xref: /linux/drivers/block/zram/zram_drv.c (revision b8265621f4888af9494e1d685620871ec81bc33d)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/debugfs.h>
35 #include <linux/cpuhotplug.h>
36 #include <linux/part_stat.h>
37 
38 #include "zram_drv.h"
39 
40 static DEFINE_IDR(zram_index_idr);
41 /* idr index must be protected */
42 static DEFINE_MUTEX(zram_index_mutex);
43 
44 static int zram_major;
45 static const char *default_compressor = "lzo-rle";
46 
47 /* Module params (documentation at end) */
48 static unsigned int num_devices = 1;
49 /*
50  * Pages that compress to sizes equals or greater than this are stored
51  * uncompressed in memory.
52  */
53 static size_t huge_class_size;
54 
55 static void zram_free_page(struct zram *zram, size_t index);
56 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
57 				u32 index, int offset, struct bio *bio);
58 
59 
60 static int zram_slot_trylock(struct zram *zram, u32 index)
61 {
62 	return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags);
63 }
64 
65 static void zram_slot_lock(struct zram *zram, u32 index)
66 {
67 	bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags);
68 }
69 
70 static void zram_slot_unlock(struct zram *zram, u32 index)
71 {
72 	bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags);
73 }
74 
75 static inline bool init_done(struct zram *zram)
76 {
77 	return zram->disksize;
78 }
79 
80 static inline struct zram *dev_to_zram(struct device *dev)
81 {
82 	return (struct zram *)dev_to_disk(dev)->private_data;
83 }
84 
85 static unsigned long zram_get_handle(struct zram *zram, u32 index)
86 {
87 	return zram->table[index].handle;
88 }
89 
90 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
91 {
92 	zram->table[index].handle = handle;
93 }
94 
95 /* flag operations require table entry bit_spin_lock() being held */
96 static bool zram_test_flag(struct zram *zram, u32 index,
97 			enum zram_pageflags flag)
98 {
99 	return zram->table[index].flags & BIT(flag);
100 }
101 
102 static void zram_set_flag(struct zram *zram, u32 index,
103 			enum zram_pageflags flag)
104 {
105 	zram->table[index].flags |= BIT(flag);
106 }
107 
108 static void zram_clear_flag(struct zram *zram, u32 index,
109 			enum zram_pageflags flag)
110 {
111 	zram->table[index].flags &= ~BIT(flag);
112 }
113 
114 static inline void zram_set_element(struct zram *zram, u32 index,
115 			unsigned long element)
116 {
117 	zram->table[index].element = element;
118 }
119 
120 static unsigned long zram_get_element(struct zram *zram, u32 index)
121 {
122 	return zram->table[index].element;
123 }
124 
125 static size_t zram_get_obj_size(struct zram *zram, u32 index)
126 {
127 	return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
128 }
129 
130 static void zram_set_obj_size(struct zram *zram,
131 					u32 index, size_t size)
132 {
133 	unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
134 
135 	zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
136 }
137 
138 static inline bool zram_allocated(struct zram *zram, u32 index)
139 {
140 	return zram_get_obj_size(zram, index) ||
141 			zram_test_flag(zram, index, ZRAM_SAME) ||
142 			zram_test_flag(zram, index, ZRAM_WB);
143 }
144 
145 #if PAGE_SIZE != 4096
146 static inline bool is_partial_io(struct bio_vec *bvec)
147 {
148 	return bvec->bv_len != PAGE_SIZE;
149 }
150 #else
151 static inline bool is_partial_io(struct bio_vec *bvec)
152 {
153 	return false;
154 }
155 #endif
156 
157 /*
158  * Check if request is within bounds and aligned on zram logical blocks.
159  */
160 static inline bool valid_io_request(struct zram *zram,
161 		sector_t start, unsigned int size)
162 {
163 	u64 end, bound;
164 
165 	/* unaligned request */
166 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
167 		return false;
168 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
169 		return false;
170 
171 	end = start + (size >> SECTOR_SHIFT);
172 	bound = zram->disksize >> SECTOR_SHIFT;
173 	/* out of range range */
174 	if (unlikely(start >= bound || end > bound || start > end))
175 		return false;
176 
177 	/* I/O request is valid */
178 	return true;
179 }
180 
181 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
182 {
183 	*index  += (*offset + bvec->bv_len) / PAGE_SIZE;
184 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
185 }
186 
187 static inline void update_used_max(struct zram *zram,
188 					const unsigned long pages)
189 {
190 	unsigned long old_max, cur_max;
191 
192 	old_max = atomic_long_read(&zram->stats.max_used_pages);
193 
194 	do {
195 		cur_max = old_max;
196 		if (pages > cur_max)
197 			old_max = atomic_long_cmpxchg(
198 				&zram->stats.max_used_pages, cur_max, pages);
199 	} while (old_max != cur_max);
200 }
201 
202 static inline void zram_fill_page(void *ptr, unsigned long len,
203 					unsigned long value)
204 {
205 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
206 	memset_l(ptr, value, len / sizeof(unsigned long));
207 }
208 
209 static bool page_same_filled(void *ptr, unsigned long *element)
210 {
211 	unsigned long *page;
212 	unsigned long val;
213 	unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
214 
215 	page = (unsigned long *)ptr;
216 	val = page[0];
217 
218 	if (val != page[last_pos])
219 		return false;
220 
221 	for (pos = 1; pos < last_pos; pos++) {
222 		if (val != page[pos])
223 			return false;
224 	}
225 
226 	*element = val;
227 
228 	return true;
229 }
230 
231 static ssize_t initstate_show(struct device *dev,
232 		struct device_attribute *attr, char *buf)
233 {
234 	u32 val;
235 	struct zram *zram = dev_to_zram(dev);
236 
237 	down_read(&zram->init_lock);
238 	val = init_done(zram);
239 	up_read(&zram->init_lock);
240 
241 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
242 }
243 
244 static ssize_t disksize_show(struct device *dev,
245 		struct device_attribute *attr, char *buf)
246 {
247 	struct zram *zram = dev_to_zram(dev);
248 
249 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
250 }
251 
252 static ssize_t mem_limit_store(struct device *dev,
253 		struct device_attribute *attr, const char *buf, size_t len)
254 {
255 	u64 limit;
256 	char *tmp;
257 	struct zram *zram = dev_to_zram(dev);
258 
259 	limit = memparse(buf, &tmp);
260 	if (buf == tmp) /* no chars parsed, invalid input */
261 		return -EINVAL;
262 
263 	down_write(&zram->init_lock);
264 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
265 	up_write(&zram->init_lock);
266 
267 	return len;
268 }
269 
270 static ssize_t mem_used_max_store(struct device *dev,
271 		struct device_attribute *attr, const char *buf, size_t len)
272 {
273 	int err;
274 	unsigned long val;
275 	struct zram *zram = dev_to_zram(dev);
276 
277 	err = kstrtoul(buf, 10, &val);
278 	if (err || val != 0)
279 		return -EINVAL;
280 
281 	down_read(&zram->init_lock);
282 	if (init_done(zram)) {
283 		atomic_long_set(&zram->stats.max_used_pages,
284 				zs_get_total_pages(zram->mem_pool));
285 	}
286 	up_read(&zram->init_lock);
287 
288 	return len;
289 }
290 
291 static ssize_t idle_store(struct device *dev,
292 		struct device_attribute *attr, const char *buf, size_t len)
293 {
294 	struct zram *zram = dev_to_zram(dev);
295 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
296 	int index;
297 
298 	if (!sysfs_streq(buf, "all"))
299 		return -EINVAL;
300 
301 	down_read(&zram->init_lock);
302 	if (!init_done(zram)) {
303 		up_read(&zram->init_lock);
304 		return -EINVAL;
305 	}
306 
307 	for (index = 0; index < nr_pages; index++) {
308 		/*
309 		 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race.
310 		 * See the comment in writeback_store.
