xref: /linux/drivers/block/zram/zram_drv.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
33 #include <linux/debugfs.h>
34 #include <linux/cpuhotplug.h>
35 #include <linux/part_stat.h>
36 #include <linux/kernel_read_file.h>
37 
38 #include "zram_drv.h"
39 
40 static DEFINE_IDR(zram_index_idr);
41 /* idr index must be protected */
42 static DEFINE_MUTEX(zram_index_mutex);
43 
44 static int zram_major;
45 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP;
46 
47 /* Module params (documentation at end) */
48 static unsigned int num_devices = 1;
49 /*
50  * Pages that compress to sizes equals or greater than this are stored
51  * uncompressed in memory.
52  */
53 static size_t huge_class_size;
54 
55 static const struct block_device_operations zram_devops;
56 
57 static void zram_free_page(struct zram *zram, size_t index);
58 static int zram_read_page(struct zram *zram, struct page *page, u32 index,
59 			  struct bio *parent);
60 
61 static int zram_slot_trylock(struct zram *zram, u32 index)
62 {
63 	return spin_trylock(&zram->table[index].lock);
64 }
65 
66 static void zram_slot_lock(struct zram *zram, u32 index)
67 {
68 	spin_lock(&zram->table[index].lock);
69 }
70 
71 static void zram_slot_unlock(struct zram *zram, u32 index)
72 {
73 	spin_unlock(&zram->table[index].lock);
74 }
75 
76 static inline bool init_done(struct zram *zram)
77 {
78 	return zram->disksize;
79 }
80 
81 static inline struct zram *dev_to_zram(struct device *dev)
82 {
83 	return (struct zram *)dev_to_disk(dev)->private_data;
84 }
85 
86 static unsigned long zram_get_handle(struct zram *zram, u32 index)
87 {
88 	return zram->table[index].handle;
89 }
90 
91 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
92 {
93 	zram->table[index].handle = handle;
94 }
95 
96 /* flag operations require table entry bit_spin_lock() being held */
97 static bool zram_test_flag(struct zram *zram, u32 index,
98 			enum zram_pageflags flag)
99 {
100 	return zram->table[index].flags & BIT(flag);
101 }
102 
103 static void zram_set_flag(struct zram *zram, u32 index,
104 			enum zram_pageflags flag)
105 {
106 	zram->table[index].flags |= BIT(flag);
107 }
108 
109 static void zram_clear_flag(struct zram *zram, u32 index,
110 			enum zram_pageflags flag)
111 {
112 	zram->table[index].flags &= ~BIT(flag);
113 }
114 
115 static inline void zram_set_element(struct zram *zram, u32 index,
116 			unsigned long element)
117 {
118 	zram->table[index].element = element;
119 }
120 
121 static unsigned long zram_get_element(struct zram *zram, u32 index)
122 {
123 	return zram->table[index].element;
124 }
125 
126 static size_t zram_get_obj_size(struct zram *zram, u32 index)
127 {
128 	return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
129 }
130 
131 static void zram_set_obj_size(struct zram *zram,
132 					u32 index, size_t size)
133 {
134 	unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
135 
136 	zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
137 }
138 
139 static inline bool zram_allocated(struct zram *zram, u32 index)
140 {
141 	return zram_get_obj_size(zram, index) ||
142 			zram_test_flag(zram, index, ZRAM_SAME) ||
143 			zram_test_flag(zram, index, ZRAM_WB);
144 }
145 
146 #if PAGE_SIZE != 4096
147 static inline bool is_partial_io(struct bio_vec *bvec)
148 {
149 	return bvec->bv_len != PAGE_SIZE;
150 }
151 #define ZRAM_PARTIAL_IO		1
152 #else
153 static inline bool is_partial_io(struct bio_vec *bvec)
154 {
155 	return false;
156 }
157 #endif
158 
159 static inline void zram_set_priority(struct zram *zram, u32 index, u32 prio)
160 {
161 	prio &= ZRAM_COMP_PRIORITY_MASK;
162 	/*
163 	 * Clear previous priority value first, in case if we recompress
164 	 * further an already recompressed page
165 	 */
166 	zram->table[index].flags &= ~(ZRAM_COMP_PRIORITY_MASK <<
167 				      ZRAM_COMP_PRIORITY_BIT1);
168 	zram->table[index].flags |= (prio << ZRAM_COMP_PRIORITY_BIT1);
169 }
170 
171 static inline u32 zram_get_priority(struct zram *zram, u32 index)
172 {
173 	u32 prio = zram->table[index].flags >> ZRAM_COMP_PRIORITY_BIT1;
174 
175 	return prio & ZRAM_COMP_PRIORITY_MASK;
176 }
177 
178 static void zram_accessed(struct zram *zram, u32 index)
179 {
180 	zram_clear_flag(zram, index, ZRAM_IDLE);
181 	zram_clear_flag(zram, index, ZRAM_PP_SLOT);
182 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
183 	zram->table[index].ac_time = ktime_get_boottime();
184 #endif
185 }
186 
187 #if defined CONFIG_ZRAM_WRITEBACK || defined CONFIG_ZRAM_MULTI_COMP
188 struct zram_pp_slot {
189 	unsigned long		index;
190 	struct list_head	entry;
191 };
192 
193 /*
194  * A post-processing bucket is, essentially, a size class, this defines
195  * the range (in bytes) of pp-slots sizes in particular bucket.
196  */
197 #define PP_BUCKET_SIZE_RANGE	64
198 #define NUM_PP_BUCKETS		((PAGE_SIZE / PP_BUCKET_SIZE_RANGE) + 1)
199 
200 struct zram_pp_ctl {
201 	struct list_head	pp_buckets[NUM_PP_BUCKETS];
202 };
203 
204 static struct zram_pp_ctl *init_pp_ctl(void)
205 {
206 	struct zram_pp_ctl *ctl;
207 	u32 idx;
208 
209 	ctl = kmalloc(sizeof(*ctl), GFP_KERNEL);
210 	if (!ctl)
211 		return NULL;
212 
213 	for (idx = 0; idx < NUM_PP_BUCKETS; idx++)
214 		INIT_LIST_HEAD(&ctl->pp_buckets[idx]);
215 	return ctl;
216 }
217 
218 static void release_pp_slot(struct zram *zram, struct zram_pp_slot *pps)
219 {
220 	list_del_init(&pps->entry);
221 
222 	zram_slot_lock(zram, pps->index);
223 	zram_clear_flag(zram, pps->index, ZRAM_PP_SLOT);
224 	zram_slot_unlock(zram, pps->index);
225 
226 	kfree(pps);
227 }
228 
229 static void release_pp_ctl(struct zram *zram, struct zram_pp_ctl *ctl)
230 {
231 	u32 idx;
232 
233 	if (!ctl)
234 		return;
235 
236 	for (idx = 0; idx < NUM_PP_BUCKETS; idx++) {
237 		while (!list_empty(&ctl->pp_buckets[idx])) {
238 			struct zram_pp_slot *pps;
239 
240 			pps = list_first_entry(&ctl->pp_buckets[idx],
241 					       struct zram_pp_slot,
242 					       entry);
243 			release_pp_slot(zram, pps);
244 		}
245 	}
246 
247 	kfree(ctl);
248 }
249 
250 static void place_pp_slot(struct zram *zram, struct zram_pp_ctl *ctl,
251 			  struct zram_pp_slot *pps)
252 {
253 	u32 idx;
254 
255 	idx = zram_get_obj_size(zram, pps->index) / PP_BUCKET_SIZE_RANGE;
256 	list_add(&pps->entry, &ctl->pp_buckets[idx]);
257 
258 	zram_set_flag(zram, pps->index, ZRAM_PP_SLOT);
259 }
260 
261 static struct zram_pp_slot *select_pp_slot(struct zram_pp_ctl *ctl)
262 {
263 	struct zram_pp_slot *pps = NULL;
264 	s32 idx = NUM_PP_BUCKETS - 1;
265 
266 	/* The higher the bucket id the more optimal slot post-processing is */
267 	while (idx >= 0) {
268 		pps = list_first_entry_or_null(&ctl->pp_buckets[idx],
269 					       struct zram_pp_slot,
270 					       entry);
271 		if (pps)
272 			break;
273 
274 		idx--;
275 	}
276 	return pps;
277 }
278 #endif
279 
280 static inline void update_used_max(struct zram *zram,
281 					const unsigned long pages)
282 {
283 	unsigned long cur_max = atomic_long_read(&zram->stats.max_used_pages);
284 
285 	do {
286 		if (cur_max >= pages)
287 			return;
288 	} while (!atomic_long_try_cmpxchg(&zram->stats.max_used_pages,
289 					  &cur_max, pages));
290 }
291 
292 static inline void zram_fill_page(void *ptr, unsigned long len,
293 					unsigned long value)
294 {
295 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
296 	memset_l(ptr, value, len / sizeof(unsigned long));
297 }
298 
299 static bool page_same_filled(void *ptr, unsigned long *element)
300 {
301 	unsigned long *page;
302 	unsigned long val;
303 	unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
304 
305 	page = (unsigned long *)ptr;
306 	val = page[0];
307 
308 	if (val != page[last_pos])
309 		return false;
310 
311 	for (pos = 1; pos < last_pos; pos++) {
312 		if (val != page[pos])
313 			return false;
314 	}
315 
316 	*element = val;
317 
318 	return true;
319 }
320 
321 static ssize_t initstate_show(struct device *dev,
322 		struct device_attribute *attr, char *buf)
323 {
324 	u32 val;
325 	struct zram *zram = dev_to_zram(dev);
326 
327 	down_read(&zram->init_lock);
328 	val = init_done(zram);
329 	up_read(&zram->init_lock);
330 
331 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
332 }
333 
334 static ssize_t disksize_show(struct device *dev,
335 		struct device_attribute *attr, char *buf)
336 {
337 	struct zram *zram = dev_to_zram(dev);
338 
339 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
340 }
341 
342 static ssize_t mem_limit_store(struct device *dev,
343 		struct device_attribute *attr, const char *buf, size_t len)
344 {
345 	u64 limit;
346 	char *tmp;
347 	struct zram *zram = dev_to_zram(dev);
348 
349 	limit = memparse(buf, &tmp);
350 	if (buf == tmp) /* no chars parsed, invalid input */
351 		return -EINVAL;
352 
353 	down_write(&zram->init_lock);
354 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
355 	up_write(&zram->init_lock);
356 
357 	return len;
358 }
359 
360 static ssize_t mem_used_max_store(struct device *dev,
361 		struct device_attribute *attr, const char *buf, size_t len)
362 {
363 	int err;
364 	unsigned long val;
365 	struct zram *zram = dev_to_zram(dev);
366 
367 	err = kstrtoul(buf, 10, &val);
368 	if (err || val != 0)
369 		return -EINVAL;
370 
371 	down_read(&zram->init_lock);
372 	if (init_done(zram)) {
373 		atomic_long_set(&zram->stats.max_used_pages,
374 				zs_get_total_pages(zram->mem_pool));
375 	}
376 	up_read(&zram->init_lock);
377 
378 	return len;
379 }
380 
381 /*
382  * Mark all pages which are older than or equal to cutoff as IDLE.
383  * Callers should hold the zram init lock in read mode
384  */
385 static void mark_idle(struct zram *zram, ktime_t cutoff)
386 {
387 	int is_idle = 1;
388 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
389 	int index;
390 
391 	for (index = 0; index < nr_pages; index++) {
392 		/*
393 		 * Do not mark ZRAM_SAME slots as ZRAM_IDLE, because no
394 		 * post-processing (recompress, writeback) happens to the
395 		 * ZRAM_SAME slot.
396 		 *
397 		 * And ZRAM_WB slots simply cannot be ZRAM_IDLE.
