xref: /linux/drivers/block/zram/zram_drv.c (revision b5bee6ced21ca98389000b7017dd41b0cc37fa50)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
33 #include <linux/debugfs.h>
34 #include <linux/cpuhotplug.h>
35 #include <linux/part_stat.h>
36 
37 #include "zram_drv.h"
38 
39 static DEFINE_IDR(zram_index_idr);
40 /* idr index must be protected */
41 static DEFINE_MUTEX(zram_index_mutex);
42 
43 static int zram_major;
44 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP;
45 
46 /* Module params (documentation at end) */
47 static unsigned int num_devices = 1;
48 /*
49  * Pages that compress to sizes equals or greater than this are stored
50  * uncompressed in memory.
51  */
52 static size_t huge_class_size;
53 
54 static const struct block_device_operations zram_devops;
55 #ifdef CONFIG_ZRAM_WRITEBACK
56 static const struct block_device_operations zram_wb_devops;
57 #endif
58 
59 static void zram_free_page(struct zram *zram, size_t index);
60 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
61 				u32 index, int offset, struct bio *bio);
62 
63 
64 static int zram_slot_trylock(struct zram *zram, u32 index)
65 {
66 	return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags);
67 }
68 
69 static void zram_slot_lock(struct zram *zram, u32 index)
70 {
71 	bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags);
72 }
73 
74 static void zram_slot_unlock(struct zram *zram, u32 index)
75 {
76 	bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags);
77 }
78 
79 static inline bool init_done(struct zram *zram)
80 {
81 	return zram->disksize;
82 }
83 
84 static inline struct zram *dev_to_zram(struct device *dev)
85 {
86 	return (struct zram *)dev_to_disk(dev)->private_data;
87 }
88 
89 static unsigned long zram_get_handle(struct zram *zram, u32 index)
90 {
91 	return zram->table[index].handle;
92 }
93 
94 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
95 {
96 	zram->table[index].handle = handle;
97 }
98 
99 /* flag operations require table entry bit_spin_lock() being held */
100 static bool zram_test_flag(struct zram *zram, u32 index,
101 			enum zram_pageflags flag)
102 {
103 	return zram->table[index].flags & BIT(flag);
104 }
105 
106 static void zram_set_flag(struct zram *zram, u32 index,
107 			enum zram_pageflags flag)
108 {
109 	zram->table[index].flags |= BIT(flag);
110 }
111 
112 static void zram_clear_flag(struct zram *zram, u32 index,
113 			enum zram_pageflags flag)
114 {
115 	zram->table[index].flags &= ~BIT(flag);
116 }
117 
118 static inline void zram_set_element(struct zram *zram, u32 index,
119 			unsigned long element)
120 {
121 	zram->table[index].element = element;
122 }
123 
124 static unsigned long zram_get_element(struct zram *zram, u32 index)
125 {
126 	return zram->table[index].element;
127 }
128 
129 static size_t zram_get_obj_size(struct zram *zram, u32 index)
130 {
131 	return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
132 }
133 
134 static void zram_set_obj_size(struct zram *zram,
135 					u32 index, size_t size)
136 {
137 	unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
138 
139 	zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
140 }
141 
142 static inline bool zram_allocated(struct zram *zram, u32 index)
143 {
144 	return zram_get_obj_size(zram, index) ||
145 			zram_test_flag(zram, index, ZRAM_SAME) ||
146 			zram_test_flag(zram, index, ZRAM_WB);
147 }
148 
149 #if PAGE_SIZE != 4096
150 static inline bool is_partial_io(struct bio_vec *bvec)
151 {
152 	return bvec->bv_len != PAGE_SIZE;
153 }
154 #else
155 static inline bool is_partial_io(struct bio_vec *bvec)
156 {
157 	return false;
158 }
159 #endif
160 
161 /*
162  * Check if request is within bounds and aligned on zram logical blocks.
163  */
164 static inline bool valid_io_request(struct zram *zram,
165 		sector_t start, unsigned int size)
166 {
167 	u64 end, bound;
168 
169 	/* unaligned request */
170 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
171 		return false;
172 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
173 		return false;
174 
175 	end = start + (size >> SECTOR_SHIFT);
176 	bound = zram->disksize >> SECTOR_SHIFT;
177 	/* out of range range */
178 	if (unlikely(start >= bound || end > bound || start > end))
179 		return false;
180 
181 	/* I/O request is valid */
182 	return true;
183 }
184 
185 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
186 {
187 	*index  += (*offset + bvec->bv_len) / PAGE_SIZE;
188 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
189 }
190 
191 static inline void update_used_max(struct zram *zram,
192 					const unsigned long pages)
193 {
194 	unsigned long old_max, cur_max;
195 
196 	old_max = atomic_long_read(&zram->stats.max_used_pages);
197 
198 	do {
199 		cur_max = old_max;
200 		if (pages > cur_max)
201 			old_max = atomic_long_cmpxchg(
202 				&zram->stats.max_used_pages, cur_max, pages);
203 	} while (old_max != cur_max);
204 }
205 
206 static inline void zram_fill_page(void *ptr, unsigned long len,
207 					unsigned long value)
208 {
209 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
210 	memset_l(ptr, value, len / sizeof(unsigned long));
211 }
212 
213 static bool page_same_filled(void *ptr, unsigned long *element)
214 {
215 	unsigned long *page;
216 	unsigned long val;
217 	unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
218 
219 	page = (unsigned long *)ptr;
220 	val = page[0];
221 
222 	if (val != page[last_pos])
223 		return false;
224 
225 	for (pos = 1; pos < last_pos; pos++) {
226 		if (val != page[pos])
227 			return false;
228 	}
229 
230 	*element = val;
231 
232 	return true;
233 }
234 
235 static ssize_t initstate_show(struct device *dev,
236 		struct device_attribute *attr, char *buf)
237 {
238 	u32 val;
239 	struct zram *zram = dev_to_zram(dev);
240 
241 	down_read(&zram->init_lock);
242 	val = init_done(zram);
243 	up_read(&zram->init_lock);
244 
245 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
246 }
247 
248 static ssize_t disksize_show(struct device *dev,
249 		struct device_attribute *attr, char *buf)
250 {
251 	struct zram *zram = dev_to_zram(dev);
252 
253 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
254 }
255 
256 static ssize_t mem_limit_store(struct device *dev,
257 		struct device_attribute *attr, const char *buf, size_t len)
258 {
259 	u64 limit;
260 	char *tmp;
261 	struct zram *zram = dev_to_zram(dev);
262 
263 	limit = memparse(buf, &tmp);
264 	if (buf == tmp) /* no chars parsed, invalid input */
265 		return -EINVAL;
266 
267 	down_write(&zram->init_lock);
268 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
269 	up_write(&zram->init_lock);
270 
271 	return len;
272 }
273 
274 static ssize_t mem_used_max_store(struct device *dev,
275 		struct device_attribute *attr, const char *buf, size_t len)
276 {
277 	int err;
278 	unsigned long val;
279 	struct zram *zram = dev_to_zram(dev);
280 
281 	err = kstrtoul(buf, 10, &val);
282 	if (err || val != 0)
283 		return -EINVAL;
284 
285 	down_read(&zram->init_lock);
286 	if (init_done(zram)) {
287 		atomic_long_set(&zram->stats.max_used_pages,
288 				zs_get_total_pages(zram->mem_pool));
289 	}
290 	up_read(&zram->init_lock);
291 
292 	return len;
293 }
294 
295 /*
296  * Mark all pages which are older than or equal to cutoff as IDLE.
297  * Callers should hold the zram init lock in read mode
298  */
299 static void mark_idle(struct zram *zram, ktime_t cutoff)
300 {
301 	int is_idle = 1;
302 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
303 	int index;
304 
305 	for (index = 0; index < nr_pages; index++) {
306 		/*
307 		 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race.
308 		 * See the comment in writeback_store.
309 		 */
310 		zram_slot_lock(zram, index);
311 		if (zram_allocated(zram, index) &&
312 				!zram_test_flag(zram, index, ZRAM_UNDER_WB)) {
313 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
314 			is_idle = !cutoff || ktime_after(cutoff, zram->table[index].ac_time);
315 #endif
316 			if (is_idle)
317 				zram_set_flag(zram, index, ZRAM_IDLE);
318 		}
319 		zram_slot_unlock(zram, index);
320 	}
321 }
322 
323 static ssize_t idle_store(struct device *dev,
324 		struct device_attribute *attr, const char *buf, size_t len)
325 {
326 	struct zram *zram = dev_to_zram(dev);
327 	ktime_t cutoff_time = 0;
328 	ssize_t rv = -EINVAL;
329 
330 	if (!sysfs_streq(buf, "all")) {
331 		/*
332 		 * If it did not parse as 'all' try to treat it as an integer when
333 		 * we have memory tracking enabled.
