1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #ifdef CONFIG_ZRAM_DEBUG 19 #define DEBUG 20 #endif 21 22 #include <linux/module.h> 23 #include <linux/kernel.h> 24 #include <linux/bio.h> 25 #include <linux/bitops.h> 26 #include <linux/blkdev.h> 27 #include <linux/buffer_head.h> 28 #include <linux/device.h> 29 #include <linux/genhd.h> 30 #include <linux/highmem.h> 31 #include <linux/slab.h> 32 #include <linux/string.h> 33 #include <linux/vmalloc.h> 34 #include <linux/err.h> 35 36 #include "zram_drv.h" 37 38 /* Globals */ 39 static int zram_major; 40 static struct zram *zram_devices; 41 static const char *default_compressor = "lzo"; 42 43 /* Module params (documentation at end) */ 44 static unsigned int num_devices = 1; 45 46 #define ZRAM_ATTR_RO(name) \ 47 static ssize_t zram_attr_##name##_show(struct device *d, \ 48 struct device_attribute *attr, char *b) \ 49 { \ 50 struct zram *zram = dev_to_zram(d); \ 51 return scnprintf(b, PAGE_SIZE, "%llu\n", \ 52 (u64)atomic64_read(&zram->stats.name)); \ 53 } \ 54 static struct device_attribute dev_attr_##name = \ 55 __ATTR(name, S_IRUGO, zram_attr_##name##_show, NULL); 56 57 static inline int init_done(struct zram *zram) 58 { 59 return zram->meta != NULL; 60 } 61 62 static inline struct zram *dev_to_zram(struct device *dev) 63 { 64 return (struct zram *)dev_to_disk(dev)->private_data; 65 } 66 67 static ssize_t disksize_show(struct device *dev, 68 struct device_attribute *attr, char *buf) 69 { 70 struct zram *zram = dev_to_zram(dev); 71 72 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 73 } 74 75 static ssize_t initstate_show(struct device *dev, 76 struct device_attribute *attr, char *buf) 77 { 78 u32 val; 79 struct zram *zram = dev_to_zram(dev); 80 81 down_read(&zram->init_lock); 82 val = init_done(zram); 83 up_read(&zram->init_lock); 84 85 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 86 } 87 88 static ssize_t orig_data_size_show(struct device *dev, 89 struct device_attribute *attr, char *buf) 90 { 91 struct zram *zram = dev_to_zram(dev); 92 93 return scnprintf(buf, PAGE_SIZE, "%llu\n", 94 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT); 95 } 96 97 static ssize_t mem_used_total_show(struct device *dev, 98 struct device_attribute *attr, char *buf) 99 { 100 u64 val = 0; 101 struct zram *zram = dev_to_zram(dev); 102 struct zram_meta *meta = zram->meta; 103 104 down_read(&zram->init_lock); 105 if (init_done(zram)) 106 val = zs_get_total_size_bytes(meta->mem_pool); 107 up_read(&zram->init_lock); 108 109 return scnprintf(buf, PAGE_SIZE, "%llu\n", val); 110 } 111 112 static ssize_t max_comp_streams_show(struct device *dev, 113 struct device_attribute *attr, char *buf) 114 { 115 int val; 116 struct zram *zram = dev_to_zram(dev); 117 118 down_read(&zram->init_lock); 119 val = zram->max_comp_streams; 120 up_read(&zram->init_lock); 121 122 return scnprintf(buf, PAGE_SIZE, "%d\n", val); 123 } 124 125 static ssize_t max_comp_streams_store(struct device *dev, 126 struct device_attribute *attr, const char *buf, size_t len) 127 { 128 int num; 129 struct zram *zram = dev_to_zram(dev); 130 int ret; 131 132 ret = kstrtoint(buf, 0, &num); 133 if (ret < 0) 134 return ret; 135 if (num < 1) 136 return -EINVAL; 137 138 down_write(&zram->init_lock); 139 if (init_done(zram)) { 140 if (!zcomp_set_max_streams(zram->comp, num)) { 141 pr_info("Cannot change max compression streams\n"); 142 ret = -EINVAL; 143 goto out; 144 } 145 } 146 147 zram->max_comp_streams = num; 148 ret = len; 149 out: 150 