1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/bitops.h> 22 #include <linux/blkdev.h> 23 #include <linux/buffer_head.h> 24 #include <linux/device.h> 25 #include <linux/highmem.h> 26 #include <linux/slab.h> 27 #include <linux/backing-dev.h> 28 #include <linux/string.h> 29 #include <linux/vmalloc.h> 30 #include <linux/err.h> 31 #include <linux/idr.h> 32 #include <linux/sysfs.h> 33 #include <linux/debugfs.h> 34 #include <linux/cpuhotplug.h> 35 #include <linux/part_stat.h> 36 #include <linux/kernel_read_file.h> 37 38 #include "zram_drv.h" 39 40 static DEFINE_IDR(zram_index_idr); 41 /* idr index must be protected */ 42 static DEFINE_MUTEX(zram_index_mutex); 43 44 static int zram_major; 45 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP; 46 47 /* Module params (documentation at end) */ 48 static unsigned int num_devices = 1; 49 /* 50 * Pages that compress to sizes equals or greater than this are stored 51 * uncompressed in memory. 52 */ 53 static size_t huge_class_size; 54 55 static const struct block_device_operations zram_devops; 56 57 static void zram_free_page(struct zram *zram, size_t index); 58 static int zram_read_page(struct zram *zram, struct page *page, u32 index, 59 struct bio *parent); 60 61 static int zram_slot_trylock(struct zram *zram, u32 index) 62 { 63 return spin_trylock(&zram->table[index].lock); 64 } 65 66 static void zram_slot_lock(struct zram *zram, u32 index) 67 { 68 spin_lock(&zram->table[index].lock); 69 } 70 71 static void zram_slot_unlock(struct zram *zram, u32 index) 72 { 73 spin_unlock(&zram->table[index].lock); 74 } 75 76 static inline bool init_done(struct zram *zram) 77 { 78 return zram->disksize; 79 } 80 81 static inline struct zram *dev_to_zram(struct device *dev) 82 { 83 return (struct zram *)dev_to_disk(dev)->private_data; 84 } 85 86 static unsigned long zram_get_handle(struct zram *zram, u32 index) 87 { 88 return zram->table[index].handle; 89 } 90 91 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle) 92 { 93 zram->table[index].handle = handle; 94 } 95 96 /* flag operations require table entry bit_spin_lock() being held */ 97 static bool zram_test_flag(struct zram *zram, u32 index, 98 enum zram_pageflags flag) 99 { 100 return zram->table[index].flags & BIT(flag); 101 } 102 103 static void zram_set_flag(struct zram *zram, u32 index, 104 enum zram_pageflags flag) 105 { 106 zram->table[index].flags |= BIT(flag); 107 } 108 109 static void zram_clear_flag(struct zram *zram, u32 index, 110 enum zram_pageflags flag) 111 { 112 zram->table[index].flags &= ~BIT(flag); 113 } 114 115 static inline void zram_set_element(struct zram *zram, u32 index, 116 unsigned long element) 117 { 118 zram->table[index].element = element; 119 } 120 121 static unsigned long zram_get_element(struct zram *zram, u32 index) 122 { 123 return zram->table[index].element; 124 } 125 126 static size_t zram_get_obj_size(struct zram *zram, u32 index) 127 { 128 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1); 129 } 130 131 static void zram_set_obj_size(struct zram *zram, 132 u32 index, size_t size) 133 { 134 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT; 135 136 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size; 137 } 138 139 static inline bool zram_allocated(struct zram *zram, u32 index) 140 { 141 return zram_get_obj_size(zram, index) || 142 zram_test_flag(zram, index, ZRAM_SAME) || 143 zram_test_flag(zram, index, ZRAM_WB); 144 } 145 146 #if PAGE_SIZE != 4096 147 static inline bool is_partial_io(struct bio_vec *bvec) 148 { 149 return bvec->bv_len != PAGE_SIZE; 150 } 151 #define ZRAM_PARTIAL_IO 1 152 #else 153 static inline bool is_partial_io(struct bio_vec *bvec) 154 { 155 return false; 156 } 157 #endif 158 159 static inline void zram_set_priority(struct zram *zram, u32 index, u32 prio) 160 { 161 prio &= ZRAM_COMP_PRIORITY_MASK; 162 /* 163 * Clear previous priority value first, in case if we recompress 164 * further an already recompressed page 165 */ 166 zram->table[index].flags &= ~(ZRAM_COMP_PRIORITY_MASK << 167 ZRAM_COMP_PRIORITY_BIT1); 168 zram->table[index].flags |= (prio << ZRAM_COMP_PRIORITY_BIT1); 169 } 170 171 static inline u32 zram_get_priority(struct zram *zram, u32 index) 172 { 173 u32 prio = zram->table[index].flags >> ZRAM_COMP_PRIORITY_BIT1; 174 175 return prio & ZRAM_COMP_PRIORITY_MASK; 176 } 177 178 static void zram_accessed(struct zram *zram, u32 index) 179 { 180 zram_clear_flag(zram, index, ZRAM_IDLE); 181 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME 182 zram->table[index].ac_time = ktime_get_boottime(); 183 #endif 184 } 185 186 static inline void update_used_max(struct zram *zram, 187 const unsigned long pages) 188 { 189 unsigned long cur_max = atomic_long_read(&zram->stats.max_used_pages); 190 191 do { 192 if (cur_max >= pages) 193 return; 194 } while (!atomic_long_try_cmpxchg(&zram->stats.max_used_pages, 195 &cur_max, pages)); 196 } 197 198 static inline void zram_fill_page(void *ptr, unsigned long len, 199 unsigned long value) 200 { 201 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long))); 202 memset_l(ptr, value, len / sizeof(unsigned long)); 203 } 204 205 static bool page_same_filled(void *ptr, unsigned long *element) 206 { 207 unsigned long *page; 208 unsigned long val; 209 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1; 210 211 page = (unsigned long *)ptr; 212 val = page[0]; 213 214 if (val != page[last_pos]) 215 return false; 216 217 for (pos = 1; pos < last_pos; pos++) { 218 if (val != page[pos]) 219 return false; 220 } 221 222 *element = val; 223 224 return true; 225 } 226 227 static ssize_t initstate_show(struct device *dev, 228 struct device_attribute *attr, char *buf) 229 { 230 u32 val; 231 struct zram *zram = dev_to_zram(dev); 232 233 down_read(&zram->init_lock); 234 val = init_done(zram); 235 up_read(&zram->init_lock); 236 237 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 238 } 239 240 static ssize_t disksize_show(struct device *dev, 241 struct device_attribute *attr, char *buf) 242 { 243 struct zram *zram = dev_to_zram(dev); 244 245 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 246 } 247 248 static ssize_t mem_limit_store(struct device *dev, 249 struct device_attribute *attr, const char *buf, size_t len) 250 { 251 u64 limit; 252 char *tmp; 253 struct zram *zram = dev_to_zram(dev); 254 255 limit = memparse(buf, &tmp); 256 if (buf == tmp) /* no chars parsed, invalid input */ 257 return -EINVAL; 258 259 down_write(&zram->init_lock); 260 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; 261 up_write(&zram->init_lock); 262 263 return len; 264 } 265 266 static ssize_t mem_used_max_store(struct device *dev, 267 struct device_attribute *attr, const char *buf, size_t len) 268 { 269 int err; 270 unsigned long val; 271 struct zram *zram = dev_to_zram(dev); 272 273 err = kstrtoul(buf, 10, &val); 274 if (err || val != 0) 275 return -EINVAL; 276 277 down_read(&zram->init_lock); 278 if (init_done(zram)) { 279 atomic_long_set(&zram->stats.max_used_pages, 280 zs_get_total_pages(zram->mem_pool)); 281 } 282 up_read(&zram->init_lock); 283 284 return len; 285 } 286 287 /* 288 * Mark all pages which are older than or equal to cutoff as IDLE. 289 * Callers should hold the zram init lock in read mode 290 */ 291 static void mark_idle(struct zram *zram, ktime_t cutoff) 292 { 293 int is_idle = 1; 294 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 295 int index; 296 297 for (index = 0; index < nr_pages; index++) { 298 /* 299 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race. 300 * See the comment in writeback_store. 301 */ 302 zram_slot_lock(zram, index); 303 if (zram_allocated(zram, index) && 304 !zram_test_flag(zram, index, ZRAM_UNDER_WB)) { 305 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME 306 is_idle = !cutoff || ktime_after(cutoff, 307 zram->table[index].ac_time); 308 #endif 309 if (is_idle) 310 zram_set_flag(zram, index, ZRAM_IDLE); 311 } 312 zram_slot_unlock(zram, index); 313 } 314 } 315 316 static ssize_t idle_store(struct device *dev, 317 struct device_attribute *attr, const char *buf, size_t len) 318 { 319 struct zram *zram = dev_to_zram(dev); 320 ktime_t cutoff_time = 0; 321 ssize_t rv = -EINVAL; 322 323 if (!sysfs_streq(buf, "all")) { 324 /* 325 * If it did not parse as 'all' try to treat it as an integer 326 * when we have memory tracking enabled. 327 */ 328 u64 age_sec; 329 330 if (IS_ENABLED(CONFIG_ZRAM_TRACK_ENTRY_ACTIME) && !kstrtoull(buf, 0, &age_sec)) 331 cutoff_time = ktime_sub(ktime_get_boottime(), 332 ns_to_ktime(age_sec * NSEC_PER_SEC)); 333 else 334 goto out; 335 } 336 337 down_read(&zram->init_lock); 338 if (!init_done(zram)) 339 goto out_unlock; 340 341 /* 342 * A cutoff_time of 0 marks everything as idle, this is the 343 * "all" behavior. 