311 		 */
312 		zram_slot_lock(zram, index);
313 		if (zram_allocated(zram, index) &&
314 				!zram_test_flag(zram, index, ZRAM_UNDER_WB))
315 			zram_set_flag(zram, index, ZRAM_IDLE);
316 		zram_slot_unlock(zram, index);
317 	}
318 
319 	up_read(&zram->init_lock);
320 
321 	return len;
322 }
323 
324 #ifdef CONFIG_ZRAM_WRITEBACK
325 static ssize_t writeback_limit_enable_store(struct device *dev,
326 		struct device_attribute *attr, const char *buf, size_t len)
327 {
328 	struct zram *zram = dev_to_zram(dev);
329 	u64 val;
330 	ssize_t ret = -EINVAL;
331 
332 	if (kstrtoull(buf, 10, &val))
333 		return ret;
334 
335 	down_read(&zram->init_lock);
336 	spin_lock(&zram->wb_limit_lock);
337 	zram->wb_limit_enable = val;
338 	spin_unlock(&zram->wb_limit_lock);
339 	up_read(&zram->init_lock);
340 	ret = len;
341 
342 	return ret;
343 }
344 
345 static ssize_t writeback_limit_enable_show(struct device *dev,
346 		struct device_attribute *attr, char *buf)
347 {
348 	bool val;
349 	struct zram *zram = dev_to_zram(dev);
350 
351 	down_read(&zram->init_lock);
352 	spin_lock(&zram->wb_limit_lock);
353 	val = zram->wb_limit_enable;
354 	spin_unlock(&zram->wb_limit_lock);
355 	up_read(&zram->init_lock);
356 
357 	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
358 }
359 
360 static ssize_t writeback_limit_store(struct device *dev,
361 		struct device_attribute *attr, const char *buf, size_t len)
362 {
363 	struct zram *zram = dev_to_zram(dev);
364 	u64 val;
365 	ssize_t ret = -EINVAL;
366 
367 	if (kstrtoull(buf, 10, &val))
368 		return ret;
369 
370 	down_read(&zram->init_lock);
371 	spin_lock(&zram->wb_limit_lock);
372 	zram->bd_wb_limit = val;
373 	spin_unlock(&zram->wb_limit_lock);
374 	up_read(&zram->init_lock);
375 	ret = len;
376 
377 	return ret;
378 }
379 
380 static ssize_t writeback_limit_show(struct device *dev,
381 		struct device_attribute *attr, char *buf)
382 {
383 	u64 val;
384 	struct zram *zram = dev_to_zram(dev);
385 
386 	down_read(&zram->init_lock);
387 	spin_lock(&zram->wb_limit_lock);
388 	val = zram->bd_wb_limit;
389 	spin_unlock(&zram->wb_limit_lock);
390 	up_read(&zram->init_lock);
391 
392 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
393 }
394 
395 static void reset_bdev(struct zram *zram)
396 {
397 	struct block_device *bdev;
398 
399 	if (!zram->backing_dev)
400 		return;
401 
402 	bdev = zram->bdev;
403 	if (zram->old_block_size)
404 		set_blocksize(bdev, zram->old_block_size);
405 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
406 	/* hope filp_close flush all of IO */
407 	filp_close(zram->backing_dev, NULL);
408 	zram->backing_dev = NULL;
409 	zram->old_block_size = 0;
410 	zram->bdev = NULL;
411 	zram->disk->queue->backing_dev_info->capabilities |=
412 				BDI_CAP_SYNCHRONOUS_IO;
413 	kvfree(zram->bitmap);
414 	zram->bitmap = NULL;
415 }
416 
417 static ssize_t backing_dev_show(struct device *dev,
418 		struct device_attribute *attr, char *buf)
419 {
420 	struct file *file;
421 	struct zram *zram = dev_to_zram(dev);
422 	char *p;
423 	ssize_t ret;
424 
425 	down_read(&zram->init_lock);
426 	file = zram->backing_dev;
427 	if (!file) {
428 		memcpy(buf, "none\n", 5);
429 		up_read(&zram->init_lock);
430 		return 5;
431 	}
432 
433 	p = file_path(file, buf, PAGE_SIZE - 1);
434 	if (IS_ERR(p)) {
435 		ret = PTR_ERR(p);
436 		goto out;
437 	}
438 
439 	ret = strlen(p);
440 	memmove(buf, p, ret);
441 	buf[ret++] = '\n';
442 out:
443 	up_read(&zram->init_lock);
444 	return ret;
445 }
446 
447 static ssize_t backing_dev_store(struct device *dev,
448 		struct device_attribute *attr, const char *buf, size_t len)
449 {
450 	char *file_name;
451 	size_t sz;
452 	struct file *backing_dev = NULL;
453 	struct inode *inode;
454 	struct address_space *mapping;
455 	unsigned int bitmap_sz, old_block_size = 0;
456 	unsigned long nr_pages, *bitmap = NULL;
457 	struct block_device *bdev = NULL;
458 	int err;
459 	struct zram *zram = dev_to_zram(dev);
460 
461 	file_name = kmalloc(PATH_MAX, GFP_KERNEL);
462 	if (!file_name)
463 		return -ENOMEM;
464 
465 	down_write(&zram->init_lock);
466 	if (init_done(zram)) {
467 		pr_info("Can't setup backing device for initialized device\n");
468 		err = -EBUSY;
469 		goto out;
470 	}
471 
472 	strlcpy(file_name, buf, PATH_MAX);
473 	/* ignore trailing newline */
474 	sz = strlen(file_name);
475 	if (sz > 0 && file_name[sz - 1] == '\n')
476 		file_name[sz - 1] = 0x00;
477 
478 	backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
479 	if (IS_ERR(backing_dev)) {
480 		err = PTR_ERR(backing_dev);
481 		backing_dev = NULL;
482 		goto out;
483 	}
484 
485 	mapping = backing_dev->f_mapping;
486 	inode = mapping->host;
487 
488 	/* Support only block device in this moment */
489 	if (!S_ISBLK(inode->i_mode)) {
490 		err = -ENOTBLK;
491 		goto out;
492 	}
493 
494 	bdev = bdgrab(I_BDEV(inode));
495 	err = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
496 	if (err < 0) {
497 		bdev = NULL;
498 		goto out;
499 	}
500 
501 	nr_pages = i_size_read(inode) >> PAGE_SHIFT;
502 	bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
503 	bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
504 	if (!bitmap) {
505 		err = -ENOMEM;
506 		goto out;
507 	}
508 
509 	old_block_size = block_size(bdev);
510 	err = set_blocksize(bdev, PAGE_SIZE);
511 	if (err)
512 		goto out;
513 
514 	reset_bdev(zram);
515 
516 	zram->old_block_size = old_block_size;
517 	zram->bdev = bdev;
518 	zram->backing_dev = backing_dev;
519 	zram->bitmap = bitmap;
520 	zram->nr_pages = nr_pages;
521 	/*
522 	 * With writeback feature, zram does asynchronous IO so it's no longer
523 	 * synchronous device so let's remove synchronous io flag. Othewise,
524 	 * upper layer(e.g., swap) could wait IO completion rather than
525 	 * (submit and return), which will cause system sluggish.
526 	 * Furthermore, when the IO function returns(e.g., swap_readpage),
527 	 * upper layer expects IO was done so it could deallocate the page
528 	 * freely but in fact, IO is going on so finally could cause
529 	 * use-after-free when the IO is really done.
530 	 */
531 	zram->disk->queue->backing_dev_info->capabilities &=
532 			~BDI_CAP_SYNCHRONOUS_IO;
533 	up_write(&zram->init_lock);
534 
535 	pr_info("setup backing device %s\n", file_name);
536 	kfree(file_name);
537 
538 	return len;
539 out:
540 	if (bitmap)
541 		kvfree(bitmap);
542 
543 	if (bdev)
544 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
545 
546 	if (backing_dev)
547 		filp_close(backing_dev, NULL);
548 
549 	up_write(&zram->init_lock);
550 
551 	kfree(file_name);
552 
553 	return err;
554 }
555 
556 static unsigned long alloc_block_bdev(struct zram *zram)
557 {
558 	unsigned long blk_idx = 1;
559 retry:
560 	/* skip 0 bit to confuse zram.handle = 0 */
561 	blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
562 	if (blk_idx == zram->nr_pages)
563 		return 0;
564 
565 	if (test_and_set_bit(blk_idx, zram->bitmap))
566 		goto retry;
567 
568 	atomic64_inc(&zram->stats.bd_count);
569 	return blk_idx;
570 }
571 
572 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
573 {
574 	int was_set;
575 
576 	was_set = test_and_clear_bit(blk_idx, zram->bitmap);
577 	WARN_ON_ONCE(!was_set);
578 	atomic64_dec(&zram->stats.bd_count);
579 }
580 
581 static void zram_page_end_io(struct bio *bio)
582 {
583 	struct page *page = bio_first_page_all(bio);
584 
585 	page_endio(page, op_is_write(bio_op(bio)),
586 			blk_status_to_errno(bio->bi_status));
587 	bio_put(bio);
588 }
589 
590 /*
591  * Returns 1 if the submission is successful.