up_write(&zram->init_lock); 151 return ret; 152 } 153 154 static ssize_t comp_algorithm_show(struct device *dev, 155 struct device_attribute *attr, char *buf) 156 { 157 size_t sz; 158 struct zram *zram = dev_to_zram(dev); 159 160 down_read(&zram->init_lock); 161 sz = zcomp_available_show(zram->compressor, buf); 162 up_read(&zram->init_lock); 163 164 return sz; 165 } 166 167 static ssize_t comp_algorithm_store(struct device *dev, 168 struct device_attribute *attr, const char *buf, size_t len) 169 { 170 struct zram *zram = dev_to_zram(dev); 171 down_write(&zram->init_lock); 172 if (init_done(zram)) { 173 up_write(&zram->init_lock); 174 pr_info("Can't change algorithm for initialized device\n"); 175 return -EBUSY; 176 } 177 strlcpy(zram->compressor, buf, sizeof(zram->compressor)); 178 up_write(&zram->init_lock); 179 return len; 180 } 181 182 /* flag operations needs meta->tb_lock */ 183 static int zram_test_flag(struct zram_meta *meta, u32 index, 184 enum zram_pageflags flag) 185 { 186 return meta->table[index].value & BIT(flag); 187 } 188 189 static void zram_set_flag(struct zram_meta *meta, u32 index, 190 enum zram_pageflags flag) 191 { 192 meta->table[index].value |= BIT(flag); 193 } 194 195 static void zram_clear_flag(struct zram_meta *meta, u32 index, 196 enum zram_pageflags flag) 197 { 198 meta->table[index].value &= ~BIT(flag); 199 } 200 201 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index) 202 { 203 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1); 204 } 205 206 static void zram_set_obj_size(struct zram_meta *meta, 207 u32 index, size_t size) 208 { 209 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT; 210 211 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size; 212 } 213 214 static inline int is_partial_io(struct bio_vec *bvec) 215 { 216 return bvec->bv_len != PAGE_SIZE; 217 } 218 219 /* 220 * Check if request is within bounds and aligned on zram logical blocks. 221 */ 222 static inline int valid_io_request(struct zram *zram, struct bio *bio) 223 { 224 u64 start, end, bound; 225 226 /* unaligned request */ 227 if (unlikely(bio->bi_iter.bi_sector & 228 (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1))) 229 return 0; 230 if (unlikely(bio->bi_iter.bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1))) 231 return 0; 232 233 start = bio->bi_iter.bi_sector; 234 end = start + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 235 bound = zram->disksize >> SECTOR_SHIFT; 236 /* out of range range */ 237 if (unlikely(start >= bound || end > bound || start > end)) 238 return 0; 239 240 /* I/O request is valid */ 241 return 1; 242 } 243 244 static void zram_meta_free(struct zram_meta *meta) 245 { 246 zs_destroy_pool(meta->mem_pool); 247 vfree(meta->table); 248 kfree(meta); 249 } 250 251 static struct zram_meta *zram_meta_alloc(u64 disksize) 252 { 253 size_t num_pages; 254 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL); 255 if (!meta) 256 goto out; 257 258 num_pages = disksize >> PAGE_SHIFT; 259 meta->table = vzalloc(num_pages * sizeof(*meta->table)); 260 if (!meta->table) { 261 pr_err("Error allocating zram address table\n"); 262 goto free_meta; 263 } 264 265 meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM); 266 if (!meta->mem_pool) { 267 pr_err("Error creating memory pool\n"); 268 goto free_table; 269 } 270 271 return meta; 272 273 free_table: 274 vfree(meta->table); 275 free_meta: 276 kfree(meta); 277 meta = NULL; 278 out: 279 return meta; 280 } 281 282 static void update_position(u32 *index, int *offset, struct bio_vec *bvec) 283 { 284 if (*offset + bvec->bv_len >= PAGE_SIZE) 285 (*index)++; 286 *offset = (*offset + bvec->bv_len) % PAGE_SIZE; 287 } 288 289 static int page_zero_filled(void *ptr) 290 { 291 unsigned int pos; 292 unsigned long *page; 293 294 page = (unsigned long *)ptr; 295 296 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) { 297 if (page[pos]) 298 return 0; 299 } 300 301 return 1; 302 } 303 304 static void handle_zero_page(struct bio_vec *bvec) 305 { 306 struct page *page = bvec->bv_page; 307 void *user_mem; 308 309 user_mem = kmap_atomic(page); 310 if (is_partial_io(bvec)) 311 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len); 312 else 313 clear_page(user_mem); 314 kunmap_atomic(user_mem); 315 316 flush_dcache_page(page); 317 } 318 319 320 /* 321 * To protect concurrent access to the same index entry, 322 * caller should hold this table index entry's bit_spinlock to 323 * indicate this index entry is accessing. 324 */ 325 static void zram_free_page(struct zram *zram, size_t index) 326 { 327 struct zram_meta *meta = zram->meta; 328 unsigned long handle = meta->table[index].handle; 329 330 if (unlikely(!handle)) { 331 /* 332 * No memory is allocated for zero filled pages. 333 * Simply clear zero page flag. 334 */ 335 if (zram_test_flag(meta, index, ZRAM_ZERO)) { 336 zram_clear_flag(meta, index, ZRAM_ZERO); 337 atomic64_dec(&zram->stats.zero_pages); 338 } 339 return; 340 } 341 342 zs_free(meta->mem_pool, handle); 343 344 atomic64_sub(zram_get_obj_size(meta, index), 345 &zram->stats.compr_data_size); 346 atomic64_dec(&zram->stats.pages_stored); 347 348 meta->table[index].handle = 0; 349 zram_set_obj_size(meta, index, 0); 350 } 351 352 static int zram_decompress_page(struct zram *zram, char *mem, u32 index) 353 { 354 int ret = 0; 355 unsigned char *cmem; 356 struct zram_meta *meta = zram->meta; 357 unsigned long handle; 358 size_t size; 359 360 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 361 handle = meta->table[index].handle; 362 size = zram_get_obj_size(meta, index); 363 364 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) { 365 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 366 clear_page(mem); 367 return 0; 368 } 369 370 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO); 371 if (size == PAGE_SIZE) 372 copy_page(mem, cmem); 373 else 374 ret = zcomp_decompress(zram->comp, cmem, size, mem); 375 zs_unmap_object(meta->mem_pool, handle); 376 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 377 378 /* Should NEVER happen. Return bio error if it does. */ 379 if (unlikely(ret)) { 380 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 381 return ret; 382 } 383 384 return 0; 385 } 386 387 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 388 u32 index, int offset, struct bio *bio) 389 { 390 int ret; 391 struct page *page; 392 unsigned char *user_mem, *uncmem = NULL; 393 struct zram_meta *meta = zram->meta; 394 page = bvec->bv_page; 395 396 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 397 if (unlikely(!meta->table[index].handle) || 398 zram_test_flag(meta, index, ZRAM_ZERO)) { 399 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 400 handle_zero_page(bvec); 401 return 0; 402 } 403 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 404 405 if (is_partial_io(bvec)) 406 /* Use a temporary buffer to decompress the page */ 407 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO); 408 409 user_mem = kmap_atomic(page); 410 if (!is_partial_io(bvec)) 411 uncmem = user_mem; 412 413 if (!uncmem) { 414 pr_info("Unable to allocate temp memory\n"); 415 ret = -ENOMEM; 416 goto out_cleanup; 417 } 418 419 ret = zram_decompress_page(zram, uncmem, index); 420 /* Should NEVER happen. Return bio error if it does. */ 421 if (unlikely(ret)) 422 goto out_cleanup; 423 424 if (is_partial_io(bvec)) 425 memcpy(user_mem + bvec->bv_offset, uncmem + offset, 426 bvec->bv_len); 427 428 flush_dcache_page(page); 429 ret = 0; 430 out_cleanup: 431 kunmap_atomic(user_mem); 432 if (is_partial_io(bvec)) 433 kfree(uncmem); 434 return ret; 435 } 436 437 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index, 438 int offset) 439 { 440 int ret = 0; 441 size_t clen; 442 unsigned long handle; 443 struct page *page; 444 unsigned char *user_mem, *cmem, *src, *uncmem = NULL; 445 struct zram_meta *meta = zram->meta; 446 struct zcomp_strm *zstrm; 447 bool locked = false; 448 449 page = bvec->bv_page; 450 if (is_partial_io(bvec)) { 451 /* 452 * This is a partial IO. We need to read the full page 453 * before to write the changes. 454 */ 455 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO); 456 if (!uncmem) { 457 ret = -ENOMEM; 458 goto out; 459 } 460 ret = zram_decompress_page(zram, uncmem, index); 461 if (ret) 462 goto out; 463 } 464 465 zstrm = zcomp_strm_find(zram->comp); 466 locked = true; 467 user_mem = kmap_atomic(page); 468 469 if (is_partial_io(bvec)) { 470 memcpy(uncmem + offset, user_mem + bvec->bv_offset, 471 bvec->bv_len); 472 kunmap_atomic(user_mem); 473 user_mem = NULL; 474 } else { 475 uncmem = user_mem; 476 } 477 478 if (page_zero_filled(uncmem)) { 479 kunmap_atomic(user_mem); 480 /* Free memory associated with this sector now. */ 481 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 482 zram_free_page(zram, index); 483 zram_set_flag(meta, index, ZRAM_ZERO); 484 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 485 486 atomic64_inc(&zram->stats.zero_pages); 487 ret = 0; 488 goto out; 489 } 490 491 ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen); 492 if (!is_partial_io(bvec)) { 493 kunmap_atomic(user_mem); 494 user_mem = NULL; 495 uncmem = NULL; 496 } 497 498 if (unlikely(ret)) { 499 pr_err("Compression failed! err=%d\n", ret); 500 goto out; 501 } 502 src = zstrm->buffer; 503 if (unlikely(clen > max_zpage_size)) { 504 clen = PAGE_SIZE; 505 if (is_partial_io(bvec)) 506 src = uncmem; 507 } 508 509 handle = zs_malloc(meta->mem_pool, clen); 510 if (!handle) { 511 pr_info("Error allocating memory for compressed page: %u, size=%zu\n", 512 index, clen); 513 ret = -ENOMEM; 514 goto out; 515 } 516 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO); 517 518 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) { 519 src = kmap_atomic(page); 520 copy_page(cmem, src); 521 kunmap_atomic(src); 522 } else { 523 memcpy(cmem, src, clen); 524 } 525 526 zcomp_strm_release(zram->comp, zstrm); 527 locked = false; 528 zs_unmap_object(meta->mem_pool, handle); 529 530 /* 531 * Free memory associated with this sector 532 * before overwriting unused sectors. 