344 */ 345 mark_idle(zram, cutoff_time); 346 rv = len; 347 348 out_unlock: 349 up_read(&zram->init_lock); 350 out: 351 return rv; 352 } 353 354 #ifdef CONFIG_ZRAM_WRITEBACK 355 static ssize_t writeback_limit_enable_store(struct device *dev, 356 struct device_attribute *attr, const char *buf, size_t len) 357 { 358 struct zram *zram = dev_to_zram(dev); 359 u64 val; 360 ssize_t ret = -EINVAL; 361 362 if (kstrtoull(buf, 10, &val)) 363 return ret; 364 365 down_read(&zram->init_lock); 366 spin_lock(&zram->wb_limit_lock); 367 zram->wb_limit_enable = val; 368 spin_unlock(&zram->wb_limit_lock); 369 up_read(&zram->init_lock); 370 ret = len; 371 372 return ret; 373 } 374 375 static ssize_t writeback_limit_enable_show(struct device *dev, 376 struct device_attribute *attr, char *buf) 377 { 378 bool val; 379 struct zram *zram = dev_to_zram(dev); 380 381 down_read(&zram->init_lock); 382 spin_lock(&zram->wb_limit_lock); 383 val = zram->wb_limit_enable; 384 spin_unlock(&zram->wb_limit_lock); 385 up_read(&zram->init_lock); 386 387 return scnprintf(buf, PAGE_SIZE, "%d\n", val); 388 } 389 390 static ssize_t writeback_limit_store(struct device *dev, 391 struct device_attribute *attr, const char *buf, size_t len) 392 { 393 struct zram *zram = dev_to_zram(dev); 394 u64 val; 395 ssize_t ret = -EINVAL; 396 397 if (kstrtoull(buf, 10, &val)) 398 return ret; 399 400 down_read(&zram->init_lock); 401 spin_lock(&zram->wb_limit_lock); 402 zram->bd_wb_limit = val; 403 spin_unlock(&zram->wb_limit_lock); 404 up_read(&zram->init_lock); 405 ret = len; 406 407 return ret; 408 } 409 410 static ssize_t writeback_limit_show(struct device *dev, 411 struct device_attribute *attr, char *buf) 412 { 413 u64 val; 414 struct zram *zram = dev_to_zram(dev); 415 416 down_read(&zram->init_lock); 417 spin_lock(&zram->wb_limit_lock); 418 val = zram->bd_wb_limit; 419 spin_unlock(&zram->wb_limit_lock); 420 up_read(&zram->init_lock); 421 422 return scnprintf(buf, PAGE_SIZE, "%llu\n", val); 423 } 424 425 static void reset_bdev(struct zram *zram) 426 { 427 if (!zram->backing_dev) 428 return; 429 430 /* hope filp_close flush all of IO */ 431 filp_close(zram->backing_dev, NULL); 432 zram->backing_dev = NULL; 433 zram->bdev = NULL; 434 zram->disk->fops = &zram_devops; 435 kvfree(zram->bitmap); 436 zram->bitmap = NULL; 437 } 438 439 static ssize_t backing_dev_show(struct device *dev, 440 struct device_attribute *attr, char *buf) 441 { 442 struct file *file; 443 struct zram *zram = dev_to_zram(dev); 444 char *p; 445 ssize_t ret; 446 447 down_read(&zram->init_lock); 448 file = zram->backing_dev; 449 if (!file) { 450 memcpy(buf, "none\n", 5); 451 up_read(&zram->init_lock); 452 return 5; 453 } 454 455 p = file_path(file, buf, PAGE_SIZE - 1); 456 if (IS_ERR(p)) { 457 ret = PTR_ERR(p); 458 goto out; 459 } 460 461 ret = strlen(p); 462 memmove(buf, p, ret); 463 buf[ret++] = '\n'; 464 out: 465 up_read(&zram->init_lock); 466 return ret; 467 } 468 469 static ssize_t backing_dev_store(struct device *dev, 470 struct device_attribute *attr, const char *buf, size_t len) 471 { 472 char *file_name; 473 size_t sz; 474 struct file *backing_dev = NULL; 475 struct inode *inode; 476 unsigned int bitmap_sz; 477 unsigned long nr_pages, *bitmap = NULL; 478 int err; 479 struct zram *zram = dev_to_zram(dev); 480 481 file_name = kmalloc(PATH_MAX, GFP_KERNEL); 482 if (!file_name) 483 return -ENOMEM; 484 485 down_write(&zram->init_lock); 486 if (init_done(zram)) { 487 pr_info("Can't setup backing device for initialized device\n"); 488 err = -EBUSY; 489 goto out; 490 } 491 492 strscpy(file_name, buf, PATH_MAX); 493 /* ignore trailing newline */ 494 sz = strlen(file_name); 495 if (sz > 0 && file_name[sz - 1] == '\n') 496 file_name[sz - 1] = 0x00; 497 498 backing_dev = filp_open(file_name, O_RDWR | O_LARGEFILE | O_EXCL, 0); 499 if (IS_ERR(backing_dev)) { 500 err = PTR_ERR(backing_dev); 501 backing_dev = NULL; 502 goto out; 503 } 504 505 inode = backing_dev->f_mapping->host; 506 507 /* Support only block device in this moment */ 508 if (!S_ISBLK(inode->i_mode)) { 509 err = -ENOTBLK; 510 goto out; 511 } 512 513 nr_pages = i_size_read(inode) >> PAGE_SHIFT; 514 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long); 515 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL); 516 if (!bitmap) { 517 err = -ENOMEM; 518 goto out; 519 } 520 521 reset_bdev(zram); 522 523 zram->bdev = I_BDEV(inode); 524 zram->backing_dev = backing_dev; 525 zram->bitmap = bitmap; 526 zram->nr_pages = nr_pages; 527 up_write(&zram->init_lock); 528 529 pr_info("setup backing device %s\n", file_name); 530 kfree(file_name); 531 532 return len; 533 out: 534 kvfree(bitmap); 535 536 if (backing_dev) 537 filp_close(backing_dev, NULL); 538 539 up_write(&zram->init_lock); 540 541 kfree(file_name); 542 543 return err; 544 } 545 546 static unsigned long alloc_block_bdev(struct zram *zram) 547 { 548 unsigned long blk_idx = 1; 549 retry: 550 /* skip 0 bit to confuse zram.handle = 0 */ 551 blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx); 552 if (blk_idx == zram->nr_pages) 553 return 0; 554 555 if (test_and_set_bit(blk_idx, zram->bitmap)) 556 goto retry; 557 558 atomic64_inc(&zram->stats.bd_count); 559 return blk_idx; 560 } 561 562 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) 563 { 564 int was_set; 565 566 was_set = test_and_clear_bit(blk_idx, zram->bitmap); 567 WARN_ON_ONCE(!was_set); 568 atomic64_dec(&zram->stats.bd_count); 569 } 570 571 static void read_from_bdev_async(struct zram *zram, struct page *page, 572 unsigned long entry, struct bio *parent) 573 { 574 struct bio *bio; 575 576 bio = bio_alloc(zram->bdev, 1, parent->bi_opf, GFP_NOIO); 577 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9); 578 __bio_add_page(bio, page, PAGE_SIZE, 0); 579 bio_chain(bio, parent); 580 submit_bio(bio); 581 } 582 583 #define PAGE_WB_SIG "page_index=" 584 585 #define PAGE_WRITEBACK 0 586 #define HUGE_WRITEBACK (1<<0) 587 #define IDLE_WRITEBACK (1<<1) 588 #define INCOMPRESSIBLE_WRITEBACK (1<<2) 589 590 static ssize_t writeback_store(struct device *dev, 591 struct device_attribute *attr, const char *buf, size_t len) 592 { 593 struct zram *zram = dev_to_zram(dev); 594 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 595 unsigned long index = 0; 596 struct bio bio; 597 struct bio_vec bio_vec; 598 struct page *page; 599 ssize_t ret = len; 600 int mode, err; 601 unsigned long blk_idx = 0; 602 603 if (sysfs_streq(buf, "idle")) 604 mode = IDLE_WRITEBACK; 605 else if (sysfs_streq(buf, "huge")) 606 mode = HUGE_WRITEBACK; 607 else if (sysfs_streq(buf, "huge_idle")) 608 mode = IDLE_WRITEBACK | HUGE_WRITEBACK; 609 else if (sysfs_streq(buf, "incompressible")) 610 mode = INCOMPRESSIBLE_WRITEBACK; 611 else { 612 if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1)) 613 return -EINVAL; 614 615 if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) || 616 index >= nr_pages) 617 return -EINVAL; 618 619 nr_pages = 1; 620 mode = PAGE_WRITEBACK; 621 } 622 623 down_read(&zram->init_lock); 624 if (!init_done(zram)) { 625 ret = -EINVAL; 626 goto release_init_lock; 627 } 628 629 if (!zram->backing_dev) { 630 ret = -ENODEV; 631 goto release_init_lock; 632 } 633 634 page = alloc_page(GFP_KERNEL); 635 if (!page) { 636 ret = -ENOMEM; 637 goto release_init_lock; 638 } 639 640 for (; nr_pages != 0; index++, nr_pages--) { 641 spin_lock(&zram->wb_limit_lock); 642 if (zram->wb_limit_enable && !zram->bd_wb_limit) { 643 spin_unlock(&zram->wb_limit_lock); 644 ret = -EIO; 645 break; 646 } 647 spin_unlock(&zram->wb_limit_lock); 648 649 if (!blk_idx) { 650 blk_idx = alloc_block_bdev(zram); 651 if (!blk_idx) { 652 ret = -ENOSPC; 653 break; 654 } 655 } 656 657 zram_slot_lock(zram, index); 658 if (!zram_allocated(zram, index)) 659 goto next; 660 661 if (zram_test_flag(zram, index, ZRAM_WB) || 662 zram_test_flag(zram, index, ZRAM_SAME) || 663 zram_test_flag(zram, index, ZRAM_UNDER_WB)) 664 goto next; 665 666 if (mode & IDLE_WRITEBACK && 667 !zram_test_flag(zram, index, ZRAM_IDLE)) 668 goto next; 669 if (mode & HUGE_WRITEBACK && 670 !zram_test_flag(zram, index, ZRAM_HUGE)) 671 goto next; 672 if (mode & INCOMPRESSIBLE_WRITEBACK && 673 !zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 674 goto next; 675 676 /* 677 * Clearing ZRAM_UNDER_WB is duty of caller. 678 * IOW, zram_free_page never clear it. 679 */ 680 zram_set_flag(zram, index, ZRAM_UNDER_WB); 681 /* Need for hugepage writeback racing */ 682 zram_set_flag(zram, index, ZRAM_IDLE); 683 zram_slot_unlock(zram, index); 684 if (zram_read_page(zram, page, index, NULL)) { 685 zram_slot_lock(zram, index); 686 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 687 zram_clear_flag(zram, index, ZRAM_IDLE); 688 zram_slot_unlock(zram, index); 689 continue; 690 } 691 692 bio_init(&bio, zram->bdev, &bio_vec, 1, 693 REQ_OP_WRITE | REQ_SYNC); 694 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9); 695 __bio_add_page(&bio, page, PAGE_SIZE, 0); 696 697 /* 698 * XXX: A single page IO would be inefficient for write 699 * but it would be not bad as starter. 