1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/bitops.h> 22 #include <linux/blkdev.h> 23 #include <linux/buffer_head.h> 24 #include <linux/device.h> 25 #include <linux/highmem.h> 26 #include <linux/slab.h> 27 #include <linux/backing-dev.h> 28 #include <linux/string.h> 29 #include <linux/vmalloc.h> 30 #include <linux/err.h> 31 #include <linux/idr.h> 32 #include <linux/sysfs.h> 33 #include <linux/debugfs.h> 34 #include <linux/cpuhotplug.h> 35 #include <linux/part_stat.h> 36 37 #include "zram_drv.h" 38 39 static DEFINE_IDR(zram_index_idr); 40 /* idr index must be protected */ 41 static DEFINE_MUTEX(zram_index_mutex); 42 43 static int zram_major; 44 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP; 45 46 /* Module params (documentation at end) */ 47 static unsigned int num_devices = 1; 48 /* 49 * Pages that compress to sizes equals or greater than this are stored 50 * uncompressed in memory. 51 */ 52 static size_t huge_class_size; 53 54 static const struct block_device_operations zram_devops; 55 56 static void zram_free_page(struct zram *zram, size_t index); 57 static int zram_read_page(struct zram *zram, struct page *page, u32 index, 58 struct bio *parent); 59 60 static int zram_slot_trylock(struct zram *zram, u32 index) 61 { 62 return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags); 63 } 64 65 static void zram_slot_lock(struct zram *zram, u32 index) 66 { 67 bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags); 68 } 69 70 static void zram_slot_unlock(struct zram *zram, u32 index) 71 { 72 bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags); 73 } 74 75 static inline bool init_done(struct zram *zram) 76 { 77 return zram->disksize; 78 } 79 80 static inline struct zram *dev_to_zram(struct device *dev) 81 { 82 return (struct zram *)dev_to_disk(dev)->private_data; 83 } 84 85 static unsigned long zram_get_handle(struct zram *zram, u32 index) 86 { 87 return zram->table[index].handle; 88 } 89 90 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle) 91 { 92 zram->table[index].handle = handle; 93 } 94 95 /* flag operations require table entry bit_spin_lock() being held */ 96 static bool zram_test_flag(struct zram *zram, u32 index, 97 enum zram_pageflags flag) 98 { 99 return zram->table[index].flags & BIT(flag); 100 } 101 102 static void zram_set_flag(struct zram *zram, u32 index, 103 enum zram_pageflags flag) 104 { 105 zram->table[index].flags |= BIT(flag); 106 } 107 108 static void zram_clear_flag(struct zram *zram, u32 index, 109 enum zram_pageflags flag) 110 { 111 zram->table[index].flags &= ~BIT(flag); 112 } 113 114 static inline void zram_set_element(struct zram *zram, u32 index, 115 unsigned long element) 116 { 117 zram->table[index].element = element; 118 } 119 120 static unsigned long zram_get_element(struct zram *zram, u32 index) 121 { 122 return zram->table[index].element; 123 } 124 125 static size_t zram_get_obj_size(struct zram *zram, u32 index) 126 { 127 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1); 128 } 129 130 static void zram_set_obj_size(struct zram *zram, 131 u32 index, size_t size) 132 { 133 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT; 134 135 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size; 136 } 137 138 static inline bool zram_allocated(struct zram *zram, u32 index) 139 { 140 return zram_get_obj_size(zram, index) || 141 zram_test_flag(zram, index, ZRAM_SAME) || 142 zram_test_flag(zram, index, ZRAM_WB); 143 } 144 145 #if PAGE_SIZE != 4096 146 static inline bool is_partial_io(struct bio_vec *bvec) 147 { 148 return bvec->bv_len != PAGE_SIZE; 149 } 150 #define ZRAM_PARTIAL_IO 1 151 #else 152 static inline bool is_partial_io(struct bio_vec *bvec) 153 { 154 return false; 155 } 156 #endif 157 158 static inline void zram_set_priority(struct zram *zram, u32 index, u32 prio) 159 { 160 prio &= ZRAM_COMP_PRIORITY_MASK; 161 /* 162 * Clear previous priority value first, in case if we recompress 163 * further an already recompressed page 164 */ 165 zram->table[index].flags &= ~(ZRAM_COMP_PRIORITY_MASK << 166 ZRAM_COMP_PRIORITY_BIT1); 167 zram->table[index].flags |= (prio << ZRAM_COMP_PRIORITY_BIT1); 168 } 169 170 static inline u32 zram_get_priority(struct zram *zram, u32 index) 171 { 172 u32 prio = zram->table[index].flags >> ZRAM_COMP_PRIORITY_BIT1; 173 174 return prio & ZRAM_COMP_PRIORITY_MASK; 175 } 176 177 static inline void update_used_max(struct zram *zram, 178 const unsigned long pages) 179 { 180 unsigned long cur_max = atomic_long_read(&zram->stats.max_used_pages); 181 182 do { 183 if (cur_max >= pages) 184 return; 185 } while (!atomic_long_try_cmpxchg(&zram->stats.max_used_pages, 186 &cur_max, pages)); 187 } 188 189 static inline void zram_fill_page(void *ptr, unsigned long len, 190 unsigned long value) 191 { 192 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long))); 193 memset_l(ptr, value, len / sizeof(unsigned long)); 194 } 195 196 static bool page_same_filled(void *ptr, unsigned long *element) 197 { 198 unsigned long *page; 199 unsigned long val; 200 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1; 201 202 page = (unsigned long *)ptr; 203 val = page[0]; 204 205 if (val != page[last_pos]) 206 return false; 207 208 for (pos = 1; pos < last_pos; pos++) { 209 if (val != page[pos]) 210 return false; 211 } 212 213 *element = val; 214 215 return true; 216 } 217 218 static ssize_t initstate_show(struct device *dev, 219 struct device_attribute *attr, char *buf) 220 { 221 u32 val; 222 struct zram *zram = dev_to_zram(dev); 223 224 down_read(&zram->init_lock); 225 val = init_done(zram); 226 up_read(&zram->init_lock); 227 228 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 229 } 230 231 static ssize_t disksize_show(struct device *dev, 232 struct device_attribute *attr, char *buf) 233 { 234 struct zram *zram = dev_to_zram(dev); 235 236 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 237 } 238 239 static ssize_t mem_limit_store(struct device *dev, 240 struct device_attribute *attr, const char *buf, size_t len) 241 { 242 u64 limit; 243 char *tmp; 244 struct zram *zram = dev_to_zram(dev); 245 246 limit = memparse(buf, &tmp); 247 if (buf == tmp) /* no chars parsed, invalid input */ 248 return -EINVAL; 249 250 down_write(&zram->init_lock); 251 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; 252 up_write(&zram->init_lock); 253 254 return len; 255 } 256 257 static ssize_t mem_used_max_store(struct device *dev, 258 struct device_attribute *attr, const char *buf, size_t len) 259 { 260 int err; 261 unsigned long val; 262 struct zram *zram = dev_to_zram(dev); 263 264 err = kstrtoul(buf, 10, &val); 265 if (err || val != 0) 266 return -EINVAL; 267 268 down_read(&zram->init_lock); 269 if (init_done(zram)) { 270 atomic_long_set(&zram->stats.max_used_pages, 271 zs_get_total_pages(zram->mem_pool)); 272 } 273 up_read(&zram->init_lock); 274 275 return len; 276 } 277 278 /* 279 * Mark all pages which are older than or equal to cutoff as IDLE. 280 * Callers should hold the zram init lock in read mode 281 */ 282 static void mark_idle(struct zram *zram, ktime_t cutoff) 283 { 284 int is_idle = 1; 285 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 286 int index; 287 288 for (index = 0; index < nr_pages; index++) { 289 /* 290 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race. 291 * See the comment in writeback_store. 292 */ 293 zram_slot_lock(zram, index); 294 if (zram_allocated(zram, index) && 295 !zram_test_flag(zram, index, ZRAM_UNDER_WB)) { 296 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 297 is_idle = !cutoff || ktime_after(cutoff, zram->table[index].ac_time); 298 #endif 299 if (is_idle) 300 zram_set_flag(zram, index, ZRAM_IDLE); 301 } 302 zram_slot_unlock(zram, index); 303 } 304 } 305 306 static ssize_t idle_store(struct device *dev, 307 struct device_attribute *attr, const char *buf, size_t len) 308 { 309 struct zram *zram = dev_to_zram(dev); 310 ktime_t cutoff_time = 0; 311 ssize_t rv = -EINVAL; 312 313 if (!sysfs_streq(buf, "all")) { 314 /* 315 * If it did not parse as 'all' try to treat it as an integer 316 * when we have memory tracking enabled. 317 */ 318 u64 age_sec; 319 320 if (IS_ENABLED(CONFIG_ZRAM_MEMORY_TRACKING) && !kstrtoull(buf, 0, &age_sec)) 321 cutoff_time = ktime_sub(ktime_get_boottime(), 322 ns_to_ktime(age_sec * NSEC_PER_SEC)); 323 else 324 goto out; 325 } 326 327 down_read(&zram->init_lock); 328 if (!init_done(zram)) 329 goto out_unlock; 330 331 /* 332 * A cutoff_time of 0 marks everything as idle, this is the 333 * "all" behavior. 