1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/bitops.h> 22 #include <linux/blkdev.h> 23 #include <linux/buffer_head.h> 24 #include <linux/device.h> 25 #include <linux/highmem.h> 26 #include <linux/slab.h> 27 #include <linux/backing-dev.h> 28 #include <linux/string.h> 29 #include <linux/vmalloc.h> 30 #include <linux/err.h> 31 #include <linux/idr.h> 32 #include <linux/sysfs.h> 33 #include <linux/debugfs.h> 34 #include <linux/cpuhotplug.h> 35 #include <linux/part_stat.h> 36 #include <linux/kernel_read_file.h> 37 38 #include "zram_drv.h" 39 40 static DEFINE_IDR(zram_index_idr); 41 /* idr index must be protected */ 42 static DEFINE_MUTEX(zram_index_mutex); 43 44 static int zram_major; 45 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP; 46 47 /* Module params (documentation at end) */ 48 static unsigned int num_devices = 1; 49 /* 50 * Pages that compress to sizes equals or greater than this are stored 51 * uncompressed in memory. 52 */ 53 static size_t huge_class_size; 54 55 static const struct block_device_operations zram_devops; 56 57 static void zram_free_page(struct zram *zram, size_t index); 58 static int zram_read_page(struct zram *zram, struct page *page, u32 index, 59 struct bio *parent); 60 61 static int zram_slot_trylock(struct zram *zram, u32 index) 62 { 63 return spin_trylock(&zram->table[index].lock); 64 } 65 66 static void zram_slot_lock(struct zram *zram, u32 index) 67 { 68 spin_lock(&zram->table[index].lock); 69 } 70 71 static void zram_slot_unlock(struct zram *zram, u32 index) 72 { 73 spin_unlock(&zram->table[index].lock); 74 } 75 76 static inline bool init_done(struct zram *zram) 77 { 78 return zram->disksize; 79 } 80 81 static inline struct zram *dev_to_zram(struct device *dev) 82 { 83 return (struct zram *)dev_to_disk(dev)->private_data; 84 } 85 86 static unsigned long zram_get_handle(struct zram *zram, u32 index) 87 { 88 return zram->table[index].handle; 89 } 90 91 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle) 92 { 93 zram->table[index].handle = handle; 94 } 95 96 /* flag operations require table entry bit_spin_lock() being held */ 97 static bool zram_test_flag(struct zram *zram, u32 index, 98 enum zram_pageflags flag) 99 { 100 return zram->table[index].flags & BIT(flag); 101 } 102 103 static void zram_set_flag(struct zram *zram, u32 index, 104 enum zram_pageflags flag) 105 { 106 zram->table[index].flags |= BIT(flag); 107 } 108 109 static void zram_clear_flag(struct zram *zram, u32 index, 110 enum zram_pageflags flag) 111 { 112 zram->table[index].flags &= ~BIT(flag); 113 } 114 115 static inline void zram_set_element(struct zram *zram, u32 index, 116 unsigned long element) 117 { 118 zram->table[index].element = element; 119 } 120 121 static unsigned long zram_get_element(struct zram *zram, u32 index) 122 { 123 return zram->table[index].element; 124 } 125 126 static size_t zram_get_obj_size(struct zram *zram, u32 index) 127 { 128 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1); 129 } 130 131 static void zram_set_obj_size(struct zram *zram, 132 u32 index, size_t size) 133 { 134 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT; 135 136 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size; 137 } 138 139 static inline bool zram_allocated(struct zram *zram, u32 index) 140 { 141 return zram_get_obj_size(zram, index) || 142 zram_test_flag(zram, index, ZRAM_SAME) || 143 zram_test_flag(zram, index, ZRAM_WB); 144 } 145 146 #if PAGE_SIZE != 4096 147 static inline bool is_partial_io(struct bio_vec *bvec) 148 { 149 return bvec->bv_len != PAGE_SIZE; 150 } 151 #define ZRAM_PARTIAL_IO 1 152 #else 153 static inline bool is_partial_io(struct bio_vec *bvec) 154 { 155 return false; 156 } 157 #endif 158 159 static inline void zram_set_priority(struct zram *zram, u32 index, u32 prio) 160 { 161 prio &= ZRAM_COMP_PRIORITY_MASK; 162 /* 163 * Clear previous priority value first, in case if we recompress 164 * further an already recompressed page 165 */ 166 zram->table[index].flags &= ~(ZRAM_COMP_PRIORITY_MASK << 167 ZRAM_COMP_PRIORITY_BIT1); 168 zram->table[index].flags |= (prio << ZRAM_COMP_PRIORITY_BIT1); 169 } 170 171 static inline u32 zram_get_priority(struct zram *zram, u32 index) 172 { 173 u32 prio = zram->table[index].flags >> ZRAM_COMP_PRIORITY_BIT1; 174 175 return prio & ZRAM_COMP_PRIORITY_MASK; 176 } 177 178 static void zram_accessed(struct zram *zram, u32 index) 179 { 180 zram_clear_flag(zram, index, ZRAM_IDLE); 181 zram_clear_flag(zram, index, ZRAM_PP_SLOT); 182 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME 183 zram->table[index].ac_time = ktime_get_boottime(); 184 #endif 185 } 186 187 #if defined CONFIG_ZRAM_WRITEBACK || defined CONFIG_ZRAM_MULTI_COMP 188 struct zram_pp_slot { 189 unsigned long index; 190 struct list_head entry; 191 }; 192 193 /* 194 * A post-processing bucket is, essentially, a size class, this defines 195 * the range (in bytes) of pp-slots sizes in particular bucket. 196 */ 197 #define PP_BUCKET_SIZE_RANGE 64 198 #define NUM_PP_BUCKETS ((PAGE_SIZE / PP_BUCKET_SIZE_RANGE) + 1) 199 200 struct zram_pp_ctl { 201 struct list_head pp_buckets[NUM_PP_BUCKETS]; 202 }; 203 204 static struct zram_pp_ctl *init_pp_ctl(void) 205 { 206 struct zram_pp_ctl *ctl; 207 u32 idx; 208 209 ctl = kmalloc(sizeof(*ctl), GFP_KERNEL); 210 if (!ctl) 211 return NULL; 212 213 for (idx = 0; idx < NUM_PP_BUCKETS; idx++) 214 INIT_LIST_HEAD(&ctl->pp_buckets[idx]); 215 return ctl; 216 } 217 218 static void release_pp_slot(struct zram *zram, struct zram_pp_slot *pps) 219 { 220 list_del_init(&pps->entry); 221 222 zram_slot_lock(zram, pps->index); 223 zram_clear_flag(zram, pps->index, ZRAM_PP_SLOT); 224 zram_slot_unlock(zram, pps->index); 225 226 kfree(pps); 227 } 228 229 static void release_pp_ctl(struct zram *zram, struct zram_pp_ctl *ctl) 230 { 231 u32 idx; 232 233 if (!ctl) 234 return; 235 236 for (idx = 0; idx < NUM_PP_BUCKETS; idx++) { 237 while (!list_empty(&ctl->pp_buckets[idx])) { 238 struct zram_pp_slot *pps; 239 240 pps = list_first_entry(&ctl->pp_buckets[idx], 241 struct zram_pp_slot, 242 entry); 243 release_pp_slot(zram, pps); 244 } 245 } 246 247 kfree(ctl); 248 } 249 250 static void place_pp_slot(struct zram *zram, struct zram_pp_ctl *ctl, 251 struct zram_pp_slot *pps) 252 { 253 u32 idx; 254 255 idx = zram_get_obj_size(zram, pps->index) / PP_BUCKET_SIZE_RANGE; 256 list_add(&pps->entry, &ctl->pp_buckets[idx]); 257 258 zram_set_flag(zram, pps->index, ZRAM_PP_SLOT); 259 } 260 261 static struct zram_pp_slot *select_pp_slot(struct zram_pp_ctl *ctl) 262 { 263 struct zram_pp_slot *pps = NULL; 264 s32 idx = NUM_PP_BUCKETS - 1; 265 266 /* The higher the bucket id the more optimal slot post-processing is */ 267 while (idx >= 0) { 268 pps = list_first_entry_or_null(&ctl->pp_buckets[idx], 269 struct zram_pp_slot, 270 entry); 271 if (pps) 272 break; 273 274 idx--; 275 } 276 return pps; 277 } 278 #endif 279 280 static inline void update_used_max(struct zram *zram, 281 const unsigned long pages) 282 { 283 unsigned long cur_max = atomic_long_read(&zram->stats.max_used_pages); 284 285 do { 286 if (cur_max >= pages) 287 return; 288 } while (!atomic_long_try_cmpxchg(&zram->stats.max_used_pages, 289 &cur_max, pages)); 290 } 291 292 static inline void zram_fill_page(void *ptr, unsigned long len, 293 unsigned long value) 294 { 295 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long))); 296 memset_l(ptr, value, len / sizeof(unsigned long)); 297 } 298 299 static bool page_same_filled(void *ptr, unsigned long *element) 300 { 301 unsigned long *page; 302 unsigned long val; 303 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1; 304 305 page = (unsigned long *)ptr; 306 val = page[0]; 307 308 if (val != page[last_pos]) 309 return false; 310 311 for (pos = 1; pos < last_pos; pos++) { 312 if (val != page[pos]) 313 return false; 314 } 315 316 *element = val; 317 318 return true; 319 } 320 321 static ssize_t initstate_show(struct device *dev, 322 struct device_attribute *attr, char *buf) 323 { 324 u32 val; 325 struct zram *zram = dev_to_zram(dev); 326 327 down_read(&zram->init_lock); 328 val = init_done(zram); 329 up_read(&zram->init_lock); 330 331 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 332 } 333 334 static ssize_t disksize_show(struct device *dev, 335 struct device_attribute *attr, char *buf) 336 { 337 struct zram *zram = dev_to_zram(dev); 338 339 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 340 } 341 342 static ssize_t mem_limit_store(struct device *dev, 343 struct device_attribute *attr, const char *buf, size_t len) 344 { 345 u64 limit; 346 char *tmp; 347 struct zram *zram = dev_to_zram(dev); 348 349 limit = memparse(buf, &tmp); 350 if (buf == tmp) /* no chars parsed, invalid input */ 351 return -EINVAL; 352 353 down_write(&zram->init_lock); 354 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; 355 up_write(&zram->init_lock); 356 357 return len; 358 } 359 360 static ssize_t mem_used_max_store(struct device *dev, 361 struct device_attribute *attr, const char *buf, size_t len) 362 { 363 int err; 364 unsigned long val; 365 struct zram *zram = dev_to_zram(dev); 366 367 err = kstrtoul(buf, 10, &val); 368 if (err || val != 0) 369 return -EINVAL; 370 371 down_read(&zram->init_lock); 372 if (init_done(zram)) { 373 atomic_long_set(&zram->stats.max_used_pages, 374 zs_get_total_pages(zram->mem_pool)); 375 } 376 up_read(&zram->init_lock); 377 378 return len; 379 } 380 381 /* 382 * Mark all pages which are older