700 */ 701 err = submit_bio_wait(&bio); 702 if (err) { 703 zram_slot_lock(zram, index); 704 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 705 zram_clear_flag(zram, index, ZRAM_IDLE); 706 zram_slot_unlock(zram, index); 707 /* 708 * BIO errors are not fatal, we continue and simply 709 * attempt to writeback the remaining objects (pages). 710 * At the same time we need to signal user-space that 711 * some writes (at least one, but also could be all of 712 * them) were not successful and we do so by returning 713 * the most recent BIO error. 714 */ 715 ret = err; 716 continue; 717 } 718 719 atomic64_inc(&zram->stats.bd_writes); 720 /* 721 * We released zram_slot_lock so need to check if the slot was 722 * changed. If there is freeing for the slot, we can catch it 723 * easily by zram_allocated. 724 * A subtle case is the slot is freed/reallocated/marked as 725 * ZRAM_IDLE again. To close the race, idle_store doesn't 726 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB. 727 * Thus, we could close the race by checking ZRAM_IDLE bit. 728 */ 729 zram_slot_lock(zram, index); 730 if (!zram_allocated(zram, index) || 731 !zram_test_flag(zram, index, ZRAM_IDLE)) { 732 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 733 zram_clear_flag(zram, index, ZRAM_IDLE); 734 goto next; 735 } 736 737 zram_free_page(zram, index); 738 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 739 zram_set_flag(zram, index, ZRAM_WB); 740 zram_set_element(zram, index, blk_idx); 741 blk_idx = 0; 742 atomic64_inc(&zram->stats.pages_stored); 743 spin_lock(&zram->wb_limit_lock); 744 if (zram->wb_limit_enable && zram->bd_wb_limit > 0) 745 zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12); 746 spin_unlock(&zram->wb_limit_lock); 747 next: 748 zram_slot_unlock(zram, index); 749 } 750 751 if (blk_idx) 752 free_block_bdev(zram, blk_idx); 753 __free_page(page); 754 release_init_lock: 755 up_read(&zram->init_lock); 756 757 return ret; 758 } 759 760 struct zram_work { 761 struct work_struct work; 762 struct zram *zram; 763 unsigned long entry; 764 struct page *page; 765 int error; 766 }; 767 768 static void zram_sync_read(struct work_struct *work) 769 { 770 struct zram_work *zw = container_of(work, struct zram_work, work); 771 struct bio_vec bv; 772 struct bio bio; 773 774 bio_init(&bio, zw->zram->bdev, &bv, 1, REQ_OP_READ); 775 bio.bi_iter.bi_sector = zw->entry * (PAGE_SIZE >> 9); 776 __bio_add_page(&bio, zw->page, PAGE_SIZE, 0); 777 zw->error = submit_bio_wait(&bio); 778 } 779 780 /* 781 * Block layer want one ->submit_bio to be active at a time, so if we use 782 * chained IO with parent IO in same context, it's a deadlock. To avoid that, 783 * use a worker thread context. 784 */ 785 static int read_from_bdev_sync(struct zram *zram, struct page *page, 786 unsigned long entry) 787 { 788 struct zram_work work; 789 790 work.page = page; 791 work.zram = zram; 792 work.entry = entry; 793 794 INIT_WORK_ONSTACK(&work.work, zram_sync_read); 795 queue_work(system_unbound_wq, &work.work); 796 flush_work(&work.work); 797 destroy_work_on_stack(&work.work); 798 799 return work.error; 800 } 801 802 static int read_from_bdev(struct zram *zram, struct page *page, 803 unsigned long entry, struct bio *parent) 804 { 805 atomic64_inc(&zram->stats.bd_reads); 806 if (!parent) { 807 if (WARN_ON_ONCE(!IS_ENABLED(ZRAM_PARTIAL_IO))) 808 return -EIO; 809 return read_from_bdev_sync(zram, page, entry); 810 } 811 read_from_bdev_async(zram, page, entry, parent); 812 return 0; 813 } 814 #else 815 static inline void reset_bdev(struct zram *zram) {}; 816 static int read_from_bdev(struct zram *zram, struct page *page, 817 unsigned long entry, struct bio *parent) 818 { 819 return -EIO; 820 } 821 822 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {}; 823 #endif 824 825 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 826 827 static struct dentry *zram_debugfs_root; 828 829 static void zram_debugfs_create(void) 830 { 831 zram_debugfs_root = debugfs_create_dir("zram", NULL); 832 } 833 834 static void zram_debugfs_destroy(void) 835 { 836 debugfs_remove_recursive(zram_debugfs_root); 837 } 838 839 static ssize_t read_block_state(struct file *file, char __user *buf, 840 size_t count, loff_t *ppos) 841 { 842 char *kbuf; 843 ssize_t index, written = 0; 844 struct zram *zram = file->private_data; 845 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 846 struct timespec64 ts; 847 848 kbuf = kvmalloc(count, GFP_KERNEL); 849 if (!kbuf) 850 return -ENOMEM; 851 852 down_read(&zram->init_lock); 853 if (!init_done(zram)) { 854 up_read(&zram->init_lock); 855 kvfree(kbuf); 856 return -EINVAL; 857 } 858 859 for (index = *ppos; index < nr_pages; index++) { 860 int copied; 861 862 zram_slot_lock(zram, index); 863 if (!zram_allocated(zram, index)) 864 goto next; 865 866 ts = ktime_to_timespec64(zram->table[index].ac_time); 867 copied = snprintf(kbuf + written, count, 868 "%12zd %12lld.%06lu %c%c%c%c%c%c\n", 869 index, (s64)ts.tv_sec, 870 ts.tv_nsec / NSEC_PER_USEC, 871 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.', 872 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.', 873 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.', 874 zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.', 875 zram_get_priority(zram, index) ? 'r' : '.', 876 zram_test_flag(zram, index, 877 ZRAM_INCOMPRESSIBLE) ? 'n' : '.'); 878 879 if (count <= copied) { 880 zram_slot_unlock(zram, index); 881 break; 882 } 883 written += copied; 884 count -= copied; 885 next: 886 zram_slot_unlock(zram, index); 887 *ppos += 1; 888 } 889 890 up_read(&zram->init_lock); 891 if (copy_to_user(buf, kbuf, written)) 892 written = -EFAULT; 893 kvfree(kbuf); 894 895 return written; 896 } 897 898 static const struct file_operations proc_zram_block_state_op = { 899 .open = simple_open, 900 .read = read_block_state, 901 .llseek = default_llseek, 902 }; 903 904 static void zram_debugfs_register(struct zram *zram) 905 { 906 if (!zram_debugfs_root) 907 return; 908 909 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name, 910 zram_debugfs_root); 911 debugfs_create_file("block_state", 0400, zram->debugfs_dir, 912 zram, &proc_zram_block_state_op); 913 } 914 915 static void zram_debugfs_unregister(struct zram *zram) 916 { 917 debugfs_remove_recursive(zram->debugfs_dir); 918 } 919 #else 920 static void zram_debugfs_create(void) {}; 921 static void zram_debugfs_destroy(void) {}; 922 static void zram_debugfs_register(struct zram *zram) {}; 923 static void zram_debugfs_unregister(struct zram *zram) {}; 924 #endif 925 926 /* 927 * We switched to per-cpu streams and this attr is not needed anymore. 928 * However, we will keep it around for some time, because: 929 * a) we may revert per-cpu streams in the future 930 * b) it's visible to user space and we need to follow our 2 years 931 * retirement rule; but we already have a number of 'soon to be 932 * altered' attrs, so max_comp_streams need to wait for the next 933 * layoff cycle. 934 */ 935 static ssize_t max_comp_streams_show(struct device *dev, 936 struct device_attribute *attr, char *buf) 937 { 938 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus()); 939 } 940 941 static ssize_t max_comp_streams_store(struct device *dev, 942 struct device_attribute *attr, const char *buf, size_t len) 943 { 944 return len; 945 } 946 947 static void comp_algorithm_set(struct zram *zram, u32 prio, const char *alg) 948 { 949 /* Do not free statically defined compression algorithms */ 950 if (zram->comp_algs[prio] != default_compressor) 951 kfree(zram->comp_algs[prio]); 952 953 zram->comp_algs[prio] = alg; 954 } 955 956 static ssize_t __comp_algorithm_show(struct zram *zram, u32 prio, char *buf) 957 { 958 ssize_t sz; 959 960 down_read(&zram->init_lock); 961 sz = zcomp_available_show(zram->comp_algs[prio], buf); 962 up_read(&zram->init_lock); 963 964 return sz; 965 } 966 967 static int __comp_algorithm_store(struct zram *zram, u32 prio, const char *buf) 968 { 969 char *compressor; 970 size_t sz; 971 972 sz = strlen(buf); 973 if (sz >= CRYPTO_MAX_ALG_NAME) 974 return -E2BIG; 975 976 compressor = kstrdup(buf, GFP_KERNEL); 977 if (!compressor) 978 return -ENOMEM; 979 980 /* ignore trailing newline */ 981 if (sz > 0 && compressor[sz - 1] == '\n') 982 compressor[sz - 1] = 0x00; 983 984 if (!zcomp_available_algorithm(compressor)) { 985 kfree(compressor); 986 return -EINVAL; 987 } 988 989 down_write(&zram->init_lock); 990 if (init_done(zram)) { 991 up_write(&zram->init_lock); 992 kfree(compressor); 993 pr_info("Can't change algorithm for initialized device\n"); 994 return -EBUSY; 995 } 996 997 comp_algorithm_set(zram, prio, compressor); 998 up_write(&zram->init_lock); 999 return 0; 1000 } 1001 1002 static void comp_params_reset(struct zram *zram, u32 prio) 1003 { 1004 struct zcomp_params *params = &zram->params[prio]; 1005 1006 vfree(params->dict); 1007 params->level = ZCOMP_PARAM_NO_LEVEL; 1008 params->dict_sz = 0; 1009 params->dict = NULL; 1010 } 1011 1012 static int comp_params_store(struct zram *zram, u32 prio, s32 level, 1013 const char *dict_path) 1014 { 1015 ssize_t sz = 0; 1016 1017 comp_params_reset(zram, prio); 1018 1019 if (dict_path) { 1020 sz = kernel_read_file_from_path(dict_path, 0, 1021 &zram->params[prio].dict, 1022 INT_MAX, 1023 NULL, 1024 READING_POLICY); 1025 if (sz < 0) 1026 return -EINVAL; 1027 } 1028 1029 zram->params[prio].dict_sz = sz; 1030 zram->params[prio].level = level; 1031 return 0; 1032 } 1033 1034 static ssize_t algorithm_params_store(struct device *dev, 1035 struct device_attribute *attr, 1036 const char *buf, 1037 size_t len) 1038 { 1039 s32 prio = ZRAM_PRIMARY_COMP, level = ZCOMP_PARAM_NO_LEVEL; 1040 char *args, *param, *val, *algo = NULL, *dict_path = NULL; 1041 struct zram *zram = dev_to_zram(dev); 1042 int ret; 1043 1044 args = skip_spaces(buf); 1045 while (*args) { 1046 args = next_arg(args, ¶m, &val); 1047 1048 if (!val || !