334 		 */
335 		u64 age_sec;
336 
337 		if (IS_ENABLED(CONFIG_ZRAM_MEMORY_TRACKING) && !kstrtoull(buf, 0, &age_sec))
338 			cutoff_time = ktime_sub(ktime_get_boottime(),
339 					ns_to_ktime(age_sec * NSEC_PER_SEC));
340 		else
341 			goto out;
342 	}
343 
344 	down_read(&zram->init_lock);
345 	if (!init_done(zram))
346 		goto out_unlock;
347 
348 	/* A cutoff_time of 0 marks everything as idle, this is the "all" behavior */
349 	mark_idle(zram, cutoff_time);
350 	rv = len;
351 
352 out_unlock:
353 	up_read(&zram->init_lock);
354 out:
355 	return rv;
356 }
357 
358 #ifdef CONFIG_ZRAM_WRITEBACK
359 static ssize_t writeback_limit_enable_store(struct device *dev,
360 		struct device_attribute *attr, const char *buf, size_t len)
361 {
362 	struct zram *zram = dev_to_zram(dev);
363 	u64 val;
364 	ssize_t ret = -EINVAL;
365 
366 	if (kstrtoull(buf, 10, &val))
367 		return ret;
368 
369 	down_read(&zram->init_lock);
370 	spin_lock(&zram->wb_limit_lock);
371 	zram->wb_limit_enable = val;
372 	spin_unlock(&zram->wb_limit_lock);
373 	up_read(&zram->init_lock);
374 	ret = len;
375 
376 	return ret;
377 }
378 
379 static ssize_t writeback_limit_enable_show(struct device *dev,
380 		struct device_attribute *attr, char *buf)
381 {
382 	bool val;
383 	struct zram *zram = dev_to_zram(dev);
384 
385 	down_read(&zram->init_lock);
386 	spin_lock(&zram->wb_limit_lock);
387 	val = zram->wb_limit_enable;
388 	spin_unlock(&zram->wb_limit_lock);
389 	up_read(&zram->init_lock);
390 
391 	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
392 }
393 
394 static ssize_t writeback_limit_store(struct device *dev,
395 		struct device_attribute *attr, const char *buf, size_t len)
396 {
397 	struct zram *zram = dev_to_zram(dev);
398 	u64 val;
399 	ssize_t ret = -EINVAL;
400 
401 	if (kstrtoull(buf, 10, &val))
402 		return ret;
403 
404 	down_read(&zram->init_lock);
405 	spin_lock(&zram->wb_limit_lock);
406 	zram->bd_wb_limit = val;
407 	spin_unlock(&zram->wb_limit_lock);
408 	up_read(&zram->init_lock);
409 	ret = len;
410 
411 	return ret;
412 }
413 
414 static ssize_t writeback_limit_show(struct device *dev,
415 		struct device_attribute *attr, char *buf)
416 {
417 	u64 val;
418 	struct zram *zram = dev_to_zram(dev);
419 
420 	down_read(&zram->init_lock);
421 	spin_lock(&zram->wb_limit_lock);
422 	val = zram->bd_wb_limit;
423 	spin_unlock(&zram->wb_limit_lock);
424 	up_read(&zram->init_lock);
425 
426 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
427 }
428 
429 static void reset_bdev(struct zram *zram)
430 {
431 	struct block_device *bdev;
432 
433 	if (!zram->backing_dev)
434 		return;
435 
436 	bdev = zram->bdev;
437 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
438 	/* hope filp_close flush all of IO */
439 	filp_close(zram->backing_dev, NULL);
440 	zram->backing_dev = NULL;
441 	zram->bdev = NULL;
442 	zram->disk->fops = &zram_devops;
443 	kvfree(zram->bitmap);
444 	zram->bitmap = NULL;
445 }
446 
447 static ssize_t backing_dev_show(struct device *dev,
448 		struct device_attribute *attr, char *buf)
449 {
450 	struct file *file;
451 	struct zram *zram = dev_to_zram(dev);
452 	char *p;
453 	ssize_t ret;
454 
455 	down_read(&zram->init_lock);
456 	file = zram->backing_dev;
457 	if (!file) {
458 		memcpy(buf, "none\n", 5);
459 		up_read(&zram->init_lock);
460 		return 5;
461 	}
462 
463 	p = file_path(file, buf, PAGE_SIZE - 1);
464 	if (IS_ERR(p)) {
465 		ret = PTR_ERR(p);
466 		goto out;
467 	}
468 
469 	ret = strlen(p);
470 	memmove(buf, p, ret);
471 	buf[ret++] = '\n';
472 out:
473 	up_read(&zram->init_lock);
474 	return ret;
475 }
476 
477 static ssize_t backing_dev_store(struct device *dev,
478 		struct device_attribute *attr, const char *buf, size_t len)
479 {
480 	char *file_name;
481 	size_t sz;
482 	struct file *backing_dev = NULL;
483 	struct inode *inode;
484 	struct address_space *mapping;
485 	unsigned int bitmap_sz;
486 	unsigned long nr_pages, *bitmap = NULL;
487 	struct block_device *bdev = NULL;
488 	int err;
489 	struct zram *zram = dev_to_zram(dev);
490 
491 	file_name = kmalloc(PATH_MAX, GFP_KERNEL);
492 	if (!file_name)
493 		return -ENOMEM;
494 
495 	down_write(&zram->init_lock);
496 	if (init_done(zram)) {
497 		pr_info("Can't setup backing device for initialized device\n");
498 		err = -EBUSY;
499 		goto out;
500 	}
501 
502 	strlcpy(file_name, buf, PATH_MAX);
503 	/* ignore trailing newline */
504 	sz = strlen(file_name);
505 	if (sz > 0 && file_name[sz - 1] == '\n')
506 		file_name[sz - 1] = 0x00;
507 
508 	backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
509 	if (IS_ERR(backing_dev)) {
510 		err = PTR_ERR(backing_dev);
511 		backing_dev = NULL;
512 		goto out;
513 	}
514 
515 	mapping = backing_dev->f_mapping;
516 	inode = mapping->host;
517 
518 	/* Support only block device in this moment */
519 	if (!S_ISBLK(inode->i_mode)) {
520 		err = -ENOTBLK;
521 		goto out;
522 	}
523 
524 	bdev = blkdev_get_by_dev(inode->i_rdev,
525 			FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
526 	if (IS_ERR(bdev)) {
527 		err = PTR_ERR(bdev);
528 		bdev = NULL;
529 		goto out;
530 	}
531 
532 	nr_pages = i_size_read(inode) >> PAGE_SHIFT;
533 	bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
534 	bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
535 	if (!bitmap) {
536 		err = -ENOMEM;
537 		goto out;
538 	}
539 
540 	reset_bdev(zram);
541 
542 	zram->bdev = bdev;
543 	zram->backing_dev = backing_dev;
544 	zram->bitmap = bitmap;
545 	zram->nr_pages = nr_pages;
546 	/*
547 	 * With writeback feature, zram does asynchronous IO so it's no longer
548 	 * synchronous device so let's remove synchronous io flag. Othewise,
549 	 * upper layer(e.g., swap) could wait IO completion rather than
550 	 * (submit and return), which will cause system sluggish.
551 	 * Furthermore, when the IO function returns(e.g., swap_readpage),
552 	 * upper layer expects IO was done so it could deallocate the page
553 	 * freely but in fact, IO is going on so finally could cause
554 	 * use-after-free when the IO is really done.
555 	 */
556 	zram->disk->fops = &zram_wb_devops;
557 	up_write(&zram->init_lock);
558 
559 	pr_info("setup backing device %s\n", file_name);
560 	kfree(file_name);
561 
562 	return len;
563 out:
564 	kvfree(bitmap);
565 
566 	if (bdev)
567 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
568 
569 	if (backing_dev)
570 		filp_close(backing_dev, NULL);
571 
572 	up_write(&zram->init_lock);
573 
574 	kfree(file_name);
575 
576 	return err;
577 }
578 
579 static unsigned long alloc_block_bdev(struct zram *zram)
580 {
581 	unsigned long blk_idx = 1;
582 retry:
583 	/* skip 0 bit to confuse zram.handle = 0 */
584 	blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
585 	if (blk_idx == zram->nr_pages)
586 		return 0;
587 
588 	if (test_and_set_bit(blk_idx, zram->bitmap))
589 		goto retry;
590 
591 	atomic64_inc(&zram->stats.bd_count);
592 	return blk_idx;
593 }
594 
595 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
596 {
597 	int was_set;
598 
599 	was_set = test_and_clear_bit(blk_idx, zram->bitmap);
600 	WARN_ON_ONCE(!was_set);
601 	atomic64_dec(&zram->stats.bd_count);
602 }
603 
604 static void zram_page_end_io(struct bio *bio)
605 {
606 	struct page *page = bio_first_page_all(bio);
607 
608 	page_endio(page, op_is_write(bio_op(bio)),
609 			blk_status_to_errno(bio->bi_status));
610 	bio_put(bio);
611 }
612 
613 /*
614  * Returns 1 if the submission is successful.