398 		 */
399 		zram_slot_lock(zram, index);
400 		if (!zram_allocated(zram, index) ||
401 		    zram_test_flag(zram, index, ZRAM_WB) ||
402 		    zram_test_flag(zram, index, ZRAM_SAME)) {
403 			zram_slot_unlock(zram, index);
404 			continue;
405 		}
406 
407 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
408 		is_idle = !cutoff ||
409 			ktime_after(cutoff, zram->table[index].ac_time);
410 #endif
411 		if (is_idle)
412 			zram_set_flag(zram, index, ZRAM_IDLE);
413 		else
414 			zram_clear_flag(zram, index, ZRAM_IDLE);
415 		zram_slot_unlock(zram, index);
416 	}
417 }
418 
419 static ssize_t idle_store(struct device *dev,
420 		struct device_attribute *attr, const char *buf, size_t len)
421 {
422 	struct zram *zram = dev_to_zram(dev);
423 	ktime_t cutoff_time = 0;
424 	ssize_t rv = -EINVAL;
425 
426 	if (!sysfs_streq(buf, "all")) {
427 		/*
428 		 * If it did not parse as 'all' try to treat it as an integer
429 		 * when we have memory tracking enabled.
430 		 */
431 		u64 age_sec;
432 
433 		if (IS_ENABLED(CONFIG_ZRAM_TRACK_ENTRY_ACTIME) && !kstrtoull(buf, 0, &age_sec))
434 			cutoff_time = ktime_sub(ktime_get_boottime(),
435 					ns_to_ktime(age_sec * NSEC_PER_SEC));
436 		else
437 			goto out;
438 	}
439 
440 	down_read(&zram->init_lock);
441 	if (!init_done(zram))
442 		goto out_unlock;
443 
444 	/*
445 	 * A cutoff_time of 0 marks everything as idle, this is the
446 	 * "all" behavior.
447 	 */
448 	mark_idle(zram, cutoff_time);
449 	rv = len;
450 
451 out_unlock:
452 	up_read(&zram->init_lock);
453 out:
454 	return rv;
455 }
456 
457 #ifdef CONFIG_ZRAM_WRITEBACK
458 static ssize_t writeback_limit_enable_store(struct device *dev,
459 		struct device_attribute *attr, const char *buf, size_t len)
460 {
461 	struct zram *zram = dev_to_zram(dev);
462 	u64 val;
463 	ssize_t ret = -EINVAL;
464 
465 	if (kstrtoull(buf, 10, &val))
466 		return ret;
467 
468 	down_read(&zram->init_lock);
469 	spin_lock(&zram->wb_limit_lock);
470 	zram->wb_limit_enable = val;
471 	spin_unlock(&zram->wb_limit_lock);
472 	up_read(&zram->init_lock);
473 	ret = len;
474 
475 	return ret;
476 }
477 
478 static ssize_t writeback_limit_enable_show(struct device *dev,
479 		struct device_attribute *attr, char *buf)
480 {
481 	bool val;
482 	struct zram *zram = dev_to_zram(dev);
483 
484 	down_read(&zram->init_lock);
485 	spin_lock(&zram->wb_limit_lock);
486 	val = zram->wb_limit_enable;
487 	spin_unlock(&zram->wb_limit_lock);
488 	up_read(&zram->init_lock);
489 
490 	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
491 }
492 
493 static ssize_t writeback_limit_store(struct device *dev,
494 		struct device_attribute *attr, const char *buf, size_t len)
495 {
496 	struct zram *zram = dev_to_zram(dev);
497 	u64 val;
498 	ssize_t ret = -EINVAL;
499 
500 	if (kstrtoull(buf, 10, &val))
501 		return ret;
502 
503 	down_read(&zram->init_lock);
504 	spin_lock(&zram->wb_limit_lock);
505 	zram->bd_wb_limit = val;
506 	spin_unlock(&zram->wb_limit_lock);
507 	up_read(&zram->init_lock);
508 	ret = len;
509 
510 	return ret;
511 }
512 
513 static ssize_t writeback_limit_show(struct device *dev,
514 		struct device_attribute *attr, char *buf)
515 {
516 	u64 val;
517 	struct zram *zram = dev_to_zram(dev);
518 
519 	down_read(&zram->init_lock);
520 	spin_lock(&zram->wb_limit_lock);
521 	val = zram->bd_wb_limit;
522 	spin_unlock(&zram->wb_limit_lock);
523 	up_read(&zram->init_lock);
524 
525 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
526 }
527 
528 static void reset_bdev(struct zram *zram)
529 {
530 	if (!zram->backing_dev)
531 		return;
532 
533 	/* hope filp_close flush all of IO */
534 	filp_close(zram->backing_dev, NULL);
535 	zram->backing_dev = NULL;
536 	zram->bdev = NULL;
537 	zram->disk->fops = &zram_devops;
538 	kvfree(zram->bitmap);
539 	zram->bitmap = NULL;
540 }
541 
542 static ssize_t backing_dev_show(struct device *dev,
543 		struct device_attribute *attr, char *buf)
544 {
545 	struct file *file;
546 	struct zram *zram = dev_to_zram(dev);
547 	char *p;
548 	ssize_t ret;
549 
550 	down_read(&zram->init_lock);
551 	file = zram->backing_dev;
552 	if (!file) {
553 		memcpy(buf, "none\n", 5);
554 		up_read(&zram->init_lock);
555 		return 5;
556 	}
557 
558 	p = file_path(file, buf, PAGE_SIZE - 1);
559 	if (IS_ERR(p)) {
560 		ret = PTR_ERR(p);
561 		goto out;
562 	}
563 
564 	ret = strlen(p);
565 	memmove(buf, p, ret);
566 	buf[ret++] = '\n';
567 out:
568 	up_read(&zram->init_lock);
569 	return ret;
570 }
571 
572 static ssize_t backing_dev_store(struct device *dev,
573 		struct device_attribute *attr, const char *buf, size_t len)
574 {
575 	char *file_name;
576 	size_t sz;
577 	struct file *backing_dev = NULL;
578 	struct inode *inode;
579 	unsigned int bitmap_sz;
580 	unsigned long nr_pages, *bitmap = NULL;
581 	int err;
582 	struct zram *zram = dev_to_zram(dev);
583 
584 	file_name = kmalloc(PATH_MAX, GFP_KERNEL);
585 	if (!file_name)
586 		return -ENOMEM;
587 
588 	down_write(&zram->init_lock);
589 	if (init_done(zram)) {
590 		pr_info("Can't setup backing device for initialized device\n");
591 		err = -EBUSY;
592 		goto out;
593 	}
594 
595 	strscpy(file_name, buf, PATH_MAX);
596 	/* ignore trailing newline */
597 	sz = strlen(file_name);
598 	if (sz > 0 && file_name[sz - 1] == '\n')
599 		file_name[sz - 1] = 0x00;
600 
601 	backing_dev = filp_open(file_name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
602 	if (IS_ERR(backing_dev)) {
603 		err = PTR_ERR(backing_dev);
604 		backing_dev = NULL;
605 		goto out;
606 	}
607 
608 	inode = backing_dev->f_mapping->host;
609 
610 	/* Support only block device in this moment */
611 	if (!S_ISBLK(inode->i_mode)) {
612 		err = -ENOTBLK;
613 		goto out;
614 	}
615 
616 	nr_pages = i_size_read(inode) >> PAGE_SHIFT;
617 	bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
618 	bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
619 	if (!bitmap) {
620 		err = -ENOMEM;
621 		goto out;
622 	}
623 
624 	reset_bdev(zram);
625 
626 	zram->bdev = I_BDEV(inode);
627 	zram->backing_dev = backing_dev;
628 	zram->bitmap = bitmap;
629 	zram->nr_pages = nr_pages;
630 	up_write(&zram->init_lock);
631 
632 	pr_info("setup backing device %s\n", file_name);
633 	kfree(file_name);
634 
635 	return len;
636 out:
637 	kvfree(bitmap);
638 
639 	if (backing_dev)
640 		filp_close(backing_dev, NULL);
641 
642 	up_write(&zram->init_lock);
643 
644 	kfree(file_name);
645 
646 	return err;
647 }
648 
649 static unsigned long alloc_block_bdev(struct zram *zram)
650 {
651 	unsigned long blk_idx = 1;
652 retry:
653 	/* skip 0 bit to confuse zram.handle = 0 */
654 	blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
655 	if (blk_idx == zram->nr_pages)
656 		return 0;
657 
658 	if (test_and_set_bit(blk_idx, zram->bitmap))
659 		goto retry;
660 
661 	atomic64_inc(&zram->stats.bd_count);
662 	return blk_idx;
663 }
664 
665 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
666 {
667 	int was_set;
668 
669 	was_set = test_and_clear_bit(blk_idx, zram->bitmap);
670 	WARN_ON_ONCE(!was_set);
671 	atomic64_dec(&zram->stats.bd_count);
672 }
673 
674 static void read_from_bdev_async(struct zram *zram, struct page *page,
675 			unsigned long entry, struct bio *parent)
676 {
677 	struct bio *bio;
678 
679 	bio = bio_alloc(zram->bdev, 1, parent->bi_opf, GFP_NOIO);
680 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
681 	__bio_add_page(bio, page, PAGE_SIZE, 0);
682 	bio_chain(bio, parent);
683 	submit_bio(bio);
684 }
685 
686 #define PAGE_WB_SIG "page_index="
687 
688 #define PAGE_WRITEBACK			0
689 #define HUGE_WRITEBACK			(1<<0)
690 #define IDLE_WRITEBACK			(1<<1)
691 #define INCOMPRESSIBLE_WRITEBACK	(1<<2)
692 
693 static int scan_slots_for_writeback(struct zram *zram, u32 mode,
694 				    unsigned long nr_pages,
695 				    unsigned long index,
696 				    struct zram_pp_ctl *ctl)
697 {
698 	struct zram_pp_slot *pps = NULL;
699 
700 	for (; nr_pages != 0; index++, nr_pages--) {
701 		if (!pps)
702 			pps = kmalloc(sizeof(*pps), GFP_KERNEL);
703 		if (!pps)
704 			return -ENOMEM;
705 
706 		INIT_LIST_HEAD(&pps->entry);
707 
708 		zram_slot_lock(zram, index);
709 		if (!zram_allocated(zram, index))
710 			goto next;
711 
712 		if (zram_test_flag(zram, index, ZRAM_WB) ||
713 		    zram_test_flag(zram, index, ZRAM_SAME))
714 			goto next;
715 
716 		if (mode & IDLE_WRITEBACK &&
717 		    !zram_test_flag(zram, index, ZRAM_IDLE))
718 			goto next;
719 		if (mode & HUGE_WRITEBACK &&
720 		    !zram_test_flag(zram, index, ZRAM_HUGE))
721 			goto next;
722 		if (mode & INCOMPRESSIBLE_WRITEBACK &&
723 		    !zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE))
724 			goto next;
725 
726 		pps->index = index;
727 		place_pp_slot(zram, ctl, pps);
728 		pps = NULL;
729 next:
730 		zram_slot_unlock(zram, index);
731 	}
732 
733 	kfree(pps);
734 	return 0;
735 }
736 
737 static ssize_t writeback_store(struct device *dev,
738 		struct device_attribute *attr, const char *buf, size_t len)
739 {
740 	struct zram *zram = dev_to_zram(dev);
741 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
742 	struct zram_pp_ctl *ctl = NULL;
743 	struct zram_pp_slot *pps;
744 	unsigned long index = 0;
745 	struct bio bio;
746 	struct bio_vec bio_vec;
747 	struct page *page;
748 	ssize_t ret = len;
749 	int mode, err;
750 	unsigned long blk_idx = 0;
751 
752 	if (sysfs_streq(buf, "idle"))
753 		mode = IDLE_WRITEBACK;
754 	else if (sysfs_streq(buf, "huge"))
755 		mode = HUGE_WRITEBACK;
756 	else if (sysfs_streq(buf, "huge_idle"))
757 		mode = IDLE_WRITEBACK | HUGE_WRITEBACK;
758 	else if (sysfs_streq(buf, "incompressible"))
759 		mode = INCOMPRESSIBLE_WRITEBACK;
760 	else {
761 		if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1))
762 			return -EINVAL;
763 
764 		if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) ||
765 				index >= nr_pages)
766 			return -EINVAL;
767 
768 		nr_pages = 1;
769 		mode = PAGE_WRITEBACK;
770 	}
771 
772 	down_read(&zram->init_lock);
773 	if (!init_done(zram)) {
774 		ret = -EINVAL;
775 		goto release_init_lock;
776 	}
777 
778 	/* Do not permit concurrent post-processing actions. */
779 	if (atomic_xchg(&zram->pp_in_progress, 1)) {
780 		up_read(&zram->init_lock);
781 		return -EAGAIN;
782 	}
783 
784 	if (!zram->backing_dev) {
785 		ret = -ENODEV;
786 		goto release_init_lock;
787 	}
788 
789 	page = alloc_page(GFP_KERNEL);
790 	if (!page) {
791 		ret = -ENOMEM;
792 		goto release_init_lock;
793 	}
794 
795 	ctl = init_pp_ctl();
796 	if (!ctl) {
797 		ret = -ENOMEM;
798 		goto release_init_lock;
799 	}
800 
801 	scan_slots_for_writeback(zram, mode, nr_pages, index, ctl);
802 
803 	while ((pps = select_pp_slot(ctl))) {
804 		spin_lock(&zram->wb_limit_lock);
805 		if (zram->wb_limit_enable && !zram->bd_wb_limit) {
806 			spin_unlock(&zram->wb_limit_lock);
807 			ret = -EIO;
808 			break;
809 		}
810 		spin_unlock(&zram->wb_limit_lock);
811 
812 		if (!blk_idx) {
813 			blk_idx = alloc_block_bdev(zram);
814 			if (!blk_idx) {
815 				ret = -ENOSPC;
816 				break;
817 			}
818 		}
819 
820 		index = pps->index;
821 		zram_slot_lock(zram, index);
822 		/*
823 		 * scan_slots() sets ZRAM_PP_SLOT and relases slot lock, so
824 		 * slots can change in the meantime. If slots are accessed or
825 		 * freed they lose ZRAM_PP_SLOT flag and hence we don't
826 		 * post-process them.