*val) 1049 return -EINVAL; 1050 1051 if (!strcmp(param, "priority")) { 1052 ret = kstrtoint(val, 10, &prio); 1053 if (ret) 1054 return ret; 1055 continue; 1056 } 1057 1058 if (!strcmp(param, "level")) { 1059 ret = kstrtoint(val, 10, &level); 1060 if (ret) 1061 return ret; 1062 continue; 1063 } 1064 1065 if (!strcmp(param, "algo")) { 1066 algo = val; 1067 continue; 1068 } 1069 1070 if (!strcmp(param, "dict")) { 1071 dict_path = val; 1072 continue; 1073 } 1074 } 1075 1076 /* Lookup priority by algorithm name */ 1077 if (algo) { 1078 s32 p; 1079 1080 prio = -EINVAL; 1081 for (p = ZRAM_PRIMARY_COMP; p < ZRAM_MAX_COMPS; p++) { 1082 if (!zram->comp_algs[p]) 1083 continue; 1084 1085 if (!strcmp(zram->comp_algs[p], algo)) { 1086 prio = p; 1087 break; 1088 } 1089 } 1090 } 1091 1092 if (prio < ZRAM_PRIMARY_COMP || prio >= ZRAM_MAX_COMPS) 1093 return -EINVAL; 1094 1095 ret = comp_params_store(zram, prio, level, dict_path); 1096 return ret ? ret : len; 1097 } 1098 1099 static ssize_t comp_algorithm_show(struct device *dev, 1100 struct device_attribute *attr, 1101 char *buf) 1102 { 1103 struct zram *zram = dev_to_zram(dev); 1104 1105 return __comp_algorithm_show(zram, ZRAM_PRIMARY_COMP, buf); 1106 } 1107 1108 static ssize_t comp_algorithm_store(struct device *dev, 1109 struct device_attribute *attr, 1110 const char *buf, 1111 size_t len) 1112 { 1113 struct zram *zram = dev_to_zram(dev); 1114 int ret; 1115 1116 ret = __comp_algorithm_store(zram, ZRAM_PRIMARY_COMP, buf); 1117 return ret ? ret : len; 1118 } 1119 1120 #ifdef CONFIG_ZRAM_MULTI_COMP 1121 static ssize_t recomp_algorithm_show(struct device *dev, 1122 struct device_attribute *attr, 1123 char *buf) 1124 { 1125 struct zram *zram = dev_to_zram(dev); 1126 ssize_t sz = 0; 1127 u32 prio; 1128 1129 for (prio = ZRAM_SECONDARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { 1130 if (!zram->comp_algs[prio]) 1131 continue; 1132 1133 sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2, "#%d: ", prio); 1134 sz += __comp_algorithm_show(zram, prio, buf + sz); 1135 } 1136 1137 return sz; 1138 } 1139 1140 static ssize_t recomp_algorithm_store(struct device *dev, 1141 struct device_attribute *attr, 1142 const char *buf, 1143 size_t len) 1144 { 1145 struct zram *zram = dev_to_zram(dev); 1146 int prio = ZRAM_SECONDARY_COMP; 1147 char *args, *param, *val; 1148 char *alg = NULL; 1149 int ret; 1150 1151 args = skip_spaces(buf); 1152 while (*args) { 1153 args = next_arg(args, ¶m, &val); 1154 1155 if (!val || !*val) 1156 return -EINVAL; 1157 1158 if (!strcmp(param, "algo")) { 1159 alg = val; 1160 continue; 1161 } 1162 1163 if (!strcmp(param, "priority")) { 1164 ret = kstrtoint(val, 10, &prio); 1165 if (ret) 1166 return ret; 1167 continue; 1168 } 1169 } 1170 1171 if (!alg) 1172 return -EINVAL; 1173 1174 if (prio < ZRAM_SECONDARY_COMP || prio >= ZRAM_MAX_COMPS) 1175 return -EINVAL; 1176 1177 ret = __comp_algorithm_store(zram, prio, alg); 1178 return ret ? ret : len; 1179 } 1180 #endif 1181 1182 static ssize_t compact_store(struct device *dev, 1183 struct device_attribute *attr, const char *buf, size_t len) 1184 { 1185 struct zram *zram = dev_to_zram(dev); 1186 1187 down_read(&zram->init_lock); 1188 if (!init_done(zram)) { 1189 up_read(&zram->init_lock); 1190 return -EINVAL; 1191 } 1192 1193 zs_compact(zram->mem_pool); 1194 up_read(&zram->init_lock); 1195 1196 return len; 1197 } 1198 1199 static ssize_t io_stat_show(struct device *dev, 1200 struct device_attribute *attr, char *buf) 1201 { 1202 struct zram *zram = dev_to_zram(dev); 1203 ssize_t ret; 1204 1205 down_read(&zram->init_lock); 1206 ret = scnprintf(buf, PAGE_SIZE, 1207 "%8llu %8llu 0 %8llu\n", 1208 (u64)atomic64_read(&zram->stats.failed_reads), 1209 (u64)atomic64_read(&zram->stats.failed_writes), 1210 (u64)atomic64_read(&zram->stats.notify_free)); 1211 up_read(&zram->init_lock); 1212 1213 return ret; 1214 } 1215 1216 static ssize_t mm_stat_show(struct device *dev, 1217 struct device_attribute *attr, char *buf) 1218 { 1219 struct zram *zram = dev_to_zram(dev); 1220 struct zs_pool_stats pool_stats; 1221 u64 orig_size, mem_used = 0; 1222 long max_used; 1223 ssize_t ret; 1224 1225 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); 1226 1227 down_read(&zram->init_lock); 1228 if (init_done(zram)) { 1229 mem_used = zs_get_total_pages(zram->mem_pool); 1230 zs_pool_stats(zram->mem_pool, &pool_stats); 1231 } 1232 1233 orig_size = atomic64_read(&zram->stats.pages_stored); 1234 max_used = atomic_long_read(&zram->stats.max_used_pages); 1235 1236 ret = scnprintf(buf, PAGE_SIZE, 1237 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n", 1238 orig_size << PAGE_SHIFT, 1239 (u64)atomic64_read(&zram->stats.compr_data_size), 1240 mem_used << PAGE_SHIFT, 1241 zram->limit_pages << PAGE_SHIFT, 1242 max_used << PAGE_SHIFT, 1243 (u64)atomic64_read(&zram->stats.same_pages), 1244 atomic_long_read(&pool_stats.pages_compacted), 1245 (u64)atomic64_read(&zram->stats.huge_pages), 1246 (u64)atomic64_read(&zram->stats.huge_pages_since)); 1247 up_read(&zram->init_lock); 1248 1249 return ret; 1250 } 1251 1252 #ifdef CONFIG_ZRAM_WRITEBACK 1253 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12))) 1254 static ssize_t bd_stat_show(struct device *dev, 1255 struct device_attribute *attr, char *buf) 1256 { 1257 struct zram *zram = dev_to_zram(dev); 1258 ssize_t ret; 1259 1260 down_read(&zram->init_lock); 1261 ret = scnprintf(buf, PAGE_SIZE, 1262 "%8llu %8llu %8llu\n", 1263 FOUR_K((u64)atomic64_read(&zram->stats.bd_count)), 1264 FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)), 1265 FOUR_K((u64)atomic64_read(&zram->stats.bd_writes))); 1266 up_read(&zram->init_lock); 1267 1268 return ret; 1269 } 1270 #endif 1271 1272 static ssize_t debug_stat_show(struct device *dev, 1273 struct device_attribute *attr, char *buf) 1274 { 1275 int version = 1; 1276 struct zram *zram = dev_to_zram(dev); 1277 ssize_t ret; 1278 1279 down_read(&zram->init_lock); 1280 ret = scnprintf(buf, PAGE_SIZE, 1281 "version: %d\n%8llu %8llu\n", 1282 version, 1283 (u64)atomic64_read(&zram->stats.writestall), 1284 (u64)atomic64_read(&zram->stats.miss_free)); 1285 up_read(&zram->init_lock); 1286 1287 return ret; 1288 } 1289 1290 static DEVICE_ATTR_RO(io_stat); 1291 static DEVICE_ATTR_RO(mm_stat); 1292 #ifdef CONFIG_ZRAM_WRITEBACK 1293 static DEVICE_ATTR_RO(bd_stat); 1294 #endif 1295 static DEVICE_ATTR_RO(debug_stat); 1296 1297 static void zram_meta_free(struct zram *zram, u64 disksize) 1298 { 1299 size_t num_pages = disksize >> PAGE_SHIFT; 1300 size_t index; 1301 1302 /* Free all pages that are still in this zram device */ 1303 for (index = 0; index < num_pages; index++) 1304 zram_free_page(zram, index); 1305 1306 zs_destroy_pool(zram->mem_pool); 1307 vfree(zram->table); 1308 } 1309 1310 static bool zram_meta_alloc(struct zram *zram, u64 disksize) 1311 { 1312 size_t num_pages, index; 1313 1314 num_pages = disksize >> PAGE_SHIFT; 1315 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table))); 1316 if (!zram->table) 1317 return false; 1318 1319 zram->mem_pool = zs_create_pool(zram->disk->disk_name); 1320 if (!zram->mem_pool) { 1321 vfree(zram->table); 1322 return false; 1323 } 1324 1325 if (!huge_class_size) 1326 huge_class_size = zs_huge_class_size(zram->mem_pool); 1327 1328 for (index = 0; index < num_pages; index++) 1329 spin_lock_init(&zram->table[index].lock); 1330 return true; 1331 } 1332 1333 /* 1334 * To protect concurrent access to the same index entry, 1335 * caller should hold this table index entry's bit_spinlock to 1336 * indicate this index entry is accessing. 