533 */ 534 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 535 zram_free_page(zram, index); 536 537 meta->table[index].handle = handle; 538 zram_set_obj_size(meta, index, clen); 539 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 540 541 /* Update stats */ 542 atomic64_add(clen, &zram->stats.compr_data_size); 543 atomic64_inc(&zram->stats.pages_stored); 544 out: 545 if (locked) 546 zcomp_strm_release(zram->comp, zstrm); 547 if (is_partial_io(bvec)) 548 kfree(uncmem); 549 return ret; 550 } 551 552 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index, 553 int offset, struct bio *bio) 554 { 555 int ret; 556 int rw = bio_data_dir(bio); 557 558 if (rw == READ) { 559 atomic64_inc(&zram->stats.num_reads); 560 ret = zram_bvec_read(zram, bvec, index, offset, bio); 561 } else { 562 atomic64_inc(&zram->stats.num_writes); 563 ret = zram_bvec_write(zram, bvec, index, offset); 564 } 565 566 if (unlikely(ret)) { 567 if (rw == READ) 568 atomic64_inc(&zram->stats.failed_reads); 569 else 570 atomic64_inc(&zram->stats.failed_writes); 571 } 572 573 return ret; 574 } 575 576 /* 577 * zram_bio_discard - handler on discard request 578 * @index: physical block index in PAGE_SIZE units 579 * @offset: byte offset within physical block 580 */ 581 static void zram_bio_discard(struct zram *zram, u32 index, 582 int offset, struct bio *bio) 583 { 584 size_t n = bio->bi_iter.bi_size; 585 struct zram_meta *meta = zram->meta; 586 587 /* 588 * zram manages data in physical block size units. Because logical block 589 * size isn't identical with physical block size on some arch, we 590 * could get a discard request pointing to a specific offset within a 591 * certain physical block. Although we can handle this request by 592 * reading that physiclal block and decompressing and partially zeroing 593 * and re-compressing and then re-storing it, this isn't reasonable 594 * because our intent with a discard request is to save memory. So 595 * skipping this logical block is appropriate here. 596 */ 597 if (offset) { 598 if (n <= (PAGE_SIZE - offset)) 599 return; 600 601 n -= (PAGE_SIZE - offset); 602 index++; 603 } 604 605 while (n >= PAGE_SIZE) { 606 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 607 zram_free_page(zram, index); 608 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 609 index++; 610 n -= PAGE_SIZE; 611 } 612 } 613 614 static void zram_reset_device(struct zram *zram, bool reset_capacity) 615 { 616 size_t index; 617 struct zram_meta *meta; 618 619 down_write(&zram->init_lock); 620 if (!init_done(zram)) { 621 up_write(&zram->init_lock); 622 return; 623 } 624 625 meta = zram->meta; 626 /* Free all pages that are still in this zram device */ 627 for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) { 628 unsigned long handle = meta->table[index].handle; 629 if (!handle) 630 continue; 631 632 zs_free(meta->mem_pool, handle); 633 } 634 635 zcomp_destroy(zram->comp); 636 zram->max_comp_streams = 1; 637 638 zram_meta_free(zram->meta); 639 zram->meta = NULL; 640 /* Reset stats */ 641 memset(&zram->stats, 0, sizeof(zram->stats)); 642 643 zram->disksize = 0; 644 if (reset_capacity) 645 set_capacity(zram->disk, 0); 646 647 up_write(&zram->init_lock); 648 649 /* 650 * Revalidate disk out of the init_lock to avoid lockdep splat. 651 * It's okay because disk's capacity is protected by init_lock 652 * so that revalidate_disk always sees up-to-date capacity. 653 */ 654 if (reset_capacity) 655 revalidate_disk(zram->disk); 656 } 657 658 static ssize_t disksize_store(struct device *dev, 659 struct device_attribute *attr, const char *buf, size_t len) 660 { 661 u64 disksize; 662 struct zcomp *comp; 663 struct zram_meta *meta; 664 struct zram *zram = dev_to_zram(dev); 665 int err; 666 667 disksize = memparse(buf, NULL); 668 if (!disksize) 669 return -EINVAL; 670 671 disksize = PAGE_ALIGN(disksize); 672 meta = zram_meta_alloc(disksize); 673 if (!meta) 674 return -ENOMEM; 675 676 comp = zcomp_create(zram->compressor, zram->max_comp_streams); 