615  */
616 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
617 			unsigned long entry, struct bio *parent)
618 {
619 	struct bio *bio;
620 
621 	bio = bio_alloc(zram->bdev, 1, parent ? parent->bi_opf : REQ_OP_READ,
622 			GFP_NOIO);
623 	if (!bio)
624 		return -ENOMEM;
625 
626 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
627 	if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
628 		bio_put(bio);
629 		return -EIO;
630 	}
631 
632 	if (!parent)
633 		bio->bi_end_io = zram_page_end_io;
634 	else
635 		bio_chain(bio, parent);
636 
637 	submit_bio(bio);
638 	return 1;
639 }
640 
641 #define PAGE_WB_SIG "page_index="
642 
643 #define PAGE_WRITEBACK 0
644 #define HUGE_WRITEBACK (1<<0)
645 #define IDLE_WRITEBACK (1<<1)
646 
647 
648 static ssize_t writeback_store(struct device *dev,
649 		struct device_attribute *attr, const char *buf, size_t len)
650 {
651 	struct zram *zram = dev_to_zram(dev);
652 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
653 	unsigned long index = 0;
654 	struct bio bio;
655 	struct bio_vec bio_vec;
656 	struct page *page;
657 	ssize_t ret = len;
658 	int mode, err;
659 	unsigned long blk_idx = 0;
660 
661 	if (sysfs_streq(buf, "idle"))
662 		mode = IDLE_WRITEBACK;
663 	else if (sysfs_streq(buf, "huge"))
664 		mode = HUGE_WRITEBACK;
665 	else if (sysfs_streq(buf, "huge_idle"))
666 		mode = IDLE_WRITEBACK | HUGE_WRITEBACK;
667 	else {
668 		if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1))
669 			return -EINVAL;
670 
671 		if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) ||
672 				index >= nr_pages)
673 			return -EINVAL;
674 
675 		nr_pages = 1;
676 		mode = PAGE_WRITEBACK;
677 	}
678 
679 	down_read(&zram->init_lock);
680 	if (!init_done(zram)) {
681 		ret = -EINVAL;
682 		goto release_init_lock;
683 	}
684 
685 	if (!zram->backing_dev) {
686 		ret = -ENODEV;
687 		goto release_init_lock;
688 	}
689 
690 	page = alloc_page(GFP_KERNEL);
691 	if (!page) {
692 		ret = -ENOMEM;
693 		goto release_init_lock;
694 	}
695 
696 	for (; nr_pages != 0; index++, nr_pages--) {
697 		struct bio_vec bvec;
698 
699 		bvec.bv_page = page;
700 		bvec.bv_len = PAGE_SIZE;
701 		bvec.bv_offset = 0;
702 
703 		spin_lock(&zram->wb_limit_lock);
704 		if (zram->wb_limit_enable && !zram->bd_wb_limit) {
705 			spin_unlock(&zram->wb_limit_lock);
706 			ret = -EIO;
707 			break;
708 		}
709 		spin_unlock(&zram->wb_limit_lock);
710 
711 		if (!blk_idx) {
712 			blk_idx = alloc_block_bdev(zram);
713 			if (!blk_idx) {
714 				ret = -ENOSPC;
715 				break;
716 			}
717 		}
718 
719 		zram_slot_lock(zram, index);
720 		if (!zram_allocated(zram, index))
721 			goto next;
722 
723 		if (zram_test_flag(zram, index, ZRAM_WB) ||
724 				zram_test_flag(zram, index, ZRAM_SAME) ||
725 				zram_test_flag(zram, index, ZRAM_UNDER_WB))
726 			goto next;
727 
728 		if (mode & IDLE_WRITEBACK &&
729 			  !zram_test_flag(zram, index, ZRAM_IDLE))
730 			goto next;
731 		if (mode & HUGE_WRITEBACK &&
732 			  !zram_test_flag(zram, index, ZRAM_HUGE))
733 			goto next;
734 		/*
735 		 * Clearing ZRAM_UNDER_WB is duty of caller.
736 		 * IOW, zram_free_page never clear it.
737 		 */
738 		zram_set_flag(zram, index, ZRAM_UNDER_WB);
739 		/* Need for hugepage writeback racing */
740 		zram_set_flag(zram, index, ZRAM_IDLE);
741 		zram_slot_unlock(zram, index);
742 		if (zram_bvec_read(zram, &bvec, index, 0, NULL)) {
743 			zram_slot_lock(zram, index);
744 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
745 			zram_clear_flag(zram, index, ZRAM_IDLE);
746 			zram_slot_unlock(zram, index);
747 			continue;
748 		}
749 
750 		bio_init(&bio, zram->bdev, &bio_vec, 1,
751 			 REQ_OP_WRITE | REQ_SYNC);
752 		bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
753 
754 		bio_add_page(&bio, bvec.bv_page, bvec.bv_len,
755 				bvec.bv_offset);
756 		/*
757 		 * XXX: A single page IO would be inefficient for write
758 		 * but it would be not bad as starter.
759 		 */
760 		err = submit_bio_wait(&bio);
761 		if (err) {
762 			zram_slot_lock(zram, index);
763 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
764 			zram_clear_flag(zram, index, ZRAM_IDLE);
765 			zram_slot_unlock(zram, index);
766 			/*
767 			 * Return last IO error unless every IO were
768 			 * not suceeded.
769 			 */
770 			ret = err;
771 			continue;
772 		}
773 
774 		atomic64_inc(&zram->stats.bd_writes);
775 		/*
776 		 * We released zram_slot_lock so need to check if the slot was
777 		 * changed. If there is freeing for the slot, we can catch it
778 		 * easily by zram_allocated.
779 		 * A subtle case is the slot is freed/reallocated/marked as
780 		 * ZRAM_IDLE again. To close the race, idle_store doesn't
781 		 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB.
782 		 * Thus, we could close the race by checking ZRAM_IDLE bit.
783 		 */
784 		zram_slot_lock(zram, index);
785 		if (!zram_allocated(zram, index) ||
786 			  !zram_test_flag(zram, index, ZRAM_IDLE)) {
787 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
788 			zram_clear_flag(zram, index, ZRAM_IDLE);
789 			goto next;
790 		}
791 
792 		zram_free_page(zram, index);
793 		zram_clear_flag(zram, index, ZRAM_UNDER_WB);
794 		zram_set_flag(zram, index, ZRAM_WB);
795 		zram_set_element(zram, index, blk_idx);
796 		blk_idx = 0;
797 		atomic64_inc(&zram->stats.pages_stored);
798 		spin_lock(&zram->wb_limit_lock);
799 		if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
800 			zram->bd_wb_limit -=  1UL << (PAGE_SHIFT - 12);
801 		spin_unlock(&zram->wb_limit_lock);
802 next:
803 		zram_slot_unlock(zram, index);
804 	}
805 
806 	if (blk_idx)
807 		free_block_bdev(zram, blk_idx);
808 	__free_page(page);
809 release_init_lock:
810 	up_read(&zram->init_lock);
811 
812 	return ret;
813 }
814 
815 struct zram_work {
816 	struct work_struct work;
817 	struct zram *zram;
818 	unsigned long entry;
819 	struct bio *bio;
820 	struct bio_vec bvec;
821 };
822 
823 #if PAGE_SIZE != 4096
824 static void zram_sync_read(struct work_struct *work)
825 {
826 	struct zram_work *zw = container_of(work, struct zram_work, work);
827 	struct zram *zram = zw->zram;
828 	unsigned long entry = zw->entry;
829 	struct bio *bio = zw->bio;
830 
831 	read_from_bdev_async(zram, &zw->bvec, entry, bio);
832 }
833 
834 /*
835  * Block layer want one ->submit_bio to be active at a time, so if we use
836  * chained IO with parent IO in same context, it's a deadlock. To avoid that,
837  * use a worker thread context.