827 		 */
828 		if (!zram_test_flag(zram, index, ZRAM_PP_SLOT))
829 			goto next;
830 		zram_slot_unlock(zram, index);
831 
832 		if (zram_read_page(zram, page, index, NULL)) {
833 			release_pp_slot(zram, pps);
834 			continue;
835 		}
836 
837 		bio_init(&bio, zram->bdev, &bio_vec, 1,
838 			 REQ_OP_WRITE | REQ_SYNC);
839 		bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
840 		__bio_add_page(&bio, page, PAGE_SIZE, 0);
841 
842 		/*
843 		 * XXX: A single page IO would be inefficient for write
844 		 * but it would be not bad as starter.
845 		 */
846 		err = submit_bio_wait(&bio);
847 		if (err) {
848 			release_pp_slot(zram, pps);
849 			/*
850 			 * BIO errors are not fatal, we continue and simply
851 			 * attempt to writeback the remaining objects (pages).
852 			 * At the same time we need to signal user-space that
853 			 * some writes (at least one, but also could be all of
854 			 * them) were not successful and we do so by returning
855 			 * the most recent BIO error.
856 			 */
857 			ret = err;
858 			continue;
859 		}
860 
861 		atomic64_inc(&zram->stats.bd_writes);
862 		zram_slot_lock(zram, index);
863 		/*
864 		 * Same as above, we release slot lock during writeback so
865 		 * slot can change under us: slot_free() or slot_free() and
866 		 * reallocation (zram_write_page()). In both cases slot loses
867 		 * ZRAM_PP_SLOT flag. No concurrent post-processing can set
868 		 * ZRAM_PP_SLOT on such slots until current post-processing
869 		 * finishes.
870 		 */
871 		if (!zram_test_flag(zram, index, ZRAM_PP_SLOT))
872 			goto next;
873 
874 		zram_free_page(zram, index);
875 		zram_set_flag(zram, index, ZRAM_WB);
876 		zram_set_element(zram, index, blk_idx);
877 		blk_idx = 0;
878 		atomic64_inc(&zram->stats.pages_stored);
879 		spin_lock(&zram->wb_limit_lock);
880 		if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
881 			zram->bd_wb_limit -=  1UL << (PAGE_SHIFT - 12);
882 		spin_unlock(&zram->wb_limit_lock);
883 next:
884 		zram_slot_unlock(zram, index);
885 		release_pp_slot(zram, pps);
886 	}
887 
888 	if (blk_idx)
889 		free_block_bdev(zram, blk_idx);
890 	__free_page(page);
891 release_init_lock:
892 	release_pp_ctl(zram, ctl);
893 	atomic_set(&zram->pp_in_progress, 0);
894 	up_read(&zram->init_lock);
895 
896 	return ret;
897 }
898 
899 struct zram_work {
900 	struct work_struct work;
901 	struct zram *zram;
902 	unsigned long entry;
903 	struct page *page;
904 	int error;
905 };
906 
907 static void zram_sync_read(struct work_struct *work)
908 {
909 	struct zram_work *zw = container_of(work, struct zram_work, work);
910 	struct bio_vec bv;
911 	struct bio bio;
912 
913 	bio_init(&bio, zw->zram->bdev, &bv, 1, REQ_OP_READ);
914 	bio.bi_iter.bi_sector = zw->entry * (PAGE_SIZE >> 9);
915 	__bio_add_page(&bio, zw->page, PAGE_SIZE, 0);
916 	zw->error = submit_bio_wait(&bio);
917 }
918 
919 /*
920  * Block layer want one ->submit_bio to be active at a time, so if we use
921  * chained IO with parent IO in same context, it's a deadlock. To avoid that,
922  * use a worker thread context.
923  */
924 static int read_from_bdev_sync(struct zram *zram, struct page *page,
925 				unsigned long entry)
926 {
927 	struct zram_work work;
928 
929 	work.page = page;
930 	work.zram = zram;
931 	work.entry = entry;
932 
933 	INIT_WORK_ONSTACK(&work.work, zram_sync_read);
934 	queue_work(system_unbound_wq, &work.work);
935 	flush_work(&work.work);
936 	destroy_work_on_stack(&work.work);
937 
938 	return work.error;
939 }
940 
941 static int read_from_bdev(struct zram *zram, struct page *page,
942 			unsigned long entry, struct bio *parent)
943 {
944 	atomic64_inc(&zram->stats.bd_reads);
945 	if (!parent) {
946 		if (WARN_ON_ONCE(!IS_ENABLED(ZRAM_PARTIAL_IO)))
947 			return -EIO;
948 		return read_from_bdev_sync(zram, page, entry);
949 	}
950 	read_from_bdev_async(zram, page, entry, parent);
951 	return 0;
952 }
953 #else
954 static inline void reset_bdev(struct zram *zram) {};
955 static int read_from_bdev(struct zram *zram, struct page *page,
956 			unsigned long entry, struct bio *parent)
957 {
958 	return -EIO;
959 }
960 
961 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
962 #endif
963 
964 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
965 
966 static struct dentry *zram_debugfs_root;
967 
968 static void zram_debugfs_create(void)
969 {
970 	zram_debugfs_root = debugfs_create_dir("zram", NULL);
971 }
972 
973 static void zram_debugfs_destroy(void)
974 {
975 	debugfs_remove_recursive(zram_debugfs_root);
976 }
977 
978 static ssize_t read_block_state(struct file *file, char __user *buf,
979 				size_t count, loff_t *ppos)
980 {
981 	char *kbuf;
982 	ssize_t index, written = 0;
983 	struct zram *zram = file->private_data;
984 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
985 	struct timespec64 ts;
986 
987 	kbuf = kvmalloc(count, GFP_KERNEL);
988 	if (!kbuf)
989 		return -ENOMEM;
990 
991 	down_read(&zram->init_lock);
992 	if (!init_done(zram)) {
993 		up_read(&zram->init_lock);
994 		kvfree(kbuf);
995 		return -EINVAL;
996 	}
997 
998 	for (index = *ppos; index < nr_pages; index++) {
999 		int copied;
1000 
1001 		zram_slot_lock(zram, index);
1002 		if (!zram_allocated(zram, index))
1003 			goto next;
1004 
1005 		ts = ktime_to_timespec64(zram->table[index].ac_time);
1006 		copied = snprintf(kbuf + written, count,
1007 			"%12zd %12lld.%06lu %c%c%c%c%c%c\n",
1008 			index, (s64)ts.tv_sec,
1009 			ts.tv_nsec / NSEC_PER_USEC,
1010 			zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
1011 			zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
1012 			zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
1013 			zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.',
1014 			zram_get_priority(zram, index) ? 'r' : '.',
1015 			zram_test_flag(zram, index,
1016 				       ZRAM_INCOMPRESSIBLE) ? 'n' : '.');
1017 
1018 		if (count <= copied) {
1019 			zram_slot_unlock(zram, index);
1020 			break;
1021 		}
1022 		written += copied;
1023 		count -= copied;
1024 next:
1025 		zram_slot_unlock(zram, index);
1026 		*ppos += 1;
1027 	}
1028 
1029 	up_read(&zram->init_lock);
1030 	if (copy_to_user(buf, kbuf, written))
1031 		written = -EFAULT;
1032 	kvfree(kbuf);
1033 
1034 	return written;
1035 }
1036 
1037 static const struct file_operations proc_zram_block_state_op = {
1038 	.open = simple_open,
1039 	.read = read_block_state,
1040 	.llseek = default_llseek,
1041 };
1042 
1043 static void zram_debugfs_register(struct zram *zram)
1044 {
1045 	if (!zram_debugfs_root)
1046 		return;
1047 
1048 	zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
1049 						zram_debugfs_root);
1050 	debugfs_create_file("block_state", 0400, zram->debugfs_dir,
1051 				zram, &proc_zram_block_state_op);
1052 }
1053 
1054 static void zram_debugfs_unregister(struct zram *zram)
1055 {
1056 	debugfs_remove_recursive(zram->debugfs_dir);
1057 }
1058 #else
1059 static void zram_debugfs_create(void) {};
1060 static void zram_debugfs_destroy(void) {};
1061 static void zram_debugfs_register(struct zram *zram) {};
1062 static void zram_debugfs_unregister(struct zram *zram) {};
1063 #endif
1064 
1065 /*
1066  * We switched to per-cpu streams and this attr is not needed anymore.
1067  * However, we will keep it around for some time, because:
1068  * a) we may revert per-cpu streams in the future
1069  * b) it's visible to user space and we need to follow our 2 years
1070  *    retirement rule; but we already have a number of 'soon to be
1071  *    altered' attrs, so max_comp_streams need to wait for the next
1072  *    layoff cycle.
