xref: /linux/drivers/block/zram/zram_drv.c (revision 988b0c541ed8b1c633c4d4df7169010635942e18)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/string.h>
33 #include <linux/vmalloc.h>
34 #include <linux/err.h>
35 
36 #include "zram_drv.h"
37 
38 /* Globals */
39 static int zram_major;
40 static struct zram *zram_devices;
41 static const char *default_compressor = "lzo";
42 
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
45 
46 #define ZRAM_ATTR_RO(name)						\
47 static ssize_t zram_attr_##name##_show(struct device *d,		\
48 				struct device_attribute *attr, char *b)	\
49 {									\
50 	struct zram *zram = dev_to_zram(d);				\
51 	return scnprintf(b, PAGE_SIZE, "%llu\n",			\
52 		(u64)atomic64_read(&zram->stats.name));			\
53 }									\
54 static struct device_attribute dev_attr_##name =			\
55 	__ATTR(name, S_IRUGO, zram_attr_##name##_show, NULL);
56 
57 static inline int init_done(struct zram *zram)
58 {
59 	return zram->meta != NULL;
60 }
61 
62 static inline struct zram *dev_to_zram(struct device *dev)
63 {
64 	return (struct zram *)dev_to_disk(dev)->private_data;
65 }
66 
67 static ssize_t disksize_show(struct device *dev,
68 		struct device_attribute *attr, char *buf)
69 {
70 	struct zram *zram = dev_to_zram(dev);
71 
72 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
73 }
74 
75 static ssize_t initstate_show(struct device *dev,
76 		struct device_attribute *attr, char *buf)
77 {
78 	u32 val;
79 	struct zram *zram = dev_to_zram(dev);
80 
81 	down_read(&zram->init_lock);
82 	val = init_done(zram);
83 	up_read(&zram->init_lock);
84 
85 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
86 }
87 
88 static ssize_t orig_data_size_show(struct device *dev,
89 		struct device_attribute *attr, char *buf)
90 {
91 	struct zram *zram = dev_to_zram(dev);
92 
93 	return scnprintf(buf, PAGE_SIZE, "%llu\n",
94 		(u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
95 }
96 
97 static ssize_t mem_used_total_show(struct device *dev,
98 		struct device_attribute *attr, char *buf)
99 {
100 	u64 val = 0;
101 	struct zram *zram = dev_to_zram(dev);
102 	struct zram_meta *meta = zram->meta;
103 
104 	down_read(&zram->init_lock);
105 	if (init_done(zram))
106 		val = zs_get_total_size_bytes(meta->mem_pool);
107 	up_read(&zram->init_lock);
108 
109 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
110 }
111 
112 static ssize_t max_comp_streams_show(struct device *dev,
113 		struct device_attribute *attr, char *buf)
114 {
115 	int val;
116 	struct zram *zram = dev_to_zram(dev);
117 
118 	down_read(&zram->init_lock);
119 	val = zram->max_comp_streams;
120 	up_read(&zram->init_lock);
121 
122 	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
123 }
124 
125 static ssize_t max_comp_streams_store(struct device *dev,
126 		struct device_attribute *attr, const char *buf, size_t len)
127 {
128 	int num;
129 	struct zram *zram = dev_to_zram(dev);
130 	int ret;
131 
132 	ret = kstrtoint(buf, 0, &num);
133 	if (ret < 0)
134 		return ret;
135 	if (num < 1)
136 		return -EINVAL;
137 
138 	down_write(&zram->init_lock);
139 	if (init_done(zram)) {
140 		if (!zcomp_set_max_streams(zram->comp, num)) {
141 			pr_info("Cannot change max compression streams\n");
142 			ret = -EINVAL;
143 			goto out;
144 		}
145 	}
146 
147 	zram->max_comp_streams = num;
148 	ret = len;
149 out:
150 	up_write(&zram->init_lock);
151 	return ret;
152 }
153 
154 static ssize_t comp_algorithm_show(struct device *dev,
155 		struct device_attribute *attr, char *buf)
156 {
157 	size_t sz;
158 	struct zram *zram = dev_to_zram(dev);
159 
160 	down_read(&zram->init_lock);
161 	sz = zcomp_available_show(zram->compressor, buf);
162 	up_read(&zram->init_lock);
163 
164 	return sz;
165 }
166 
167 static ssize_t comp_algorithm_store(struct device *dev,
168 		struct device_attribute *attr, const char *buf, size_t len)
169 {
