1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/bitops.h> 22 #include <linux/blkdev.h> 23 #include <linux/buffer_head.h> 24 #include <linux/device.h> 25 #include <linux/highmem.h> 26 #include <linux/slab.h> 27 #include <linux/backing-dev.h> 28 #include <linux/string.h> 29 #include <linux/vmalloc.h> 30 #include <linux/err.h> 31 #include <linux/idr.h> 32 #include <linux/sysfs.h> 33 #include <linux/debugfs.h> 34 #include <linux/cpuhotplug.h> 35 #include <linux/part_stat.h> 36 #include <linux/kernel_read_file.h> 37 38 #include "zram_drv.h" 39 40 static DEFINE_IDR(zram_index_idr); 41 /* idr index must be protected */ 42 static DEFINE_MUTEX(zram_index_mutex); 43 44 static int zram_major; 45 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP; 46 47 /* Module params (documentation at end) */ 48 static unsigned int num_devices = 1; 49 /* 50 * Pages that compress to sizes equals or greater than this are stored 51 * uncompressed in memory. 52 */ 53 static size_t huge_class_size; 54 55 static const struct block_device_operations zram_devops; 56 57 static void zram_free_page(struct zram *zram, size_t index); 58 static int zram_read_page(struct zram *zram, struct page *page, u32 index, 59 struct bio *parent); 60 61 static int zram_slot_trylock(struct zram *zram, u32 index) 62 { 63 return spin_trylock(&zram->table[index].lock); 64 } 65 66 static void zram_slot_lock(struct zram *zram, u32 index) 67 { 68 spin_lock(&zram->table[index].lock); 69 } 70 71 static void zram_slot_unlock(struct zram *zram, u32 index) 72 { 73 spin_unlock(&zram->table[index].lock); 74 } 75 76 static inline bool init_done(struct zram *zram) 77 { 78 return zram->disksize; 79 } 80 81 static inline struct zram *dev_to_zram(struct device *dev) 82 { 83 return (struct zram *)dev_to_disk(dev)->private_data; 84 } 85 86 static unsigned long zram_get_handle(struct zram *zram, u32 index) 87 { 88 return zram->table[index].handle; 89 } 90 91 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle) 92 { 93 zram->table[index].handle = handle; 94 } 95 96 /* flag operations require table entry bit_spin_lock() being held */ 97 static bool zram_test_flag(struct zram *zram, u32 index, 98 enum zram_pageflags flag) 99 { 100 return zram->table[index].flags & BIT(flag); 101 } 102 103 static void zram_set_flag(struct zram *zram, u32 index, 104 enum zram_pageflags flag) 105 { 106 zram->table[index].flags |= BIT(flag); 107 } 108 109 static void zram_clear_flag(struct zram *zram, u32 index, 110 enum zram_pageflags flag) 111 { 112 zram->table[index].flags &= ~BIT(flag); 113 } 114 115 static inline void zram_set_element(struct zram *zram, u32 index, 116 unsigned long element) 117 { 118 zram->table[index].element = element; 119 } 120 121 static unsigned long zram_get_element(struct zram *zram, u32 index) 122 { 123 return zram->table[index].element; 124 } 125 126 static size_t zram_get_obj_size(struct zram *zram, u32 index) 127 { 128 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1); 129 } 130 131 static void zram_set_obj_size(struct zram *zram, 132 u32 index, size_t size) 133 { 134 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT; 135 136 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size; 137 } 138 139 static inline bool zram_allocated(struct zram *zram, u32 index) 140 { 141 return zram_get_obj_size(zram, index) || 142 zram_test_flag(zram, index, ZRAM_SAME) || 143 zram_test_flag(zram, index, ZRAM_WB); 144 } 145 146 #if PAGE_SIZE != 4096 147 static inline bool is_partial_io(struct bio_vec *bvec) 148 { 149 return bvec->bv_len != PAGE_SIZE; 150 } 151 #define ZRAM_PARTIAL_IO 1 152 #else 153 static inline bool is_partial_io(struct bio_vec *bvec) 154 { 155 return false; 156 } 157 #endif 158 159 static inline void zram_set_priority(struct zram *zram, u32 index, u32 prio) 160 { 161 prio &= ZRAM_COMP_PRIORITY_MASK; 162 /* 163 * Clear previous priority value first, in case if we recompress 164 * further an already recompressed page 165 */ 166 zram->table[index].flags &= ~(ZRAM_COMP_PRIORITY_MASK << 167 ZRAM_COMP_PRIORITY_BIT1); 168 zram->table[index].flags |= (prio << ZRAM_COMP_PRIORITY_BIT1); 169 } 170 171 static inline u32 zram_get_priority(struct zram *zram, u32 index) 172 { 173 u32 prio = zram->table[index].flags >> ZRAM_COMP_PRIORITY_BIT1; 174 175 return prio & ZRAM_COMP_PRIORITY_MASK; 176 } 177 178 static void zram_accessed(struct zram *zram, u32 index) 179 { 180 zram_clear_flag(zram, index, ZRAM_IDLE); 181 zram_clear_flag(zram, index, ZRAM_PP_SLOT); 182 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME 183 zram->table[index].ac_time = ktime_get_boottime(); 184 #endif 185 } 186 187 #if defined CONFIG_ZRAM_WRITEBACK || defined CONFIG_ZRAM_MULTI_COMP 188 struct zram_pp_slot { 189 unsigned long index; 190 struct list_head entry; 191 }; 192 193 /* 194 * A post-processing bucket is, essentially, a size class, this defines 195 * the range (in bytes) of pp-slots sizes in particular bucket. 196 */ 197 #define PP_BUCKET_SIZE_RANGE 64 198 #define NUM_PP_BUCKETS ((PAGE_SIZE / PP_BUCKET_SIZE_RANGE) + 1) 199 200 struct zram_pp_ctl { 201 struct list_head pp_buckets[NUM_PP_BUCKETS]; 202 }; 203 204 static struct zram_pp_ctl *init_pp_ctl(void) 205 { 206 struct zram_pp_ctl *ctl; 207 u32 idx; 208 209 ctl = kmalloc(sizeof(*ctl), GFP_KERNEL); 210 if (!ctl) 211 return NULL; 212 213 for (idx = 0; idx < NUM_PP_BUCKETS; idx++) 214 INIT_LIST_HEAD(&ctl->pp_buckets[idx]); 215 return ctl; 216 } 217 218 static void release_pp_slot(struct zram *zram, struct zram_pp_slot *pps) 219 { 220 list_del_init(&pps->entry); 221 222 zram_slot_lock(zram, pps->index); 223 zram_clear_flag(zram, pps->index, ZRAM_PP_SLOT); 224 zram_slot_unlock(zram, pps->index); 225 226 kfree(pps); 227 } 228 229 static void release_pp_ctl(struct zram *zram, struct zram_pp_ctl *ctl) 230 { 231 u32 idx; 232 233 if (!ctl) 234 return; 235 236 for (idx = 0; idx < NUM_PP_BUCKETS; idx++) { 237 while (!list_empty(&ctl->pp_buckets[idx])) { 238 struct zram_pp_slot *pps; 239 240 pps = list_first_entry(&ctl->pp_buckets[idx], 241 struct zram_pp_slot, 242 entry); 243 release_pp_slot(zram, pps); 244 } 245 } 246 247 kfree(ctl); 248 } 249 250 static void place_pp_slot(struct zram *zram, struct zram_pp_ctl *ctl, 251 struct zram_pp_slot *pps) 252 { 253 u32 idx; 254 255 idx = zram_get_obj_size(zram, pps->index) / PP_BUCKET_SIZE_RANGE; 256 list_add(&pps->entry, &ctl->pp_buckets[idx]); 257 258 zram_set_flag(zram, pps->index, ZRAM_PP_SLOT); 259 } 260 261 static struct zram_pp_slot *select_pp_slot(struct zram_pp_ctl *ctl) 262 { 263 struct zram_pp_slot *pps = NULL; 264 s32 idx = NUM_PP_BUCKETS - 1; 265 266 /* The higher the bucket id the more optimal slot post-processing is */ 267 while (idx >= 0) { 268 pps = list_first_entry_or_null(&ctl->pp_buckets[idx], 269 struct zram_pp_slot, 270 entry); 271 if (pps) 272 break; 273 274 idx--; 275 } 276 return pps; 277 } 278 #endif 279 280 static inline void update_used_max(struct zram *zram, 281 const unsigned long pages) 282 { 283 unsigned long cur_max = atomic_long_read(&zram->stats.max_used_pages); 284 285 do { 286 if (cur_max >= pages) 287 return; 288 } while (!atomic_long_try_cmpxchg(&zram->stats.max_used_pages, 289 &cur_max, pages)); 290 } 291 292 static inline void zram_fill_page(void *ptr, unsigned long len, 293 unsigned long value) 294 { 295 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long))); 296 memset_l(ptr, value, len / sizeof(unsigned long)); 297 } 298 299 static bool page_same_filled(void *ptr, unsigned long *element) 300 { 301 unsigned long *page; 302 unsigned long val; 303 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1; 304 305 page = (unsigned long *)ptr; 306 val = page[0]; 307 308 if (val != page[last_pos]) 309 return false; 310 311 for (pos = 1; pos < last_pos; pos++) { 312 if (val != page[pos]) 313 return false; 314 } 315 316 *element = val; 317 318 return true; 319 } 320 321 static ssize_t initstate_show(struct device *dev, 322 struct device_attribute *attr, char *buf) 323 { 324 u32 val; 325 struct zram *zram = dev_to_zram(dev); 326 327 down_read(&zram->init_lock); 328 val = init_done(zram); 329 up_read(&zram->init_lock); 330 331 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 332 } 333 334 static ssize_t disksize_show(struct device *dev, 335 struct device_attribute *attr, char *buf) 336 { 337 struct zram *zram = dev_to_zram(dev); 338 339 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 340 } 341 342 static ssize_t mem_limit_store(struct device *dev, 343 struct device_attribute *attr, const char *buf, size_t len) 344 { 345 u64 limit; 346 char *tmp; 347 struct zram *zram = dev_to_zram(dev); 348 349 limit = memparse(buf, &tmp); 350 if (buf == tmp) /* no chars parsed, invalid input */ 351 return -EINVAL; 352 353 down_write(&zram->init_lock); 354 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; 355 up_write(&zram->init_lock); 356 357 return len; 358 } 359 360 static ssize_t mem_used_max_store(struct device *dev, 361 struct device_attribute *attr, const char *buf, size_t len) 362 { 363 int err; 364 unsigned long val; 365 struct zram *zram = dev_to_zram(dev); 366 367 err = kstrtoul(buf, 10, &val); 368 if (err || val != 0) 369 return -EINVAL; 370 371 down_read(&zram->init_lock); 372 if (init_done(zram)) { 373 atomic_long_set(&zram->stats.max_used_pages, 374 zs_get_total_pages(zram->mem_pool)); 375 } 376 up_read(&zram->init_lock); 377 378 return len; 379 } 380 381 /* 382 * Mark all pages