334 */ 335 mark_idle(zram, cutoff_time); 336 rv = len; 337 338 out_unlock: 339 up_read(&zram->init_lock); 340 out: 341 return rv; 342 } 343 344 #ifdef CONFIG_ZRAM_WRITEBACK 345 static ssize_t writeback_limit_enable_store(struct device *dev, 346 struct device_attribute *attr, const char *buf, size_t len) 347 { 348 struct zram *zram = dev_to_zram(dev); 349 u64 val; 350 ssize_t ret = -EINVAL; 351 352 if (kstrtoull(buf, 10, &val)) 353 return ret; 354 355 down_read(&zram->init_lock); 356 spin_lock(&zram->wb_limit_lock); 357 zram->wb_limit_enable = val; 358 spin_unlock(&zram->wb_limit_lock); 359 up_read(&zram->init_lock); 360 ret = len; 361 362 return ret; 363 } 364 365 static ssize_t writeback_limit_enable_show(struct device *dev, 366 struct device_attribute *attr, char *buf) 367 { 368 bool val; 369 struct zram *zram = dev_to_zram(dev); 370 371 down_read(&zram->init_lock); 372 spin_lock(&zram->wb_limit_lock); 373 val = zram->wb_limit_enable; 374 spin_unlock(&zram->wb_limit_lock); 375 up_read(&zram->init_lock); 376 377 return scnprintf(buf, PAGE_SIZE, "%d\n", val); 378 } 379 380 static ssize_t writeback_limit_store(struct device *dev, 381 struct device_attribute *attr, const char *buf, size_t len) 382 { 383 struct zram *zram = dev_to_zram(dev); 384 u64 val; 385 ssize_t ret = -EINVAL; 386 387 if (kstrtoull(buf, 10, &val)) 388 return ret; 389 390 down_read(&zram->init_lock); 391 spin_lock(&zram->wb_limit_lock); 392 zram->bd_wb_limit = val; 393 spin_unlock(&zram->wb_limit_lock); 394 up_read(&zram->init_lock); 395 ret = len; 396 397 return ret; 398 } 399 400 static ssize_t writeback_limit_show(struct device *dev, 401 struct device_attribute *attr, char *buf) 402 { 403 u64 val; 404 struct zram *zram = dev_to_zram(dev); 405 406 down_read(&zram->init_lock); 407 spin_lock(&zram->wb_limit_lock); 408 val = zram->bd_wb_limit; 409 spin_unlock(&zram->wb_limit_lock); 410 up_read(&zram->init_lock); 411 412 return scnprintf(buf, PAGE_SIZE, "%llu\n", val); 413 } 414 415 static void reset_bdev(struct zram *zram) 416 { 417 if (!zram->backing_dev) 418 return; 419 420 bdev_release(zram->bdev_handle); 421 /* hope filp_close flush all of IO */ 422 filp_close(zram->backing_dev, NULL); 423 zram->backing_dev = NULL; 424 zram->bdev_handle = NULL; 425 zram->disk->fops = &zram_devops; 426 kvfree(zram->bitmap); 427 zram->bitmap = NULL; 428 } 429 430 static ssize_t backing_dev_show(struct device *dev, 431 struct device_attribute *attr, char *buf) 432 { 433 struct file *file; 434 struct zram *zram = dev_to_zram(dev); 435 char *p; 436 ssize_t ret; 437 438 down_read(&zram->init_lock); 439 file = zram->backing_dev; 440 if (!file) { 441 memcpy(buf, "none\n", 5); 442 up_read(&zram->init_lock); 443 return 5; 444 } 445 446 p = file_path(file, buf, PAGE_SIZE - 1); 447 if (IS_ERR(p)) { 448 ret = PTR_ERR(p); 449 goto out; 450 } 451 452 ret = strlen(p); 453 memmove(buf, p, ret); 454 buf[ret++] = '\n'; 455 out: 456 up_read(&zram->init_lock); 457 return ret; 458 } 459 460 static ssize_t backing_dev_store(struct device *dev, 461 struct device_attribute *attr, const char *buf, size_t len) 462 { 463 char *file_name; 464 size_t sz; 465 struct file *backing_dev = NULL; 466 struct inode *inode; 467 struct address_space *mapping; 468 unsigned int bitmap_sz; 469 unsigned long nr_pages, *bitmap = NULL; 470 struct bdev_handle *bdev_handle = NULL; 471 int err; 472 struct zram *zram = dev_to_zram(dev); 473 474 file_name = kmalloc(PATH_MAX, GFP_KERNEL); 475 if (!file_name) 476 return -ENOMEM; 477 478 down_write(&zram->init_lock); 479 if (init_done(zram)) { 480 pr_info("Can't setup backing device for initialized device\n"); 481 err = -EBUSY; 482 goto out; 483 } 484 485 strscpy(file_name, buf, PATH_MAX); 486 /* ignore trailing newline */ 487 sz = strlen(file_name); 488 if (sz > 0 && file_name[sz - 1] == '\n') 489 file_name[sz - 1] = 0x00; 490 491 backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0); 492 if (IS_ERR(backing_dev)) { 493 err = PTR_ERR(backing_dev); 494 backing_dev = NULL; 495 goto out; 496 } 497 498 mapping = backing_dev->f_mapping; 499 inode = mapping->host; 500 501 /* Support only block device in this moment */ 502 if (!S_ISBLK(inode->i_mode)) { 503 err = -ENOTBLK; 504 goto out; 505 } 506 507 bdev_handle = bdev_open_by_dev(inode->i_rdev, 508 BLK_OPEN_READ | BLK_OPEN_WRITE, zram, NULL); 509 if (IS_ERR(bdev_handle)) { 510 err = PTR_ERR(bdev_handle); 511 bdev_handle = NULL; 512 goto out; 513 } 514 515 nr_pages = i_size_read(inode) >> PAGE_SHIFT; 516 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long); 517 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL); 518 if (!bitmap) { 519 err = -ENOMEM; 520 goto out; 521 } 522 523 reset_bdev(zram); 524 525 zram->bdev_handle = bdev_handle; 526 zram->backing_dev = backing_dev; 527 zram->bitmap = bitmap; 528 zram->nr_pages = nr_pages; 529 up_write(&zram->init_lock); 530 531 pr_info("setup backing device %s\n", file_name); 532 kfree(file_name); 533 534 return len; 535 out: 536 kvfree(bitmap); 537 538 if (bdev_handle) 539 bdev_release(bdev_handle); 540 541 if (backing_dev) 542 filp_close(backing_dev, NULL); 543 544 up_write(&zram->init_lock); 545 546 kfree(file_name); 547 548 return err; 549 } 550 551 static unsigned long alloc_block_bdev(struct zram *zram) 552 { 553 unsigned long blk_idx = 1; 554 retry: 555 /* skip 0 bit to confuse zram.handle = 0 */ 556 blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx); 557 if (blk_idx == zram->nr_pages) 558 return 0; 559 560 if (test_and_set_bit(blk_idx, zram->bitmap)) 561 goto retry; 562 563 atomic64_inc(&zram->stats.bd_count); 564 return blk_idx; 565 } 566 567 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) 568 { 569 int was_set; 570 571 was_set = test_and_clear_bit(blk_idx, zram->bitmap); 572 WARN_ON_ONCE(!was_set); 573 atomic64_dec(&zram->stats.bd_count); 574 } 575 576 static void read_from_bdev_async(struct zram *zram, struct page *page, 577 unsigned long entry, struct bio *parent) 578 { 579 struct bio *bio; 580 581 bio = bio_alloc(zram->bdev_handle->bdev, 1, parent->bi_opf, GFP_NOIO); 582 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9); 583 __bio_add_page(bio, page, PAGE_SIZE, 0); 584 bio_chain(bio, parent); 585 submit_bio(bio); 586 } 587 588 #define PAGE_WB_SIG "page_index=" 589 590 #define PAGE_WRITEBACK 0 591 #define HUGE_WRITEBACK (1<<0) 592 #define IDLE_WRITEBACK (1<<1) 593 #define INCOMPRESSIBLE_WRITEBACK (1<<2) 594 595 static ssize_t writeback_store(struct device *dev, 596 struct device_attribute *attr, const char *buf, size_t len) 597 { 598 struct zram *zram = dev_to_zram(dev); 599 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 600 unsigned long index = 0; 601 struct bio bio; 602 struct bio_vec bio_vec; 603 struct page *page; 604 ssize_t ret = len; 605 int mode, err; 606 unsigned long blk_idx = 0; 607 608 if (sysfs_streq(buf, "idle")) 609 mode = IDLE_WRITEBACK; 610 else if (sysfs_streq(buf, "huge")) 611 mode = HUGE_WRITEBACK; 612 else if (sysfs_streq(buf, "huge_idle")) 613 mode = IDLE_WRITEBACK | HUGE_WRITEBACK; 614 else if (sysfs_streq(buf, "incompressible")) 615 mode = INCOMPRESSIBLE_WRITEBACK; 616 else { 617 if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1)) 618 return -EINVAL; 619 620 if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) || 621 index >= nr_pages) 622 return -EINVAL; 623 624 nr_pages = 1; 625 mode = PAGE_WRITEBACK; 626 } 627 628 down_read(&zram->init_lock); 629 if (!init_done(zram)) { 630 ret = -EINVAL; 631 goto release_init_lock; 632 } 633 634 if (!zram->backing_dev) { 635 ret = -ENODEV; 636 goto release_init_lock; 637 } 638 639 page = alloc_page(GFP_KERNEL); 640 if (!page) { 641 ret = -ENOMEM; 642 goto release_init_lock; 643 } 644 645 for (; nr_pages != 0; index++, nr_pages--) { 646 spin_lock(&zram->wb_limit_lock); 647 if (zram->wb_limit_enable && !zram->bd_wb_limit) { 648 spin_unlock(&zram->wb_limit_lock); 649 ret = -EIO; 650 break; 651 } 652 spin_unlock(&zram->wb_limit_lock); 653 654 if (!blk_idx) { 655 blk_idx = alloc_block_bdev(zram); 656 if (!blk_idx) { 657 ret = -ENOSPC; 658 break; 659 } 660 } 661 662 zram_slot_lock(zram, index); 663 if (!zram_allocated(zram, index)) 664 goto next; 665 666 if (zram_test_flag(zram, index, ZRAM_WB) || 667 zram_test_flag(zram, index, ZRAM_SAME) || 668 zram_test_flag(zram, index, ZRAM_UNDER_WB)) 669 goto next; 670 671 if (mode & IDLE_WRITEBACK && 672 !zram_test_flag(zram, index, ZRAM_IDLE)) 673 goto next; 674 if (mode & HUGE_WRITEBACK && 675 !zram_test_flag(zram, index, ZRAM_HUGE)) 676 goto next; 677 if (mode & INCOMPRESSIBLE_WRITEBACK && 678 !zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 679 goto next; 680 681 /* 682 * Clearing ZRAM_UNDER_WB is duty of caller. 