592  */
593 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
594 			unsigned long entry, struct bio *parent)
595 {
596 	struct bio *bio;
597 
598 	bio = bio_alloc(GFP_ATOMIC, 1);
599 	if (!bio)
600 		return -ENOMEM;
601 
602 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
603 	bio_set_dev(bio, zram->bdev);
604 	if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
605 		bio_put(bio);
606 		return -EIO;
607 	}
608 
609 	if (!parent) {
610 		bio->bi_opf = REQ_OP_READ;
611 		bio->bi_end_io = zram_page_end_io;
612 	} else {
613 		bio->bi_opf = parent->bi_opf;
614 		bio_chain(bio, parent);
615 	}
616 
617 	submit_bio(bio);
618 	return 1;
619 }
620 
621 #define HUGE_WRITEBACK 1
622 #define IDLE_WRITEBACK 2
623 
624 static ssize_t writeback_store(struct device *dev,
625 		struct device_attribute *attr, const char *buf, size_t len)
626 {
627 	struct zram *zram = dev_to_zram(dev);
628 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
629 	unsigned long index;
630 	struct bio bio;
631 	struct bio_vec bio_vec;
632 	struct page *page;
633 	ssize_t ret = len;
634 	int mode;
635 	unsigned long blk_idx = 0;
636 
637 	if (sysfs_streq(buf, "idle"))
638 		mode = IDLE_WRITEBACK;
639 	else if (sysfs_streq(buf, "huge"))
640 		mode = HUGE_WRITEBACK;
641 	else
642 		return -EINVAL;
643 
644 	down_read(&zram->init_lock);
645 	if (!init_done(zram)) {
646 		ret = -EINVAL;
647 		goto release_init_lock;
648 	}
649 
650 	if (!zram->backing_dev) {
651 		ret = -ENODEV;
652 		goto release_init_lock;
653 	}
654 
655 	page = alloc_page(GFP_KERNEL);
656 	if (!page) {
657 		ret = -ENOMEM;
658 		goto release_init_lock;
659 	}
660 
661 	for (index = 0; index < nr_pages; index++) {
662 		struct bio_vec bvec;
663 
664 		bvec.bv_page = page;
665 		bvec.bv_len = PAGE_SIZE;
666 		bvec.bv_offset = 0;
667 
668 		spin_lock(&zram->wb_limit_lock);
669 		if (zram->wb_limit_enable && !zram->bd_wb_limit) {
670 			spin_unlock(&zram->wb_limit_lock);
671 			ret = -EIO;
672 			break;
673 		}
674 		spin_unlock(&zram->wb_limit_lock);
675 
676 		if (!blk_idx) {
677 			blk_idx = alloc_block_bdev(zram);
678 			if (!blk_idx) {
679 				ret = -ENOSPC;
680 				break;
681 			}
682 		}
683 
684 		zram_slot_lock(zram, index);
685 		if (!zram_allocated(zram, index))
686 			goto next;
687 
688 		if (zram_test_flag(zram, index, ZRAM_WB) ||
689 				zram_test_flag(zram, index, ZRAM_SAME) ||
690 				zram_test_flag(zram, index, ZRAM_UNDER_WB))
691 			goto next;
692 
693 		if (mode == IDLE_WRITEBACK &&
694 			  !zram_test_flag(zram, index, ZRAM_IDLE))
695 			goto next;
696 		if (mode == HUGE_WRITEBACK &&
697 			  !zram_test_flag(zram, index, ZRAM_HUGE))
698 			goto next;
699 		/*
700 		 * Clearing ZRAM_UNDER_WB is duty of caller.
701 		 * IOW, zram_free_page never clear it.
702 		 */
703 		zram_set_flag(zram, index, ZRAM_UNDER_WB);
704 		/* Need for hugepage writeback racing */
705 		zram_set_flag(zram, index, ZRAM_IDLE);
706 		zram_slot_unlock(zram, index);
707 		if (zram_bvec_read(zram, &bvec, index, 0, NULL)) {
708 			zram_slot_lock(zram, index);
709 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
710 			zram_clear_flag(zram, index, ZRAM_IDLE);
711 			zram_slot_unlock(zram, index);
712 			continue;
713 		}
714 
715 		bio_init(&bio, &bio_vec, 1);
716 		bio_set_dev(&bio, zram->bdev);
717 		bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
718 		bio.bi_opf = REQ_OP_WRITE | REQ_SYNC;
719 
720 		bio_add_page(&bio, bvec.bv_page, bvec.bv_len,
721 				bvec.bv_offset);
722 		/*
723 		 * XXX: A single page IO would be inefficient for write
724 		 * but it would be not bad as starter.
725 		 */
726 		ret = submit_bio_wait(&bio);
727 		if (ret) {
728 			zram_slot_lock(zram, index);
729 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
730 			zram_clear_flag(zram, index, ZRAM_IDLE);
731 			zram_slot_unlock(zram, index);
732 			continue;
733 		}
734 
735 		atomic64_inc(&zram->stats.bd_writes);
736 		/*
737 		 * We released zram_slot_lock so need to check if the slot was
738 		 * changed. If there is freeing for the slot, we can catch it
739 		 * easily by zram_allocated.
740 		 * A subtle case is the slot is freed/reallocated/marked as
741 		 * ZRAM_IDLE again. To close the race, idle_store doesn't
742 		 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB.
743 		 * Thus, we could close the race by checking ZRAM_IDLE bit.
744 		 */
745 		zram_slot_lock(zram, index);
746 		if (!zram_allocated(zram, index) ||
747 			  !zram_test_flag(zram, index, ZRAM_IDLE)) {
748 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
749 			zram_clear_flag(zram, index, ZRAM_IDLE);
750 			goto next;
751 		}
752 
753 		zram_free_page(zram, index);
754 		zram_clear_flag(zram, index, ZRAM_UNDER_WB);
755 		zram_set_flag(zram, index, ZRAM_WB);
756 		zram_set_element(zram, index, blk_idx);
757 		blk_idx = 0;
758 		atomic64_inc(&zram->stats.pages_stored);
759 		spin_lock(&zram->wb_limit_lock);
760 		if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
761 			zram->bd_wb_limit -=  1UL << (PAGE_SHIFT - 12);
762 		spin_unlock(&zram->wb_limit_lock);
763 next:
764 		zram_slot_unlock(zram, index);
765 	}
766 
767 	if (blk_idx)
768 		free_block_bdev(zram, blk_idx);
769 	__free_page(page);
770 release_init_lock:
771 	up_read(&zram->init_lock);
772 
773 	return ret;
774 }
775 
776 struct zram_work {
777 	struct work_struct work;
778 	struct zram *zram;
779 	unsigned long entry;
780 	struct bio *bio;
781 	struct bio_vec bvec;
782 };
783 
784 #if PAGE_SIZE != 4096
785 static void zram_sync_read(struct work_struct *work)
786 {
787 	struct zram_work *zw = container_of(work, struct zram_work, work);
788 	struct zram *zram = zw->zram;
789 	unsigned long entry = zw->entry;
790 	struct bio *bio = zw->bio;
791 
792 	read_from_bdev_async(zram, &zw->bvec, entry, bio);
793 }
794 
795 /*
796  * Block layer want one ->make_request_fn to be active at a time
797  * so if we use chained IO with parent IO in same context,
798  * it's a deadlock. To avoid, it, it uses worker thread context.