1073  */
1074 static ssize_t max_comp_streams_show(struct device *dev,
1075 		struct device_attribute *attr, char *buf)
1076 {
1077 	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
1078 }
1079 
1080 static ssize_t max_comp_streams_store(struct device *dev,
1081 		struct device_attribute *attr, const char *buf, size_t len)
1082 {
1083 	return len;
1084 }
1085 
1086 static void comp_algorithm_set(struct zram *zram, u32 prio, const char *alg)
1087 {
1088 	/* Do not free statically defined compression algorithms */
1089 	if (zram->comp_algs[prio] != default_compressor)
1090 		kfree(zram->comp_algs[prio]);
1091 
1092 	zram->comp_algs[prio] = alg;
1093 }
1094 
1095 static ssize_t __comp_algorithm_show(struct zram *zram, u32 prio, char *buf)
1096 {
1097 	ssize_t sz;
1098 
1099 	down_read(&zram->init_lock);
1100 	sz = zcomp_available_show(zram->comp_algs[prio], buf);
1101 	up_read(&zram->init_lock);
1102 
1103 	return sz;
1104 }
1105 
1106 static int __comp_algorithm_store(struct zram *zram, u32 prio, const char *buf)
1107 {
1108 	char *compressor;
1109 	size_t sz;
1110 
1111 	sz = strlen(buf);
1112 	if (sz >= CRYPTO_MAX_ALG_NAME)
1113 		return -E2BIG;
1114 
1115 	compressor = kstrdup(buf, GFP_KERNEL);
1116 	if (!compressor)
1117 		return -ENOMEM;
1118 
1119 	/* ignore trailing newline */
1120 	if (sz > 0 && compressor[sz - 1] == '\n')
1121 		compressor[sz - 1] = 0x00;
1122 
1123 	if (!zcomp_available_algorithm(compressor)) {
1124 		kfree(compressor);
1125 		return -EINVAL;
1126 	}
1127 
1128 	down_write(&zram->init_lock);
1129 	if (init_done(zram)) {
1130 		up_write(&zram->init_lock);
1131 		kfree(compressor);
1132 		pr_info("Can't change algorithm for initialized device\n");
1133 		return -EBUSY;
1134 	}
1135 
1136 	comp_algorithm_set(zram, prio, compressor);
1137 	up_write(&zram->init_lock);
1138 	return 0;
1139 }
1140 
1141 static void comp_params_reset(struct zram *zram, u32 prio)
1142 {
1143 	struct zcomp_params *params = &zram->params[prio];
1144 
1145 	vfree(params->dict);
1146 	params->level = ZCOMP_PARAM_NO_LEVEL;
1147 	params->dict_sz = 0;
1148 	params->dict = NULL;
1149 }
1150 
1151 static int comp_params_store(struct zram *zram, u32 prio, s32 level,
1152 			     const char *dict_path)
1153 {
1154 	ssize_t sz = 0;
1155 
1156 	comp_params_reset(zram, prio);
1157 
1158 	if (dict_path) {
1159 		sz = kernel_read_file_from_path(dict_path, 0,
1160 						&zram->params[prio].dict,
1161 						INT_MAX,
1162 						NULL,
1163 						READING_POLICY);
1164 		if (sz < 0)
1165 			return -EINVAL;
1166 	}
1167 
1168 	zram->params[prio].dict_sz = sz;
1169 	zram->params[prio].level = level;
1170 	return 0;
1171 }
1172 
1173 static ssize_t algorithm_params_store(struct device *dev,
1174 				      struct device_attribute *attr,
1175 				      const char *buf,
1176 				      size_t len)
1177 {
1178 	s32 prio = ZRAM_PRIMARY_COMP, level = ZCOMP_PARAM_NO_LEVEL;
1179 	char *args, *param, *val, *algo = NULL, *dict_path = NULL;
1180 	struct zram *zram = dev_to_zram(dev);
1181 	int ret;
1182 
1183 	args = skip_spaces(buf);
1184 	while (*args) {
1185 		args = next_arg(args, &param, &val);
1186 
1187 		if (!val || !*val)
1188 			return -EINVAL;
1189 
1190 		if (!strcmp(param, "priority")) {
1191 			ret = kstrtoint(val, 10, &prio);
1192 			if (ret)
1193 				return ret;
1194 			continue;
1195 		}
1196 
1197 		if (!strcmp(param, "level")) {
1198 			ret = kstrtoint(val, 10, &level);
1199 			if (ret)
1200 				return ret;
1201 			continue;
1202 		}
1203 
1204 		if (!strcmp(param, "algo")) {
1205 			algo = val;
1206 			continue;
1207 		}
1208 
1209 		if (!strcmp(param, "dict")) {
1210 			dict_path = val;
1211 			continue;
1212 		}
1213 	}
1214 
1215 	/* Lookup priority by algorithm name */
1216 	if (algo) {
1217 		s32 p;
1218 
1219 		prio = -EINVAL;
1220 		for (p = ZRAM_PRIMARY_COMP; p < ZRAM_MAX_COMPS; p++) {
1221 			if (!zram->comp_algs[p])
1222 				continue;
1223 
1224 			if (!strcmp(zram->comp_algs[p], algo)) {
1225 				prio = p;
1226 				break;
1227 			}
1228 		}
1229 	}
1230 
1231 	if (prio < ZRAM_PRIMARY_COMP || prio >= ZRAM_MAX_COMPS)
1232 		return -EINVAL;
1233 
1234 	ret = comp_params_store(zram, prio, level, dict_path);
1235 	return ret ? ret : len;
1236 }
1237 
1238 static ssize_t comp_algorithm_show(struct device *dev,
1239 				   struct device_attribute *attr,
1240 				   char *buf)
1241 {
1242 	struct zram *zram = dev_to_zram(dev);
1243 
1244 	return __comp_algorithm_show(zram, ZRAM_PRIMARY_COMP, buf);
1245 }
1246 
1247 static ssize_t comp_algorithm_store(struct device *dev,
1248 				    struct device_attribute *attr,
1249 				    const char *buf,
1250 				    size_t len)
1251 {
1252 	struct zram *zram = dev_to_zram(dev);
1253 	int ret;
1254 
1255 	ret = __comp_algorithm_store(zram, ZRAM_PRIMARY_COMP, buf);
1256 	return ret ? ret : len;
1257 }
1258 
1259 #ifdef CONFIG_ZRAM_MULTI_COMP
1260 static ssize_t recomp_algorithm_show(struct device *dev,
1261 				     struct device_attribute *attr,
1262 				     char *buf)
1263 {
1264 	struct zram *zram = dev_to_zram(dev);
1265 	ssize_t sz = 0;
1266 	u32 prio;
1267 
1268 	for (prio = ZRAM_SECONDARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
1269 		if (!zram->comp_algs[prio])
1270 			continue;
1271 
1272 		sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2, "#%d: ", prio);
1273 		sz += __comp_algorithm_show(zram, prio, buf + sz);
1274 	}
1275 
1276 	return sz;
1277 }
1278 
1279 static ssize_t recomp_algorithm_store(struct device *dev,
1280 				      struct device_attribute *attr,
1281 				      const char *buf,
1282 				      size_t len)
1283 {
1284 	struct zram *zram = dev_to_zram(dev);
1285 	int prio = ZRAM_SECONDARY_COMP;
1286 	char *args, *param, *val;
1287 	char *alg = NULL;
1288 	int ret;
1289 
1290 	args = skip_spaces(buf);
1291 	while (*args) {
1292 		args = next_arg(args, &param, &val);
1293 
1294 		if (!val || !*val)
1295 			return -EINVAL;
1296 
1297 		if (!strcmp(param, "algo")) {
1298 			alg = val;
1299 			continue;
1300 		}
1301 
1302 		if (!strcmp(param, "priority")) {
1303 			ret = kstrtoint(val, 10, &prio);
1304 			if (ret)
1305 				return ret;
1306 			continue;
1307 		}
1308 	}
1309 
1310 	if (!alg)
1311 		return -EINVAL;
1312 
1313 	if (prio < ZRAM_SECONDARY_COMP || prio >= ZRAM_MAX_COMPS)
1314 		return -EINVAL;
1315 
1316 	ret = __comp_algorithm_store(zram, prio, alg);
1317 	return ret ? ret : len;
1318 }
1319 #endif
1320 
1321 static ssize_t compact_store(struct device *dev,
1322 		struct device_attribute *attr, const char *buf, size_t len)
1323 {
1324 	struct zram *zram = dev_to_zram(dev);
1325 
1326 	down_read(&zram->init_lock);
1327 	if (!init_done(zram)) {
1328 		up_read(&zram->init_lock);
1329 		return -EINVAL;
1330 	}
1331 
1332 	zs_compact(zram->mem_pool);
1333 	up_read(&zram->init_lock);
1334 
1335 	return len;
1336 }
1337 
1338 static ssize_t io_stat_show(struct device *dev,
1339 		struct device_attribute *attr, char *buf)
1340 {
1341 	struct zram *zram = dev_to_zram(dev);
1342 	ssize_t ret;
1343 
1344 	down_read(&zram->init_lock);
1345 	ret = scnprintf(buf, PAGE_SIZE,
1346 			"%8llu %8llu 0 %8llu\n",
1347 			(u64)atomic64_read(&zram->stats.failed_reads),
1348 			(u64)atomic64_read(&zram->stats.failed_writes),
1349 			(u64)atomic64_read(&zram->stats.notify_free));
1350 	up_read(&zram->init_lock);
1351 
1352 	return ret;
1353 }
1354 
1355 static ssize_t mm_stat_show(struct device *dev,
1356 		struct device_attribute *attr, char *buf)
1357 {
1358 	struct zram *zram = dev_to_zram(dev);
1359 	struct zs_pool_stats pool_stats;
1360 	u64 orig_size, mem_used = 0;
1361 	long max_used;
1362 	ssize_t ret;
1363 
1364 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1365 
1366 	down_read(&zram->init_lock);
1367 	if (init_done(zram)) {
1368 		mem_used = zs_get_total_pages(zram->mem_pool);
1369 		zs_pool_stats(zram->mem_pool, &pool_stats);
1370 	}
1371 
1372 	orig_size = atomic64_read(&zram->stats.pages_stored);
1373 	max_used = atomic_long_read(&zram->stats.max_used_pages);
1374 
1375 	ret = scnprintf(buf, PAGE_SIZE,
1376 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n",
1377 			orig_size << PAGE_SHIFT,
1378 			(u64)atomic64_read(&zram->stats.compr_data_size),
1379 			mem_used << PAGE_SHIFT,
1380 			zram->limit_pages << PAGE_SHIFT,
1381 			max_used << PAGE_SHIFT,
1382 			(u64)atomic64_read(&zram->stats.same_pages),
1383 			atomic_long_read(&pool_stats.pages_compacted),
1384 			(u64)atomic64_read(&zram->stats.huge_pages),
1385 			(u64)atomic64_read(&zram->stats.huge_pages_since));
1386 	up_read(&zram->init_lock);
1387 
1388 	return ret;
1389 }
1390 
1391 #ifdef CONFIG_ZRAM_WRITEBACK
1392 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
1393 static ssize_t bd_stat_show(struct device *dev,
1394 		struct device_attribute *attr, char *buf)
1395 {
1396 	struct zram *zram = dev_to_zram(dev);
1397 	ssize_t ret;
1398 
1399 	down_read(&zram->init_lock);
1400 	ret = scnprintf(buf, PAGE_SIZE,
1401 		"%8llu %8llu %8llu\n",
1402 			FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1403 			FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1404 			FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1405 	up_read(&zram->init_lock);
1406 
1407 	return ret;
1408 }
1409 #endif
1410 
1411 static ssize_t debug_stat_show(struct device *dev,
1412 		struct device_attribute *attr, char *buf)
1413 {
1414 	int version = 1;
1415 	struct zram *zram = dev_to_zram(dev);
1416 	ssize_t ret;
1417 
1418 	down_read(&zram->init_lock);
1419 	ret = scnprintf(buf, PAGE_SIZE,
1420 			"version: %d\n%8llu %8llu\n",
1421 			version,
1422 			(u64)atomic64_read(&zram->stats.writestall),
1423 			(u64)atomic64_read(&zram->stats.miss_free));
1424 	up_read(&zram->init_lock);
1425 
1426 	return ret;
1427 }
1428 
1429 static DEVICE_ATTR_RO(io_stat);
1430 static DEVICE_ATTR_RO(mm_stat);
1431 #ifdef CONFIG_ZRAM_WRITEBACK
1432 static DEVICE_ATTR_RO(bd_stat);
1433 #endif
1434 static DEVICE_ATTR_RO(debug_stat);
1435 
1436 static void zram_meta_free(struct zram *zram, u64 disksize)
1437 {
1438 	size_t num_pages = disksize >> PAGE_SHIFT;
1439 	size_t index;
1440 
1441 	/* Free all pages that are still in this zram device */
1442 	for (index = 0; index < num_pages; index++)
1443 		zram_free_page(zram, index);
1444 
1445 	zs_destroy_pool(zram->mem_pool);
1446 	vfree(zram->table);
1447 }
1448 
1449 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1450 {
1451 	size_t num_pages, index;
1452 
1453 	num_pages = disksize >> PAGE_SHIFT;
1454 	zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1455 	if (!zram->table)
1456 		return false;
1457 
1458 	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1459 	if (!zram->mem_pool) {
1460 		vfree(zram->table);
1461 		return false;
1462 	}
1463 
1464 	if (!huge_class_size)
1465 		huge_class_size = zs_huge_class_size(zram->mem_pool);
1466 
1467 	for (index = 0; index < num_pages; index++)
1468 		spin_lock_init(&zram->table[index].lock);
1469 	return true;
1470 }
1471 
1472 /*
1473  * To protect concurrent access to the same index entry,
1474  * caller should hold this table index entry's bit_spinlock to
1475  * indicate this index entry is accessing.