838  */
839 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
840 				unsigned long entry, struct bio *bio)
841 {
842 	struct zram_work work;
843 
844 	work.bvec = *bvec;
845 	work.zram = zram;
846 	work.entry = entry;
847 	work.bio = bio;
848 
849 	INIT_WORK_ONSTACK(&work.work, zram_sync_read);
850 	queue_work(system_unbound_wq, &work.work);
851 	flush_work(&work.work);
852 	destroy_work_on_stack(&work.work);
853 
854 	return 1;
855 }
856 #else
857 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
858 				unsigned long entry, struct bio *bio)
859 {
860 	WARN_ON(1);
861 	return -EIO;
862 }
863 #endif
864 
865 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
866 			unsigned long entry, struct bio *parent, bool sync)
867 {
868 	atomic64_inc(&zram->stats.bd_reads);
869 	if (sync)
870 		return read_from_bdev_sync(zram, bvec, entry, parent);
871 	else
872 		return read_from_bdev_async(zram, bvec, entry, parent);
873 }
874 #else
875 static inline void reset_bdev(struct zram *zram) {};
876 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
877 			unsigned long entry, struct bio *parent, bool sync)
878 {
879 	return -EIO;
880 }
881 
882 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
883 #endif
884 
885 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
886 
887 static struct dentry *zram_debugfs_root;
888 
889 static void zram_debugfs_create(void)
890 {
891 	zram_debugfs_root = debugfs_create_dir("zram", NULL);
892 }
893 
894 static void zram_debugfs_destroy(void)
895 {
896 	debugfs_remove_recursive(zram_debugfs_root);
897 }
898 
899 static void zram_accessed(struct zram *zram, u32 index)
900 {
901 	zram_clear_flag(zram, index, ZRAM_IDLE);
902 	zram->table[index].ac_time = ktime_get_boottime();
903 }
904 
905 static ssize_t read_block_state(struct file *file, char __user *buf,
906 				size_t count, loff_t *ppos)
907 {
908 	char *kbuf;
909 	ssize_t index, written = 0;
910 	struct zram *zram = file->private_data;
911 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
912 	struct timespec64 ts;
913 
914 	kbuf = kvmalloc(count, GFP_KERNEL);
915 	if (!kbuf)
916 		return -ENOMEM;
917 
918 	down_read(&zram->init_lock);
919 	if (!init_done(zram)) {
920 		up_read(&zram->init_lock);
921 		kvfree(kbuf);
922 		return -EINVAL;
923 	}
924 
925 	for (index = *ppos; index < nr_pages; index++) {
926 		int copied;
927 
928 		zram_slot_lock(zram, index);
929 		if (!zram_allocated(zram, index))
930 			goto next;
931 
932 		ts = ktime_to_timespec64(zram->table[index].ac_time);
933 		copied = snprintf(kbuf + written, count,
934 			"%12zd %12lld.%06lu %c%c%c%c\n",
935 			index, (s64)ts.tv_sec,
936 			ts.tv_nsec / NSEC_PER_USEC,
937 			zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
938 			zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
939 			zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
940 			zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.');
941 
942 		if (count <= copied) {
943 			zram_slot_unlock(zram, index);
944 			break;
945 		}
946 		written += copied;
947 		count -= copied;
948 next:
949 		zram_slot_unlock(zram, index);
950 		*ppos += 1;
951 	}
952 
953 	up_read(&zram->init_lock);
954 	if (copy_to_user(buf, kbuf, written))
955 		written = -EFAULT;
956 	kvfree(kbuf);
957 
958 	return written;
959 }
960 
961 static const struct file_operations proc_zram_block_state_op = {
962 	.open = simple_open,
963 	.read = read_block_state,
964 	.llseek = default_llseek,
965 };
966 
967 static void zram_debugfs_register(struct zram *zram)
968 {
969 	if (!zram_debugfs_root)
970 		return;
971 
972 	zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
973 						zram_debugfs_root);
974 	debugfs_create_file("block_state", 0400, zram->debugfs_dir,
975 				zram, &proc_zram_block_state_op);
976 }
977 
978 static void zram_debugfs_unregister(struct zram *zram)
979 {
980 	debugfs_remove_recursive(zram->debugfs_dir);
981 }
982 #else
983 static void zram_debugfs_create(void) {};
984 static void zram_debugfs_destroy(void) {};
985 static void zram_accessed(struct zram *zram, u32 index)
986 {
987 	zram_clear_flag(zram, index, ZRAM_IDLE);
988 };
989 static void zram_debugfs_register(struct zram *zram) {};
990 static void zram_debugfs_unregister(struct zram *zram) {};
991 #endif
992 
993 /*
994  * We switched to per-cpu streams and this attr is not needed anymore.
995  * However, we will keep it around for some time, because:
996  * a) we may revert per-cpu streams in the future
997  * b) it's visible to user space and we need to follow our 2 years
998  *    retirement rule; but we already have a number of 'soon to be
999  *    altered' attrs, so max_comp_streams need to wait for the next
1000  *    layoff cycle.
1001  */
1002 static ssize_t max_comp_streams_show(struct device *dev,
1003 		struct device_attribute *attr, char *buf)
1004 {
1005 	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
1006 }
1007 
1008 static ssize_t max_comp_streams_store(struct device *dev,
1009 		struct device_attribute *attr, const char *buf, size_t len)
1010 {
1011 	return len;
1012 }
1013 
1014 static ssize_t comp_algorithm_show(struct device *dev,
1015 		struct device_attribute *attr, char *buf)
1016 {
1017 	size_t sz;
1018 	struct zram *zram = dev_to_zram(dev);
1019 
1020 	down_read(&zram->init_lock);
1021 	sz = zcomp_available_show(zram->compressor, buf);
1022 	up_read(&zram->init_lock);
1023 
1024 	return sz;
1025 }
1026 
1027 static ssize_t comp_algorithm_store(struct device *dev,
1028 		struct device_attribute *attr, const char *buf, size_t len)
1029 {
1030 	struct zram *zram = dev_to_zram(dev);
1031 	char compressor[ARRAY_SIZE(zram->compressor)];
1032 	size_t sz;
1033 
1034 	strlcpy(compressor, buf, sizeof(compressor));
1035 	/* ignore trailing newline */
1036 	sz = strlen(compressor);
1037 	if (sz > 0 && compressor[sz - 1] == '\n')
1038 		compressor[sz - 1] = 0x00;
1039 
1040 	if (!zcomp_available_algorithm(compressor))
1041 		return -EINVAL;
1042 
1043 	down_write(&zram->init_lock);
1044 	if (init_done(zram)) {
1045 		up_write(&zram->init_lock);
1046 		pr_info("Can't change algorithm for initialized device\n");
1047 		return -EBUSY;
1048 	}
1049 
1050 	strcpy(zram->compressor, compressor);
1051 	up_write(&zram->init_lock);
1052 	return len;
1053 }
1054 
1055 static ssize_t compact_store(struct device *dev,
1056 		struct device_attribute *attr, const char *buf, size_t len)
1057 {
1058 	struct zram *zram = dev_to_zram(dev);
1059 
1060 	down_read(&zram->init_lock);
1061 	if (!init_done(zram)) {
1062 		up_read(&zram->init_lock);
1063 		return -EINVAL;
1064 	}
1065 
1066 	zs_compact(zram->mem_pool);
1067 	up_read(&zram->init_lock);
1068 
1069 	return len;
1070 }
1071 
1072 static ssize_t io_stat_show(struct device *dev,
1073 		struct device_attribute *attr, char *buf)
1074 {
1075 	struct zram *zram = dev_to_zram(dev);
1076 	ssize_t ret;
1077 
1078 	down_read(&zram->init_lock);
1079 	ret = scnprintf(buf, PAGE_SIZE,
1080 			"%8llu %8llu %8llu %8llu\n",
1081 			(u64)atomic64_read(&zram->stats.failed_reads),
1082 			(u64)atomic64_read(&zram->stats.failed_writes),
1083 			(u64)atomic64_read(&zram->stats.invalid_io),
1084 			(u64)atomic64_read(&zram->stats.notify_free));
1085 	up_read(&zram->init_lock);
1086 
1087 	return ret;
1088 }
1089 
1090 static ssize_t mm_stat_show(struct device *dev,
1091 		struct device_attribute *attr, char *buf)
1092 {
1093 	struct zram *zram = dev_to_zram(dev);
1094 	struct zs_pool_stats pool_stats;
1095 	u64 orig_size, mem_used = 0;
1096 	long max_used;
1097 	ssize_t ret;
1098 
1099 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1100 
1101 	down_read(&zram->init_lock);
1102 	if (init_done(zram)) {
1103 		mem_used = zs_get_total_pages(zram->mem_pool);
1104 		zs_pool_stats(zram->mem_pool, &pool_stats);
1105 	}
1106 
1107 	orig_size = atomic64_read(&zram->stats.pages_stored);
1108 	max_used = atomic_long_read(&zram->stats.max_used_pages);
1109 
1110 	ret = scnprintf(buf, PAGE_SIZE,
1111 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n",
1112 			orig_size << PAGE_SHIFT,
1113 			(u64)atomic64_read(&zram->stats.compr_data_size),
1114 			mem_used << PAGE_SHIFT,
1115 			zram->limit_pages << PAGE_SHIFT,
1116 			max_used << PAGE_SHIFT,
1117 			(u64)atomic64_read(&zram->stats.same_pages),
1118 			atomic_long_read(&pool_stats.pages_compacted),
1119 			(u64)atomic64_read(&zram->stats.huge_pages),
1120 			(u64)atomic64_read(&zram->stats.huge_pages_since));
1121 	up_read(&zram->init_lock);
1122 
1123 	return ret;
1124 }
1125 
1126 #ifdef CONFIG_ZRAM_WRITEBACK
1127 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
1128 static ssize_t bd_stat_show(struct device *dev,
1129 		struct device_attribute *attr, char *buf)
1130 {
1131 	struct zram *zram = dev_to_zram(dev);
1132 	ssize_t ret;
1133 
1134 	down_read(&zram->init_lock);
1135 	ret = scnprintf(buf, PAGE_SIZE,
1136 		"%8llu %8llu %8llu\n",
1137 			FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1138 			FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1139 			FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1140 	up_read(&zram->init_lock);
1141 
1142 	return ret;
1143 }
1144 #endif
1145 
1146 static ssize_t debug_stat_show(struct device *dev,
1147 		struct device_attribute *attr, char *buf)
1148 {
1149 	int version = 1;
1150 	struct zram *zram = dev_to_zram(dev);
1151 	ssize_t ret;
1152 
1153 	down_read(&zram->init_lock);
1154 	ret = scnprintf(buf, PAGE_SIZE,
1155 			"version: %d\n%8llu %8llu\n",
1156 			version,
1157 			(u64)atomic64_read(&zram->stats.writestall),
1158 			(u64)atomic64_read(&zram->stats.miss_free));
1159 	up_read(&zram->init_lock);
1160 
1161 	return ret;
1162 }
1163 
1164 static DEVICE_ATTR_RO(io_stat);
1165 static DEVICE_ATTR_RO(mm_stat);
1166 #ifdef CONFIG_ZRAM_WRITEBACK
1167 static DEVICE_ATTR_RO(bd_stat);
1168 #endif
1169 static DEVICE_ATTR_RO(debug_stat);
1170 
1171 static void zram_meta_free(struct zram *zram, u64 disksize)
1172 {
1173 	size_t num_pages = disksize >> PAGE_SHIFT;
1174 	size_t index;
1175 
1176 	/* Free all pages that are still in this zram device */
1177 	for (index = 0; index < num_pages; index++)
1178 		zram_free_page(zram, index);
1179 
1180 	zs_destroy_pool(zram->mem_pool);
1181 	vfree(zram->table);
1182 }
1183 
1184 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1185 {
1186 	size_t num_pages;
1187 
1188 	num_pages = disksize >> PAGE_SHIFT;
1189 	zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1190 	if (!zram->table)
1191 		return false;
1192 
1193 	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1194 	if (!zram->mem_pool) {
1195 		vfree(zram->table);
1196 		return false;
1197 	}
1198 
1199 	if (!huge_class_size)
1200 		huge_class_size = zs_huge_class_size(zram->mem_pool);
1201 	return true;
1202 }
1203 
1204 /*
1205  * To protect concurrent access to the same index entry,
1206  * caller should hold this table index entry's bit_spinlock to
1207  * indicate this index entry is accessing.