799  */
800 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
801 				unsigned long entry, struct bio *bio)
802 {
803 	struct zram_work work;
804 
805 	work.bvec = *bvec;
806 	work.zram = zram;
807 	work.entry = entry;
808 	work.bio = bio;
809 
810 	INIT_WORK_ONSTACK(&work.work, zram_sync_read);
811 	queue_work(system_unbound_wq, &work.work);
812 	flush_work(&work.work);
813 	destroy_work_on_stack(&work.work);
814 
815 	return 1;
816 }
817 #else
818 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
819 				unsigned long entry, struct bio *bio)
820 {
821 	WARN_ON(1);
822 	return -EIO;
823 }
824 #endif
825 
826 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
827 			unsigned long entry, struct bio *parent, bool sync)
828 {
829 	atomic64_inc(&zram->stats.bd_reads);
830 	if (sync)
831 		return read_from_bdev_sync(zram, bvec, entry, parent);
832 	else
833 		return read_from_bdev_async(zram, bvec, entry, parent);
834 }
835 #else
836 static inline void reset_bdev(struct zram *zram) {};
837 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
838 			unsigned long entry, struct bio *parent, bool sync)
839 {
840 	return -EIO;
841 }
842 
843 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
844 #endif
845 
846 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
847 
848 static struct dentry *zram_debugfs_root;
849 
850 static void zram_debugfs_create(void)
851 {
852 	zram_debugfs_root = debugfs_create_dir("zram", NULL);
853 }
854 
855 static void zram_debugfs_destroy(void)
856 {
857 	debugfs_remove_recursive(zram_debugfs_root);
858 }
859 
860 static void zram_accessed(struct zram *zram, u32 index)
861 {
862 	zram_clear_flag(zram, index, ZRAM_IDLE);
863 	zram->table[index].ac_time = ktime_get_boottime();
864 }
865 
866 static ssize_t read_block_state(struct file *file, char __user *buf,
867 				size_t count, loff_t *ppos)
868 {
869 	char *kbuf;
870 	ssize_t index, written = 0;
871 	struct zram *zram = file->private_data;
872 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
873 	struct timespec64 ts;
874 
875 	kbuf = kvmalloc(count, GFP_KERNEL);
876 	if (!kbuf)
877 		return -ENOMEM;
878 
879 	down_read(&zram->init_lock);
880 	if (!init_done(zram)) {
881 		up_read(&zram->init_lock);
882 		kvfree(kbuf);
883 		return -EINVAL;
884 	}
885 
886 	for (index = *ppos; index < nr_pages; index++) {
887 		int copied;
888 
889 		zram_slot_lock(zram, index);
890 		if (!zram_allocated(zram, index))
891 			goto next;
892 
893 		ts = ktime_to_timespec64(zram->table[index].ac_time);
894 		copied = snprintf(kbuf + written, count,
895 			"%12zd %12lld.%06lu %c%c%c%c\n",
896 			index, (s64)ts.tv_sec,
897 			ts.tv_nsec / NSEC_PER_USEC,
898 			zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
899 			zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
900 			zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
901 			zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.');
902 
903 		if (count < copied) {
904 			zram_slot_unlock(zram, index);
905 			break;
906 		}
907 		written += copied;
908 		count -= copied;
909 next:
910 		zram_slot_unlock(zram, index);
911 		*ppos += 1;
912 	}
913 
914 	up_read(&zram->init_lock);
915 	if (copy_to_user(buf, kbuf, written))
916 		written = -EFAULT;
917 	kvfree(kbuf);
918 
919 	return written;
920 }
921 
922 static const struct file_operations proc_zram_block_state_op = {
923 	.open = simple_open,
924 	.read = read_block_state,
925 	.llseek = default_llseek,
926 };
927 
928 static void zram_debugfs_register(struct zram *zram)
929 {
930 	if (!zram_debugfs_root)
931 		return;
932 
933 	zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
934 						zram_debugfs_root);
935 	debugfs_create_file("block_state", 0400, zram->debugfs_dir,
936 				zram, &proc_zram_block_state_op);
937 }
938 
939 static void zram_debugfs_unregister(struct zram *zram)
940 {
941 	debugfs_remove_recursive(zram->debugfs_dir);
942 }
943 #else
944 static void zram_debugfs_create(void) {};
945 static void zram_debugfs_destroy(void) {};
946 static void zram_accessed(struct zram *zram, u32 index)
947 {
948 	zram_clear_flag(zram, index, ZRAM_IDLE);
949 };
950 static void zram_debugfs_register(struct zram *zram) {};
951 static void zram_debugfs_unregister(struct zram *zram) {};
952 #endif
953 
954 /*
955  * We switched to per-cpu streams and this attr is not needed anymore.
956  * However, we will keep it around for some time, because:
957  * a) we may revert per-cpu streams in the future
958  * b) it's visible to user space and we need to follow our 2 years
959  *    retirement rule; but we already have a number of 'soon to be
960  *    altered' attrs, so max_comp_streams need to wait for the next
961  *    layoff cycle.
962  */
963 static ssize_t max_comp_streams_show(struct device *dev,
964 		struct device_attribute *attr, char *buf)
965 {
966 	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
967 }
968 
969 static ssize_t max_comp_streams_store(struct device *dev,
970 		struct device_attribute *attr, const char *buf, size_t len)
971 {
972 	return len;
973 }
974 
975 static ssize_t comp_algorithm_show(struct device *dev,
976 		struct device_attribute *attr, char *buf)
977 {
978 	size_t sz;
979 	struct zram *zram = dev_to_zram(dev);
980 
981 	down_read(&zram->init_lock);
982 	sz = zcomp_available_show(zram->compressor, buf);
983 	up_read(&zram->init_lock);
984 
985 	return sz;
986 }
987 
988 static ssize_t comp_algorithm_store(struct device *dev,
989 		struct device_attribute *attr, const char *buf, size_t len)
990 {
991 	struct zram *zram = dev_to_zram(dev);
992 	char compressor[ARRAY_SIZE(zram->compressor)];
993 	size_t sz;
994 
995 	strlcpy(compressor, buf, sizeof(compressor));
996 	/* ignore trailing newline */
997 	sz = strlen(compressor);
998 	if (sz > 0 && compressor[sz - 1] == '\n')
999 		compressor[sz - 1] = 0x00;
1000 
1001 	if (!zcomp_available_algorithm(compressor))
1002 		return -EINVAL;
1003 
1004 	down_write(&zram->init_lock);
1005 	if (init_done(zram)) {
1006 		up_write(&zram->init_lock);
1007 		pr_info("Can't change algorithm for initialized device\n");
1008 		return -EBUSY;
1009 	}
1010 
1011 	strcpy(zram->compressor, compressor);
1012 	up_write(&zram->init_lock);
1013 	return len;
1014 }
1015 
1016 static ssize_t compact_store(struct device *dev,
1017 		struct device_attribute *attr, const char *buf, size_t len)
1018 {
1019 	struct zram *zram = dev_to_zram(dev);
1020 
1021 	down_read(&zram->init_lock);
1022 	if (!init_done(zram)) {
1023 		up_read(&zram->init_lock);
1024 		return -EINVAL;
1025 	}
1026 
1027 	zs_compact(zram->mem_pool);
1028 	up_read(&zram->init_lock);
1029 
1030 	return len;
1031 }
1032 
1033 static ssize_t io_stat_show(struct device *dev,
1034 		struct device_attribute *attr, char *buf)
1035 {
1036 	struct zram *zram = dev_to_zram(dev);
1037 	ssize_t ret;
1038 
1039 	down_read(&zram->init_lock);
1040 	ret = scnprintf(buf, PAGE_SIZE,
1041 			"%8llu %8llu %8llu %8llu\n",
1042 			(u64)atomic64_read(&zram->stats.failed_reads),
1043 			(u64)atomic64_read(&zram->stats.failed_writes),
1044 			(u64)atomic64_read(&zram->stats.invalid_io),
1045 			(u64)atomic64_read(&zram->stats.notify_free));
1046 	up_read(&zram->init_lock);
1047 
1048 	return ret;
1049 }
1050 
1051 static ssize_t mm_stat_show(struct device *dev,
1052 		struct device_attribute *attr, char *buf)
1053 {
1054 	struct zram *zram = dev_to_zram(dev);
1055 	struct zs_pool_stats pool_stats;
1056 	u64 orig_size, mem_used = 0;
1057 	long max_used;
1058 	ssize_t ret;
1059 
1060 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1061 
1062 	down_read(&zram->init_lock);
1063 	if (init_done(zram)) {
1064 		mem_used = zs_get_total_pages(zram->mem_pool);
1065 		zs_pool_stats(zram->mem_pool, &pool_stats);
1066 	}
1067 
1068 	orig_size = atomic64_read(&zram->stats.pages_stored);
1069 	max_used = atomic_long_read(&zram->stats.max_used_pages);
1070 
1071 	ret = scnprintf(buf, PAGE_SIZE,
1072 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu\n",
1073 			orig_size << PAGE_SHIFT,
1074 			(u64)atomic64_read(&zram->stats.compr_data_size),
1075 			mem_used << PAGE_SHIFT,
1076 			zram->limit_pages << PAGE_SHIFT,
1077 			max_used << PAGE_SHIFT,
1078 			(u64)atomic64_read(&zram->stats.same_pages),
1079 			pool_stats.pages_compacted,
1080 			(u64)atomic64_read(&zram->stats.huge_pages));
1081 	up_read(&zram->init_lock);
1082 
1083 	return ret;
1084 }
1085 
1086 #ifdef CONFIG_ZRAM_WRITEBACK
1087 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
1088 static ssize_t bd_stat_show(struct device *dev,
1089 		struct device_attribute *attr, char *buf)
1090 {
1091 	struct zram *zram = dev_to_zram(dev);
1092 	ssize_t ret;
1093 
1094 	down_read(&zram->init_lock);
1095 	ret = scnprintf(buf, PAGE_SIZE,
1096 		"%8llu %8llu %8llu\n",
1097 			FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1098 			FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1099 			FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1100 	up_read(&zram->init_lock);
1101 
1102 	return ret;
1103 }
1104 #endif
1105 
1106 static ssize_t debug_stat_show(struct device *dev,
1107 		struct device_attribute *attr, char *buf)
1108 {
1109 	int version = 1;
1110 	struct zram *zram = dev_to_zram(dev);
1111 	ssize_t ret;
1112 
1113 	down_read(&zram->init_lock);
1114 	ret = scnprintf(buf, PAGE_SIZE,
1115 			"version: %d\n%8llu %8llu\n",
1116 			version,
1117 			(u64)atomic64_read(&zram->stats.writestall),
1118 			(u64)atomic64_read(&zram->stats.miss_free));
1119 	up_read(&zram->init_lock);
1120 
1121 	return ret;
1122 }
1123 
1124 static DEVICE_ATTR_RO(io_stat);
1125 static DEVICE_ATTR_RO(mm_stat);
1126 #ifdef CONFIG_ZRAM_WRITEBACK
1127 static DEVICE_ATTR_RO(bd_stat);
1128 #endif
1129 static DEVICE_ATTR_RO(debug_stat);
1130 
1131 static void zram_meta_free(struct zram *zram, u64 disksize)
1132 {
1133 	size_t num_pages = disksize >> PAGE_SHIFT;
1134 	size_t index;
1135 
1136 	/* Free all pages that are still in this zram device */
1137 	for (index = 0; index < num_pages; index++)
1138 		zram_free_page(zram, index);
1139 
1140 	zs_destroy_pool(zram->mem_pool);
1141 	vfree(zram->table);
1142 }
1143 
1144 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1145 {
1146 	size_t num_pages;
1147 
1148 	num_pages = disksize >> PAGE_SHIFT;
1149 	zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1150 	if (!zram->table)
1151 		return false;
1152 
1153 	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1154 	if (!zram->mem_pool) {
1155 		vfree(zram->table);
1156 		return false;
1157 	}
1158 
1159 	if (!huge_class_size)
1160 		huge_class_size = zs_huge_class_size(zram->mem_pool);
1161 	return true;
1162 }
1163 
1164 /*
1165  * To protect concurrent access to the same index entry,
1166  * caller should hold this table index entry's bit_spinlock to
1167  * indicate this index entry is accessing.