which are older than or equal to cutoff as IDLE. 383 * Callers should hold the zram init lock in read mode 384 */ 385 static void mark_idle(struct zram *zram, ktime_t cutoff) 386 { 387 int is_idle = 1; 388 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 389 int index; 390 391 for (index = 0; index < nr_pages; index++) { 392 /* 393 * Do not mark ZRAM_SAME slots as ZRAM_IDLE, because no 394 * post-processing (recompress, writeback) happens to the 395 * ZRAM_SAME slot. 396 * 397 * And ZRAM_WB slots simply cannot be ZRAM_IDLE. 398 */ 399 zram_slot_lock(zram, index); 400 if (!zram_allocated(zram, index) || 401 zram_test_flag(zram, index, ZRAM_WB) || 402 zram_test_flag(zram, index, ZRAM_SAME)) { 403 zram_slot_unlock(zram, index); 404 continue; 405 } 406 407 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME 408 is_idle = !cutoff || 409 ktime_after(cutoff, zram->table[index].ac_time); 410 #endif 411 if (is_idle) 412 zram_set_flag(zram, index, ZRAM_IDLE); 413 else 414 zram_clear_flag(zram, index, ZRAM_IDLE); 415 zram_slot_unlock(zram, index); 416 } 417 } 418 419 static ssize_t idle_store(struct device *dev, 420 struct device_attribute *attr, const char *buf, size_t len) 421 { 422 struct zram *zram = dev_to_zram(dev); 423 ktime_t cutoff_time = 0; 424 ssize_t rv = -EINVAL; 425 426 if (!sysfs_streq(buf, "all")) { 427 /* 428 * If it did not parse as 'all' try to treat it as an integer 429 * when we have memory tracking enabled. 430 */ 431 u64 age_sec; 432 433 if (IS_ENABLED(CONFIG_ZRAM_TRACK_ENTRY_ACTIME) && !kstrtoull(buf, 0, &age_sec)) 434 cutoff_time = ktime_sub(ktime_get_boottime(), 435 ns_to_ktime(age_sec * NSEC_PER_SEC)); 436 else 437 goto out; 438 } 439 440 down_read(&zram->init_lock); 441 if (!init_done(zram)) 442 goto out_unlock; 443 444 /* 445 * A cutoff_time of 0 marks everything as idle, this is the 446 * "all" behavior. 447 */ 448 mark_idle(zram, cutoff_time); 449 rv = len; 450 451 out_unlock: 452 up_read(&zram->init_lock); 453 out: 454 return rv; 455 } 456 457 #ifdef CONFIG_ZRAM_WRITEBACK 458 static ssize_t writeback_limit_enable_store(struct device *dev, 459 struct device_attribute *attr, const char *buf, size_t len) 460 { 461 struct zram *zram = dev_to_zram(dev); 462 u64 val; 463 ssize_t ret = -EINVAL; 464 465 if (kstrtoull(buf, 10, &val)) 466 return ret; 467 468 down_read(&zram->init_lock); 469 spin_lock(&zram->wb_limit_lock); 470 zram->wb_limit_enable = val; 471 spin_unlock(&zram->wb_limit_lock); 472 up_read(&zram->init_lock); 473 ret = len; 474 475 return ret; 476 } 477 478 static ssize_t writeback_limit_enable_show(struct device *dev, 479 struct device_attribute *attr, char *buf) 480 { 481 bool val; 482 struct zram *zram = dev_to_zram(dev); 483 484 down_read(&zram->init_lock); 485 spin_lock(&zram->wb_limit_lock); 486 val = zram->wb_limit_enable; 487 spin_unlock(&zram->wb_limit_lock); 488 up_read(&zram->init_lock); 489 490 return scnprintf(buf, PAGE_SIZE, "%d\n", val); 491 } 492 493 static ssize_t writeback_limit_store(struct device *dev, 494 struct device_attribute *attr, const char *buf, size_t len) 495 { 496 struct zram *zram = dev_to_zram(dev); 497 u64 val; 498 ssize_t ret = -EINVAL; 499 500 if (kstrtoull(buf, 10, &val)) 501 return ret; 502 503 down_read(&zram->init_lock); 504 spin_lock(&zram->wb_limit_lock); 505 zram->bd_wb_limit = val; 506 spin_unlock(&zram->wb_limit_lock); 507 up_read(&zram->init_lock); 508 ret = len; 509 510 return ret; 511 } 512 513 static ssize_t writeback_limit_show(struct device *dev, 514 struct device_attribute *attr, char *buf) 515 { 516 u64 val; 517 struct zram *zram = dev_to_zram(dev); 518 519 down_read(&zram->init_lock); 520 spin_lock(&zram->wb_limit_lock); 521 val = zram->bd_wb_limit; 522 spin_unlock(&zram->wb_limit_lock); 523 up_read(&zram->init_lock); 524 525 return scnprintf(buf, PAGE_SIZE, "%llu\n", val); 526 } 527 528 static void reset_bdev(struct zram *zram) 529 { 530 if (!zram->backing_dev) 531 return; 532 533 /* hope filp_close flush all of IO */ 534 filp_close(zram->backing_dev, NULL); 535 zram->backing_dev = NULL; 536 zram->bdev = NULL; 537 zram->disk->fops = &zram_devops; 538 kvfree(zram->bitmap); 539 zram->bitmap = NULL; 540 } 541 542 static ssize_t backing_dev_show(struct device *dev, 543 struct device_attribute *attr, char *buf) 544 { 545 struct file *file; 546 struct zram *zram = dev_to_zram(dev); 547 char *p; 548 ssize_t ret; 549 550 down_read(&zram->init_lock); 551 file = zram->backing_dev; 552 if (!file) { 553 memcpy(buf, "none\n", 5); 554 up_read(&zram->init_lock); 555 return 5; 556 } 557 558 p = file_path(file, buf, PAGE_SIZE - 1); 559 if (IS_ERR(p)) { 560 ret = PTR_ERR(p); 561 goto out; 562 } 563 564 ret = strlen(p); 565 memmove(buf, p, ret); 566 buf[ret++] = '\n'; 567 out: 568 up_read(&zram->init_lock); 569 return ret; 570 } 571 572 static ssize_t backing_dev_store(struct device *dev, 573 struct device_attribute *attr, const char *buf, size_t len) 574 { 575 char *file_name; 576 size_t sz; 577 struct file *backing_dev = NULL; 578 struct inode *inode; 579 unsigned int bitmap_sz; 580 unsigned long nr_pages, *bitmap = NULL; 581 int err; 582 struct zram *zram = dev_to_zram(dev); 583 584 file_name = kmalloc(PATH_MAX, GFP_KERNEL); 585 if (!file_name) 586 return -ENOMEM; 587 588 down_write(&zram->init_lock); 589 if (init_done(zram)) { 590 pr_info("Can't setup backing device for initialized device\n"); 591 err = -EBUSY; 592 goto out; 593 } 594 595 strscpy(file_name, buf, PATH_MAX); 596 /* ignore trailing newline */ 597 sz = strlen(file_name); 598 if (sz > 0 && file_name[sz - 1] == '\n') 599 file_name[sz - 1] = 0x00; 600 601 backing_dev = filp_open(file_name, O_RDWR | O_LARGEFILE | O_EXCL, 0); 602 if (IS_ERR(backing_dev)) { 603 err = PTR_ERR(backing_dev); 604 backing_dev = NULL; 605 goto out; 606 } 607 608 inode = backing_dev->f_mapping->host; 609 610 /* Support only block device in this moment */ 611 if (!S_ISBLK(inode->i_mode)) { 612 err = -ENOTBLK; 613 goto out; 614 } 615 616 nr_pages = i_size_read(inode) >> PAGE_SHIFT; 617 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long); 618 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL); 619 if (!bitmap) { 620 err = -ENOMEM; 621 goto out; 622 } 623 624 reset_bdev(zram); 625 626 zram->bdev = I_BDEV(inode); 627 zram->backing_dev = backing_dev; 628 zram->bitmap = bitmap; 629 zram->nr_pages = nr_pages; 630 up_write(&zram->init_lock); 631 632 pr_info("setup backing device %s\n", file_name); 633 kfree(file_name); 634 635 return len; 636 out: 637 kvfree(bitmap); 638 639 if (backing_dev) 640 filp_close(backing_dev, NULL); 641 642 up_write(&zram->init_lock); 643 644 kfree(file_name); 645 646 return err; 647 } 648 649 static unsigned long alloc_block_bdev(struct zram *zram) 650 { 651 unsigned long blk_idx = 1; 652 retry: 653 /* skip 0 bit to confuse zram.handle = 0 */ 654 blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx); 655 if (blk_idx == zram->nr_pages) 656 return 0; 657 658 if (test_and_set_bit(blk_idx, zram->bitmap)) 659 goto retry; 660 661 atomic64_inc(&zram->stats.bd_count); 662 return blk_idx; 663 } 664 665 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) 666 { 667 int was_set; 668 669 was_set = test_and_clear_bit(blk_idx, zram->bitmap); 670 WARN_ON_ONCE(!was_set); 671 atomic64_dec(&zram->stats.bd_count); 672 } 673 674 static void read_from_bdev_async(struct zram *zram, struct page *page, 675 unsigned long entry, struct bio *parent) 676 { 677 struct bio *bio; 678 679 bio = bio_alloc(zram->bdev, 1, parent->bi_opf, GFP_NOIO); 680 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9); 681 __bio_add_page(bio, page, PAGE_SIZE, 0); 682 bio_chain(bio, parent); 683 submit_bio(bio); 684 } 685 686 #define PAGE_WB_SIG "page_index=" 687 688 #define PAGE_WRITEBACK 0 689 #define HUGE_WRITEBACK (1<<0) 690 #define IDLE_WRITEBACK (1<<1) 691 #define INCOMPRESSIBLE_WRITEBACK (1<<2) 692 693 static int scan_slots_for_writeback(struct zram *zram, u32 mode, 694 unsigned long nr_pages, 695 unsigned long index, 696 struct zram_pp_ctl *ctl) 697 { 698 struct zram_pp_slot *pps = NULL; 699 700 for (; nr_pages != 0; index++, nr_pages--) { 701 if (!pps) 702 pps = kmalloc(sizeof(*pps), GFP_KERNEL); 703 if (!pps) 704 return -ENOMEM; 705 706 INIT_LIST_HEAD(&pps->entry); 707 708 zram_slot_lock(zram, index); 709 if (!zram_allocated(zram, index)) 710 goto next; 711 712 if (zram_test_flag(zram, index, ZRAM_WB) || 713 zram_test_flag(zram, index, ZRAM_SAME)) 714 goto next; 715 716 if (mode & IDLE_WRITEBACK && 717 !zram_test_flag(zram, index, ZRAM_IDLE)) 718 goto next; 719 if (mode & HUGE_WRITEBACK && 720 !zram_test_flag(zram, index, ZRAM_HUGE)) 721 goto next; 722 if (mode & INCOMPRESSIBLE_WRITEBACK && 723 !zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 724 goto next; 725 726 pps->index = index; 727 place_pp_slot(zram, ctl, pps); 728 pps = NULL; 729 next: 730 zram_slot_unlock(zram, index); 731 } 732 733 kfree(pps); 734 return 0; 735 } 736 737 static ssize_t writeback_store(struct device *dev, 738 struct device_attribute *attr, const char *buf, size_t len) 739 { 740 struct zram *zram = dev_to_zram(dev); 741 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 742 struct zram_pp_ctl *ctl = NULL; 743 struct zram_pp_slot *pps; 744 unsigned long index = 0; 745 struct bio bio; 746 struct bio_vec bio_vec; 747 struct page *page; 748 ssize_t ret = len; 749 int mode, err; 750 unsigned long blk_idx = 0; 751 752 if (sysfs_streq(buf, "idle")) 753 mode = IDLE_WRITEBACK; 754 else if (sysfs_streq(buf, "huge")) 755 mode = HUGE_WRITEBACK; 756 else if (sysfs_streq(buf, "huge_idle")) 757 mode = IDLE_WRITEBACK | HUGE_WRITEBACK; 758 else if (sysfs_streq(buf, "incompressible")) 759 mode = INCOMPRESSIBLE_WRITEBACK; 760 else { 761 if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1)) 762 return -EINVAL; 763 764 if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) || 765 index >= nr_pages) 766 return -EINVAL; 767 768 nr_pages = 1; 769 mode = PAGE_WRITEBACK; 770 } 771 772 down_read(&zram->init_lock); 773 if (!init_done(zram)) { 774 ret = -EINVAL; 775 goto release_init_lock; 776 } 777 778 /* Do not permit concurrent post-processing actions. */ 779 if (atomic_xchg(&zram->pp_in_progress, 1)) { 780 up_read(&zram->init_lock); 781 return -EAGAIN; 782 } 783 784 if (!zram->backing_dev) { 785 ret = -ENODEV; 786 goto release_init_lock; 787 } 788 789 page = alloc_page(GFP_KERNEL); 790 if (!page) { 791 ret = -ENOMEM; 792 goto release_init_lock; 793 } 794 795 ctl = init_pp_ctl(); 796 if (!ctl) { 797 ret = -ENOMEM; 798 goto release_init_lock; 799 } 800 801 scan_slots_for_writeback(zram, mode, nr_pages, index, ctl); 802 803 while ((pps = select_pp_slot(ctl))) { 804 spin_lock(&zram->wb_limit_lock); 805 if (zram->wb_limit_enable && !zram->bd_wb_limit) { 806 spin_unlock(&zram->wb_limit_lock); 807 ret = -EIO; 808 break; 809 } 810 spin_unlock(&zram->wb_limit_lock); 811 812 if (!blk_idx) { 813 blk_idx = alloc_block_bdev(zram); 814 if (!blk_idx) { 815 ret = -ENOSPC; 816 break; 817 } 818 } 819 820 index = pps->index; 821 zram_slot_lock(zram, index); 822 /* 823 * scan_slots() sets ZRAM_PP_SLOT and relases slot lock, so 824 * slots can change in the meantime. If slots are accessed or 825 * freed they lose ZRAM_PP_SLOT flag and hence we don't 826 * post-process them. 827 */ 828 if (!zram_test_flag(zram, index, ZRAM_PP_SLOT)) 829 goto next; 830 zram_slot_unlock(zram, index); 831 832 if (zram_read_page(zram, page, index, NULL)) { 833 release_pp_slot(zram, pps); 834 continue; 835 } 836 837 bio_init(&bio, zram->bdev, &bio_vec, 1, 838 REQ_OP_WRITE | REQ_SYNC); 839 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9); 840 __bio_add_page(&bio, page, PAGE_SIZE, 0); 841 842 /* 843 * XXX: A single page IO would be inefficient for write 844 * but it would be not bad as starter. 845 */ 846 err = submit_bio_wait(&bio); 847 if (err) { 848 release_pp_slot(zram, pps); 849 /* 850 * BIO errors are not fatal, we continue and simply 851 * attempt to writeback the remaining objects (pages). 852 * At the same time we need to signal user-space that 853 * some writes (at least one, but also could be all of 854 * them) were not successful and we do so by returning 855 * the most recent BIO error. 856 */ 857 ret = err; 858 continue; 859 } 860 861 atomic64_inc(&zram->stats.bd_writes); 862 zram_slot_lock(zram, index); 863 /* 864 * Same as above, we release slot lock during writeback so 865 * slot can change under us: slot_free() or slot_free() and 866 * reallocation (zram_write_page()). In both cases slot loses 867 * ZRAM_PP_SLOT flag. No concurrent post-processing can set 868 * ZRAM_PP_SLOT on such slots until current post-processing 869 * finishes. 870 */ 871 if (!zram_test_flag(zram, index, ZRAM_PP_SLOT)) 872 goto next; 873 874 zram_free_page(zram, index); 875 zram_set_flag(zram, index, ZRAM_WB); 876 zram_set_element(zram, index, blk_idx); 877 blk_idx = 0; 878 atomic64_inc(&zram->stats.pages_stored); 879 spin_lock(&zram->wb_limit_lock); 880 if (zram->wb_limit_enable && zram->bd_wb_limit > 0) 881 zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12); 882 spin_unlock(&zram->wb_limit_lock); 883 next: 884 zram_slot_unlock(zram, index); 885 release_pp_slot(zram, pps); 886 } 887 888 if (blk_idx) 889 free_block_bdev(zram, blk_idx); 890 __free_page(page); 891 release_init_lock: 892 release_pp_ctl(zram, ctl); 893 atomic_set(&zram->pp_in_progress, 0); 894 up_read(&zram->init_lock); 895 896 return ret; 897 } 898 899 struct zram_work { 900 struct work_struct work; 901 struct zram *zram; 902 unsigned long entry; 903 struct page *page; 904 int error; 905 }; 906 907 static void zram_sync_read(struct work_struct *work) 908 { 909 struct zram_work *zw = container_of(work, struct zram_work, work); 910 struct bio_vec bv; 911 struct bio bio; 912 913 bio_init(&bio, zw->zram->bdev, &bv, 1, REQ_OP_READ); 914 bio.bi_iter.bi_sector = zw->entry * (PAGE_SIZE >> 9); 915 __bio_add_page(&bio, zw->page, PAGE_SIZE, 0); 916 zw->error = submit_bio_wait(&bio); 917 } 918 919 /* 920 * Block layer want one ->submit_bio to be active at a time, so if we use 921 * chained IO with parent IO in same context, it's a deadlock. To avoid that, 922 * use a worker thread context. 923 */ 924 static int read_from_bdev_sync(struct zram *zram, struct page *page, 925 unsigned long entry) 926 { 927 struct zram_work work; 928 929 work.page = page; 930 work.zram = zram; 931 work.entry = entry; 932 933 INIT_WORK_ONSTACK(&work.work, zram_sync_read); 934 queue_work(system_unbound_wq, &work.work); 935 flush_work(&work.work); 936 destroy_work_on_stack(&work.work); 937 938 return work.error; 939 } 940 941 static int read_from_bdev(struct zram *zram, struct page *page, 942 unsigned long entry, struct bio *parent) 943 { 944 atomic64_inc(&zram->stats.bd_reads); 945 if (!parent) { 946 if (WARN_ON_ONCE(!IS_ENABLED(ZRAM_PARTIAL_IO))) 947 return -EIO; 948 return read_from_bdev_sync(zram, page, entry); 949 } 950 read_from_bdev_async(zram, page, entry, parent); 951 return 0; 952 } 953 #else 954 static inline void reset_bdev(struct zram *zram) {}; 955 static int read_from_bdev(struct zram *zram, struct page *page, 956 unsigned long entry, struct bio *parent) 957 { 958 return -EIO; 959 } 960 961 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {}; 962 #endif 963 964 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 965 966 static struct dentry *zram_debugfs_root; 967 968 static void zram_debugfs_create(void) 969 { 970 zram_debugfs_root = debugfs_create_dir("zram", NULL); 971 } 972 973 static void zram_debugfs_destroy(void) 974 { 975 debugfs_remove_recursive(zram_debugfs_root); 976 } 977 978 static ssize_t read_block_state(struct file *file, char __user *buf, 979 size_t count, loff_t *ppos) 980 { 981 char *kbuf; 982 ssize_t index, written = 0; 983 struct zram *zram = file->private_data; 984 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 985 struct timespec64 ts; 986 987 kbuf = kvmalloc(count, GFP_KERNEL); 988 if (!kbuf) 989 return -ENOMEM; 990 991 down_read(&zram->init_lock); 992 if (!init_done(zram)) { 993 up_read(&zram->init_lock); 994 kvfree(kbuf); 995 return -EINVAL; 996 } 997 998 for (index = *ppos; index < nr_pages; index++) { 999 int copied; 1000 1001 zram_slot_lock(zram, index); 1002 if (!zram_allocated(zram, index)) 1003 goto next; 1004 1005 ts = ktime_to_timespec64(zram->table[index].ac_time); 1006 copied = snprintf(kbuf + written, count, 1007 "%12zd %12lld.%06lu %c%c%c%c%c%c\n", 1008 index, (s64)ts.tv_sec, 1009 ts.tv_nsec / NSEC_PER_USEC, 1010 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.', 1011 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.', 1012 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.', 1013 zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.', 1014 zram_get_priority(zram, index) ? 'r' : '.', 1015 zram_test_flag(zram, index, 1016 ZRAM_INCOMPRESSIBLE) ? 'n' : '.'); 1017 1018 if (count <= copied) { 1019 zram_slot_unlock(zram, index); 1020 break; 1021 } 1022 written += copied; 1023 count -= copied; 1024 next: 1025 zram_slot_unlock(zram, index); 1026 *ppos += 1; 1027 } 1028 1029 up_read(&zram->init_lock); 1030 if (copy_to_user(buf, kbuf, written)) 1031 written = -EFAULT; 1032 kvfree(kbuf); 1033 1034 return written; 1035 } 1036 1037 static const struct file_operations proc_zram_block_state_op = { 1038 .open = simple_open, 1039 .read = read_block_state, 1040 .llseek = default_llseek, 1041 }; 1042 1043 static void zram_debugfs_register(struct zram *zram) 1044 { 1045 if (!zram_debugfs_root) 1046 return; 1047 1048 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name, 1049 zram_debugfs_root); 1050 debugfs_create_file("block_state", 0400, zram->debugfs_dir, 1051 zram, &proc_zram_block_state_op); 1052 } 1053 1054 static void zram_debugfs_unregister(struct zram *zram) 1055 { 1056 debugfs_remove_recursive(zram->debugfs_dir); 1057 } 1058 #else 1059 static void zram_debugfs_create(void) {}; 1060 static void zram_debugfs_destroy(void) {}; 1061 static void zram_debugfs_register(struct zram *zram) {}; 1062 static void zram_debugfs_unregister(struct zram *zram) {}; 1063 #endif 1064 1065 /* 1066 * We switched to per-cpu streams and this attr is not needed anymore. 1067 * However, we will keep it around for some time, because: 1068 * a) we may revert per-cpu streams in the future 1069 * b) it's visible to user space and we need to follow our 2 years 1070 * retirement rule; but we already have a number of 'soon to be 1071 * altered' attrs, so max_comp_streams need to wait for the next 1072 * layoff cycle. 