1476  */
1477 static void zram_free_page(struct zram *zram, size_t index)
1478 {
1479 	unsigned long handle;
1480 
1481 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
1482 	zram->table[index].ac_time = 0;
1483 #endif
1484 
1485 	zram_clear_flag(zram, index, ZRAM_IDLE);
1486 	zram_clear_flag(zram, index, ZRAM_INCOMPRESSIBLE);
1487 	zram_clear_flag(zram, index, ZRAM_PP_SLOT);
1488 	zram_set_priority(zram, index, 0);
1489 
1490 	if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1491 		zram_clear_flag(zram, index, ZRAM_HUGE);
1492 		atomic64_dec(&zram->stats.huge_pages);
1493 	}
1494 
1495 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1496 		zram_clear_flag(zram, index, ZRAM_WB);
1497 		free_block_bdev(zram, zram_get_element(zram, index));
1498 		goto out;
1499 	}
1500 
1501 	/*
1502 	 * No memory is allocated for same element filled pages.
1503 	 * Simply clear same page flag.
1504 	 */
1505 	if (zram_test_flag(zram, index, ZRAM_SAME)) {
1506 		zram_clear_flag(zram, index, ZRAM_SAME);
1507 		atomic64_dec(&zram->stats.same_pages);
1508 		goto out;
1509 	}
1510 
1511 	handle = zram_get_handle(zram, index);
1512 	if (!handle)
1513 		return;
1514 
1515 	zs_free(zram->mem_pool, handle);
1516 
1517 	atomic64_sub(zram_get_obj_size(zram, index),
1518 		     &zram->stats.compr_data_size);
1519 out:
1520 	atomic64_dec(&zram->stats.pages_stored);
1521 	zram_set_handle(zram, index, 0);
1522 	zram_set_obj_size(zram, index, 0);
1523 }
1524 
1525 /*
1526  * Reads (decompresses if needed) a page from zspool (zsmalloc).
1527  * Corresponding ZRAM slot should be locked.
1528  */
1529 static int zram_read_from_zspool(struct zram *zram, struct page *page,
1530 				 u32 index)
1531 {
1532 	struct zcomp_strm *zstrm;
1533 	unsigned long handle;
1534 	unsigned int size;
1535 	void *src, *dst;
1536 	u32 prio;
1537 	int ret;
1538 
1539 	handle = zram_get_handle(zram, index);
1540 	if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1541 		unsigned long value;
1542 		void *mem;
1543 
1544 		value = handle ? zram_get_element(zram, index) : 0;
1545 		mem = kmap_local_page(page);
1546 		zram_fill_page(mem, PAGE_SIZE, value);
1547 		kunmap_local(mem);
1548 		return 0;
1549 	}
1550 
1551 	size = zram_get_obj_size(zram, index);
1552 
1553 	if (size != PAGE_SIZE) {
1554 		prio = zram_get_priority(zram, index);
1555 		zstrm = zcomp_stream_get(zram->comps[prio]);
1556 	}
1557 
1558 	src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1559 	if (size == PAGE_SIZE) {
1560 		dst = kmap_local_page(page);
1561 		copy_page(dst, src);
1562 		kunmap_local(dst);
1563 		ret = 0;
1564 	} else {
1565 		dst = kmap_local_page(page);
1566 		ret = zcomp_decompress(zram->comps[prio], zstrm,
1567 				       src, size, dst);
1568 		kunmap_local(dst);
1569 		zcomp_stream_put(zram->comps[prio]);
1570 	}
1571 	zs_unmap_object(zram->mem_pool, handle);
1572 	return ret;
1573 }
1574 
1575 static int zram_read_page(struct zram *zram, struct page *page, u32 index,
1576 			  struct bio *parent)
1577 {
1578 	int ret;
1579 
1580 	zram_slot_lock(zram, index);
1581 	if (!zram_test_flag(zram, index, ZRAM_WB)) {
1582 		/* Slot should be locked through out the function call */
1583 		ret = zram_read_from_zspool(zram, page, index);
1584 		zram_slot_unlock(zram, index);
1585 	} else {
1586 		/*
1587 		 * The slot should be unlocked before reading from the backing
1588 		 * device.
1589 		 */
1590 		zram_slot_unlock(zram, index);
1591 
1592 		ret = read_from_bdev(zram, page, zram_get_element(zram, index),
1593 				     parent);
1594 	}
1595 
1596 	/* Should NEVER happen. Return bio error if it does. */
1597 	if (WARN_ON(ret < 0))
1598 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1599 
1600 	return ret;
1601 }
1602 
1603 /*
1604  * Use a temporary buffer to decompress the page, as the decompressor
1605  * always expects a full page for the output.
1606  */
1607 static int zram_bvec_read_partial(struct zram *zram, struct bio_vec *bvec,
1608 				  u32 index, int offset)
1609 {
1610 	struct page *page = alloc_page(GFP_NOIO);
1611 	int ret;
1612 
1613 	if (!page)
1614 		return -ENOMEM;
1615 	ret = zram_read_page(zram, page, index, NULL);
1616 	if (likely(!ret))
1617 		memcpy_to_bvec(bvec, page_address(page) + offset);
1618 	__free_page(page);
1619 	return ret;
1620 }
1621 
1622 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1623 			  u32 index, int offset, struct bio *bio)
1624 {
1625 	if (is_partial_io(bvec))
1626 		return zram_bvec_read_partial(zram, bvec, index, offset);
1627 	return zram_read_page(zram, bvec->bv_page, index, bio);
1628 }
1629 
1630 static int zram_write_page(struct zram *zram, struct page *page, u32 index)
1631 {
1632 	int ret = 0;
1633 	unsigned long alloced_pages;
1634 	unsigned long handle = -ENOMEM;
1635 	unsigned int comp_len = 0;
1636 	void *src, *dst, *mem;
1637 	struct zcomp_strm *zstrm;
1638 	unsigned long element = 0;
1639 	enum zram_pageflags flags = 0;
1640 
1641 	mem = kmap_local_page(page);
1642 	if (page_same_filled(mem, &element)) {
1643 		kunmap_local(mem);
1644 		/* Free memory associated with this sector now. */
1645 		flags = ZRAM_SAME;
1646 		atomic64_inc(&zram->stats.same_pages);
1647 		goto out;
1648 	}
1649 	kunmap_local(mem);
1650 
1651 compress_again:
1652 	zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]);
1653 	src = kmap_local_page(page);
1654 	ret = zcomp_compress(zram->comps[ZRAM_PRIMARY_COMP], zstrm,
1655 			     src, &comp_len);
1656 	kunmap_local(src);
1657 
1658 	if (unlikely(ret)) {
1659 		zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
1660 		pr_err("Compression failed! err=%d\n", ret);
1661 		zs_free(zram->mem_pool, handle);
1662 		return ret;
1663 	}
1664 
1665 	if (comp_len >= huge_class_size)
1666 		comp_len = PAGE_SIZE;
1667 	/*
1668 	 * handle allocation has 2 paths:
1669 	 * a) fast path is executed with preemption disabled (for
1670 	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1671 	 *  since we can't sleep;
1672 	 * b) slow path enables preemption and attempts to allocate
1673 	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
1674 	 *  put per-cpu compression stream and, thus, to re-do
1675 	 *  the compression once handle is allocated.
1676 	 *
1677 	 * if we have a 'non-null' handle here then we are coming
1678 	 * from the slow path and handle has already been allocated.
1679 	 */
1680 	if (IS_ERR_VALUE(handle))
1681 		handle = zs_malloc(zram->mem_pool, comp_len,
1682 				__GFP_KSWAPD_RECLAIM |
1683 				__GFP_NOWARN |
1684 				__GFP_HIGHMEM |
1685 				__GFP_MOVABLE);
1686 	if (IS_ERR_VALUE(handle)) {
1687 		zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
1688 		atomic64_inc(&zram->stats.writestall);
1689 		handle = zs_malloc(zram->mem_pool, comp_len,
1690 				GFP_NOIO | __GFP_HIGHMEM |
1691 				__GFP_MOVABLE);
1692 		if (IS_ERR_VALUE(handle))
1693 			return PTR_ERR((void *)handle);
1694 
1695 		if (comp_len != PAGE_SIZE)
1696 			goto compress_again;
1697 		/*
1698 		 * If the page is not compressible, you need to acquire the
1699 		 * lock and execute the code below. The zcomp_stream_get()
1700 		 * call is needed to disable the cpu hotplug and grab the
1701 		 * zstrm buffer back. It is necessary that the dereferencing
1702 		 * of the zstrm variable below occurs correctly.
1703 		 */
1704 		zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]);
1705 	}
1706 
1707 	alloced_pages = zs_get_total_pages(zram->mem_pool);
1708 	update_used_max(zram, alloced_pages);
1709 
1710 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1711 		zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
1712 		zs_free(zram->mem_pool, handle);
1713 		return -ENOMEM;
1714 	}
1715 
1716 	dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1717 
1718 	src = zstrm->buffer;
1719 	if (comp_len == PAGE_SIZE)
1720 		src = kmap_local_page(page);
1721 	memcpy(dst, src, comp_len);
1722 	if (comp_len == PAGE_SIZE)
1723 		kunmap_local(src);
1724 
1725 	zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
1726 	zs_unmap_object(zram->mem_pool, handle);
1727 	atomic64_add(comp_len, &zram->stats.compr_data_size);
1728 out:
1729 	/*
1730 	 * Free memory associated with this sector
1731 	 * before overwriting unused sectors.
1732 	 */
1733 	zram_slot_lock(zram, index);
1734 	zram_free_page(zram, index);
1735 
1736 	if (comp_len == PAGE_SIZE) {
1737 		zram_set_flag(zram, index, ZRAM_HUGE);
1738 		atomic64_inc(&zram->stats.huge_pages);
1739 		atomic64_inc(&zram->stats.huge_pages_since);
1740 	}
1741 
1742 	if (flags) {
1743 		zram_set_flag(zram, index, flags);
1744 		zram_set_element(zram, index, element);
1745 	}  else {
1746 		zram_set_handle(zram, index, handle);
1747 		zram_set_obj_size(zram, index, comp_len);
1748 	}
1749 	zram_slot_unlock(zram, index);
1750 
1751 	/* Update stats */
1752 	atomic64_inc(&zram->stats.pages_stored);
1753 	return ret;
1754 }
1755 
1756 /*
1757  * This is a partial IO. Read the full page before writing the changes.