1168  */
1169 static void zram_free_page(struct zram *zram, size_t index)
1170 {
1171 	unsigned long handle;
1172 
1173 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
1174 	zram->table[index].ac_time = 0;
1175 #endif
1176 	if (zram_test_flag(zram, index, ZRAM_IDLE))
1177 		zram_clear_flag(zram, index, ZRAM_IDLE);
1178 
1179 	if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1180 		zram_clear_flag(zram, index, ZRAM_HUGE);
1181 		atomic64_dec(&zram->stats.huge_pages);
1182 	}
1183 
1184 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1185 		zram_clear_flag(zram, index, ZRAM_WB);
1186 		free_block_bdev(zram, zram_get_element(zram, index));
1187 		goto out;
1188 	}
1189 
1190 	/*
1191 	 * No memory is allocated for same element filled pages.
1192 	 * Simply clear same page flag.
1193 	 */
1194 	if (zram_test_flag(zram, index, ZRAM_SAME)) {
1195 		zram_clear_flag(zram, index, ZRAM_SAME);
1196 		atomic64_dec(&zram->stats.same_pages);
1197 		goto out;
1198 	}
1199 
1200 	handle = zram_get_handle(zram, index);
1201 	if (!handle)
1202 		return;
1203 
1204 	zs_free(zram->mem_pool, handle);
1205 
1206 	atomic64_sub(zram_get_obj_size(zram, index),
1207 			&zram->stats.compr_data_size);
1208 out:
1209 	atomic64_dec(&zram->stats.pages_stored);
1210 	zram_set_handle(zram, index, 0);
1211 	zram_set_obj_size(zram, index, 0);
1212 	WARN_ON_ONCE(zram->table[index].flags &
1213 		~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB));
1214 }
1215 
1216 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
1217 				struct bio *bio, bool partial_io)
1218 {
1219 	int ret;
1220 	unsigned long handle;
1221 	unsigned int size;
1222 	void *src, *dst;
1223 
1224 	zram_slot_lock(zram, index);
1225 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1226 		struct bio_vec bvec;
1227 
1228 		zram_slot_unlock(zram, index);
1229 
1230 		bvec.bv_page = page;
1231 		bvec.bv_len = PAGE_SIZE;
1232 		bvec.bv_offset = 0;
1233 		return read_from_bdev(zram, &bvec,
1234 				zram_get_element(zram, index),
1235 				bio, partial_io);
1236 	}
1237 
1238 	handle = zram_get_handle(zram, index);
1239 	if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1240 		unsigned long value;
1241 		void *mem;
1242 
1243 		value = handle ? zram_get_element(zram, index) : 0;
1244 		mem = kmap_atomic(page);
1245 		zram_fill_page(mem, PAGE_SIZE, value);
1246 		kunmap_atomic(mem);
1247 		zram_slot_unlock(zram, index);
1248 		return 0;
1249 	}
1250 
1251 	size = zram_get_obj_size(zram, index);
1252 
1253 	src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1254 	if (size == PAGE_SIZE) {
1255 		dst = kmap_atomic(page);
1256 		memcpy(dst, src, PAGE_SIZE);
1257 		kunmap_atomic(dst);
1258 		ret = 0;
1259 	} else {
1260 		struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
1261 
1262 		dst = kmap_atomic(page);
1263 		ret = zcomp_decompress(zstrm, src, size, dst);
1264 		kunmap_atomic(dst);
1265 		zcomp_stream_put(zram->comp);
1266 	}
1267 	zs_unmap_object(zram->mem_pool, handle);
1268 	zram_slot_unlock(zram, index);
1269 
1270 	/* Should NEVER happen. Return bio error if it does. */
1271 	if (unlikely(ret))
1272 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1273 
1274 	return ret;
1275 }
1276 
1277 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1278 				u32 index, int offset, struct bio *bio)
1279 {
1280 	int ret;
1281 	struct page *page;
1282 
1283 	page = bvec->bv_page;
1284 	if (is_partial_io(bvec)) {
1285 		/* Use a temporary buffer to decompress the page */
1286 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1287 		if (!page)
1288 			return -ENOMEM;
1289 	}
1290 
1291 	ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1292 	if (unlikely(ret))
1293 		goto out;
1294 
1295 	if (is_partial_io(bvec)) {
1296 		void *dst = kmap_atomic(bvec->bv_page);
1297 		void *src = kmap_atomic(page);
1298 
1299 		memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
1300 		kunmap_atomic(src);
1301 		kunmap_atomic(dst);
1302 	}
1303 out:
1304 	if (is_partial_io(bvec))
1305 		__free_page(page);
1306 
1307 	return ret;
1308 }
1309 
1310 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1311 				u32 index, struct bio *bio)
1312 {
1313 	int ret = 0;
1314 	unsigned long alloced_pages;
1315 	unsigned long handle = 0;
1316 	unsigned int comp_len = 0;
1317 	void *src, *dst, *mem;
1318 	struct zcomp_strm *zstrm;
1319 	struct page *page = bvec->bv_page;
1320 	unsigned long element = 0;
1321 	enum zram_pageflags flags = 0;
1322 
1323 	mem = kmap_atomic(page);
1324 	if (page_same_filled(mem, &element)) {
1325 		kunmap_atomic(mem);
1326 		/* Free memory associated with this sector now. */
1327 		flags = ZRAM_SAME;
1328 		atomic64_inc(&zram->stats.same_pages);
1329 		goto out;
1330 	}
1331 	kunmap_atomic(mem);
1332 
1333 compress_again:
1334 	zstrm = zcomp_stream_get(zram->comp);
1335 	src = kmap_atomic(page);
1336 	ret = zcomp_compress(zstrm, src, &comp_len);
1337 	kunmap_atomic(src);
1338 
1339 	if (unlikely(ret)) {
1340 		zcomp_stream_put(zram->comp);
1341 		pr_err("Compression failed! err=%d\n", ret);
1342 		zs_free(zram->mem_pool, handle);
1343 		return ret;
1344 	}
1345 
1346 	if (comp_len >= huge_class_size)
1347 		comp_len = PAGE_SIZE;
1348 	/*
1349 	 * handle allocation has 2 paths:
1350 	 * a) fast path is executed with preemption disabled (for
1351 	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1352 	 *  since we can't sleep;
1353 	 * b) slow path enables preemption and attempts to allocate
1354 	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
1355 	 *  put per-cpu compression stream and, thus, to re-do
1356 	 *  the compression once handle is allocated.
1357 	 *
1358 	 * if we have a 'non-null' handle here then we are coming
1359 	 * from the slow path and handle has already been allocated.