1073 */ 1074 static ssize_t max_comp_streams_show(struct device *dev, 1075 struct device_attribute *attr, char *buf) 1076 { 1077 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus()); 1078 } 1079 1080 static ssize_t max_comp_streams_store(struct device *dev, 1081 struct device_attribute *attr, const char *buf, size_t len) 1082 { 1083 return len; 1084 } 1085 1086 static void comp_algorithm_set(struct zram *zram, u32 prio, const char *alg) 1087 { 1088 /* Do not free statically defined compression algorithms */ 1089 if (zram->comp_algs[prio] != default_compressor) 1090 kfree(zram->comp_algs[prio]); 1091 1092 zram->comp_algs[prio] = alg; 1093 } 1094 1095 static ssize_t __comp_algorithm_show(struct zram *zram, u32 prio, char *buf) 1096 { 1097 ssize_t sz; 1098 1099 down_read(&zram->init_lock); 1100 sz = zcomp_available_show(zram->comp_algs[prio], buf); 1101 up_read(&zram->init_lock); 1102 1103 return sz; 1104 } 1105 1106 static int __comp_algorithm_store(struct zram *zram, u32 prio, const char *buf) 1107 { 1108 char *compressor; 1109 size_t sz; 1110 1111 sz = strlen(buf); 1112 if (sz >= CRYPTO_MAX_ALG_NAME) 1113 return -E2BIG; 1114 1115 compressor = kstrdup(buf, GFP_KERNEL); 1116 if (!compressor) 1117 return -ENOMEM; 1118 1119 /* ignore trailing newline */ 1120 if (sz > 0 && compressor[sz - 1] == '\n') 1121 compressor[sz - 1] = 0x00; 1122 1123 if (!zcomp_available_algorithm(compressor)) { 1124 kfree(compressor); 1125 return -EINVAL; 1126 } 1127 1128 down_write(&zram->init_lock); 1129 if (init_done(zram)) { 1130 up_write(&zram->init_lock); 1131 kfree(compressor); 1132 pr_info("Can't change algorithm for initialized device\n"); 1133 return -EBUSY; 1134 } 1135 1136 comp_algorithm_set(zram, prio, compressor); 1137 up_write(&zram->init_lock); 1138 return 0; 1139 } 1140 1141 static void comp_params_reset(struct zram *zram, u32 prio) 1142 { 1143 struct zcomp_params *params = &zram->params[prio]; 1144 1145 vfree(params->dict); 1146 params->level = ZCOMP_PARAM_NO_LEVEL; 1147 params->dict_sz = 0; 1148 params->dict = NULL; 1149 } 1150 1151 static int comp_params_store(struct zram *zram, u32 prio, s32 level, 1152 const char *dict_path) 1153 { 1154 ssize_t sz = 0; 1155 1156 comp_params_reset(zram, prio); 1157 1158 if (dict_path) { 1159 sz = kernel_read_file_from_path(dict_path, 0, 1160 &zram->params[prio].dict, 1161 INT_MAX, 1162 NULL, 1163 READING_POLICY); 1164 if (sz < 0) 1165 return -EINVAL; 1166 } 1167 1168 zram->params[prio].dict_sz = sz; 1169 zram->params[prio].level = level; 1170 return 0; 1171 } 1172 1173 static ssize_t algorithm_params_store(struct device *dev, 1174 struct device_attribute *attr, 1175 const char *buf, 1176 size_t len) 1177 { 1178 s32 prio = ZRAM_PRIMARY_COMP, level = ZCOMP_PARAM_NO_LEVEL; 1179 char *args, *param, *val, *algo = NULL, *dict_path = NULL; 1180 struct zram *zram = dev_to_zram(dev); 1181 int ret; 1182 1183 args = skip_spaces(buf); 1184 while (*args) { 1185 args = next_arg(args, ¶m, &val); 1186 1187 if (!val || !*val) 1188 return -EINVAL; 1189 1190 if (!strcmp(param, "priority")) { 1191 ret = kstrtoint(val, 10, &prio); 1192 if (ret) 1193 return ret; 1194 continue; 1195 } 1196 1197 if (!strcmp(param, "level")) { 1198 ret = kstrtoint(val, 10, &level); 1199 if (ret) 1200 return ret; 1201 continue; 1202 } 1203 1204 if (!strcmp(param, "algo")) { 1205 algo = val; 1206 continue; 1207 } 1208 1209 if (!strcmp(param, "dict")) { 1210 dict_path = val; 1211 continue; 1212 } 1213 } 1214 1215 /* Lookup priority by algorithm name */ 1216 if (algo) { 1217 s32 p; 1218 1219 prio = -EINVAL; 1220 for (p = ZRAM_PRIMARY_COMP; p < ZRAM_MAX_COMPS; p++) { 1221 if (!zram->comp_algs[p]) 1222 continue; 1223 1224 if (!strcmp(zram->comp_algs[p], algo)) { 1225 prio = p; 1226 break; 1227 } 1228 } 1229 } 1230 1231 if (prio < ZRAM_PRIMARY_COMP || prio >= ZRAM_MAX_COMPS) 1232 return -EINVAL; 1233 1234 ret = comp_params_store(zram, prio, level, dict_path); 1235 return ret ? ret : len; 1236 } 1237 1238 static ssize_t comp_algorithm_show(struct device *dev, 1239 struct device_attribute *attr, 1240 char *buf) 1241 { 1242 struct zram *zram = dev_to_zram(dev); 1243 1244 return __comp_algorithm_show(zram, ZRAM_PRIMARY_COMP, buf); 1245 } 1246 1247 static ssize_t comp_algorithm_store(struct device *dev, 1248 struct device_attribute *attr, 1249 const char *buf, 1250 size_t len) 1251 { 1252 struct zram *zram = dev_to_zram(dev); 1253 int ret; 1254 1255 ret = __comp_algorithm_store(zram, ZRAM_PRIMARY_COMP, buf); 1256 return ret ? ret : len; 1257 } 1258 1259 #ifdef CONFIG_ZRAM_MULTI_COMP 1260 static ssize_t recomp_algorithm_show(struct device *dev, 1261 struct device_attribute *attr, 1262 char *buf) 1263 { 1264 struct zram *zram = dev_to_zram(dev); 1265 ssize_t sz = 0; 1266 u32 prio; 1267 1268 for (prio = ZRAM_SECONDARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { 1269 if (!zram->comp_algs[prio]) 1270 continue; 1271 1272 sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2, "#%d: ", prio); 1273 sz += __comp_algorithm_show(zram, prio, buf + sz); 1274 } 1275 1276 return sz; 1277 } 1278 1279 static ssize_t recomp_algorithm_store(struct device *dev, 1280 struct device_attribute *attr, 1281 const char *buf, 1282 size_t len) 1283 { 1284 struct zram *zram = dev_to_zram(dev); 1285 int prio = ZRAM_SECONDARY_COMP; 1286 char *args, *param, *val; 1287 char *alg = NULL; 1288 int ret; 1289 1290 args = skip_spaces(buf); 1291 while (*args) { 1292 args = next_arg(args, ¶m, &val); 1293 1294 if (!val || !*val) 1295 return -EINVAL; 1296 1297 if (!strcmp(param, "algo")) { 1298 alg = val; 1299 continue; 1300 } 1301 1302 if (!strcmp(param, "priority")) { 1303 ret = kstrtoint(val, 10, &prio); 1304 if (ret) 1305 return ret; 1306 continue; 1307 } 1308 } 1309 1310 if (!alg) 1311 return -EINVAL; 1312 1313 if (prio < ZRAM_SECONDARY_COMP || prio >= ZRAM_MAX_COMPS) 1314 return -EINVAL; 1315 1316 ret = __comp_algorithm_store(zram, prio, alg); 1317 return ret ? ret : len; 1318 } 1319 #endif 1320 1321 static ssize_t compact_store(struct device *dev, 1322 struct device_attribute *attr, const char *buf, size_t len) 1323 { 1324 struct zram *zram = dev_to_zram(dev); 1325 1326 down_read(&zram->init_lock); 1327 if (!init_done(zram)) { 1328 up_read(&zram->init_lock); 1329 return -EINVAL; 1330 } 1331 1332 zs_compact(zram->mem_pool); 1333 up_read(&zram->init_lock); 1334 1335 return len; 1336 } 1337 1338 static ssize_t io_stat_show(struct device *dev, 1339 struct device_attribute *attr, char *buf) 1340 { 1341 struct zram *zram = dev_to_zram(dev); 1342 ssize_t ret; 1343 1344 down_read(&zram->init_lock); 1345 ret = scnprintf(buf, PAGE_SIZE, 1346 "%8llu %8llu 0 %8llu\n", 1347 (u64)atomic64_read(&zram->stats.failed_reads), 1348 (u64)atomic64_read(&zram->stats.failed_writes), 1349 (u64)atomic64_read(&zram->stats.notify_free)); 1350 up_read(&zram->init_lock); 1351 1352 return ret; 1353 } 1354 1355 static ssize_t mm_stat_show(struct device *dev, 1356 struct device_attribute *attr, char *buf) 1357 { 1358 struct zram *zram = dev_to_zram(dev); 1359 struct zs_pool_stats pool_stats; 1360 u64 orig_size, mem_used = 0; 1361 long max_used; 1362 ssize_t ret; 1363 1364 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); 1365 1366 down_read(&zram->init_lock); 1367 if (init_done(zram)) { 1368 mem_used = zs_get_total_pages(zram->mem_pool); 1369 zs_pool_stats(zram->mem_pool, &pool_stats); 1370 } 1371 1372 orig_size = atomic64_read(&zram->stats.pages_stored); 1373 max_used = atomic_long_read(&zram->stats.max_used_pages); 1374 1375 ret = scnprintf(buf, PAGE_SIZE, 1376 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n", 1377 orig_size << PAGE_SHIFT, 1378 (u64)atomic64_read(&zram->stats.compr_data_size), 1379 mem_used << PAGE_SHIFT, 1380 zram->limit_pages << PAGE_SHIFT, 1381 max_used << PAGE_SHIFT, 1382 (u64)atomic64_read(&zram->stats.same_pages), 1383 atomic_long_read(&pool_stats.pages_compacted), 1384 (u64)atomic64_read(&zram->stats.huge_pages), 1385 (u64)atomic64_read(&zram->stats.huge_pages_since)); 1386 up_read(&zram->init_lock); 1387 1388 return ret; 1389 } 1390 1391 #ifdef CONFIG_ZRAM_WRITEBACK 1392 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12))) 1393 static ssize_t bd_stat_show(struct device *dev, 1394 struct device_attribute *attr, char *buf) 1395 { 1396 struct zram *zram = dev_to_zram(dev); 1397 ssize_t ret; 1398 1399 down_read(&zram->init_lock); 1400 ret = scnprintf(buf, PAGE_SIZE, 1401 "%8llu %8llu %8llu\n", 1402 FOUR_K((u64)atomic64_read(&zram->stats.bd_count)), 1403 FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)), 1404 FOUR_K((u64)atomic64_read(&zram->stats.bd_writes))); 1405 up_read(&zram->init_lock); 1406 1407 return ret; 1408 } 1409 #endif 1410 1411 static ssize_t debug_stat_show(struct device *dev, 1412 struct device_attribute *attr, char *buf) 1413 { 1414 int version = 1; 1415 struct zram *zram = dev_to_zram(dev); 1416 ssize_t ret; 1417 1418 down_read(&zram->init_lock); 1419 ret = scnprintf(buf, PAGE_SIZE, 1420 "version: %d\n%8llu %8llu\n", 1421 version, 1422 (u64)atomic64_read(&zram->stats.writestall), 1423 (u64)atomic64_read(&zram->stats.miss_free)); 1424 up_read(&zram->init_lock); 1425 1426 return ret; 1427 } 1428 1429 static DEVICE_ATTR_RO(io_stat); 1430 static DEVICE_ATTR_RO(mm_stat); 1431 #ifdef CONFIG_ZRAM_WRITEBACK 1432 static DEVICE_ATTR_RO(bd_stat); 1433 #endif 1434 static DEVICE_ATTR_RO(debug_stat); 1435 1436 static void zram_meta_free(struct zram *zram, u64 disksize) 1437 { 1438 size_t num_pages = disksize >> PAGE_SHIFT; 1439 size_t index; 1440 1441 /* Free all pages that are still in this zram device */ 1442 for (index = 0; index < num_pages; index++) 1443 zram_free_page(zram, index); 1444 1445 zs_destroy_pool(zram->mem_pool); 1446 vfree(zram->table); 1447 } 1448 1449 static bool zram_meta_alloc(struct zram *zram, u64 disksize) 1450 { 1451 size_t num_pages, index; 1452 1453 num_pages = disksize >> PAGE_SHIFT; 1454 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table))); 1455 if (!zram->table) 1456 return false; 1457 1458 zram->mem_pool = zs_create_pool(zram->disk->disk_name); 1459 if (!zram->mem_pool) { 1460 vfree(zram->table); 1461 return false; 1462 } 1463 1464 if (!huge_class_size) 1465 huge_class_size = zs_huge_class_size(zram->mem_pool); 1466 1467 for (index = 0; index < num_pages; index++) 1468 spin_lock_init(&zram->table[index].lock); 1469 return true; 1470 } 1471 1472 /* 1473 * To protect concurrent access to the same index entry, 1474 * caller should hold this table index entry's bit_spinlock to 1475 * indicate this index entry is accessing. 