1208  */
1209 static void zram_free_page(struct zram *zram, size_t index)
1210 {
1211 	unsigned long handle;
1212 
1213 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
1214 	zram->table[index].ac_time = 0;
1215 #endif
1216 	if (zram_test_flag(zram, index, ZRAM_IDLE))
1217 		zram_clear_flag(zram, index, ZRAM_IDLE);
1218 
1219 	if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1220 		zram_clear_flag(zram, index, ZRAM_HUGE);
1221 		atomic64_dec(&zram->stats.huge_pages);
1222 	}
1223 
1224 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1225 		zram_clear_flag(zram, index, ZRAM_WB);
1226 		free_block_bdev(zram, zram_get_element(zram, index));
1227 		goto out;
1228 	}
1229 
1230 	/*
1231 	 * No memory is allocated for same element filled pages.
1232 	 * Simply clear same page flag.
1233 	 */
1234 	if (zram_test_flag(zram, index, ZRAM_SAME)) {
1235 		zram_clear_flag(zram, index, ZRAM_SAME);
1236 		atomic64_dec(&zram->stats.same_pages);
1237 		goto out;
1238 	}
1239 
1240 	handle = zram_get_handle(zram, index);
1241 	if (!handle)
1242 		return;
1243 
1244 	zs_free(zram->mem_pool, handle);
1245 
1246 	atomic64_sub(zram_get_obj_size(zram, index),
1247 			&zram->stats.compr_data_size);
1248 out:
1249 	atomic64_dec(&zram->stats.pages_stored);
1250 	zram_set_handle(zram, index, 0);
1251 	zram_set_obj_size(zram, index, 0);
1252 	WARN_ON_ONCE(zram->table[index].flags &
1253 		~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB));
1254 }
1255 
1256 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
1257 				struct bio *bio, bool partial_io)
1258 {
1259 	struct zcomp_strm *zstrm;
1260 	unsigned long handle;
1261 	unsigned int size;
1262 	void *src, *dst;
1263 	int ret;
1264 
1265 	zram_slot_lock(zram, index);
1266 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1267 		struct bio_vec bvec;
1268 
1269 		zram_slot_unlock(zram, index);
1270 
1271 		bvec.bv_page = page;
1272 		bvec.bv_len = PAGE_SIZE;
1273 		bvec.bv_offset = 0;
1274 		return read_from_bdev(zram, &bvec,
1275 				zram_get_element(zram, index),
1276 				bio, partial_io);
1277 	}
1278 
1279 	handle = zram_get_handle(zram, index);
1280 	if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1281 		unsigned long value;
1282 		void *mem;
1283 
1284 		value = handle ? zram_get_element(zram, index) : 0;
1285 		mem = kmap_atomic(page);
1286 		zram_fill_page(mem, PAGE_SIZE, value);
1287 		kunmap_atomic(mem);
1288 		zram_slot_unlock(zram, index);
1289 		return 0;
1290 	}
1291 
1292 	size = zram_get_obj_size(zram, index);
1293 
1294 	if (size != PAGE_SIZE)
1295 		zstrm = zcomp_stream_get(zram->comp);
1296 
1297 	src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1298 	if (size == PAGE_SIZE) {
1299 		dst = kmap_atomic(page);
1300 		memcpy(dst, src, PAGE_SIZE);
1301 		kunmap_atomic(dst);
1302 		ret = 0;
1303 	} else {
1304 		dst = kmap_atomic(page);
1305 		ret = zcomp_decompress(zstrm, src, size, dst);
1306 		kunmap_atomic(dst);
1307 		zcomp_stream_put(zram->comp);
1308 	}
1309 	zs_unmap_object(zram->mem_pool, handle);
1310 	zram_slot_unlock(zram, index);
1311 
1312 	/* Should NEVER happen. Return bio error if it does. */
1313 	if (WARN_ON(ret))
1314 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1315 
1316 	return ret;
1317 }
1318 
1319 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1320 				u32 index, int offset, struct bio *bio)
1321 {
1322 	int ret;
1323 	struct page *page;
1324 
1325 	page = bvec->bv_page;
1326 	if (is_partial_io(bvec)) {
1327 		/* Use a temporary buffer to decompress the page */
1328 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1329 		if (!page)
1330 			return -ENOMEM;
1331 	}
1332 
1333 	ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1334 	if (unlikely(ret))
1335 		goto out;
1336 
1337 	if (is_partial_io(bvec)) {
1338 		void *src = kmap_atomic(page);
1339 
1340 		memcpy_to_bvec(bvec, src + offset);
1341 		kunmap_atomic(src);
1342 	}
1343 out:
1344 	if (is_partial_io(bvec))
1345 		__free_page(page);
1346 
1347 	return ret;
1348 }
1349 
1350 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1351 				u32 index, struct bio *bio)
1352 {
1353 	int ret = 0;
1354 	unsigned long alloced_pages;
1355 	unsigned long handle = -ENOMEM;
1356 	unsigned int comp_len = 0;
1357 	void *src, *dst, *mem;
1358 	struct zcomp_strm *zstrm;
1359 	struct page *page = bvec->bv_page;
1360 	unsigned long element = 0;
1361 	enum zram_pageflags flags = 0;
1362 
1363 	mem = kmap_atomic(page);
1364 	if (page_same_filled(mem, &element)) {
1365 		kunmap_atomic(mem);
1366 		/* Free memory associated with this sector now. */
1367 		flags = ZRAM_SAME;
1368 		atomic64_inc(&zram->stats.same_pages);
1369 		goto out;
1370 	}
1371 	kunmap_atomic(mem);
1372 
1373 compress_again:
1374 	zstrm = zcomp_stream_get(zram->comp);
1375 	src = kmap_atomic(page);
1376 	ret = zcomp_compress(zstrm, src, &comp_len);
1377 	kunmap_atomic(src);
1378 
1379 	if (unlikely(ret)) {
1380 		zcomp_stream_put(zram->comp);
1381 		pr_err("Compression failed! err=%d\n", ret);
1382 		zs_free(zram->mem_pool, handle);
1383 		return ret;
1384 	}
1385 
1386 	if (comp_len >= huge_class_size)
1387 		comp_len = PAGE_SIZE;
1388 	/*
1389 	 * handle allocation has 2 paths:
1390 	 * a) fast path is executed with preemption disabled (for
1391 	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1392 	 *  since we can't sleep;
1393 	 * b) slow path enables preemption and attempts to allocate
1394 	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
1395 	 *  put per-cpu compression stream and, thus, to re-do
1396 	 *  the compression once handle is allocated.