1337 */ 1338 static void zram_free_page(struct zram *zram, size_t index) 1339 { 1340 unsigned long handle; 1341 1342 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME 1343 zram->table[index].ac_time = 0; 1344 #endif 1345 if (zram_test_flag(zram, index, ZRAM_IDLE)) 1346 zram_clear_flag(zram, index, ZRAM_IDLE); 1347 1348 if (zram_test_flag(zram, index, ZRAM_HUGE)) { 1349 zram_clear_flag(zram, index, ZRAM_HUGE); 1350 atomic64_dec(&zram->stats.huge_pages); 1351 } 1352 1353 if (zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 1354 zram_clear_flag(zram, index, ZRAM_INCOMPRESSIBLE); 1355 1356 zram_set_priority(zram, index, 0); 1357 1358 if (zram_test_flag(zram, index, ZRAM_WB)) { 1359 zram_clear_flag(zram, index, ZRAM_WB); 1360 free_block_bdev(zram, zram_get_element(zram, index)); 1361 goto out; 1362 } 1363 1364 /* 1365 * No memory is allocated for same element filled pages. 1366 * Simply clear same page flag. 1367 */ 1368 if (zram_test_flag(zram, index, ZRAM_SAME)) { 1369 zram_clear_flag(zram, index, ZRAM_SAME); 1370 atomic64_dec(&zram->stats.same_pages); 1371 goto out; 1372 } 1373 1374 handle = zram_get_handle(zram, index); 1375 if (!handle) 1376 return; 1377 1378 zs_free(zram->mem_pool, handle); 1379 1380 atomic64_sub(zram_get_obj_size(zram, index), 1381 &zram->stats.compr_data_size); 1382 out: 1383 atomic64_dec(&zram->stats.pages_stored); 1384 zram_set_handle(zram, index, 0); 1385 zram_set_obj_size(zram, index, 0); 1386 WARN_ON_ONCE(zram->table[index].flags & 1387 ~(1UL << ZRAM_UNDER_WB)); 1388 } 1389 1390 /* 1391 * Reads (decompresses if needed) a page from zspool (zsmalloc). 1392 * Corresponding ZRAM slot should be locked. 1393 */ 1394 static int zram_read_from_zspool(struct zram *zram, struct page *page, 1395 u32 index) 1396 { 1397 struct zcomp_strm *zstrm; 1398 unsigned long handle; 1399 unsigned int size; 1400 void *src, *dst; 1401 u32 prio; 1402 int ret; 1403 1404 handle = zram_get_handle(zram, index); 1405 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) { 1406 unsigned long value; 1407 void *mem; 1408 1409 value = handle ? zram_get_element(zram, index) : 0; 1410 mem = kmap_local_page(page); 1411 zram_fill_page(mem, PAGE_SIZE, value); 1412 kunmap_local(mem); 1413 return 0; 1414 } 1415 1416 size = zram_get_obj_size(zram, index); 1417 1418 if (size != PAGE_SIZE) { 1419 prio = zram_get_priority(zram, index); 1420 zstrm = zcomp_stream_get(zram->comps[prio]); 1421 } 1422 1423 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO); 1424 if (size == PAGE_SIZE) { 1425 dst = kmap_local_page(page); 1426 copy_page(dst, src); 1427 kunmap_local(dst); 1428 ret = 0; 1429 } else { 1430 dst = kmap_local_page(page); 1431 ret = zcomp_decompress(zram->comps[prio], zstrm, 1432 src, size, dst); 1433 kunmap_local(dst); 1434 zcomp_stream_put(zram->comps[prio]); 1435 } 1436 zs_unmap_object(zram->mem_pool, handle); 1437 return ret; 1438 } 1439 1440 static int zram_read_page(struct zram *zram, struct page *page, u32 index, 1441 struct bio *parent) 1442 { 1443 int ret; 1444 1445 zram_slot_lock(zram, index); 1446 if (!zram_test_flag(zram, index, ZRAM_WB)) { 1447 /* Slot should be locked through out the function call */ 1448 ret = zram_read_from_zspool(zram, page, index); 1449 zram_slot_unlock(zram, index); 1450 } else { 1451 /* 1452 * The slot should be unlocked before reading from the backing 1453 * device. 1454 */ 1455 zram_slot_unlock(zram, index); 1456 1457 ret = read_from_bdev(zram, page, zram_get_element(zram, index), 1458 parent); 1459 } 1460 1461 /* Should NEVER happen. Return bio error if it does. */ 1462 if (WARN_ON(ret < 0)) 1463 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 1464 1465 return ret; 1466 } 1467 1468 /* 1469 * Use a temporary buffer to decompress the page, as the decompressor 1470 * always expects a full page for the output. 1471 */ 1472 static int zram_bvec_read_partial(struct zram *zram, struct bio_vec *bvec, 1473 u32 index, int offset) 1474 { 1475 struct page *page = alloc_page(GFP_NOIO); 1476 int ret; 1477 1478 if (!page) 1479 return -ENOMEM; 1480 ret = zram_read_page(zram, page, index, NULL); 1481 if (likely(!ret)) 1482 memcpy_to_bvec(bvec, page_address(page) + offset); 1483 __free_page(page); 1484 return ret; 1485 } 1486 1487 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 1488 u32 index, int offset, struct bio *bio) 1489 { 1490 if (is_partial_io(bvec)) 1491 return zram_bvec_read_partial(zram, bvec, index, offset); 1492 return zram_read_page(zram, bvec->bv_page, index, bio); 1493 } 1494 1495 static int zram_write_page(struct zram *zram, struct page *page, u32 index) 1496 { 1497 int ret = 0; 1498 unsigned long alloced_pages; 1499 unsigned long handle = -ENOMEM; 1500 unsigned int comp_len = 0; 1501 void *src, *dst, *mem; 1502 struct zcomp_strm *zstrm; 1503 unsigned long element = 0; 1504 enum zram_pageflags flags = 0; 1505 1506 mem = kmap_local_page(page); 1507 if (page_same_filled(mem, &element)) { 1508 kunmap_local(mem); 1509 /* Free memory associated with this sector now. */ 1510 flags = ZRAM_SAME; 1511 atomic64_inc(&zram->stats.same_pages); 1512 goto out; 1513 } 1514 kunmap_local(mem); 1515 1516 compress_again: 1517 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]); 1518 src = kmap_local_page(page); 1519 ret = zcomp_compress(zram->comps[ZRAM_PRIMARY_COMP], zstrm, 1520 src, &comp_len); 1521 kunmap_local(src); 1522 1523 if (unlikely(ret)) { 1524 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1525 pr_err("Compression failed! err=%d\n", ret); 1526 zs_free(zram->mem_pool, handle); 1527 return ret; 1528 } 1529 1530 if (comp_len >= huge_class_size) 1531 comp_len = PAGE_SIZE; 1532 /* 1533 * handle allocation has 2 paths: 1534 * a) fast path is executed with preemption disabled (for 1535 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear, 1536 * since we can't sleep; 1537 * b) slow path enables preemption and attempts to allocate 1538 * the page with __GFP_DIRECT_RECLAIM bit set. we have to 1539 * put per-cpu compression stream and, thus, to re-do 1540 * the compression once handle is allocated. 1541 * 1542 * if we have a 'non-null' handle here then we are coming 1543 * from the slow path and handle has already been allocated. 1544 */ 1545 if (IS_ERR_VALUE(handle)) 1546 handle = zs_malloc(zram->mem_pool, comp_len, 1547 __GFP_KSWAPD_RECLAIM | 1548 __GFP_NOWARN | 1549 __GFP_HIGHMEM | 1550 __GFP_MOVABLE); 1551 if (IS_ERR_VALUE(handle)) { 1552 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1553 atomic64_inc(&zram->stats.writestall); 1554 handle = zs_malloc(zram->mem_pool, comp_len, 1555 GFP_NOIO | __GFP_HIGHMEM | 1556 __GFP_MOVABLE); 1557 if (IS_ERR_VALUE(handle)) 1558 return PTR_ERR((void *)handle); 1559 1560 if (comp_len != PAGE_SIZE) 1561 goto compress_again; 1562 /* 1563 * If the page is not compressible, you need to acquire the 1564 * lock and execute the code below. The zcomp_stream_get() 1565 * call is needed to disable the cpu hotplug and grab the 1566 * zstrm buffer back. It is necessary that the dereferencing 1567 * of the zstrm variable below occurs correctly. 1568 */ 1569 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]); 1570 } 1571 1572 alloced_pages = zs_get_total_pages(zram->mem_pool); 1573 update_used_max(zram, alloced_pages); 1574 1575 if (zram->limit_pages && alloced_pages > zram->limit_pages) { 1576 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1577 zs_free(zram->mem_pool, handle); 1578 return -ENOMEM; 1579 } 1580 1581 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO); 1582 1583 src = zstrm->buffer; 1584 if (comp_len == PAGE_SIZE) 1585 src = kmap_local_page(page); 1586 memcpy(dst, src, comp_len); 1587 if (comp_len == PAGE_SIZE) 1588 kunmap_local(src); 1589 1590 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1591 zs_unmap_object(zram->mem_pool, handle); 1592 atomic64_add(comp_len, &zram->stats.compr_data_size); 1593 out: 1594 /* 1595 * Free memory associated with this sector 1596 * before overwriting unused sectors. 1597 */ 1598 zram_slot_lock(zram, index); 1599 zram_free_page(zram, index); 1600 1601 if (comp_len == PAGE_SIZE) { 1602 zram_set_flag(zram, index, ZRAM_HUGE); 1603 atomic64_inc(&zram->stats.huge_pages); 1604 atomic64_inc(&zram->stats.huge_pages_since); 1605 } 1606 1607 if (flags) { 1608 zram_set_flag(zram, index, flags); 1609 zram_set_element(zram, index, element); 1610 } else { 1611 zram_set_handle(zram, index, handle); 1612 zram_set_obj_size(zram, index, comp_len); 1613 } 1614 zram_slot_unlock(zram, index); 1615 1616 /* Update stats */ 1617 atomic64_inc(&zram->stats.pages_stored); 1618 return ret; 1619 } 1620 1621 /* 1622 * This is a partial IO. Read the full page before writing the changes. 