1476 */ 1477 static void zram_free_page(struct zram *zram, size_t index) 1478 { 1479 unsigned long handle; 1480 1481 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME 1482 zram->table[index].ac_time = 0; 1483 #endif 1484 1485 zram_clear_flag(zram, index, ZRAM_IDLE); 1486 zram_clear_flag(zram, index, ZRAM_INCOMPRESSIBLE); 1487 zram_clear_flag(zram, index, ZRAM_PP_SLOT); 1488 zram_set_priority(zram, index, 0); 1489 1490 if (zram_test_flag(zram, index, ZRAM_HUGE)) { 1491 zram_clear_flag(zram, index, ZRAM_HUGE); 1492 atomic64_dec(&zram->stats.huge_pages); 1493 } 1494 1495 if (zram_test_flag(zram, index, ZRAM_WB)) { 1496 zram_clear_flag(zram, index, ZRAM_WB); 1497 free_block_bdev(zram, zram_get_element(zram, index)); 1498 goto out; 1499 } 1500 1501 /* 1502 * No memory is allocated for same element filled pages. 1503 * Simply clear same page flag. 1504 */ 1505 if (zram_test_flag(zram, index, ZRAM_SAME)) { 1506 zram_clear_flag(zram, index, ZRAM_SAME); 1507 atomic64_dec(&zram->stats.same_pages); 1508 goto out; 1509 } 1510 1511 handle = zram_get_handle(zram, index); 1512 if (!handle) 1513 return; 1514 1515 zs_free(zram->mem_pool, handle); 1516 1517 atomic64_sub(zram_get_obj_size(zram, index), 1518 &zram->stats.compr_data_size); 1519 out: 1520 atomic64_dec(&zram->stats.pages_stored); 1521 zram_set_handle(zram, index, 0); 1522 zram_set_obj_size(zram, index, 0); 1523 } 1524 1525 /* 1526 * Reads (decompresses if needed) a page from zspool (zsmalloc). 1527 * Corresponding ZRAM slot should be locked. 1528 */ 1529 static int zram_read_from_zspool(struct zram *zram, struct page *page, 1530 u32 index) 1531 { 1532 struct zcomp_strm *zstrm; 1533 unsigned long handle; 1534 unsigned int size; 1535 void *src, *dst; 1536 u32 prio; 1537 int ret; 1538 1539 handle = zram_get_handle(zram, index); 1540 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) { 1541 unsigned long value; 1542 void *mem; 1543 1544 value = handle ? zram_get_element(zram, index) : 0; 1545 mem = kmap_local_page(page); 1546 zram_fill_page(mem, PAGE_SIZE, value); 1547 kunmap_local(mem); 1548 return 0; 1549 } 1550 1551 size = zram_get_obj_size(zram, index); 1552 1553 if (size != PAGE_SIZE) { 1554 prio = zram_get_priority(zram, index); 1555 zstrm = zcomp_stream_get(zram->comps[prio]); 1556 } 1557 1558 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO); 1559 if (size == PAGE_SIZE) { 1560 dst = kmap_local_page(page); 1561 copy_page(dst, src); 1562 kunmap_local(dst); 1563 ret = 0; 1564 } else { 1565 dst = kmap_local_page(page); 1566 ret = zcomp_decompress(zram->comps[prio], zstrm, 1567 src, size, dst); 1568 kunmap_local(dst); 1569 zcomp_stream_put(zram->comps[prio]); 1570 } 1571 zs_unmap_object(zram->mem_pool, handle); 1572 return ret; 1573 } 1574 1575 static int zram_read_page(struct zram *zram, struct page *page, u32 index, 1576 struct bio *parent) 1577 { 1578 int ret; 1579 1580 zram_slot_lock(zram, index); 1581 if (!zram_test_flag(zram, index, ZRAM_WB)) { 1582 /* Slot should be locked through out the function call */ 1583 ret = zram_read_from_zspool(zram, page, index); 1584 zram_slot_unlock(zram, index); 1585 } else { 1586 /* 1587 * The slot should be unlocked before reading from the backing 1588 * device. 1589 */ 1590 zram_slot_unlock(zram, index); 1591 1592 ret = read_from_bdev(zram, page, zram_get_element(zram, index), 1593 parent); 1594 } 1595 1596 /* Should NEVER happen. Return bio error if it does. */ 1597 if (WARN_ON(ret < 0)) 1598 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 1599 1600 return ret; 1601 } 1602 1603 /* 1604 * Use a temporary buffer to decompress the page, as the decompressor 1605 * always expects a full page for the output. 1606 */ 1607 static int zram_bvec_read_partial(struct zram *zram, struct bio_vec *bvec, 1608 u32 index, int offset) 1609 { 1610 struct page *page = alloc_page(GFP_NOIO); 1611 int ret; 1612 1613 if (!page) 1614 return -ENOMEM; 1615 ret = zram_read_page(zram, page, index, NULL); 1616 if (likely(!ret)) 1617 memcpy_to_bvec(bvec, page_address(page) + offset); 1618 __free_page(page); 1619 return ret; 1620 } 1621 1622 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 1623 u32 index, int offset, struct bio *bio) 1624 { 1625 if (is_partial_io(bvec)) 1626 return zram_bvec_read_partial(zram, bvec, index, offset); 1627 return zram_read_page(zram, bvec->bv_page, index, bio); 1628 } 1629 1630 static int zram_write_page(struct zram *zram, struct page *page, u32 index) 1631 { 1632 int ret = 0; 1633 unsigned long alloced_pages; 1634 unsigned long handle = -ENOMEM; 1635 unsigned int comp_len = 0; 1636 void *src, *dst, *mem; 1637 struct zcomp_strm *zstrm; 1638 unsigned long element = 0; 1639 enum zram_pageflags flags = 0; 1640 1641 mem = kmap_local_page(page); 1642 if (page_same_filled(mem, &element)) { 1643 kunmap_local(mem); 1644 /* Free memory associated with this sector now. */ 1645 flags = ZRAM_SAME; 1646 atomic64_inc(&zram->stats.same_pages); 1647 goto out; 1648 } 1649 kunmap_local(mem); 1650 1651 compress_again: 1652 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]); 1653 src = kmap_local_page(page); 1654 ret = zcomp_compress(zram->comps[ZRAM_PRIMARY_COMP], zstrm, 1655 src, &comp_len); 1656 kunmap_local(src); 1657 1658 if (unlikely(ret)) { 1659 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1660 pr_err("Compression failed! err=%d\n", ret); 1661 zs_free(zram->mem_pool, handle); 1662 return ret; 1663 } 1664 1665 if (comp_len >= huge_class_size) 1666 comp_len = PAGE_SIZE; 1667 /* 1668 * handle allocation has 2 paths: 1669 * a) fast path is executed with preemption disabled (for 1670 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear, 1671 * since we can't sleep; 1672 * b) slow path enables preemption and attempts to allocate 1673 * the page with __GFP_DIRECT_RECLAIM bit set. we have to 1674 * put per-cpu compression stream and, thus, to re-do 1675 * the compression once handle is allocated. 1676 * 1677 * if we have a 'non-null' handle here then we are coming 1678 * from the slow path and handle has already been allocated. 1679 */ 1680 if (IS_ERR_VALUE(handle)) 1681 handle = zs_malloc(zram->mem_pool, comp_len, 1682 __GFP_KSWAPD_RECLAIM | 1683 __GFP_NOWARN | 1684 __GFP_HIGHMEM | 1685 __GFP_MOVABLE); 1686 if (IS_ERR_VALUE(handle)) { 1687 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1688 atomic64_inc(&zram->stats.writestall); 1689 handle = zs_malloc(zram->mem_pool, comp_len, 1690 GFP_NOIO | __GFP_HIGHMEM | 1691 __GFP_MOVABLE); 1692 if (IS_ERR_VALUE(handle)) 1693 return PTR_ERR((void *)handle); 1694 1695 if (comp_len != PAGE_SIZE) 1696 goto compress_again; 1697 /* 1698 * If the page is not compressible, you need to acquire the 1699 * lock and execute the code below. The zcomp_stream_get() 1700 * call is needed to disable the cpu hotplug and grab the 1701 * zstrm buffer back. It is necessary that the dereferencing 1702 * of the zstrm variable below occurs correctly. 1703 */ 1704 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]); 1705 } 1706 1707 alloced_pages = zs_get_total_pages(zram->mem_pool); 1708 update_used_max(zram, alloced_pages); 1709 1710 if (zram->limit_pages && alloced_pages > zram->limit_pages) { 1711 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1712 zs_free(zram->mem_pool, handle); 1713 return -ENOMEM; 1714 } 1715 1716 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO); 1717 1718 src = zstrm->buffer; 1719 if (comp_len == PAGE_SIZE) 1720 src = kmap_local_page(page); 1721 memcpy(dst, src, comp_len); 1722 if (comp_len == PAGE_SIZE) 1723 kunmap_local(src); 1724 1725 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1726 zs_unmap_object(zram->mem_pool, handle); 1727 atomic64_add(comp_len, &zram->stats.compr_data_size); 1728 out: 1729 /* 1730 * Free memory associated with this sector 1731 * before overwriting unused sectors. 1732 */ 1733 zram_slot_lock(zram, index); 1734 zram_free_page(zram, index); 1735 1736 if (comp_len == PAGE_SIZE) { 1737 zram_set_flag(zram, index, ZRAM_HUGE); 1738 atomic64_inc(&zram->stats.huge_pages); 1739 atomic64_inc(&zram->stats.huge_pages_since); 1740 } 1741 1742 if (flags) { 1743 zram_set_flag(zram, index, flags); 1744 zram_set_element(zram, index, element); 1745 } else { 1746 zram_set_handle(zram, index, handle); 1747 zram_set_obj_size(zram, index, comp_len); 1748 } 1749 zram_slot_unlock(zram, index); 1750 1751 /* Update stats */ 1752 atomic64_inc(&zram->stats.pages_stored); 1753 return ret; 1754 } 1755 1756 /* 1757 * This is a partial IO. Read the full page before writing the changes. 