170 	struct zram *zram = dev_to_zram(dev);
171 	down_write(&zram->init_lock);
172 	if (init_done(zram)) {
173 		up_write(&zram->init_lock);
174 		pr_info("Can't change algorithm for initialized device\n");
175 		return -EBUSY;
176 	}
177 	strlcpy(zram->compressor, buf, sizeof(zram->compressor));
178 	up_write(&zram->init_lock);
179 	return len;
180 }
181 
182 /* flag operations needs meta->tb_lock */
183 static int zram_test_flag(struct zram_meta *meta, u32 index,
184 			enum zram_pageflags flag)
185 {
186 	return meta->table[index].flags & BIT(flag);
187 }
188 
189 static void zram_set_flag(struct zram_meta *meta, u32 index,
190 			enum zram_pageflags flag)
191 {
192 	meta->table[index].flags |= BIT(flag);
193 }
194 
195 static void zram_clear_flag(struct zram_meta *meta, u32 index,
196 			enum zram_pageflags flag)
197 {
198 	meta->table[index].flags &= ~BIT(flag);
199 }
200 
201 static inline int is_partial_io(struct bio_vec *bvec)
202 {
203 	return bvec->bv_len != PAGE_SIZE;
204 }
205 
206 /*
207  * Check if request is within bounds and aligned on zram logical blocks.
208  */
209 static inline int valid_io_request(struct zram *zram, struct bio *bio)
210 {
211 	u64 start, end, bound;
212 
213 	/* unaligned request */
214 	if (unlikely(bio->bi_iter.bi_sector &
215 		     (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
216 		return 0;
217 	if (unlikely(bio->bi_iter.bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
218 		return 0;
219 
220 	start = bio->bi_iter.bi_sector;
221 	end = start + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
222 	bound = zram->disksize >> SECTOR_SHIFT;
223 	/* out of range range */
224 	if (unlikely(start >= bound || end > bound || start > end))
225 		return 0;
226 
227 	/* I/O request is valid */
228 	return 1;
229 }
230 
231 static void zram_meta_free(struct zram_meta *meta)
232 {
233 	zs_destroy_pool(meta->mem_pool);
234 	vfree(meta->table);
235 	kfree(meta);
236 }
237 
238 static struct zram_meta *zram_meta_alloc(u64 disksize)
239 {
240 	size_t num_pages;
241 	struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
242 	if (!meta)
243 		goto out;
244 
245 	num_pages = disksize >> PAGE_SHIFT;
246 	meta->table = vzalloc(num_pages * sizeof(*meta->table));
247 	if (!meta->table) {
248 		pr_err("Error allocating zram address table\n");
249 		goto free_meta;
250 	}
251 
252 	meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM);
253 	if (!meta->mem_pool) {
254 		pr_err("Error creating memory pool\n");
255 		goto free_table;
256 	}
257 
258 	rwlock_init(&meta->tb_lock);
259 	return meta;
260 
261 free_table:
262 	vfree(meta->table);
263 free_meta:
264 	kfree(meta);
265 	meta = NULL;
266 out:
267 	return meta;
268 }
269 
270 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
271 {
272 	if (*offset + bvec->bv_len >= PAGE_SIZE)
273 		(*index)++;
274 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
275 }
276 
277 static int page_zero_filled(void *ptr)
278 {
279 	unsigned int pos;
280 	unsigned long *page;
281 
282 	page = (unsigned long *)ptr;
283 
284 	for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
285 		if (page[pos])
286 			return 0;
287 	}
288 
289 	return 1;
290 }
291 
292 static void handle_zero_page(struct bio_vec *bvec)
293 {
294 	struct page *page = bvec->bv_page;
295 	void *user_mem;
296 
297 	user_mem = kmap_atomic(page);
298 	if (is_partial_io(bvec))
299 		memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
300 	else
301 		clear_page(user_mem);
302 	kunmap_atomic(user_mem);
303 
304 	flush_dcache_page(page);
305 }
306 
307 /* NOTE: caller should hold meta->tb_lock with write-side */
308 static void zram_free_page(struct zram *zram, size_t index)
309 {
310 	struct zram_meta *meta = zram->meta;
311 	unsigned long handle = meta->table[index].handle;
312 
313 	if (unlikely(!handle)) {
314 		/*
315 		 * No memory is allocated for zero filled pages.