677 if (IS_ERR(comp)) { 678 pr_info("Cannot initialise %s compressing backend\n", 679 zram->compressor); 680 err = PTR_ERR(comp); 681 goto out_free_meta; 682 } 683 684 down_write(&zram->init_lock); 685 if (init_done(zram)) { 686 pr_info("Cannot change disksize for initialized device\n"); 687 err = -EBUSY; 688 goto out_destroy_comp; 689 } 690 691 zram->meta = meta; 692 zram->comp = comp; 693 zram->disksize = disksize; 694 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT); 695 up_write(&zram->init_lock); 696 697 /* 698 * Revalidate disk out of the init_lock to avoid lockdep splat. 699 * It's okay because disk's capacity is protected by init_lock 700 * so that revalidate_disk always sees up-to-date capacity. 701 */ 702 revalidate_disk(zram->disk); 703 704 return len; 705 706 out_destroy_comp: 707 up_write(&zram->init_lock); 708 zcomp_destroy(comp); 709 out_free_meta: 710 zram_meta_free(meta); 711 return err; 712 } 713 714 static ssize_t reset_store(struct device *dev, 715 struct device_attribute *attr, const char *buf, size_t len) 716 { 717 int ret; 718 unsigned short do_reset; 719 struct zram *zram; 720 struct block_device *bdev; 721 722 zram = dev_to_zram(dev); 723 bdev = bdget_disk(zram->disk, 0); 724 725 if (!bdev) 726 return -ENOMEM; 727 728 /* Do not reset an active device! */ 729 if (bdev->bd_holders) { 730 ret = -EBUSY; 731 goto out; 732 } 733 734 ret = kstrtou16(buf, 10, &do_reset); 735 if (ret) 736 goto out; 737 738 if (!do_reset) { 739 ret = -EINVAL; 740 goto out; 741 } 742 743 /* Make sure all pending I/O is finished */ 744 fsync_bdev(bdev); 745 bdput(bdev); 746 747 zram_reset_device(zram, true); 748 return len; 749 750 out: 751 bdput(bdev); 752 return ret; 753 } 754 755 static void __zram_make_request(struct zram *zram, struct bio *bio) 756 { 757 int offset; 758 u32 index; 759 struct bio_vec bvec; 760 struct bvec_iter iter; 761 762 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 763 offset = (bio->bi_iter.bi_sector & 764 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 765 766 if (unlikely(bio->bi_rw & REQ_DISCARD)) { 767 zram_bio_discard(zram, index, offset, bio); 768 bio_endio(bio, 0); 769 return; 770 } 771 772 bio_for_each_segment(bvec, bio, iter) { 773 int max_transfer_size = PAGE_SIZE - offset; 774 775 if (bvec.bv_len > max_transfer_size) { 776 /* 777 * zram_bvec_rw() can only make operation on a single 778 * zram page. Split the bio vector. 779 */ 780 struct bio_vec bv; 781 782 bv.bv_page = bvec.bv_page; 783 bv.bv_len = max_transfer_size; 784 bv.bv_offset = bvec.bv_offset; 785 786 if (zram_bvec_rw(zram, &bv, index, offset, bio) < 0) 787 goto out; 788 789 bv.bv_len = bvec.bv_len - max_transfer_size; 790 bv.bv_offset += max_transfer_size; 791 if (zram_bvec_rw(zram, &bv, index + 1, 0, bio) < 0) 792 goto out; 793 } else 794 if (zram_bvec_rw(zram, &bvec, index, offset, bio) < 0) 795 goto out; 796 797 update_position(&index, &offset, &bvec); 798 } 799 800 set_bit(BIO_UPTODATE, &bio->bi_flags); 801 bio_endio(bio, 0); 802 return; 803 804 out: 805 bio_io_error(bio); 806 } 807 808 /* 809 * Handler function for all zram I/O requests. 