683 * IOW, zram_free_page never clear it. 684 */ 685 zram_set_flag(zram, index, ZRAM_UNDER_WB); 686 /* Need for hugepage writeback racing */ 687 zram_set_flag(zram, index, ZRAM_IDLE); 688 zram_slot_unlock(zram, index); 689 if (zram_read_page(zram, page, index, NULL)) { 690 zram_slot_lock(zram, index); 691 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 692 zram_clear_flag(zram, index, ZRAM_IDLE); 693 zram_slot_unlock(zram, index); 694 continue; 695 } 696 697 bio_init(&bio, zram->bdev_handle->bdev, &bio_vec, 1, 698 REQ_OP_WRITE | REQ_SYNC); 699 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9); 700 __bio_add_page(&bio, page, PAGE_SIZE, 0); 701 702 /* 703 * XXX: A single page IO would be inefficient for write 704 * but it would be not bad as starter. 705 */ 706 err = submit_bio_wait(&bio); 707 if (err) { 708 zram_slot_lock(zram, index); 709 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 710 zram_clear_flag(zram, index, ZRAM_IDLE); 711 zram_slot_unlock(zram, index); 712 /* 713 * BIO errors are not fatal, we continue and simply 714 * attempt to writeback the remaining objects (pages). 715 * At the same time we need to signal user-space that 716 * some writes (at least one, but also could be all of 717 * them) were not successful and we do so by returning 718 * the most recent BIO error. 719 */ 720 ret = err; 721 continue; 722 } 723 724 atomic64_inc(&zram->stats.bd_writes); 725 /* 726 * We released zram_slot_lock so need to check if the slot was 727 * changed. If there is freeing for the slot, we can catch it 728 * easily by zram_allocated. 729 * A subtle case is the slot is freed/reallocated/marked as 730 * ZRAM_IDLE again. To close the race, idle_store doesn't 731 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB. 732 * Thus, we could close the race by checking ZRAM_IDLE bit. 733 */ 734 zram_slot_lock(zram, index); 735 if (!zram_allocated(zram, index) || 736 !zram_test_flag(zram, index, ZRAM_IDLE)) { 737 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 738 zram_clear_flag(zram, index, ZRAM_IDLE); 739 goto next; 740 } 741 742 zram_free_page(zram, index); 743 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 744 zram_set_flag(zram, index, ZRAM_WB); 745 zram_set_element(zram, index, blk_idx); 746 blk_idx = 0; 747 atomic64_inc(&zram->stats.pages_stored); 748 spin_lock(&zram->wb_limit_lock); 749 if (zram->wb_limit_enable && zram->bd_wb_limit > 0) 750 zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12); 751 spin_unlock(&zram->wb_limit_lock); 752 next: 753 zram_slot_unlock(zram, index); 754 } 755 756 if (blk_idx) 757 free_block_bdev(zram, blk_idx); 758 __free_page(page); 759 release_init_lock: 760 up_read(&zram->init_lock); 761 762 return ret; 763 } 764 765 struct zram_work { 766 struct work_struct work; 767 struct zram *zram; 768 unsigned long entry; 769 struct page *page; 770 int error; 771 }; 772 773 static void zram_sync_read(struct work_struct *work) 774 { 775 struct zram_work *zw = container_of(work, struct zram_work, work); 776 struct bio_vec bv; 777 struct bio bio; 778 779 bio_init(&bio, zw->zram->bdev_handle->bdev, &bv, 1, REQ_OP_READ); 780 bio.bi_iter.bi_sector = zw->entry * (PAGE_SIZE >> 9); 781 __bio_add_page(&bio, zw->page, PAGE_SIZE, 0); 782 zw->error = submit_bio_wait(&bio); 783 } 784 785 /* 786 * Block layer want one ->submit_bio to be active at a time, so if we use 787 * chained IO with parent IO in same context, it's a deadlock. To avoid that, 788 * use a worker thread context. 789 */ 790 static int read_from_bdev_sync(struct zram *zram, struct page *page, 791 unsigned long entry) 792 { 793 struct zram_work work; 794 795 work.page = page; 796 work.zram = zram; 797 work.entry = entry; 798 799 INIT_WORK_ONSTACK(&work.work, zram_sync_read); 800 queue_work(system_unbound_wq, &work.work); 801 flush_work(&work.work); 802 destroy_work_on_stack(&work.work); 803 804 return work.error; 805 } 806 807 static int read_from_bdev(struct zram *zram, struct page *page, 808 unsigned long entry, struct bio *parent) 809 { 810 atomic64_inc(&zram->stats.bd_reads); 811 if (!parent) { 812 if (WARN_ON_ONCE(!IS_ENABLED(ZRAM_PARTIAL_IO))) 813 return -EIO; 814 return read_from_bdev_sync(zram, page, entry); 815 } 816 read_from_bdev_async(zram, page, entry, parent); 817 return 0; 818 } 819 #else 820 static inline void reset_bdev(struct zram *zram) {}; 821 static int read_from_bdev(struct zram *zram, struct page *page, 822 unsigned long entry, struct bio *parent) 823 { 824 return -EIO; 825 } 826 827 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {}; 828 #endif 829 830 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 831 832 static struct dentry *zram_debugfs_root; 833 834 static void zram_debugfs_create(void) 835 { 836 zram_debugfs_root = debugfs_create_dir("zram", NULL); 837 } 838 839 static void zram_debugfs_destroy(void) 840 { 841 debugfs_remove_recursive(zram_debugfs_root); 842 } 843 844 static void zram_accessed(struct zram *zram, u32 index) 845 { 846 zram_clear_flag(zram, index, ZRAM_IDLE); 847 zram->table[index].ac_time = ktime_get_boottime(); 848 } 849 850 static ssize_t read_block_state(struct file *file, char __user *buf, 851 size_t count, loff_t *ppos) 852 { 853 char *kbuf; 854 ssize_t index, written = 0; 855 struct zram *zram = file->private_data; 856 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 857 struct timespec64 ts; 858 859 kbuf = kvmalloc(count, GFP_KERNEL); 860 if (!kbuf) 861 return -ENOMEM; 862 863 down_read(&zram->init_lock); 864 if (!init_done(zram)) { 865 up_read(&zram->init_lock); 866 kvfree(kbuf); 867 return -EINVAL; 868 } 869 870 for (index = *ppos; index < nr_pages; index++) { 871 int copied; 872 873 zram_slot_lock(zram, index); 874 if (!zram_allocated(zram, index)) 875 goto next; 876 877 ts = ktime_to_timespec64(zram->table[index].ac_time); 878 copied = snprintf(kbuf + written, count, 879 "%12zd %12lld.%06lu %c%c%c%c%c%c\n", 880 index, (s64)ts.tv_sec, 881 ts.tv_nsec / NSEC_PER_USEC, 882 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.', 883 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.', 884 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.', 885 zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.', 886 zram_get_priority(zram, index) ? 'r' : '.', 887 zram_test_flag(zram, index, 888 ZRAM_INCOMPRESSIBLE) ? 'n' : '.'); 889 890 if (count <= copied) { 891 zram_slot_unlock(zram, index); 892 break; 893 } 894 written += copied; 895 count -= copied; 896 next: 897 zram_slot_unlock(zram, index); 898 *ppos += 1; 899 } 900 901 up_read(&zram->init_lock); 902 if (copy_to_user(buf, kbuf, written)) 903 written = -EFAULT; 904 kvfree(kbuf); 905 906 return written; 907 } 908 909 static const struct file_operations proc_zram_block_state_op = { 910 .open = simple_open, 911 .read = read_block_state, 912 .llseek = default_llseek, 913 }; 914 915 static void zram_debugfs_register(struct zram *zram) 916 { 917 if (!zram_debugfs_root) 918 return; 919 920 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name, 921 zram_debugfs_root); 922 debugfs_create_file("block_state", 0400, zram->debugfs_dir, 923 zram, &proc_zram_block_state_op); 924 } 925 926 static void zram_debugfs_unregister(struct zram *zram) 927 { 928 debugfs_remove_recursive(zram->debugfs_dir); 929 } 930 #else 931 static void zram_debugfs_create(void) {}; 932 static void zram_debugfs_destroy(void) {}; 933 static void zram_accessed(struct zram *zram, u32 index) 934 { 935 zram_clear_flag(zram, index, ZRAM_IDLE); 936 }; 937 static void zram_debugfs_register(struct zram *zram) {}; 938 static void zram_debugfs_unregister(struct zram *zram) {}; 939 #endif 940 941 /* 942 * We switched to per-cpu streams and this attr is not needed anymore. 943 * However, we will keep it around for some time, because: 944 * a) we may revert per-cpu streams in the future 945 * b) it's visible to user space and we need to follow our 2 years 946 * retirement rule; but we already have a number of 'soon to be 947 * altered' attrs, so max_comp_streams need to wait for the next 948 * layoff cycle. 