316 		 * Simply clear zero page flag.
317 		 */
318 		if (zram_test_flag(meta, index, ZRAM_ZERO)) {
319 			zram_clear_flag(meta, index, ZRAM_ZERO);
320 			atomic64_dec(&zram->stats.zero_pages);
321 		}
322 		return;
323 	}
324 
325 	zs_free(meta->mem_pool, handle);
326 
327 	atomic64_sub(meta->table[index].size, &zram->stats.compr_data_size);
328 	atomic64_dec(&zram->stats.pages_stored);
329 
330 	meta->table[index].handle = 0;
331 	meta->table[index].size = 0;
332 }
333 
334 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
335 {
336 	int ret = 0;
337 	unsigned char *cmem;
338 	struct zram_meta *meta = zram->meta;
339 	unsigned long handle;
340 	u16 size;
341 
342 	read_lock(&meta->tb_lock);
343 	handle = meta->table[index].handle;
344 	size = meta->table[index].size;
345 
346 	if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
347 		read_unlock(&meta->tb_lock);
348 		clear_page(mem);
349 		return 0;
350 	}
351 
352 	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
353 	if (size == PAGE_SIZE)
354 		copy_page(mem, cmem);
355 	else
356 		ret = zcomp_decompress(zram->comp, cmem, size, mem);
357 	zs_unmap_object(meta->mem_pool, handle);
358 	read_unlock(&meta->tb_lock);
359 
360 	/* Should NEVER happen. Return bio error if it does. */
361 	if (unlikely(ret)) {
362 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
363 		atomic64_inc(&zram->stats.failed_reads);
364 		return ret;
365 	}
366 
367 	return 0;
368 }
369 
370 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
371 			  u32 index, int offset, struct bio *bio)
372 {
373 	int ret;
374 	struct page *page;
375 	unsigned char *user_mem, *uncmem = NULL;
376 	struct zram_meta *meta = zram->meta;
377 	page = bvec->bv_page;
378 
379 	read_lock(&meta->tb_lock);
380 	if (unlikely(!meta->table[index].handle) ||
381 			zram_test_flag(meta, index, ZRAM_ZERO)) {
382 		read_unlock(&meta->tb_lock);
383 		handle_zero_page(bvec);
384 		return 0;
385 	}
386 	read_unlock(&meta->tb_lock);
387 
388 	if (is_partial_io(bvec))
389 		/* Use  a temporary buffer to decompress the page */
390 		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
391 
392 	user_mem = kmap_atomic(page);
393 	if (!is_partial_io(bvec))
394 		uncmem = user_mem;
395 
396 	if (!uncmem) {
397 		pr_info("Unable to allocate temp memory\n");
398 		ret = -ENOMEM;
399 		goto out_cleanup;
400 	}
401 
402 	ret = zram_decompress_page(zram, uncmem, index);
403 	/* Should NEVER happen. Return bio error if it does. */
404 	if (unlikely(ret))
405 		goto out_cleanup;
406 
407 	if (is_partial_io(bvec))
408 		memcpy(user_mem + bvec->bv_offset, uncmem + offset,
409 				bvec->bv_len);
410 
411 	flush_dcache_page(page);
412 	ret = 0;
413 out_cleanup:
414 	kunmap_atomic(user_mem);
415 	if (is_partial_io(bvec))
416 		kfree(uncmem);
417 	return ret;
418 }
419 
420 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
421 			   int offset)
422 {
423 	int ret = 0;
424 	size_t clen;
425 	unsigned long handle;
426 	struct page *page;
427 	unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
428 	struct zram_meta *meta = zram->meta;
429 	struct zcomp_strm *zstrm;
430 	bool locked = false;
431 
432 	page = bvec->bv_page;
433 	if (is_partial_io(bvec)) {
434 		/*
435 		 * This is a partial IO. We need to read the full page
436 		 * before to write the changes.
