1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/bitops.h> 22 #include <linux/blkdev.h> 23 #include <linux/buffer_head.h> 24 #include <linux/device.h> 25 #include <linux/highmem.h> 26 #include <linux/slab.h> 27 #include <linux/backing-dev.h> 28 #include <linux/string.h> 29 #include <linux/vmalloc.h> 30 #include <linux/err.h> 31 #include <linux/idr.h> 32 #include <linux/sysfs.h> 33 #include <linux/debugfs.h> 34 #include <linux/cpuhotplug.h> 35 #include <linux/part_stat.h> 36 37 #include "zram_drv.h" 38 39 static DEFINE_IDR(zram_index_idr); 40 /* idr index must be protected */ 41 static DEFINE_MUTEX(zram_index_mutex); 42 43 static int zram_major; 44 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP; 45 46 /* Module params (documentation at end) */ 47 static unsigned int num_devices = 1; 48 /* 49 * Pages that compress to sizes equals or greater than this are stored 50 * uncompressed in memory. 51 */ 52 static size_t huge_class_size; 53 54 static const struct block_device_operations zram_devops; 55 56 static void zram_free_page(struct zram *zram, size_t index); 57 static int zram_read_page(struct zram *zram, struct page *page, u32 index, 58 struct bio *parent); 59 60 static int zram_slot_trylock(struct zram *zram, u32 index) 61 { 62 return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags); 63 } 64 65 static void zram_slot_lock(struct zram *zram, u32 index) 66 { 67 bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags); 68 } 69 70 static void zram_slot_unlock(struct zram *zram, u32 index) 71 { 72 bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags); 73 } 74 75 static inline bool init_done(struct zram *zram) 76 { 77 return zram->disksize; 78 } 79 80 static inline struct zram *dev_to_zram(struct device *dev) 81 { 82 return (struct zram *)dev_to_disk(dev)->private_data; 83 } 84 85 static unsigned long zram_get_handle(struct zram *zram, u32 index) 86 { 87 return zram->table[index].handle; 88 } 89 90 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle) 91 { 92 zram->table[index].handle = handle; 93 } 94 95 /* flag operations require table entry bit_spin_lock() being held */ 96 static bool zram_test_flag(struct zram *zram, u32 index, 97 enum zram_pageflags flag) 98 { 99 return zram->table[index].flags & BIT(flag); 100 } 101 102 static void zram_set_flag(struct zram *zram, u32 index, 103 enum zram_pageflags flag) 104 { 105 zram->table[index].flags |= BIT(flag); 106 } 107 108 static void zram_clear_flag(struct zram *zram, u32 index, 109 enum zram_pageflags flag) 110 { 111 zram->table[index].flags &= ~BIT(flag); 112 } 113 114 static inline void zram_set_element(struct zram *zram, u32 index, 115 unsigned long element) 116 { 117 zram->table[index].element = element; 118 } 119 120 static unsigned long zram_get_element(struct zram *zram, u32 index) 121 { 122 return zram->table[index].element; 123 } 124 125 static size_t zram_get_obj_size(struct zram *zram, u32 index) 126 { 127 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1); 128 } 129 130 static void zram_set_obj_size(struct zram *zram, 131 u32 index, size_t size) 132 { 133 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT; 134 135 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size; 136 } 137 138 static inline bool zram_allocated(struct zram *zram, u32 index) 139 { 140 return zram_get_obj_size(zram, index) || 141 zram_test_flag(zram, index, ZRAM_SAME) || 142 zram_test_flag(zram, index, ZRAM_WB); 143 } 144 145 #if PAGE_SIZE != 4096 146 static inline bool is_partial_io(struct bio_vec *bvec) 147 { 148 return bvec->bv_len != PAGE_SIZE; 149 } 150 #define ZRAM_PARTIAL_IO 1 151 #else 152 static inline bool is_partial_io(struct bio_vec *bvec) 153 { 154 return false; 155 } 156 #endif 157 158 static inline void zram_set_priority(struct zram *zram, u32 index, u32 prio) 159 { 160 prio &= ZRAM_COMP_PRIORITY_MASK; 161 /* 162 * Clear previous priority value first, in case if we recompress 163 * further an already recompressed page 164 */ 165 zram->table[index].flags &= ~(ZRAM_COMP_PRIORITY_MASK << 166 ZRAM_COMP_PRIORITY_BIT1); 167 zram->table[index].flags |= (prio << ZRAM_COMP_PRIORITY_BIT1); 168 } 169 170 static inline u32 zram_get_priority(struct zram *zram, u32 index) 171 { 172 u32 prio = zram->table[index].flags >> ZRAM_COMP_PRIORITY_BIT1; 173 174 return prio & ZRAM_COMP_PRIORITY_MASK; 175 } 176 177 static void zram_accessed(struct zram *zram, u32 index) 178 { 179 zram_clear_flag(zram, index, ZRAM_IDLE); 180 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME 181 zram->table[index].ac_time = ktime_get_boottime(); 182 #endif 183 } 184 185 static inline void update_used_max(struct zram *zram, 186 const unsigned long pages) 187 { 188 unsigned long cur_max = atomic_long_read(&zram->stats.max_used_pages); 189 190 do { 191 if (cur_max >= pages) 192 return; 193 } while (!atomic_long_try_cmpxchg(&zram->stats.max_used_pages, 194 &cur_max, pages)); 195 } 196 197 static inline void zram_fill_page(void *ptr, unsigned long len, 198 unsigned long value) 199 { 200 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long))); 201 memset_l(ptr, value, len / sizeof(unsigned long)); 202 } 203 204 static bool page_same_filled(void *ptr, unsigned long *element) 205 { 206 unsigned long *page; 207 unsigned long val; 208 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1; 209 210 page = (unsigned long *)ptr; 211 val = page[0]; 212 213 if (val != page[last_pos]) 214 return false; 215 216 for (pos = 1; pos < last_pos; pos++) { 217 if (val != page[pos]) 218 return false; 219 } 220 221 *element = val; 222 223 return true; 224 } 225 226 static ssize_t initstate_show(struct device *dev, 227 struct device_attribute *attr, char *buf) 228 { 229 u32 val; 230 struct zram *zram = dev_to_zram(dev); 231 232 down_read(&zram->init_lock); 233 val = init_done(zram); 234 up_read(&zram->init_lock); 235 236 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 237 } 238 239 static ssize_t disksize_show(struct device *dev, 240 struct device_attribute *attr, char *buf) 241 { 242 struct zram *zram = dev_to_zram(dev); 243 244 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 245 } 246 247 static ssize_t mem_limit_store(struct device *dev, 248 struct device_attribute *attr, const char *buf, size_t len) 249 { 250 u64 limit; 251 char *tmp; 252 struct zram *zram = dev_to_zram(dev); 253 254 limit = memparse(buf, &tmp); 255 if (buf == tmp) /* no chars parsed, invalid input */ 256 return -EINVAL; 257 258 down_write(&zram->init_lock); 259 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; 260 up_write(&zram->init_lock); 261 262 return len; 263 } 264 265 static ssize_t mem_used_max_store(struct device *dev, 266 struct device_attribute *attr, const char *buf, size_t len) 267 { 268 int err; 269 unsigned long val; 270 struct zram *zram = dev_to_zram(dev); 271 272 err = kstrtoul(buf, 10, &val); 273 if (err || val != 0) 274 return -EINVAL; 275 276 down_read(&zram->init_lock); 277 if (init_done(zram)) { 278 atomic_long_set(&zram->stats.max_used_pages, 279 zs_get_total_pages(zram->mem_pool)); 280 } 281 up_read(&zram->init_lock); 282 283 return len; 284 } 285 286 /* 287 * Mark all pages which are older than or equal to cutoff as IDLE. 288 * Callers should hold the zram init lock in read mode 289 */ 290 static void mark_idle(struct zram *zram, ktime_t cutoff) 291 { 292 int is_idle = 1; 293 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 294 int index; 295 296 for (index = 0; index < nr_pages; index++) { 297 /* 298 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race. 299 * See the comment in writeback_store. 300 */ 301 zram_slot_lock(zram, index); 302 if (zram_allocated(zram, index) && 303 !zram_test_flag(zram, index, ZRAM_UNDER_WB)) { 304 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME 305 is_idle = !cutoff || ktime_after(cutoff, 306 zram->table[index].ac_time); 307 #endif 308 if (is_idle) 309 zram_set_flag(zram, index, ZRAM_IDLE); 310 } 311 zram_slot_unlock(zram, index); 312 } 313 } 314 315 static ssize_t idle_store(struct device *dev, 316 struct device_attribute *attr, const char *buf, size_t len) 317 { 318 struct zram *zram = dev_to_zram(dev); 319 ktime_t cutoff_time = 0; 320 ssize_t rv = -EINVAL; 321 322 if (!sysfs_streq(buf, "all")) { 323 /* 324 * If it did not parse as 'all' try to treat it as an integer 325 * when we have memory tracking enabled. 