than or equal to cutoff as IDLE. 383 * Callers should hold the zram init lock in read mode 384 */ 385 static void mark_idle(struct zram *zram, ktime_t cutoff) 386 { 387 int is_idle = 1; 388 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 389 int index; 390 391 for (index = 0; index < nr_pages; index++) { 392 /* 393 * Do not mark ZRAM_SAME slots as ZRAM_IDLE, because no 394 * post-processing (recompress, writeback) happens to the 395 * ZRAM_SAME slot. 396 * 397 * And ZRAM_WB slots simply cannot be ZRAM_IDLE. 398 */ 399 zram_slot_lock(zram, index); 400 if (!zram_allocated(zram, index) || 401 zram_test_flag(zram, index, ZRAM_WB) || 402 zram_test_flag(zram, index, ZRAM_SAME)) { 403 zram_slot_unlock(zram, index); 404 continue; 405 } 406 407 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME 408 is_idle = !cutoff || 409 ktime_after(cutoff, zram->table[index].ac_time); 410 #endif 411 if (is_idle) 412 zram_set_flag(zram, index, ZRAM_IDLE); 413 else 414 zram_clear_flag(zram, index, ZRAM_IDLE); 415 zram_slot_unlock(zram, index); 416 } 417 } 418 419 static ssize_t idle_store(struct device *dev, 420 struct device_attribute *attr, const char *buf, size_t len) 421 { 422 struct zram *zram = dev_to_zram(dev); 423 ktime_t cutoff_time = 0; 424 ssize_t rv = -EINVAL; 425 426 if (!sysfs_streq(buf, "all")) { 427 /* 428 * If it did not parse as 'all' try to treat it as an integer 429 * when we have memory tracking enabled. 430 */ 431 u64 age_sec; 432 433 if (IS_ENABLED(CONFIG_ZRAM_TRACK_ENTRY_ACTIME) && !kstrtoull(buf, 0, &age_sec)) 434 cutoff_time = ktime_sub(ktime_get_boottime(), 435 ns_to_ktime(age_sec * NSEC_PER_SEC)); 436 else 437 goto out; 438 } 439 440 down_read(&zram->init_lock); 441 if (!init_done(zram)) 442 goto out_unlock; 443 444 /* 445 * A cutoff_time of 0 marks everything as idle, this is the 446 * "all" behavior. 447 */ 448 mark_idle(zram, cutoff_time); 449 rv = len; 450 451 out_unlock: 452 up_read(&zram->init_lock); 453 out: 454 return rv; 455 } 456 457 #ifdef CONFIG_ZRAM_WRITEBACK 458 static ssize_t writeback_limit_enable_store(struct device *dev, 459 struct device_attribute *attr, const char *buf, size_t len) 460 { 461 struct zram *zram = dev_to_zram(dev); 462 u64 val; 463 ssize_t ret = -EINVAL; 464 465 if (kstrtoull(buf, 10, &val)) 466 return ret; 467 468 down_read(&zram->init_lock); 469 spin_lock(&zram->wb_limit_lock); 470 zram->wb_limit_enable = val; 471 spin_unlock(&zram->wb_limit_lock); 472 up_read(&zram->init_lock); 473 ret = len; 474 475 return ret; 476 } 477 478 static ssize_t writeback_limit_enable_show(struct device *dev, 479 struct device_attribute *attr, char *buf) 480 { 481 bool val; 482 struct zram *zram = dev_to_zram(dev); 483 484 down_read(&zram->init_lock); 485 spin_lock(&zram->wb_limit_lock); 486 val = zram->wb_limit_enable; 487 spin_unlock(&zram->wb_limit_lock); 488 up_read(&zram->init_lock); 489 490 return scnprintf(buf, PAGE_SIZE, "%d\n", val); 491 } 492 493 static ssize_t writeback_limit_store(struct device *dev, 494 struct device_attribute *attr, const char *buf, size_t len) 495 { 496 struct zram *zram = dev_to_zram(dev); 497 u64 val; 498 ssize_t ret = -EINVAL; 499 500 if (kstrtoull(buf, 10, &val)) 501 return ret; 502 503 down_read(&zram->init_lock); 504 spin_lock(&zram->wb_limit_lock); 505 zram->bd_wb_limit = val; 506 spin_unlock(&zram->wb_limit_lock); 507 up_read(&zram->init_lock); 508 ret = len; 509 510 return ret; 511 } 512 513 static ssize_t writeback_limit_show(struct device *dev, 514 struct device_attribute *attr, char *buf) 515 { 516 u64 val; 517 struct zram *zram = dev_to_zram(dev); 518 519 down_read(&zram->init_lock); 520 spin_lock(&zram->wb_limit_lock); 521 val = zram->bd_wb_limit; 522 spin_unlock(&zram->wb_limit_lock); 523 up_read(&zram->init_lock); 524 525 return scnprintf(buf, PAGE_SIZE, "%llu\n", val); 526 } 527 528 static void reset_bdev(struct zram *zram) 529 { 530 if (!zram->backing_dev) 531 return; 532 533 /* hope filp_close flush all of IO */ 534 filp_close(zram->backing_dev, NULL); 535 zram->backing_dev = NULL; 536 zram->bdev = NULL; 537 zram->disk->fops = &zram_devops; 538 kvfree(zram->bitmap); 539 zram->bitmap = NULL; 540 } 541 542 static ssize_t backing_dev_show(struct device *dev, 543 struct device_attribute *attr, char *buf) 544 { 545 struct file *file; 546 struct zram *zram = dev_to_zram(dev); 547 char *p; 548 ssize_t ret; 549 550 down_read(&zram->init_lock); 551 file = zram->backing_dev; 552 if (!file) { 553 memcpy(buf, "none\n", 5); 554 up_read(&zram->init_lock); 555 return 5; 556 } 557 558 p = file_path(file, buf, PAGE_SIZE - 1); 559 if (IS_ERR(p)) { 560 ret = PTR_ERR(p); 561 goto out; 562 } 563 564 ret = strlen(p); 565 memmove(buf, p, ret); 566 buf[ret++] = '\n'; 567 out: 568 up_read(&zram->init_lock); 569 return ret; 570 } 571 572 static ssize_t backing_dev_store(struct device *dev, 573 struct device_attribute *attr, const char *buf, size_t len) 574 { 575 char *file_name; 576 size_t sz; 577 struct file *backing_dev = NULL; 578 struct inode *inode; 579 unsigned int bitmap_sz; 580 unsigned long nr_pages, *bitmap = NULL; 581 int err; 582 struct zram *zram = dev_to_zram(dev); 583 584 file_name = kmalloc(PATH_MAX, GFP_KERNEL); 585 if (!file_name) 586 return -ENOMEM; 587 588 down_write(&zram->init_lock); 589 if (init_done(zram)) { 590 pr_info("Can't setup backing device for initialized device\n"); 591 err = -EBUSY; 592 goto out; 593 } 594 595 strscpy(file_name, buf, PATH_MAX); 596 /* ignore trailing newline */ 597 sz = strlen(file_name); 598 if (sz > 0 && file_name[sz - 1] == '\n') 599 file_name[sz - 1] = 0x00; 600 601 backing_dev = filp_open(file_name, O_RDWR | O_LARGEFILE | O_EXCL, 0); 602 if (IS_ERR(backing_dev)) { 603 err = PTR_ERR(backing_dev); 604 backing_dev = NULL; 605 goto out; 606 } 607 608 inode = backing_dev->f_mapping->host; 609 610 /* Support only block device in this moment */ 611 if (!S_ISBLK(inode->i_mode)) { 612 err = -ENOTBLK; 613 goto out; 614 } 615 616 nr_pages = i_size_read(inode) >> PAGE_SHIFT; 617 /* Refuse to use zero sized device (also prevents self reference) */ 618 if (!nr_pages) { 619 err = -EINVAL; 620 goto out; 621 } 622 623 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long); 624 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL); 625 if (!bitmap) { 626 err = -ENOMEM; 627 goto out; 628 } 629 630 reset_bdev(zram); 631 632 zram->bdev = I_BDEV(inode); 633 zram->backing_dev = backing_dev; 634 zram->bitmap = bitmap; 635 zram->nr_pages = nr_pages; 636 up_write(&zram->init_lock); 637 638 pr_info("setup backing device %s\n", file_name); 639 kfree(file_name); 640 641 return len; 642 out: 643 kvfree(bitmap); 644 645 if (backing_dev) 646 filp_close(backing_dev, NULL); 647 648 up_write(&zram->init_lock); 649 650 kfree(file_name); 651 652 return err; 653 } 654 655 static unsigned long alloc_block_bdev(struct zram *zram) 656 { 657 unsigned long blk_idx = 1; 658 retry: 659 /* skip 0 bit to confuse zram.handle = 0 */ 660 blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx); 661 if (blk_idx == zram->nr_pages) 662 return 0; 663 664 if (test_and_set_bit(blk_idx, zram->bitmap)) 665 goto retry; 666 667 atomic64_inc(&zram->stats.bd_count); 668 return blk_idx; 669 } 670 671 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) 672 { 673 int was_set; 674 675 was_set = test_and_clear_bit(blk_idx, zram->bitmap); 676 WARN_ON_ONCE(!was_set); 677 atomic64_dec(&zram->stats.bd_count); 678 } 679 680 static void read_from_bdev_async(struct zram *zram, struct page *page, 681 unsigned long entry, struct bio *parent) 682 { 683 struct bio *bio; 684 685 bio = bio_alloc(zram->bdev, 1, parent->bi_opf, GFP_NOIO); 686 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9); 687 __bio_add_page(bio, page, PAGE_SIZE, 0); 688 bio_chain(bio, parent); 689 submit_bio(bio); 690 } 691 692 #define PAGE_WB_SIG "page_index=" 693 694 #define PAGE_WRITEBACK 0 695 #define HUGE_WRITEBACK (1<<0) 696 #define IDLE_WRITEBACK (1<<1) 697 #define INCOMPRESSIBLE_WRITEBACK (1<<2) 698 699 static int scan_slots_for_writeback(struct zram *zram, u32 mode, 700 unsigned long nr_pages, 701 unsigned long index, 702 struct zram_pp_ctl *ctl) 703 { 704 struct zram_pp_slot *pps = NULL; 705 706 for (; nr_pages != 0; index++, nr_pages--) { 707 if (!pps) 708 pps = kmalloc(sizeof(*pps), GFP_KERNEL); 709 if (!pps) 710 return -ENOMEM; 711 712 INIT_LIST_HEAD(&pps->entry); 713 714 zram_slot_lock(zram, index); 715 if (!zram_allocated(zram, index)) 716 goto next; 717 718 if (zram_test_flag(zram, index, ZRAM_WB) || 719 zram_test_flag(zram, index, ZRAM_SAME)) 720 goto next; 721 722 if (mode & IDLE_WRITEBACK && 723 !zram_test_flag(zram, index, ZRAM_IDLE)) 724 goto next; 725 if (mode & HUGE_WRITEBACK && 726 !zram_test_flag(zram, index, ZRAM_HUGE)) 727 goto next; 728 if (mode & INCOMPRESSIBLE_WRITEBACK && 729 !zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 730 goto next; 731 732 pps->index = index; 733 place_pp_slot(zram, ctl, pps); 734 pps = NULL; 735 next: 736 zram_slot_unlock(zram, index); 737 } 738 739 kfree(pps); 740 return 0; 741 } 742 743 static ssize_t writeback_store(struct device *dev, 744 struct device_attribute *attr, const char *buf, size_t len) 745 { 746 struct zram *zram = dev_to_zram(dev); 747 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 748 struct zram_pp_ctl *ctl = NULL; 749 struct zram_pp_slot *pps; 750 unsigned long index = 0; 751 struct bio bio; 752 struct bio_vec bio_vec; 753 struct page *page; 754 ssize_t ret = len; 755 int mode, err; 756 unsigned long blk_idx = 0; 757 758 if (sysfs_streq(buf, "idle")) 759 mode = IDLE_WRITEBACK; 760 else if (sysfs_streq(buf, "huge")) 761 mode = HUGE_WRITEBACK; 762 else if (sysfs_streq(buf, "huge_idle")) 763 mode = IDLE_WRITEBACK | HUGE_WRITEBACK; 764 else if (sysfs_streq(buf, "incompressible")) 765 mode = INCOMPRESSIBLE_WRITEBACK; 766 else { 767 if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1)) 768 return -EINVAL; 769 770 if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) || 771 index >= nr_pages) 772 return -EINVAL; 773 774 nr_pages = 1; 775 mode = PAGE_WRITEBACK; 776 } 777 778 down_read(&zram->init_lock); 779 if (!init_done(zram)) { 780 ret = -EINVAL; 781 goto release_init_lock; 782 } 783 784 /* Do not permit concurrent post-processing actions. */ 785 if (atomic_xchg(&zram->pp_in_progress, 1)) { 786 up_read(&zram->init_lock); 787 return -EAGAIN; 788 } 789 790 if (!zram->backing_dev) { 791 ret = -ENODEV; 792 goto release_init_lock; 793 } 794 795 page = alloc_page(GFP_KERNEL); 796 if (!page) { 797 ret = -ENOMEM; 798 goto release_init_lock; 799 } 800 801 ctl = init_pp_ctl(); 802 if (!ctl) { 803 ret = -ENOMEM; 804 goto release_init_lock; 805 } 806 807 scan_slots_for_writeback(zram, mode, nr_pages, index, ctl); 808 809 while ((pps = select_pp_slot(ctl))) { 810 spin_lock(&zram->wb_limit_lock); 811 if (zram->wb_limit_enable && !zram->bd_wb_limit) { 812 spin_unlock(&zram->wb_limit_lock); 813 ret = -EIO; 814 break; 815 } 816 spin_unlock(&zram->wb_limit_lock); 817 818 if (!blk_idx) { 819 blk_idx = alloc_block_bdev(zram); 820 if (!blk_idx) { 821 ret = -ENOSPC; 822 break; 823 } 824 } 825 826 index = pps->index; 827 zram_slot_lock(zram, index); 828 /* 829 * scan_slots() sets ZRAM_PP_SLOT and relases slot lock, so 830 * slots can change in the meantime. If slots are accessed or 831 * freed they lose ZRAM_PP_SLOT flag and hence we don't 832 * post-process them. 833 */ 834 if (!zram_test_flag(zram, index, ZRAM_PP_SLOT)) 835 goto next; 836 zram_slot_unlock(zram, index); 837 838 if (zram_read_page(zram, page, index, NULL)) { 839 release_pp_slot(zram, pps); 840 continue; 841 } 842 843 bio_init(&bio, zram->bdev, &bio_vec, 1, 844 REQ_OP_WRITE | REQ_SYNC); 845 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9); 846 __bio_add_page(&bio, page, PAGE_SIZE, 0); 847 848 /* 849 * XXX: A single page IO would be inefficient for write 850 * but it would be not bad as starter. 851 */ 852 err = submit_bio_wait(&bio); 853 if (err) { 854 release_pp_slot(zram, pps); 855 /* 856 * BIO errors are not fatal, we continue and simply 857 * attempt to writeback the remaining objects (pages). 858 * At the same time we need to signal user-space that 859 * some writes (at least one, but also could be all of 860 * them) were not successful and we do so by returning 861 * the most recent BIO error. 862 */ 863 ret = err; 864 continue; 865 } 866 867 atomic64_inc(&zram->stats.bd_writes); 868 zram_slot_lock(zram, index); 869 /* 870 * Same as above, we release slot lock during writeback so 871 * slot can change under us: slot_free() or slot_free() and 872 * reallocation (zram_write_page()). In both cases slot loses 873 * ZRAM_PP_SLOT flag. No concurrent post-processing can set 874 * ZRAM_PP_SLOT on such slots until current post-processing 875 * finishes. 876 */ 877 if (!zram_test_flag(zram, index, ZRAM_PP_SLOT)) 878 goto next; 879 880 zram_free_page(zram, index); 881 zram_set_flag(zram, index, ZRAM_WB); 882 zram_set_element(zram, index, blk_idx); 883 blk_idx = 0; 884 atomic64_inc(&zram->stats.pages_stored); 885 spin_lock(&zram->wb_limit_lock); 886 if (zram->wb_limit_enable && zram->bd_wb_limit > 0) 887 zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12); 888 spin_unlock(&zram->wb_limit_lock); 889 next: 890 zram_slot_unlock(zram, index); 891 release_pp_slot(zram, pps); 892 } 893 894 if (blk_idx) 895 free_block_bdev(zram, blk_idx); 896 __free_page(page); 897 release_init_lock: 898 release_pp_ctl(zram, ctl); 899 atomic_set(&zram->pp_in_progress, 0); 900 up_read(&zram->init_lock); 901 902 return ret; 903 } 904 905 struct zram_work { 906 struct work_struct work; 907 struct zram *zram; 908 unsigned long entry; 909 struct page *page; 910 int error; 911 }; 912 913 static void zram_sync_read(struct work_struct *work) 914 { 915 struct zram_work *zw = container_of(work, struct zram_work, work); 916 struct bio_vec bv; 917 struct bio bio; 918 919 bio_init(&bio, zw->zram->bdev, &bv, 1, REQ_OP_READ); 920 bio.bi_iter.bi_sector = zw->entry * (PAGE_SIZE >> 9); 921 __bio_add_page(&bio, zw->page, PAGE_SIZE, 0); 922 zw->error = submit_bio_wait(&bio); 923 } 924 925 /* 926 * Block layer want one ->submit_bio to be active at a time, so if we use 927 * chained IO with parent IO in same context, it's a deadlock. To avoid that, 928 * use a worker thread context. 929 */ 930 static int read_from_bdev_sync(struct zram *zram, struct page *page, 931 unsigned long entry) 932 { 933 struct zram_work work; 934 935 work.page = page; 936 work.zram = zram; 937 work.entry = entry; 938 939 INIT_WORK_ONSTACK(&work.work, zram_sync_read); 940 queue_work(system_unbound_wq, &work.work); 941 flush_work(&work.work); 942 destroy_work_on_stack(&work.work); 943 944 return work.error; 945 } 946 947 static int read_from_bdev(struct zram *zram, struct page *page, 948 unsigned long entry, struct bio *parent) 949 { 950 atomic64_inc(&zram->stats.bd_reads); 951 if (!parent) { 952 if (WARN_ON_ONCE(!IS_ENABLED(ZRAM_PARTIAL_IO))) 953 return -EIO; 954 return read_from_bdev_sync(zram, page, entry); 955 } 956 read_from_bdev_async(zram, page, entry, parent); 957 return 0; 958 } 959 #else 960 static inline void reset_bdev(struct zram *zram) {}; 961 static int read_from_bdev(struct zram *zram, struct page *page, 962 unsigned long entry, struct bio *parent) 963 { 964 return -EIO; 965 } 966 967 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {}; 968 #endif 969 970 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 971 972 static struct dentry *zram_debugfs_root; 973 974 static void zram_debugfs_create(void) 975 { 976 zram_debugfs_root = debugfs_create_dir("zram", NULL); 977 } 978 979 static void zram_debugfs_destroy(void) 980 { 981 debugfs_remove_recursive(zram_debugfs_root); 982 } 983 984 static ssize_t read_block_state(struct file *file, char __user *buf, 985 size_t count, loff_t *ppos) 986 { 987 char *kbuf; 988 ssize_t index, written = 0; 989 struct zram *zram = file->private_data; 990 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 991 struct timespec64 ts; 992 993 kbuf = kvmalloc(count, GFP_KERNEL); 994 if (!kbuf) 995 return -ENOMEM; 996 997 down_read(&zram->init_lock); 998 if (!init_done(zram)) { 999 up_read(&zram->init_lock); 1000 kvfree(kbuf); 1001 return -EINVAL; 1002 } 1003 1004 for (index = *ppos; index < nr_pages; index++) { 1005 int copied; 1006 1007 zram_slot_lock(zram, index); 1008 if (!zram_allocated(zram, index)) 1009 goto next; 1010 1011 ts = ktime_to_timespec64(zram->table[index].ac_time); 1012 copied = snprintf(kbuf + written, count, 1013 "%12zd %12lld.%06lu %c%c%c%c%c%c\n", 1014 index, (s64)ts.tv_sec, 1015 ts.tv_nsec / NSEC_PER_USEC, 1016 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.', 1017 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.', 1018 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.', 1019 zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.', 1020 zram_get_priority(zram, index) ? 'r' : '.', 1021 zram_test_flag(zram, index, 1022 ZRAM_INCOMPRESSIBLE) ? 'n' : '.'); 1023 1024 if (count <= copied) { 1025 zram_slot_unlock(zram, index); 1026 break; 1027 } 1028 written += copied; 1029 count -= copied; 1030 next: 1031 zram_slot_unlock(zram, index); 1032 *ppos += 1; 1033 } 1034 1035 up_read(&zram->init_lock); 1036 if (copy_to_user(buf, kbuf, written)) 1037 written = -EFAULT; 1038 kvfree(kbuf); 1039 1040 return written; 1041 } 1042 1043 static const struct file_operations proc_zram_block_state_op = { 1044 .open = simple_open, 1045 .read = read_block_state, 1046 .llseek = default_llseek, 1047 }; 1048 1049 static void zram_debugfs_register(struct zram *zram) 1050 { 1051 if (!zram_debugfs_root) 1052 return; 1053 1054 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name, 1055 zram_debugfs_root); 1056 debugfs_create_file("block_state", 0400, zram->debugfs_dir, 1057 zram, &proc_zram_block_state_op); 1058 } 1059 1060 static void zram_debugfs_unregister(struct zram *zram) 1061 { 1062 debugfs_remove_recursive(zram->debugfs_dir); 1063 } 1064 #else 1065 static void zram_debugfs_create(void) {}; 1066 static void zram_debugfs_destroy(void) {}; 1067 static void zram_debugfs_register(struct zram *zram) {}; 1068 static void zram_debugfs_unregister(struct zram *zram) {}; 1069 #endif 1070 1071 /* 1072 * We switched to per-cpu streams and this attr is not needed anymore. 1073 * However, we will keep it around for some time, because: 1074 * a) we may revert per-cpu streams in the future 1075 * b) it's visible to user space and we need to follow our 2 years 1076 * retirement rule; but we already have a number of 'soon to be 1077 * altered' attrs, so max_comp_streams need to wait for the next 1078 * layoff cycle. 