810 */ 811 static void zram_make_request(struct request_queue *queue, struct bio *bio) 812 { 813 struct zram *zram = queue->queuedata; 814 815 down_read(&zram->init_lock); 816 if (unlikely(!init_done(zram))) 817 goto error; 818 819 if (!valid_io_request(zram, bio)) { 820 atomic64_inc(&zram->stats.invalid_io); 821 goto error; 822 } 823 824 __zram_make_request(zram, bio); 825 up_read(&zram->init_lock); 826 827 return; 828 829 error: 830 up_read(&zram->init_lock); 831 bio_io_error(bio); 832 } 833 834 static void zram_slot_free_notify(struct block_device *bdev, 835 unsigned long index) 836 { 837 struct zram *zram; 838 struct zram_meta *meta; 839 840 zram = bdev->bd_disk->private_data; 841 meta = zram->meta; 842 843 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 844 zram_free_page(zram, index); 845 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 846 atomic64_inc(&zram->stats.notify_free); 847 } 848 849 static const struct block_device_operations zram_devops = { 850 .swap_slot_free_notify = zram_slot_free_notify, 851 .owner = THIS_MODULE 852 }; 853 854 static DEVICE_ATTR(disksize, S_IRUGO | S_IWUSR, 855 disksize_show, disksize_store); 856 static DEVICE_ATTR(initstate, S_IRUGO, initstate_show, NULL); 857 static DEVICE_ATTR(reset, S_IWUSR, NULL, reset_store); 858 static DEVICE_ATTR(orig_data_size, S_IRUGO, orig_data_size_show, NULL); 859 static DEVICE_ATTR(mem_used_total, S_IRUGO, mem_used_total_show, NULL); 860 static DEVICE_ATTR(max_comp_streams, S_IRUGO | S_IWUSR, 861 max_comp_streams_show, max_comp_streams_store); 862 static DEVICE_ATTR(comp_algorithm, S_IRUGO | S_IWUSR, 863 comp_algorithm_show, comp_algorithm_store); 864 865 ZRAM_ATTR_RO(num_reads); 866 ZRAM_ATTR_RO(num_writes); 867 ZRAM_ATTR_RO(failed_reads); 868 ZRAM_ATTR_RO(failed_writes); 869 ZRAM_ATTR_RO(invalid_io); 870 ZRAM_ATTR_RO(notify_free); 871 ZRAM_ATTR_RO(zero_pages); 872 ZRAM_ATTR_RO(compr_data_size); 873 874 static struct attribute *zram_disk_attrs[] = { 875 &dev_attr_disksize.attr, 876 &dev_attr_initstate.attr, 877 &dev_attr_reset.attr, 878 &dev_attr_num_reads.attr, 879 &dev_attr_num_writes.attr, 880 &dev_attr_failed_reads.attr, 881 &dev_attr_failed_writes.attr, 882 &dev_attr_invalid_io.attr, 883 &dev_attr_notify_free.attr, 884 &dev_attr_zero_pages.attr, 885 &dev_attr_orig_data_size.attr, 886 &dev_attr_compr_data_size.attr, 887 &dev_attr_mem_used_total.attr, 888 &dev_attr_max_comp_streams.attr, 889 &dev_attr_comp_algorithm.attr, 890 NULL, 891 }; 892 893 static struct attribute_group zram_disk_attr_group = { 894 .attrs = zram_disk_attrs, 895 }; 896 897 static int create_device(struct zram *zram, int device_id) 898 { 899 int ret = -ENOMEM; 900 901 init_rwsem(&zram->init_lock); 902 903 zram->queue = blk_alloc_queue(GFP_KERNEL); 904 if (!zram->queue) { 905 pr_err("Error allocating disk queue for device %d\n", 906 device_id); 907 goto out; 908 } 909 910 blk_queue_make_request(zram->queue, zram_make_request); 911 zram->queue->queuedata = zram; 912 913 /* gendisk structure */ 914 zram->disk = alloc_disk(1); 915 if (!zram->disk) { 916 pr_warn("Error allocating disk structure for device %d\n", 917 device_id); 918 goto out_free_queue; 919 } 920 921 zram->disk->major = zram_major; 922 zram->disk->first_minor = device_id; 923 zram->disk->fops = &zram_devops; 924 zram->disk->queue = zram->queue; 925 zram->disk->private_data = zram; 926 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 927 928 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */ 929 set_capacity(zram->disk, 0); 930 /* zram devices sort of resembles non-rotational disks */ 931 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue); 932 /* 933 * To ensure that we always get PAGE_SIZE aligned 934 * and n*PAGE_SIZED sized I/O requests. 