFT;
1151 	zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1152 	if (!zram->table)
1153 		return false;
1154 
1155 	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1156 	if (!zram->mem_pool) {
1157 		vfree(zram->table);
1158 		return false;
1159 	}
1160 
1161 	if (!huge_class_size)
1162 		huge_class_size = zs_huge_class_size(zram->mem_pool);
1163 	return true;
1164 }
1165 
1166 /*
1167  * To protect concurrent access to the same index entry,
1168  * caller should hold this table index entry's bit_spinlock to
1169  * indicate this index entry is accessing.
1170  */
1171 static void zram_free_page(struct zram *zram, size_t index)
1172 {
1173 	unsigned long handle;
1174 
1175 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
1176 	zram->table[index].ac_time = 0;
1177 #endif
1178 	if (zram_test_flag(zram, index, ZRAM_IDLE))
1179 		zram_clear_flag(zram, index, ZRAM_IDLE);
1180 
1181 	if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1182 		zram_clear_flag(zram, index, ZRAM_HUGE);
1183 		atomic64_dec(&zram->stats.huge_pages);
1184 	}
1185 
1186 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1187 		zram_clear_flag(zram, index, ZRAM_WB);
1188 		free_block_bdev(zram, zram_get_element(zram, index));
1189 		goto out;
1190 	}
1191 
1192 	/*
1193 	 * No memory is allocated for same element filled pages.
1194 	 * Simply clear same page flag.
1195 	 */
1196 	if (zram_test_flag(zram, index, ZRAM_SAME)) {
1197 		zram_clear_flag(zram, index, ZRAM_SAME);
1198 		atomic64_dec(&zram->stats.same_pages);
1199 		goto out;
1200 	}
1201 
1202 	handle = zram_get_handle(zram, index);
1203 	if (!handle)
1204 		return;
1205 
1206 	zs_free(zram->mem_pool, handle);
1207 
1208 	atomic64_sub(zram_get_obj_size(zram, index),
1209 			&zram->stats.compr_data_size);
1210 out:
1211 	atomic64_dec(&zram->stats.pages_stored);
1212 	zram_set_handle(zram, index, 0);
1213 	zram_set_obj_size(zram, index, 0);
1214 	WARN_ON_ONCE(zram->table[index].flags &
1215 		~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB));
1216 }
1217 
1218 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
1219 				struct bio *bio, bool partial_io)
1220 {
1221 	int ret;
1222 	unsigned long handle;
1223 	unsigned int size;
1224 	void *src, *dst;
1225 
1226 	zram_slot_lock(zram, index);
1227 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1228 		struct bio_vec bvec;
1229 
1230 		zram_slot_unlock(zram, index);
1231 
1232 		bvec.bv_page = page;
1233 		bvec.bv_len = PAGE_SIZE;
1234 		bvec.bv_offset = 0;
1235 		return read_from_bdev(zram, &bvec,
1236 				zram_get_element(zram, index),
1237 				bio, partial_io);
1238 	}
1239 
1240 	handle = zram_get_handle(zram, index);
1241 	if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1242 		unsigned long value;
1243 		void *mem;
1244 
1245 		value = handle ? zram_get_element(zram, index) : 0;
1246 		mem = kmap_atomic(page);
1247 		zram_fill_page(mem, PAGE_SIZE, value);
1248 		kunmap_atomic(mem);
1249 		zram_slot_unlock(zram, index);
1250 		return 0;
1251 	}
1252 
1253 	size = zram_get_obj_size(zram, index);
1254 
1255 	src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1256 	if (size == PAGE_SIZE) {
1257 		dst = kmap_atomic(page);
1258 		memcpy(dst, src, PAGE_SIZE);
1259 		kunmap_atomic(dst);
1260 		ret = 0;
1261 	} else {
1262 		struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
1263 
1264 		dst = kmap_atomic(page);
1265 		ret = zcomp_decompress(zstrm, src, size, dst);
1266 		kunmap_atomic(dst);
1267 		zcomp_stream_put(zram->comp);
1268 	}
1269 	zs_unmap_object(zram->mem_pool, handle);
1270 	zram_slot_unlock(zram, index);
1271 
1272 	/* Should NEVER happen. Return bio error if it does. */
1273 	if (unlikely(ret))
1274 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1275 
1276 	return ret;
1277 }
1278 