949 */ 950 static ssize_t max_comp_streams_show(struct device *dev, 951 struct device_attribute *attr, char *buf) 952 { 953 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus()); 954 } 955 956 static ssize_t max_comp_streams_store(struct device *dev, 957 struct device_attribute *attr, const char *buf, size_t len) 958 { 959 return len; 960 } 961 962 static void comp_algorithm_set(struct zram *zram, u32 prio, const char *alg) 963 { 964 /* Do not free statically defined compression algorithms */ 965 if (zram->comp_algs[prio] != default_compressor) 966 kfree(zram->comp_algs[prio]); 967 968 zram->comp_algs[prio] = alg; 969 } 970 971 static ssize_t __comp_algorithm_show(struct zram *zram, u32 prio, char *buf) 972 { 973 ssize_t sz; 974 975 down_read(&zram->init_lock); 976 sz = zcomp_available_show(zram->comp_algs[prio], buf); 977 up_read(&zram->init_lock); 978 979 return sz; 980 } 981 982 static int __comp_algorithm_store(struct zram *zram, u32 prio, const char *buf) 983 { 984 char *compressor; 985 size_t sz; 986 987 sz = strlen(buf); 988 if (sz >= CRYPTO_MAX_ALG_NAME) 989 return -E2BIG; 990 991 compressor = kstrdup(buf, GFP_KERNEL); 992 if (!compressor) 993 return -ENOMEM; 994 995 /* ignore trailing newline */ 996 if (sz > 0 && compressor[sz - 1] == '\n') 997 compressor[sz - 1] = 0x00; 998 999 if (!zcomp_available_algorithm(compressor)) { 1000 kfree(compressor); 1001 return -EINVAL; 1002 } 1003 1004 down_write(&zram->init_lock); 1005 if (init_done(zram)) { 1006 up_write(&zram->init_lock); 1007 kfree(compressor); 1008 pr_info("Can't change algorithm for initialized device\n"); 1009 return -EBUSY; 1010 } 1011 1012 comp_algorithm_set(zram, prio, compressor); 1013 up_write(&zram->init_lock); 1014 return 0; 1015 } 1016 1017 static ssize_t comp_algorithm_show(struct device *dev, 1018 struct device_attribute *attr, 1019 char *buf) 1020 { 1021 struct zram *zram = dev_to_zram(dev); 1022 1023 return __comp_algorithm_show(zram, ZRAM_PRIMARY_COMP, buf); 1024 } 1025 1026 static ssize_t comp_algorithm_store(struct device *dev, 1027 struct device_attribute *attr, 1028 const char *buf, 1029 size_t len) 1030 { 1031 struct zram *zram = dev_to_zram(dev); 1032 int ret; 1033 1034 ret = __comp_algorithm_store(zram, ZRAM_PRIMARY_COMP, buf); 1035 return ret ? ret : len; 1036 } 1037 1038 #ifdef CONFIG_ZRAM_MULTI_COMP 1039 static ssize_t recomp_algorithm_show(struct device *dev, 1040 struct device_attribute *attr, 1041 char *buf) 1042 { 1043 struct zram *zram = dev_to_zram(dev); 1044 ssize_t sz = 0; 1045 u32 prio; 1046 1047 for (prio = ZRAM_SECONDARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { 1048 if (!zram->comp_algs[prio]) 1049 continue; 1050 1051 sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2, "#%d: ", prio); 1052 sz += __comp_algorithm_show(zram, prio, buf + sz); 1053 } 1054 1055 return sz; 1056 } 1057 1058 static ssize_t recomp_algorithm_store(struct device *dev, 1059 struct device_attribute *attr, 1060 const char *buf, 1061 size_t len) 1062 { 1063 struct zram *zram = dev_to_zram(dev); 1064 int prio = ZRAM_SECONDARY_COMP; 1065 char *args, *param, *val; 1066 char *alg = NULL; 1067 int ret; 1068 1069 args = skip_spaces(buf); 1070 while (*args) { 1071 args = next_arg(args, ¶m, &val); 1072 1073 if (!val || !*val) 1074 return -EINVAL; 1075 1076 if (!strcmp(param, "algo")) { 1077 alg = val; 1078 continue; 1079 } 1080 1081 if (!strcmp(param, "priority")) { 1082 ret = kstrtoint(val, 10, &prio); 1083 if (ret) 1084 return ret; 1085 continue; 1086 } 1087 } 1088 1089 if (!alg) 1090 return -EINVAL; 1091 1092 if (prio < ZRAM_SECONDARY_COMP || prio >= ZRAM_MAX_COMPS) 1093 return -EINVAL; 1094 1095 ret = __comp_algorithm_store(zram, prio, alg); 1096 return ret ? ret : len; 1097 } 1098 #endif 1099 1100 static ssize_t compact_store(struct device *dev, 1101 struct device_attribute *attr, const char *buf, size_t len) 1102 { 1103 struct zram *zram = dev_to_zram(dev); 1104 1105 down_read(&zram->init_lock); 1106 if (!init_done(zram)) { 1107 up_read(&zram->init_lock); 1108 return -EINVAL; 1109 } 1110 1111 zs_compact(zram->mem_pool); 1112 up_read(&zram->init_lock); 1113 1114 return len; 1115 } 1116 1117 static ssize_t io_stat_show(struct device *dev, 1118 struct device_attribute *attr, char *buf) 1119 { 1120 struct zram *zram = dev_to_zram(dev); 1121 ssize_t ret; 1122 1123 down_read(&zram->init_lock); 1124 ret = scnprintf(buf, PAGE_SIZE, 1125 "%8llu %8llu 0 %8llu\n", 1126 (u64)atomic64_read(&zram->stats.failed_reads), 1127 (u64)atomic64_read(&zram->stats.failed_writes), 1128 (u64)atomic64_read(&zram->stats.notify_free)); 1129 up_read(&zram->init_lock); 1130 1131 return ret; 1132 } 1133 1134 static ssize_t mm_stat_show(struct device *dev, 1135 struct device_attribute *attr, char *buf) 1136 { 1137 struct zram *zram = dev_to_zram(dev); 1138 struct zs_pool_stats pool_stats; 1139 u64 orig_size, mem_used = 0; 1140 long max_used; 1141 ssize_t ret; 1142 1143 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); 1144 1145 down_read(&zram->init_lock); 1146 if (init_done(zram)) { 1147 mem_used = zs_get_total_pages(zram->mem_pool); 1148 zs_pool_stats(zram->mem_pool, &pool_stats); 1149 } 1150 1151 orig_size = atomic64_read(&zram->stats.pages_stored); 1152 max_used = atomic_long_read(&zram->stats.max_used_pages); 1153 1154 ret = scnprintf(buf, PAGE_SIZE, 1155 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n", 1156 orig_size << PAGE_SHIFT, 1157 (u64)atomic64_read(&zram->stats.compr_data_size), 1158 mem_used << PAGE_SHIFT, 1159 zram->limit_pages << PAGE_SHIFT, 1160 max_used << PAGE_SHIFT, 1161 (u64)atomic64_read(&zram->stats.same_pages), 1162 atomic_long_read(&pool_stats.pages_compacted), 1163 (u64)atomic64_read(&zram->stats.huge_pages), 1164 (u64)atomic64_read(&zram->stats.huge_pages_since)); 1165 up_read(&zram->init_lock); 1166 1167 return ret; 1168 } 1169 1170 #ifdef CONFIG_ZRAM_WRITEBACK 1171 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12))) 1172 static ssize_t bd_stat_show(struct device *dev, 1173 struct device_attribute *attr, char *buf) 1174 { 1175 struct zram *zram = dev_to_zram(dev); 1176 ssize_t ret; 1177 1178 down_read(&zram->init_lock); 1179 ret = scnprintf(buf, PAGE_SIZE, 1180 "%8llu %8llu %8llu\n", 1181 FOUR_K((u64)atomic64_read(&zram->stats.bd_count)), 1182 FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)), 1183 FOUR_K((u64)atomic64_read(&zram->stats.bd_writes))); 1184 up_read(&zram->init_lock); 1185 1186 return ret; 1187 } 1188 #endif 1189 1190 static ssize_t debug_stat_show(struct device *dev, 1191 struct device_attribute *attr, char *buf) 1192 { 1193 int version = 1; 1194 struct zram *zram = dev_to_zram(dev); 1195 ssize_t ret; 1196 1197 down_read(&zram->init_lock); 1198 ret = scnprintf(buf, PAGE_SIZE, 1199 "version: %d\n%8llu %8llu\n", 1200 version, 1201 (u64)atomic64_read(&zram->stats.writestall), 1202 (u64)atomic64_read(&zram->stats.miss_free)); 1203 up_read(&zram->init_lock); 1204 1205 return ret; 1206 } 1207 1208 static DEVICE_ATTR_RO(io_stat); 1209 static DEVICE_ATTR_RO(mm_stat); 1210 #ifdef CONFIG_ZRAM_WRITEBACK 1211 static DEVICE_ATTR_RO(bd_stat); 1212 #endif 1213 static DEVICE_ATTR_RO(debug_stat); 1214 1215 static void zram_meta_free(struct zram *zram, u64 disksize) 1216 { 1217 size_t num_pages = disksize >> PAGE_SHIFT; 1218 size_t index; 1219 1220 /* Free all pages that are still in this zram device */ 1221 for (index = 0; index < num_pages; index++) 1222 zram_free_page(zram, index); 1223 1224 zs_destroy_pool(zram->mem_pool); 1225 vfree(zram->table); 1226 } 1227 1228 static bool zram_meta_alloc(struct zram *zram, u64 disksize) 1229 { 1230 size_t num_pages; 1231 1232 num_pages = disksize >> PAGE_SHIFT; 1233 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table))); 1234 if (!zram->table) 1235 return false; 1236 1237 zram->mem_pool = zs_create_pool(zram->disk->disk_name); 1238 if (!zram->mem_pool) { 1239 vfree(zram->table); 1240 return false; 1241 } 1242 1243 if (!huge_class_size) 1244 huge_class_size = zs_huge_class_size(zram->mem_pool); 1245 return true; 1246 } 1247 1248 /* 1249 * To protect concurrent access to the same index entry, 1250 * caller should hold this table index entry's bit_spinlock to 1251 * indicate this index entry is accessing. 