935 */ 936 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); 937 blk_queue_logical_block_size(zram->disk->queue, 938 ZRAM_LOGICAL_BLOCK_SIZE); 939 blk_queue_io_min(zram->disk->queue, PAGE_SIZE); 940 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); 941 zram->disk->queue->limits.discard_granularity = PAGE_SIZE; 942 zram->disk->queue->limits.max_discard_sectors = UINT_MAX; 943 /* 944 * zram_bio_discard() will clear all logical blocks if logical block 945 * size is identical with physical block size(PAGE_SIZE). But if it is 946 * different, we will skip discarding some parts of logical blocks in 947 * the part of the request range which isn't aligned to physical block 948 * size. So we can't ensure that all discarded logical blocks are 949 * zeroed. 950 */ 951 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) 952 zram->disk->queue->limits.discard_zeroes_data = 1; 953 else 954 zram->disk->queue->limits.discard_zeroes_data = 0; 955 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue); 956 957 add_disk(zram->disk); 958 959 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj, 960 &zram_disk_attr_group); 961 if (ret < 0) { 962 pr_warn("Error creating sysfs group"); 963 goto out_free_disk; 964 } 965 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor)); 966 zram->meta = NULL; 967 zram->max_comp_streams = 1; 968 return 0; 969 970 out_free_disk: 971 del_gendisk(zram->disk); 972 put_disk(zram->disk); 973 out_free_queue: 974 blk_cleanup_queue(zram->queue); 975 out: 976 return ret; 977 } 978 979 static void destroy_device(struct zram *zram) 980 { 981 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj, 982 &zram_disk_attr_group); 983 984 del_gendisk(zram->disk); 985 put_disk(zram->disk); 986 987 blk_cleanup_queue(zram->queue); 988 } 989 990 static int __init zram_init(void) 991 { 992 int ret, dev_id; 993 994 if (num_devices > max_num_devices) { 995 pr_warn("Invalid value for num_devices: %u\n", 996 num_devices); 997 ret = -EINVAL; 998 goto out; 999 } 1000 1001 zram_major = register_blkdev(0, "zram"); 1002 if (zram_major <= 0) { 1003 pr_warn("Unable to get major number\n"); 1004 ret = -EBUSY; 1005 goto out; 1006 } 1007 1008 /* Allocate the device array and initialize each one */ 1009 zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL); 1010 if (!zram_devices) { 1011 ret = -ENOMEM; 1012 goto unregister; 1013 } 1014 1015 for (dev_id = 0; dev_id < num_devices; dev_id++) { 1016 ret = create_device(&zram_devices[dev_id], dev_id); 1017 if (ret) 1018 goto free_devices; 1019 } 1020 1021 pr_info("Created %u device(s) ...\n", num_devices); 1022 1023 return 0; 1024 1025 free_devices: 1026 while (dev_id) 1027 destroy_device(&zram_devices[--dev_id]); 1028 kfree(zram_devices); 1029 unregister: 1030 unregister_blkdev(zram_major, "zram"); 1031 out: 1032 return ret; 1033 } 1034 1035 static void __exit zram_exit(void) 1036 { 1037 int i; 1038 struct zram *zram; 1039 1040 for (i = 0; i < num_devices; i++) { 1041 zram = &zram_devices[i]; 1042 1043 destroy_device(zram); 1044 /* 1045 * Shouldn't access zram->disk after destroy_device 1046 * because destroy_device already released zram->disk. 1047 */ 1048 zram_reset_device(zram, false); 1049 } 1050 1051 unregister_blkdev(zram_major, "zram"); 1052 1053 kfree(zram_devices); 1054 pr_debug("Cleanup done!\n"); 1055 } 1056 1057 module_init(zram_init); 1058 module_exit(zram_exit); 1059 1060 module_param(num_devices, uint, 0); 1061 MODULE_PARM_DESC(num_devices, "Number of zram devices"); 1062 1063 MODULE_LICENSE("Dual BSD/GPL"); 1064 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 1065 MODULE_DESCRIPTION("Compressed RAM Block Device"); 1066