1279 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1280 				u32 index, int offset, struct bio *bio)
1281 {
1282 	int ret;
1283 	struct page *page;
1284 
1285 	page = bvec->bv_page;
1286 	if (is_partial_io(bvec)) {
1287 		/* Use a temporary buffer to decompress the page */
1288 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1289 		if (!page)
1290 			return -ENOMEM;
1291 	}
1292 
1293 	ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1294 	if (unlikely(ret))
1295 		goto out;
1296 
1297 	if (is_partial_io(bvec)) {
1298 		void *dst = kmap_atomic(bvec->bv_page);
1299 		void *src = kmap_atomic(page);
1300 
1301 		memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
1302 		kunmap_atomic(src);
1303 		kunmap_atomic(dst);
1304 	}
1305 out:
1306 	if (is_partial_io(bvec))
1307 		__free_page(page);
1308 
1309 	return ret;
1310 }
1311 
1312 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1313 				u32 index, struct bio *bio)
1314 {
1315 	int ret = 0;
1316 	unsigned long alloced_pages;
1317 	unsigned long handle = 0;
1318 	unsigned int comp_len = 0;
1319 	void *src, *dst, *mem;
1320 	struct zcomp_strm *zstrm;
1321 	struct page *page = bvec->bv_page;
1322 	unsigned long element = 0;
1323 	enum zram_pageflags flags = 0;
1324 
1325 	mem = kmap_atomic(page);
1326 	if (page_same_filled(mem, &element)) {
1327 		kunmap_atomic(mem);
1328 		/* Free memory associated with this sector now. */
1329 		flags = ZRAM_SAME;
1330 		atomic64_inc(&zram->stats.same_pages);
1331 		goto out;
1332 	}
1333 	kunmap_atomic(mem);
1334 
1335 compress_again:
1336 	zstrm = zcomp_stream_get(zram->comp);
1337 	src = kmap_atomic(page);
1338 	ret = zcomp_compress(zstrm, src, &comp_len);
1339 	kunmap_atomic(src);
1340 
1341 	if (unlikely(ret)) {
1342 		zcomp_stream_put(zram->comp);
1343 		pr_err("Compression failed! err=%d\n", ret);
1344 		zs_free(zram->mem_pool, handle);
1345 		return ret;
1346 	}
1347 
1348 	if (comp_len >= huge_class_size)
1349 		comp_len = PAGE_SIZE;
1350 	/*
1351 	 * handle allocation has 2 paths:
1352 	 * a) fast path is executed with preemption disabled (for
1353 	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1354 	 *  since we can't sleep;
1355 	 * b) slow path enables preemption and attempts to allocate
1356 	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
1357 	 *  put per-cpu compression stream and, thus, to re-do
1358 	 *  the compression once handle is allocated.
1359 	 *
1360 	 * if we have a 'non-null' handle here then we are coming
1361 	 * from the slow path and handle has already been allocated.
1362 	 */
1363 	if (!handle)
1364 		handle = zs_malloc(zram->mem_pool, comp_len,
1365 				__GFP_KSWAPD_RECLAIM |
1366 				__GFP_NOWARN |
1367 				__GFP_HIGHMEM |
1368 				__GFP_MOVABLE);
1369 	if (!handle) {
1370 		zcomp_stream_put(zram->comp);
1371 		atomic64_inc(&zram->stats.writestall);
1372 		handle = zs_malloc(zram->mem_pool, comp_len,
1373 				GFP_NOIO | __GFP_HIGHMEM |
1374 				__GFP_MOVABLE);
1375 		if (handle)
1376 			goto compress_again;
1377 		return -ENOMEM;
1378 	}
1379 
1380 	alloced_pages = zs_get_total_pages(zram->mem_pool);
1381 	update_used_max(zram, alloced_pages);
1382 
1383 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1384 		zcomp_stream_put(zram->comp);
1385 		zs_free(zram->mem_pool, handle);
1386 		return -ENOMEM;
1387 	}
1388 
1389 	dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1390 
1391 	src = zstrm->buffer;
1392 	if (comp_len == PAGE_SIZE)
1393 		src = kmap_atomic(page);
1394 	memcpy(dst, src, comp_len);
1395 	if (comp_len == PAGE_SIZE)
1396 		kunmap_atomic(src);
1397 
1398 	zcomp_stream_put(zram->comp);
1399 	zs_unmap_object(zram->mem_pool, handle);
1400 	atomic64_add(comp_len, &zram->stats.compr_data_size);
1401 out:
1402 	/*
1403 	 * Free memory associated with this sector
1404 	 * before overwriting unused sectors.