1252 */ 1253 static void zram_free_page(struct zram *zram, size_t index) 1254 { 1255 unsigned long handle; 1256 1257 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 1258 zram->table[index].ac_time = 0; 1259 #endif 1260 if (zram_test_flag(zram, index, ZRAM_IDLE)) 1261 zram_clear_flag(zram, index, ZRAM_IDLE); 1262 1263 if (zram_test_flag(zram, index, ZRAM_HUGE)) { 1264 zram_clear_flag(zram, index, ZRAM_HUGE); 1265 atomic64_dec(&zram->stats.huge_pages); 1266 } 1267 1268 if (zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 1269 zram_clear_flag(zram, index, ZRAM_INCOMPRESSIBLE); 1270 1271 zram_set_priority(zram, index, 0); 1272 1273 if (zram_test_flag(zram, index, ZRAM_WB)) { 1274 zram_clear_flag(zram, index, ZRAM_WB); 1275 free_block_bdev(zram, zram_get_element(zram, index)); 1276 goto out; 1277 } 1278 1279 /* 1280 * No memory is allocated for same element filled pages. 1281 * Simply clear same page flag. 1282 */ 1283 if (zram_test_flag(zram, index, ZRAM_SAME)) { 1284 zram_clear_flag(zram, index, ZRAM_SAME); 1285 atomic64_dec(&zram->stats.same_pages); 1286 goto out; 1287 } 1288 1289 handle = zram_get_handle(zram, index); 1290 if (!handle) 1291 return; 1292 1293 zs_free(zram->mem_pool, handle); 1294 1295 atomic64_sub(zram_get_obj_size(zram, index), 1296 &zram->stats.compr_data_size); 1297 out: 1298 atomic64_dec(&zram->stats.pages_stored); 1299 zram_set_handle(zram, index, 0); 1300 zram_set_obj_size(zram, index, 0); 1301 WARN_ON_ONCE(zram->table[index].flags & 1302 ~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB)); 1303 } 1304 1305 /* 1306 * Reads (decompresses if needed) a page from zspool (zsmalloc). 1307 * Corresponding ZRAM slot should be locked. 1308 */ 1309 static int zram_read_from_zspool(struct zram *zram, struct page *page, 1310 u32 index) 1311 { 1312 struct zcomp_strm *zstrm; 1313 unsigned long handle; 1314 unsigned int size; 1315 void *src, *dst; 1316 u32 prio; 1317 int ret; 1318 1319 handle = zram_get_handle(zram, index); 1320 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) { 1321 unsigned long value; 1322 void *mem; 1323 1324 value = handle ? zram_get_element(zram, index) : 0; 1325 mem = kmap_atomic(page); 1326 zram_fill_page(mem, PAGE_SIZE, value); 1327 kunmap_atomic(mem); 1328 return 0; 1329 } 1330 1331 size = zram_get_obj_size(zram, index); 1332 1333 if (size != PAGE_SIZE) { 1334 prio = zram_get_priority(zram, index); 1335 zstrm = zcomp_stream_get(zram->comps[prio]); 1336 } 1337 1338 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO); 1339 if (size == PAGE_SIZE) { 1340 dst = kmap_atomic(page); 1341 memcpy(dst, src, PAGE_SIZE); 1342 kunmap_atomic(dst); 1343 ret = 0; 1344 } else { 1345 dst = kmap_atomic(page); 1346 ret = zcomp_decompress(zstrm, src, size, dst); 1347 kunmap_atomic(dst); 1348 zcomp_stream_put(zram->comps[prio]); 1349 } 1350 zs_unmap_object(zram->mem_pool, handle); 1351 return ret; 1352 } 1353 1354 static int zram_read_page(struct zram *zram, struct page *page, u32 index, 1355 struct bio *parent) 1356 { 1357 int ret; 1358 1359 zram_slot_lock(zram, index); 1360 if (!zram_test_flag(zram, index, ZRAM_WB)) { 1361 /* Slot should be locked through out the function call */ 1362 ret = zram_read_from_zspool(zram, page, index); 1363 zram_slot_unlock(zram, index); 1364 } else { 1365 /* 1366 * The slot should be unlocked before reading from the backing 1367 * device. 1368 */ 1369 zram_slot_unlock(zram, index); 1370 1371 ret = read_from_bdev(zram, page, zram_get_element(zram, index), 1372 parent); 1373 } 1374 1375 /* Should NEVER happen. Return bio error if it does. */ 1376 if (WARN_ON(ret < 0)) 1377 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 1378 1379 return ret; 1380 } 1381 1382 /* 1383 * Use a temporary buffer to decompress the page, as the decompressor 1384 * always expects a full page for the output. 1385 */ 1386 static int zram_bvec_read_partial(struct zram *zram, struct bio_vec *bvec, 1387 u32 index, int offset) 1388 { 1389 struct page *page = alloc_page(GFP_NOIO); 1390 int ret; 1391 1392 if (!page) 1393 return -ENOMEM; 1394 ret = zram_read_page(zram, page, index, NULL); 1395 if (likely(!ret)) 1396 memcpy_to_bvec(bvec, page_address(page) + offset); 1397 __free_page(page); 1398 return ret; 1399 } 1400 1401 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 1402 u32 index, int offset, struct bio *bio) 1403 { 1404 if (is_partial_io(bvec)) 1405 return zram_bvec_read_partial(zram, bvec, index, offset); 1406 return zram_read_page(zram, bvec->bv_page, index, bio); 1407 } 1408 1409 static int zram_write_page(struct zram *zram, struct page *page, u32 index) 1410 { 1411 int ret = 0; 1412 unsigned long alloced_pages; 1413 unsigned long handle = -ENOMEM; 1414 unsigned int comp_len = 0; 1415 void *src, *dst, *mem; 1416 struct zcomp_strm *zstrm; 1417 unsigned long element = 0; 1418 enum zram_pageflags flags = 0; 1419 1420 mem = kmap_atomic(page); 1421 if (page_same_filled(mem, &element)) { 1422 kunmap_atomic(mem); 1423 /* Free memory associated with this sector now. */ 1424 flags = ZRAM_SAME; 1425 atomic64_inc(&zram->stats.same_pages); 1426 goto out; 1427 } 1428 kunmap_atomic(mem); 1429 1430 compress_again: 1431 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]); 1432 src = kmap_atomic(page); 1433 ret = zcomp_compress(zstrm, src, &comp_len); 1434 kunmap_atomic(src); 1435 1436 if (unlikely(ret)) { 1437 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1438 pr_err("Compression failed! err=%d\n", ret); 1439 zs_free(zram->mem_pool, handle); 1440 return ret; 1441 } 1442 1443 if (comp_len >= huge_class_size) 1444 comp_len = PAGE_SIZE; 1445 /* 1446 * handle allocation has 2 paths: 1447 * a) fast path is executed with preemption disabled (for 1448 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear, 1449 * since we can't sleep; 1450 * b) slow path enables preemption and attempts to allocate 1451 * the page with __GFP_DIRECT_RECLAIM bit set. we have to 1452 * put per-cpu compression stream and, thus, to re-do 1453 * the compression once handle is allocated. 1454 * 1455 * if we have a 'non-null' handle here then we are coming 1456 * from the slow path and handle has already been allocated. 1457 */ 1458 if (IS_ERR_VALUE(handle)) 1459 handle = zs_malloc(zram->mem_pool, comp_len, 1460 __GFP_KSWAPD_RECLAIM | 1461 __GFP_NOWARN | 1462 __GFP_HIGHMEM | 1463 __GFP_MOVABLE); 1464 if (IS_ERR_VALUE(handle)) { 1465 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1466 atomic64_inc(&zram->stats.writestall); 1467 handle = zs_malloc(zram->mem_pool, comp_len, 1468 GFP_NOIO | __GFP_HIGHMEM | 1469 __GFP_MOVABLE); 1470 if (IS_ERR_VALUE(handle)) 1471 return PTR_ERR((void *)handle); 1472 1473 if (comp_len != PAGE_SIZE) 1474 goto compress_again; 1475 /* 1476 * If the page is not compressible, you need to acquire the 1477 * lock and execute the code below. The zcomp_stream_get() 1478 * call is needed to disable the cpu hotplug and grab the 1479 * zstrm buffer back. It is necessary that the dereferencing 1480 * of the zstrm variable below occurs correctly. 1481 */ 1482 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]); 1483 } 1484 1485 alloced_pages = zs_get_total_pages(zram->mem_pool); 1486 update_used_max(zram, alloced_pages); 1487 1488 if (zram->limit_pages && alloced_pages > zram->limit_pages) { 1489 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1490 zs_free(zram->mem_pool, handle); 1491 return -ENOMEM; 1492 } 1493 1494 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO); 1495 1496 src = zstrm->buffer; 1497 if (comp_len == PAGE_SIZE) 1498 src = kmap_atomic(page); 1499 memcpy(dst, src, comp_len); 1500 if (comp_len == PAGE_SIZE) 1501 kunmap_atomic(src); 1502 1503 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1504 zs_unmap_object(zram->mem_pool, handle); 1505 atomic64_add(comp_len, &zram->stats.compr_data_size); 1506 out: 1507 /* 1508 * Free memory associated with this sector 1509 * before overwriting unused sectors. 1510 */ 1511 zram_slot_lock(zram, index); 1512 zram_free_page(zram, index); 1513 1514 if (comp_len == PAGE_SIZE) { 1515 zram_set_flag(zram, index, ZRAM_HUGE); 1516 atomic64_inc(&zram->stats.huge_pages); 1517 atomic64_inc(&zram->stats.huge_pages_since); 1518 } 1519 1520 if (flags) { 1521 zram_set_flag(zram, index, flags); 1522 zram_set_element(zram, index, element); 1523 } else { 1524 zram_set_handle(zram, index, handle); 1525 zram_set_obj_size(zram, index, comp_len); 1526 } 1527 zram_slot_unlock(zram, index); 1528 1529 /* Update stats */ 1530 atomic64_inc(&zram->stats.pages_stored); 1531 return ret; 1532 } 1533 1534 /* 1535 * This is a partial IO. Read the full page before writing the changes. 