1360 	 */
1361 	if (!handle)
1362 		handle = zs_malloc(zram->mem_pool, comp_len,
1363 				__GFP_KSWAPD_RECLAIM |
1364 				__GFP_NOWARN |
1365 				__GFP_HIGHMEM |
1366 				__GFP_MOVABLE);
1367 	if (!handle) {
1368 		zcomp_stream_put(zram->comp);
1369 		atomic64_inc(&zram->stats.writestall);
1370 		handle = zs_malloc(zram->mem_pool, comp_len,
1371 				GFP_NOIO | __GFP_HIGHMEM |
1372 				__GFP_MOVABLE);
1373 		if (handle)
1374 			goto compress_again;
1375 		return -ENOMEM;
1376 	}
1377 
1378 	alloced_pages = zs_get_total_pages(zram->mem_pool);
1379 	update_used_max(zram, alloced_pages);
1380 
1381 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1382 		zcomp_stream_put(zram->comp);
1383 		zs_free(zram->mem_pool, handle);
1384 		return -ENOMEM;
1385 	}
1386 
1387 	dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1388 
1389 	src = zstrm->buffer;
1390 	if (comp_len == PAGE_SIZE)
1391 		src = kmap_atomic(page);
1392 	memcpy(dst, src, comp_len);
1393 	if (comp_len == PAGE_SIZE)
1394 		kunmap_atomic(src);
1395 
1396 	zcomp_stream_put(zram->comp);
1397 	zs_unmap_object(zram->mem_pool, handle);
1398 	atomic64_add(comp_len, &zram->stats.compr_data_size);
1399 out:
1400 	/*
1401 	 * Free memory associated with this sector
1402 	 * before overwriting unused sectors.
1403 	 */
1404 	zram_slot_lock(zram, index);
1405 	zram_free_page(zram, index);
1406 
1407 	if (comp_len == PAGE_SIZE) {
1408 		zram_set_flag(zram, index, ZRAM_HUGE);
1409 		atomic64_inc(&zram->stats.huge_pages);
1410 	}
1411 
1412 	if (flags) {
1413 		zram_set_flag(zram, index, flags);
1414 		zram_set_element(zram, index, element);
1415 	}  else {
1416 		zram_set_handle(zram, index, handle);
1417 		zram_set_obj_size(zram, index, comp_len);
1418 	}
1419 	zram_slot_unlock(zram, index);
1420 
1421 	/* Update stats */
1422 	atomic64_inc(&zram->stats.pages_stored);
1423 	return ret;
1424 }
1425 
1426 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1427 				u32 index, int offset, struct bio *bio)
1428 {
1429 	int ret;
1430 	struct page *page = NULL;
1431 	void *src;
1432 	struct bio_vec vec;
1433 
1434 	vec = *bvec;
1435 	if (is_partial_io(bvec)) {
1436 		void *dst;
1437 		/*
1438 		 * This is a partial IO. We need to read the full page
1439 		 * before to write the changes.
1440 		 */
1441 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1442 		if (!page)
1443 			return -ENOMEM;
1444 
1445 		ret = __zram_bvec_read(zram, page, index, bio, true);
1446 		if (ret)
1447 			goto out;
1448 
1449 		src = kmap_atomic(bvec->bv_page);
1450 		dst = kmap_atomic(page);
1451 		memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
1452 		kunmap_atomic(dst);
1453 		kunmap_atomic(src);
1454 
1455 		vec.bv_page = page;
1456 		vec.bv_len = PAGE_SIZE;
1457 		vec.bv_offset = 0;
1458 	}
1459 
1460 	ret = __zram_bvec_write(zram, &vec, index, bio);
1461 out:
1462 	if (is_partial_io(bvec))
1463 		__free_page(page);
1464 	return ret;
1465 }
1466 
1467 /*
1468  * zram_bio_discard - handler on discard request
1469  * @index: physical block index in PAGE_SIZE units
1470  * @offset: byte offset within physical block
1471  */
1472 static void zram_bio_discard(struct zram *zram, u32 index,
1473 			     int offset, struct bio *bio)
1474 {
1475 	size_t n = bio->bi_iter.bi_size;
1476 
1477 	/*
1478 	 * zram manages data in physical block size units. Because logical block
1479 	 * size isn't identical with physical block size on some arch, we
1480 	 * could get a discard request pointing to a specific offset within a
1481 	 * certain physical block.  Although we can handle this request by
1482 	 * reading that physiclal block and decompressing and partially zeroing
1483 	 * and re-compressing and then re-storing it, this isn't reasonable
1484 	 * because our intent with a discard request is to save memory.  So
1485 	 * skipping this logical block is appropriate here.
1486 	 */
1487 	if (offset) {
1488 		if (n <= (PAGE_SIZE - offset))
1489 			return;
1490 
1491 		n -= (PAGE_SIZE - offset);
1492 		index++;
1493 	}
1494 
1495 	while (n >= PAGE_SIZE) {
1496 		zram_slot_lock(zram, index);
1497 		zram_free_page(zram, index);
1498 		zram_slot_unlock(zram, index);
1499 		atomic64_inc(&zram->stats.notify_free);
1500 		index++;
1501 		n -= PAGE_SIZE;
1502 	}
1503 }
1504 
1505 /*
1506  * Returns errno if it has some problem. Otherwise return 0 or 1.
1507  * Returns 0 if IO request was done synchronously
1508  * Returns 1 if IO request was successfully submitted.
1509  */
1510 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1511 			int offset, unsigned int op, struct bio *bio)
1512 {
1513 	int ret;
1514 
1515 	if (!op_is_write(op)) {
1516 		atomic64_inc(&zram->stats.num_reads);
1517 		ret = zram_bvec_read(zram, bvec, index, offset, bio);
1518 		flush_dcache_page(bvec->bv_page);
1519 	} else {
1520 		atomic64_inc(&zram->stats.num_writes);
1521 		ret = zram_bvec_write(zram, bvec, index, offset, bio);
1522 	}
1523 
1524 	zram_slot_lock(zram, index);
1525 	zram_accessed(zram, index);
1526 	zram_slot_unlock(zram, index);
1527 
1528 	if (unlikely(ret < 0)) {
1529 		if (!op_is_write(op))
1530 			atomic64_inc(&zram->stats.failed_reads);
1531 		else
1532 			atomic64_inc(&zram->stats.failed_writes);
1533 	}
1534 
1535 	return ret;
1536 }
1537 
1538 static void __zram_make_request(struct zram *zram, struct bio *bio)
1539 {
1540 	int offset;
1541 	u32 index;
1542 	struct bio_vec bvec;
1543 	struct bvec_iter iter;
1544 	unsigned long start_time;
1545 
1546 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1547 	offset = (bio->bi_iter.bi_sector &
1548 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1549 
1550 	switch (bio_op(bio)) {
1551 	case REQ_OP_DISCARD:
1552 	case REQ_OP_WRITE_ZEROES:
1553 		zram_bio_discard(zram, index, offset, bio);
1554 		bio_endio(bio);
1555 		return;
1556 	default:
1557 		break;
1558 	}
1559 
1560 	start_time = bio_start_io_acct(bio);
1561 	bio_for_each_segment(bvec, bio, iter) {
1562 		struct bio_vec bv = bvec;
1563 		unsigned int unwritten = bvec.bv_len;
1564 
1565 		do {
1566 			bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1567 							unwritten);
1568 			if (zram_bvec_rw(zram, &bv, index, offset,
1569 					 bio_op(bio), bio) < 0) {
1570 				bio->bi_status = BLK_STS_IOERR;
1571 				break;
1572 			}
1573 
1574 			bv.bv_offset += bv.bv_len;
1575 			unwritten -= bv.bv_len;
1576 
1577 			update_position(&index, &offset, &bv);
1578 		} while (unwritten);
1579 	}
1580 	bio_end_io_acct(bio, start_time);
1581 	bio_endio(bio);
1582 }
1583 
1584 /*
1585  * Handler function for all zram I/O requests.
1586  */
1587 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
1588 {
1589 	struct zram *zram = queue->queuedata;
1590 
1591 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1592 					bio->bi_iter.bi_size)) {
1593 		atomic64_inc(&zram->stats.invalid_io);
1594 		goto error;
1595 	}
1596 
1597 	__zram_make_request(zram, bio);
1598 	return BLK_QC_T_NONE;
1599 
1600 error:
1601 	bio_io_error(bio);
1602 	return BLK_QC_T_NONE;
1603 }
1604 
1605 static void zram_slot_free_notify(struct block_device *bdev,
1606 				unsigned long index)
1607 {
1608 	struct zram *zram;
1609 
1610 	zram = bdev->bd_disk->private_data;
1611 
1612 	atomic64_inc(&zram->stats.notify_free);
1613 	if (!zram_slot_trylock(zram, index)) {
1614 		atomic64_inc(&zram->stats.miss_free);
1615 		return;
1616 	}
1617 
1618 	zram_free_page(zram, index);
1619 	zram_slot_unlock(zram, index);
1620 }
1621 
1622 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1623 		       struct page *page, unsigned int op)
1624 {
1625 	int offset, ret;
1626 	u32 index;
1627 	struct zram *zram;
1628 	struct bio_vec bv;
1629 	unsigned long start_time;
1630 
1631 	if (PageTransHuge(page))
1632 		return -ENOTSUPP;
1633 	zram = bdev->bd_disk->private_data;
1634 
1635 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1636 		atomic64_inc(&zram->stats.invalid_io);
1637 		ret = -EINVAL;
1638 		goto out;
1639 	}
1640 
1641 	index = sector >> SECTORS_PER_PAGE_SHIFT;
1642 	offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1643 
1644 	bv.bv_page = page;
1645 	bv.bv_len = PAGE_SIZE;
1646 	bv.bv_offset = 0;
1647 
1648 	start_time = disk_start_io_acct(bdev->bd_disk, SECTORS_PER_PAGE, op);
1649 	ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL);
1650 	disk_end_io_acct(bdev->bd_disk, op, start_time);
1651 out:
1652 	/*
1653 	 * If I/O fails, just return error(ie, non-zero) without
1654 	 * calling page_endio.