1758  */
1759 static int zram_bvec_write_partial(struct zram *zram, struct bio_vec *bvec,
1760 				   u32 index, int offset, struct bio *bio)
1761 {
1762 	struct page *page = alloc_page(GFP_NOIO);
1763 	int ret;
1764 
1765 	if (!page)
1766 		return -ENOMEM;
1767 
1768 	ret = zram_read_page(zram, page, index, bio);
1769 	if (!ret) {
1770 		memcpy_from_bvec(page_address(page) + offset, bvec);
1771 		ret = zram_write_page(zram, page, index);
1772 	}
1773 	__free_page(page);
1774 	return ret;
1775 }
1776 
1777 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1778 			   u32 index, int offset, struct bio *bio)
1779 {
1780 	if (is_partial_io(bvec))
1781 		return zram_bvec_write_partial(zram, bvec, index, offset, bio);
1782 	return zram_write_page(zram, bvec->bv_page, index);
1783 }
1784 
1785 #ifdef CONFIG_ZRAM_MULTI_COMP
1786 #define RECOMPRESS_IDLE		(1 << 0)
1787 #define RECOMPRESS_HUGE		(1 << 1)
1788 
1789 static int scan_slots_for_recompress(struct zram *zram, u32 mode,
1790 				     struct zram_pp_ctl *ctl)
1791 {
1792 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
1793 	struct zram_pp_slot *pps = NULL;
1794 	unsigned long index;
1795 
1796 	for (index = 0; index < nr_pages; index++) {
1797 		if (!pps)
1798 			pps = kmalloc(sizeof(*pps), GFP_KERNEL);
1799 		if (!pps)
1800 			return -ENOMEM;
1801 
1802 		INIT_LIST_HEAD(&pps->entry);
1803 
1804 		zram_slot_lock(zram, index);
1805 		if (!zram_allocated(zram, index))
1806 			goto next;
1807 
1808 		if (mode & RECOMPRESS_IDLE &&
1809 		    !zram_test_flag(zram, index, ZRAM_IDLE))
1810 			goto next;
1811 
1812 		if (mode & RECOMPRESS_HUGE &&
1813 		    !zram_test_flag(zram, index, ZRAM_HUGE))
1814 			goto next;
1815 
1816 		if (zram_test_flag(zram, index, ZRAM_WB) ||
1817 		    zram_test_flag(zram, index, ZRAM_SAME) ||
1818 		    zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE))
1819 			goto next;
1820 
1821 		pps->index = index;
1822 		place_pp_slot(zram, ctl, pps);
1823 		pps = NULL;
1824 next:
1825 		zram_slot_unlock(zram, index);
1826 	}
1827 
1828 	kfree(pps);
1829 	return 0;
1830 }
1831 
1832 /*
1833  * This function will decompress (unless it's ZRAM_HUGE) the page and then
1834  * attempt to compress it using provided compression algorithm priority
1835  * (which is potentially more effective).
1836  *
1837  * Corresponding ZRAM slot should be locked.
1838  */
1839 static int recompress_slot(struct zram *zram, u32 index, struct page *page,
1840 			   u64 *num_recomp_pages, u32 threshold, u32 prio,
1841 			   u32 prio_max)
1842 {
1843 	struct zcomp_strm *zstrm = NULL;
1844 	unsigned long handle_old;
1845 	unsigned long handle_new;
1846 	unsigned int comp_len_old;
1847 	unsigned int comp_len_new;
1848 	unsigned int class_index_old;
1849 	unsigned int class_index_new;
1850 	u32 num_recomps = 0;
1851 	void *src, *dst;
1852 	int ret;
1853 
1854 	handle_old = zram_get_handle(zram, index);
1855 	if (!handle_old)
1856 		return -EINVAL;
1857 
1858 	comp_len_old = zram_get_obj_size(zram, index);
1859 	/*
1860 	 * Do not recompress objects that are already "small enough".
1861 	 */
1862 	if (comp_len_old < threshold)
1863 		return 0;
1864 
1865 	ret = zram_read_from_zspool(zram, page, index);
1866 	if (ret)
1867 		return ret;
1868 
1869 	/*
1870 	 * We touched this entry so mark it as non-IDLE. This makes sure that
1871 	 * we don't preserve IDLE flag and don't incorrectly pick this entry
1872 	 * for different post-processing type (e.g. writeback).
1873 	 */
1874 	zram_clear_flag(zram, index, ZRAM_IDLE);
1875 
1876 	class_index_old = zs_lookup_class_index(zram->mem_pool, comp_len_old);
1877 	/*
1878 	 * Iterate the secondary comp algorithms list (in order of priority)
1879 	 * and try to recompress the page.
1880 	 */
1881 	for (; prio < prio_max; prio++) {
1882 		if (!zram->comps[prio])
1883 			continue;
1884 
1885 		/*
1886 		 * Skip if the object is already re-compressed with a higher
1887 		 * priority algorithm (or same algorithm).
1888 		 */
1889 		if (prio <= zram_get_priority(zram, index))
1890 			continue;
1891 
1892 		num_recomps++;
1893 		zstrm = zcomp_stream_get(zram->comps[prio]);
1894 		src = kmap_local_page(page);
1895 		ret = zcomp_compress(zram->comps[prio], zstrm,
1896 				     src, &comp_len_new);
1897 		kunmap_local(src);
1898 
1899 		if (ret) {
1900 			zcomp_stream_put(zram->comps[prio]);
1901 			return ret;
1902 		}
1903 
1904 		class_index_new = zs_lookup_class_index(zram->mem_pool,
1905 							comp_len_new);
1906 
1907 		/* Continue until we make progress */
1908 		if (class_index_new >= class_index_old ||
1909 		    (threshold && comp_len_new >= threshold)) {
1910 			zcomp_stream_put(zram->comps[prio]);
1911 			continue;
1912 		}
1913 
1914 		/* Recompression was successful so break out */
1915 		break;
1916 	}
1917 
1918 	/*
1919 	 * We did not try to recompress, e.g. when we have only one
1920 	 * secondary algorithm and the page is already recompressed
1921 	 * using that algorithm
1922 	 */
1923 	if (!zstrm)
1924 		return 0;
1925 
1926 	/*
1927 	 * Decrement the limit (if set) on pages we can recompress, even
1928 	 * when current recompression was unsuccessful or did not compress
1929 	 * the page below the threshold, because we still spent resources
1930 	 * on it.
1931 	 */
1932 	if (*num_recomp_pages)
1933 		*num_recomp_pages -= 1;
1934 
1935 	if (class_index_new >= class_index_old) {
1936 		/*
1937 		 * Secondary algorithms failed to re-compress the page
1938 		 * in a way that would save memory, mark the object as
1939 		 * incompressible so that we will not try to compress
1940 		 * it again.
1941 		 *
1942 		 * We need to make sure that all secondary algorithms have
1943 		 * failed, so we test if the number of recompressions matches
1944 		 * the number of active secondary algorithms.
1945 		 */
1946 		if (num_recomps == zram->num_active_comps - 1)
1947 			zram_set_flag(zram, index, ZRAM_INCOMPRESSIBLE);
1948 		return 0;
1949 	}
1950 
1951 	/* Successful recompression but above threshold */
1952 	if (threshold && comp_len_new >= threshold)
1953 		return 0;
1954 
1955 	/*
1956 	 * No direct reclaim (slow path) for handle allocation and no
1957 	 * re-compression attempt (unlike in zram_write_bvec()) since
1958 	 * we already have stored that object in zsmalloc. If we cannot
1959 	 * alloc memory for recompressed object then we bail out and
1960 	 * simply keep the old (existing) object in zsmalloc.
1961 	 */
1962 	handle_new = zs_malloc(zram->mem_pool, comp_len_new,
1963 			       __GFP_KSWAPD_RECLAIM |
1964 			       __GFP_NOWARN |
1965 			       __GFP_HIGHMEM |
1966 			       __GFP_MOVABLE);
1967 	if (IS_ERR_VALUE(handle_new)) {
1968 		zcomp_stream_put(zram->comps[prio]);
1969 		return PTR_ERR((void *)handle_new);
1970 	}
1971 
1972 	dst = zs_map_object(zram->mem_pool, handle_new, ZS_MM_WO);
1973 	memcpy(dst, zstrm->buffer, comp_len_new);
1974 	zcomp_stream_put(zram->comps[prio]);
1975 
1976 	zs_unmap_object(zram->mem_pool, handle_new);
1977 
1978 	zram_free_page(zram, index);
1979 	zram_set_handle(zram, index, handle_new);
1980 	zram_set_obj_size(zram, index, comp_len_new);
1981 	zram_set_priority(zram, index, prio);
1982 
1983 	atomic64_add(comp_len_new, &zram->stats.compr_data_size);
1984 	atomic64_inc(&zram->stats.pages_stored);
1985 
1986 	return 0;
1987 }
1988 
1989 static ssize_t recompress_store(struct device *dev,
1990 				struct device_attribute *attr,
1991 				const char *buf, size_t len)
1992 {
1993 	u32 prio = ZRAM_SECONDARY_COMP, prio_max = ZRAM_MAX_COMPS;
1994 	struct zram *zram = dev_to_zram(dev);
1995 	char *args, *param, *val, *algo = NULL;
1996 	u64 num_recomp_pages = ULLONG_MAX;
1997 	struct zram_pp_ctl *ctl = NULL;
1998 	struct zram_pp_slot *pps;
1999 	u32 mode = 0, threshold = 0;
2000 	struct page *page;
2001 	ssize_t ret;
2002 
2003 	args = skip_spaces(buf);
2004 	while (*args) {
2005 		args = next_arg(args, &param, &val);
2006 
2007 		if (!val || !*val)
2008 			return -EINVAL;
2009 
2010 		if (!strcmp(param, "type")) {
2011 			if (!strcmp(val, "idle"))
2012 				mode = RECOMPRESS_IDLE;
2013 			if (!strcmp(val, "huge"))
2014 				mode = RECOMPRESS_HUGE;
2015 			if (!strcmp(val, "huge_idle"))
2016 				mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE;
2017 			continue;
2018 		}
2019 
2020 		if (!strcmp(param, "max_pages")) {
2021 			/*
2022 			 * Limit the number of entries (pages) we attempt to
2023 			 * recompress.
2024 			 */
2025 			ret = kstrtoull(val, 10, &num_recomp_pages);
2026 			if (ret)
2027 				return ret;
2028 			continue;
2029 		}
2030 
2031 		if (!strcmp(param, "threshold")) {
2032 			/*
2033 			 * We will re-compress only idle objects equal or
2034 			 * greater in size than watermark.
2035 			 */
2036 			ret = kstrtouint(val, 10, &threshold);
2037 			if (ret)
2038 				return ret;
2039 			continue;
2040 		}
2041 
2042 		if (!strcmp(param, "algo")) {
2043 			algo = val;
2044 			continue;
2045 		}
2046 
2047 		if (!strcmp(param, "priority")) {
2048 			ret = kstrtouint(val, 10, &prio);
2049 			if (ret)
2050 				return ret;
2051 
2052 			if (prio == ZRAM_PRIMARY_COMP)
2053 				prio = ZRAM_SECONDARY_COMP;
2054 
2055 			prio_max = min(prio + 1, ZRAM_MAX_COMPS);
2056 			continue;
2057 		}
2058 	}
2059 
2060 	if (threshold >= huge_class_size)
2061 		return -EINVAL;
2062 
2063 	down_read(&zram->init_lock);
2064 	if (!init_done(zram)) {
2065 		ret = -EINVAL;
2066 		goto release_init_lock;
2067 	}
2068 
2069 	/* Do not permit concurrent post-processing actions. */
2070 	if (atomic_xchg(&zram->pp_in_progress, 1)) {
2071 		up_read(&zram->init_lock);
2072 		return -EAGAIN;
2073 	}
2074 
2075 	if (algo) {
2076 		bool found = false;
2077 
2078 		for (; prio < ZRAM_MAX_COMPS; prio++) {
2079 			if (!zram->comp_algs[prio])
2080 				continue;
2081 
2082 			if (!strcmp(zram->comp_algs[prio], algo)) {
2083 				prio_max = min(prio + 1, ZRAM_MAX_COMPS);
2084 				found = true;
2085 				break;
2086 			}
2087 		}
2088 
2089 		if (!found) {
2090 			ret = -EINVAL;
2091 			goto release_init_lock;
2092 		}
2093 	}
2094 
2095 	page = alloc_page(GFP_KERNEL);
2096 	if (!page) {
2097 		ret = -ENOMEM;
2098 		goto release_init_lock;
2099 	}
2100 
2101 	ctl = init_pp_ctl();
2102 	if (!ctl) {
2103 		ret = -ENOMEM;
2104 		goto release_init_lock;
2105 	}
2106 
2107 	scan_slots_for_recompress(zram, mode, ctl);
2108 
2109 	ret = len;
2110 	while ((pps = select_pp_slot(ctl))) {
2111 		int err = 0;
2112 
2113 		if (!num_recomp_pages)
2114 			break;
2115 
2116 		zram_slot_lock(zram, pps->index);
2117 		if (!zram_test_flag(zram, pps->index, ZRAM_PP_SLOT))
2118 			goto next;
2119 
2120 		err = recompress_slot(zram, pps->index, page,
2121 				      &num_recomp_pages, threshold,
2122 				      prio, prio_max);
2123 next:
2124 		zram_slot_unlock(zram, pps->index);
2125 		release_pp_slot(zram, pps);
2126 
2127 		if (err) {
2128 			ret = err;
2129 			break;
2130 		}
2131 
2132 		cond_resched();
2133 	}
2134 
2135 	__free_page(page);
2136 
2137 release_init_lock:
2138 	release_pp_ctl(zram, ctl);
2139 	atomic_set(&zram->pp_in_progress, 0);
2140 	up_read(&zram->init_lock);
2141 	return ret;
2142 }
2143 #endif
2144 
2145 static void zram_bio_discard(struct zram *zram, struct bio *bio)
2146 {
2147 	size_t n = bio->bi_iter.bi_size;
2148 	u32 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
2149 	u32 offset = (bio->bi_iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
2150 			SECTOR_SHIFT;
2151 
2152 	/*
2153 	 * zram manages data in physical block size units. Because logical block
2154 	 * size isn't identical with physical block size on some arch, we
2155 	 * could get a discard request pointing to a specific offset within a
2156 	 * certain physical block.  Although we can handle this request by
2157 	 * reading that physiclal block and decompressing and partially zeroing
2158 	 * and re-compressing and then re-storing it, this isn't reasonable
2159 	 * because our intent with a discard request is to save memory.  So
2160 	 * skipping this logical block is appropriate here.