326 */ 327 u64 age_sec; 328 329 if (IS_ENABLED(CONFIG_ZRAM_TRACK_ENTRY_ACTIME) && !kstrtoull(buf, 0, &age_sec)) 330 cutoff_time = ktime_sub(ktime_get_boottime(), 331 ns_to_ktime(age_sec * NSEC_PER_SEC)); 332 else 333 goto out; 334 } 335 336 down_read(&zram->init_lock); 337 if (!init_done(zram)) 338 goto out_unlock; 339 340 /* 341 * A cutoff_time of 0 marks everything as idle, this is the 342 * "all" behavior. 343 */ 344 mark_idle(zram, cutoff_time); 345 rv = len; 346 347 out_unlock: 348 up_read(&zram->init_lock); 349 out: 350 return rv; 351 } 352 353 #ifdef CONFIG_ZRAM_WRITEBACK 354 static ssize_t writeback_limit_enable_store(struct device *dev, 355 struct device_attribute *attr, const char *buf, size_t len) 356 { 357 struct zram *zram = dev_to_zram(dev); 358 u64 val; 359 ssize_t ret = -EINVAL; 360 361 if (kstrtoull(buf, 10, &val)) 362 return ret; 363 364 down_read(&zram->init_lock); 365 spin_lock(&zram->wb_limit_lock); 366 zram->wb_limit_enable = val; 367 spin_unlock(&zram->wb_limit_lock); 368 up_read(&zram->init_lock); 369 ret = len; 370 371 return ret; 372 } 373 374 static ssize_t writeback_limit_enable_show(struct device *dev, 375 struct device_attribute *attr, char *buf) 376 { 377 bool val; 378 struct zram *zram = dev_to_zram(dev); 379 380 down_read(&zram->init_lock); 381 spin_lock(&zram->wb_limit_lock); 382 val = zram->wb_limit_enable; 383 spin_unlock(&zram->wb_limit_lock); 384 up_read(&zram->init_lock); 385 386 return scnprintf(buf, PAGE_SIZE, "%d\n", val); 387 } 388 389 static ssize_t writeback_limit_store(struct device *dev, 390 struct device_attribute *attr, const char *buf, size_t len) 391 { 392 struct zram *zram = dev_to_zram(dev); 393 u64 val; 394 ssize_t ret = -EINVAL; 395 396 if (kstrtoull(buf, 10, &val)) 397 return ret; 398 399 down_read(&zram->init_lock); 400 spin_lock(&zram->wb_limit_lock); 401 zram->bd_wb_limit = val; 402 spin_unlock(&zram->wb_limit_lock); 403 up_read(&zram->init_lock); 404 ret = len; 405 406 return ret; 407 } 408 409 static ssize_t writeback_limit_show(struct device *dev, 410 struct device_attribute *attr, char *buf) 411 { 412 u64 val; 413 struct zram *zram = dev_to_zram(dev); 414 415 down_read(&zram->init_lock); 416 spin_lock(&zram->wb_limit_lock); 417 val = zram->bd_wb_limit; 418 spin_unlock(&zram->wb_limit_lock); 419 up_read(&zram->init_lock); 420 421 return scnprintf(buf, PAGE_SIZE, "%llu\n", val); 422 } 423 424 static void reset_bdev(struct zram *zram) 425 { 426 if (!zram->backing_dev) 427 return; 428 429 fput(zram->bdev_file); 430 /* hope filp_close flush all of IO */ 431 filp_close(zram->backing_dev, NULL); 432 zram->backing_dev = NULL; 433 zram->bdev_file = NULL; 434 zram->disk->fops = &zram_devops; 435 kvfree(zram->bitmap); 436 zram->bitmap = NULL; 437 } 438 439 static ssize_t backing_dev_show(struct device *dev, 440 struct device_attribute *attr, char *buf) 441 { 442 struct file *file; 443 struct zram *zram = dev_to_zram(dev); 444 char *p; 445 ssize_t ret; 446 447 down_read(&zram->init_lock); 448 file = zram->backing_dev; 449 if (!file) { 450 memcpy(buf, "none\n", 5); 451 up_read(&zram->init_lock); 452 return 5; 453 } 454 455 p = file_path(file, buf, PAGE_SIZE - 1); 456 if (IS_ERR(p)) { 457 ret = PTR_ERR(p); 458 goto out; 459 } 460 461 ret = strlen(p); 462 memmove(buf, p, ret); 463 buf[ret++] = '\n'; 464 out: 465 up_read(&zram->init_lock); 466 return ret; 467 } 468 469 static ssize_t backing_dev_store(struct device *dev, 470 struct device_attribute *attr, const char *buf, size_t len) 471 { 472 char *file_name; 473 size_t sz; 474 struct file *backing_dev = NULL; 475 struct inode *inode; 476 struct address_space *mapping; 477 unsigned int bitmap_sz; 478 unsigned long nr_pages, *bitmap = NULL; 479 struct file *bdev_file = NULL; 480 int err; 481 struct zram *zram = dev_to_zram(dev); 482 483 file_name = kmalloc(PATH_MAX, GFP_KERNEL); 484 if (!file_name) 485 return -ENOMEM; 486 487 down_write(&zram->init_lock); 488 if (init_done(zram)) { 489 pr_info("Can't setup backing device for initialized device\n"); 490 err = -EBUSY; 491 goto out; 492 } 493 494 strscpy(file_name, buf, PATH_MAX); 495 /* ignore trailing newline */ 496 sz = strlen(file_name); 497 if (sz > 0 && file_name[sz - 1] == '\n') 498 file_name[sz - 1] = 0x00; 499 500 backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0); 501 if (IS_ERR(backing_dev)) { 502 err = PTR_ERR(backing_dev); 503 backing_dev = NULL; 504 goto out; 505 } 506 507 mapping = backing_dev->f_mapping; 508 inode = mapping->host; 509 510 /* Support only block device in this moment */ 511 if (!S_ISBLK(inode->i_mode)) { 512 err = -ENOTBLK; 513 goto out; 514 } 515 516 bdev_file = bdev_file_open_by_dev(inode->i_rdev, 517 BLK_OPEN_READ | BLK_OPEN_WRITE, zram, NULL); 518 if (IS_ERR(bdev_file)) { 519 err = PTR_ERR(bdev_file); 520 bdev_file = NULL; 521 goto out; 522 } 523 524 nr_pages = i_size_read(inode) >> PAGE_SHIFT; 525 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long); 526 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL); 527 if (!bitmap) { 528 err = -ENOMEM; 529 goto out; 530 } 531 532 reset_bdev(zram); 533 534 zram->bdev_file = bdev_file; 535 zram->backing_dev = backing_dev; 536 zram->bitmap = bitmap; 537 zram->nr_pages = nr_pages; 538 up_write(&zram->init_lock); 539 540 pr_info("setup backing device %s\n", file_name); 541 kfree(file_name); 542 543 return len; 544 out: 545 kvfree(bitmap); 546 547 if (bdev_file) 548 fput(bdev_file); 549 550 if (backing_dev) 551 filp_close(backing_dev, NULL); 552 553 up_write(&zram->init_lock); 554 555 kfree(file_name); 556 557 return err; 558 } 559 560 static unsigned long alloc_block_bdev(struct zram *zram) 561 { 562 unsigned long blk_idx = 1; 563 retry: 564 /* skip 0 bit to confuse zram.handle = 0 */ 565 blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx); 566 if (blk_idx == zram->nr_pages) 567 return 0; 568 569 if (test_and_set_bit(blk_idx, zram->bitmap)) 570 goto retry; 571 572 atomic64_inc(&zram->stats.bd_count); 573 return blk_idx; 574 } 575 576 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) 577 { 578 int was_set; 579 580 was_set = test_and_clear_bit(blk_idx, zram->bitmap); 581 WARN_ON_ONCE(!was_set); 582 atomic64_dec(&zram->stats.bd_count); 583 } 584 585 static void read_from_bdev_async(struct zram *zram, struct page *page, 586 unsigned long entry, struct bio *parent) 587 { 588 struct bio *bio; 589 590 bio = bio_alloc(file_bdev(zram->bdev_file), 1, parent->bi_opf, GFP_NOIO); 591 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9); 592 __bio_add_page(bio, page, PAGE_SIZE, 0); 593 bio_chain(bio, parent); 594 submit_bio(bio); 595 } 596 597 #define PAGE_WB_SIG "page_index=" 598 599 #define PAGE_WRITEBACK 0 600 #define HUGE_WRITEBACK (1<<0) 601 #define IDLE_WRITEBACK (1<<1) 602 #define INCOMPRESSIBLE_WRITEBACK (1<<2) 603 604 static ssize_t writeback_store(struct device *dev, 605 struct device_attribute *attr, const char *buf, size_t len) 606 { 607 struct zram *zram = dev_to_zram(dev); 608 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 609 unsigned long index = 0; 610 struct bio bio; 611 struct bio_vec bio_vec; 612 struct page *page; 613 ssize_t ret = len; 614 int mode, err; 615 unsigned long blk_idx = 0; 616 617 if (sysfs_streq(buf, "idle")) 618 mode = IDLE_WRITEBACK; 619 else if (sysfs_streq(buf, "huge")) 620 mode = HUGE_WRITEBACK; 621 else if (sysfs_streq(buf, "huge_idle")) 622 mode = IDLE_WRITEBACK | HUGE_WRITEBACK; 623 else if (sysfs_streq(buf, "incompressible")) 624 mode = INCOMPRESSIBLE_WRITEBACK; 625 else { 626 if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1)) 627 return -EINVAL; 628 629 if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) || 630 index >= nr_pages) 631 return -EINVAL; 632 633 nr_pages = 1; 634 mode = PAGE_WRITEBACK; 635 } 636 637 down_read(&zram->init_lock); 638 if (!init_done(zram)) { 639 ret = -EINVAL; 640 goto release_init_lock; 641 } 642 643 if (!zram->backing_dev) { 644 ret = -ENODEV; 645 goto release_init_lock; 646 } 647 648 page = alloc_page(GFP_KERNEL); 649 if (!page) { 650 ret = -ENOMEM; 651 goto release_init_lock; 652 } 653 654 for (; nr_pages != 0; index++, nr_pages--) { 655 spin_lock(&zram->wb_limit_lock); 656 if (zram->wb_limit_enable && !zram->bd_wb_limit) { 657 spin_unlock(&zram->wb_limit_lock); 658 ret = -EIO; 659 break; 660 } 661 spin_unlock(&zram->wb_limit_lock); 662 663 if (!blk_idx) { 664 blk_idx = alloc_block_bdev(zram); 665 if (!blk_idx) { 666 ret = -ENOSPC; 667 break; 668 } 669 } 670 671 zram_slot_lock(zram, index); 672 if (!zram_allocated(zram, index)) 673 goto next; 674 675 if (zram_test_flag(zram, index, ZRAM_WB) || 676 zram_test_flag(zram, index, ZRAM_SAME) || 677 zram_test_flag(zram, index, ZRAM_UNDER_WB)) 678 goto next; 679 680 if (mode & IDLE_WRITEBACK && 681 !zram_test_flag(zram, index, ZRAM_IDLE)) 682 goto next; 683 if (mode & HUGE_WRITEBACK && 684 !zram_test_flag(zram, index, ZRAM_HUGE)) 685 goto next; 686 if (mode & INCOMPRESSIBLE_WRITEBACK && 687 !zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 688 goto next; 689 690 /* 691 * Clearing ZRAM_UNDER_WB is duty of caller. 