437 		 */
438 		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
439 		if (!uncmem) {
440 			ret = -ENOMEM;
441 			goto out;
442 		}
443 		ret = zram_decompress_page(zram, uncmem, index);
444 		if (ret)
445 			goto out;
446 	}
447 
448 	zstrm = zcomp_strm_find(zram->comp);
449 	locked = true;
450 	user_mem = kmap_atomic(page);
451 
452 	if (is_partial_io(bvec)) {
453 		memcpy(uncmem + offset, user_mem + bvec->bv_offset,
454 		       bvec->bv_len);
455 		kunmap_atomic(user_mem);
456 		user_mem = NULL;
457 	} else {
458 		uncmem = user_mem;
459 	}
460 
461 	if (page_zero_filled(uncmem)) {
462 		kunmap_atomic(user_mem);
463 		/* Free memory associated with this sector now. */
464 		write_lock(&zram->meta->tb_lock);
465 		zram_free_page(zram, index);
466 		zram_set_flag(meta, index, ZRAM_ZERO);
467 		write_unlock(&zram->meta->tb_lock);
468 
469 		atomic64_inc(&zram->stats.zero_pages);
470 		ret = 0;
471 		goto out;
472 	}
473 
474 	ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
475 	if (!is_partial_io(bvec)) {
476 		kunmap_atomic(user_mem);
477 		user_mem = NULL;
478 		uncmem = NULL;
479 	}
480 
481 	if (unlikely(ret)) {
482 		pr_err("Compression failed! err=%d\n", ret);
483 		goto out;
484 	}
485 	src = zstrm->buffer;
486 	if (unlikely(clen > max_zpage_size)) {
487 		clen = PAGE_SIZE;
488 		if (is_partial_io(bvec))
489 			src = uncmem;
490 	}
491 
492 	handle = zs_malloc(meta->mem_pool, clen);
493 	if (!handle) {
494 		pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
495 			index, clen);
496 		ret = -ENOMEM;
497 		goto out;
498 	}
499 	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
500 
501 	if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
502 		src = kmap_atomic(page);
503 		copy_page(cmem, src);
504 		kunmap_atomic(src);
505 	} else {
506 		memcpy(cmem, src, clen);
507 	}
508 
509 	zcomp_strm_release(zram->comp, zstrm);
510 	locked = false;
511 	zs_unmap_object(meta->mem_pool, handle);
512 
513 	/*
514 	 * Free memory associated with this sector
515 	 * before overwriting unused sectors.
516 	 */
517 	write_lock(&zram->meta->tb_lock);
518 	zram_free_page(zram, index);
519 
520 	meta->table[index].handle = handle;
521 	meta->table[index].size = clen;
522 	write_unlock(&zram->meta->tb_lock);
523 
524 	/* Update stats */
525 	atomic64_add(clen, &zram->stats.compr_data_size);
526 	atomic64_inc(&zram->stats.pages_stored);
527 out:
528 	if (locked)
529 		zcomp_strm_release(zram->comp, zstrm);
530 	if (is_partial_io(bvec))
531 		kfree(uncmem);
532 	if (ret)
533 		atomic64_inc(&zram->stats.failed_writes);
534 	return ret;
535 }
536 
537 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
538 			int offset, struct bio *bio)
539 {
540 	int ret;
541 	int rw = bio_data_dir(bio);
542 
543 	if (rw == READ) {
544 		atomic64_inc(&zram->stats.num_reads);
545 		ret = zram_bvec_read(zram, bvec, index, offset, bio);
546 	} else {
547 		atomic64_inc(&zram->stats.num_writes);
548 		ret = zram_bvec_write(zram, bvec, index, offset);
549 	}
550 
551 	return ret;
552 }
553 
554 /*
555  * zram_bio_discard - handler on discard request
556  * @index: physical block index in PAGE_SIZE units
557  * @offset: byte offset within physical block
558  */
559 static void zram_bio_discard(struct zram *zram, u32 index,
560 			     int offset, struct bio *bio)
561 {
562 	size_t n = bio->bi_iter.bi_size;
563 
564 	/*
565 	 * zram manages data in physical block size units. Because logical block
566 	 * size isn't identical with physical block size on some arch, we
567 	 * could get a discard request pointing to a specific offset within a
568 	 * certain physical block.  Although we can handle this request by
569 	 * reading that physiclal block and decompressing and partially zeroing
570 	 * and re-compressing and then re-storing it, this isn't reasonable
571 	 * because our intent with a discard request is to save memory.  So
572 	 * skipping this logical block is appropriate here.