1405 	 */
1406 	zram_slot_lock(zram, index);
1407 	zram_free_page(zram, index);
1408 
1409 	if (comp_len == PAGE_SIZE) {
1410 		zram_set_flag(zram, index, ZRAM_HUGE);
1411 		atomic64_inc(&zram->stats.huge_pages);
1412 	}
1413 
1414 	if (flags) {
1415 		zram_set_flag(zram, index, flags);
1416 		zram_set_element(zram, index, element);
1417 	}  else {
1418 		zram_set_handle(zram, index, handle);
1419 		zram_set_obj_size(zram, index, comp_len);
1420 	}
1421 	zram_slot_unlock(zram, index);
1422 
1423 	/* Update stats */
1424 	atomic64_inc(&zram->stats.pages_stored);
1425 	return ret;
1426 }
1427 
1428 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1429 				u32 index, int offset, struct bio *bio)
1430 {
1431 	int ret;
1432 	struct page *page = NULL;
1433 	void *src;
1434 	struct bio_vec vec;
1435 
1436 	vec = *bvec;
1437 	if (is_partial_io(bvec)) {
1438 		void *dst;
1439 		/*
1440 		 * This is a partial IO. We need to read the full page
1441 		 * before to write the changes.
1442 		 */
1443 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1444 		if (!page)
1445 			return -ENOMEM;
1446 
1447 		ret = __zram_bvec_read(zram, page, index, bio, true);
1448 		if (ret)
1449 			goto out;
1450 
1451 		src = kmap_atomic(bvec->bv_page);
1452 		dst = kmap_atomic(page);
1453 		memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
1454 		kunmap_atomic(dst);
1455 		kunmap_atomic(src);
1456 
1457 		vec.bv_page = page;
1458 		vec.bv_len = PAGE_SIZE;
1459 		vec.bv_offset = 0;
1460 	}
1461 
1462 	ret = __zram_bvec_write(zram, &vec, index, bio);
1463 out:
1464 	if (is_partial_io(bvec))
1465 		__free_page(page);
1466 	return ret;
1467 }
1468 
1469 /*
1470  * zram_bio_discard - handler on discard request
1471  * @index: physical block index in PAGE_SIZE units
1472  * @offset: byte offset within physical block
1473  */
1474 static void zram_bio_discard(struct zram *zram, u32 index,
1475 			     int offset, struct bio *bio)
1476 {
1477 	size_t n = bio->bi_iter.bi_size;
1478 
1479 	/*
1480 	 * zram manages data in physical block size units. Because logical block
1481 	 * size isn't identical with physical block size on some arch, we
1482 	 * could get a discard request pointing to a specific offset within a
1483 	 * certain physical block.  Although we can handle this request by
1484 	 * reading that physiclal block and decompressing and partially zeroing
1485 	 * and re-compressing and then re-storing it, this isn't reasonable
1486 	 * because our intent with a discard request is to save memory.  So
1487 	 * skipping this logical block is appropriate here.
1488 	 */
1489 	if (offset) {
1490 		if (n <= (PAGE_SIZE - offset))
1491 			return;
1492 
1493 		n -= (PAGE_SIZE - offset);
1494 		index++;
1495 	}
1496 
1497 	while (n >= PAGE_SIZE) {
1498 		zram_slot_lock(zram, index);
1499 		zram_free_page(zram, index);
1500 		zram_slot_unlock(zram, index);
1501 		atomic64_inc(&zram->stats.notify_free);
1502 		index++;
1503 		n -= PAGE_SIZE;
1504 	}
1505 }
1506 
1507 /*
1508  * Returns errno if it has some problem. Otherwise return 0 or 1.
1509  * Returns 0 if IO request was done synchronously
1510  * Returns 1 if IO request was successfully submitted.