1623 */ 1624 static int zram_bvec_write_partial(struct zram *zram, struct bio_vec *bvec, 1625 u32 index, int offset, struct bio *bio) 1626 { 1627 struct page *page = alloc_page(GFP_NOIO); 1628 int ret; 1629 1630 if (!page) 1631 return -ENOMEM; 1632 1633 ret = zram_read_page(zram, page, index, bio); 1634 if (!ret) { 1635 memcpy_from_bvec(page_address(page) + offset, bvec); 1636 ret = zram_write_page(zram, page, index); 1637 } 1638 __free_page(page); 1639 return ret; 1640 } 1641 1642 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1643 u32 index, int offset, struct bio *bio) 1644 { 1645 if (is_partial_io(bvec)) 1646 return zram_bvec_write_partial(zram, bvec, index, offset, bio); 1647 return zram_write_page(zram, bvec->bv_page, index); 1648 } 1649 1650 #ifdef CONFIG_ZRAM_MULTI_COMP 1651 /* 1652 * This function will decompress (unless it's ZRAM_HUGE) the page and then 1653 * attempt to compress it using provided compression algorithm priority 1654 * (which is potentially more effective). 1655 * 1656 * Corresponding ZRAM slot should be locked. 1657 */ 1658 static int zram_recompress(struct zram *zram, u32 index, struct page *page, 1659 u64 *num_recomp_pages, u32 threshold, u32 prio, 1660 u32 prio_max) 1661 { 1662 struct zcomp_strm *zstrm = NULL; 1663 unsigned long handle_old; 1664 unsigned long handle_new; 1665 unsigned int comp_len_old; 1666 unsigned int comp_len_new; 1667 unsigned int class_index_old; 1668 unsigned int class_index_new; 1669 u32 num_recomps = 0; 1670 void *src, *dst; 1671 int ret; 1672 1673 handle_old = zram_get_handle(zram, index); 1674 if (!handle_old) 1675 return -EINVAL; 1676 1677 comp_len_old = zram_get_obj_size(zram, index); 1678 /* 1679 * Do not recompress objects that are already "small enough". 1680 */ 1681 if (comp_len_old < threshold) 1682 return 0; 1683 1684 ret = zram_read_from_zspool(zram, page, index); 1685 if (ret) 1686 return ret; 1687 1688 class_index_old = zs_lookup_class_index(zram->mem_pool, comp_len_old); 1689 /* 1690 * Iterate the secondary comp algorithms list (in order of priority) 1691 * and try to recompress the page. 1692 */ 1693 for (; prio < prio_max; prio++) { 1694 if (!zram->comps[prio]) 1695 continue; 1696 1697 /* 1698 * Skip if the object is already re-compressed with a higher 1699 * priority algorithm (or same algorithm). 1700 */ 1701 if (prio <= zram_get_priority(zram, index)) 1702 continue; 1703 1704 num_recomps++; 1705 zstrm = zcomp_stream_get(zram->comps[prio]); 1706 src = kmap_local_page(page); 1707 ret = zcomp_compress(zram->comps[prio], zstrm, 1708 src, &comp_len_new); 1709 kunmap_local(src); 1710 1711 if (ret) { 1712 zcomp_stream_put(zram->comps[prio]); 1713 return ret; 1714 } 1715 1716 class_index_new = zs_lookup_class_index(zram->mem_pool, 1717 comp_len_new); 1718 1719 /* Continue until we make progress */ 1720 if (class_index_new >= class_index_old || 1721 (threshold && comp_len_new >= threshold)) { 1722 zcomp_stream_put(zram->comps[prio]); 1723 continue; 1724 } 1725 1726 /* Recompression was successful so break out */ 1727 break; 1728 } 1729 1730 /* 1731 * We did not try to recompress, e.g. when we have only one 1732 * secondary algorithm and the page is already recompressed 1733 * using that algorithm 1734 */ 1735 if (!zstrm) 1736 return 0; 1737 1738 /* 1739 * Decrement the limit (if set) on pages we can recompress, even 1740 * when current recompression was unsuccessful or did not compress 1741 * the page below the threshold, because we still spent resources 1742 * on it. 1743 */ 1744 if (*num_recomp_pages) 1745 *num_recomp_pages -= 1; 1746 1747 if (class_index_new >= class_index_old) { 1748 /* 1749 * Secondary algorithms failed to re-compress the page 1750 * in a way that would save memory, mark the object as 1751 * incompressible so that we will not try to compress 1752 * it again. 1753 * 1754 * We need to make sure that all secondary algorithms have 1755 * failed, so we test if the number of recompressions matches 1756 * the number of active secondary algorithms. 1757 */ 1758 if (num_recomps == zram->num_active_comps - 1) 1759 zram_set_flag(zram, index, ZRAM_INCOMPRESSIBLE); 1760 return 0; 1761 } 1762 1763 /* Successful recompression but above threshold */ 1764 if (threshold && comp_len_new >= threshold) 1765 return 0; 1766 1767 /* 1768 * No direct reclaim (slow path) for handle allocation and no 1769 * re-compression attempt (unlike in zram_write_bvec()) since 1770 * we already have stored that object in zsmalloc. If we cannot 1771 * alloc memory for recompressed object then we bail out and 1772 * simply keep the old (existing) object in zsmalloc. 1773 */ 1774 handle_new = zs_malloc(zram->mem_pool, comp_len_new, 1775 __GFP_KSWAPD_RECLAIM | 1776 __GFP_NOWARN | 1777 __GFP_HIGHMEM | 1778 __GFP_MOVABLE); 1779 if (IS_ERR_VALUE(handle_new)) { 1780 zcomp_stream_put(zram->comps[prio]); 1781 return PTR_ERR((void *)handle_new); 1782 } 1783 1784 dst = zs_map_object(zram->mem_pool, handle_new, ZS_MM_WO); 1785 memcpy(dst, zstrm->buffer, comp_len_new); 1786 zcomp_stream_put(zram->comps[prio]); 1787 1788 zs_unmap_object(zram->mem_pool, handle_new); 1789 1790 zram_free_page(zram, index); 1791 zram_set_handle(zram, index, handle_new); 1792 zram_set_obj_size(zram, index, comp_len_new); 1793 zram_set_priority(zram, index, prio); 1794 1795 atomic64_add(comp_len_new, &zram->stats.compr_data_size); 1796 atomic64_inc(&zram->stats.pages_stored); 1797 1798 return 0; 1799 } 1800 1801 #define RECOMPRESS_IDLE (1 << 0) 1802 #define RECOMPRESS_HUGE (1 << 1) 1803 1804 static ssize_t recompress_store(struct device *dev, 1805 struct device_attribute *attr, 1806 const char *buf, size_t len) 1807 { 1808 u32 prio = ZRAM_SECONDARY_COMP, prio_max = ZRAM_MAX_COMPS; 1809 struct zram *zram = dev_to_zram(dev); 1810 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 1811 char *args, *param, *val, *algo = NULL; 1812 u64 num_recomp_pages = ULLONG_MAX; 1813 u32 mode = 0, threshold = 0; 1814 unsigned long index; 1815 struct page *page; 1816 ssize_t ret; 1817 1818 args = skip_spaces(buf); 1819 while (*args) { 1820 args = next_arg(args, ¶m, &val); 1821 1822 if (!val || !*val) 1823 return -EINVAL; 1824 1825 if (!strcmp(param, "type")) { 1826 if (!strcmp(val, "idle")) 1827 mode = RECOMPRESS_IDLE; 1828 if (!strcmp(val, "huge")) 1829 mode = RECOMPRESS_HUGE; 1830 if (!strcmp(val, "huge_idle")) 1831 mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE; 1832 continue; 1833 } 1834 1835 if (!strcmp(param, "max_pages")) { 1836 /* 1837 * Limit the number of entries (pages) we attempt to 1838 * recompress. 1839 */ 1840 ret = kstrtoull(val, 10, &num_recomp_pages); 1841 if (ret) 1842 return ret; 1843 continue; 1844 } 1845 1846 if (!strcmp(param, "threshold")) { 1847 /* 1848 * We will re-compress only idle objects equal or 1849 * greater in size than watermark. 1850 */ 1851 ret = kstrtouint(val, 10, &threshold); 1852 if (ret) 1853 return ret; 1854 continue; 1855 } 1856 1857 if (!strcmp(param, "algo")) { 1858 algo = val; 1859 continue; 1860 } 1861 1862 if (!strcmp(param, "priority")) { 1863 ret = kstrtouint(val, 10, &prio); 1864 if (ret) 1865 return ret; 1866 1867 if (prio == ZRAM_PRIMARY_COMP) 1868 prio = ZRAM_SECONDARY_COMP; 1869 1870 prio_max = min(prio + 1, ZRAM_MAX_COMPS); 1871 continue; 1872 } 1873 } 1874 1875 if (threshold >= huge_class_size) 1876 return -EINVAL; 1877 1878 down_read(&zram->init_lock); 1879 if (!init_done(zram)) { 1880 ret = -EINVAL; 1881 goto release_init_lock; 1882 } 1883 1884 if (algo) { 1885 bool found = false; 1886 1887 for (; prio < ZRAM_MAX_COMPS; prio++) { 1888 if (!zram->comp_algs[prio]) 1889 continue; 1890 1891 if (!strcmp(zram->comp_algs[prio], algo)) { 1892 prio_max = min(prio + 1, ZRAM_MAX_COMPS); 1893 found = true; 1894 break; 1895 } 1896 } 1897 1898 if (!found) { 1899 ret = -EINVAL; 1900 goto release_init_lock; 1901 } 1902 } 1903 1904 page = alloc_page(GFP_KERNEL); 1905 if (!page) { 1906 ret = -ENOMEM; 1907 goto release_init_lock; 1908 } 1909 1910 ret = len; 1911 for (index = 0; index < nr_pages; index++) { 1912 int err = 0; 1913 1914 if (!num_recomp_pages) 1915 break; 1916 1917 zram_slot_lock(zram, index); 1918 1919 if (!zram_allocated(zram, index)) 1920 goto next; 1921 1922 if (mode & RECOMPRESS_IDLE && 1923 !zram_test_flag(zram, index, ZRAM_IDLE)) 1924 goto next; 1925 1926 if (mode & RECOMPRESS_HUGE && 1927 !zram_test_flag(zram, index, ZRAM_HUGE)) 1928 goto next; 1929 1930 if (zram_test_flag(zram, index, ZRAM_WB) || 1931 zram_test_flag(zram, index, ZRAM_UNDER_WB) || 1932 zram_test_flag(zram, index, ZRAM_SAME) || 1933 zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 1934 goto next; 1935 1936 err = zram_recompress(zram, index, page, &num_recomp_pages, 1937 threshold, prio, prio_max); 1938 next: 1939 zram_slot_unlock(zram, index); 1940 if (err) { 1941 ret = err; 1942 break; 1943 } 1944 1945 cond_resched(); 1946 } 1947 1948 __free_page(page); 1949 1950 release_init_lock: 1951 up_read(&zram->init_lock); 1952 return ret; 1953 } 1954 #endif 1955 1956 static void zram_bio_discard(struct zram *zram, struct bio *bio) 1957 { 1958 size_t n = bio->bi_iter.bi_size; 1959 u32 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 1960 u32 offset = (bio->bi_iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 1961 SECTOR_SHIFT; 1962 1963 /* 1964 * zram manages data in physical block size units. Because logical block 1965 * size isn't identical with physical block size on some arch, we 1966 * could get a discard request pointing to a specific offset within a 1967 * certain physical block. Although we can handle this request by 1968 * reading that physiclal block and decompressing and partially zeroing 1969 * and re-compressing and then re-storing it, this isn't reasonable 1970 * because our intent with a discard request is to save memory. So 1971 * skipping this logical block is appropriate here. 1972 */ 1973 if (offset) { 1974 if (n <= (PAGE_SIZE - offset)) 1975 return; 1976 1977 n -= (PAGE_SIZE - offset); 1978 index++; 1979 } 1980 1981 while (n >= PAGE_SIZE) { 1982 zram_slot_lock(zram, index); 1983 zram_free_page(zram, index); 1984 zram_slot_unlock(zram, index); 1985 atomic64_inc(&zram->stats.notify_free); 1986 index++; 1987 n -= PAGE_SIZE; 1988 } 1989 1990 bio_endio(bio); 1991 } 1992 1993 static void zram_bio_read(struct zram *zram, struct bio *bio) 1994 { 1995 unsigned long start_time = bio_start_io_acct(bio); 1996 struct bvec_iter iter = bio->bi_iter; 1997 1998 do { 1999 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 2000 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 2001 SECTOR_SHIFT; 2002 struct bio_vec bv = bio_iter_iovec(bio, iter); 2003 2004 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset); 2005 2006 if (zram_bvec_read(zram, &bv, index, offset, bio) < 0) { 2007 atomic64_inc(&zram->stats.failed_reads); 2008 bio->bi_status = BLK_STS_IOERR; 2009 break; 2010 } 2011 flush_dcache_page(bv.bv_page); 2012 2013 zram_slot_lock(zram, index); 2014 zram_accessed(zram, index); 2015 zram_slot_unlock(zram, index); 2016 2017 bio_advance_iter_single(bio, &iter, bv.bv_len); 2018 } while (iter.bi_size); 2019 2020 bio_end_io_acct(bio, start_time); 2021 bio_endio(bio); 2022 } 2023 2024 static void zram_bio_write(struct zram *zram, struct bio *bio) 2025 { 2026 unsigned long start_time = bio_start_io_acct(bio); 2027 struct bvec_iter iter = bio->bi_iter; 2028 2029 do { 2030 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 2031 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 2032 SECTOR_SHIFT; 2033 struct bio_vec bv = bio_iter_iovec(bio, iter); 2034 2035 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset); 2036 2037 if (zram_bvec_write(zram, &bv, index, offset, bio) < 0) { 2038 atomic64_inc(&zram->stats.failed_writes); 2039 bio->bi_status = BLK_STS_IOERR; 2040 break; 2041 } 2042 2043 zram_slot_lock(zram, index); 2044 zram_accessed(zram, index); 2045 zram_slot_unlock(zram, index); 2046 2047 bio_advance_iter_single(bio, &iter, bv.bv_len); 2048 } while (iter.bi_size); 2049 2050 bio_end_io_acct(bio, start_time); 2051 bio_endio(bio); 2052 } 2053 2054 /* 2055 * Handler function for all zram I/O requests. 2056 */ 2057 static void zram_submit_bio(struct bio *bio) 2058 { 2059 struct zram *zram = bio->bi_bdev->bd_disk->private_data; 2060 2061 switch (bio_op(bio)) { 2062 case REQ_OP_READ: 2063 zram_bio_read(zram, bio); 2064 break; 2065 case REQ_OP_WRITE: 2066 zram_bio_write(zram, bio); 2067 break; 2068 case REQ_OP_DISCARD: 2069 case REQ_OP_WRITE_ZEROES: 2070 zram_bio_discard(zram, bio); 2071 break; 2072 default: 2073 WARN_ON_ONCE(1); 2074 bio_endio(bio); 2075 } 2076 } 2077 2078 static void zram_slot_free_notify(struct block_device *bdev, 2079 unsigned long index) 2080 { 2081 struct zram *zram; 2082 2083 zram = bdev->bd_disk->private_data; 2084 2085 atomic64_inc(&zram->stats.notify_free); 2086 if (!zram_slot_trylock(zram, index)) { 2087 atomic64_inc(&zram->stats.miss_free); 2088 return; 2089 } 2090 2091 zram_free_page(zram, index); 2092 zram_slot_unlock(zram, index); 2093 } 2094 2095 static void zram_comp_params_reset(struct zram *zram) 2096 { 2097 u32 prio; 2098 2099 for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { 2100 comp_params_reset(zram, prio); 2101 } 2102 } 2103 2104 static void zram_destroy_comps(struct zram *zram) 2105 { 2106 u32 prio; 2107 2108 for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) { 2109 struct zcomp *comp = zram->comps[prio]; 2110 2111 zram->comps[prio] = NULL; 2112 if (!comp) 2113 continue; 2114 zcomp_destroy(comp); 2115 zram->num_active_comps--; 2116 } 2117 2118 for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { 2119 /* Do not free statically defined compression algorithms */ 2120 if (zram->comp_algs[prio] != default_compressor) 2121 kfree(zram->comp_algs[prio]); 2122 zram->comp_algs[prio] = NULL; 2123 } 2124 2125 zram_comp_params_reset(zram); 2126 } 2127 2128 static void zram_reset_device(struct zram *zram) 2129 { 2130 down_write(&zram->init_lock); 2131 2132 zram->limit_pages = 0; 2133 2134 if (!init_done(zram)) { 2135 up_write(&zram->init_lock); 2136 return; 2137 } 2138 2139 set_capacity_and_notify(zram->disk, 0); 2140 part_stat_set_all(zram->disk->part0, 0); 2141 2142 /* I/O operation under all of CPU are done so let's free */ 2143 zram_meta_free(zram, zram->disksize); 2144 zram->disksize = 0; 2145 zram_destroy_comps(zram); 2146 memset(&zram->stats, 0, sizeof(zram->stats)); 2147 reset_bdev(zram); 2148 2149 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor); 2150 up_write(&zram->init_lock); 2151 } 2152 2153 static ssize_t disksize_store(struct device *dev, 2154 struct device_attribute *attr, const char *buf, size_t len) 2155 { 2156 u64 disksize; 2157 struct zcomp *comp; 2158 struct zram *zram = dev_to_zram(dev); 2159 int err; 2160 u32 prio; 2161 2162 disksize = memparse(buf, NULL); 2163 if (!disksize) 2164 return -EINVAL; 2165 2166 down_write(&zram->init_lock); 2167 if (init_done(zram)) { 2168 pr_info("Cannot change disksize for initialized device\n"); 2169 err = -EBUSY; 2170 goto out_unlock; 2171 } 2172 2173 disksize = PAGE_ALIGN(disksize); 2174 if (!zram_meta_alloc(zram, disksize)) { 2175 err = -ENOMEM; 2176 goto out_unlock; 2177 } 2178 2179 for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) { 2180 if (!zram->comp_algs[prio]) 2181 continue; 2182 2183 comp = zcomp_create(zram->comp_algs[prio], 2184 &zram->params[prio]); 2185 if (IS_ERR(comp)) { 2186 pr_err("Cannot initialise %s compressing backend\n", 2187 zram->comp_algs[prio]); 2188 err = PTR_ERR(comp); 2189 goto out_free_comps; 2190 } 2191 2192 zram->comps[prio] = comp; 2193 zram->num_active_comps++; 2194 } 2195 zram->disksize = disksize; 2196 set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT); 2197 up_write(&zram->init_lock); 2198 2199 return len; 2200 2201 out_free_comps: 2202 zram_destroy_comps(zram); 2203 zram_meta_free(zram, disksize); 2204 out_unlock: 2205 up_write(&zram->init_lock); 2206 return err; 2207 } 2208 2209 static ssize_t reset_store(struct device *dev, 2210 struct device_attribute *attr, const char *buf, size_t len) 2211 { 2212 int ret; 2213 unsigned short do_reset; 2214 struct zram *zram; 2215 struct gendisk *disk; 2216 2217 ret = kstrtou16(buf, 10, &do_reset); 2218 if (ret) 2219 return ret; 2220 2221 if (!do_reset) 2222 return -EINVAL; 2223 2224 zram = dev_to_zram(dev); 2225 disk = zram->disk; 2226 2227 mutex_lock(&disk->open_mutex); 2228 /* Do not reset an active device or claimed device */ 2229 if (disk_openers(disk) || zram->claim) { 2230 mutex_unlock(&disk->open_mutex); 2231 return -EBUSY; 2232 } 2233 2234 /* From now on, anyone can't open /dev/zram[0-9] */ 2235 zram->claim = true; 2236 mutex_unlock(&disk->open_mutex); 2237 2238 /* Make sure all the pending I/O are finished */ 2239 sync_blockdev(disk->part0); 2240 zram_reset_device(zram); 2241 2242 mutex_lock(&disk->open_mutex); 2243 zram->claim = false; 2244 mutex_unlock(&disk->open_mutex); 2245 2246 return len; 2247 } 2248 2249 static int zram_open(struct gendisk *disk, blk_mode_t mode) 2250 { 2251 struct zram *zram = disk->private_data; 2252 2253 WARN_ON(!mutex_is_locked(&disk->open_mutex)); 2254 2255 /* zram was claimed to reset so open request fails */ 2256 if (zram->claim) 2257 return -EBUSY; 2258 return 0; 2259 } 2260 2261 static const struct block_device_operations zram_devops = { 2262 .open = zram_open, 2263 .submit_bio = zram_submit_bio, 2264 .swap_slot_free_notify = zram_slot_free_notify, 2265 .owner = THIS_MODULE 2266 }; 2267 2268 static DEVICE_ATTR_WO(compact); 2269 static DEVICE_ATTR_RW(disksize); 2270 static DEVICE_ATTR_RO(initstate); 2271 static DEVICE_ATTR_WO(reset); 2272 static DEVICE_ATTR_WO(mem_limit); 2273 static DEVICE_ATTR_WO(mem_used_max); 2274 static DEVICE_ATTR_WO(idle); 2275 static DEVICE_ATTR_RW(max_comp_streams); 2276 static DEVICE_ATTR_RW(comp_algorithm); 2277 #ifdef CONFIG_ZRAM_WRITEBACK 2278 static DEVICE_ATTR_RW(backing_dev); 2279 static DEVICE_ATTR_WO(writeback); 2280 static DEVICE_ATTR_RW(writeback_limit); 2281 static DEVICE_ATTR_RW(writeback_limit_enable); 2282 #endif 2283 #ifdef CONFIG_ZRAM_MULTI_COMP 2284 static DEVICE_ATTR_RW(recomp_algorithm); 2285 static DEVICE_ATTR_WO(recompress); 2286 #endif 2287 static DEVICE_ATTR_WO(algorithm_params); 2288 2289 static struct attribute *zram_disk_attrs[] = { 2290 &dev_attr_disksize.attr, 2291 &dev_attr_initstate.attr, 2292 &dev_attr_reset.attr, 2293 &dev_attr_compact.attr, 2294 &dev_attr_mem_limit.attr, 2295 &dev_attr_mem_used_max.attr, 2296 &dev_attr_idle.attr, 2297 &dev_attr_max_comp_streams.attr, 2298 &dev_attr_comp_algorithm.attr, 2299 #ifdef CONFIG_ZRAM_WRITEBACK 2300 &dev_attr_backing_dev.attr, 2301 &dev_attr_writeback.attr, 2302 &dev_attr_writeback_limit.attr, 2303 &dev_attr_writeback_limit_enable.attr, 2304 #endif 2305 &dev_attr_io_stat.attr, 2306 &dev_attr_mm_stat.attr, 2307 #ifdef CONFIG_ZRAM_WRITEBACK 2308 &dev_attr_bd_stat.attr, 2309 #endif 2310 &dev_attr_debug_stat.attr, 2311 #ifdef CONFIG_ZRAM_MULTI_COMP 2312 &dev_attr_recomp_algorithm.attr, 2313 &dev_attr_recompress.attr, 2314 #endif 2315 &dev_attr_algorithm_params.attr, 2316 NULL, 2317 }; 2318 2319 ATTRIBUTE_GROUPS(zram_disk); 2320 2321 /* 2322 * Allocate and initialize new zram device. the function returns 2323 * '>= 0' device_id upon success, and negative value otherwise. 