1758 */ 1759 static int zram_bvec_write_partial(struct zram *zram, struct bio_vec *bvec, 1760 u32 index, int offset, struct bio *bio) 1761 { 1762 struct page *page = alloc_page(GFP_NOIO); 1763 int ret; 1764 1765 if (!page) 1766 return -ENOMEM; 1767 1768 ret = zram_read_page(zram, page, index, bio); 1769 if (!ret) { 1770 memcpy_from_bvec(page_address(page) + offset, bvec); 1771 ret = zram_write_page(zram, page, index); 1772 } 1773 __free_page(page); 1774 return ret; 1775 } 1776 1777 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1778 u32 index, int offset, struct bio *bio) 1779 { 1780 if (is_partial_io(bvec)) 1781 return zram_bvec_write_partial(zram, bvec, index, offset, bio); 1782 return zram_write_page(zram, bvec->bv_page, index); 1783 } 1784 1785 #ifdef CONFIG_ZRAM_MULTI_COMP 1786 #define RECOMPRESS_IDLE (1 << 0) 1787 #define RECOMPRESS_HUGE (1 << 1) 1788 1789 static int scan_slots_for_recompress(struct zram *zram, u32 mode, 1790 struct zram_pp_ctl *ctl) 1791 { 1792 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 1793 struct zram_pp_slot *pps = NULL; 1794 unsigned long index; 1795 1796 for (index = 0; index < nr_pages; index++) { 1797 if (!pps) 1798 pps = kmalloc(sizeof(*pps), GFP_KERNEL); 1799 if (!pps) 1800 return -ENOMEM; 1801 1802 INIT_LIST_HEAD(&pps->entry); 1803 1804 zram_slot_lock(zram, index); 1805 if (!zram_allocated(zram, index)) 1806 goto next; 1807 1808 if (mode & RECOMPRESS_IDLE && 1809 !zram_test_flag(zram, index, ZRAM_IDLE)) 1810 goto next; 1811 1812 if (mode & RECOMPRESS_HUGE && 1813 !zram_test_flag(zram, index, ZRAM_HUGE)) 1814 goto next; 1815 1816 if (zram_test_flag(zram, index, ZRAM_WB) || 1817 zram_test_flag(zram, index, ZRAM_SAME) || 1818 zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 1819 goto next; 1820 1821 pps->index = index; 1822 place_pp_slot(zram, ctl, pps); 1823 pps = NULL; 1824 next: 1825 zram_slot_unlock(zram, index); 1826 } 1827 1828 kfree(pps); 1829 return 0; 1830 } 1831 1832 /* 1833 * This function will decompress (unless it's ZRAM_HUGE) the page and then 1834 * attempt to compress it using provided compression algorithm priority 1835 * (which is potentially more effective). 1836 * 1837 * Corresponding ZRAM slot should be locked. 1838 */ 1839 static int recompress_slot(struct zram *zram, u32 index, struct page *page, 1840 u64 *num_recomp_pages, u32 threshold, u32 prio, 1841 u32 prio_max) 1842 { 1843 struct zcomp_strm *zstrm = NULL; 1844 unsigned long handle_old; 1845 unsigned long handle_new; 1846 unsigned int comp_len_old; 1847 unsigned int comp_len_new; 1848 unsigned int class_index_old; 1849 unsigned int class_index_new; 1850 u32 num_recomps = 0; 1851 void *src, *dst; 1852 int ret; 1853 1854 handle_old = zram_get_handle(zram, index); 1855 if (!handle_old) 1856 return -EINVAL; 1857 1858 comp_len_old = zram_get_obj_size(zram, index); 1859 /* 1860 * Do not recompress objects that are already "small enough". 1861 */ 1862 if (comp_len_old < threshold) 1863 return 0; 1864 1865 ret = zram_read_from_zspool(zram, page, index); 1866 if (ret) 1867 return ret; 1868 1869 /* 1870 * We touched this entry so mark it as non-IDLE. This makes sure that 1871 * we don't preserve IDLE flag and don't incorrectly pick this entry 1872 * for different post-processing type (e.g. writeback). 1873 */ 1874 zram_clear_flag(zram, index, ZRAM_IDLE); 1875 1876 class_index_old = zs_lookup_class_index(zram->mem_pool, comp_len_old); 1877 /* 1878 * Iterate the secondary comp algorithms list (in order of priority) 1879 * and try to recompress the page. 1880 */ 1881 for (; prio < prio_max; prio++) { 1882 if (!zram->comps[prio]) 1883 continue; 1884 1885 /* 1886 * Skip if the object is already re-compressed with a higher 1887 * priority algorithm (or same algorithm). 1888 */ 1889 if (prio <= zram_get_priority(zram, index)) 1890 continue; 1891 1892 num_recomps++; 1893 zstrm = zcomp_stream_get(zram->comps[prio]); 1894 src = kmap_local_page(page); 1895 ret = zcomp_compress(zram->comps[prio], zstrm, 1896 src, &comp_len_new); 1897 kunmap_local(src); 1898 1899 if (ret) { 1900 zcomp_stream_put(zram->comps[prio]); 1901 return ret; 1902 } 1903 1904 class_index_new = zs_lookup_class_index(zram->mem_pool, 1905 comp_len_new); 1906 1907 /* Continue until we make progress */ 1908 if (class_index_new >= class_index_old || 1909 (threshold && comp_len_new >= threshold)) { 1910 zcomp_stream_put(zram->comps[prio]); 1911 continue; 1912 } 1913 1914 /* Recompression was successful so break out */ 1915 break; 1916 } 1917 1918 /* 1919 * We did not try to recompress, e.g. when we have only one 1920 * secondary algorithm and the page is already recompressed 1921 * using that algorithm 1922 */ 1923 if (!zstrm) 1924 return 0; 1925 1926 /* 1927 * Decrement the limit (if set) on pages we can recompress, even 1928 * when current recompression was unsuccessful or did not compress 1929 * the page below the threshold, because we still spent resources 1930 * on it. 1931 */ 1932 if (*num_recomp_pages) 1933 *num_recomp_pages -= 1; 1934 1935 if (class_index_new >= class_index_old) { 1936 /* 1937 * Secondary algorithms failed to re-compress the page 1938 * in a way that would save memory, mark the object as 1939 * incompressible so that we will not try to compress 1940 * it again. 1941 * 1942 * We need to make sure that all secondary algorithms have 1943 * failed, so we test if the number of recompressions matches 1944 * the number of active secondary algorithms. 1945 */ 1946 if (num_recomps == zram->num_active_comps - 1) 1947 zram_set_flag(zram, index, ZRAM_INCOMPRESSIBLE); 1948 return 0; 1949 } 1950 1951 /* Successful recompression but above threshold */ 1952 if (threshold && comp_len_new >= threshold) 1953 return 0; 1954 1955 /* 1956 * No direct reclaim (slow path) for handle allocation and no 1957 * re-compression attempt (unlike in zram_write_bvec()) since 1958 * we already have stored that object in zsmalloc. If we cannot 1959 * alloc memory for recompressed object then we bail out and 1960 * simply keep the old (existing) object in zsmalloc. 1961 */ 1962 handle_new = zs_malloc(zram->mem_pool, comp_len_new, 1963 __GFP_KSWAPD_RECLAIM | 1964 __GFP_NOWARN | 1965 __GFP_HIGHMEM | 1966 __GFP_MOVABLE); 1967 if (IS_ERR_VALUE(handle_new)) { 1968 zcomp_stream_put(zram->comps[prio]); 1969 return PTR_ERR((void *)handle_new); 1970 } 1971 1972 dst = zs_map_object(zram->mem_pool, handle_new, ZS_MM_WO); 1973 memcpy(dst, zstrm->buffer, comp_len_new); 1974 zcomp_stream_put(zram->comps[prio]); 1975 1976 zs_unmap_object(zram->mem_pool, handle_new); 1977 1978 zram_free_page(zram, index); 1979 zram_set_handle(zram, index, handle_new); 1980 zram_set_obj_size(zram, index, comp_len_new); 1981 zram_set_priority(zram, index, prio); 1982 1983 atomic64_add(comp_len_new, &zram->stats.compr_data_size); 1984 atomic64_inc(&zram->stats.pages_stored); 1985 1986 return 0; 1987 } 1988 1989 static ssize_t recompress_store(struct device *dev, 1990 struct device_attribute *attr, 1991 const char *buf, size_t len) 1992 { 1993 u32 prio = ZRAM_SECONDARY_COMP, prio_max = ZRAM_MAX_COMPS; 1994 struct zram *zram = dev_to_zram(dev); 1995 char *args, *param, *val, *algo = NULL; 1996 u64 num_recomp_pages = ULLONG_MAX; 1997 struct zram_pp_ctl *ctl = NULL; 1998 struct zram_pp_slot *pps; 1999 u32 mode = 0, threshold = 0; 2000 struct page *page; 2001 ssize_t ret; 2002 2003 args = skip_spaces(buf); 2004 while (*args) { 2005 args = next_arg(args, ¶m, &val); 2006 2007 if (!val || !*val) 2008 return -EINVAL; 2009 2010 if (!strcmp(param, "type")) { 2011 if (!strcmp(val, "idle")) 2012 mode = RECOMPRESS_IDLE; 2013 if (!strcmp(val, "huge")) 2014 mode = RECOMPRESS_HUGE; 2015 if (!strcmp(val, "huge_idle")) 2016 mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE; 2017 continue; 2018 } 2019 2020 if (!strcmp(param, "max_pages")) { 2021 /* 2022 * Limit the number of entries (pages) we attempt to 2023 * recompress. 2024 */ 2025 ret = kstrtoull(val, 10, &num_recomp_pages); 2026 if (ret) 2027 return ret; 2028 continue; 2029 } 2030 2031 if (!strcmp(param, "threshold")) { 2032 /* 2033 * We will re-compress only idle objects equal or 2034 * greater in size than watermark. 2035 */ 2036 ret = kstrtouint(val, 10, &threshold); 2037 if (ret) 2038 return ret; 2039 continue; 2040 } 2041 2042 if (!strcmp(param, "algo")) { 2043 algo = val; 2044 continue; 2045 } 2046 2047 if (!strcmp(param, "priority")) { 2048 ret = kstrtouint(val, 10, &prio); 2049 if (ret) 2050 return ret; 2051 2052 if (prio == ZRAM_PRIMARY_COMP) 2053 prio = ZRAM_SECONDARY_COMP; 2054 2055 prio_max = min(prio + 1, ZRAM_MAX_COMPS); 2056 continue; 2057 } 2058 } 2059 2060 if (threshold >= huge_class_size) 2061 return -EINVAL; 2062 2063 down_read(&zram->init_lock); 2064 if (!init_done(zram)) { 2065 ret = -EINVAL; 2066 goto release_init_lock; 2067 } 2068 2069 /* Do not permit concurrent post-processing actions. */ 2070 if (atomic_xchg(&zram->pp_in_progress, 1)) { 2071 up_read(&zram->init_lock); 2072 return -EAGAIN; 2073 } 2074 2075 if (algo) { 2076 bool found = false; 2077 2078 for (; prio < ZRAM_MAX_COMPS; prio++) { 2079 if (!zram->comp_algs[prio]) 2080 continue; 2081 2082 if (!strcmp(zram->comp_algs[prio], algo)) { 2083 prio_max = min(prio + 1, ZRAM_MAX_COMPS); 2084 found = true; 2085 break; 2086 } 2087 } 2088 2089 if (!found) { 2090 ret = -EINVAL; 2091 goto release_init_lock; 2092 } 2093 } 2094 2095 page = alloc_page(GFP_KERNEL); 2096 if (!page) { 2097 ret = -ENOMEM; 2098 goto release_init_lock; 2099 } 2100 2101 ctl = init_pp_ctl(); 2102 if (!ctl) { 2103 ret = -ENOMEM; 2104 goto release_init_lock; 2105 } 2106 2107 