1079 */ 1080 static ssize_t max_comp_streams_show(struct device *dev, 1081 struct device_attribute *attr, char *buf) 1082 { 1083 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus()); 1084 } 1085 1086 static ssize_t max_comp_streams_store(struct device *dev, 1087 struct device_attribute *attr, const char *buf, size_t len) 1088 { 1089 return len; 1090 } 1091 1092 static void comp_algorithm_set(struct zram *zram, u32 prio, const char *alg) 1093 { 1094 /* Do not free statically defined compression algorithms */ 1095 if (zram->comp_algs[prio] != default_compressor) 1096 kfree(zram->comp_algs[prio]); 1097 1098 zram->comp_algs[prio] = alg; 1099 } 1100 1101 static ssize_t __comp_algorithm_show(struct zram *zram, u32 prio, char *buf) 1102 { 1103 ssize_t sz; 1104 1105 down_read(&zram->init_lock); 1106 sz = zcomp_available_show(zram->comp_algs[prio], buf); 1107 up_read(&zram->init_lock); 1108 1109 return sz; 1110 } 1111 1112 static int __comp_algorithm_store(struct zram *zram, u32 prio, const char *buf) 1113 { 1114 char *compressor; 1115 size_t sz; 1116 1117 sz = strlen(buf); 1118 if (sz >= CRYPTO_MAX_ALG_NAME) 1119 return -E2BIG; 1120 1121 compressor = kstrdup(buf, GFP_KERNEL); 1122 if (!compressor) 1123 return -ENOMEM; 1124 1125 /* ignore trailing newline */ 1126 if (sz > 0 && compressor[sz - 1] == '\n') 1127 compressor[sz - 1] = 0x00; 1128 1129 if (!zcomp_available_algorithm(compressor)) { 1130 kfree(compressor); 1131 return -EINVAL; 1132 } 1133 1134 down_write(&zram->init_lock); 1135 if (init_done(zram)) { 1136 up_write(&zram->init_lock); 1137 kfree(compressor); 1138 pr_info("Can't change algorithm for initialized device\n"); 1139 return -EBUSY; 1140 } 1141 1142 comp_algorithm_set(zram, prio, compressor); 1143 up_write(&zram->init_lock); 1144 return 0; 1145 } 1146 1147 static void comp_params_reset(struct zram *zram, u32 prio) 1148 { 1149 struct zcomp_params *params = &zram->params[prio]; 1150 1151 vfree(params->dict); 1152 params->level = ZCOMP_PARAM_NO_LEVEL; 1153 params->dict_sz = 0; 1154 params->dict = NULL; 1155 } 1156 1157 static int comp_params_store(struct zram *zram, u32 prio, s32 level, 1158 const char *dict_path) 1159 { 1160 ssize_t sz = 0; 1161 1162 comp_params_reset(zram, prio); 1163 1164 if (dict_path) { 1165 sz = kernel_read_file_from_path(dict_path, 0, 1166 &zram->params[prio].dict, 1167 INT_MAX, 1168 NULL, 1169 READING_POLICY); 1170 if (sz < 0) 1171 return -EINVAL; 1172 } 1173 1174 zram->params[prio].dict_sz = sz; 1175 zram->params[prio].level = level; 1176 return 0; 1177 } 1178 1179 static ssize_t algorithm_params_store(struct device *dev, 1180 struct device_attribute *attr, 1181 const char *buf, 1182 size_t len) 1183 { 1184 s32 prio = ZRAM_PRIMARY_COMP, level = ZCOMP_PARAM_NO_LEVEL; 1185 char *args, *param, *val, *algo = NULL, *dict_path = NULL; 1186 struct zram *zram = dev_to_zram(dev); 1187 int ret; 1188 1189 args = skip_spaces(buf); 1190 while (*args) { 1191 args = next_arg(args, ¶m, &val); 1192 1193 if (!val || !*val) 1194 return -EINVAL; 1195 1196 if (!strcmp(param, "priority")) { 1197 ret = kstrtoint(val, 10, &prio); 1198 if (ret) 1199 return ret; 1200 continue; 1201 } 1202 1203 if (!strcmp(param, "level")) { 1204 ret = kstrtoint(val, 10, &level); 1205 if (ret) 1206 return ret; 1207 continue; 1208 } 1209 1210 if (!strcmp(param, "algo")) { 1211 algo = val; 1212 continue; 1213 } 1214 1215 if (!strcmp(param, "dict")) { 1216 dict_path = val; 1217 continue; 1218 } 1219 } 1220 1221 /* Lookup priority by algorithm name */ 1222 if (algo) { 1223 s32 p; 1224 1225 prio = -EINVAL; 1226 for (p = ZRAM_PRIMARY_COMP; p < ZRAM_MAX_COMPS; p++) { 1227 if (!zram->comp_algs[p]) 1228 continue; 1229 1230 if (!strcmp(zram->comp_algs[p], algo)) { 1231 prio = p; 1232 break; 1233 } 1234 } 1235 } 1236 1237 if (prio < ZRAM_PRIMARY_COMP || prio >= ZRAM_MAX_COMPS) 1238 return -EINVAL; 1239 1240 ret = comp_params_store(zram, prio, level, dict_path); 1241 return ret ? ret : len; 1242 } 1243 1244 static ssize_t comp_algorithm_show(struct device *dev, 1245 struct device_attribute *attr, 1246 char *buf) 1247 { 1248 struct zram *zram = dev_to_zram(dev); 1249 1250 return __comp_algorithm_show(zram, ZRAM_PRIMARY_COMP, buf); 1251 } 1252 1253 static ssize_t comp_algorithm_store(struct device *dev, 1254 struct device_attribute *attr, 1255 const char *buf, 1256 size_t len) 1257 { 1258 struct zram *zram = dev_to_zram(dev); 1259 int ret; 1260 1261 ret = __comp_algorithm_store(zram, ZRAM_PRIMARY_COMP, buf); 1262 return ret ? ret : len; 1263 } 1264 1265 #ifdef CONFIG_ZRAM_MULTI_COMP 1266 static ssize_t recomp_algorithm_show(struct device *dev, 1267 struct device_attribute *attr, 1268 char *buf) 1269 { 1270 struct zram *zram = dev_to_zram(dev); 1271 ssize_t sz = 0; 1272 u32 prio; 1273 1274 for (prio = ZRAM_SECONDARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { 1275 if (!zram->comp_algs[prio]) 1276 continue; 1277 1278 sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2, "#%d: ", prio); 1279 sz += __comp_algorithm_show(zram, prio, buf + sz); 1280 } 1281 1282 return sz; 1283 } 1284 1285 static ssize_t recomp_algorithm_store(struct device *dev, 1286 struct device_attribute *attr, 1287 const char *buf, 1288 size_t len) 1289 { 1290 struct zram *zram = dev_to_zram(dev); 1291 int prio = ZRAM_SECONDARY_COMP; 1292 char *args, *param, *val; 1293 char *alg = NULL; 1294 int ret; 1295 1296 args = skip_spaces(buf); 1297 while (*args) { 1298 args = next_arg(args, ¶m, &val); 1299 1300 if (!val || !*val) 1301 return -EINVAL; 1302 1303 if (!strcmp(param, "algo")) { 1304 alg = val; 1305 continue; 1306 } 1307 1308 if (!strcmp(param, "priority")) { 1309 ret = kstrtoint(val, 10, &prio); 1310 if (ret) 1311 return ret; 1312 continue; 1313 } 1314 } 1315 1316 if (!alg) 1317 return -EINVAL; 1318 1319 if (prio < ZRAM_SECONDARY_COMP || prio >= ZRAM_MAX_COMPS) 1320 return -EINVAL; 1321 1322 ret = __comp_algorithm_store(zram, prio, alg); 1323 return ret ? ret : len; 1324 } 1325 #endif 1326 1327 static ssize_t compact_store(struct device *dev, 1328 struct device_attribute *attr, const char *buf, size_t len) 1329 { 1330 struct zram *zram = dev_to_zram(dev); 1331 1332 down_read(&zram->init_lock); 1333 if (!init_done(zram)) { 1334 up_read(&zram->init_lock); 1335 return -EINVAL; 1336 } 1337 1338 zs_compact(zram->mem_pool); 1339 up_read(&zram->init_lock); 1340 1341 return len; 1342 } 1343 1344 static ssize_t io_stat_show(struct device *dev, 1345 struct device_attribute *attr, char *buf) 1346 { 1347 struct zram *zram = dev_to_zram(dev); 1348 ssize_t ret; 1349 1350 down_read(&zram->init_lock); 1351 ret = scnprintf(buf, PAGE_SIZE, 1352 "%8llu %8llu 0 %8llu\n", 1353 (u64)atomic64_read(&zram->stats.failed_reads), 1354 (u64)atomic64_read(&zram->stats.failed_writes), 1355 (u64)atomic64_read(&zram->stats.notify_free)); 1356 up_read(&zram->init_lock); 1357 1358 return ret; 1359 } 1360 1361 static ssize_t mm_stat_show(struct device *dev, 1362 struct device_attribute *attr, char *buf) 1363 { 1364 struct zram *zram = dev_to_zram(dev); 1365 struct zs_pool_stats pool_stats; 1366 u64 orig_size, mem_used = 0; 1367 long max_used; 1368 ssize_t ret; 1369 1370 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); 1371 1372 down_read(&zram->init_lock); 1373 if (init_done(zram)) { 1374 mem_used = zs_get_total_pages(zram->mem_pool); 1375 zs_pool_stats(zram->mem_pool, &pool_stats); 1376 } 1377 1378 orig_size = atomic64_read(&zram->stats.pages_stored); 1379 max_used = atomic_long_read(&zram->stats.max_used_pages); 1380 1381 ret = scnprintf(buf, PAGE_SIZE, 1382 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n", 1383 orig_size << PAGE_SHIFT, 1384 (u64)atomic64_read(&zram->stats.compr_data_size), 1385 mem_used << PAGE_SHIFT, 1386 zram->limit_pages << PAGE_SHIFT, 1387 max_used << PAGE_SHIFT, 1388 (u64)atomic64_read(&zram->stats.same_pages), 1389 atomic_long_read(&pool_stats.pages_compacted), 1390 (u64)atomic64_read(&zram->stats.huge_pages), 1391 (u64)atomic64_read(&zram->stats.huge_pages_since)); 1392 up_read(&zram->init_lock); 1393 1394 return ret; 1395 } 1396 1397 #ifdef CONFIG_ZRAM_WRITEBACK 1398 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12))) 1399 static ssize_t bd_stat_show(struct device *dev, 1400 struct device_attribute *attr, char *buf) 1401 { 1402 struct zram *zram = dev_to_zram(dev); 1403 ssize_t ret; 1404 1405 down_read(&zram->init_lock); 1406 ret = scnprintf(buf, PAGE_SIZE, 1407 "%8llu %8llu %8llu\n", 1408 FOUR_K((u64)atomic64_read(&zram->stats.bd_count)), 1409 FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)), 1410 FOUR_K((u64)atomic64_read(&zram->stats.bd_writes))); 1411 up_read(&zram->init_lock); 1412 1413 return ret; 1414 } 1415 #endif 1416 1417 static ssize_t debug_stat_show(struct device *dev, 1418 struct device_attribute *attr, char *buf) 1419 { 1420 int version = 1; 1421 struct zram *zram = dev_to_zram(dev); 1422 ssize_t ret; 1423 1424 down_read(&zram->init_lock); 1425 ret = scnprintf(buf, PAGE_SIZE, 1426 "version: %d\n%8llu %8llu\n", 1427 version, 1428 (u64)atomic64_read(&zram->stats.writestall), 1429 (u64)atomic64_read(&zram->stats.miss_free)); 1430 up_read(&zram->init_lock); 1431 1432 return ret; 1433 } 1434 1435 static DEVICE_ATTR_RO(io_stat); 1436 static DEVICE_ATTR_RO(mm_stat); 1437 #ifdef CONFIG_ZRAM_WRITEBACK 1438 static DEVICE_ATTR_RO(bd_stat); 1439 #endif 1440 static DEVICE_ATTR_RO(debug_stat); 1441 1442 static void zram_meta_free(struct zram *zram, u64 disksize) 1443 { 1444 size_t num_pages = disksize >> PAGE_SHIFT; 1445 size_t index; 1446 1447 if (!zram->table) 1448 return; 1449 1450 /* Free all pages that are still in this zram device */ 1451 for (index = 0; index < num_pages; index++) 1452 zram_free_page(zram, index); 1453 1454 zs_destroy_pool(zram->mem_pool); 1455 vfree(zram->table); 1456 zram->table = NULL; 1457 } 1458 1459 static bool zram_meta_alloc(struct zram *zram, u64 disksize) 1460 { 1461 size_t num_pages, index; 1462 1463 num_pages = disksize >> PAGE_SHIFT; 1464 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table))); 1465 if (!zram->table) 1466 return false; 1467 1468 zram->mem_pool = zs_create_pool(zram->disk->disk_name); 1469 if (!zram->mem_pool) { 1470 vfree(zram->table); 1471 zram->table = NULL; 1472 return false; 1473 } 1474 1475 if (!huge_class_size) 1476 huge_class_size = zs_huge_class_size(zram->mem_pool); 1477 1478 for (index = 0; index < num_pages; index++) 1479 spin_lock_init(&zram->table[index].lock); 1480 return true; 1481 } 1482 1483 /* 1484 * To protect concurrent access to the same index entry, 1485 * caller should hold this table index entry's bit_spinlock to 1486 * indicate this index entry is accessing. 