1511  */
1512 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1513 			int offset, unsigned int op, struct bio *bio)
1514 {
1515 	int ret;
1516 
1517 	if (!op_is_write(op)) {
1518 		atomic64_inc(&zram->stats.num_reads);
1519 		ret = zram_bvec_read(zram, bvec, index, offset, bio);
1520 		flush_dcache_page(bvec->bv_page);
1521 	} else {
1522 		atomic64_inc(&zram->stats.num_writes);
1523 		ret = zram_bvec_write(zram, bvec, index, offset, bio);
1524 	}
1525 
1526 	zram_slot_lock(zram, index);
1527 	zram_accessed(zram, index);
1528 	zram_slot_unlock(zram, index);
1529 
1530 	if (unlikely(ret < 0)) {
1531 		if (!op_is_write(op))
1532 			atomic64_inc(&zram->stats.failed_reads);
1533 		else
1534 			atomic64_inc(&zram->stats.failed_writes);
1535 	}
1536 
1537 	return ret;
1538 }
1539 
1540 static void __zram_make_request(struct zram *zram, struct bio *bio)
1541 {
1542 	int offset;
1543 	u32 index;
1544 	struct bio_vec bvec;
1545 	struct bvec_iter iter;
1546 	unsigned long start_time;
1547 
1548 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1549 	offset = (bio->bi_iter.bi_sector &
1550 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1551 
1552 	switch (bio_op(bio)) {
1553 	case REQ_OP_DISCARD:
1554 	case REQ_OP_WRITE_ZEROES:
1555 		zram_bio_discard(zram, index, offset, bio);
1556 		bio_endio(bio);
1557 		return;
1558 	default:
1559 		break;
1560 	}
1561 
1562 	start_time = bio_start_io_acct(bio);
1563 	bio_for_each_segment(bvec, bio, iter) {
1564 		struct bio_vec bv = bvec;
1565 		unsigned int unwritten = bvec.bv_len;
1566 
1567 		do {
1568 			bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1569 							unwritten);
1570 			if (zram_bvec_rw(zram, &bv, index, offset,
1571 					 bio_op(bio), bio) < 0) {
1572 				bio->bi_status = BLK_STS_IOERR;
1573 				break;
1574 			}
1575 
1576 			bv.bv_offset += bv.bv_len;
1577 			unwritten -= bv.bv_len;
1578 
1579 			update_position(&index, &offset, &bv);
1580 		} while (unwritten);
1581 	}
1582 	bio_end_io_acct(bio, start_time);
1583 	bio_endio(bio);
1584 }
1585 
1586 /*
1587  * Handler function for all zram I/O requests.
1588  */
1589 static blk_qc_t zram_submit_bio(struct bio *bio)
1590 {
1591 	struct zram *zram = bio->bi_disk->private_data;
1592 
1593 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1594 					bio->bi_iter.bi_size)) {
1595 		atomic64_inc(&zram->stats.invalid_io);
1596 		goto error;
1597 	}
1598 
1599 	__zram_make_request(zram, bio);
1600 	return BLK_QC_T_NONE;
1601 
1602 error:
1603 	bio_io_error(bio);
1604 	return BLK_QC_T_NONE;
1605 }
1606 
1607 static void zram_slot_free_notify(struct block_device *bdev,
1608 				unsigned long index)
1609 {
1610 	struct zram *zram;
1611 
1612 	zram = bdev->bd_disk->private_data;
1613 
1614 	atomic64_inc(&zram->stats.notify_free);
1615 	if (!zram_slot_trylock(zram, index)) {
1616 		atomic64_inc(&zram->stats.miss_free);
1617 		return;
1618 	}
1619 
1620 	zram_free_page(zram, index);
1621 	zram_slot_unlock(zram, index);
1622 }
1623 
1624 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1625 		       struct page *page, unsigned int op)
1626 {
1627 	int offset, ret;
1628 	u32 index;
1629 	struct zram *zram;
1630 	struct bio_vec bv;
1631 	unsigned long start_time;
1632 
1633 	if (PageTransHuge(page))
1634 		return -ENOTSUPP;
1635 	zram = bdev->bd_disk->private_data;
1636 
1637 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1638 		atomic64_inc(&zram->stats.invalid_io);
1639 		ret = -EINVAL;
1640 		goto out;
1641 	}
1642 
1643 	index = sector >> SECTORS_PER_PAGE_SHIFT;
1644 	offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1645 
1646 	bv.bv_page = page;
1647 	bv.bv_len = PAGE_SIZE;
1648 	bv.bv_offset = 0;
1649 
1650 	start_time = disk_start_io_acct(bdev->bd_disk, SECTORS_PER_PAGE, op);
1651 	ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL);
1652 	disk_end_io_acct(bdev->bd_disk, op, start_time);
1653 out:
1654 	/*
1655 	 * If I/O fails, just return error(ie, non-zero) without
1656 	 * calling page_endio.