scan_slots_for_recompress(zram, mode, ctl); 2108 2109 ret = len; 2110 while ((pps = select_pp_slot(ctl))) { 2111 int err = 0; 2112 2113 if (!num_recomp_pages) 2114 break; 2115 2116 zram_slot_lock(zram, pps->index); 2117 if (!zram_test_flag(zram, pps->index, ZRAM_PP_SLOT)) 2118 goto next; 2119 2120 err = recompress_slot(zram, pps->index, page, 2121 &num_recomp_pages, threshold, 2122 prio, prio_max); 2123 next: 2124 zram_slot_unlock(zram, pps->index); 2125 release_pp_slot(zram, pps); 2126 2127 if (err) { 2128 ret = err; 2129 break; 2130 } 2131 2132 cond_resched(); 2133 } 2134 2135 __free_page(page); 2136 2137 release_init_lock: 2138 release_pp_ctl(zram, ctl); 2139 atomic_set(&zram->pp_in_progress, 0); 2140 up_read(&zram->init_lock); 2141 return ret; 2142 } 2143 #endif 2144 2145 static void zram_bio_discard(struct zram *zram, struct bio *bio) 2146 { 2147 size_t n = bio->bi_iter.bi_size; 2148 u32 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 2149 u32 offset = (bio->bi_iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 2150 SECTOR_SHIFT; 2151 2152 /* 2153 * zram manages data in physical block size units. Because logical block 2154 * size isn't identical with physical block size on some arch, we 2155 * could get a discard request pointing to a specific offset within a 2156 * certain physical block. Although we can handle this request by 2157 * reading that physiclal block and decompressing and partially zeroing 2158 * and re-compressing and then re-storing it, this isn't reasonable 2159 * because our intent with a discard request is to save memory. So 2160 * skipping this logical block is appropriate here. 2161 */ 2162 if (offset) { 2163 if (n <= (PAGE_SIZE - offset)) 2164 return; 2165 2166 n -= (PAGE_SIZE - offset); 2167 index++; 2168 } 2169 2170 while (n >= PAGE_SIZE) { 2171 zram_slot_lock(zram, index); 2172 zram_free_page(zram, index); 2173 zram_slot_unlock(zram, index); 2174 atomic64_inc(&zram->stats.notify_free); 2175 index++; 2176 n -= PAGE_SIZE; 2177 } 2178 2179 bio_endio(bio); 2180 } 2181 2182 static void zram_bio_read(struct zram *zram, struct bio *bio) 2183 { 2184 unsigned long start_time = bio_start_io_acct(bio); 2185 struct bvec_iter iter = bio->bi_iter; 2186 2187 do { 2188 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 2189 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 2190 SECTOR_SHIFT; 2191 struct bio_vec bv = bio_iter_iovec(bio, iter); 2192 2193 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset); 2194 2195 if (zram_bvec_read(zram, &bv, index, offset, bio) < 0) { 2196 atomic64_inc(&zram->stats.failed_reads); 2197 bio->bi_status = BLK_STS_IOERR; 2198 break; 2199 } 2200 flush_dcache_page(bv.bv_page); 2201 2202 zram_slot_lock(zram, index); 2203 zram_accessed(zram, index); 2204 zram_slot_unlock(zram, index); 2205 2206 bio_advance_iter_single(bio, &iter, bv.bv_len); 2207 } while (iter.bi_size); 2208 2209 bio_end_io_acct(bio, start_time); 2210 bio_endio(bio); 2211 } 2212 2213 static void zram_bio_write(struct zram *zram, struct bio *bio) 2214 { 2215 unsigned long start_time = bio_start_io_acct(bio); 2216 struct bvec_iter iter = bio->bi_iter; 2217 2218 do { 2219 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 2220 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 2221 SECTOR_SHIFT; 2222 struct bio_vec bv = bio_iter_iovec(bio, iter); 2223 2224 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset); 2225 2226 if (zram_bvec_write(zram, &bv, index, offset, bio) < 0) { 2227 atomic64_inc(&zram->stats.failed_writes); 2228 bio->bi_status = BLK_STS_IOERR; 2229 break; 2230 } 2231 2232 zram_slot_lock(zram, index); 2233 zram_accessed(zram, index); 2234 zram_slot_unlock(zram, index); 2235 2236 bio_advance_iter_single(bio, &iter, bv.bv_len); 2237 } while (iter.bi_size); 2238 2239 bio_end_io_acct(bio, start_time); 2240 bio_endio(bio); 2241 } 2242 2243 /* 2244 * Handler function for all zram I/O requests. 2245 */ 2246 static void zram_submit_bio(struct bio *bio) 2247 { 2248 struct zram *zram = bio->bi_bdev->bd_disk->private_data; 2249 2250 switch (bio_op(bio)) { 2251 case REQ_OP_READ: 2252 zram_bio_read(zram, bio); 2253 break; 2254 case REQ_OP_WRITE: 2255 zram_bio_write(zram, bio); 2256 break; 2257 case REQ_OP_DISCARD: 2258 case REQ_OP_WRITE_ZEROES: 2259 zram_bio_discard(zram, bio); 2260 break; 2261 default: 2262 WARN_ON_ONCE(1); 2263 bio_endio(bio); 2264 } 2265 } 2266 2267 static void zram_slot_free_notify(struct block_device *bdev, 2268 unsigned long index) 2269 { 2270 struct zram *zram; 2271 2272 zram = bdev->bd_disk->private_data; 2273 2274 atomic64_inc(&zram->stats.notify_free); 2275 if (!zram_slot_trylock(zram, index)) { 2276 atomic64_inc(&zram->stats.miss_free); 2277 return; 2278 } 2279 2280 zram_free_page(zram, index); 2281 zram_slot_unlock(zram, index); 2282 } 2283 2284 static void zram_comp_params_reset(struct zram *zram) 2285 { 2286 u32 prio; 2287 2288 for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { 2289 comp_params_reset(zram, prio); 2290 } 2291 } 2292 2293 static void zram_destroy_comps(struct zram *zram) 2294 { 2295 u32 prio; 2296 2297 for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { 2298 struct zcomp *comp = zram->comps[prio]; 2299 2300 zram->comps[prio] = NULL; 2301 if (!comp) 2302 continue; 2303 zcomp_destroy(comp); 2304 zram->num_active_comps--; 2305 } 2306 2307 for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { 2308 /* Do not free statically defined compression algorithms */ 2309 if (zram->comp_algs[prio] != default_compressor) 2310 kfree(zram->comp_algs[prio]); 2311 zram->comp_algs[prio] = NULL; 2312 } 2313 2314 zram_comp_params_reset(zram); 2315 } 2316 2317 static void zram_reset_device(struct zram *zram) 2318 { 2319 down_write(&zram->init_lock); 2320 2321 zram->limit_pages = 0; 2322 2323 if (!init_done(zram)) { 2324 up_write(&zram->init_lock); 2325 return; 2326 } 2327 2328 set_capacity_and_notify(zram->disk, 0); 2329 part_stat_set_all(zram->disk->part0, 0); 2330 2331 /* I/O operation under all of CPU are done so let's free */ 2332 zram_meta_free(zram, zram->disksize); 2333 zram->disksize = 0; 2334 zram_destroy_comps(zram); 2335 memset(&zram->stats, 0, sizeof(zram->stats)); 2336 atomic_set(&zram->pp_in_progress, 0); 2337 reset_bdev(zram); 2338 2339 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor); 2340 up_write(&zram->init_lock); 2341 } 2342 2343 static ssize_t disksize_store(struct device *dev, 2344 struct device_attribute *attr, const char *buf, size_t len) 2345 { 2346 u64 disksize; 2347 struct zcomp *comp; 2348 struct zram *zram = dev_to_zram(dev); 2349 int err; 2350 u32 prio; 2351 2352 disksize = memparse(buf, NULL); 2353 if (!disksize) 2354 return -EINVAL; 2355 2356 down_write(&zram->init_lock); 2357 if (init_done(zram)) { 2358 pr_info("Cannot change disksize for initialized device\n"); 2359 err = -EBUSY; 2360 goto out_unlock; 2361 } 2362 2363 disksize = PAGE_ALIGN(disksize); 2364 if (!zram_meta_alloc(zram, disksize)) { 2365 err = -ENOMEM; 2366 goto out_unlock; 2367 } 2368 2369 for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { 2370 if (!zram->comp_algs[prio]) 2371 continue; 2372 2373 comp = zcomp_create(zram->comp_algs[prio], 2374 &zram->params[prio]); 2375 if (IS_ERR(comp)) { 2376 pr_err("Cannot initialise %s compressing backend\n", 2377 zram->comp_algs[prio]); 2378 err = PTR_ERR(comp); 2379 goto out_free_comps; 2380 } 2381 2382 zram->comps[prio] = comp; 2383 zram->num_active_comps++; 2384 } 2385 zram->disksize = disksize; 2386 set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT); 2387 up_write(&zram->init_lock); 2388 2389 return len; 2390 2391 out_free_comps: 2392 zram_destroy_comps(zram); 2393 zram_meta_free(zram, disksize); 2394 out_unlock: 2395 up_write(&zram->init_lock); 2396 return err; 2397 } 2398 2399 static ssize_t reset_store(struct device *dev, 2400 struct device_attribute *attr, const char *buf, size_t len) 2401 { 2402 int ret; 2403 unsigned short do_reset; 2404 struct zram *zram; 2405 struct gendisk *disk; 2406 2407 ret = kstrtou16(buf, 10, &do_reset); 2408 if (ret) 2409 return ret; 2410 2411 if (!do_reset) 2412 return -EINVAL; 2413 2414 zram = dev_to_zram(dev); 2415 disk = zram->disk; 2416 2417 mutex_lock(&disk->open_mutex); 2418 /* Do not reset an active device or claimed device */ 2419 if (disk_openers(disk) || zram->claim) { 2420 mutex_unlock(&disk->open_mutex); 2421 return -EBUSY; 2422 } 2423 2424 /* From now on, anyone can't open /dev/zram[0-9] */ 2425 zram->claim = true; 2426 mutex_unlock(&disk->open_mutex); 2427 2428 /* Make sure all the pending I/O are finished */ 2429 sync_blockdev(disk->part0); 2430 zram_reset_device(zram); 2431 2432 mutex_lock(&disk->open_mutex); 2433 zram->claim = false; 2434 mutex_unlock(&disk->open_mutex); 2435 2436 return len; 2437 } 2438 2439 static int zram_open(struct gendisk *disk, blk_mode_t mode) 2440 { 2441 struct zram *zram = disk->private_data; 2442 2443 WARN_ON(!mutex_is_locked(&disk->open_mutex)); 2444 2445 /* zram was claimed to reset so open request fails */ 2446 if (zram->claim) 2447 return -EBUSY; 2448 return 0; 2449 } 2450 2451 static const struct block_device_operations zram_devops = { 2452 .open = zram_open, 2453 .submit_bio = zram_submit_bio, 2454 .swap_slot_free_notify = zram_slot_free_notify, 2455 .owner = THIS_MODULE 2456 }; 2457 2458 static DEVICE_ATTR_WO(compact); 2459 static DEVICE_ATTR_RW(disksize); 2460 static DEVICE_ATTR_RO(initstate); 2461 static DEVICE_ATTR_WO(reset); 