573 	 */
574 	if (offset) {
575 		if (n <= (PAGE_SIZE - offset))
576 			return;
577 
578 		n -= (PAGE_SIZE - offset);
579 		index++;
580 	}
581 
582 	while (n >= PAGE_SIZE) {
583 		/*
584 		 * Discard request can be large so the lock hold times could be
585 		 * lengthy.  So take the lock once per page.
586 		 */
587 		write_lock(&zram->meta->tb_lock);
588 		zram_free_page(zram, index);
589 		write_unlock(&zram->meta->tb_lock);
590 		index++;
591 		n -= PAGE_SIZE;
592 	}
593 }
594 
595 static void zram_reset_device(struct zram *zram, bool reset_capacity)
596 {
597 	size_t index;
598 	struct zram_meta *meta;
599 
600 	down_write(&zram->init_lock);
601 	if (!init_done(zram)) {
602 		up_write(&zram->init_lock);
603 		return;
604 	}
605 
606 	meta = zram->meta;
607 	/* Free all pages that are still in this zram device */
608 	for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
609 		unsigned long handle = meta->table[index].handle;
610 		if (!handle)
611 			continue;
612 
613 		zs_free(meta->mem_pool, handle);
614 	}
615 
616 	zcomp_destroy(zram->comp);
617 	zram->max_comp_streams = 1;
618 
619 	zram_meta_free(zram->meta);
620 	zram->meta = NULL;
621 	/* Reset stats */
622 	memset(&zram->stats, 0, sizeof(zram->stats));
623 
624 	zram->disksize = 0;
625 	if (reset_capacity) {
626 		set_capacity(zram->disk, 0);
627 		revalidate_disk(zram->disk);
628 	}
629 	up_write(&zram->init_lock);
630 }
631 
632 static ssize_t disksize_store(struct device *dev,
633 		struct device_attribute *attr, const char *buf, size_t len)
634 {
635 	u64 disksize;
636 	struct zcomp *comp;
637 	struct zram_meta *meta;
638 	struct zram *zram = dev_to_zram(dev);
639 	int err;
640 
641 	disksize = memparse(buf, NULL);
642 	if (!disksize)
643 		return -EINVAL;
644 
645 	disksize = PAGE_ALIGN(disksize);
646 	meta = zram_meta_alloc(disksize);
647 	if (!meta)
648 		return -ENOMEM;
649 
650 	comp = zcomp_create(zram->compressor, zram->max_comp_streams);
651 	if (IS_ERR(comp)) {
652 		pr_info("Cannot initialise %s compressing backend\n",
653 				zram->compressor);
654 		err = PTR_ERR(comp);
655 		goto out_free_meta;
656 	}
657 
658 	down_write(&zram->init_lock);
659 	if (init_done(zram)) {
660 		pr_info("Cannot change disksize for initialized device\n");
661 		err = -EBUSY;
662 		goto out_destroy_comp;
663 	}
664 
665 	zram->meta = meta;
666 	zram->comp = comp;
667 	zram->disksize = disksize;
668 	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
669 	revalidate_disk(zram->disk);