1657 	 * It causes resubmit the I/O with bio request by upper functions
1658 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1659 	 * bio->bi_end_io does things to handle the error
1660 	 * (e.g., SetPageError, set_page_dirty and extra works).
1661 	 */
1662 	if (unlikely(ret < 0))
1663 		return ret;
1664 
1665 	switch (ret) {
1666 	case 0:
1667 		page_endio(page, op_is_write(op), 0);
1668 		break;
1669 	case 1:
1670 		ret = 0;
1671 		break;
1672 	default:
1673 		WARN_ON(1);
1674 	}
1675 	return ret;
1676 }
1677 
1678 static void zram_reset_device(struct zram *zram)
1679 {
1680 	struct zcomp *comp;
1681 	u64 disksize;
1682 
1683 	down_write(&zram->init_lock);
1684 
1685 	zram->limit_pages = 0;
1686 
1687 	if (!init_done(zram)) {
1688 		up_write(&zram->init_lock);
1689 		return;
1690 	}
1691 
1692 	comp = zram->comp;
1693 	disksize = zram->disksize;
1694 	zram->disksize = 0;
1695 
1696 	set_capacity(zram->disk, 0);
1697 	part_stat_set_all(&zram->disk->part0, 0);
1698 
1699 	up_write(&zram->init_lock);
1700 	/* I/O operation under all of CPU are done so let's free */
1701 	zram_meta_free(zram, disksize);
1702 	memset(&zram->stats, 0, sizeof(zram->stats));
1703 	zcomp_destroy(comp);
1704 	reset_bdev(zram);
1705 }
1706 
1707 static ssize_t disksize_store(struct device *dev,
1708 		struct device_attribute *attr, const char *buf, size_t len)
1709 {
1710 	u64 disksize;
1711 	struct zcomp *comp;
1712 	struct zram *zram = dev_to_zram(dev);
1713 	int err;
1714 
1715 	disksize = memparse(buf, NULL);
1716 	if (!disksize)
1717 		return -EINVAL;
1718 
1719 	down_write(&zram->init_lock);
1720 	if (init_done(zram)) {
1721 		pr_info("Cannot change disksize for initialized device\n");
1722 		err = -EBUSY;
1723 		goto out_unlock;
1724 	}
1725 
1726 	disksize = PAGE_ALIGN(disksize);
1727 	if (!zram_meta_alloc(zram, disksize)) {
1728 		err = -ENOMEM;
1729 		goto out_unlock;
1730 	}
1731 
1732 	comp = zcomp_create(zram->compressor);
1733 	if (IS_ERR(comp)) {
1734 		pr_err("Cannot initialise %s compressing backend\n",
1735 				zram->compressor);
1736 		err = PTR_ERR(comp);
1737 		goto out_free_meta;
1738 	}
1739 
1740 	zram->comp = comp;
1741 	zram->disksize = disksize;
1742 	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1743 
1744 	revalidate_disk_size(zram->disk, true);
1745 	up_write(&zram->init_lock);
1746 
1747 	return len;
1748 
1749 out_free_meta:
1750 	zram_meta_free(zram, disksize);
1751 out_unlock:
1752 	up_write(&zram->init_lock);
1753 	return err;
1754 }
1755 
1756 static ssize_t reset_store(struct device *dev,
1757 		struct device_attribute *attr, const char *buf, size_t len)
1758 {
1759 	int ret;
1760 	unsigned short do_reset;
1761 	struct zram *zram;
1762 	struct block_device *bdev;
1763 
1764 	ret = kstrtou16(buf, 10, &do_reset);
1765 	if (ret)
1766 		return ret;
1767 
1768 	if (!do_reset)
1769 		return -EINVAL;
1770 
1771 	zram = dev_to_zram(dev);
1772 	bdev = bdget_disk(zram->disk, 0);
1773 	if (!bdev)
1774 		return -ENOMEM;
1775 
1776 	mutex_lock(&bdev->bd_mutex);
1777 	/* Do not reset an active device or claimed device */
1778 	if (bdev->bd_openers || zram->claim) {