2462 static DEVICE_ATTR_WO(mem_limit); 2463 static DEVICE_ATTR_WO(mem_used_max); 2464 static DEVICE_ATTR_WO(idle); 2465 static DEVICE_ATTR_RW(max_comp_streams); 2466 static DEVICE_ATTR_RW(comp_algorithm); 2467 #ifdef CONFIG_ZRAM_WRITEBACK 2468 static DEVICE_ATTR_RW(backing_dev); 2469 static DEVICE_ATTR_WO(writeback); 2470 static DEVICE_ATTR_RW(writeback_limit); 2471 static DEVICE_ATTR_RW(writeback_limit_enable); 2472 #endif 2473 #ifdef CONFIG_ZRAM_MULTI_COMP 2474 static DEVICE_ATTR_RW(recomp_algorithm); 2475 static DEVICE_ATTR_WO(recompress); 2476 #endif 2477 static DEVICE_ATTR_WO(algorithm_params); 2478 2479 static struct attribute *zram_disk_attrs[] = { 2480 &dev_attr_disksize.attr, 2481 &dev_attr_initstate.attr, 2482 &dev_attr_reset.attr, 2483 &dev_attr_compact.attr, 2484 &dev_attr_mem_limit.attr, 2485 &dev_attr_mem_used_max.attr, 2486 &dev_attr_idle.attr, 2487 &dev_attr_max_comp_streams.attr, 2488 &dev_attr_comp_algorithm.attr, 2489 #ifdef CONFIG_ZRAM_WRITEBACK 2490 &dev_attr_backing_dev.attr, 2491 &dev_attr_writeback.attr, 2492 &dev_attr_writeback_limit.attr, 2493 &dev_attr_writeback_limit_enable.attr, 2494 #endif 2495 &dev_attr_io_stat.attr, 2496 &dev_attr_mm_stat.attr, 2497 #ifdef CONFIG_ZRAM_WRITEBACK 2498 &dev_attr_bd_stat.attr, 2499 #endif 2500 &dev_attr_debug_stat.attr, 2501 #ifdef CONFIG_ZRAM_MULTI_COMP 2502 &dev_attr_recomp_algorithm.attr, 2503 &dev_attr_recompress.attr, 2504 #endif 2505 &dev_attr_algorithm_params.attr, 2506 NULL, 2507 }; 2508 2509 ATTRIBUTE_GROUPS(zram_disk); 2510 2511 /* 2512 * Allocate and initialize new zram device. the function returns 2513 * '>= 0' device_id upon success, and negative value otherwise. 2514 */ 2515 static int zram_add(void) 2516 { 2517 struct queue_limits lim = { 2518 .logical_block_size = ZRAM_LOGICAL_BLOCK_SIZE, 2519 /* 2520 * To ensure that we always get PAGE_SIZE aligned and 2521 * n*PAGE_SIZED sized I/O requests. 2522 */ 2523 .physical_block_size = PAGE_SIZE, 2524 .io_min = PAGE_SIZE, 2525 .io_opt = PAGE_SIZE, 2526 .max_hw_discard_sectors = UINT_MAX, 2527 /* 2528 * zram_bio_discard() will clear all logical blocks if logical 2529 * block size is identical with physical block size(PAGE_SIZE). 2530 * But if it is different, we will skip discarding some parts of 2531 * logical blocks in the part of the request range which isn't 2532 * aligned to physical block size. So we can't ensure that all 2533 * discarded logical blocks are zeroed. 2534 */ 2535 #if ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE 2536 .max_write_zeroes_sectors = UINT_MAX, 2537 #endif 2538 .features = BLK_FEAT_STABLE_WRITES | 2539 BLK_FEAT_SYNCHRONOUS, 2540 }; 2541 struct zram *zram; 2542 int ret, device_id; 2543 2544 zram = kzalloc(sizeof(struct zram), GFP_KERNEL); 2545 if (!zram) 2546 return -ENOMEM; 2547 2548 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); 2549 if (ret < 0) 2550 goto out_free_dev; 2551 device_id = ret; 2552 2553 init_rwsem(&zram->init_lock); 2554 #ifdef CONFIG_ZRAM_WRITEBACK 2555 spin_lock_init(&zram->wb_limit_lock); 2556 #endif 2557 2558 /* gendisk structure */ 2559 zram->disk = blk_alloc_disk(&lim, NUMA_NO_NODE); 2560 if (IS_ERR(zram->disk)) { 2561 pr_err("Error allocating disk structure for device %d\n", 2562 device_id); 2563 ret = PTR_ERR(zram->disk); 2564 goto out_free_idr; 2565 } 2566 2567 zram->disk->major = zram_major; 2568 zram->disk->first_minor = device_id; 2569 zram->disk->minors = 1; 2570 zram->disk->flags |= GENHD_FL_NO_PART; 2571 zram->disk->fops = &zram_devops; 2572 zram->disk->private_data = zram; 2573 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 2574 atomic_set(&zram->pp_in_progress, 0); 2575 zram_comp_params_reset(zram); 2576 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor); 2577 2578 /* Actual capacity set using sysfs (/sys/block/zram<id>/disksize */ 2579 set_capacity(zram->disk, 0); 2580 ret = device_add_disk(NULL, zram->disk, zram_disk_groups); 2581 if (ret) 2582 goto out_cleanup_disk; 2583 2584 zram_debugfs_register(zram); 2585 pr_info("Added device: %s\n", zram->disk->disk_name); 2586 return device_id; 2587 2588 out_cleanup_disk: 2589 put_disk(zram->disk); 2590 out_free_idr: 2591 idr_remove(&zram_index_idr, device_id); 2592 out_free_dev: 2593 kfree(zram); 2594 return ret; 2595 } 2596 2597 static int zram_remove(struct zram *zram) 2598 { 2599 bool claimed; 2600 2601 mutex_lock(&zram->disk->open_mutex); 2602 if (disk_openers(zram->disk)) { 2603 mutex_unlock(&zram->disk->open_mutex); 2604 return -EBUSY; 2605 } 2606 2607 claimed = zram->claim; 2608 if (!claimed) 2609 zram->claim = true; 2610 mutex_unlock(&zram->disk->open_mutex); 2611 2612 zram_debugfs_unregister(zram); 2613 2614 if (claimed) { 2615 /* 2616 * If we were claimed by reset_store(), del_gendisk() will 2617 * wait until reset_store() is done, so nothing need to do. 2618 */ 2619 ; 2620 } else { 2621 /* Make sure all the pending I/O are finished */ 2622 sync_blockdev(zram->disk->part0); 2623 zram_reset_device(zram); 2624 } 2625 2626 pr_info("Removed device: %s\n", zram->disk->disk_name); 2627 2628 del_gendisk(zram->disk); 2629 2630 /* del_gendisk drains pending reset_store */ 2631 WARN_ON_ONCE(claimed && zram->claim); 2632 2633 /* 2634 * disksize_store() may be called in between zram_reset_device() 2635 * and del_gendisk(), so run the last reset to avoid leaking 2636 * anything allocated with disksize_store() 2637 */ 2638 zram_reset_device(zram); 2639 2640 put_disk(zram->disk); 2641 kfree(zram); 2642 return 0; 2643 } 2644 2645 /* zram-control sysfs attributes */ 2646 2647 /* 2648 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a 2649 * sense that reading from this file does alter the state of your system -- it 2650 * creates a new un-initialized zram device and returns back this device's 2651 * device_id (or an error code if it fails to create a new device). 2652 */ 2653 static ssize_t hot_add_show(const struct class *class, 2654 const struct class_attribute *attr, 2655 char *buf) 2656 { 2657 int ret; 2658 2659 mutex_lock(&zram_index_mutex); 2660 ret = zram_add(); 2661 mutex_unlock(&zram_index_mutex); 2662 2663 if (ret < 0) 2664 return ret; 2665 return scnprintf(buf, PAGE_SIZE, "%d\n", ret); 2666 } 2667 /* This attribute must be set to 0400, so CLASS_ATTR_RO() can not be used */ 2668 static struct class_attribute class_attr_hot_add = 2669 __ATTR(hot_add, 0400, hot_add_show, NULL); 2670 2671 static ssize_t hot_remove_store(const struct class *class, 2672 const struct class_attribute *attr, 2673 const char *buf, 2674 size_t count) 2675 { 2676 struct zram *zram; 2677 int ret, dev_id; 2678 2679 /* dev_id is gendisk->first_minor, which is `int' */ 2680 ret = kstrtoint(buf, 10, &dev_id); 2681 if (ret) 2682 return ret; 2683 if (dev_id < 0) 2684 return -EINVAL; 2685 2686 mutex_lock(&zram_index_mutex); 2687 2688 zram = idr_find(&zram_index_idr, dev_id); 2689 if (zram) { 2690 ret = zram_remove(zram); 2691 if (!ret) 2692 idr_remove(&zram_index_idr, dev_id); 2693 } else { 2694 ret = -ENODEV; 2695 } 2696 2697 mutex_unlock(&zram_index_mutex); 2698 return ret ? ret : count; 2699 } 2700 static CLASS_ATTR_WO(hot_remove); 2701 2702 static struct attribute *zram_control_class_attrs[] = { 2703 &class_attr_hot_add.attr, 2704 &class_attr_hot_remove.attr, 2705 NULL, 2706 }; 2707 ATTRIBUTE_GROUPS(zram_control_class); 2708 2709 static struct class zram_control_class = { 2710 .name = "zram-control", 2711 .class_groups = zram_control_class_groups, 2712 }; 2713 2714 static int zram_remove_cb(int id, void *ptr, void *data) 2715 { 2716 WARN_ON_ONCE(zram_remove(ptr)); 2717 return 0; 2718 } 2719 2720 static void destroy_devices(void) 2721 { 2722 class_unregister(&zram_control_class); 2723 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); 2724 zram_debugfs_destroy(); 2725 idr_destroy(&zram_index_idr); 2726 unregister_blkdev(zram_major, "zram"); 2727 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2728 } 2729 2730 static int __init zram_init(void) 2731 { 2732 struct zram_table_entry zram_te; 2733 int ret; 2734 2735 BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > sizeof(zram_te.flags) * 8); 2736 2737 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare", 2738 zcomp_cpu_up_prepare, zcomp_cpu_dead); 2739 if (ret < 0) 2740 return ret; 2741 2742 ret = class_register(&zram_control_class); 2743 if (ret) { 2744 pr_err("Unable to register zram-control class\n"); 2745 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2746 return ret; 2747 } 2748 2749 zram_debugfs_create(); 2750 zram_major = register_blkdev(0, "zram"); 2751 if (zram_major <= 0) { 2752 pr_err("Unable to get major number\n"); 2753 class_unregister(&zram_control_class); 2754 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2755 return -EBUSY; 2756 } 2757 2758 while (num_devices != 0) { 2759 mutex_lock(&zram_index_mutex); 2760 ret = zram_add(); 2761 mutex_unlock(&zram_index_mutex); 2762 if (ret < 0) 2763 goto out_error; 2764 num_devices--; 2765 } 2766 2767 return 0; 2768 2769 out_error: 2770 destroy_devices(); 2771 return ret; 2772 } 2773 2774 static void __exit zram_exit(void) 2775 { 2776 destroy_devices(); 2777 } 2778 2779 module_init(zram_init); 2780 module_exit(zram_exit); 2781 2782 module_param(num_devices, uint, 0); 2783 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); 2784 2785 MODULE_LICENSE("Dual BSD/GPL"); 2786 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2787 MODULE_DESCRIPTION("Compressed RAM Block Device"); 2788