670 	up_write(&zram->init_lock);
671 	return len;
672 
673 out_destroy_comp:
674 	up_write(&zram->init_lock);
675 	zcomp_destroy(comp);
676 out_free_meta:
677 	zram_meta_free(meta);
678 	return err;
679 }
680 
681 static ssize_t reset_store(struct device *dev,
682 		struct device_attribute *attr, const char *buf, size_t len)
683 {
684 	int ret;
685 	unsigned short do_reset;
686 	struct zram *zram;
687 	struct block_device *bdev;
688 
689 	zram = dev_to_zram(dev);
690 	bdev = bdget_disk(zram->disk, 0);
691 
692 	if (!bdev)
693 		return -ENOMEM;
694 
695 	/* Do not reset an active device! */
696 	if (bdev->bd_holders) {
697 		ret = -EBUSY;
698 		goto out;
699 	}
700 
701 	ret = kstrtou16(buf, 10, &do_reset);
702 	if (ret)
703 		goto out;
704 
705 	if (!do_reset) {
706 		ret = -EINVAL;
707 		goto out;
708 	}
709 
710 	/* Make sure all pending I/O is finished */
711 	fsync_bdev(bdev);
712 	bdput(bdev);
713 
714 	zram_reset_device(zram, true);
715 	return len;
716 
717 out:
718 	bdput(bdev);
719 	return ret;
720 }
721 
722 static void __zram_make_request(struct zram *zram, struct bio *bio)
723 {
724 	int offset;
725 	u32 index;
726 	struct bio_vec bvec;
727 	struct bvec_iter iter;
728 
729 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
730 	offset = (bio->bi_iter.bi_sector &
731 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
732 
733 	if (unlikely(bio->bi_rw & REQ_DISCARD)) {
734 		zram_bio_discard(zram, index, offset, bio);
735 		bio_endio(bio, 0);
736 		return;
737 	}
738 
739 	bio_for_each_segment(bvec, bio, iter) {
740 		int max_transfer_size = PAGE_SIZE - offset;
741 
742 		if (bvec.bv_len > max_transfer_size) {
743 			/*
744 			 * zram_bvec_rw() can only make operation on a single
745 			 * zram page. Split the bio vector.
746 			 */
747 			struct bio_vec bv;
748 
749 			bv.bv_page = bvec.bv_page;
750 			bv.bv_len = max_transfer_size;
751 			bv.bv_offset = bvec.bv_offset;
752 
753 			if (zram_bvec_rw(zram, &bv, index, offset, bio) < 0)
754 				goto out;
755 
756 			bv.bv_len = bvec.bv_len - max_transfer_size;
757 			bv.bv_offset += max_transfer_size;
758 			if (zram_bvec_rw(zram, &bv, index + 1, 0, bio) < 0)
759 				goto out;
760 		} else
761 			if (zram_bvec_rw(zram, &bvec, index, offset, bio) < 0)
762 				goto out;
763 
764 		update_position(&index, &offset, &bvec);
765 	}
766 
767 	set_bit(BIO_UPTODATE, &bio->bi_flags);
768 	bio_endio(bio, 0);
769 	return;
770 
771 out:
772 	bio_io_error(bio);
773 }
774 
775 /*
776  * Handler function for all zram I/O requests.