1779 		mutex_unlock(&bdev->bd_mutex);
1780 		bdput(bdev);
1781 		return -EBUSY;
1782 	}
1783 
1784 	/* From now on, anyone can't open /dev/zram[0-9] */
1785 	zram->claim = true;
1786 	mutex_unlock(&bdev->bd_mutex);
1787 
1788 	/* Make sure all the pending I/O are finished */
1789 	fsync_bdev(bdev);
1790 	zram_reset_device(zram);
1791 	revalidate_disk_size(zram->disk, true);
1792 	bdput(bdev);
1793 
1794 	mutex_lock(&bdev->bd_mutex);
1795 	zram->claim = false;
1796 	mutex_unlock(&bdev->bd_mutex);
1797 
1798 	return len;
1799 }
1800 
1801 static int zram_open(struct block_device *bdev, fmode_t mode)
1802 {
1803 	int ret = 0;
1804 	struct zram *zram;
1805 
1806 	WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1807 
1808 	zram = bdev->bd_disk->private_data;
1809 	/* zram was claimed to reset so open request fails */
1810 	if (zram->claim)
1811 		ret = -EBUSY;
1812 
1813 	return ret;
1814 }
1815 
1816 static const struct block_device_operations zram_devops = {
1817 	.open = zram_open,
1818 	.submit_bio = zram_submit_bio,
1819 	.swap_slot_free_notify = zram_slot_free_notify,
1820 	.rw_page = zram_rw_page,
1821 	.owner = THIS_MODULE
1822 };
1823 
1824 static const struct block_device_operations zram_wb_devops = {
1825 	.open = zram_open,
1826 	.submit_bio = zram_submit_bio,
1827 	.swap_slot_free_notify = zram_slot_free_notify,
1828 	.owner = THIS_MODULE
1829 };
1830 
1831 static DEVICE_ATTR_WO(compact);
1832 static DEVICE_ATTR_RW(disksize);
1833 static DEVICE_ATTR_RO(initstate);
1834 static DEVICE_ATTR_WO(reset);
1835 static DEVICE_ATTR_WO(mem_limit);
1836 static DEVICE_ATTR_WO(mem_used_max);
1837 static DEVICE_ATTR_WO(idle);
1838 static DEVICE_ATTR_RW(max_comp_streams);
1839 static DEVICE_ATTR_RW(comp_algorithm);
1840 #ifdef CONFIG_ZRAM_WRITEBACK
1841 static DEVICE_ATTR_RW(backing_dev);
1842 static DEVICE_ATTR_WO(writeback);
1843 static DEVICE_ATTR_RW(writeback_limit);
1844 static DEVICE_ATTR_RW(writeback_limit_enable);
1845 #endif
1846 
1847 static struct attribute *zram_disk_attrs[] = {
1848 	&dev_attr_disksize.attr,
1849 	&dev_attr_initstate.attr,
1850 	&dev_attr_reset.attr,
1851 	&dev_attr_compact.attr,
1852 	&dev_attr_mem_limit.attr,
1853 	&dev_attr_mem_used_max.attr,
1854 	&dev_attr_idle.attr,
1855 	&dev_attr_max_comp_streams.attr,
1856 	&dev_attr_comp_algorithm.attr,
1857 #ifdef CONFIG_ZRAM_WRITEBACK
1858 	&dev_attr_backing_dev.attr,
1859 	&dev_attr_writeback.attr,
1860 	&dev_attr_writeback_limit.attr,
1861 	&dev_attr_writeback_limit_enable.attr,
1862 #endif
1863 	&dev_attr_io_stat.attr,
1864 	&dev_attr_mm_stat.attr,
1865 #ifdef CONFIG_ZRAM_WRITEBACK
1866 	&dev_attr_bd_stat.attr,
1867 #endif
1868 	&dev_attr_debug_stat.attr,
1869 	NULL,
1870 };
1871 
1872 static const struct attribute_group zram_disk_attr_group = {
1873 	.attrs = zram_disk_attrs,
1874 };
1875 
1876 static const struct attribute_group *zram_disk_attr_groups[] = {
1877 	&zram_disk_attr_group,
1878 	NULL,
1879 };
1880 
1881 /*
1882  * Allocate and initialize new zram device. the function returns
1883  * '>= 0' device_id upon success, and negative value otherwise.