692 * IOW, zram_free_page never clear it. 693 */ 694 zram_set_flag(zram, index, ZRAM_UNDER_WB); 695 /* Need for hugepage writeback racing */ 696 zram_set_flag(zram, index, ZRAM_IDLE); 697 zram_slot_unlock(zram, index); 698 if (zram_read_page(zram, page, index, NULL)) { 699 zram_slot_lock(zram, index); 700 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 701 zram_clear_flag(zram, index, ZRAM_IDLE); 702 zram_slot_unlock(zram, index); 703 continue; 704 } 705 706 bio_init(&bio, file_bdev(zram->bdev_file), &bio_vec, 1, 707 REQ_OP_WRITE | REQ_SYNC); 708 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9); 709 __bio_add_page(&bio, page, PAGE_SIZE, 0); 710 711 /* 712 * XXX: A single page IO would be inefficient for write 713 * but it would be not bad as starter. 714 */ 715 err = submit_bio_wait(&bio); 716 if (err) { 717 zram_slot_lock(zram, index); 718 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 719 zram_clear_flag(zram, index, ZRAM_IDLE); 720 zram_slot_unlock(zram, index); 721 /* 722 * BIO errors are not fatal, we continue and simply 723 * attempt to writeback the remaining objects (pages). 724 * At the same time we need to signal user-space that 725 * some writes (at least one, but also could be all of 726 * them) were not successful and we do so by returning 727 * the most recent BIO error. 728 */ 729 ret = err; 730 continue; 731 } 732 733 atomic64_inc(&zram->stats.bd_writes); 734 /* 735 * We released zram_slot_lock so need to check if the slot was 736 * changed. If there is freeing for the slot, we can catch it 737 * easily by zram_allocated. 738 * A subtle case is the slot is freed/reallocated/marked as 739 * ZRAM_IDLE again. To close the race, idle_store doesn't 740 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB. 741 * Thus, we could close the race by checking ZRAM_IDLE bit. 742 */ 743 zram_slot_lock(zram, index); 744 if (!zram_allocated(zram, index) || 745 !zram_test_flag(zram, index, ZRAM_IDLE)) { 746 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 747 zram_clear_flag(zram, index, ZRAM_IDLE); 748 goto next; 749 } 750 751 zram_free_page(zram, index); 752 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 753 zram_set_flag(zram, index, ZRAM_WB); 754 zram_set_element(zram, index, blk_idx); 755 blk_idx = 0; 756 atomic64_inc(&zram->stats.pages_stored); 757 spin_lock(&zram->wb_limit_lock); 758 if (zram->wb_limit_enable && zram->bd_wb_limit > 0) 759 zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12); 760 spin_unlock(&zram->wb_limit_lock); 761 next: 762 zram_slot_unlock(zram, index); 763 } 764 765 if (blk_idx) 766 free_block_bdev(zram, blk_idx); 767 __free_page(page); 768 release_init_lock: 769 up_read(&zram->init_lock); 770 771 return ret; 772 } 773 774 struct zram_work { 775 struct work_struct work; 776 struct zram *zram; 777 unsigned long entry; 778 struct page *page; 779 int error; 780 }; 781 782 static void zram_sync_read(struct work_struct *work) 783 { 784 struct zram_work *zw = container_of(work, struct zram_work, work); 785 struct bio_vec bv; 786 struct bio bio; 787 788 bio_init(&bio, file_bdev(zw->zram->bdev_file), &bv, 1, REQ_OP_READ); 789 bio.bi_iter.bi_sector = zw->entry * (PAGE_SIZE >> 9); 790 __bio_add_page(&bio, zw->page, PAGE_SIZE, 0); 791 zw->error = submit_bio_wait(&bio); 792 } 793 794 /* 795 * Block layer want one ->submit_bio to be active at a time, so if we use 796 * chained IO with parent IO in same context, it's a deadlock. To avoid that, 797 * use a worker thread context. 798 */ 799 static int read_from_bdev_sync(struct zram *zram, struct page *page, 800 unsigned long entry) 801 { 802 struct zram_work work; 803 804 work.page = page; 805 work.zram = zram; 806 work.entry = entry; 807 808 INIT_WORK_ONSTACK(&work.work, zram_sync_read); 809 queue_work(system_unbound_wq, &work.work); 810 flush_work(&work.work); 811 destroy_work_on_stack(&work.work); 812 813 return work.error; 814 } 815 816 static int read_from_bdev(struct zram *zram, struct page *page, 817 unsigned long entry, struct bio *parent) 818 { 819 atomic64_inc(&zram->stats.bd_reads); 820 if (!parent) { 821 if (WARN_ON_ONCE(!IS_ENABLED(ZRAM_PARTIAL_IO))) 822 return -EIO; 823 return read_from_bdev_sync(zram, page, entry); 824 } 825 read_from_bdev_async(zram, page, entry, parent); 826 return 0; 827 } 828 #else 829 static inline void reset_bdev(struct zram *zram) {}; 830 static int read_from_bdev(struct zram *zram, struct page *page, 831 unsigned long entry, struct bio *parent) 832 { 833 return -EIO; 834 } 835 836 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {}; 837 #endif 838 839 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 840 841 static struct dentry *zram_debugfs_root; 842 843 static void zram_debugfs_create(void) 844 { 845 zram_debugfs_root = debugfs_create_dir("zram", NULL); 846 } 847 848 static void zram_debugfs_destroy(void) 849 { 850 debugfs_remove_recursive(zram_debugfs_root); 851 } 852 853 static ssize_t read_block_state(struct file *file, char __user *buf, 854 size_t count, loff_t *ppos) 855 { 856 char *kbuf; 857 ssize_t index, written = 0; 858 struct zram *zram = file->private_data; 859 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 860 struct timespec64 ts; 861 862 kbuf = kvmalloc(count, GFP_KERNEL); 863 if (!kbuf) 864 return -ENOMEM; 865 866 down_read(&zram->init_lock); 867 if (!init_done(zram)) { 868 up_read(&zram->init_lock); 869 kvfree(kbuf); 870 return -EINVAL; 871 } 872 873 for (index = *ppos; index < nr_pages; index++) { 874 int copied; 875 876 zram_slot_lock(zram, index); 877 if (!zram_allocated(zram, index)) 878 goto next; 879 880 ts = ktime_to_timespec64(zram->table[index].ac_time); 881 copied = snprintf(kbuf + written, count, 882 "%12zd %12lld.%06lu %c%c%c%c%c%c\n", 883 index, (s64)ts.tv_sec, 884 ts.tv_nsec / NSEC_PER_USEC, 885 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.', 886 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.', 887 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.', 888 zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.', 889 zram_get_priority(zram, index) ? 'r' : '.', 890 zram_test_flag(zram, index, 891 ZRAM_INCOMPRESSIBLE) ? 'n' : '.'); 892 893 if (count <= copied) { 894 zram_slot_unlock(zram, index); 895 break; 896 } 897 written += copied; 898 count -= copied; 899 next: 900 zram_slot_unlock(zram, index); 901 *ppos += 1; 902 } 903 904 up_read(&zram->init_lock); 905 if (copy_to_user(buf, kbuf, written)) 906 written = -EFAULT; 907 kvfree(kbuf); 908 909 return written; 910 } 911 912 static const struct file_operations proc_zram_block_state_op = { 913 .open = simple_open, 914 .read = read_block_state, 915 .llseek = default_llseek, 916 }; 917 918 static void zram_debugfs_register(struct zram *zram) 919 { 920 if (!zram_debugfs_root) 921 return; 922 923 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name, 924 zram_debugfs_root); 925 debugfs_create_file("block_state", 0400, zram->debugfs_dir, 926 zram, &proc_zram_block_state_op); 927 } 928 929 static void zram_debugfs_unregister(struct zram *zram) 930 { 931 debugfs_remove_recursive(zram->debugfs_dir); 932 } 933 #else 934 static void zram_debugfs_create(void) {}; 935 static void zram_debugfs_destroy(void) {}; 936 static void zram_debugfs_register(struct zram *zram) {}; 937 static void zram_debugfs_unregister(struct zram *zram) {}; 938 #endif 939 940 /* 941 * We switched to per-cpu streams and this attr is not needed anymore. 942 * However, we will keep it around for some time, because: 943 * a) we may revert per-cpu streams in the future 944 * b) it's visible to user space and we need to follow our 2 years 945 * retirement rule; but we already have a number of 'soon to be 946 * altered' attrs, so max_comp_streams need to wait for the next 947 * layoff cycle. 