777  */
778 static void zram_make_request(struct request_queue *queue, struct bio *bio)
779 {
780 	struct zram *zram = queue->queuedata;
781 
782 	down_read(&zram->init_lock);
783 	if (unlikely(!init_done(zram)))
784 		goto error;
785 
786 	if (!valid_io_request(zram, bio)) {
787 		atomic64_inc(&zram->stats.invalid_io);
788 		goto error;
789 	}
790 
791 	__zram_make_request(zram, bio);
792 	up_read(&zram->init_lock);
793 
794 	return;
795 
796 error:
797 	up_read(&zram->init_lock);
798 	bio_io_error(bio);
799 }
800 
801 static void zram_slot_free_notify(struct block_device *bdev,
802 				unsigned long index)
803 {
804 	struct zram *zram;
805 	struct zram_meta *meta;
806 
807 	zram = bdev->bd_disk->private_data;
808 	meta = zram->meta;
809 
810 	write_lock(&meta->tb_lock);
811 	zram_free_page(zram, index);
812 	write_unlock(&meta->tb_lock);
813 	atomic64_inc(&zram->stats.notify_free);
814 }
815 
816 static const struct block_device_operations zram_devops = {
817 	.swap_slot_free_notify = zram_slot_free_notify,
818 	.owner = THIS_MODULE
819 };
820 
821 static DEVICE_ATTR(disksize, S_IRUGO | S_IWUSR,
822 		disksize_show, disksize_store);
823 static DEVICE_ATTR(initstate, S_IRUGO, initstate_show, NULL);
824 static DEVICE_ATTR(reset, S_IWUSR, NULL, reset_store);
825 static DEVICE_ATTR(orig_data_size, S_IRUGO, orig_data_size_show, NULL);
826 static DEVICE_ATTR(mem_used_total, S_IRUGO, mem_used_total_show, NULL);
827 static DEVICE_ATTR(max_comp_streams, S_IRUGO | S_IWUSR,
828 		max_comp_streams_show, max_comp_streams_store);
829 static DEVICE_ATTR(comp_algorithm, S_IRUGO | S_IWUSR,
830 		comp_algorithm_show, comp_algorithm_store);
831 
832 ZRAM_ATTR_RO(num_reads);
833 ZRAM_ATTR_RO(num_writes);
834 ZRAM_ATTR_RO(failed_reads);
835 ZRAM_ATTR_RO(failed_writes);
836 ZRAM_ATTR_RO(invalid_io);
837 ZRAM_ATTR_RO(notify_free);
838 ZRAM_ATTR_RO(zero_pages);
839 ZRAM_ATTR_RO(compr_data_size);
840 
841 static struct attribute *zram_disk_attrs[] = {
842 	&dev_attr_disksize.attr,
843 	&dev_attr_initstate.attr,
844 	&dev_attr_reset.attr,
845 	&dev_attr_num_reads.attr,
846 	&dev_attr_num_writes.attr,
847 	&dev_attr_failed_reads.attr,
848 	&dev_attr_failed_writes.attr,
849 	&dev_attr_invalid_io.attr,
850 	&dev_attr_notify_free.attr,
851 	&dev_attr_zero_pages.attr,
852 	&dev_attr_orig_data_size.attr,
853 	&dev_attr_compr_data_size.attr,
854 	&dev_attr_mem_used_total.attr,
855 	&dev_attr_max_comp_streams.attr,
856 	&dev_attr_comp_algorithm.attr,
857 	NULL,
858 };
859 
860 static struct attribute_group zram_disk_attr_group = {
861 	.attrs = zram_disk_attrs,
862 };
863 
864 static int create_device(struct zram *zram, int device_id)
865 {
866 	int ret = -ENOMEM;
867 
868 	init_rwsem(&zram->init_lock);
869 
870 	zram->queue = blk_alloc_queue(GFP_KERNEL);
871 	if (!zram->queue) {
872 		pr_err("Error allocating disk queue for device %d\n",
873 			device_id);
874 		goto out;
875 	}
876 
877 	blk_queue_make_request(zram->queue, zram_make_request);
878 	zram->queue->queuedata = zram;
879 
880 	 /* gendisk structure */
881 	zram->disk = alloc_disk(1);
882 	if (!zram->disk) {
883 		pr_warn("Error allocating disk structure for device %d\n",
884 			device_id);
885 		goto out_free_queue;
886 	}
887 
888 	zram->disk->major = zram_major;
889 	zram->disk->first_minor = device_id;
890 	zram->disk->fops = &zram_devops;
891 	zram->disk->queue = zram->queue;
892 	zram->disk->private_data = zram;
893 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
894 
895 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
896 	set_capacity(zram->disk, 0);
897 	/* zram devices sort of resembles non-rotational disks */
898 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
899 	/*
900 	 * To ensure that we always get PAGE_SIZE aligned
901 	 * and n*PAGE_SIZED sized I/O requests.