1655 	 * It causes resubmit the I/O with bio request by upper functions
1656 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1657 	 * bio->bi_end_io does things to handle the error
1658 	 * (e.g., SetPageError, set_page_dirty and extra works).
1659 	 */
1660 	if (unlikely(ret < 0))
1661 		return ret;
1662 
1663 	switch (ret) {
1664 	case 0:
1665 		page_endio(page, op_is_write(op), 0);
1666 		break;
1667 	case 1:
1668 		ret = 0;
1669 		break;
1670 	default:
1671 		WARN_ON(1);
1672 	}
1673 	return ret;
1674 }
1675 
1676 static void zram_reset_device(struct zram *zram)
1677 {
1678 	struct zcomp *comp;
1679 	u64 disksize;
1680 
1681 	down_write(&zram->init_lock);
1682 
1683 	zram->limit_pages = 0;
1684 
1685 	if (!init_done(zram)) {
1686 		up_write(&zram->init_lock);
1687 		return;
1688 	}
1689 
1690 	comp = zram->comp;
1691 	disksize = zram->disksize;
1692 	zram->disksize = 0;
1693 
1694 	set_capacity(zram->disk, 0);
1695 	part_stat_set_all(&zram->disk->part0, 0);
1696 
1697 	up_write(&zram->init_lock);
1698 	/* I/O operation under all of CPU are done so let's free */
1699 	zram_meta_free(zram, disksize);
1700 	memset(&zram->stats, 0, sizeof(zram->stats));
1701 	zcomp_destroy(comp);
1702 	reset_bdev(zram);
1703 }
1704 
1705 static ssize_t disksize_store(struct device *dev,
1706 		struct device_attribute *attr, const char *buf, size_t len)
1707 {
1708 	u64 disksize;
1709 	struct zcomp *comp;
1710 	struct zram *zram = dev_to_zram(dev);
1711 	int err;
1712 
1713 	disksize = memparse(buf, NULL);
1714 	if (!disksize)
1715 		return -EINVAL;
1716 
1717 	down_write(&zram->init_lock);
1718 	if (init_done(zram)) {
1719 		pr_info("Cannot change disksize for initialized device\n");
1720 		err = -EBUSY;
1721 		goto out_unlock;
1722 	}
1723 
1724 	disksize = PAGE_ALIGN(disksize);
1725 	if (!zram_meta_alloc(zram, disksize)) {
1726 		err = -ENOMEM;
1727 		goto out_unlock;
1728 	}
1729 
1730 	comp = zcomp_create(zram->compressor);
1731 	if (IS_ERR(comp)) {
1732 		pr_err("Cannot initialise %s compressing backend\n",
1733 				zram->compressor);
1734 		err = PTR_ERR(comp);
1735 		goto out_free_meta;
1736 	}
1737 
1738 	zram->comp = comp;
1739 	zram->disksize = disksize;
1740 	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1741 
1742 	revalidate_disk(zram->disk);
1743 	up_write(&zram->init_lock);
1744 
1745 	return len;
1746 
1747 out_free_meta:
1748 	zram_meta_free(zram, disksize);
1749 out_unlock:
1750 	up_write(&zram->init_lock);
1751 	return err;
1752 }
1753 
1754 static ssize_t reset_store(struct device *dev,
1755 		struct device_attribute *attr, const char *buf, size_t len)
1756 {
1757 	int ret;
1758 	unsigned short do_reset;
1759 	struct zram *zram;
1760 	struct block_device *bdev;
1761 
1762 	ret = kstrtou16(buf, 10, &do_reset);
1763 	if (ret)
1764 		return ret;
1765 
1766 	if (!do_reset)
1767 		return -EINVAL;
1768 
1769 	zram = dev_to_zram(dev);
1770 	bdev = bdget_disk(zram->disk, 0);
1771 	if (!bdev)
1772 		return -ENOMEM;
1773 
1774 	mutex_lock(&bdev->bd_mutex);
1775 	/* Do not reset an active device or claimed device */
1776 	if (bdev->bd_openers || zram->claim) {
1777 		mutex_unlock(&bdev->bd_mutex);
1778 		bdput(bdev);
1779 		return -EBUSY;
1780 	}
1781 
1782 	/* From now on, anyone can't open /dev/zram[0-9] */
1783 	zram->claim = true;
1784 	mutex_unlock(&bdev->bd_mutex);
1785 
1786 	/* Make sure all the pending I/O are finished */
1787 	fsync_bdev(bdev);
1788 	zram_reset_device(zram);
1789 	revalidate_disk(zram->disk);
1790 	bdput(bdev);
1791 
1792 	mutex_lock(&bdev->bd_mutex);
1793 	zram->claim = false;
1794 	mutex_unlock(&bdev->bd_mutex);
1795 
1796 	return len;
1797 }
1798 
1799 static int zram_open(struct block_device *bdev, fmode_t mode)
1800 {
1801 	int ret = 0;
1802 	struct zram *zram;
1803 
1804 	WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1805 
1806 	zram = bdev->bd_disk->private_data;
1807 	/* zram was claimed to reset so open request fails */
1808 	if (zram->claim)
1809 		ret = -EBUSY;
1810 
1811 	return ret;
1812 }
1813 
1814 static const struct block_device_operations zram_devops = {
1815 	.open = zram_open,
1816 	.swap_slot_free_notify = zram_slot_free_notify,
1817 	.rw_page = zram_rw_page,
1818 	.owner = THIS_MODULE
1819 };
1820 
1821 static DEVICE_ATTR_WO(compact);
1822 static DEVICE_ATTR_RW(disksize);
1823 static DEVICE_ATTR_RO(initstate);
1824 static DEVICE_ATTR_WO(reset);
1825 static DEVICE_ATTR_WO(mem_limit);
1826 static DEVICE_ATTR_WO(mem_used_max);
1827 static DEVICE_ATTR_WO(idle);
1828 static DEVICE_ATTR_RW(max_comp_streams);
1829 static DEVICE_ATTR_RW(comp_algorithm);
1830 #ifdef CONFIG_ZRAM_WRITEBACK
1831 static DEVICE_ATTR_RW(backing_dev);
1832 static DEVICE_ATTR_WO(writeback);
1833 static DEVICE_ATTR_RW(writeback_limit);
1834 static DEVICE_ATTR_RW(writeback_limit_enable);
1835 #endif
1836 
1837 static struct attribute *zram_disk_attrs[] = {
1838 	&dev_attr_disksize.attr,
1839 	&dev_attr_initstate.attr,
1840 	&dev_attr_reset.attr,
1841 	&dev_attr_compact.attr,
1842 	&dev_attr_mem_limit.attr,
1843 	&dev_attr_mem_used_max.attr,
1844 	&dev_attr_idle.attr,
1845 	&dev_attr_max_comp_streams.attr,
1846 	&dev_attr_comp_algorithm.attr,
1847 #ifdef CONFIG_ZRAM_WRITEBACK
1848 	&dev_attr_backing_dev.attr,
1849 	&dev_attr_writeback.attr,
1850 	&dev_attr_writeback_limit.attr,
1851 	&dev_attr_writeback_limit_enable.attr,
1852 #endif
1853 	&dev_attr_io_stat.attr,
1854 	&dev_attr_mm_stat.attr,
1855 #ifdef CONFIG_ZRAM_WRITEBACK
1856 	&dev_attr_bd_stat.attr,
1857 #endif
1858 	&dev_attr_debug_stat.attr,
1859 	NULL,
1860 };
1861 
1862 static const struct attribute_group zram_disk_attr_group = {
1863 	.attrs = zram_disk_attrs,
1864 };
1865 
1866 static const struct attribute_group *zram_disk_attr_groups[] = {
1867 	&zram_disk_attr_group,
1868 	NULL,
1869 };
1870 
1871 /*
1872  * Allocate and initialize new zram device. the function returns
1873  * '>= 0' device_id upon success, and negative value otherwise.