1487 */ 1488 static void zram_free_page(struct zram *zram, size_t index) 1489 { 1490 unsigned long handle; 1491 1492 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME 1493 zram->table[index].ac_time = 0; 1494 #endif 1495 1496 zram_clear_flag(zram, index, ZRAM_IDLE); 1497 zram_clear_flag(zram, index, ZRAM_INCOMPRESSIBLE); 1498 zram_clear_flag(zram, index, ZRAM_PP_SLOT); 1499 zram_set_priority(zram, index, 0); 1500 1501 if (zram_test_flag(zram, index, ZRAM_HUGE)) { 1502 zram_clear_flag(zram, index, ZRAM_HUGE); 1503 atomic64_dec(&zram->stats.huge_pages); 1504 } 1505 1506 if (zram_test_flag(zram, index, ZRAM_WB)) { 1507 zram_clear_flag(zram, index, ZRAM_WB); 1508 free_block_bdev(zram, zram_get_element(zram, index)); 1509 goto out; 1510 } 1511 1512 /* 1513 * No memory is allocated for same element filled pages. 1514 * Simply clear same page flag. 1515 */ 1516 if (zram_test_flag(zram, index, ZRAM_SAME)) { 1517 zram_clear_flag(zram, index, ZRAM_SAME); 1518 atomic64_dec(&zram->stats.same_pages); 1519 goto out; 1520 } 1521 1522 handle = zram_get_handle(zram, index); 1523 if (!handle) 1524 return; 1525 1526 zs_free(zram->mem_pool, handle); 1527 1528 atomic64_sub(zram_get_obj_size(zram, index), 1529 &zram->stats.compr_data_size); 1530 out: 1531 atomic64_dec(&zram->stats.pages_stored); 1532 zram_set_handle(zram, index, 0); 1533 zram_set_obj_size(zram, index, 0); 1534 } 1535 1536 /* 1537 * Reads (decompresses if needed) a page from zspool (zsmalloc). 1538 * Corresponding ZRAM slot should be locked. 1539 */ 1540 static int zram_read_from_zspool(struct zram *zram, struct page *page, 1541 u32 index) 1542 { 1543 struct zcomp_strm *zstrm; 1544 unsigned long handle; 1545 unsigned int size; 1546 void *src, *dst; 1547 u32 prio; 1548 int ret; 1549 1550 handle = zram_get_handle(zram, index); 1551 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) { 1552 unsigned long value; 1553 void *mem; 1554 1555 value = handle ? zram_get_element(zram, index) : 0; 1556 mem = kmap_local_page(page); 1557 zram_fill_page(mem, PAGE_SIZE, value); 1558 kunmap_local(mem); 1559 return 0; 1560 } 1561 1562 size = zram_get_obj_size(zram, index); 1563 1564 if (size != PAGE_SIZE) { 1565 prio = zram_get_priority(zram, index); 1566 zstrm = zcomp_stream_get(zram->comps[prio]); 1567 } 1568 1569 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO); 1570 if (size == PAGE_SIZE) { 1571 dst = kmap_local_page(page); 1572 copy_page(dst, src); 1573 kunmap_local(dst); 1574 ret = 0; 1575 } else { 1576 dst = kmap_local_page(page); 1577 ret = zcomp_decompress(zram->comps[prio], zstrm, 1578 src, size, dst); 1579 kunmap_local(dst); 1580 zcomp_stream_put(zram->comps[prio]); 1581 } 1582 zs_unmap_object(zram->mem_pool, handle); 1583 return ret; 1584 } 1585 1586 static int zram_read_page(struct zram *zram, struct page *page, u32 index, 1587 struct bio *parent) 1588 { 1589 int ret; 1590 1591 zram_slot_lock(zram, index); 1592 if (!zram_test_flag(zram, index, ZRAM_WB)) { 1593 /* Slot should be locked through out the function call */ 1594 ret = zram_read_from_zspool(zram, page, index); 1595 zram_slot_unlock(zram, index); 1596 } else { 1597 /* 1598 * The slot should be unlocked before reading from the backing 1599 * device. 1600 */ 1601 zram_slot_unlock(zram, index); 1602 1603 ret = read_from_bdev(zram, page, zram_get_element(zram, index), 1604 parent); 1605 } 1606 1607 /* Should NEVER happen. Return bio error if it does. */ 1608 if (WARN_ON(ret < 0)) 1609 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 1610 1611 return ret; 1612 } 1613 1614 /* 1615 * Use a temporary buffer to decompress the page, as the decompressor 1616 * always expects a full page for the output. 1617 */ 1618 static int zram_bvec_read_partial(struct zram *zram, struct bio_vec *bvec, 1619 u32 index, int offset) 1620 { 1621 struct page *page = alloc_page(GFP_NOIO); 1622 int ret; 1623 1624 if (!page) 1625 return -ENOMEM; 1626 ret = zram_read_page(zram, page, index, NULL); 1627 if (likely(!ret)) 1628 memcpy_to_bvec(bvec, page_address(page) + offset); 1629 __free_page(page); 1630 return ret; 1631 } 1632 1633 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 1634 u32 index, int offset, struct bio *bio) 1635 { 1636 if (is_partial_io(bvec)) 1637 return zram_bvec_read_partial(zram, bvec, index, offset); 1638 return zram_read_page(zram, bvec->bv_page, index, bio); 1639 } 1640 1641 static int zram_write_page(struct zram *zram, struct page *page, u32 index) 1642 { 1643 int ret = 0; 1644 unsigned long alloced_pages; 1645 unsigned long handle = -ENOMEM; 1646 unsigned int comp_len = 0; 1647 void *src, *dst, *mem; 1648 struct zcomp_strm *zstrm; 1649 unsigned long element = 0; 1650 enum zram_pageflags flags = 0; 1651 1652 mem = kmap_local_page(page); 1653 if (page_same_filled(mem, &element)) { 1654 kunmap_local(mem); 1655 /* Free memory associated with this sector now. */ 1656 flags = ZRAM_SAME; 1657 atomic64_inc(&zram->stats.same_pages); 1658 goto out; 1659 } 1660 kunmap_local(mem); 1661 1662 compress_again: 1663 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]); 1664 src = kmap_local_page(page); 1665 ret = zcomp_compress(zram->comps[ZRAM_PRIMARY_COMP], zstrm, 1666 src, &comp_len); 1667 kunmap_local(src); 1668 1669 if (unlikely(ret)) { 1670 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1671 pr_err("Compression failed! err=%d\n", ret); 1672 zs_free(zram->mem_pool, handle); 1673 return ret; 1674 } 1675 1676 if (comp_len >= huge_class_size) 1677 comp_len = PAGE_SIZE; 1678 /* 1679 * handle allocation has 2 paths: 1680 * a) fast path is executed with preemption disabled (for 1681 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear, 1682 * since we can't sleep; 1683 * b) slow path enables preemption and attempts to allocate 1684 * the page with __GFP_DIRECT_RECLAIM bit set. we have to 1685 * put per-cpu compression stream and, thus, to re-do 1686 * the compression once handle is allocated. 1687 * 1688 * if we have a 'non-null' handle here then we are coming 1689 * from the slow path and handle has already been allocated. 1690 */ 1691 if (IS_ERR_VALUE(handle)) 1692 handle = zs_malloc(zram->mem_pool, comp_len, 1693 __GFP_KSWAPD_RECLAIM | 1694 __GFP_NOWARN | 1695 __GFP_HIGHMEM | 1696 __GFP_MOVABLE); 1697 if (IS_ERR_VALUE(handle)) { 1698 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1699 atomic64_inc(&zram->stats.writestall); 1700 handle = zs_malloc(zram->mem_pool, comp_len, 1701 GFP_NOIO | __GFP_HIGHMEM | 1702 __GFP_MOVABLE); 1703 if (IS_ERR_VALUE(handle)) 1704 return PTR_ERR((void *)handle); 1705 1706 if (comp_len != PAGE_SIZE) 1707 goto compress_again; 1708 /* 1709 * If the page is not compressible, you need to acquire the 1710 * lock and execute the code below. The zcomp_stream_get() 1711 * call is needed to disable the cpu hotplug and grab the 1712 * zstrm buffer back. It is necessary that the dereferencing 1713 * of the zstrm variable below occurs correctly. 1714 */ 1715 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]); 1716 } 1717 1718 alloced_pages = zs_get_total_pages(zram->mem_pool); 1719 update_used_max(zram, alloced_pages); 1720 1721 if (zram->limit_pages && alloced_pages > zram->limit_pages) { 1722 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1723 zs_free(zram->mem_pool, handle); 1724 return -ENOMEM; 1725 } 1726 1727 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO); 1728 1729 src = zstrm->buffer; 1730 if (comp_len == PAGE_SIZE) 1731 src = kmap_local_page(page); 1732 memcpy(dst, src, comp_len); 1733 if (comp_len == PAGE_SIZE) 1734 kunmap_local(src); 1735 1736 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1737 zs_unmap_object(zram->mem_pool, handle); 1738 atomic64_add(comp_len, &zram->stats.compr_data_size); 1739 out: 1740 /* 1741 * Free memory associated with this sector 1742 * before overwriting unused sectors. 1743 */ 1744 zram_slot_lock(zram, index); 1745 zram_free_page(zram, index); 1746 1747 if (comp_len == PAGE_SIZE) { 1748 zram_set_flag(zram, index, ZRAM_HUGE); 1749 atomic64_inc(&zram->stats.huge_pages); 1750 atomic64_inc(&zram->stats.huge_pages_since); 1751 } 1752 1753 if (flags) { 1754 zram_set_flag(zram, index, flags); 1755 zram_set_element(zram, index, element); 1756 } else { 1757 zram_set_handle(zram, index, handle); 1758 zram_set_obj_size(zram, index, comp_len); 1759 } 1760 zram_slot_unlock(zram, index); 1761 1762 /* Update stats */ 1763 atomic64_inc(&zram->stats.pages_stored); 1764 return ret; 1765 } 1766 1767 /* 1768 * This is a partial IO. Read the full page before writing the changes. 