2161 	 */
2162 	if (offset) {
2163 		if (n <= (PAGE_SIZE - offset))
2164 			return;
2165 
2166 		n -= (PAGE_SIZE - offset);
2167 		index++;
2168 	}
2169 
2170 	while (n >= PAGE_SIZE) {
2171 		zram_slot_lock(zram, index);
2172 		zram_free_page(zram, index);
2173 		zram_slot_unlock(zram, index);
2174 		atomic64_inc(&zram->stats.notify_free);
2175 		index++;
2176 		n -= PAGE_SIZE;
2177 	}
2178 
2179 	bio_endio(bio);
2180 }
2181 
2182 static void zram_bio_read(struct zram *zram, struct bio *bio)
2183 {
2184 	unsigned long start_time = bio_start_io_acct(bio);
2185 	struct bvec_iter iter = bio->bi_iter;
2186 
2187 	do {
2188 		u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
2189 		u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
2190 				SECTOR_SHIFT;
2191 		struct bio_vec bv = bio_iter_iovec(bio, iter);
2192 
2193 		bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
2194 
2195 		if (zram_bvec_read(zram, &bv, index, offset, bio) < 0) {
2196 			atomic64_inc(&zram->stats.failed_reads);
2197 			bio->bi_status = BLK_STS_IOERR;
2198 			break;
2199 		}
2200 		flush_dcache_page(bv.bv_page);
2201 
2202 		zram_slot_lock(zram, index);
2203 		zram_accessed(zram, index);
2204 		zram_slot_unlock(zram, index);
2205 
2206 		bio_advance_iter_single(bio, &iter, bv.bv_len);
2207 	} while (iter.bi_size);
2208 
2209 	bio_end_io_acct(bio, start_time);
2210 	bio_endio(bio);
2211 }
2212 
2213 static void zram_bio_write(struct zram *zram, struct bio *bio)
2214 {
2215 	unsigned long start_time = bio_start_io_acct(bio);
2216 	struct bvec_iter iter = bio->bi_iter;
2217 
2218 	do {
2219 		u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
2220 		u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
2221 				SECTOR_SHIFT;
2222 		struct bio_vec bv = bio_iter_iovec(bio, iter);
2223 
2224 		bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
2225 
2226 		if (zram_bvec_write(zram, &bv, index, offset, bio) < 0) {
2227 			atomic64_inc(&zram->stats.failed_writes);
2228 			bio->bi_status = BLK_STS_IOERR;
2229 			break;
2230 		}
2231 
2232 		zram_slot_lock(zram, index);
2233 		zram_accessed(zram, index);
2234 		zram_slot_unlock(zram, index);
2235 
2236 		bio_advance_iter_single(bio, &iter, bv.bv_len);
2237 	} while (iter.bi_size);
2238 
2239 	bio_end_io_acct(bio, start_time);
2240 	bio_endio(bio);
2241 }
2242 
2243 /*
2244  * Handler function for all zram I/O requests.
2245  */
2246 static void zram_submit_bio(struct bio *bio)
2247 {
2248 	struct zram *zram = bio->bi_bdev->bd_disk->private_data;
2249 
2250 	switch (bio_op(bio)) {
2251 	case REQ_OP_READ:
2252 		zram_bio_read(zram, bio);
2253 		break;
2254 	case REQ_OP_WRITE:
2255 		zram_bio_write(zram, bio);
2256 		break;
2257 	case REQ_OP_DISCARD:
2258 	case REQ_OP_WRITE_ZEROES:
2259 		zram_bio_discard(zram, bio);
2260 		break;
2261 	default:
2262 		WARN_ON_ONCE(1);
2263 		bio_endio(bio);
2264 	}
2265 }
2266 
2267 static void zram_slot_free_notify(struct block_device *bdev,
2268 				unsigned long index)
2269 {
2270 	struct zram *zram;
2271 
2272 	zram = bdev->bd_disk->private_data;
2273 
2274 	atomic64_inc(&zram->stats.notify_free);
2275 	if (!zram_slot_trylock(zram, index)) {
2276 		atomic64_inc(&zram->stats.miss_free);
2277 		return;
2278 	}
2279 
2280 	zram_free_page(zram, index);
2281 	zram_slot_unlock(zram, index);
2282 }
2283 
2284 static void zram_comp_params_reset(struct zram *zram)
2285 {
2286 	u32 prio;
2287 
2288 	for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
2289 		comp_params_reset(zram, prio);
2290 	}
2291 }
2292 
2293 static void zram_destroy_comps(struct zram *zram)
2294 {
2295 	u32 prio;
2296 
2297 	for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
2298 		struct zcomp *comp = zram->comps[prio];
2299 
2300 		zram->comps[prio] = NULL;
2301 		if (!comp)
2302 			continue;
2303 		zcomp_destroy(comp);
2304 		zram->num_active_comps--;
2305 	}
2306 
2307 	for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
2308 		/* Do not free statically defined compression algorithms */
2309 		if (zram->comp_algs[prio] != default_compressor)
2310 			kfree(zram->comp_algs[prio]);
2311 		zram->comp_algs[prio] = NULL;
2312 	}
2313 
2314 	zram_comp_params_reset(zram);
2315 }
2316 
2317 static void zram_reset_device(struct zram *zram)
2318 {
2319 	down_write(&zram->init_lock);
2320 
2321 	zram->limit_pages = 0;
2322 
2323 	if (!init_done(zram)) {
2324 		up_write(&zram->init_lock);
2325 		return;
2326 	}
2327 
2328 	set_capacity_and_notify(zram->disk, 0);
2329 	part_stat_set_all(zram->disk->part0, 0);
2330 
2331 	/* I/O operation under all of CPU are done so let's free */
2332 	zram_meta_free(zram, zram->disksize);
2333 	zram->disksize = 0;
2334 	zram_destroy_comps(zram);
2335 	memset(&zram->stats, 0, sizeof(zram->stats));
2336 	atomic_set(&zram->pp_in_progress, 0);
2337 	reset_bdev(zram);
2338 
2339 	comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor);
2340 	up_write(&zram->init_lock);
2341 }
2342 
2343 static ssize_t disksize_store(struct device *dev,
2344 		struct device_attribute *attr, const char *buf, size_t len)
2345 {
2346 	u64 disksize;
2347 	struct zcomp *comp;
2348 	struct zram *zram = dev_to_zram(dev);
2349 	int err;
2350 	u32 prio;
2351 
2352 	disksize = memparse(buf, NULL);
2353 	if (!disksize)
2354 		return -EINVAL;
2355 
2356 	down_write(&zram->init_lock);
2357 	if (init_done(zram)) {
2358 		pr_info("Cannot change disksize for initialized device\n");
2359 		err = -EBUSY;
2360 		goto out_unlock;
2361 	}
2362 
2363 	disksize = PAGE_ALIGN(disksize);
2364 	if (!zram_meta_alloc(zram, disksize)) {
2365 		err = -ENOMEM;
2366 		goto out_unlock;
2367 	}
2368 
2369 	for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
2370 		if (!zram->comp_algs[prio])
2371 			continue;
2372 
2373 		comp = zcomp_create(zram->comp_algs[prio],
2374 				    &zram->params[prio]);
2375 		if (IS_ERR(comp)) {
2376 			pr_err("Cannot initialise %s compressing backend\n",
2377 			       zram->comp_algs[prio]);
2378 			err = PTR_ERR(comp);
2379 			goto out_free_comps;
2380 		}
2381 
2382 		zram->comps[prio] = comp;
2383 		zram->num_active_comps++;
2384 	}
2385 	zram->disksize = disksize;
2386 	set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT);
2387 	up_write(&zram->init_lock);
2388 
2389 	return len;
2390 
2391 out_free_comps:
2392 	zram_destroy_comps(zram);
2393 	zram_meta_free(zram, disksize);
2394 out_unlock:
2395 	up_write(&zram->init_lock);
2396 	return err;
2397 }
2398 
2399 static ssize_t reset_store(struct device *dev,
2400 		struct device_attribute *attr, const char *buf, size_t len)
2401 {
2402 	int ret;
2403 	unsigned short do_reset;
2404 	struct zram *zram;
2405 	struct gendisk *disk;
2406 
2407 	ret = kstrtou16(buf, 10, &do_reset);
2408 	if (ret)
2409 		return ret;
2410 
2411 	if (!do_reset)
2412 		return -EINVAL;
2413 
2414 	zram = dev_to_zram(dev);
2415 	disk = zram->disk;
2416 
2417 	mutex_lock(&disk->open_mutex);
2418 	/* Do not reset an active device or claimed device */
2419 	if (disk_openers(disk) || zram->claim) {
2420 		mutex_unlock(&disk->open_mutex);
2421 		return -EBUSY;
2422 	}
2423 
2424 	/* From now on, anyone can't open /dev/zram[0-9] */
2425 	zram->claim = true;
2426 	mutex_unlock(&disk->open_mutex);
2427 
2428 	/* Make sure all the pending I/O are finished */
2429 	sync_blockdev(disk->part0);
2430 	zram_reset_device(zram);
2431 
2432 	mutex_lock(&disk->open_mutex);
2433 	zram->claim = false;
2434 	mutex_unlock(&disk->open_mutex);
2435 
2436 	return len;
2437 }
2438 
2439 static int zram_open(struct gendisk *disk, blk_mode_t mode)
2440 {
2441 	struct zram *zram = disk->private_data;
2442 
2443 	WARN_ON(!mutex_is_locked(&disk->open_mutex));
2444 
2445 	/* zram was claimed to reset so open request fails */
2446 	if (zram->claim)
2447 		return -EBUSY;
2448 	return 0;
2449 }
2450 
2451 static const struct block_device_operations zram_devops = {
2452 	.open = zram_open,
2453 	.submit_bio = zram_submit_bio,
2454 	.swap_slot_free_notify = zram_slot_free_notify,
2455 	.owner = THIS_MODULE
2456 };
2457 
2458 static DEVICE_ATTR_WO(compact);
2459 static DEVICE_ATTR_RW(disksize);
2460 static DEVICE_ATTR_RO(initstate);
2461 static DEVICE_ATTR_WO(reset);
2462 static DEVICE_ATTR_WO(mem_limit);
2463 static DEVICE_ATTR_WO(mem_used_max);
2464 static DEVICE_ATTR_WO(idle);
2465 static DEVICE_ATTR_RW(max_comp_streams);
2466 static DEVICE_ATTR_RW(comp_algorithm);
2467 #ifdef CONFIG_ZRAM_WRITEBACK
2468 static DEVICE_ATTR_RW(backing_dev);
2469 static DEVICE_ATTR_WO(writeback);
2470 static DEVICE_ATTR_RW(writeback_limit);
2471 static DEVICE_ATTR_RW(writeback_limit_enable);
2472 #endif
2473 #ifdef CONFIG_ZRAM_MULTI_COMP
2474 static DEVICE_ATTR_RW(recomp_algorithm);
2475 static DEVICE_ATTR_WO(recompress);
2476 #endif
2477 static DEVICE_ATTR_WO(algorithm_params);
2478 
2479 static struct attribute *zram_disk_attrs[] = {
2480 	&dev_attr_disksize.attr,
2481 	&dev_attr_initstate.attr,
2482 	&dev_attr_reset.attr,
2483 	&dev_attr_compact.attr,
2484 	&dev_attr_mem_limit.attr,
2485 	&dev_attr_mem_used_max.attr,
2486 	&dev_attr_idle.attr,
2487 	&dev_attr_max_comp_streams.attr,
2488 	&dev_attr_comp_algorithm.attr,
2489 #ifdef CONFIG_ZRAM_WRITEBACK
2490 	&dev_attr_backing_dev.attr,
2491 	&dev_attr_writeback.attr,
2492 	&dev_attr_writeback_limit.attr,
2493 	&dev_attr_writeback_limit_enable.attr,
2494 #endif
2495 	&dev_attr_io_stat.attr,
2496 	&dev_attr_mm_stat.attr,
2497 #ifdef CONFIG_ZRAM_WRITEBACK
2498 	&dev_attr_bd_stat.attr,
2499 #endif
2500 	&dev_attr_debug_stat.attr,
2501 #ifdef CONFIG_ZRAM_MULTI_COMP
2502 	&dev_attr_recomp_algorithm.attr,
2503 	&dev_attr_recompress.attr,
2504 #endif
2505 	&dev_attr_algorithm_params.attr,
2506 	NULL,
2507 };
2508 
2509 ATTRIBUTE_GROUPS(zram_disk);
2510 
2511 /*
2512  * Allocate and initialize new zram device. the function returns
2513  * '>= 0' device_id upon success, and negative value otherwise.