1397 	 *
1398 	 * if we have a 'non-null' handle here then we are coming
1399 	 * from the slow path and handle has already been allocated.
1400 	 */
1401 	if (IS_ERR((void *)handle))
1402 		handle = zs_malloc(zram->mem_pool, comp_len,
1403 				__GFP_KSWAPD_RECLAIM |
1404 				__GFP_NOWARN |
1405 				__GFP_HIGHMEM |
1406 				__GFP_MOVABLE);
1407 	if (IS_ERR((void *)handle)) {
1408 		zcomp_stream_put(zram->comp);
1409 		atomic64_inc(&zram->stats.writestall);
1410 		handle = zs_malloc(zram->mem_pool, comp_len,
1411 				GFP_NOIO | __GFP_HIGHMEM |
1412 				__GFP_MOVABLE);
1413 		if (!IS_ERR((void *)handle))
1414 			goto compress_again;
1415 		return PTR_ERR((void *)handle);
1416 	}
1417 
1418 	alloced_pages = zs_get_total_pages(zram->mem_pool);
1419 	update_used_max(zram, alloced_pages);
1420 
1421 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1422 		zcomp_stream_put(zram->comp);
1423 		zs_free(zram->mem_pool, handle);
1424 		return -ENOMEM;
1425 	}
1426 
1427 	dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1428 
1429 	src = zstrm->buffer;
1430 	if (comp_len == PAGE_SIZE)
1431 		src = kmap_atomic(page);
1432 	memcpy(dst, src, comp_len);
1433 	if (comp_len == PAGE_SIZE)
1434 		kunmap_atomic(src);
1435 
1436 	zcomp_stream_put(zram->comp);
1437 	zs_unmap_object(zram->mem_pool, handle);
1438 	atomic64_add(comp_len, &zram->stats.compr_data_size);
1439 out:
1440 	/*
1441 	 * Free memory associated with this sector
1442 	 * before overwriting unused sectors.
1443 	 */
1444 	zram_slot_lock(zram, index);
1445 	zram_free_page(zram, index);
1446 
1447 	if (comp_len == PAGE_SIZE) {
1448 		zram_set_flag(zram, index, ZRAM_HUGE);
1449 		atomic64_inc(&zram->stats.huge_pages);
1450 		atomic64_inc(&zram->stats.huge_pages_since);
1451 	}
1452 
1453 	if (flags) {
1454 		zram_set_flag(zram, index, flags);
1455 		zram_set_element(zram, index, element);
1456 	}  else {
1457 		zram_set_handle(zram, index, handle);
1458 		zram_set_obj_size(zram, index, comp_len);
1459 	}
1460 	zram_slot_unlock(zram, index);
1461 
1462 	/* Update stats */
1463 	atomic64_inc(&zram->stats.pages_stored);
1464 	return ret;
1465 }
1466 
1467 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1468 				u32 index, int offset, struct bio *bio)
1469 {
1470 	int ret;
1471 	struct page *page = NULL;
1472 	struct bio_vec vec;
1473 
1474 	vec = *bvec;
1475 	if (is_partial_io(bvec)) {
1476 		void *dst;
1477 		/*
1478 		 * This is a partial IO. We need to read the full page
1479 		 * before to write the changes.
1480 		 */
1481 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1482 		if (!page)
1483 			return -ENOMEM;
1484 
1485 		ret = __zram_bvec_read(zram, page, index, bio, true);
1486 		if (ret)
1487 			goto out;
1488 
1489 		dst = kmap_atomic(page);
1490 		memcpy_from_bvec(dst + offset, bvec);
1491 		kunmap_atomic(dst);
1492 
1493 		vec.bv_page = page;
1494 		vec.bv_len = PAGE_SIZE;
1495 		vec.bv_offset = 0;
1496 	}
1497 
1498 	ret = __zram_bvec_write(zram, &vec, index, bio);
1499 out:
1500 	if (is_partial_io(bvec))
1501 		__free_page(page);
1502 	return ret;
1503 }
1504 
1505 /*
1506  * zram_bio_discard - handler on discard request
1507  * @index: physical block index in PAGE_SIZE units
1508  * @offset: byte offset within physical block
1509  */
1510 static void zram_bio_discard(struct zram *zram, u32 index,
1511 			     int offset, struct bio *bio)
1512 {
1513 	size_t n = bio->bi_iter.bi_size;
1514 
1515 	/*
1516 	 * zram manages data in physical block size units. Because logical block
1517 	 * size isn't identical with physical block size on some arch, we
1518 	 * could get a discard request pointing to a specific offset within a
1519 	 * certain physical block.  Although we can handle this request by
1520 	 * reading that physiclal block and decompressing and partially zeroing
1521 	 * and re-compressing and then re-storing it, this isn't reasonable
1522 	 * because our intent with a discard request is to save memory.  So
1523 	 * skipping this logical block is appropriate here.
1524 	 */
1525 	if (offset) {
1526 		if (n <= (PAGE_SIZE - offset))
1527 			return;
1528 
1529 		n -= (PAGE_SIZE - offset);
1530 		index++;
1531 	}
1532 
1533 	while (n >= PAGE_SIZE) {
1534 		zram_slot_lock(zram, index);
1535 		zram_free_page(zram, index);
1536 		zram_slot_unlock(zram, index);
1537 		atomic64_inc(&zram->stats.notify_free);
1538 		index++;
1539 		n -= PAGE_SIZE;
1540 	}
1541 }
1542 
1543 /*
1544  * Returns errno if it has some problem. Otherwise return 0 or 1.
1545  * Returns 0 if IO request was done synchronously
1546  * Returns 1 if IO request was successfully submitted.
1547  */
1548 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1549 			int offset, enum req_op op, struct bio *bio)
1550 {
1551 	int ret;
1552 
1553 	if (!op_is_write(op)) {
1554 		atomic64_inc(&zram->stats.num_reads);
1555 		ret = zram_bvec_read(zram, bvec, index, offset, bio);
1556 		flush_dcache_page(bvec->bv_page);
1557 	} else {
1558 		atomic64_inc(&zram->stats.num_writes);
1559 		ret = zram_bvec_write(zram, bvec, index, offset, bio);
1560 	}
1561 
1562 	zram_slot_lock(zram, index);
1563 	zram_accessed(zram, index);
1564 	zram_slot_unlock(zram, index);
1565 
1566 	if (unlikely(ret < 0)) {
1567 		if (!op_is_write(op))
1568 			atomic64_inc(&zram->stats.failed_reads);
1569 		else
1570 			atomic64_inc(&zram->stats.failed_writes);
1571 	}
1572 
1573 	return ret;
1574 }
1575 
1576 static void __zram_make_request(struct zram *zram, struct bio *bio)
1577 {
1578 	int offset;
1579 	u32 index;
1580 	struct bio_vec bvec;
1581 	struct bvec_iter iter;
1582 	unsigned long start_time;
1583 
1584 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1585 	offset = (bio->bi_iter.bi_sector &
1586 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1587 
1588 	switch (bio_op(bio)) {
1589 	case REQ_OP_DISCARD:
1590 	case REQ_OP_WRITE_ZEROES:
1591 		zram_bio_discard(zram, index, offset, bio);
1592 		bio_endio(bio);
1593 		return;
1594 	default:
1595 		break;
1596 	}
1597 
1598 	start_time = bio_start_io_acct(bio);
1599 	bio_for_each_segment(bvec, bio, iter) {
1600 		struct bio_vec bv = bvec;
1601 		unsigned int unwritten = bvec.bv_len;
1602 
1603 		do {
1604 			bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1605 							unwritten);
1606 			if (zram_bvec_rw(zram, &bv, index, offset,
1607 					 bio_op(bio), bio) < 0) {
1608 				bio->bi_status = BLK_STS_IOERR;
1609 				break;
1610 			}
1611 
1612 			bv.bv_offset += bv.bv_len;
1613 			unwritten -= bv.bv_len;
1614 
1615 			update_position(&index, &offset, &bv);
1616 		} while (unwritten);
1617 	}
1618 	bio_end_io_acct(bio, start_time);
1619 	bio_endio(bio);
1620 }
1621 
1622 /*
1623  * Handler function for all zram I/O requests.