1769 */ 1770 static int zram_bvec_write_partial(struct zram *zram, struct bio_vec *bvec, 1771 u32 index, int offset, struct bio *bio) 1772 { 1773 struct page *page = alloc_page(GFP_NOIO); 1774 int ret; 1775 1776 if (!page) 1777 return -ENOMEM; 1778 1779 ret = zram_read_page(zram, page, index, bio); 1780 if (!ret) { 1781 memcpy_from_bvec(page_address(page) + offset, bvec); 1782 ret = zram_write_page(zram, page, index); 1783 } 1784 __free_page(page); 1785 return ret; 1786 } 1787 1788 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1789 u32 index, int offset, struct bio *bio) 1790 { 1791 if (is_partial_io(bvec)) 1792 return zram_bvec_write_partial(zram, bvec, index, offset, bio); 1793 return zram_write_page(zram, bvec->bv_page, index); 1794 } 1795 1796 #ifdef CONFIG_ZRAM_MULTI_COMP 1797 #define RECOMPRESS_IDLE (1 << 0) 1798 #define RECOMPRESS_HUGE (1 << 1) 1799 1800 static int scan_slots_for_recompress(struct zram *zram, u32 mode, 1801 struct zram_pp_ctl *ctl) 1802 { 1803 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 1804 struct zram_pp_slot *pps = NULL; 1805 unsigned long index; 1806 1807 for (index = 0; index < nr_pages; index++) { 1808 if (!pps) 1809 pps = kmalloc(sizeof(*pps), GFP_KERNEL); 1810 if (!pps) 1811 return -ENOMEM; 1812 1813 INIT_LIST_HEAD(&pps->entry); 1814 1815 zram_slot_lock(zram, index); 1816 if (!zram_allocated(zram, index)) 1817 goto next; 1818 1819 if (mode & RECOMPRESS_IDLE && 1820 !zram_test_flag(zram, index, ZRAM_IDLE)) 1821 goto next; 1822 1823 if (mode & RECOMPRESS_HUGE && 1824 !zram_test_flag(zram, index, ZRAM_HUGE)) 1825 goto next; 1826 1827 if (zram_test_flag(zram, index, ZRAM_WB) || 1828 zram_test_flag(zram, index, ZRAM_SAME) || 1829 zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 1830 goto next; 1831 1832 pps->index = index; 1833 place_pp_slot(zram, ctl, pps); 1834 pps = NULL; 1835 next: 1836 zram_slot_unlock(zram, index); 1837 } 1838 1839 kfree(pps); 1840 return 0; 1841 } 1842 1843 /* 1844 * This function will decompress (unless it's ZRAM_HUGE) the page and then 1845 * attempt to compress it using provided compression algorithm priority 1846 * (which is potentially more effective). 1847 * 1848 * Corresponding ZRAM slot should be locked. 1849 */ 1850 static int recompress_slot(struct zram *zram, u32 index, struct page *page, 1851 u64 *num_recomp_pages, u32 threshold, u32 prio, 1852 u32 prio_max) 1853 { 1854 struct zcomp_strm *zstrm = NULL; 1855 unsigned long handle_old; 1856 unsigned long handle_new; 1857 unsigned int comp_len_old; 1858 unsigned int comp_len_new; 1859 unsigned int class_index_old; 1860 unsigned int class_index_new; 1861 u32 num_recomps = 0; 1862 void *src, *dst; 1863 int ret; 1864 1865 handle_old = zram_get_handle(zram, index); 1866 if (!handle_old) 1867 return -EINVAL; 1868 1869 comp_len_old = zram_get_obj_size(zram, index); 1870 /* 1871 * Do not recompress objects that are already "small enough". 1872 */ 1873 if (comp_len_old < threshold) 1874 return 0; 1875 1876 ret = zram_read_from_zspool(zram, page, index); 1877 if (ret) 1878 return ret; 1879 1880 /* 1881 * We touched this entry so mark it as non-IDLE. This makes sure that 1882 * we don't preserve IDLE flag and don't incorrectly pick this entry 1883 * for different post-processing type (e.g. writeback). 1884 */ 1885 zram_clear_flag(zram, index, ZRAM_IDLE); 1886 1887 class_index_old = zs_lookup_class_index(zram->mem_pool, comp_len_old); 1888 /* 1889 * Iterate the secondary comp algorithms list (in order of priority) 1890 * and try to recompress the page. 1891 */ 1892 for (; prio < prio_max; prio++) { 1893 if (!zram->comps[prio]) 1894 continue; 1895 1896 /* 1897 * Skip if the object is already re-compressed with a higher 1898 * priority algorithm (or same algorithm). 1899 */ 1900 if (prio <= zram_get_priority(zram, index)) 1901 continue; 1902 1903 num_recomps++; 1904 zstrm = zcomp_stream_get(zram->comps[prio]); 1905 src = kmap_local_page(page); 1906 ret = zcomp_compress(zram->comps[prio], zstrm, 1907 src, &comp_len_new); 1908 kunmap_local(src); 1909 1910 if (ret) { 1911 zcomp_stream_put(zram->comps[prio]); 1912 return ret; 1913 } 1914 1915 class_index_new = zs_lookup_class_index(zram->mem_pool, 1916 comp_len_new); 1917 1918 /* Continue until we make progress */ 1919 if (class_index_new >= class_index_old || 1920 (threshold && comp_len_new >= threshold)) { 1921 zcomp_stream_put(zram->comps[prio]); 1922 continue; 1923 } 1924 1925 /* Recompression was successful so break out */ 1926 break; 1927 } 1928 1929 /* 1930 * We did not try to recompress, e.g. when we have only one 1931 * secondary algorithm and the page is already recompressed 1932 * using that algorithm 1933 */ 1934 if (!zstrm) 1935 return 0; 1936 1937 /* 1938 * Decrement the limit (if set) on pages we can recompress, even 1939 * when current recompression was unsuccessful or did not compress 1940 * the page below the threshold, because we still spent resources 1941 * on it. 1942 */ 1943 if (*num_recomp_pages) 1944 *num_recomp_pages -= 1; 1945 1946 if (class_index_new >= class_index_old) { 1947 /* 1948 * Secondary algorithms failed to re-compress the page 1949 * in a way that would save memory, mark the object as 1950 * incompressible so that we will not try to compress 1951 * it again. 1952 * 1953 * We need to make sure that all secondary algorithms have 1954 * failed, so we test if the number of recompressions matches 1955 * the number of active secondary algorithms. 1956 */ 1957 if (num_recomps == zram->num_active_comps - 1) 1958 zram_set_flag(zram, index, ZRAM_INCOMPRESSIBLE); 1959 return 0; 1960 } 1961 1962 /* Successful recompression but above threshold */ 1963 if (threshold && comp_len_new >= threshold) 1964 return 0; 1965 1966 /* 1967 * No direct reclaim (slow path) for handle allocation and no 1968 * re-compression attempt (unlike in zram_write_bvec()) since 1969 * we already have stored that object in zsmalloc. If we cannot 1970 * alloc memory for recompressed object then we bail out and 1971 * simply keep the old (existing) object in zsmalloc. 1972 */ 1973 handle_new = zs_malloc(zram->mem_pool, comp_len_new, 1974 __GFP_KSWAPD_RECLAIM | 1975 __GFP_NOWARN | 1976 __GFP_HIGHMEM | 1977 __GFP_MOVABLE); 1978 if (IS_ERR_VALUE(handle_new)) { 1979 zcomp_stream_put(zram->comps[prio]); 1980 return PTR_ERR((void *)handle_new); 1981 } 1982 1983 dst = zs_map_object(zram->mem_pool, handle_new, ZS_MM_WO); 1984 memcpy(dst, zstrm->buffer, comp_len_new); 1985 zcomp_stream_put(zram->comps[prio]); 1986 1987 zs_unmap_object(zram->mem_pool, handle_new); 1988 1989 zram_free_page(zram, index); 1990 zram_set_handle(zram, index, handle_new); 1991 zram_set_obj_size(zram, index, comp_len_new); 1992 zram_set_priority(zram, index, prio); 1993 1994 atomic64_add(comp_len_new, &zram->stats.compr_data_size); 1995 atomic64_inc(&zram->stats.pages_stored); 1996 1997 return 0; 1998 } 1999 2000 static ssize_t recompress_store(struct device *dev, 2001 struct device_attribute *attr, 2002 const char *buf, size_t len) 2003 { 2004 u32 prio = ZRAM_SECONDARY_COMP, prio_max = ZRAM_MAX_COMPS; 2005 struct zram *zram = dev_to_zram(dev); 2006 char *args, *param, *val, *algo = NULL; 2007 u64 num_recomp_pages = ULLONG_MAX; 2008 struct zram_pp_ctl *ctl = NULL; 2009 struct zram_pp_slot *pps; 2010 u32 mode = 0, threshold = 0; 2011 struct page *page; 2012 ssize_t ret; 2013 2014 args = skip_spaces(buf); 2015 while (*args) { 2016 args = next_arg(args, ¶m, &val); 2017 2018 if (!val || !*val) 2019 return -EINVAL; 2020 2021 if (!strcmp(param, "type")) { 2022 if (!strcmp(val, "idle")) 2023 mode = RECOMPRESS_IDLE; 2024 if (!strcmp(val, "huge")) 2025 mode = RECOMPRESS_HUGE; 2026 if (!strcmp(val, "huge_idle")) 2027 mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE; 2028 continue; 2029 } 2030 2031 if (!strcmp(param, "max_pages")) { 2032 /* 2033 * Limit the number of entries (pages) we attempt to 2034 * recompress. 2035 */ 2036 ret = kstrtoull(val, 10, &num_recomp_pages); 2037 if (ret) 2038 return ret; 2039 continue; 2040 } 2041 2042 if (!strcmp(param, "threshold")) { 2043 /* 2044 * We will re-compress only idle objects equal or 2045 * greater in size than watermark. 