948 */ 949 static ssize_t max_comp_streams_show(struct device *dev, 950 struct device_attribute *attr, char *buf) 951 { 952 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus()); 953 } 954 955 static ssize_t max_comp_streams_store(struct device *dev, 956 struct device_attribute *attr, const char *buf, size_t len) 957 { 958 return len; 959 } 960 961 static void comp_algorithm_set(struct zram *zram, u32 prio, const char *alg) 962 { 963 /* Do not free statically defined compression algorithms */ 964 if (zram->comp_algs[prio] != default_compressor) 965 kfree(zram->comp_algs[prio]); 966 967 zram->comp_algs[prio] = alg; 968 } 969 970 static ssize_t __comp_algorithm_show(struct zram *zram, u32 prio, char *buf) 971 { 972 ssize_t sz; 973 974 down_read(&zram->init_lock); 975 sz = zcomp_available_show(zram->comp_algs[prio], buf); 976 up_read(&zram->init_lock); 977 978 return sz; 979 } 980 981 static int __comp_algorithm_store(struct zram *zram, u32 prio, const char *buf) 982 { 983 char *compressor; 984 size_t sz; 985 986 sz = strlen(buf); 987 if (sz >= CRYPTO_MAX_ALG_NAME) 988 return -E2BIG; 989 990 compressor = kstrdup(buf, GFP_KERNEL); 991 if (!compressor) 992 return -ENOMEM; 993 994 /* ignore trailing newline */ 995 if (sz > 0 && compressor[sz - 1] == '\n') 996 compressor[sz - 1] = 0x00; 997 998 if (!zcomp_available_algorithm(compressor)) { 999 kfree(compressor); 1000 return -EINVAL; 1001 } 1002 1003 down_write(&zram->init_lock); 1004 if (init_done(zram)) { 1005 up_write(&zram->init_lock); 1006 kfree(compressor); 1007 pr_info("Can't change algorithm for initialized device\n"); 1008 return -EBUSY; 1009 } 1010 1011 comp_algorithm_set(zram, prio, compressor); 1012 up_write(&zram->init_lock); 1013 return 0; 1014 } 1015 1016 static ssize_t comp_algorithm_show(struct device *dev, 1017 struct device_attribute *attr, 1018 char *buf) 1019 { 1020 struct zram *zram = dev_to_zram(dev); 1021 1022 return __comp_algorithm_show(zram, ZRAM_PRIMARY_COMP, buf); 1023 } 1024 1025 static ssize_t comp_algorithm_store(struct device *dev, 1026 struct device_attribute *attr, 1027 const char *buf, 1028 size_t len) 1029 { 1030 struct zram *zram = dev_to_zram(dev); 1031 int ret; 1032 1033 ret = __comp_algorithm_store(zram, ZRAM_PRIMARY_COMP, buf); 1034 return ret ? ret : len; 1035 } 1036 1037 #ifdef CONFIG_ZRAM_MULTI_COMP 1038 static ssize_t recomp_algorithm_show(struct device *dev, 1039 struct device_attribute *attr, 1040 char *buf) 1041 { 1042 struct zram *zram = dev_to_zram(dev); 1043 ssize_t sz = 0; 1044 u32 prio; 1045 1046 for (prio = ZRAM_SECONDARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { 1047 if (!zram->comp_algs[prio]) 1048 continue; 1049 1050 sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2, "#%d: ", prio); 1051 sz += __comp_algorithm_show(zram, prio, buf + sz); 1052 } 1053 1054 return sz; 1055 } 1056 1057 static ssize_t recomp_algorithm_store(struct device *dev, 1058 struct device_attribute *attr, 1059 const char *buf, 1060 size_t len) 1061 { 1062 struct zram *zram = dev_to_zram(dev); 1063 int prio = ZRAM_SECONDARY_COMP; 1064 char *args, *param, *val; 1065 char *alg = NULL; 1066 int ret; 1067 1068 args = skip_spaces(buf); 1069 while (*args) { 1070 args = next_arg(args, ¶m, &val); 1071 1072 if (!val || !*val) 1073 return -EINVAL; 1074 1075 if (!strcmp(param, "algo")) { 1076 alg = val; 1077 continue; 1078 } 1079 1080 if (!strcmp(param, "priority")) { 1081 ret = kstrtoint(val, 10, &prio); 1082 if (ret) 1083 return ret; 1084 continue; 1085 } 1086 } 1087 1088 if (!alg) 1089 return -EINVAL; 1090 1091 if (prio < ZRAM_SECONDARY_COMP || prio >= ZRAM_MAX_COMPS) 1092 return -EINVAL; 1093 1094 ret = __comp_algorithm_store(zram, prio, alg); 1095 return ret ? ret : len; 1096 } 1097 #endif 1098 1099 static ssize_t compact_store(struct device *dev, 1100 struct device_attribute *attr, const char *buf, size_t len) 1101 { 1102 struct zram *zram = dev_to_zram(dev); 1103 1104 down_read(&zram->init_lock); 1105 if (!init_done(zram)) { 1106 up_read(&zram->init_lock); 1107 return -EINVAL; 1108 } 1109 1110 zs_compact(zram->mem_pool); 1111 up_read(&zram->init_lock); 1112 1113 return len; 1114 } 1115 1116 static ssize_t io_stat_show(struct device *dev, 1117 struct device_attribute *attr, char *buf) 1118 { 1119 struct zram *zram = dev_to_zram(dev); 1120 ssize_t ret; 1121 1122 down_read(&zram->init_lock); 1123 ret = scnprintf(buf, PAGE_SIZE, 1124 "%8llu %8llu 0 %8llu\n", 1125 (u64)atomic64_read(&zram->stats.failed_reads), 1126 (u64)atomic64_read(&zram->stats.failed_writes), 1127 (u64)atomic64_read(&zram->stats.notify_free)); 1128 up_read(&zram->init_lock); 1129 1130 return ret; 1131 } 1132 1133 static ssize_t mm_stat_show(struct device *dev, 1134 struct device_attribute *attr, char *buf) 1135 { 1136 struct zram *zram = dev_to_zram(dev); 1137 struct zs_pool_stats pool_stats; 1138 u64 orig_size, mem_used = 0; 1139 long max_used; 1140 ssize_t ret; 1141 1142 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); 1143 1144 down_read(&zram->init_lock); 1145 if (init_done(zram)) { 1146 mem_used = zs_get_total_pages(zram->mem_pool); 1147 zs_pool_stats(zram->mem_pool, &pool_stats); 1148 } 1149 1150 orig_size = atomic64_read(&zram->stats.pages_stored); 1151 max_used = atomic_long_read(&zram->stats.max_used_pages); 1152 1153 ret = scnprintf(buf, PAGE_SIZE, 1154 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n", 1155 orig_size << PAGE_SHIFT, 1156 (u64)atomic64_read(&zram->stats.compr_data_size), 1157 mem_used << PAGE_SHIFT, 1158 zram->limit_pages << PAGE_SHIFT, 1159 max_used << PAGE_SHIFT, 1160 (u64)atomic64_read(&zram->stats.same_pages), 1161 atomic_long_read(&pool_stats.pages_compacted), 1162 (u64)atomic64_read(&zram->stats.huge_pages), 1163 (u64)atomic64_read(&zram->stats.huge_pages_since)); 1164 up_read(&zram->init_lock); 1165 1166 return ret; 1167 } 1168 1169 #ifdef CONFIG_ZRAM_WRITEBACK 1170 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12))) 1171 static ssize_t bd_stat_show(struct device *dev, 1172 struct device_attribute *attr, char *buf) 1173 { 1174 struct zram *zram = dev_to_zram(dev); 1175 ssize_t ret; 1176 1177 down_read(&zram->init_lock); 1178 ret = scnprintf(buf, PAGE_SIZE, 1179 "%8llu %8llu %8llu\n", 1180 FOUR_K((u64)atomic64_read(&zram->stats.bd_count)), 1181 FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)), 1182 FOUR_K((u64)atomic64_read(&zram->stats.bd_writes))); 1183 up_read(&zram->init_lock); 1184 1185 return ret; 1186 } 1187 #endif 1188 1189 static ssize_t debug_stat_show(struct device *dev, 1190 struct device_attribute *attr, char *buf) 1191 { 1192 int version = 1; 1193 struct zram *zram = dev_to_zram(dev); 1194 ssize_t ret; 1195 1196 down_read(&zram->init_lock); 1197 ret = scnprintf(buf, PAGE_SIZE, 1198 "version: %d\n%8llu %8llu\n", 1199 version, 1200 (u64)atomic64_read(&zram->stats.writestall), 1201 (u64)atomic64_read(&zram->stats.miss_free)); 1202 up_read(&zram->init_lock); 1203 1204 return ret; 1205 } 1206 1207 static DEVICE_ATTR_RO(io_stat); 1208 static DEVICE_ATTR_RO(mm_stat); 1209 #ifdef CONFIG_ZRAM_WRITEBACK 1210 static DEVICE_ATTR_RO(bd_stat); 1211 #endif 1212 static DEVICE_ATTR_RO(debug_stat); 1213 1214 static void zram_meta_free(struct zram *zram, u64 disksize) 1215 { 1216 size_t num_pages = disksize >> PAGE_SHIFT; 1217 size_t index; 1218 1219 /* Free all pages that are still in this zram device */ 1220 for (index = 0; index < num_pages; index++) 1221 zram_free_page(zram, index); 1222 1223 zs_destroy_pool(zram->mem_pool); 1224 vfree(zram->table); 1225 } 1226 1227 static bool zram_meta_alloc(struct zram *zram, u64 disksize) 1228 { 1229 size_t num_pages; 1230 1231 num_pages = disksize >> PAGE_SHIFT; 1232 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table))); 1233 if (!zram->table) 1234 return false; 1235 1236 zram->mem_pool = zs_create_pool(zram->disk->disk_name); 1237 if (!zram->mem_pool) { 1238 vfree(zram->table); 1239 return false; 1240 } 1241 1242 if (!huge_class_size) 1243 huge_class_size = zs_huge_class_size(zram->mem_pool); 1244 return true; 1245 } 1246 1247 /* 1248 * To protect concurrent access to the same index entry, 1249 * caller should hold this table index entry's bit_spinlock to 1250 * indicate this index entry is accessing. 