2514  */
2515 static int zram_add(void)
2516 {
2517 	struct queue_limits lim = {
2518 		.logical_block_size		= ZRAM_LOGICAL_BLOCK_SIZE,
2519 		/*
2520 		 * To ensure that we always get PAGE_SIZE aligned and
2521 		 * n*PAGE_SIZED sized I/O requests.
2522 		 */
2523 		.physical_block_size		= PAGE_SIZE,
2524 		.io_min				= PAGE_SIZE,
2525 		.io_opt				= PAGE_SIZE,
2526 		.max_hw_discard_sectors		= UINT_MAX,
2527 		/*
2528 		 * zram_bio_discard() will clear all logical blocks if logical
2529 		 * block size is identical with physical block size(PAGE_SIZE).
2530 		 * But if it is different, we will skip discarding some parts of
2531 		 * logical blocks in the part of the request range which isn't
2532 		 * aligned to physical block size.  So we can't ensure that all
2533 		 * discarded logical blocks are zeroed.
2534 		 */
2535 #if ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE
2536 		.max_write_zeroes_sectors	= UINT_MAX,
2537 #endif
2538 		.features			= BLK_FEAT_STABLE_WRITES |
2539 						  BLK_FEAT_SYNCHRONOUS,
2540 	};
2541 	struct zram *zram;
2542 	int ret, device_id;
2543 
2544 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
2545 	if (!zram)
2546 		return -ENOMEM;
2547 
2548 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
2549 	if (ret < 0)
2550 		goto out_free_dev;
2551 	device_id = ret;
2552 
2553 	init_rwsem(&zram->init_lock);
2554 #ifdef CONFIG_ZRAM_WRITEBACK
2555 	spin_lock_init(&zram->wb_limit_lock);
2556 #endif
2557 
2558 	/* gendisk structure */
2559 	zram->disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
2560 	if (IS_ERR(zram->disk)) {
2561 		pr_err("Error allocating disk structure for device %d\n",
2562 			device_id);
2563 		ret = PTR_ERR(zram->disk);
2564 		goto out_free_idr;
2565 	}
2566 
2567 	zram->disk->major = zram_major;
2568 	zram->disk->first_minor = device_id;
2569 	zram->disk->minors = 1;
2570 	zram->disk->flags |= GENHD_FL_NO_PART;
2571 	zram->disk->fops = &zram_devops;
2572 	zram->disk->private_data = zram;
2573 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
2574 	atomic_set(&zram->pp_in_progress, 0);
2575 	zram_comp_params_reset(zram);
2576 	comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor);
2577 
2578 	/* Actual capacity set using sysfs (/sys/block/zram<id>/disksize */
2579 	set_capacity(zram->disk, 0);
2580 	ret = device_add_disk(NULL, zram->disk, zram_disk_groups);
2581 	if (ret)
2582 		goto out_cleanup_disk;
2583 
2584 	zram_debugfs_register(zram);
2585 	pr_info("Added device: %s\n", zram->disk->disk_name);
2586 	return device_id;
2587 
2588 out_cleanup_disk:
2589 	put_disk(zram->disk);
2590 out_free_idr:
2591 	idr_remove(&zram_index_idr, device_id);
2592 out_free_dev:
2593 	kfree(zram);
2594 	return ret;
2595 }
2596 
2597 static int zram_remove(struct zram *zram)
2598 {
2599 	bool claimed;
2600 
2601 	mutex_lock(&zram->disk->open_mutex);
2602 	if (disk_openers(zram->disk)) {
2603 		mutex_unlock(&zram->disk->open_mutex);
2604 		return -EBUSY;
2605 	}
2606 
2607 	claimed = zram->claim;
2608 	if (!claimed)
2609 		zram->claim = true;
2610 	mutex_unlock(&zram->disk->open_mutex);
2611 
2612 	zram_debugfs_unregister(zram);
2613 
2614 	if (claimed) {
2615 		/*
2616 		 * If we were claimed by reset_store(), del_gendisk() will
2617 		 * wait until reset_store() is done, so nothing need to do.
2618 		 */
2619 		;
2620 	} else {
2621 		/* Make sure all the pending I/O are finished */
2622 		sync_blockdev(zram->disk->part0);
2623 		zram_reset_device(zram);
2624 	}
2625 
2626 	pr_info("Removed device: %s\n", zram->disk->disk_name);
2627 
2628 	del_gendisk(zram->disk);
2629 
2630 	/* del_gendisk drains pending reset_store */
2631 	WARN_ON_ONCE(claimed && zram->claim);
2632 
2633 	/*
2634 	 * disksize_store() may be called in between zram_reset_device()
2635 	 * and del_gendisk(), so run the last reset to avoid leaking
2636 	 * anything allocated with disksize_store()
2637 	 */
2638 	zram_reset_device(zram);
2639 
2640 	put_disk(zram->disk);
2641 	kfree(zram);
2642 	return 0;
2643 }
2644 
2645 /* zram-control sysfs attributes */
2646 
2647 /*
2648  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2649  * sense that reading from this file does alter the state of your system -- it
2650  * creates a new un-initialized zram device and returns back this device's
2651  * device_id (or an error code if it fails to create a new device).
2652  */
2653 static ssize_t hot_add_show(const struct class *class,
2654 			const struct class_attribute *attr,
2655 			char *buf)
2656 {
2657 	int ret;
2658 
2659 	mutex_lock(&zram_index_mutex);
2660 	ret = zram_add();
2661 	mutex_unlock(&zram_index_mutex);
2662 
2663 	if (ret < 0)
2664 		return ret;
2665 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
2666 }
2667 /* This attribute must be set to 0400, so CLASS_ATTR_RO() can not be used */
2668 static struct class_attribute class_attr_hot_add =
2669 	__ATTR(hot_add, 0400, hot_add_show, NULL);
2670 
2671 static ssize_t hot_remove_store(const struct class *class,
2672 			const struct class_attribute *attr,
2673 			const char *buf,
2674 			size_t count)
2675 {
2676 	struct zram *zram;
2677 	int ret, dev_id;
2678 
2679 	/* dev_id is gendisk->first_minor, which is `int' */
2680 	ret = kstrtoint(buf, 10, &dev_id);
2681 	if (ret)
2682 		return ret;
2683 	if (dev_id < 0)
2684 		return -EINVAL;
2685 
2686 	mutex_lock(&zram_index_mutex);
2687 
2688 	zram = idr_find(&zram_index_idr, dev_id);
2689 	if (zram) {
2690 		ret = zram_remove(zram);
2691 		if (!ret)
2692 			idr_remove(&zram_index_idr, dev_id);
2693 	} else {
2694 		ret = -ENODEV;
2695 	}
2696 
2697 	mutex_unlock(&zram_index_mutex);
2698 	return ret ? ret : count;
2699 }
2700 static CLASS_ATTR_WO(hot_remove);
2701 
2702 static struct attribute *zram_control_class_attrs[] = {
2703 	&class_attr_hot_add.attr,
2704 	&class_attr_hot_remove.attr,
2705 	NULL,
2706 };
2707 ATTRIBUTE_GROUPS(zram_control_class);
2708 
2709 static struct class zram_control_class = {
2710 	.name		= "zram-control",
2711 	.class_groups	= zram_control_class_groups,
2712 };
2713 
2714 static int zram_remove_cb(int id, void *ptr, void *data)
2715 {
2716 	WARN_ON_ONCE(zram_remove(ptr));
2717 	return 0;
2718 }
2719 
2720 static void destroy_devices(void)
2721 {
2722 	class_unregister(&zram_control_class);
2723 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2724 	zram_debugfs_destroy();
2725 	idr_destroy(&zram_index_idr);
2726 	unregister_blkdev(zram_major, "zram");
2727 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2728 }
2729 
2730 static int __init zram_init(void)
2731 {
2732 	struct zram_table_entry zram_te;
2733 	int ret;
2734 
2735 	BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > sizeof(zram_te.flags) * 8);
2736 
2737 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2738 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
2739 	if (ret < 0)
2740 		return ret;
2741 
2742 	ret = class_register(&zram_control_class);
2743 	if (ret) {
2744 		pr_err("Unable to register zram-control class\n");
2745 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2746 		return ret;
2747 	}
2748 
2749 	zram_debugfs_create();
2750 	zram_major = register_blkdev(0, "zram");
2751 	if (zram_major <= 0) {
2752 		pr_err("Unable to get major number\n");
2753 		class_unregister(&zram_control_class);
2754 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2755 		return -EBUSY;
2756 	}
2757 
2758 	while (num_devices != 0) {
2759 		mutex_lock(&zram_index_mutex);
2760 		ret = zram_add();
2761 		mutex_unlock(&zram_index_mutex);
2762 		if (ret < 0)
2763 			goto out_error;
2764 		num_devices--;
2765 	}
2766 
2767 	return 0;
2768 
2769 out_error:
2770 	destroy_devices();
2771 	return ret;
2772 }
2773 
2774 static void __exit zram_exit(void)
2775 {
2776 	destroy_devices();
2777 }
2778 
2779 module_init(zram_init);
2780 module_exit(zram_exit);
2781 
2782 module_param(num_devices, uint, 0);
2783 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2784 
2785 MODULE_LICENSE("Dual BSD/GPL");
2786 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2787 MODULE_DESCRIPTION("Compressed RAM Block Device");
2788