1874  */
1875 static int zram_add(void)
1876 {
1877 	struct zram *zram;
1878 	struct request_queue *queue;
1879 	int ret, device_id;
1880 
1881 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1882 	if (!zram)
1883 		return -ENOMEM;
1884 
1885 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1886 	if (ret < 0)
1887 		goto out_free_dev;
1888 	device_id = ret;
1889 
1890 	init_rwsem(&zram->init_lock);
1891 #ifdef CONFIG_ZRAM_WRITEBACK
1892 	spin_lock_init(&zram->wb_limit_lock);
1893 #endif
1894 	queue = blk_alloc_queue(zram_make_request, NUMA_NO_NODE);
1895 	if (!queue) {
1896 		pr_err("Error allocating disk queue for device %d\n",
1897 			device_id);
1898 		ret = -ENOMEM;
1899 		goto out_free_idr;
1900 	}
1901 
1902 	/* gendisk structure */
1903 	zram->disk = alloc_disk(1);
1904 	if (!zram->disk) {
1905 		pr_err("Error allocating disk structure for device %d\n",
1906 			device_id);
1907 		ret = -ENOMEM;
1908 		goto out_free_queue;
1909 	}
1910 
1911 	zram->disk->major = zram_major;
1912 	zram->disk->first_minor = device_id;
1913 	zram->disk->fops = &zram_devops;
1914 	zram->disk->queue = queue;
1915 	zram->disk->queue->queuedata = zram;
1916 	zram->disk->private_data = zram;
1917 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1918 
1919 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1920 	set_capacity(zram->disk, 0);
1921 	/* zram devices sort of resembles non-rotational disks */
1922 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1923 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1924 
1925 	/*
1926 	 * To ensure that we always get PAGE_SIZE aligned
1927 	 * and n*PAGE_SIZED sized I/O requests.
1928 	 */
1929 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1930 	blk_queue_logical_block_size(zram->disk->queue,
1931 					ZRAM_LOGICAL_BLOCK_SIZE);
1932 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1933 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1934 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1935 	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1936 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue);
1937 
1938 	/*
1939 	 * zram_bio_discard() will clear all logical blocks if logical block
1940 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1941 	 * different, we will skip discarding some parts of logical blocks in
1942 	 * the part of the request range which isn't aligned to physical block
1943 	 * size.  So we can't ensure that all discarded logical blocks are
1944 	 * zeroed.
1945 	 */
1946 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1947 		blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1948 
1949 	zram->disk->queue->backing_dev_info->capabilities |=
1950 			(BDI_CAP_STABLE_WRITES | BDI_CAP_SYNCHRONOUS_IO);
1951 	device_add_disk(NULL, zram->disk, zram_disk_attr_groups);
1952 
1953 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1954 
1955 	zram_debugfs_register(zram);
1956 	pr_info("Added device: %s\n", zram->disk->disk_name);
1957 	return device_id;
1958 
1959 out_free_queue:
1960 	blk_cleanup_queue(queue);
1961 out_free_idr:
1962 	idr_remove(&zram_index_idr, device_id);
1963 out_free_dev:
1964 	kfree(zram);
1965 	return ret;
1966 }
1967 
1968 static int zram_remove(struct zram *zram)
1969 {
1970 	struct block_device *bdev;
1971 
1972 	bdev = bdget_disk(zram->disk, 0);
1973 	if (!bdev)
1974 		return -ENOMEM;
1975 
1976 	mutex_lock(&bdev->bd_mutex);
1977 	if (bdev->bd_openers || zram->claim) {
1978 		mutex_unlock(&bdev->bd_mutex);
1979 		bdput(bdev);
1980 		return -EBUSY;
1981 	}
1982 
1983 	zram->claim = true;
1984 	mutex_unlock(&bdev->bd_mutex);
1985 
1986 	zram_debugfs_unregister(zram);
1987 
1988 	/* Make sure all the pending I/O are finished */
1989 	fsync_bdev(bdev);
1990 	zram_reset_device(zram);
1991 	bdput(bdev);
1992 
1993 	pr_info("Removed device: %s\n", zram->disk->disk_name);
1994 
1995 	del_gendisk(zram->disk);
1996 	blk_cleanup_queue(zram->disk->queue);
1997 	put_disk(zram->disk);
1998 	kfree(zram);
1999 	return 0;
2000 }
2001 
2002 /* zram-control sysfs attributes */
2003 
2004 /*
2005  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2006  * sense that reading from this file does alter the state of your system -- it
2007  * creates a new un-initialized zram device and returns back this device's
2008  * device_id (or an error code if it fails to create a new device).
2009  */
2010 static ssize_t hot_add_show(struct class *class,
2011 			struct class_attribute *attr,
2012 			char *buf)
2013 {
2014 	int ret;
2015 
2016 	mutex_lock(&zram_index_mutex);
2017 	ret = zram_add();
2018 	mutex_unlock(&zram_index_mutex);
2019 
2020 	if (ret < 0)
2021 		return ret;
2022 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
2023 }
2024 static struct class_attribute class_attr_hot_add =
2025 	__ATTR(hot_add, 0400, hot_add_show, NULL);
2026 
2027 static ssize_t hot_remove_store(struct class *class,
2028 			struct class_attribute *attr,
2029 			const char *buf,
2030 			size_t count)
2031 {
2032 	struct zram *zram;
2033 	int ret, dev_id;
2034 
2035 	/* dev_id is gendisk->first_minor, which is `int' */
2036 	ret = kstrtoint(buf, 10, &dev_id);
2037 	if (ret)
2038 		return ret;
2039 	if (dev_id < 0)
2040 		return -EINVAL;
2041 
2042 	mutex_lock(&zram_index_mutex);
2043 
2044 	zram = idr_find(&zram_index_idr, dev_id);
2045 	if (zram) {
2046 		ret = zram_remove(zram);
2047 		if (!ret)
2048 			idr_remove(&zram_index_idr, dev_id);
2049 	} else {
2050 		ret = -ENODEV;
2051 	}
2052 
2053 	mutex_unlock(&zram_index_mutex);
2054 	return ret ? ret : count;
2055 }
2056 static CLASS_ATTR_WO(hot_remove);
2057 
2058 static struct attribute *zram_control_class_attrs[] = {
2059 	&class_attr_hot_add.attr,
2060 	&class_attr_hot_remove.attr,
2061 	NULL,
2062 };
2063 ATTRIBUTE_GROUPS(zram_control_class);
2064 
2065 static struct class zram_control_class = {
2066 	.name		= "zram-control",
2067 	.owner		= THIS_MODULE,
2068 	.class_groups	= zram_control_class_groups,
2069 };
2070 
2071 static int zram_remove_cb(int id, void *ptr, void *data)
2072 {
2073 	zram_remove(ptr);
2074 	return 0;
2075 }
2076 
2077 static void destroy_devices(void)
2078 {
2079 	class_unregister(&zram_control_class);
2080 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2081 	zram_debugfs_destroy();
2082 	idr_destroy(&zram_index_idr);
2083 	unregister_blkdev(zram_major, "zram");
2084 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2085 }
2086 
2087 static int __init zram_init(void)
2088 {
2089 	int ret;
2090 
2091 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2092 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
2093 	if (ret < 0)
2094 		return ret;
2095 
2096 	ret = class_register(&zram_control_class);
2097 	if (ret) {
2098 		pr_err("Unable to register zram-control class\n");
2099 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2100 		return ret;
2101 	}
2102 
2103 	zram_debugfs_create();
2104 	zram_major = register_blkdev(0, "zram");
2105 	if (zram_major <= 0) {
2106 		pr_err("Unable to get major number\n");
2107 		class_unregister(&zram_control_class);
2108 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2109 		return -EBUSY;
2110 	}
2111 
2112 	while (num_devices != 0) {
2113 		mutex_lock(&zram_index_mutex);
2114 		ret = zram_add();
2115 		mutex_unlock(&zram_index_mutex);
2116 		if (ret < 0)
2117 			goto out_error;
2118 		num_devices--;
2119 	}
2120 
2121 	return 0;
2122 
2123 out_error:
2124 	destroy_devices();
2125 	return ret;
2126 }
2127 
2128 static void __exit zram_exit(void)
2129 {
2130 	destroy_devices();
2131 }
2132 
2133 module_init(zram_init);
2134 module_exit(zram_exit);
2135 
2136 module_param(num_devices, uint, 0);
2137 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2138 
2139 MODULE_LICENSE("Dual BSD/GPL");
2140 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2141 MODULE_DESCRIPTION("Compressed RAM Block Device");
2142