1251 */ 1252 static void zram_free_page(struct zram *zram, size_t index) 1253 { 1254 unsigned long handle; 1255 1256 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME 1257 zram->table[index].ac_time = 0; 1258 #endif 1259 if (zram_test_flag(zram, index, ZRAM_IDLE)) 1260 zram_clear_flag(zram, index, ZRAM_IDLE); 1261 1262 if (zram_test_flag(zram, index, ZRAM_HUGE)) { 1263 zram_clear_flag(zram, index, ZRAM_HUGE); 1264 atomic64_dec(&zram->stats.huge_pages); 1265 } 1266 1267 if (zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 1268 zram_clear_flag(zram, index, ZRAM_INCOMPRESSIBLE); 1269 1270 zram_set_priority(zram, index, 0); 1271 1272 if (zram_test_flag(zram, index, ZRAM_WB)) { 1273 zram_clear_flag(zram, index, ZRAM_WB); 1274 free_block_bdev(zram, zram_get_element(zram, index)); 1275 goto out; 1276 } 1277 1278 /* 1279 * No memory is allocated for same element filled pages. 1280 * Simply clear same page flag. 1281 */ 1282 if (zram_test_flag(zram, index, ZRAM_SAME)) { 1283 zram_clear_flag(zram, index, ZRAM_SAME); 1284 atomic64_dec(&zram->stats.same_pages); 1285 goto out; 1286 } 1287 1288 handle = zram_get_handle(zram, index); 1289 if (!handle) 1290 return; 1291 1292 zs_free(zram->mem_pool, handle); 1293 1294 atomic64_sub(zram_get_obj_size(zram, index), 1295 &zram->stats.compr_data_size); 1296 out: 1297 atomic64_dec(&zram->stats.pages_stored); 1298 zram_set_handle(zram, index, 0); 1299 zram_set_obj_size(zram, index, 0); 1300 WARN_ON_ONCE(zram->table[index].flags & 1301 ~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB)); 1302 } 1303 1304 /* 1305 * Reads (decompresses if needed) a page from zspool (zsmalloc). 1306 * Corresponding ZRAM slot should be locked. 1307 */ 1308 static int zram_read_from_zspool(struct zram *zram, struct page *page, 1309 u32 index) 1310 { 1311 struct zcomp_strm *zstrm; 1312 unsigned long handle; 1313 unsigned int size; 1314 void *src, *dst; 1315 u32 prio; 1316 int ret; 1317 1318 handle = zram_get_handle(zram, index); 1319 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) { 1320 unsigned long value; 1321 void *mem; 1322 1323 value = handle ? zram_get_element(zram, index) : 0; 1324 mem = kmap_local_page(page); 1325 zram_fill_page(mem, PAGE_SIZE, value); 1326 kunmap_local(mem); 1327 return 0; 1328 } 1329 1330 size = zram_get_obj_size(zram, index); 1331 1332 if (size != PAGE_SIZE) { 1333 prio = zram_get_priority(zram, index); 1334 zstrm = zcomp_stream_get(zram->comps[prio]); 1335 } 1336 1337 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO); 1338 if (size == PAGE_SIZE) { 1339 dst = kmap_local_page(page); 1340 copy_page(dst, src); 1341 kunmap_local(dst); 1342 ret = 0; 1343 } else { 1344 dst = kmap_local_page(page); 1345 ret = zcomp_decompress(zstrm, src, size, dst); 1346 kunmap_local(dst); 1347 zcomp_stream_put(zram->comps[prio]); 1348 } 1349 zs_unmap_object(zram->mem_pool, handle); 1350 return ret; 1351 } 1352 1353 static int zram_read_page(struct zram *zram, struct page *page, u32 index, 1354 struct bio *parent) 1355 { 1356 int ret; 1357 1358 zram_slot_lock(zram, index); 1359 if (!zram_test_flag(zram, index, ZRAM_WB)) { 1360 /* Slot should be locked through out the function call */ 1361 ret = zram_read_from_zspool(zram, page, index); 1362 zram_slot_unlock(zram, index); 1363 } else { 1364 /* 1365 * The slot should be unlocked before reading from the backing 1366 * device. 1367 */ 1368 zram_slot_unlock(zram, index); 1369 1370 ret = read_from_bdev(zram, page, zram_get_element(zram, index), 1371 parent); 1372 } 1373 1374 /* Should NEVER happen. Return bio error if it does. */ 1375 if (WARN_ON(ret < 0)) 1376 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 1377 1378 return ret; 1379 } 1380 1381 /* 1382 * Use a temporary buffer to decompress the page, as the decompressor 1383 * always expects a full page for the output. 1384 */ 1385 static int zram_bvec_read_partial(struct zram *zram, struct bio_vec *bvec, 1386 u32 index, int offset) 1387 { 1388 struct page *page = alloc_page(GFP_NOIO); 1389 int ret; 1390 1391 if (!page) 1392 return -ENOMEM; 1393 ret = zram_read_page(zram, page, index, NULL); 1394 if (likely(!ret)) 1395 memcpy_to_bvec(bvec, page_address(page) + offset); 1396 __free_page(page); 1397 return ret; 1398 } 1399 1400 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 1401 u32 index, int offset, struct bio *bio) 1402 { 1403 if (is_partial_io(bvec)) 1404 return zram_bvec_read_partial(zram, bvec, index, offset); 1405 return zram_read_page(zram, bvec->bv_page, index, bio); 1406 } 1407 1408 static int zram_write_page(struct zram *zram, struct page *page, u32 index) 1409 { 1410 int ret = 0; 1411 unsigned long alloced_pages; 1412 unsigned long handle = -ENOMEM; 1413 unsigned int comp_len = 0; 1414 void *src, *dst, *mem; 1415 struct zcomp_strm *zstrm; 1416 unsigned long element = 0; 1417 enum zram_pageflags flags = 0; 1418 1419 mem = kmap_local_page(page); 1420 if (page_same_filled(mem, &element)) { 1421 kunmap_local(mem); 1422 /* Free memory associated with this sector now. */ 1423 flags = ZRAM_SAME; 1424 atomic64_inc(&zram->stats.same_pages); 1425 goto out; 1426 } 1427 kunmap_local(mem); 1428 1429 compress_again: 1430 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]); 1431 src = kmap_local_page(page); 1432 ret = zcomp_compress(zstrm, src, &comp_len); 1433 kunmap_local(src); 1434 1435 if (unlikely(ret)) { 1436 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1437 pr_err("Compression failed! err=%d\n", ret); 1438 zs_free(zram->mem_pool, handle); 1439 return ret; 1440 } 1441 1442 if (comp_len >= huge_class_size) 1443 comp_len = PAGE_SIZE; 1444 /* 1445 * handle allocation has 2 paths: 1446 * a) fast path is executed with preemption disabled (for 1447 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear, 1448 * since we can't sleep; 1449 * b) slow path enables preemption and attempts to allocate 1450 * the page with __GFP_DIRECT_RECLAIM bit set. we have to 1451 * put per-cpu compression stream and, thus, to re-do 1452 * the compression once handle is allocated. 1453 * 1454 * if we have a 'non-null' handle here then we are coming 1455 * from the slow path and handle has already been allocated. 1456 */ 1457 if (IS_ERR_VALUE(handle)) 1458 handle = zs_malloc(zram->mem_pool, comp_len, 1459 __GFP_KSWAPD_RECLAIM | 1460 __GFP_NOWARN | 1461 __GFP_HIGHMEM | 1462 __GFP_MOVABLE); 1463 if (IS_ERR_VALUE(handle)) { 1464 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1465 atomic64_inc(&zram->stats.writestall); 1466 handle = zs_malloc(zram->mem_pool, comp_len, 1467 GFP_NOIO | __GFP_HIGHMEM | 1468 __GFP_MOVABLE); 1469 if (IS_ERR_VALUE(handle)) 1470 return PTR_ERR((void *)handle); 1471 1472 if (comp_len != PAGE_SIZE) 1473 goto compress_again; 1474 /* 1475 * If the page is not compressible, you need to acquire the 1476 * lock and execute the code below. The zcomp_stream_get() 1477 * call is needed to disable the cpu hotplug and grab the 1478 * zstrm buffer back. It is necessary that the dereferencing 1479 * of the zstrm variable below occurs correctly. 1480 */ 1481 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]); 1482 } 1483 1484 alloced_pages = zs_get_total_pages(zram->mem_pool); 1485 update_used_max(zram, alloced_pages); 1486 1487 if (zram->limit_pages && alloced_pages > zram->limit_pages) { 1488 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1489 zs_free(zram->mem_pool, handle); 1490 return -ENOMEM; 1491 } 1492 1493 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO); 1494 1495 src = zstrm->buffer; 1496 if (comp_len == PAGE_SIZE) 1497 src = kmap_local_page(page); 1498 memcpy(dst, src, comp_len); 1499 if (comp_len == PAGE_SIZE) 1500 kunmap_local(src); 1501 1502 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1503 zs_unmap_object(zram->mem_pool, handle); 1504 atomic64_add(comp_len, &zram->stats.compr_data_size); 1505 out: 1506 /* 1507 * Free memory associated with this sector 1508 * before overwriting unused sectors. 1509 */ 1510 zram_slot_lock(zram, index); 1511 zram_free_page(zram, index); 1512 1513 if (comp_len == PAGE_SIZE) { 1514 zram_set_flag(zram, index, ZRAM_HUGE); 1515 atomic64_inc(&zram->stats.huge_pages); 1516 atomic64_inc(&zram->stats.huge_pages_since); 1517 } 1518 1519 if (flags) { 1520 zram_set_flag(zram, index, flags); 1521 zram_set_element(zram, index, element); 1522 } else { 1523 zram_set_handle(zram, index, handle); 1524 zram_set_obj_size(zram, index, comp_len); 1525 } 1526 zram_slot_unlock(zram, index); 1527 1528 /* Update stats */ 1529 atomic64_inc(&zram->stats.pages_stored); 1530 return ret; 1531 } 1532 1533 /* 1534 * This is a partial IO. Read the full page before writing the changes. 