1624  */
1625 static void zram_submit_bio(struct bio *bio)
1626 {
1627 	struct zram *zram = bio->bi_bdev->bd_disk->private_data;
1628 
1629 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1630 					bio->bi_iter.bi_size)) {
1631 		atomic64_inc(&zram->stats.invalid_io);
1632 		bio_io_error(bio);
1633 		return;
1634 	}
1635 
1636 	__zram_make_request(zram, bio);
1637 }
1638 
1639 static void zram_slot_free_notify(struct block_device *bdev,
1640 				unsigned long index)
1641 {
1642 	struct zram *zram;
1643 
1644 	zram = bdev->bd_disk->private_data;
1645 
1646 	atomic64_inc(&zram->stats.notify_free);
1647 	if (!zram_slot_trylock(zram, index)) {
1648 		atomic64_inc(&zram->stats.miss_free);
1649 		return;
1650 	}
1651 
1652 	zram_free_page(zram, index);
1653 	zram_slot_unlock(zram, index);
1654 }
1655 
1656 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1657 		       struct page *page, enum req_op op)
1658 {
1659 	int offset, ret;
1660 	u32 index;
1661 	struct zram *zram;
1662 	struct bio_vec bv;
1663 	unsigned long start_time;
1664 
1665 	if (PageTransHuge(page))
1666 		return -ENOTSUPP;
1667 	zram = bdev->bd_disk->private_data;
1668 
1669 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1670 		atomic64_inc(&zram->stats.invalid_io);
1671 		ret = -EINVAL;
1672 		goto out;
1673 	}
1674 
1675 	index = sector >> SECTORS_PER_PAGE_SHIFT;
1676 	offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1677 
1678 	bv.bv_page = page;
1679 	bv.bv_len = PAGE_SIZE;
1680 	bv.bv_offset = 0;
1681 
1682 	start_time = bdev_start_io_acct(bdev->bd_disk->part0,
1683 			SECTORS_PER_PAGE, op, jiffies);
1684 	ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL);
1685 	bdev_end_io_acct(bdev->bd_disk->part0, op, start_time);
1686 out:
1687 	/*
1688 	 * If I/O fails, just return error(ie, non-zero) without
1689 	 * calling page_endio.
1690 	 * It causes resubmit the I/O with bio request by upper functions
1691 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1692 	 * bio->bi_end_io does things to handle the error
1693 	 * (e.g., SetPageError, set_page_dirty and extra works).
1694 	 */
1695 	if (unlikely(ret < 0))
1696 		return ret;
1697 
1698 	switch (ret) {
1699 	case 0:
1700 		page_endio(page, op_is_write(op), 0);
1701 		break;
1702 	case 1:
1703 		ret = 0;
1704 		break;
1705 	default:
1706 		WARN_ON(1);
1707 	}
1708 	return ret;
1709 }
1710 
1711 static void zram_reset_device(struct zram *zram)
1712 {
1713 	struct zcomp *comp;
1714 	u64 disksize;
1715 
1716 	down_write(&zram->init_lock);
1717 
1718 	zram->limit_pages = 0;
1719 
1720 	if (!init_done(zram)) {
1721 		up_write(&zram->init_lock);
1722 		return;
1723 	}
1724 
1725 	comp = zram->comp;
1726 	disksize = zram->disksize;
1727 	zram->disksize = 0;
1728 
1729 	set_capacity_and_notify(zram->disk, 0);
1730 	part_stat_set_all(zram->disk->part0, 0);
1731 
1732 	/* I/O operation under all of CPU are done so let's free */
1733 	zram_meta_free(zram, disksize);
1734 	memset(&zram->stats, 0, sizeof(zram->stats));
1735 	zcomp_destroy(comp);
1736 	reset_bdev(zram);
1737 
1738 	up_write(&zram->init_lock);
1739 }
1740 
1741 static ssize_t disksize_store(struct device *dev,
1742 		struct device_attribute *attr, const char *buf, size_t len)
1743 {
1744 	u64 disksize;
1745 	struct zcomp *comp;
1746 	struct zram *zram = dev_to_zram(dev);
1747 	int err;
1748 
1749 	disksize = memparse(buf, NULL);
1750 	if (!disksize)
1751 		return -EINVAL;
1752 
1753 	down_write(&zram->init_lock);
1754 	if (init_done(zram)) {
1755 		pr_info("Cannot change disksize for initialized device\n");
1756 		err = -EBUSY;
1757 		goto out_unlock;
1758 	}
1759 
1760 	disksize = PAGE_ALIGN(disksize);
1761 	if (!zram_meta_alloc(zram, disksize)) {
1762 		err = -ENOMEM;
1763 		goto out_unlock;
1764 	}
1765 
1766 	comp = zcomp_create(zram->compressor);
1767 	if (IS_ERR(comp)) {
1768 		pr_err("Cannot initialise %s compressing backend\n",
1769 				zram->compressor);
1770 		err = PTR_ERR(comp);
1771 		goto out_free_meta;
1772 	}
1773 
1774 	zram->comp = comp;
1775 	zram->disksize = disksize;
1776 	set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT);
1777 	up_write(&zram->init_lock);
1778 
1779 	return len;
1780 
1781 out_free_meta:
1782 	zram_meta_free(zram, disksize);
1783 out_unlock:
1784 	up_write(&zram->init_lock);
1785 	return err;
1786 }
1787 
1788 static ssize_t reset_store(struct device *dev,
1789 		struct device_attribute *attr, const char *buf, size_t len)
1790 {
1791 	int ret;
1792 	unsigned short do_reset;
1793 	struct zram *zram;
1794 	struct gendisk *disk;
1795 
1796 	ret = kstrtou16(buf, 10, &do_reset);
1797 	if (ret)
1798 		return ret;
1799 
1800 	if (!do_reset)
1801 		return -EINVAL;
1802 
1803 	zram = dev_to_zram(dev);
1804 	disk = zram->disk;
1805 
1806 	mutex_lock(&disk->open_mutex);
1807 	/* Do not reset an active device or claimed device */
1808 	if (disk_openers(disk) || zram->claim) {
1809 		mutex_unlock(&disk->open_mutex);
1810 		return -EBUSY;
1811 	}
1812 
1813 	/* From now on, anyone can't open /dev/zram[0-9] */
1814 	zram->claim = true;
1815 	mutex_unlock(&disk->open_mutex);
1816 
1817 	/* Make sure all the pending I/O are finished */
1818 	sync_blockdev(disk->part0);
1819 	zram_reset_device(zram);
1820 
1821 	mutex_lock(&disk->open_mutex);
1822 	zram->claim = false;
1823 	mutex_unlock(&disk->open_mutex);
1824 
1825 	return len;
1826 }
1827 
1828 static int zram_open(struct block_device *bdev, fmode_t mode)
1829 {
1830 	int ret = 0;
1831 	struct zram *zram;
1832 
1833 	WARN_ON(!mutex_is_locked(&bdev->bd_disk->open_mutex));
1834 
1835 	zram = bdev->bd_disk->private_data;
1836 	/* zram was claimed to reset so open request fails */
1837 	if (zram->claim)
1838 		ret = -EBUSY;
1839 
1840 	return ret;
1841 }
1842 
1843 static const struct block_device_operations zram_devops = {
1844 	.open = zram_open,
1845 	.submit_bio = zram_submit_bio,
1846 	.swap_slot_free_notify = zram_slot_free_notify,
1847 	.rw_page = zram_rw_page,
1848 	.owner = THIS_MODULE
1849 };
1850 
1851 #ifdef CONFIG_ZRAM_WRITEBACK
1852 static const struct block_device_operations zram_wb_devops = {
1853 	.open = zram_open,
1854 	.submit_bio = zram_submit_bio,
1855 	.swap_slot_free_notify = zram_slot_free_notify,
1856 	.owner = THIS_MODULE
1857 };
1858 #endif
1859 
1860 static DEVICE_ATTR_WO(compact);
1861 static DEVICE_ATTR_RW(disksize);
1862 static DEVICE_ATTR_RO(initstate);
1863 static DEVICE_ATTR_WO(reset);
1864 static DEVICE_ATTR_WO(mem_limit);
1865 static DEVICE_ATTR_WO(mem_used_max);
1866 static DEVICE_ATTR_WO(idle);
1867 static DEVICE_ATTR_RW(max_comp_streams);
1868 static DEVICE_ATTR_RW(comp_algorithm);
1869 #ifdef CONFIG_ZRAM_WRITEBACK
1870 static DEVICE_ATTR_RW(backing_dev);
1871 static DEVICE_ATTR_WO(writeback);
1872 static DEVICE_ATTR_RW(writeback_limit);
1873 static DEVICE_ATTR_RW(writeback_limit_enable);
1874 #endif
1875 
1876 static struct attribute *zram_disk_attrs[] = {
1877 	&dev_attr_disksize.attr,
1878 	&dev_attr_initstate.attr,
1879 	&dev_attr_reset.attr,
1880 	&dev_attr_compact.attr,
1881 	&dev_attr_mem_limit.attr,
1882 	&dev_attr_mem_used_max.attr,
1883 	&dev_attr_idle.attr,
1884 	&dev_attr_max_comp_streams.attr,
1885 	&dev_attr_comp_algorithm.attr,
1886 #ifdef CONFIG_ZRAM_WRITEBACK
1887 	&dev_attr_backing_dev.attr,
1888 	&dev_attr_writeback.attr,
1889 	&dev_attr_writeback_limit.attr,
1890 	&dev_attr_writeback_limit_enable.attr,
1891 #endif
1892 	&dev_attr_io_stat.attr,
1893 	&dev_attr_mm_stat.attr,
1894 #ifdef CONFIG_ZRAM_WRITEBACK
1895 	&dev_attr_bd_stat.attr,
1896 #endif
1897 	&dev_attr_debug_stat.attr,
1898 	NULL,
1899 };
1900 
1901 ATTRIBUTE_GROUPS(zram_disk);
1902 
1903 /*
1904  * Allocate and initialize new zram device. the function returns
1905  * '>= 0' device_id upon success, and negative value otherwise.