2046 */ 2047 ret = kstrtouint(val, 10, &threshold); 2048 if (ret) 2049 return ret; 2050 continue; 2051 } 2052 2053 if (!strcmp(param, "algo")) { 2054 algo = val; 2055 continue; 2056 } 2057 2058 if (!strcmp(param, "priority")) { 2059 ret = kstrtouint(val, 10, &prio); 2060 if (ret) 2061 return ret; 2062 2063 if (prio == ZRAM_PRIMARY_COMP) 2064 prio = ZRAM_SECONDARY_COMP; 2065 2066 prio_max = min(prio + 1, ZRAM_MAX_COMPS); 2067 continue; 2068 } 2069 } 2070 2071 if (threshold >= huge_class_size) 2072 return -EINVAL; 2073 2074 down_read(&zram->init_lock); 2075 if (!init_done(zram)) { 2076 ret = -EINVAL; 2077 goto release_init_lock; 2078 } 2079 2080 /* Do not permit concurrent post-processing actions. */ 2081 if (atomic_xchg(&zram->pp_in_progress, 1)) { 2082 up_read(&zram->init_lock); 2083 return -EAGAIN; 2084 } 2085 2086 if (algo) { 2087 bool found = false; 2088 2089 for (; prio < ZRAM_MAX_COMPS; prio++) { 2090 if (!zram->comp_algs[prio]) 2091 continue; 2092 2093 if (!strcmp(zram->comp_algs[prio], algo)) { 2094 prio_max = min(prio + 1, ZRAM_MAX_COMPS); 2095 found = true; 2096 break; 2097 } 2098 } 2099 2100 if (!found) { 2101 ret = -EINVAL; 2102 goto release_init_lock; 2103 } 2104 } 2105 2106 page = alloc_page(GFP_KERNEL); 2107 if (!page) { 2108 ret = -ENOMEM; 2109 goto release_init_lock; 2110 } 2111 2112 ctl = init_pp_ctl(); 2113 if (!ctl) { 2114 ret = -ENOMEM; 2115 goto release_init_lock; 2116 } 2117 2118 scan_slots_for_recompress(zram, mode, ctl); 2119 2120 ret = len; 2121 while ((pps = select_pp_slot(ctl))) { 2122 int err = 0; 2123 2124 if (!num_recomp_pages) 2125 break; 2126 2127 zram_slot_lock(zram, pps->index); 2128 if (!zram_test_flag(zram, pps->index, ZRAM_PP_SLOT)) 2129 goto next; 2130 2131 err = recompress_slot(zram, pps->index, page, 2132 &num_recomp_pages, threshold, 2133 prio, prio_max); 2134 next: 2135 zram_slot_unlock(zram, pps->index); 2136 release_pp_slot(zram, pps); 2137 2138 if (err) { 2139 ret = err; 2140 break; 2141 } 2142 2143 cond_resched(); 2144 } 2145 2146 __free_page(page); 2147 2148 release_init_lock: 2149 release_pp_ctl(zram, ctl); 2150 atomic_set(&zram->pp_in_progress, 0); 2151 up_read(&zram->init_lock); 2152 return ret; 2153 } 2154 #endif 2155 2156 static void zram_bio_discard(struct zram *zram, struct bio *bio) 2157 { 2158 size_t n = bio->bi_iter.bi_size; 2159 u32 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 2160 u32 offset = (bio->bi_iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 2161 SECTOR_SHIFT; 2162 2163 /* 2164 * zram manages data in physical block size units. Because logical block 2165 * size isn't identical with physical block size on some arch, we 2166 * could get a discard request pointing to a specific offset within a 2167 * certain physical block. Although we can handle this request by 2168 * reading that physiclal block and decompressing and partially zeroing 2169 * and re-compressing and then re-storing it, this isn't reasonable 2170 * because our intent with a discard request is to save memory. So 2171 * skipping this logical block is appropriate here. 2172 */ 2173 if (offset) { 2174 if (n <= (PAGE_SIZE - offset)) 2175 return; 2176 2177 n -= (PAGE_SIZE - offset); 2178 index++; 2179 } 2180 2181 while (n >= PAGE_SIZE) { 2182 zram_slot_lock(zram, index); 2183 zram_free_page(zram, index); 2184 zram_slot_unlock(zram, index); 2185 atomic64_inc(&zram->stats.notify_free); 2186 index++; 2187 n -= PAGE_SIZE; 2188 } 2189 2190 bio_endio(bio); 2191 } 2192 2193 static void zram_bio_read(struct zram *zram, struct bio *bio) 2194 { 2195 unsigned long start_time = bio_start_io_acct(bio); 2196 struct bvec_iter iter = bio->bi_iter; 2197 2198 do { 2199 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 2200 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 2201 SECTOR_SHIFT; 2202 struct bio_vec bv = bio_iter_iovec(bio, iter); 2203 2204 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset); 2205 2206 if (zram_bvec_read(zram, &bv, index, offset, bio) < 0) { 2207 atomic64_inc(&zram->stats.failed_reads); 2208 bio->bi_status = BLK_STS_IOERR; 2209 break; 2210 } 2211 flush_dcache_page(bv.bv_page); 2212 2213 zram_slot_lock(zram, index); 2214 zram_accessed(zram, index); 2215 zram_slot_unlock(zram, index); 2216 2217 bio_advance_iter_single(bio, &iter, bv.bv_len); 2218 } while (iter.bi_size); 2219 2220 bio_end_io_acct(bio, start_time); 2221 bio_endio(bio); 2222 } 2223 2224 static void zram_bio_write(struct zram *zram, struct bio *bio) 2225 { 2226 unsigned long start_time = bio_start_io_acct(bio); 2227 struct bvec_iter iter = bio->bi_iter; 2228 2229 do { 2230 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 2231 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 2232 SECTOR_SHIFT; 2233 struct bio_vec bv = bio_iter_iovec(bio, iter); 2234 2235 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset); 2236 2237 if (zram_bvec_write(zram, &bv, index, offset, bio) < 0) { 2238 atomic64_inc(&zram->stats.failed_writes); 2239 bio->bi_status = BLK_STS_IOERR; 2240 break; 2241 } 2242 2243 zram_slot_lock(zram, index); 2244 zram_accessed(zram, index); 2245 zram_slot_unlock(zram, index); 2246 2247 bio_advance_iter_single(bio, &iter, bv.bv_len); 2248 } while (iter.bi_size); 2249 2250 bio_end_io_acct(bio, start_time); 2251 bio_endio(bio); 2252 } 2253 2254 /* 2255 * Handler function for all zram I/O requests. 2256 */ 2257 static void zram_submit_bio(struct bio *bio) 2258 { 2259 struct zram *zram = bio->bi_bdev->bd_disk->private_data; 2260 2261 switch (bio_op(bio)) { 2262 case REQ_OP_READ: 2263 zram_bio_read(zram, bio); 2264 break; 2265 case REQ_OP_WRITE: 2266 zram_bio_write(zram, bio); 2267 break; 2268 case REQ_OP_DISCARD: 2269 case REQ_OP_WRITE_ZEROES: 2270 zram_bio_discard(zram, bio); 2271 break; 2272 default: 2273 WARN_ON_ONCE(1); 2274 bio_endio(bio); 2275 } 2276 } 2277 2278 static void zram_slot_free_notify(struct block_device *bdev, 2279 unsigned long index) 2280 { 2281 struct zram *zram; 2282 2283 zram = bdev->bd_disk->private_data; 2284 2285 atomic64_inc(&zram->stats.notify_free); 2286 if (!zram_slot_trylock(zram, index)) { 2287 atomic64_inc(&zram->stats.miss_free); 2288 return; 2289 } 2290 2291 zram_free_page(zram, index); 2292 zram_slot_unlock(zram, index); 2293 } 2294 2295 static void zram_comp_params_reset(struct zram *zram) 2296 { 2297 u32 prio; 2298 2299 for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { 2300 comp_params_reset(zram, prio); 2301 } 2302 } 2303 2304 static void zram_destroy_comps(struct zram *zram) 2305 { 2306 u32 prio; 2307 2308 for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { 2309 struct zcomp *comp = zram->comps[prio]; 2310 2311 zram->comps[prio] = NULL; 2312 if (!comp) 2313 continue; 2314 zcomp_destroy(comp); 2315 zram->num_active_comps--; 2316 } 2317 2318 for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { 2319 /* Do not free statically defined compression algorithms */ 2320 if (zram->comp_algs[prio] != default_compressor) 2321 kfree(zram->comp_algs[prio]); 2322 zram->comp_algs[prio] = NULL; 2323 } 2324 2325 zram_comp_params_reset(zram); 2326 } 2327 2328 static void zram_reset_device(struct zram *zram) 2329 { 2330 down_write(&zram->init_lock); 2331 2332 zram->limit_pages = 0; 2333 2334 set_capacity_and_notify(zram->disk, 0); 2335 part_stat_set_all(zram->disk->part0, 0); 2336 2337 /* I/O operation under all of CPU are done so let's free */ 2338 zram_meta_free(zram, zram->disksize); 2339 zram->disksize = 0; 2340 zram_destroy_comps(zram); 2341 memset(&zram->stats, 0, sizeof(zram->stats)); 2342 atomic_set(&zram->pp_in_progress, 0); 2343 reset_bdev(zram); 2344 2345 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor); 2346 up_write(&zram->init_lock); 2347 } 2348 2349 static ssize_t disksize_store(struct device *dev, 2350 struct device_attribute *attr, const char *buf, size_t len) 2351 { 2352 u64 disksize; 2353 struct zcomp *comp; 2354 struct zram *zram = dev_to_zram(dev); 2355 int err; 2356 u32 prio; 2357 2358 disksize = memparse(buf, NULL); 2359 if (!disksize) 2360 return -EINVAL; 2361 2362 down_write(&zram->init_lock); 2363 if (init_done(zram)) { 2364 pr_info("Cannot change disksize for initialized device\n"); 2365 err = -EBUSY; 2366 goto out_unlock; 2367 } 2368 2369 disksize = PAGE_ALIGN(disksize); 2370 if (!zram_meta_alloc(zram, disksize)) { 2371 err = -ENOMEM; 2372 goto out_unlock; 2373 } 2374 2375 for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { 2376 if (!zram->comp_algs[prio]) 2377 continue; 2378 2379 comp = zcomp_create(zram->comp_algs[prio], 2380 &zram->params[prio]); 2381 if (IS_ERR(comp)) { 2382 pr_err("Cannot initialise %s compressing backend\n", 2383 zram->comp_algs[prio]); 2384 err = PTR_ERR(comp); 2385 goto out_free_comps; 2386 } 2387 2388 zram->comps[prio] = comp; 2389 zram->num_active_comps++; 2390 } 2391 zram->disksize = disksize; 2392 set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT); 2393 up_write(&zram->init_lock); 2394 2395 return len; 2396 2397 out_free_comps: 2398 zram_destroy_comps(zram); 2399 zram_meta_free(zram, disksize); 2400 out_unlock: 2401 up_write(&zram->init_lock); 2402 return err; 2403 } 2404 2405 static ssize_t reset_store(struct device *dev, 2406 struct device_attribute *attr, const char *buf, size_t len) 2407 { 2408 int ret; 2409 unsigned short do_reset; 2410 struct zram *zram; 2411 struct gendisk *disk; 2412 2413 ret = kstrtou16(buf, 10, &do_reset); 2414 if (ret) 2415 return ret; 2416 2417 if (!do_reset) 2418 return -EINVAL; 2419 2420 zram = dev_to_zram(dev); 2421 disk = zram->disk; 2422 2423 mutex_lock(&disk->open_mutex); 2424 /* Do not reset an active device or claimed device */ 2425 if (disk_openers(disk) || zram->claim) { 2426 mutex_unlock(&disk->open_mutex); 2427 return -EBUSY; 2428 } 2429 2430 /* From now on, anyone can't open /dev/zram[0-9] */ 2431 zram->claim = true; 2432 mutex_unlock(&disk->open_mutex); 2433 2434 /* Make sure all the pending I/O are finished */ 2435 sync_blockdev(disk->part0); 2436 zram_reset_device(zram); 2437 2438 mutex_lock(&disk->open_mutex); 2439 zram->claim = false; 2440 mutex_unlock(&disk->open_mutex); 2441 2442 return len; 2443 } 2444 2445 static int zram_open(struct gendisk *disk, blk_mode_t mode) 2446 { 2447 struct zram *zram = disk->private_data; 2448 2449 WARN_ON(!mutex_is_locked(&disk->open_mutex)); 2450 2451 /* zram was claimed to reset so open request fails */ 2452 if (zram->claim) 2453 return -EBUSY; 2454 return 0; 2455 } 2456 2457 static const struct block_device_operations zram_devops = { 2458 .open = zram_open, 2459 .submit_bio = zram_submit_bio, 2460 .swap_slot_free_notify = zram_slot_free_notify, 2461 .owner = THIS_MODULE 2462 }; 2463 2464 static DEVICE_ATTR_WO(compact); 2465 static DEVICE_ATTR_RW(disksize); 2466 static DEVICE_ATTR_RO(initstate); 2467 static