1535 */ 1536 static int zram_bvec_write_partial(struct zram *zram, struct bio_vec *bvec, 1537 u32 index, int offset, struct bio *bio) 1538 { 1539 struct page *page = alloc_page(GFP_NOIO); 1540 int ret; 1541 1542 if (!page) 1543 return -ENOMEM; 1544 1545 ret = zram_read_page(zram, page, index, bio); 1546 if (!ret) { 1547 memcpy_from_bvec(page_address(page) + offset, bvec); 1548 ret = zram_write_page(zram, page, index); 1549 } 1550 __free_page(page); 1551 return ret; 1552 } 1553 1554 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1555 u32 index, int offset, struct bio *bio) 1556 { 1557 if (is_partial_io(bvec)) 1558 return zram_bvec_write_partial(zram, bvec, index, offset, bio); 1559 return zram_write_page(zram, bvec->bv_page, index); 1560 } 1561 1562 #ifdef CONFIG_ZRAM_MULTI_COMP 1563 /* 1564 * This function will decompress (unless it's ZRAM_HUGE) the page and then 1565 * attempt to compress it using provided compression algorithm priority 1566 * (which is potentially more effective). 1567 * 1568 * Corresponding ZRAM slot should be locked. 1569 */ 1570 static int zram_recompress(struct zram *zram, u32 index, struct page *page, 1571 u32 threshold, u32 prio, u32 prio_max) 1572 { 1573 struct zcomp_strm *zstrm = NULL; 1574 unsigned long handle_old; 1575 unsigned long handle_new; 1576 unsigned int comp_len_old; 1577 unsigned int comp_len_new; 1578 unsigned int class_index_old; 1579 unsigned int class_index_new; 1580 u32 num_recomps = 0; 1581 void *src, *dst; 1582 int ret; 1583 1584 handle_old = zram_get_handle(zram, index); 1585 if (!handle_old) 1586 return -EINVAL; 1587 1588 comp_len_old = zram_get_obj_size(zram, index); 1589 /* 1590 * Do not recompress objects that are already "small enough". 1591 */ 1592 if (comp_len_old < threshold) 1593 return 0; 1594 1595 ret = zram_read_from_zspool(zram, page, index); 1596 if (ret) 1597 return ret; 1598 1599 class_index_old = zs_lookup_class_index(zram->mem_pool, comp_len_old); 1600 /* 1601 * Iterate the secondary comp algorithms list (in order of priority) 1602 * and try to recompress the page. 1603 */ 1604 for (; prio < prio_max; prio++) { 1605 if (!zram->comps[prio]) 1606 continue; 1607 1608 /* 1609 * Skip if the object is already re-compressed with a higher 1610 * priority algorithm (or same algorithm). 1611 */ 1612 if (prio <= zram_get_priority(zram, index)) 1613 continue; 1614 1615 num_recomps++; 1616 zstrm = zcomp_stream_get(zram->comps[prio]); 1617 src = kmap_local_page(page); 1618 ret = zcomp_compress(zstrm, src, &comp_len_new); 1619 kunmap_local(src); 1620 1621 if (ret) { 1622 zcomp_stream_put(zram->comps[prio]); 1623 return ret; 1624 } 1625 1626 class_index_new = zs_lookup_class_index(zram->mem_pool, 1627 comp_len_new); 1628 1629 /* Continue until we make progress */ 1630 if (class_index_new >= class_index_old || 1631 (threshold && comp_len_new >= threshold)) { 1632 zcomp_stream_put(zram->comps[prio]); 1633 continue; 1634 } 1635 1636 /* Recompression was successful so break out */ 1637 break; 1638 } 1639 1640 /* 1641 * We did not try to recompress, e.g. when we have only one 1642 * secondary algorithm and the page is already recompressed 1643 * using that algorithm 1644 */ 1645 if (!zstrm) 1646 return 0; 1647 1648 if (class_index_new >= class_index_old) { 1649 /* 1650 * Secondary algorithms failed to re-compress the page 1651 * in a way that would save memory, mark the object as 1652 * incompressible so that we will not try to compress 1653 * it again. 1654 * 1655 * We need to make sure that all secondary algorithms have 1656 * failed, so we test if the number of recompressions matches 1657 * the number of active secondary algorithms. 1658 */ 1659 if (num_recomps == zram->num_active_comps - 1) 1660 zram_set_flag(zram, index, ZRAM_INCOMPRESSIBLE); 1661 return 0; 1662 } 1663 1664 /* Successful recompression but above threshold */ 1665 if (threshold && comp_len_new >= threshold) 1666 return 0; 1667 1668 /* 1669 * No direct reclaim (slow path) for handle allocation and no 1670 * re-compression attempt (unlike in zram_write_bvec()) since 1671 * we already have stored that object in zsmalloc. If we cannot 1672 * alloc memory for recompressed object then we bail out and 1673 * simply keep the old (existing) object in zsmalloc. 1674 */ 1675 handle_new = zs_malloc(zram->mem_pool, comp_len_new, 1676 __GFP_KSWAPD_RECLAIM | 1677 __GFP_NOWARN | 1678 __GFP_HIGHMEM | 1679 __GFP_MOVABLE); 1680 if (IS_ERR_VALUE(handle_new)) { 1681 zcomp_stream_put(zram->comps[prio]); 1682 return PTR_ERR((void *)handle_new); 1683 } 1684 1685 dst = zs_map_object(zram->mem_pool, handle_new, ZS_MM_WO); 1686 memcpy(dst, zstrm->buffer, comp_len_new); 1687 zcomp_stream_put(zram->comps[prio]); 1688 1689 zs_unmap_object(zram->mem_pool, handle_new); 1690 1691 zram_free_page(zram, index); 1692 zram_set_handle(zram, index, handle_new); 1693 zram_set_obj_size(zram, index, comp_len_new); 1694 zram_set_priority(zram, index, prio); 1695 1696 atomic64_add(comp_len_new, &zram->stats.compr_data_size); 1697 atomic64_inc(&zram->stats.pages_stored); 1698 1699 return 0; 1700 } 1701 1702 #define RECOMPRESS_IDLE (1 << 0) 1703 #define RECOMPRESS_HUGE (1 << 1) 1704 1705 static ssize_t recompress_store(struct device *dev, 1706 struct device_attribute *attr, 1707 const char *buf, size_t len) 1708 { 1709 u32 prio = ZRAM_SECONDARY_COMP, prio_max = ZRAM_MAX_COMPS; 1710 struct zram *zram = dev_to_zram(dev); 1711 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 1712 char *args, *param, *val, *algo = NULL; 1713 u32 mode = 0, threshold = 0; 1714 unsigned long index; 1715 struct page *page; 1716 ssize_t ret; 1717 1718 args = skip_spaces(buf); 1719 while (*args) { 1720 args = next_arg(args, ¶m, &val); 1721 1722 if (!val || !*val) 1723 return -EINVAL; 1724 1725 if (!strcmp(param, "type")) { 1726 if (!strcmp(val, "idle")) 1727 mode = RECOMPRESS_IDLE; 1728 if (!strcmp(val, "huge")) 1729 mode = RECOMPRESS_HUGE; 1730 if (!strcmp(val, "huge_idle")) 1731 mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE; 1732 continue; 1733 } 1734 1735 if (!strcmp(param, "threshold")) { 1736 /* 1737 * We will re-compress only idle objects equal or 1738 * greater in size than watermark. 1739 */ 1740 ret = kstrtouint(val, 10, &threshold); 1741 if (ret) 1742 return ret; 1743 continue; 1744 } 1745 1746 if (!strcmp(param, "algo")) { 1747 algo = val; 1748 continue; 1749 } 1750 } 1751 1752 if (threshold >= huge_class_size) 1753 return -EINVAL; 1754 1755 down_read(&zram->init_lock); 1756 if (!init_done(zram)) { 1757 ret = -EINVAL; 1758 goto release_init_lock; 1759 } 1760 1761 if (algo) { 1762 bool found = false; 1763 1764 for (; prio < ZRAM_MAX_COMPS; prio++) { 1765 if (!zram->comp_algs[prio]) 1766 continue; 1767 1768 if (!strcmp(zram->comp_algs[prio], algo)) { 1769 prio_max = min(prio + 1, ZRAM_MAX_COMPS); 1770 found = true; 1771 break; 1772 } 1773 } 1774 1775 if (!found) { 1776 ret = -EINVAL; 1777 goto release_init_lock; 1778 } 1779 } 1780 1781 page = alloc_page(GFP_KERNEL); 1782 if (!page) { 1783 ret = -ENOMEM; 1784 goto release_init_lock; 1785 } 1786 1787 ret = len; 1788 for (index = 0; index < nr_pages; index++) { 1789 int err = 0; 1790 1791 zram_slot_lock(zram, index); 1792 1793 if (!zram_allocated(zram, index)) 1794 goto next; 1795 1796 if (mode & RECOMPRESS_IDLE && 1797 !zram_test_flag(zram, index, ZRAM_IDLE)) 1798 goto next; 1799 1800 if (mode & RECOMPRESS_HUGE && 1801 !zram_test_flag(zram, index, ZRAM_HUGE)) 1802 goto next; 1803 1804 if (zram_test_flag(zram, index, ZRAM_WB) || 1805 zram_test_flag(zram, index, ZRAM_UNDER_WB) || 1806 zram_test_flag(zram, index, ZRAM_SAME) || 1807 zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 1808 goto next; 1809 1810 err = zram_recompress(zram, index, page, threshold, 1811 prio, prio_max); 1812 next: 1813 zram_slot_unlock(zram, index); 1814 if (err) { 1815 ret = err; 1816 break; 1817 } 1818 1819 cond_resched(); 1820 } 1821 1822 __free_page(page); 1823 1824 release_init_lock: 1825 up_read(&zram->init_lock); 1826 return ret; 1827 } 1828 #endif 1829 1830 static void zram_bio_discard(struct zram *zram, struct bio *bio) 1831 { 1832 size_t n = bio->bi_iter.bi_size; 1833 u32 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 1834 u32 offset = (bio->bi_iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 1835 SECTOR_SHIFT; 1836 1837 /* 1838 * zram manages data in physical block size units. Because logical block 1839 * size isn't identical with physical block size on some arch, we 1840 * could get a discard request pointing to a specific offset within a 1841 * certain physical block. Although we can handle this request by 1842 * reading that physiclal block