2324 */ 2325 static int zram_add(void) 2326 { 2327 struct queue_limits lim = { 2328 .logical_block_size = ZRAM_LOGICAL_BLOCK_SIZE, 2329 /* 2330 * To ensure that we always get PAGE_SIZE aligned and 2331 * n*PAGE_SIZED sized I/O requests. 2332 */ 2333 .physical_block_size = PAGE_SIZE, 2334 .io_min = PAGE_SIZE, 2335 .io_opt = PAGE_SIZE, 2336 .max_hw_discard_sectors = UINT_MAX, 2337 /* 2338 * zram_bio_discard() will clear all logical blocks if logical 2339 * block size is identical with physical block size(PAGE_SIZE). 2340 * But if it is different, we will skip discarding some parts of 2341 * logical blocks in the part of the request range which isn't 2342 * aligned to physical block size. So we can't ensure that all 2343 * discarded logical blocks are zeroed. 2344 */ 2345 #if ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE 2346 .max_write_zeroes_sectors = UINT_MAX, 2347 #endif 2348 .features = BLK_FEAT_STABLE_WRITES | 2349 BLK_FEAT_SYNCHRONOUS, 2350 }; 2351 struct zram *zram; 2352 int ret, device_id; 2353 2354 zram = kzalloc(sizeof(struct zram), GFP_KERNEL); 2355 if (!zram) 2356 return -ENOMEM; 2357 2358 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); 2359 if (ret < 0) 2360 goto out_free_dev; 2361 device_id = ret; 2362 2363 init_rwsem(&zram->init_lock); 2364 #ifdef CONFIG_ZRAM_WRITEBACK 2365 spin_lock_init(&zram->wb_limit_lock); 2366 #endif 2367 2368 /* gendisk structure */ 2369 zram->disk = blk_alloc_disk(&lim, NUMA_NO_NODE); 2370 if (IS_ERR(zram->disk)) { 2371 pr_err("Error allocating disk structure for device %d\n", 2372 device_id); 2373 ret = PTR_ERR(zram->disk); 2374 goto out_free_idr; 2375 } 2376 2377 zram->disk->major = zram_major; 2378 zram->disk->first_minor = device_id; 2379 zram->disk->minors = 1; 2380 zram->disk->flags |= GENHD_FL_NO_PART; 2381 zram->disk->fops = &zram_devops; 2382 zram->disk->private_data = zram; 2383 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 2384 2385 /* Actual capacity set using sysfs (/sys/block/zram<id>/disksize */ 2386 set_capacity(zram->disk, 0); 2387 ret = device_add_disk(NULL, zram->disk, zram_disk_groups); 2388 if (ret) 2389 goto out_cleanup_disk; 2390 2391 zram_comp_params_reset(zram); 2392 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor); 2393 2394 zram_debugfs_register(zram); 2395 pr_info("Added device: %s\n", zram->disk->disk_name); 2396 return device_id; 2397 2398 out_cleanup_disk: 2399 put_disk(zram->disk); 2400 out_free_idr: 2401 idr_remove(&zram_index_idr, device_id); 2402 out_free_dev: 2403 kfree(zram); 2404 return ret; 2405 } 2406 2407 static int zram_remove(struct zram *zram) 2408 { 2409 bool claimed; 2410 2411 mutex_lock(&zram->disk->open_mutex); 2412 if (disk_openers(zram->disk)) { 2413 mutex_unlock(&zram->disk->open_mutex); 2414 return -EBUSY; 2415 } 2416 2417 claimed = zram->claim; 2418 if (!claimed) 2419 zram->claim = true; 2420 mutex_unlock(&zram->disk->open_mutex); 2421 2422 zram_debugfs_unregister(zram); 2423 2424 if (claimed) { 2425 /* 2426 * If we were claimed by reset_store(), del_gendisk() will 2427 * wait until reset_store() is done, so nothing need to do. 2428 */ 2429 ; 2430 } else { 2431 /* Make sure all the pending I/O are finished */ 2432 sync_blockdev(zram->disk->part0); 2433 zram_reset_device(zram); 2434 } 2435 2436 pr_info("Removed device: %s\n", zram->disk->disk_name); 2437 2438 del_gendisk(zram->disk); 2439 2440 /* del_gendisk drains pending reset_store */ 2441 WARN_ON_ONCE(claimed && zram->claim); 2442 2443 /* 2444 * disksize_store() may be called in between zram_reset_device() 2445 * and del_gendisk(), so run the last reset to avoid leaking 2446 * anything allocated with disksize_store() 2447 */ 2448 zram_reset_device(zram); 2449 2450 put_disk(zram->disk); 2451 kfree(zram); 2452 return 0; 2453 } 2454 2455 /* zram-control sysfs attributes */ 2456 2457 /* 2458 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a 2459 * sense that reading from this file does alter the state of your system -- it 2460 * creates a new un-initialized zram device and returns back this device's 2461 * device_id (or an error code if it fails to create a new device). 2462 */ 2463 static ssize_t hot_add_show(const struct class *class, 2464 const struct class_attribute *attr, 2465 char *buf) 2466 { 2467 int ret; 2468 2469 mutex_lock(&zram_index_mutex); 2470 ret = zram_add(); 2471 mutex_unlock(&zram_index_mutex); 2472 2473 if (ret < 0) 2474 return ret; 2475 return scnprintf(buf, PAGE_SIZE, "%d\n", ret); 2476 } 2477 /* This attribute must be set to 0400, so CLASS_ATTR_RO() can not be used */ 2478 static struct class_attribute class_attr_hot_add = 2479 __ATTR(hot_add, 0400, hot_add_show, NULL); 2480 2481 static ssize_t hot_remove_store(const struct class *class, 2482 const struct class_attribute *attr, 2483 const char *buf, 2484 size_t count) 2485 { 2486 struct zram *zram; 2487 int ret, dev_id; 2488 2489 /* dev_id is gendisk->first_minor, which is `int' */ 2490 ret = kstrtoint(buf, 10, &dev_id); 2491 if (ret) 2492 return ret; 2493 if (dev_id < 0) 2494 return -EINVAL; 2495 2496 mutex_lock(&zram_index_mutex); 2497 2498 zram = idr_find(&zram_index_idr, dev_id); 2499 if (zram) { 2500 ret = zram_remove(zram); 2501 if (!ret) 2502 idr_remove(&zram_index_idr, dev_id); 2503 } else { 2504 ret = -ENODEV; 2505 } 2506 2507 mutex_unlock(&zram_index_mutex); 2508 return ret ? ret : count; 2509 } 2510 static CLASS_ATTR_WO(hot_remove); 2511 2512 static struct attribute *zram_control_class_attrs[] = { 2513 &class_attr_hot_add.attr, 2514 &class_attr_hot_remove.attr, 2515 NULL, 2516 }; 2517 ATTRIBUTE_GROUPS(zram_control_class); 2518 2519 static struct class zram_control_class = { 2520 .name = "zram-control", 2521 .class_groups = zram_control_class_groups, 2522 }; 2523 2524 static int zram_remove_cb(int id, void *ptr, void *data) 2525 { 2526 WARN_ON_ONCE(zram_remove(ptr)); 2527 return 0; 2528 } 2529 2530 static void destroy_devices(void) 2531 { 2532 class_unregister(&zram_control_class); 2533 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); 2534 zram_debugfs_destroy(); 2535 idr_destroy(&zram_index_idr); 2536 unregister_blkdev(zram_major, "zram"); 2537 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2538 } 2539 2540 static int __init zram_init(void) 2541 { 2542 struct zram_table_entry zram_te; 2543 int ret; 2544 2545 BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > sizeof(zram_te.flags) * 8); 2546 2547 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare", 2548 zcomp_cpu_up_prepare, zcomp_cpu_dead); 2549 if (ret < 0) 2550 return ret; 2551 2552 ret = class_register(&zram_control_class); 2553 if (ret) { 2554 pr_err("Unable to register zram-control class\n"); 2555 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2556 return ret; 2557 } 2558 2559 zram_debugfs_create(); 2560 zram_major = register_blkdev(0, "zram"); 2561 if (zram_major <= 0) { 2562 pr_err("Unable to get major number\n"); 2563 class_unregister(&zram_control_class); 2564 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2565 return -EBUSY; 2566 } 2567 2568 while (num_devices != 0) { 2569 mutex_lock(&zram_index_mutex); 2570 ret = zram_add(); 2571 mutex_unlock(&zram_index_mutex); 2572 if (ret < 0) 2573 goto out_error; 2574 num_devices--; 2575 } 2576 2577 return 0; 2578 2579 out_error: 2580 destroy_devices(); 2581 return ret; 2582 } 2583 2584 static void __exit zram_exit(void) 2585 { 2586 destroy_devices(); 2587 } 2588 2589 module_init(zram_init); 2590 module_exit(zram_exit); 2591 2592 module_param(num_devices, uint, 0); 2593 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); 2594 2595 MODULE_LICENSE("Dual BSD/GPL"); 2596 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2597 MODULE_DESCRIPTION("Compressed RAM Block Device"); 2598