1536 */ 1537 static int zram_bvec_write_partial(struct zram *zram, struct bio_vec *bvec, 1538 u32 index, int offset, struct bio *bio) 1539 { 1540 struct page *page = alloc_page(GFP_NOIO); 1541 int ret; 1542 1543 if (!page) 1544 return -ENOMEM; 1545 1546 ret = zram_read_page(zram, page, index, bio); 1547 if (!ret) { 1548 memcpy_from_bvec(page_address(page) + offset, bvec); 1549 ret = zram_write_page(zram, page, index); 1550 } 1551 __free_page(page); 1552 return ret; 1553 } 1554 1555 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1556 u32 index, int offset, struct bio *bio) 1557 { 1558 if (is_partial_io(bvec)) 1559 return zram_bvec_write_partial(zram, bvec, index, offset, bio); 1560 return zram_write_page(zram, bvec->bv_page, index); 1561 } 1562 1563 #ifdef CONFIG_ZRAM_MULTI_COMP 1564 /* 1565 * This function will decompress (unless it's ZRAM_HUGE) the page and then 1566 * attempt to compress it using provided compression algorithm priority 1567 * (which is potentially more effective). 1568 * 1569 * Corresponding ZRAM slot should be locked. 1570 */ 1571 static int zram_recompress(struct zram *zram, u32 index, struct page *page, 1572 u32 threshold, u32 prio, u32 prio_max) 1573 { 1574 struct zcomp_strm *zstrm = NULL; 1575 unsigned long handle_old; 1576 unsigned long handle_new; 1577 unsigned int comp_len_old; 1578 unsigned int comp_len_new; 1579 unsigned int class_index_old; 1580 unsigned int class_index_new; 1581 u32 num_recomps = 0; 1582 void *src, *dst; 1583 int ret; 1584 1585 handle_old = zram_get_handle(zram, index); 1586 if (!handle_old) 1587 return -EINVAL; 1588 1589 comp_len_old = zram_get_obj_size(zram, index); 1590 /* 1591 * Do not recompress objects that are already "small enough". 1592 */ 1593 if (comp_len_old < threshold) 1594 return 0; 1595 1596 ret = zram_read_from_zspool(zram, page, index); 1597 if (ret) 1598 return ret; 1599 1600 class_index_old = zs_lookup_class_index(zram->mem_pool, comp_len_old); 1601 /* 1602 * Iterate the secondary comp algorithms list (in order of priority) 1603 * and try to recompress the page. 1604 */ 1605 for (; prio < prio_max; prio++) { 1606 if (!zram->comps[prio]) 1607 continue; 1608 1609 /* 1610 * Skip if the object is already re-compressed with a higher 1611 * priority algorithm (or same algorithm). 1612 */ 1613 if (prio <= zram_get_priority(zram, index)) 1614 continue; 1615 1616 num_recomps++; 1617 zstrm = zcomp_stream_get(zram->comps[prio]); 1618 src = kmap_atomic(page); 1619 ret = zcomp_compress(zstrm, src, &comp_len_new); 1620 kunmap_atomic(src); 1621 1622 if (ret) { 1623 zcomp_stream_put(zram->comps[prio]); 1624 return ret; 1625 } 1626 1627 class_index_new = zs_lookup_class_index(zram->mem_pool, 1628 comp_len_new); 1629 1630 /* Continue until we make progress */ 1631 if (class_index_new >= class_index_old || 1632 (threshold && comp_len_new >= threshold)) { 1633 zcomp_stream_put(zram->comps[prio]); 1634 continue; 1635 } 1636 1637 /* Recompression was successful so break out */ 1638 break; 1639 } 1640 1641 /* 1642 * We did not try to recompress, e.g. when we have only one 1643 * secondary algorithm and the page is already recompressed 1644 * using that algorithm 1645 */ 1646 if (!zstrm) 1647 return 0; 1648 1649 if (class_index_new >= class_index_old) { 1650 /* 1651 * Secondary algorithms failed to re-compress the page 1652 * in a way that would save memory, mark the object as 1653 * incompressible so that we will not try to compress 1654 * it again. 1655 * 1656 * We need to make sure that all secondary algorithms have 1657 * failed, so we test if the number of recompressions matches 1658 * the number of active secondary algorithms. 1659 */ 1660 if (num_recomps == zram->num_active_comps - 1) 1661 zram_set_flag(zram, index, ZRAM_INCOMPRESSIBLE); 1662 return 0; 1663 } 1664 1665 /* Successful recompression but above threshold */ 1666 if (threshold && comp_len_new >= threshold) 1667 return 0; 1668 1669 /* 1670 * No direct reclaim (slow path) for handle allocation and no 1671 * re-compression attempt (unlike in zram_write_bvec()) since 1672 * we already have stored that object in zsmalloc. If we cannot 1673 * alloc memory for recompressed object then we bail out and 1674 * simply keep the old (existing) object in zsmalloc. 1675 */ 1676 handle_new = zs_malloc(zram->mem_pool, comp_len_new, 1677 __GFP_KSWAPD_RECLAIM | 1678 __GFP_NOWARN | 1679 __GFP_HIGHMEM | 1680 __GFP_MOVABLE); 1681 if (IS_ERR_VALUE(handle_new)) { 1682 zcomp_stream_put(zram->comps[prio]); 1683 return PTR_ERR((void *)handle_new); 1684 } 1685 1686 dst = zs_map_object(zram->mem_pool, handle_new, ZS_MM_WO); 1687 memcpy(dst, zstrm->buffer, comp_len_new); 1688 zcomp_stream_put(zram->comps[prio]); 1689 1690 zs_unmap_object(zram->mem_pool, handle_new); 1691 1692 zram_free_page(zram, index); 1693 zram_set_handle(zram, index, handle_new); 1694 zram_set_obj_size(zram, index, comp_len_new); 1695 zram_set_priority(zram, index, prio); 1696 1697 atomic64_add(comp_len_new, &zram->stats.compr_data_size); 1698 atomic64_inc(&zram->stats.pages_stored); 1699 1700 return 0; 1701 } 1702 1703 #define RECOMPRESS_IDLE (1 << 0) 1704 #define RECOMPRESS_HUGE (1 << 1) 1705 1706 static ssize_t recompress_store(struct device *dev, 1707 struct device_attribute *attr, 1708 const char *buf, size_t len) 1709 { 1710 u32 prio = ZRAM_SECONDARY_COMP, prio_max = ZRAM_MAX_COMPS; 1711 struct zram *zram = dev_to_zram(dev); 1712 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 1713 char *args, *param, *val, *algo = NULL; 1714 u32 mode = 0, threshold = 0; 1715 unsigned long index; 1716 struct page *page; 1717 ssize_t ret; 1718 1719 args = skip_spaces(buf); 1720 while (*args) { 1721 args = next_arg(args, ¶m, &val); 1722 1723 if (!val || !*val) 1724 return -EINVAL; 1725 1726 if (!strcmp(param, "type")) { 1727 if (!strcmp(val, "idle")) 1728 mode = RECOMPRESS_IDLE; 1729 if (!strcmp(val, "huge")) 1730 mode = RECOMPRESS_HUGE; 1731 if (!strcmp(val, "huge_idle")) 1732 mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE; 1733 continue; 1734 } 1735 1736 if (!strcmp(param, "threshold")) { 1737 /* 1738 * We will re-compress only idle objects equal or 1739 * greater in size than watermark. 1740 */ 1741 ret = kstrtouint(val, 10, &threshold); 1742 if (ret) 1743 return ret; 1744 continue; 1745 } 1746 1747 if (!strcmp(param, "algo")) { 1748 algo = val; 1749 continue; 1750 } 1751 } 1752 1753 if (threshold >= huge_class_size) 1754 return -EINVAL; 1755 1756 down_read(&zram->init_lock); 1757 if (!init_done(zram)) { 1758 ret = -EINVAL; 1759 goto release_init_lock; 1760 } 1761 1762 if (algo) { 1763 bool found = false; 1764 1765 for (; prio < ZRAM_MAX_COMPS; prio++) { 1766 if (!zram->comp_algs[prio]) 1767 continue; 1768 1769 if (!strcmp(zram->comp_algs[prio], algo)) { 1770 prio_max = min(prio + 1, ZRAM_MAX_COMPS); 1771 found = true; 1772 break; 1773 } 1774 } 1775 1776 if (!found) { 1777 ret = -EINVAL; 1778 goto release_init_lock; 1779 } 1780 } 1781 1782 page = alloc_page(GFP_KERNEL); 1783 if (!page) { 1784 ret = -ENOMEM; 1785 goto release_init_lock; 1786 } 1787 1788 ret = len; 1789 for (index = 0; index < nr_pages; index++) { 1790 int err = 0; 1791 1792 zram_slot_lock(zram, index); 1793 1794 if (!zram_allocated(zram, index)) 1795 goto next; 1796 1797 if (mode & RECOMPRESS_IDLE && 1798 !zram_test_flag(zram, index, ZRAM_IDLE)) 1799 goto next; 1800 1801 if (mode & RECOMPRESS_HUGE && 1802 !zram_test_flag(zram, index, ZRAM_HUGE)) 1803 goto next; 1804 1805 if (zram_test_flag(zram, index, ZRAM_WB) || 1806 zram_test_flag(zram, index, ZRAM_UNDER_WB) || 1807 zram_test_flag(zram, index, ZRAM_SAME) || 1808 zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 1809 goto next; 1810 1811 err = zram_recompress(zram, index, page, threshold, 1812 prio, prio_max); 1813 next: 1814 zram_slot_unlock(zram, index); 1815 if (err) { 1816 ret = err; 1817 break; 1818 } 1819 1820 cond_resched(); 1821 } 1822 1823 __free_page(page); 1824 1825 release_init_lock: 1826 up_read(&zram->init_lock); 1827 return ret; 1828 } 1829 #endif 1830 1831 static void zram_bio_discard(struct zram *zram, struct bio *bio) 1832 { 1833 size_t n = bio->bi_iter.bi_size; 1834 u32 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 1835 u32 offset = (bio->bi_iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 1836 SECTOR_SHIFT; 1837 1838 /* 1839 * zram manages data in physical block size units. Because logical block 1840 * size isn't identical with physical block size on some arch, we 1841 * could get a discard request pointing to a specific offset within a 1842 * certain physical block. Although we can handle this request by 1843 * reading that physiclal block and decompressing and partially zeroing 1844 * and re-compressing and then re-storing it, this isn't