1884  */
1885 static int zram_add(void)
1886 {
1887 	struct zram *zram;
1888 	struct request_queue *queue;
1889 	int ret, device_id;
1890 
1891 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1892 	if (!zram)
1893 		return -ENOMEM;
1894 
1895 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1896 	if (ret < 0)
1897 		goto out_free_dev;
1898 	device_id = ret;
1899 
1900 	init_rwsem(&zram->init_lock);
1901 #ifdef CONFIG_ZRAM_WRITEBACK
1902 	spin_lock_init(&zram->wb_limit_lock);
1903 #endif
1904 	queue = blk_alloc_queue(NUMA_NO_NODE);
1905 	if (!queue) {
1906 		pr_err("Error allocating disk queue for device %d\n",
1907 			device_id);
1908 		ret = -ENOMEM;
1909 		goto out_free_idr;
1910 	}
1911 
1912 	/* gendisk structure */
1913 	zram->disk = alloc_disk(1);
1914 	if (!zram->disk) {
1915 		pr_err("Error allocating disk structure for device %d\n",
1916 			device_id);
1917 		ret = -ENOMEM;
1918 		goto out_free_queue;
1919 	}
1920 
1921 	zram->disk->major = zram_major;
1922 	zram->disk->first_minor = device_id;
1923 	zram->disk->fops = &zram_devops;
1924 	zram->disk->queue = queue;
1925 	zram->disk->private_data = zram;
1926 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1927 
1928 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1929 	set_capacity(zram->disk, 0);
1930 	/* zram devices sort of resembles non-rotational disks */
1931 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1932 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1933 
1934 	/*
1935 	 * To ensure that we always get PAGE_SIZE aligned
1936 	 * and n*PAGE_SIZED sized I/O requests.
1937 	 */
1938 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1939 	blk_queue_logical_block_size(zram->disk->queue,
1940 					ZRAM_LOGICAL_BLOCK_SIZE);
1941 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1942 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1943 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1944 	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1945 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue);
1946 
1947 	/*
1948 	 * zram_bio_discard() will clear all logical blocks if logical block
1949 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1950 	 * different, we will skip discarding some parts of logical blocks in
1951 	 * the part of the request range which isn't aligned to physical block
1952 	 * size.  So we can't ensure that all discarded logical blocks are
1953 	 * zeroed.
1954 	 */
1955 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1956 		blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1957 
1958 	blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, zram->disk->queue);
1959 	device_add_disk(NULL, zram->disk, zram_disk_attr_groups);
1960 
1961 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1962 
1963 	zram_debugfs_register(zram);
1964 	pr_info("Added device: %s\n", zram->disk->disk_name);
1965 	return device_id;
1966 
1967 out_free_queue:
1968 	blk_cleanup_queue(queue);
1969 out_free_idr:
1970 	idr_remove(&zram_index_idr, device_id);
1971 out_free_dev:
1972 	kfree(zram);
1973 	return ret;
1974 }
1975 
1976 static int zram_remove(struct zram *zram)
1977 {
1978 	struct block_device *bdev;
1979 
1980 	bdev = bdget_disk(zram->disk, 0);
1981 	if (!bdev)
1982 		return -ENOMEM;
1983 
1984 	mutex_lock(&bdev->bd_mutex);
1985 	if (bdev->bd_openers || zram->claim) {
1986 		mutex_unlock(&bdev->bd_mutex);
1987 		bdput(bdev);
1988 		return -EBUSY;
1989 	}
1990 
1991 	zram->claim = true;
1992 	mutex_unlock(&bdev->bd_mutex);
1993 
1994 	zram_debugfs_unregister(zram);
1995 
1996 	/* Make sure all the pending I/O are finished */
1997 	fsync_bdev(bdev);
1998 	zram_reset_device(zram);
1999 	bdput(bdev);
2000 
2001 	pr_info("Removed device: %s\n", zram->disk->disk_name);
2002 
2003 	del_gendisk(zram->disk);
2004 	blk_cleanup_queue(zram->disk->queue);
2005 	put_disk(zram->disk);
2006 	kfree(zram);
2007 	return 0;
2008 }
2009 
2010 /* zram-control sysfs attributes */
2011 
2012 /*
2013  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2014  * sense that reading from this file does alter the state of your system -- it
2015  * creates a new un-initialized zram device and returns back this device's
2016  * device_id (or an error code if it fails to create a new device).