902 	 */
903 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
904 	blk_queue_logical_block_size(zram->disk->queue,
905 					ZRAM_LOGICAL_BLOCK_SIZE);
906 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
907 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
908 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
909 	zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
910 	/*
911 	 * zram_bio_discard() will clear all logical blocks if logical block
912 	 * size is identical with physical block size(PAGE_SIZE). But if it is
913 	 * different, we will skip discarding some parts of logical blocks in
914 	 * the part of the request range which isn't aligned to physical block
915 	 * size.  So we can't ensure that all discarded logical blocks are
916 	 * zeroed.
917 	 */
918 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
919 		zram->disk->queue->limits.discard_zeroes_data = 1;
920 	else
921 		zram->disk->queue->limits.discard_zeroes_data = 0;
922 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
923 
924 	add_disk(zram->disk);
925 
926 	ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
927 				&zram_disk_attr_group);
928 	if (ret < 0) {
929 		pr_warn("Error creating sysfs group");
930 		goto out_free_disk;
931 	}
932 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
933 	zram->meta = NULL;
934 	zram->max_comp_streams = 1;
935 	return 0;
936 
937 out_free_disk:
938 	del_gendisk(zram->disk);
939 	put_disk(zram->disk);
940 out_free_queue:
941 	blk_cleanup_queue(zram->queue);
942 out:
943 	return ret;
944 }
945 
946 static void destroy_device(struct zram *zram)
947 {
948 	sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
949 			&zram_disk_attr_group);
950 
951 	del_gendisk(zram->disk);
952 	put_disk(zram->disk);
953 
954 	blk_cleanup_queue(zram->queue);
955 }
956 
957 static int __init zram_init(void)
958 {
959 	int ret, dev_id;
960 
961 	if (num_devices > max_num_devices) {
962 		pr_warn("Invalid value for num_devices: %u\n",
963 				num_devices);
964 		ret = -EINVAL;
965 		goto out;
966 	}
967 
968 	zram_major = register_blkdev(0, "zram");
969 	if (zram_major <= 0) {
970 		pr_warn("Unable to get major number\n");
971 		ret = -EBUSY;
972 		goto out;
973 	}
974 
975 	/* Allocate the device array and initialize each one */
976 	zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
977 	if (!zram_devices) {
978 		ret = -ENOMEM;
979 		goto unregister;
980 	}
981 
982 	for (dev_id = 0; dev_id < num_devices; dev_id++) {
983 		ret = create_device(&zram_devices[dev_id], dev_id);
984 		if (ret)
985 			goto free_devices;
986 	}
987 
988 	pr_info("Created %u device(s) ...\n", num_devices);
989 
990 	return 0;
991 
992 free_devices:
993 	while (dev_id)
994 		destroy_device(&zram_devices[--dev_id]);
995 	kfree(zram_devices);
996 unregister:
997 	unregister_blkdev(zram_major, "zram");
998 out:
999 	return ret;
1000 }
1001 
1002 static void __exit zram_exit(void)
1003 {
1004 	int i;
1005 	struct zram *zram;
1006 
1007 	for (i = 0; i < num_devices; i++) {
1008 		zram = &zram_devices[i];
1009 
1010 		destroy_device(zram);
1011 		/*
1012 		 * Shouldn't access zram->disk after destroy_device
1013 		 * because destroy_device already released zram->disk.
1014 		 */
1015 		zram_reset_device(zram, false);
1016 	}
1017 
1018 	unregister_blkdev(zram_major, "zram");
1019 
1020 	kfree(zram_devices);
1021 	pr_debug("Cleanup done!\n");
1022 }
1023 
1024 module_init(zram_init);
1025 module_exit(zram_exit);
1026 
1027 module_param(num_devices, uint, 0);
1028 MODULE_PARM_DESC(num_devices, "Number of zram devices");
1029 
1030 MODULE_LICENSE("Dual BSD/GPL");
1031 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1032 MODULE_DESCRIPTION("Compressed RAM Block Device");
1033