reasonable 1845 * because our intent with a discard request is to save memory. So 1846 * skipping this logical block is appropriate here. 1847 */ 1848 if (offset) { 1849 if (n <= (PAGE_SIZE - offset)) 1850 return; 1851 1852 n -= (PAGE_SIZE - offset); 1853 index++; 1854 } 1855 1856 while (n >= PAGE_SIZE) { 1857 zram_slot_lock(zram, index); 1858 zram_free_page(zram, index); 1859 zram_slot_unlock(zram, index); 1860 atomic64_inc(&zram->stats.notify_free); 1861 index++; 1862 n -= PAGE_SIZE; 1863 } 1864 1865 bio_endio(bio); 1866 } 1867 1868 static void zram_bio_read(struct zram *zram, struct bio *bio) 1869 { 1870 unsigned long start_time = bio_start_io_acct(bio); 1871 struct bvec_iter iter = bio->bi_iter; 1872 1873 do { 1874 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 1875 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 1876 SECTOR_SHIFT; 1877 struct bio_vec bv = bio_iter_iovec(bio, iter); 1878 1879 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset); 1880 1881 if (zram_bvec_read(zram, &bv, index, offset, bio) < 0) { 1882 atomic64_inc(&zram->stats.failed_reads); 1883 bio->bi_status = BLK_STS_IOERR; 1884 break; 1885 } 1886 flush_dcache_page(bv.bv_page); 1887 1888 zram_slot_lock(zram, index); 1889 zram_accessed(zram, index); 1890 zram_slot_unlock(zram, index); 1891 1892 bio_advance_iter_single(bio, &iter, bv.bv_len); 1893 } while (iter.bi_size); 1894 1895 bio_end_io_acct(bio, start_time); 1896 bio_endio(bio); 1897 } 1898 1899 static void zram_bio_write(struct zram *zram, struct bio *bio) 1900 { 1901 unsigned long start_time = bio_start_io_acct(bio); 1902 struct bvec_iter iter = bio->bi_iter; 1903 1904 do { 1905 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 1906 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 1907 SECTOR_SHIFT; 1908 struct bio_vec bv = bio_iter_iovec(bio, iter); 1909 1910 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset); 1911 1912 if (zram_bvec_write(zram, &bv, index, offset, bio) < 0) { 1913 atomic64_inc(&zram->stats.failed_writes); 1914 bio->bi_status = BLK_STS_IOERR; 1915 break; 1916 } 1917 1918 zram_slot_lock(zram, index); 1919 zram_accessed(zram, index); 1920 zram_slot_unlock(zram, index); 1921 1922 bio_advance_iter_single(bio, &iter, bv.bv_len); 1923 } while (iter.bi_size); 1924 1925 bio_end_io_acct(bio, start_time); 1926 bio_endio(bio); 1927 } 1928 1929 /* 1930 * Handler function for all zram I/O requests. 1931 */ 1932 static void zram_submit_bio(struct bio *bio) 1933 { 1934 struct zram *zram = bio->bi_bdev->bd_disk->private_data; 1935 1936 switch (bio_op(bio)) { 1937 case REQ_OP_READ: 1938 zram_bio_read(zram, bio); 1939 break; 1940 case REQ_OP_WRITE: 1941 zram_bio_write(zram, bio); 1942 break; 1943 case REQ_OP_DISCARD: 1944 case REQ_OP_WRITE_ZEROES: 1945 zram_bio_discard(zram, bio); 1946 break; 1947 default: 1948 WARN_ON_ONCE(1); 1949 bio_endio(bio); 1950 } 1951 } 1952 1953 static void zram_slot_free_notify(struct block_device *bdev, 1954 unsigned long index) 1955 { 1956 struct zram *zram; 1957 1958 zram = bdev->bd_disk->private_data; 1959 1960 atomic64_inc(&zram->stats.notify_free); 1961 if (!zram_slot_trylock(zram, index)) { 1962 atomic64_inc(&zram->stats.miss_free); 1963 return; 1964 } 1965 1966 zram_free_page(zram, index); 1967 zram_slot_unlock(zram, index); 1968 } 1969 1970 static void zram_destroy_comps(struct zram *zram) 1971 { 1972 u32 prio; 1973 1974 for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) { 1975 struct zcomp *comp = zram->comps[prio]; 1976 1977 zram->comps[prio] = NULL; 1978 if (!comp) 1979 continue; 1980 zcomp_destroy(comp); 1981 zram->num_active_comps--; 1982 } 1983 } 1984 1985 static void zram_reset_device(struct zram *zram) 1986 { 1987 down_write(&zram->init_lock); 1988 1989 zram->limit_pages = 0; 1990 1991 if (!init_done(zram)) { 1992 up_write(&zram->init_lock); 1993 return; 1994 } 1995 1996 set_capacity_and_notify(zram->disk, 0); 1997 part_stat_set_all(zram->disk->part0, 0); 1998 1999 /* I/O operation under all of CPU are done so let's free */ 2000 zram_meta_free(zram, zram->disksize); 2001 zram->disksize = 0; 2002 zram_destroy_comps(zram); 2003 memset(&zram->stats, 0, sizeof(zram->stats)); 2004 reset_bdev(zram); 2005 2006 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor); 2007 up_write(&zram->init_lock); 2008 } 2009 2010 static ssize_t disksize_store(struct device *dev, 2011 struct device_attribute *attr, const char *buf, size_t len) 2012 { 2013 u64 disksize; 2014 struct zcomp *comp; 2015 struct zram *zram = dev_to_zram(dev); 2016 int err; 2017 u32 prio; 2018 2019 disksize = memparse(buf, NULL); 2020 if (!disksize) 2021 return -EINVAL; 2022 2023 down_write(&zram->init_lock); 2024 if (init_done(zram)) { 2025 pr_info("Cannot change disksize for initialized device\n"); 2026 err = -EBUSY; 2027 goto out_unlock; 2028 } 2029 2030 disksize = PAGE_ALIGN(disksize); 2031 if (!zram_meta_alloc(zram, disksize)) { 2032 err = -ENOMEM; 2033 goto out_unlock; 2034 } 2035 2036 for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) { 2037 if (!zram->comp_algs[prio]) 2038 continue; 2039 2040 comp = zcomp_create(zram->comp_algs[prio]); 2041 if (IS_ERR(comp)) { 2042 pr_err("Cannot initialise %s compressing backend\n", 2043 zram->comp_algs[prio]); 2044 err = PTR_ERR(comp); 2045 goto out_free_comps; 2046 } 2047 2048 zram->comps[prio] = comp; 2049 zram->num_active_comps++; 2050 } 2051 zram->disksize = disksize; 2052 set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT); 2053 up_write(&zram->init_lock); 2054 2055 return len; 2056 2057 out_free_comps: 2058 zram_destroy_comps(zram); 2059 zram_meta_free(zram, disksize); 2060 out_unlock: 2061 up_write(&zram->init_lock); 2062 return err; 2063 } 2064 2065 static ssize_t reset_store(struct device *dev, 2066 struct device_attribute *attr, const char *buf, size_t len) 2067 { 2068 int ret; 2069 unsigned short do_reset; 2070 struct zram *zram; 2071 struct gendisk *disk; 2072 2073 ret = kstrtou16(buf, 10, &do_reset); 2074 if (ret) 2075 return ret; 2076 2077 if (!do_reset) 2078 return -EINVAL; 2079 2080 zram = dev_to_zram(dev); 2081 disk = zram->disk; 2082 2083 mutex_lock(&disk->open_mutex); 2084 /* Do not reset an active device or claimed device */ 2085 if (disk_openers(disk) || zram->claim) { 2086 mutex_unlock(&disk->open_mutex); 2087 return -EBUSY; 2088 } 2089 2090 /* From now on, anyone can't open /dev/zram[0-9] */ 2091 zram->claim = true; 2092 mutex_unlock(&disk->open_mutex); 2093 2094 /* Make sure all the pending I/O are finished */ 2095 sync_blockdev(disk->part0); 2096 zram_reset_device(zram); 2097 2098 mutex_lock(&disk->open_mutex); 2099 zram->claim = false; 2100 mutex_unlock(&disk->open_mutex); 2101 2102 return len; 2103 } 2104 2105 static int zram_open(struct gendisk *disk, blk_mode_t mode) 2106 { 2107 struct zram *zram = disk->private_data; 2108 2109 WARN_ON(!mutex_is_locked(&disk->open_mutex)); 2110 2111 /* zram was claimed to reset so open request fails */ 2112 if (zram->claim) 2113 return -EBUSY; 2114 return 0; 2115 } 2116 2117 static const struct block_device_operations zram_devops = { 2118 .open = zram_open, 2119 .submit_bio = zram_submit_bio, 2120 .swap_slot_free_notify = zram_slot_free_notify, 2121 .owner = THIS_MODULE 2122 }; 2123 2124 static DEVICE_ATTR_WO(compact); 2125 static DEVICE_ATTR_RW(disksize); 2126 static DEVICE_ATTR_RO(initstate); 2127 static DEVICE_ATTR_WO(reset); 2128 static DEVICE_ATTR_WO(mem_limit); 2129 static DEVICE_ATTR_WO(mem_used_max); 2130 static DEVICE_ATTR_WO(idle); 2131 static DEVICE_ATTR_RW(max_comp_streams); 2132 static DEVICE_ATTR_RW(comp_algorithm); 2133 #ifdef CONFIG_ZRAM_WRITEBACK 2134 static DEVICE_ATTR_RW(backing_dev); 2135 static DEVICE_ATTR_WO(writeback); 2136 static DEVICE_ATTR_RW(writeback_limit); 2137 static DEVICE_ATTR_RW(writeback_limit_enable); 2138 #endif 2139 #ifdef CONFIG_ZRAM_MULTI_COMP 2140 static DEVICE_ATTR_RW(recomp_algorithm); 2141 static DEVICE_ATTR_WO(recompress); 2142 #endif 2143 2144 static struct attribute *zram_disk_attrs[] = { 2145 &dev_attr_disksize.attr, 2146 &dev_attr_initstate.attr, 2147 &dev_attr_reset.attr, 2148 &dev_attr_compact.attr, 2149 &dev_attr_mem_limit.attr, 2150 &dev_attr_mem_used_max.attr, 2151 &dev_attr_idle.attr, 2152 &dev_attr_max_comp_streams.attr, 2153 &dev_attr_comp_algorithm.attr, 2154 #ifdef CONFIG_ZRAM_WRITEBACK 2155 &dev_attr_backing_dev.attr, 2156 &dev_attr_writeback.attr, 2157 &dev_attr_writeback_limit.attr, 2158 &dev_attr_writeback_limit_enable.attr, 2159 #endif 2160 &dev_attr_io_stat.attr, 2161 &dev_attr_mm_stat.attr, 2162 #ifdef CONFIG_ZRAM_WRITEBACK 2163 &dev_attr_bd_stat.attr, 2164 #endif 2165 &dev_attr_debug_stat.attr, 2166 #ifdef CONFIG_ZRAM_MULTI_COMP 2167 &dev_attr_recomp_algorithm.attr, 2168 &dev_attr_recompress.attr, 2169 #endif 2170 NULL, 2171 }; 2172 2173 ATTRIBUTE_GROUPS(zram_disk); 2174 2175 /* 2176 * Allocate and initialize new zram device. the function returns 2177 * '>= 0' device_id upon success, and negative value otherwise. 