2017  */
2018 static ssize_t hot_add_show(struct class *class,
2019 			struct class_attribute *attr,
2020 			char *buf)
2021 {
2022 	int ret;
2023 
2024 	mutex_lock(&zram_index_mutex);
2025 	ret = zram_add();
2026 	mutex_unlock(&zram_index_mutex);
2027 
2028 	if (ret < 0)
2029 		return ret;
2030 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
2031 }
2032 static struct class_attribute class_attr_hot_add =
2033 	__ATTR(hot_add, 0400, hot_add_show, NULL);
2034 
2035 static ssize_t hot_remove_store(struct class *class,
2036 			struct class_attribute *attr,
2037 			const char *buf,
2038 			size_t count)
2039 {
2040 	struct zram *zram;
2041 	int ret, dev_id;
2042 
2043 	/* dev_id is gendisk->first_minor, which is `int' */
2044 	ret = kstrtoint(buf, 10, &dev_id);
2045 	if (ret)
2046 		return ret;
2047 	if (dev_id < 0)
2048 		return -EINVAL;
2049 
2050 	mutex_lock(&zram_index_mutex);
2051 
2052 	zram = idr_find(&zram_index_idr, dev_id);
2053 	if (zram) {
2054 		ret = zram_remove(zram);
2055 		if (!ret)
2056 			idr_remove(&zram_index_idr, dev_id);
2057 	} else {
2058 		ret = -ENODEV;
2059 	}
2060 
2061 	mutex_unlock(&zram_index_mutex);
2062 	return ret ? ret : count;
2063 }
2064 static CLASS_ATTR_WO(hot_remove);
2065 
2066 static struct attribute *zram_control_class_attrs[] = {
2067 	&class_attr_hot_add.attr,
2068 	&class_attr_hot_remove.attr,
2069 	NULL,
2070 };
2071 ATTRIBUTE_GROUPS(zram_control_class);
2072 
2073 static struct class zram_control_class = {
2074 	.name		= "zram-control",
2075 	.owner		= THIS_MODULE,
2076 	.class_groups	= zram_control_class_groups,
2077 };
2078 
2079 static int zram_remove_cb(int id, void *ptr, void *data)
2080 {
2081 	zram_remove(ptr);
2082 	return 0;
2083 }
2084 
2085 static void destroy_devices(void)
2086 {
2087 	class_unregister(&zram_control_class);
2088 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2089 	zram_debugfs_destroy();
2090 	idr_destroy(&zram_index_idr);
2091 	unregister_blkdev(zram_major, "zram");
2092 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2093 }
2094 
2095 static int __init zram_init(void)
2096 {
2097 	int ret;
2098 
2099 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2100 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
2101 	if (ret < 0)
2102 		return ret;
2103 
2104 	ret = class_register(&zram_control_class);
2105 	if (ret) {
2106 		pr_err("Unable to register zram-control class\n");
2107 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2108 		return ret;
2109 	}
2110 
2111 	zram_debugfs_create();
2112 	zram_major = register_blkdev(0, "zram");
2113 	if (zram_major <= 0) {
2114 		pr_err("Unable to get major number\n");
2115 		class_unregister(&zram_control_class);
2116 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2117 		return -EBUSY;
2118 	}
2119 
2120 	while (num_devices != 0) {
2121 		mutex_lock(&zram_index_mutex);
2122 		ret = zram_add();
2123 		mutex_unlock(&zram_index_mutex);
2124 		if (ret < 0)
2125 			goto out_error;
2126 		num_devices--;
2127 	}
2128 
2129 	return 0;
2130 
2131 out_error:
2132 	destroy_devices();
2133 	return ret;
2134 }
2135 
2136 static void __exit zram_exit(void)
2137 {
2138 	destroy_devices();
2139 }
2140 
2141 module_init(zram_init);
2142 module_exit(zram_exit);
2143 
2144 module_param(num_devices, uint, 0);
2145 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2146 
2147 MODULE_LICENSE("Dual BSD/GPL");
2148 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2149 MODULE_DESCRIPTION("Compressed RAM Block Device");
2150