and decompressing and partially zeroing 1843 * and re-compressing and then re-storing it, this isn't reasonable 1844 * because our intent with a discard request is to save memory. So 1845 * skipping this logical block is appropriate here. 1846 */ 1847 if (offset) { 1848 if (n <= (PAGE_SIZE - offset)) 1849 return; 1850 1851 n -= (PAGE_SIZE - offset); 1852 index++; 1853 } 1854 1855 while (n >= PAGE_SIZE) { 1856 zram_slot_lock(zram, index); 1857 zram_free_page(zram, index); 1858 zram_slot_unlock(zram, index); 1859 atomic64_inc(&zram->stats.notify_free); 1860 index++; 1861 n -= PAGE_SIZE; 1862 } 1863 1864 bio_endio(bio); 1865 } 1866 1867 static void zram_bio_read(struct zram *zram, struct bio *bio) 1868 { 1869 unsigned long start_time = bio_start_io_acct(bio); 1870 struct bvec_iter iter = bio->bi_iter; 1871 1872 do { 1873 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 1874 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 1875 SECTOR_SHIFT; 1876 struct bio_vec bv = bio_iter_iovec(bio, iter); 1877 1878 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset); 1879 1880 if (zram_bvec_read(zram, &bv, index, offset, bio) < 0) { 1881 atomic64_inc(&zram->stats.failed_reads); 1882 bio->bi_status = BLK_STS_IOERR; 1883 break; 1884 } 1885 flush_dcache_page(bv.bv_page); 1886 1887 zram_slot_lock(zram, index); 1888 zram_accessed(zram, index); 1889 zram_slot_unlock(zram, index); 1890 1891 bio_advance_iter_single(bio, &iter, bv.bv_len); 1892 } while (iter.bi_size); 1893 1894 bio_end_io_acct(bio, start_time); 1895 bio_endio(bio); 1896 } 1897 1898 static void zram_bio_write(struct zram *zram, struct bio *bio) 1899 { 1900 unsigned long start_time = bio_start_io_acct(bio); 1901 struct bvec_iter iter = bio->bi_iter; 1902 1903 do { 1904 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 1905 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 1906 SECTOR_SHIFT; 1907 struct bio_vec bv = bio_iter_iovec(bio, iter); 1908 1909 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset); 1910 1911 if (zram_bvec_write(zram, &bv, index, offset, bio) < 0) { 1912 atomic64_inc(&zram->stats.failed_writes); 1913 bio->bi_status = BLK_STS_IOERR; 1914 break; 1915 } 1916 1917 zram_slot_lock(zram, index); 1918 zram_accessed(zram, index); 1919 zram_slot_unlock(zram, index); 1920 1921 bio_advance_iter_single(bio, &iter, bv.bv_len); 1922 } while (iter.bi_size); 1923 1924 bio_end_io_acct(bio, start_time); 1925 bio_endio(bio); 1926 } 1927 1928 /* 1929 * Handler function for all zram I/O requests. 1930 */ 1931 static void zram_submit_bio(struct bio *bio) 1932 { 1933 struct zram *zram = bio->bi_bdev->bd_disk->private_data; 1934 1935 switch (bio_op(bio)) { 1936 case REQ_OP_READ: 1937 zram_bio_read(zram, bio); 1938 break; 1939 case REQ_OP_WRITE: 1940 zram_bio_write(zram, bio); 1941 break; 1942 case REQ_OP_DISCARD: 1943 case REQ_OP_WRITE_ZEROES: 1944 zram_bio_discard(zram, bio); 1945 break; 1946 default: 1947 WARN_ON_ONCE(1); 1948 bio_endio(bio); 1949 } 1950 } 1951 1952 static void zram_slot_free_notify(struct block_device *bdev, 1953 unsigned long index) 1954 { 1955 struct zram *zram; 1956 1957 zram = bdev->bd_disk->private_data; 1958 1959 atomic64_inc(&zram->stats.notify_free); 1960 if (!zram_slot_trylock(zram, index)) { 1961 atomic64_inc(&zram->stats.miss_free); 1962 return; 1963 } 1964 1965 zram_free_page(zram, index); 1966 zram_slot_unlock(zram, index); 1967 } 1968 1969 static void zram_destroy_comps(struct zram *zram) 1970 { 1971 u32 prio; 1972 1973 for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) { 1974 struct zcomp *comp = zram->comps[prio]; 1975 1976 zram->comps[prio] = NULL; 1977 if (!comp) 1978 continue; 1979 zcomp_destroy(comp); 1980 zram->num_active_comps--; 1981 } 1982 } 1983 1984 static void zram_reset_device(struct zram *zram) 1985 { 1986 down_write(&zram->init_lock); 1987 1988 zram->limit_pages = 0; 1989 1990 if (!init_done(zram)) { 1991 up_write(&zram->init_lock); 1992 return; 1993 } 1994 1995 set_capacity_and_notify(zram->disk, 0); 1996 part_stat_set_all(zram->disk->part0, 0); 1997 1998 /* I/O operation under all of CPU are done so let's free */ 1999 zram_meta_free(zram, zram->disksize); 2000 zram->disksize = 0; 2001 zram_destroy_comps(zram); 2002 memset(&zram->stats, 0, sizeof(zram->stats)); 2003 reset_bdev(zram); 2004 2005 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor); 2006 up_write(&zram->init_lock); 2007 } 2008 2009 static ssize_t disksize_store(struct device *dev, 2010 struct device_attribute *attr, const char *buf, size_t len) 2011 { 2012 u64 disksize; 2013 struct zcomp *comp; 2014 struct zram *zram = dev_to_zram(dev); 2015 int err; 2016 u32 prio; 2017 2018 disksize = memparse(buf, NULL); 2019 if (!disksize) 2020 return -EINVAL; 2021 2022 down_write(&zram->init_lock); 2023 if (init_done(zram)) { 2024 pr_info("Cannot change disksize for initialized device\n"); 2025 err = -EBUSY; 2026 goto out_unlock; 2027 } 2028 2029 disksize = PAGE_ALIGN(disksize); 2030 if (!zram_meta_alloc(zram, disksize)) { 2031 err = -ENOMEM; 2032 goto out_unlock; 2033 } 2034 2035 for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) { 2036 if (!zram->comp_algs[prio]) 2037 continue; 2038 2039 comp = zcomp_create(zram->comp_algs[prio]); 2040 if (IS_ERR(comp)) { 2041 pr_err("Cannot initialise %s compressing backend\n", 2042 zram->comp_algs[prio]); 2043 err = PTR_ERR(comp); 2044 goto out_free_comps; 2045 } 2046 2047 zram->comps[prio] = comp; 2048 zram->num_active_comps++; 2049 } 2050 zram->disksize = disksize; 2051 set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT); 2052 up_write(&zram->init_lock); 2053 2054 return len; 2055 2056 out_free_comps: 2057 zram_destroy_comps(zram); 2058 zram_meta_free(zram, disksize); 2059 out_unlock: 2060 up_write(&zram->init_lock); 2061 return err; 2062 } 2063 2064 static ssize_t reset_store(struct device *dev, 2065 struct device_attribute *attr, const char *buf, size_t len) 2066 { 2067 int ret; 2068 unsigned short do_reset; 2069 struct zram *zram; 2070 struct gendisk *disk; 2071 2072 ret = kstrtou16(buf, 10, &do_reset); 2073 if (ret) 2074 return ret; 2075 2076 if (!do_reset) 2077 return -EINVAL; 2078 2079 zram = dev_to_zram(dev); 2080 disk = zram->disk; 2081 2082 mutex_lock(&disk->open_mutex); 2083 /* Do not reset an active device or claimed device */ 2084 if (disk_openers(disk) || zram->claim) { 2085 mutex_unlock(&disk->open_mutex); 2086 return -EBUSY; 2087 } 2088 2089 /* From now on, anyone can't open /dev/zram[0-9] */ 2090 zram->claim = true; 2091 mutex_unlock(&disk->open_mutex); 2092 2093 /* Make sure all the pending I/O are finished */ 2094 sync_blockdev(disk->part0); 2095 zram_reset_device(zram); 2096 2097 mutex_lock(&disk->open_mutex); 2098 zram->claim = false; 2099 mutex_unlock(&disk->open_mutex); 2100 2101 return len; 2102 } 2103 2104 static int zram_open(struct gendisk *disk, blk_mode_t mode) 2105 { 2106 struct zram *zram = disk->private_data; 2107 2108 WARN_ON(!mutex_is_locked(&disk->open_mutex)); 2109 2110 /* zram was claimed to reset so open request fails */ 2111 if (zram->claim) 2112 return -EBUSY; 2113 return 0; 2114 } 2115 2116 static const struct block_device_operations zram_devops = { 2117 .open = zram_open, 2118 .submit_bio = zram_submit_bio, 2119 .swap_slot_free_notify = zram_slot_free_notify, 2120 .owner = THIS_MODULE 2121 }; 2122 2123 static DEVICE_ATTR_WO(compact); 2124 static DEVICE_ATTR_RW(disksize); 2125 static DEVICE_ATTR_RO(initstate); 2126 static DEVICE_ATTR_WO(reset); 2127 static DEVICE_ATTR_WO(mem_limit); 2128 static DEVICE_ATTR_WO(mem_used_max); 2129 static DEVICE_ATTR_WO(idle); 2130 static DEVICE_ATTR_RW(max_comp_streams); 2131 static DEVICE_ATTR_RW(comp_algorithm); 2132 #ifdef CONFIG_ZRAM_WRITEBACK 2133 static DEVICE_ATTR_RW(backing_dev); 2134 static DEVICE_ATTR_WO(writeback); 2135 static DEVICE_ATTR_RW(writeback_limit); 2136 static DEVICE_ATTR_RW(writeback_limit_enable); 2137 #endif 2138 #ifdef CONFIG_ZRAM_MULTI_COMP 2139 static DEVICE_ATTR_RW(recomp_algorithm); 2140 static DEVICE_ATTR_WO(recompress); 2141 #endif 2142 2143 static struct attribute *zram_disk_attrs[] = { 2144 &dev_attr_disksize.attr, 2145 &dev_attr_initstate.attr, 2146 &dev_attr_reset.attr, 2147 &dev_attr_compact.attr, 2148 &dev_attr_mem_limit.attr, 2149 &dev_attr_mem_used_max.attr, 2150 &dev_attr_idle.attr, 2151 &dev_attr_max_comp_streams.attr, 2152 &dev_attr_comp_algorithm.attr, 2153 #ifdef CONFIG_ZRAM_WRITEBACK 2154 &dev_attr_backing_dev.attr, 2155 &dev_attr_writeback.attr, 2156 &dev_attr_writeback_limit.attr, 2157 &dev_attr_writeback_limit_enable.attr, 2158 #endif 2159 &dev_attr_io_stat.attr, 2160 &dev_attr_mm_stat.attr, 2161 #ifdef CONFIG_ZRAM_WRITEBACK 2162 &dev_attr_bd_stat.attr, 2163 #endif 2164 &dev_attr_debug_stat.attr, 2165 #ifdef CONFIG_ZRAM_MULTI_COMP 2166 &dev_attr_recomp_algorithm.attr, 2167 &dev_attr_recompress.attr, 2168 #endif 2169 NULL, 2170 }; 2171 2172 ATTRIBUTE_GROUPS(zram_disk); 2173 2174 /* 2175 * Allocate and initialize new zram device. the function returns 2176 * '>= 0' device_id upon success, and negative value otherwise. 