2178 */ 2179 static int zram_add(void) 2180 { 2181 struct zram *zram; 2182 int ret, device_id; 2183 2184 zram = kzalloc(sizeof(struct zram), GFP_KERNEL); 2185 if (!zram) 2186 return -ENOMEM; 2187 2188 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); 2189 if (ret < 0) 2190 goto out_free_dev; 2191 device_id = ret; 2192 2193 init_rwsem(&zram->init_lock); 2194 #ifdef CONFIG_ZRAM_WRITEBACK 2195 spin_lock_init(&zram->wb_limit_lock); 2196 #endif 2197 2198 /* gendisk structure */ 2199 zram->disk = blk_alloc_disk(NUMA_NO_NODE); 2200 if (!zram->disk) { 2201 pr_err("Error allocating disk structure for device %d\n", 2202 device_id); 2203 ret = -ENOMEM; 2204 goto out_free_idr; 2205 } 2206 2207 zram->disk->major = zram_major; 2208 zram->disk->first_minor = device_id; 2209 zram->disk->minors = 1; 2210 zram->disk->flags |= GENHD_FL_NO_PART; 2211 zram->disk->fops = &zram_devops; 2212 zram->disk->private_data = zram; 2213 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 2214 2215 /* Actual capacity set using sysfs (/sys/block/zram<id>/disksize */ 2216 set_capacity(zram->disk, 0); 2217 /* zram devices sort of resembles non-rotational disks */ 2218 blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue); 2219 blk_queue_flag_set(QUEUE_FLAG_SYNCHRONOUS, zram->disk->queue); 2220 2221 /* 2222 * To ensure that we always get PAGE_SIZE aligned 2223 * and n*PAGE_SIZED sized I/O requests. 2224 */ 2225 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); 2226 blk_queue_logical_block_size(zram->disk->queue, 2227 ZRAM_LOGICAL_BLOCK_SIZE); 2228 blk_queue_io_min(zram->disk->queue, PAGE_SIZE); 2229 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); 2230 zram->disk->queue->limits.discard_granularity = PAGE_SIZE; 2231 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX); 2232 2233 /* 2234 * zram_bio_discard() will clear all logical blocks if logical block 2235 * size is identical with physical block size(PAGE_SIZE). But if it is 2236 * different, we will skip discarding some parts of logical blocks in 2237 * the part of the request range which isn't aligned to physical block 2238 * size. So we can't ensure that all discarded logical blocks are 2239 * zeroed. 2240 */ 2241 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) 2242 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX); 2243 2244 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, zram->disk->queue); 2245 ret = device_add_disk(NULL, zram->disk, zram_disk_groups); 2246 if (ret) 2247 goto out_cleanup_disk; 2248 2249 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor); 2250 2251 zram_debugfs_register(zram); 2252 pr_info("Added device: %s\n", zram->disk->disk_name); 2253 return device_id; 2254 2255 out_cleanup_disk: 2256 put_disk(zram->disk); 2257 out_free_idr: 2258 idr_remove(&zram_index_idr, device_id); 2259 out_free_dev: 2260 kfree(zram); 2261 return ret; 2262 } 2263 2264 static int zram_remove(struct zram *zram) 2265 { 2266 bool claimed; 2267 2268 mutex_lock(&zram->disk->open_mutex); 2269 if (disk_openers(zram->disk)) { 2270 mutex_unlock(&zram->disk->open_mutex); 2271 return -EBUSY; 2272 } 2273 2274 claimed = zram->claim; 2275 if (!claimed) 2276 zram->claim = true; 2277 mutex_unlock(&zram->disk->open_mutex); 2278 2279 zram_debugfs_unregister(zram); 2280 2281 if (claimed) { 2282 /* 2283 * If we were claimed by reset_store(), del_gendisk() will 2284 * wait until reset_store() is done, so nothing need to do. 2285 */ 2286 ; 2287 } else { 2288 /* Make sure all the pending I/O are finished */ 2289 sync_blockdev(zram->disk->part0); 2290 zram_reset_device(zram); 2291 } 2292 2293 pr_info("Removed device: %s\n", zram->disk->disk_name); 2294 2295 del_gendisk(zram->disk); 2296 2297 /* del_gendisk drains pending reset_store */ 2298 WARN_ON_ONCE(claimed && zram->claim); 2299 2300 /* 2301 * disksize_store() may be called in between zram_reset_device() 2302 * and del_gendisk(), so run the last reset to avoid leaking 2303 * anything allocated with disksize_store() 2304 */ 2305 zram_reset_device(zram); 2306 2307 put_disk(zram->disk); 2308 kfree(zram); 2309 return 0; 2310 } 2311 2312 /* zram-control sysfs attributes */ 2313 2314 /* 2315 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a 2316 * sense that reading from this file does alter the state of your system -- it 2317 * creates a new un-initialized zram device and returns back this device's 2318 * device_id (or an error code if it fails to create a new device). 2319 */ 2320 static ssize_t hot_add_show(const struct class *class, 2321 const struct class_attribute *attr, 2322 char *buf) 2323 { 2324 int ret; 2325 2326 mutex_lock(&zram_index_mutex); 2327 ret = zram_add(); 2328 mutex_unlock(&zram_index_mutex); 2329 2330 if (ret < 0) 2331 return ret; 2332 return scnprintf(buf, PAGE_SIZE, "%d\n", ret); 2333 } 2334 /* This attribute must be set to 0400, so CLASS_ATTR_RO() can not be used */ 2335 static struct class_attribute class_attr_hot_add = 2336 __ATTR(hot_add, 0400, hot_add_show, NULL); 2337 2338 static ssize_t hot_remove_store(const struct class *class, 2339 const struct class_attribute *attr, 2340 const char *buf, 2341 size_t count) 2342 { 2343 struct zram *zram; 2344 int ret, dev_id; 2345 2346 /* dev_id is gendisk->first_minor, which is `int' */ 2347 ret = kstrtoint(buf, 10, &dev_id); 2348 if (ret) 2349 return ret; 2350 if (dev_id < 0) 2351 return -EINVAL; 2352 2353 mutex_lock(&zram_index_mutex); 2354 2355 zram = idr_find(&zram_index_idr, dev_id); 2356 if (zram) { 2357 ret = zram_remove(zram); 2358 if (!ret) 2359 idr_remove(&zram_index_idr, dev_id); 2360 } else { 2361 ret = -ENODEV; 2362 } 2363 2364 mutex_unlock(&zram_index_mutex); 2365 return ret ? ret : count; 2366 } 2367 static CLASS_ATTR_WO(hot_remove); 2368 2369 static struct attribute *zram_control_class_attrs[] = { 2370 &class_attr_hot_add.attr, 2371 &class_attr_hot_remove.attr, 2372 NULL, 2373 }; 2374 ATTRIBUTE_GROUPS(zram_control_class); 2375 2376 static struct class zram_control_class = { 2377 .name = "zram-control", 2378 .class_groups = zram_control_class_groups, 2379 }; 2380 2381 static int zram_remove_cb(int id, void *ptr, void *data) 2382 { 2383 WARN_ON_ONCE(zram_remove(ptr)); 2384 return 0; 2385 } 2386 2387 static void destroy_devices(void) 2388 { 2389 class_unregister(&zram_control_class); 2390 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); 2391 zram_debugfs_destroy(); 2392 idr_destroy(&zram_index_idr); 2393 unregister_blkdev(zram_major, "zram"); 2394 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2395 } 2396 2397 static int __init zram_init(void) 2398 { 2399 int ret; 2400 2401 BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > BITS_PER_LONG); 2402 2403 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare", 2404 zcomp_cpu_up_prepare, zcomp_cpu_dead); 2405 if (ret < 0) 2406 return ret; 2407 2408 ret = class_register(&zram_control_class); 2409 if (ret) { 2410 pr_err("Unable to register zram-control class\n"); 2411 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2412 return ret; 2413 } 2414 2415 zram_debugfs_create(); 2416 zram_major = register_blkdev(0, "zram"); 2417 if (zram_major <= 0) { 2418 pr_err("Unable to get major number\n"); 2419 class_unregister(&zram_control_class); 2420 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2421 return -EBUSY; 2422 } 2423 2424 while (num_devices != 0) { 2425 mutex_lock(&zram_index_mutex); 2426 ret = zram_add(); 2427 mutex_unlock(&zram_index_mutex); 2428 if (ret < 0) 2429 goto out_error; 2430 num_devices--; 2431 } 2432 2433 return 0; 2434 2435 out_error: 2436 destroy_devices(); 2437 return ret; 2438 } 2439 2440 static void __exit zram_exit(void) 2441 { 2442 destroy_devices(); 2443 } 2444 2445 module_init(zram_init); 2446 module_exit(zram_exit); 2447 2448 module_param(num_devices, uint, 0); 2449 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); 2450 2451 MODULE_LICENSE("Dual BSD/GPL"); 2452 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2453 MODULE_DESCRIPTION("Compressed RAM Block Device"); 2454