1906  */
1907 static int zram_add(void)
1908 {
1909 	struct zram *zram;
1910 	int ret, device_id;
1911 
1912 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1913 	if (!zram)
1914 		return -ENOMEM;
1915 
1916 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1917 	if (ret < 0)
1918 		goto out_free_dev;
1919 	device_id = ret;
1920 
1921 	init_rwsem(&zram->init_lock);
1922 #ifdef CONFIG_ZRAM_WRITEBACK
1923 	spin_lock_init(&zram->wb_limit_lock);
1924 #endif
1925 
1926 	/* gendisk structure */
1927 	zram->disk = blk_alloc_disk(NUMA_NO_NODE);
1928 	if (!zram->disk) {
1929 		pr_err("Error allocating disk structure for device %d\n",
1930 			device_id);
1931 		ret = -ENOMEM;
1932 		goto out_free_idr;
1933 	}
1934 
1935 	zram->disk->major = zram_major;
1936 	zram->disk->first_minor = device_id;
1937 	zram->disk->minors = 1;
1938 	zram->disk->flags |= GENHD_FL_NO_PART;
1939 	zram->disk->fops = &zram_devops;
1940 	zram->disk->private_data = zram;
1941 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1942 
1943 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1944 	set_capacity(zram->disk, 0);
1945 	/* zram devices sort of resembles non-rotational disks */
1946 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1947 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1948 
1949 	/*
1950 	 * To ensure that we always get PAGE_SIZE aligned
1951 	 * and n*PAGE_SIZED sized I/O requests.
1952 	 */
1953 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1954 	blk_queue_logical_block_size(zram->disk->queue,
1955 					ZRAM_LOGICAL_BLOCK_SIZE);
1956 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1957 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1958 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1959 	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1960 
1961 	/*
1962 	 * zram_bio_discard() will clear all logical blocks if logical block
1963 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1964 	 * different, we will skip discarding some parts of logical blocks in
1965 	 * the part of the request range which isn't aligned to physical block
1966 	 * size.  So we can't ensure that all discarded logical blocks are
1967 	 * zeroed.
1968 	 */
1969 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1970 		blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1971 
1972 	blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, zram->disk->queue);
1973 	ret = device_add_disk(NULL, zram->disk, zram_disk_groups);
1974 	if (ret)
1975 		goto out_cleanup_disk;
1976 
1977 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1978 
1979 	zram_debugfs_register(zram);
1980 	pr_info("Added device: %s\n", zram->disk->disk_name);
1981 	return device_id;
1982 
1983 out_cleanup_disk:
1984 	put_disk(zram->disk);
1985 out_free_idr:
1986 	idr_remove(&zram_index_idr, device_id);
1987 out_free_dev:
1988 	kfree(zram);
1989 	return ret;
1990 }
1991 
1992 static int zram_remove(struct zram *zram)
1993 {
1994 	bool claimed;
1995 
1996 	mutex_lock(&zram->disk->open_mutex);
1997 	if (disk_openers(zram->disk)) {
1998 		mutex_unlock(&zram->disk->open_mutex);
1999 		return -EBUSY;
2000 	}
2001 
2002 	claimed = zram->claim;
2003 	if (!claimed)
2004 		zram->claim = true;
2005 	mutex_unlock(&zram->disk->open_mutex);
2006 
2007 	zram_debugfs_unregister(zram);
2008 
2009 	if (claimed) {
2010 		/*
2011 		 * If we were claimed by reset_store(), del_gendisk() will
2012 		 * wait until reset_store() is done, so nothing need to do.
2013 		 */
2014 		;
2015 	} else {
2016 		/* Make sure all the pending I/O are finished */
2017 		sync_blockdev(zram->disk->part0);
2018 		zram_reset_device(zram);
2019 	}
2020 
2021 	pr_info("Removed device: %s\n", zram->disk->disk_name);
2022 
2023 	del_gendisk(zram->disk);
2024 
2025 	/* del_gendisk drains pending reset_store */
2026 	WARN_ON_ONCE(claimed && zram->claim);
2027 
2028 	/*
2029 	 * disksize_store() may be called in between zram_reset_device()
2030 	 * and del_gendisk(), so run the last reset to avoid leaking
2031 	 * anything allocated with disksize_store()
2032 	 */
2033 	zram_reset_device(zram);
2034 
2035 	put_disk(zram->disk);
2036 	kfree(zram);
2037 	return 0;
2038 }
2039 
2040 /* zram-control sysfs attributes */
2041 
2042 /*
2043  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2044  * sense that reading from this file does alter the state of your system -- it
2045  * creates a new un-initialized zram device and returns back this device's
2046  * device_id (or an error code if it fails to create a new device).
2047  */
2048 static ssize_t hot_add_show(struct class *class,
2049 			struct class_attribute *attr,
2050 			char *buf)
2051 {
2052 	int ret;
2053 
2054 	mutex_lock(&zram_index_mutex);
2055 	ret = zram_add();
2056 	mutex_unlock(&zram_index_mutex);
2057 
2058 	if (ret < 0)
2059 		return ret;
2060 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
2061 }
2062 static struct class_attribute class_attr_hot_add =
2063 	__ATTR(hot_add, 0400, hot_add_show, NULL);
2064 
2065 static ssize_t hot_remove_store(struct class *class,
2066 			struct class_attribute *attr,
2067 			const char *buf,
2068 			size_t count)
2069 {
2070 	struct zram *zram;
2071 	int ret, dev_id;
2072 
2073 	/* dev_id is gendisk->first_minor, which is `int' */
2074 	ret = kstrtoint(buf, 10, &dev_id);
2075 	if (ret)
2076 		return ret;
2077 	if (dev_id < 0)
2078 		return -EINVAL;
2079 
2080 	mutex_lock(&zram_index_mutex);
2081 
2082 	zram = idr_find(&zram_index_idr, dev_id);
2083 	if (zram) {
2084 		ret = zram_remove(zram);
2085 		if (!ret)
2086 			idr_remove(&zram_index_idr, dev_id);
2087 	} else {
2088 		ret = -ENODEV;
2089 	}
2090 
2091 	mutex_unlock(&zram_index_mutex);
2092 	return ret ? ret : count;
2093 }
2094 static CLASS_ATTR_WO(hot_remove);
2095 
2096 static struct attribute *zram_control_class_attrs[] = {
2097 	&class_attr_hot_add.attr,
2098 	&class_attr_hot_remove.attr,
2099 	NULL,
2100 };
2101 ATTRIBUTE_GROUPS(zram_control_class);
2102 
2103 static struct class zram_control_class = {
2104 	.name		= "zram-control",
2105 	.owner		= THIS_MODULE,
2106 	.class_groups	= zram_control_class_groups,
2107 };
2108 
2109 static int zram_remove_cb(int id, void *ptr, void *data)
2110 {
2111 	WARN_ON_ONCE(zram_remove(ptr));
2112 	return 0;
2113 }
2114 
2115 static void destroy_devices(void)
2116 {
2117 	class_unregister(&zram_control_class);
2118 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2119 	zram_debugfs_destroy();
2120 	idr_destroy(&zram_index_idr);
2121 	unregister_blkdev(zram_major, "zram");
2122 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2123 }
2124 
2125 static int __init zram_init(void)
2126 {
2127 	int ret;
2128 
2129 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2130 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
2131 	if (ret < 0)
2132 		return ret;
2133 
2134 	ret = class_register(&zram_control_class);
2135 	if (ret) {
2136 		pr_err("Unable to register zram-control class\n");
2137 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2138 		return ret;
2139 	}
2140 
2141 	zram_debugfs_create();
2142 	zram_major = register_blkdev(0, "zram");
2143 	if (zram_major <= 0) {
2144 		pr_err("Unable to get major number\n");
2145 		class_unregister(&zram_control_class);
2146 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2147 		return -EBUSY;
2148 	}
2149 
2150 	while (num_devices != 0) {
2151 		mutex_lock(&zram_index_mutex);
2152 		ret = zram_add();
2153 		mutex_unlock(&zram_index_mutex);
2154 		if (ret < 0)
2155 			goto out_error;
2156 		num_devices--;
2157 	}
2158 
2159 	return 0;
2160 
2161 out_error:
2162 	destroy_devices();
2163 	return ret;
2164 }
2165 
2166 static void __exit zram_exit(void)
2167 {
2168 	destroy_devices();
2169 }
2170 
2171 module_init(zram_init);
2172 module_exit(zram_exit);
2173 
2174 module_param(num_devices, uint, 0);
2175 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2176 
2177 MODULE_LICENSE("Dual BSD/GPL");
2178 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2179 MODULE_DESCRIPTION("Compressed RAM Block Device");
2180