2177 */ 2178 static int zram_add(void) 2179 { 2180 struct queue_limits lim = { 2181 .logical_block_size = ZRAM_LOGICAL_BLOCK_SIZE, 2182 /* 2183 * To ensure that we always get PAGE_SIZE aligned and 2184 * n*PAGE_SIZED sized I/O requests. 2185 */ 2186 .physical_block_size = PAGE_SIZE, 2187 .io_min = PAGE_SIZE, 2188 .io_opt = PAGE_SIZE, 2189 .max_hw_discard_sectors = UINT_MAX, 2190 /* 2191 * zram_bio_discard() will clear all logical blocks if logical 2192 * block size is identical with physical block size(PAGE_SIZE). 2193 * But if it is different, we will skip discarding some parts of 2194 * logical blocks in the part of the request range which isn't 2195 * aligned to physical block size. So we can't ensure that all 2196 * discarded logical blocks are zeroed. 2197 */ 2198 #if ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE 2199 .max_write_zeroes_sectors = UINT_MAX, 2200 #endif 2201 }; 2202 struct zram *zram; 2203 int ret, device_id; 2204 2205 zram = kzalloc(sizeof(struct zram), GFP_KERNEL); 2206 if (!zram) 2207 return -ENOMEM; 2208 2209 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); 2210 if (ret < 0) 2211 goto out_free_dev; 2212 device_id = ret; 2213 2214 init_rwsem(&zram->init_lock); 2215 #ifdef CONFIG_ZRAM_WRITEBACK 2216 spin_lock_init(&zram->wb_limit_lock); 2217 #endif 2218 2219 /* gendisk structure */ 2220 zram->disk = blk_alloc_disk(&lim, NUMA_NO_NODE); 2221 if (IS_ERR(zram->disk)) { 2222 pr_err("Error allocating disk structure for device %d\n", 2223 device_id); 2224 ret = PTR_ERR(zram->disk); 2225 goto out_free_idr; 2226 } 2227 2228 zram->disk->major = zram_major; 2229 zram->disk->first_minor = device_id; 2230 zram->disk->minors = 1; 2231 zram->disk->flags |= GENHD_FL_NO_PART; 2232 zram->disk->fops = &zram_devops; 2233 zram->disk->private_data = zram; 2234 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 2235 2236 /* Actual capacity set using sysfs (/sys/block/zram<id>/disksize */ 2237 set_capacity(zram->disk, 0); 2238 /* zram devices sort of resembles non-rotational disks */ 2239 blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue); 2240 blk_queue_flag_set(QUEUE_FLAG_SYNCHRONOUS, zram->disk->queue); 2241 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, zram->disk->queue); 2242 ret = device_add_disk(NULL, zram->disk, zram_disk_groups); 2243 if (ret) 2244 goto out_cleanup_disk; 2245 2246 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor); 2247 2248 zram_debugfs_register(zram); 2249 pr_info("Added device: %s\n", zram->disk->disk_name); 2250 return device_id; 2251 2252 out_cleanup_disk: 2253 put_disk(zram->disk); 2254 out_free_idr: 2255 idr_remove(&zram_index_idr, device_id); 2256 out_free_dev: 2257 kfree(zram); 2258 return ret; 2259 } 2260 2261 static int zram_remove(struct zram *zram) 2262 { 2263 bool claimed; 2264 2265 mutex_lock(&zram->disk->open_mutex); 2266 if (disk_openers(zram->disk)) { 2267 mutex_unlock(&zram->disk->open_mutex); 2268 return -EBUSY; 2269 } 2270 2271 claimed = zram->claim; 2272 if (!claimed) 2273 zram->claim = true; 2274 mutex_unlock(&zram->disk->open_mutex); 2275 2276 zram_debugfs_unregister(zram); 2277 2278 if (claimed) { 2279 /* 2280 * If we were claimed by reset_store(), del_gendisk() will 2281 * wait until reset_store() is done, so nothing need to do. 2282 */ 2283 ; 2284 } else { 2285 /* Make sure all the pending I/O are finished */ 2286 sync_blockdev(zram->disk->part0); 2287 zram_reset_device(zram); 2288 } 2289 2290 pr_info("Removed device: %s\n", zram->disk->disk_name); 2291 2292 del_gendisk(zram->disk); 2293 2294 /* del_gendisk drains pending reset_store */ 2295 WARN_ON_ONCE(claimed && zram->claim); 2296 2297 /* 2298 * disksize_store() may be called in between zram_reset_device() 2299 * and del_gendisk(), so run the last reset to avoid leaking 2300 * anything allocated with disksize_store() 2301 */ 2302 zram_reset_device(zram); 2303 2304 put_disk(zram->disk); 2305 kfree(zram); 2306 return 0; 2307 } 2308 2309 /* zram-control sysfs attributes */ 2310 2311 /* 2312 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a 2313 * sense that reading from this file does alter the state of your system -- it 2314 * creates a new un-initialized zram device and returns back this device's 2315 * device_id (or an error code if it fails to create a new device). 2316 */ 2317 static ssize_t hot_add_show(const struct class *class, 2318 const struct class_attribute *attr, 2319 char *buf) 2320 { 2321 int ret; 2322 2323 mutex_lock(&zram_index_mutex); 2324 ret = zram_add(); 2325 mutex_unlock(&zram_index_mutex); 2326 2327 if (ret < 0) 2328 return ret; 2329 return scnprintf(buf, PAGE_SIZE, "%d\n", ret); 2330 } 2331 /* This attribute must be set to 0400, so CLASS_ATTR_RO() can not be used */ 2332 static struct class_attribute class_attr_hot_add = 2333 __ATTR(hot_add, 0400, hot_add_show, NULL); 2334 2335 static ssize_t hot_remove_store(const struct class *class, 2336 const struct class_attribute *attr, 2337 const char *buf, 2338 size_t count) 2339 { 2340 struct zram *zram; 2341 int ret, dev_id; 2342 2343 /* dev_id is gendisk->first_minor, which is `int' */ 2344 ret = kstrtoint(buf, 10, &dev_id); 2345 if (ret) 2346 return ret; 2347 if (dev_id < 0) 2348 return -EINVAL; 2349 2350 mutex_lock(&zram_index_mutex); 2351 2352 zram = idr_find(&zram_index_idr, dev_id); 2353 if (zram) { 2354 ret = zram_remove(zram); 2355 if (!ret) 2356 idr_remove(&zram_index_idr, dev_id); 2357 } else { 2358 ret = -ENODEV; 2359 } 2360 2361 mutex_unlock(&zram_index_mutex); 2362 return ret ? ret : count; 2363 } 2364 static CLASS_ATTR_WO(hot_remove); 2365 2366 static struct attribute *zram_control_class_attrs[] = { 2367 &class_attr_hot_add.attr, 2368 &class_attr_hot_remove.attr, 2369 NULL, 2370 }; 2371 ATTRIBUTE_GROUPS(zram_control_class); 2372 2373 static struct class zram_control_class = { 2374 .name = "zram-control", 2375 .class_groups = zram_control_class_groups, 2376 }; 2377 2378 static int zram_remove_cb(int id, void *ptr, void *data) 2379 { 2380 WARN_ON_ONCE(zram_remove(ptr)); 2381 return 0; 2382 } 2383 2384 static void destroy_devices(void) 2385 { 2386 class_unregister(&zram_control_class); 2387 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); 2388 zram_debugfs_destroy(); 2389 idr_destroy(&zram_index_idr); 2390 unregister_blkdev(zram_major, "zram"); 2391 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2392 } 2393 2394 static int __init zram_init(void) 2395 { 2396 int ret; 2397 2398 BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > BITS_PER_LONG); 2399 2400 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare", 2401 zcomp_cpu_up_prepare, zcomp_cpu_dead); 2402 if (ret < 0) 2403 return ret; 2404 2405 ret = class_register(&zram_control_class); 2406 if (ret) { 2407 pr_err("Unable to register zram-control class\n"); 2408 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2409 return ret; 2410 } 2411 2412 zram_debugfs_create(); 2413 zram_major = register_blkdev(0, "zram"); 2414 if (zram_major <= 0) { 2415 pr_err("Unable to get major number\n"); 2416 class_unregister(&zram_control_class); 2417 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2418 return -EBUSY; 2419 } 2420 2421 while (num_devices != 0) { 2422 mutex_lock(&zram_index_mutex); 2423 ret = zram_add(); 2424 mutex_unlock(&zram_index_mutex); 2425 if (ret < 0) 2426 goto out_error; 2427 num_devices--; 2428 } 2429 2430 return 0; 2431 2432 out_error: 2433 destroy_devices(); 2434 return ret; 2435 } 2436 2437 static void __exit zram_exit(void) 2438 { 2439 destroy_devices(); 2440 } 2441 2442 module_init(zram_init); 2443 module_exit(zram_exit); 2444 2445 module_param(num_devices, uint, 0); 2446 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); 2447 2448 MODULE_LICENSE("Dual BSD/GPL"); 2449 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2450 MODULE_DESCRIPTION("Compressed RAM Block Device"); 2451