DEVICE_ATTR_WO(reset); 2468 static DEVICE_ATTR_WO(mem_limit); 2469 static DEVICE_ATTR_WO(mem_used_max); 2470 static DEVICE_ATTR_WO(idle); 2471 static DEVICE_ATTR_RW(max_comp_streams); 2472 static DEVICE_ATTR_RW(comp_algorithm); 2473 #ifdef CONFIG_ZRAM_WRITEBACK 2474 static DEVICE_ATTR_RW(backing_dev); 2475 static DEVICE_ATTR_WO(writeback); 2476 static DEVICE_ATTR_RW(writeback_limit); 2477 static DEVICE_ATTR_RW(writeback_limit_enable); 2478 #endif 2479 #ifdef CONFIG_ZRAM_MULTI_COMP 2480 static DEVICE_ATTR_RW(recomp_algorithm); 2481 static DEVICE_ATTR_WO(recompress); 2482 #endif 2483 static DEVICE_ATTR_WO(algorithm_params); 2484 2485 static struct attribute *zram_disk_attrs[] = { 2486 &dev_attr_disksize.attr, 2487 &dev_attr_initstate.attr, 2488 &dev_attr_reset.attr, 2489 &dev_attr_compact.attr, 2490 &dev_attr_mem_limit.attr, 2491 &dev_attr_mem_used_max.attr, 2492 &dev_attr_idle.attr, 2493 &dev_attr_max_comp_streams.attr, 2494 &dev_attr_comp_algorithm.attr, 2495 #ifdef CONFIG_ZRAM_WRITEBACK 2496 &dev_attr_backing_dev.attr, 2497 &dev_attr_writeback.attr, 2498 &dev_attr_writeback_limit.attr, 2499 &dev_attr_writeback_limit_enable.attr, 2500 #endif 2501 &dev_attr_io_stat.attr, 2502 &dev_attr_mm_stat.attr, 2503 #ifdef CONFIG_ZRAM_WRITEBACK 2504 &dev_attr_bd_stat.attr, 2505 #endif 2506 &dev_attr_debug_stat.attr, 2507 #ifdef CONFIG_ZRAM_MULTI_COMP 2508 &dev_attr_recomp_algorithm.attr, 2509 &dev_attr_recompress.attr, 2510 #endif 2511 &dev_attr_algorithm_params.attr, 2512 NULL, 2513 }; 2514 2515 ATTRIBUTE_GROUPS(zram_disk); 2516 2517 /* 2518 * Allocate and initialize new zram device. the function returns 2519 * '>= 0' device_id upon success, and negative value otherwise. 2520 */ 2521 static int zram_add(void) 2522 { 2523 struct queue_limits lim = { 2524 .logical_block_size = ZRAM_LOGICAL_BLOCK_SIZE, 2525 /* 2526 * To ensure that we always get PAGE_SIZE aligned and 2527 * n*PAGE_SIZED sized I/O requests. 2528 */ 2529 .physical_block_size = PAGE_SIZE, 2530 .io_min = PAGE_SIZE, 2531 .io_opt = PAGE_SIZE, 2532 .max_hw_discard_sectors = UINT_MAX, 2533 /* 2534 * zram_bio_discard() will clear all logical blocks if logical 2535 * block size is identical with physical block size(PAGE_SIZE). 2536 * But if it is different, we will skip discarding some parts of 2537 * logical blocks in the part of the request range which isn't 2538 * aligned to physical block size. So we can't ensure that all 2539 * discarded logical blocks are zeroed. 2540 */ 2541 #if ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE 2542 .max_write_zeroes_sectors = UINT_MAX, 2543 #endif 2544 .features = BLK_FEAT_STABLE_WRITES | 2545 BLK_FEAT_SYNCHRONOUS, 2546 }; 2547 struct zram *zram; 2548 int ret, device_id; 2549 2550 zram = kzalloc(sizeof(struct zram), GFP_KERNEL); 2551 if (!zram) 2552 return -ENOMEM; 2553 2554 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); 2555 if (ret < 0) 2556 goto out_free_dev; 2557 device_id = ret; 2558 2559 init_rwsem(&zram->init_lock); 2560 #ifdef CONFIG_ZRAM_WRITEBACK 2561 spin_lock_init(&zram->wb_limit_lock); 2562 #endif 2563 2564 /* gendisk structure */ 2565 zram->disk = blk_alloc_disk(&lim, NUMA_NO_NODE); 2566 if (IS_ERR(zram->disk)) { 2567 pr_err("Error allocating disk structure for device %d\n", 2568 device_id); 2569 ret = PTR_ERR(zram->disk); 2570 goto out_free_idr; 2571 } 2572 2573 zram->disk->major = zram_major; 2574 zram->disk->first_minor = device_id; 2575 zram->disk->minors = 1; 2576 zram->disk->flags |= GENHD_FL_NO_PART; 2577 zram->disk->fops = &zram_devops; 2578 zram->disk->private_data = zram; 2579 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 2580 atomic_set(&zram->pp_in_progress, 0); 2581 zram_comp_params_reset(zram); 2582 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor); 2583 2584 /* Actual capacity set using sysfs (/sys/block/zram<id>/disksize */ 2585 set_capacity(zram->disk, 0); 2586 ret = device_add_disk(NULL, zram->disk, zram_disk_groups); 2587 if (ret) 2588 goto out_cleanup_disk; 2589 2590 zram_debugfs_register(zram); 2591 pr_info("Added device: %s\n", zram->disk->disk_name); 2592 return device_id; 2593 2594 out_cleanup_disk: 2595 put_disk(zram->disk); 2596 out_free_idr: 2597 idr_remove(&zram_index_idr, device_id); 2598 out_free_dev: 2599 kfree(zram); 2600 return ret; 2601 } 2602 2603 static int zram_remove(struct zram *zram) 2604 { 2605 bool claimed; 2606 2607 mutex_lock(&zram->disk->open_mutex); 2608 if (disk_openers(zram->disk)) { 2609 mutex_unlock(&zram->disk->open_mutex); 2610 return -EBUSY; 2611 } 2612 2613 claimed = zram->claim; 2614 if (!claimed) 2615 zram->claim = true; 2616 mutex_unlock(&zram->disk->open_mutex); 2617 2618 zram_debugfs_unregister(zram); 2619 2620 if (claimed) { 2621 /* 2622 * If we were claimed by reset_store(), del_gendisk() will 2623 * wait until reset_store() is done, so nothing need to do. 2624 */ 2625 ; 2626 } else { 2627 /* Make sure all the pending I/O are finished */ 2628 sync_blockdev(zram->disk->part0); 2629 zram_reset_device(zram); 2630 } 2631 2632 pr_info("Removed device: %s\n", zram->disk->disk_name); 2633 2634 del_gendisk(zram->disk); 2635 2636 /* del_gendisk drains pending reset_store */ 2637 WARN_ON_ONCE(claimed && zram->claim); 2638 2639 /* 2640 * disksize_store() may be called in between zram_reset_device() 2641 * and del_gendisk(), so run the last reset to avoid leaking 2642 * anything allocated with disksize_store() 2643 */ 2644 zram_reset_device(zram); 2645 2646 put_disk(zram->disk); 2647 kfree(zram); 2648 return 0; 2649 } 2650 2651 /* zram-control sysfs attributes */ 2652 2653 /* 2654 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a 2655 * sense that reading from this file does alter the state of your system -- it 2656 * creates a new un-initialized zram device and returns back this device's 2657 * device_id (or an error code if it fails to create a new device). 2658 */ 2659 static ssize_t hot_add_show(const struct class *class, 2660 const struct class_attribute *attr, 2661 char *buf) 2662 { 2663 int ret; 2664 2665 mutex_lock(&zram_index_mutex); 2666 ret = zram_add(); 2667 mutex_unlock(&zram_index_mutex); 2668 2669 if (ret < 0) 2670 return ret; 2671 return scnprintf(buf, PAGE_SIZE, "%d\n", ret); 2672 } 2673 /* This attribute must be set to 0400, so CLASS_ATTR_RO() can not be used */ 2674 static struct class_attribute class_attr_hot_add = 2675 __ATTR(hot_add, 0400, hot_add_show, NULL); 2676 2677 static ssize_t hot_remove_store(const struct class *class, 2678 const struct class_attribute *attr, 2679 const char *buf, 2680 size_t count) 2681 { 2682 struct zram *zram; 2683 int ret, dev_id; 2684 2685 /* dev_id is gendisk->first_minor, which is `int' */ 2686 ret = kstrtoint(buf, 10, &dev_id); 2687 if (ret) 2688 return ret; 2689 if (dev_id < 0) 2690 return -EINVAL; 2691 2692 mutex_lock(&zram_index_mutex); 2693 2694 zram = idr_find(&zram_index_idr, dev_id); 2695 if (zram) { 2696 ret = zram_remove(zram); 2697 if (!ret) 2698 idr_remove(&zram_index_idr, dev_id); 2699 } else { 2700 ret = -ENODEV; 2701 } 2702 2703 mutex_unlock(&zram_index_mutex); 2704 return ret ? ret : count; 2705 } 2706 static CLASS_ATTR_WO(hot_remove); 2707 2708 static struct attribute *zram_control_class_attrs[] = { 2709 &class_attr_hot_add.attr, 2710 &class_attr_hot_remove.attr, 2711 NULL, 2712 }; 2713 ATTRIBUTE_GROUPS(zram_control_class); 2714 2715 static struct class zram_control_class = { 2716 .name = "zram-control", 2717 .class_groups = zram_control_class_groups, 2718 }; 2719 2720 static int zram_remove_cb(int id, void *ptr, void *data) 2721 { 2722 WARN_ON_ONCE(zram_remove(ptr)); 2723 return 0; 2724 } 2725 2726 static void destroy_devices(void) 2727 { 2728 class_unregister(&zram_control_class); 2729 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); 2730 zram_debugfs_destroy(); 2731 idr_destroy(&zram_index_idr); 2732 unregister_blkdev(zram_major, "zram"); 2733 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2734 } 2735 2736 static int __init zram_init(void) 2737 { 2738 struct zram_table_entry zram_te; 2739 int ret; 2740 2741 BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > sizeof(zram_te.flags) * 8); 2742 2743 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare", 2744 zcomp_cpu_up_prepare, zcomp_cpu_dead); 2745 if (ret < 0) 2746 return ret; 2747 2748 ret = class_register(&zram_control_class); 2749 if (ret) { 2750 pr_err("Unable to register zram-control class\n"); 2751 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2752 return ret; 2753 } 2754 2755 zram_debugfs_create(); 2756 zram_major = register_blkdev(0, "zram"); 2757 if (zram_major <= 0) { 2758 pr_err("Unable to get major number\n"); 2759 class_unregister(&zram_control_class); 2760 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2761 return -EBUSY; 2762 } 2763 2764 while (num_devices != 0) { 2765 mutex_lock(&zram_index_mutex); 2766 ret = zram_add(); 2767 mutex_unlock(&zram_index_mutex); 2768 if (ret < 0) 2769 goto out_error; 2770 num_devices--; 2771 } 2772 2773 return 0; 2774 2775 out_error: 2776 destroy_devices(); 2777 return ret; 2778 } 2779 2780 static void __exit zram_exit(void) 2781 { 2782 destroy_devices(); 2783 } 2784 2785 module_init(zram_init); 2786 module_exit(zram_exit); 2787 2788 module_param(num_devices, uint, 0); 2789 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); 2790 2791 MODULE_LICENSE("Dual BSD/GPL"); 2792 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2793 MODULE_DESCRIPTION("Compressed RAM Block Device"); 2794