xref: /linux/drivers/block/zram/zram_drv.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/string.h>
33 #include <linux/vmalloc.h>
34 #include <linux/err.h>
35 
36 #include "zram_drv.h"
37 
38 /* Globals */
39 static int zram_major;
40 static struct zram *zram_devices;
41 static const char *default_compressor = "lzo";
42 
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
45 
46 #define ZRAM_ATTR_RO(name)						\
47 static ssize_t zram_attr_##name##_show(struct device *d,		\
48 				struct device_attribute *attr, char *b)	\
49 {									\
50 	struct zram *zram = dev_to_zram(d);				\
51 	return scnprintf(b, PAGE_SIZE, "%llu\n",			\
52 		(u64)atomic64_read(&zram->stats.name));			\
53 }									\
54 static struct device_attribute dev_attr_##name =			\
55 	__ATTR(name, S_IRUGO, zram_attr_##name##_show, NULL);
56 
57 static inline int init_done(struct zram *zram)
58 {
59 	return zram->meta != NULL;
60 }
61 
62 static inline struct zram *dev_to_zram(struct device *dev)
63 {
64 	return (struct zram *)dev_to_disk(dev)->private_data;
65 }
66 
67 static ssize_t disksize_show(struct device *dev,
68 		struct device_attribute *attr, char *buf)
69 {
70 	struct zram *zram = dev_to_zram(dev);
71 
72 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
73 }
74 
75 static ssize_t initstate_show(struct device *dev,
76 		struct device_attribute *attr, char *buf)
77 {
78 	u32 val;
79 	struct zram *zram = dev_to_zram(dev);
80 
81 	down_read(&zram->init_lock);
82 	val = init_done(zram);
83 	up_read(&zram->init_lock);
84 
85 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
86 }
87 
88 static ssize_t orig_data_size_show(struct device *dev,
89 		struct device_attribute *attr, char *buf)
90 {
91 	struct zram *zram = dev_to_zram(dev);
92 
93 	return scnprintf(buf, PAGE_SIZE, "%llu\n",
94 		(u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
95 }
96 
97 static ssize_t mem_used_total_show(struct device *dev,
98 		struct device_attribute *attr, char *buf)
99 {
100 	u64 val = 0;
101 	struct zram *zram = dev_to_zram(dev);
102 	struct zram_meta *meta = zram->meta;
103 
104 	down_read(&zram->init_lock);
105 	if (init_done(zram))
106 		val = zs_get_total_size_bytes(meta->mem_pool);
107 	up_read(&zram->init_lock);
108 
109 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
110 }
111 
112 static ssize_t max_comp_streams_show(struct device *dev,
113 		struct device_attribute *attr, char *buf)
114 {
115 	int val;
116 	struct zram *zram = dev_to_zram(dev);
117 
118 	down_read(&zram->init_lock);
119 	val = zram->max_comp_streams;
120 	up_read(&zram->init_lock);
121 
122 	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
123 }
124 
125 static ssize_t max_comp_streams_store(struct device *dev,
126 		struct device_attribute *attr, const char *buf, size_t len)
127 {
128 	int num;
129 	struct zram *zram = dev_to_zram(dev);
130 	int ret;
131 
132 	ret = kstrtoint(buf, 0, &num);
133 	if (ret < 0)
134 		return ret;
135 	if (num < 1)
136 		return -EINVAL;
137 
138 	down_write(&zram->init_lock);
139 	if (init_done(zram)) {
140 		if (!zcomp_set_max_streams(zram->comp, num)) {
141 			pr_info("Cannot change max compression streams\n");
142 			ret = -EINVAL;
143 			goto out;
144 		}
145 	}
146 
147 	zram->max_comp_streams = num;
148 	ret = len;
149 out:
150 	up_write(&zram->init_lock);
151 	return ret;
152 }
153 
154 static ssize_t comp_algorithm_show(struct device *dev,
155 		struct device_attribute *attr, char *buf)
156 {
157 	size_t sz;
158 	struct zram *zram = dev_to_zram(dev);
159 
160 	down_read(&zram->init_lock);
161 	sz = zcomp_available_show(zram->compressor, buf);
162 	up_read(&zram->init_lock);
163 
164 	return sz;
165 }
166 
167 static ssize_t comp_algorithm_store(struct device *dev,
168 		struct device_attribute *attr, const char *buf, size_t len)
169 {
170 	struct zram *zram = dev_to_zram(dev);
171 	down_write(&zram->init_lock);
172 	if (init_done(zram)) {
173 		up_write(&zram->init_lock);
174 		pr_info("Can't change algorithm for initialized device\n");
175 		return -EBUSY;
176 	}
177 	strlcpy(zram->compressor, buf, sizeof(zram->compressor));
178 	up_write(&zram->init_lock);
179 	return len;
180 }
181 
182 /* flag operations needs meta->tb_lock */
183 static int zram_test_flag(struct zram_meta *meta, u32 index,
184 			enum zram_pageflags flag)
185 {
186 	return meta->table[index].value & BIT(flag);
187 }
188 
189 static void zram_set_flag(struct zram_meta *meta, u32 index,
190 			enum zram_pageflags flag)
191 {
192 	meta->table[index].value |= BIT(flag);
193 }
194 
195 static void zram_clear_flag(struct zram_meta *meta, u32 index,
196 			enum zram_pageflags flag)
197 {
198 	meta->table[index].value &= ~BIT(flag);
199 }
200 
201 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
202 {
203 	return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
204 }
205 
206 static void zram_set_obj_size(struct zram_meta *meta,
207 					u32 index, size_t size)
208 {
209 	unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
210 
211 	meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
212 }
213 
214 static inline int is_partial_io(struct bio_vec *bvec)
215 {
216 	return bvec->bv_len != PAGE_SIZE;
217 }
218 
219 /*
220  * Check if request is within bounds and aligned on zram logical blocks.
221  */
222 static inline int valid_io_request(struct zram *zram, struct bio *bio)
223 {
224 	u64 start, end, bound;
225 
226 	/* unaligned request */
227 	if (unlikely(bio->bi_iter.bi_sector &
228 		     (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
229 		return 0;
230 	if (unlikely(bio->bi_iter.bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
231 		return 0;
232 
233 	start = bio->bi_iter.bi_sector;
234 	end = start + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
235 	bound = zram->disksize >> SECTOR_SHIFT;
236 	/* out of range range */
237 	if (unlikely(start >= bound || end > bound || start > end))
238 		return 0;
239 
240 	/* I/O request is valid */
241 	return 1;
242 }
243 
244 static void zram_meta_free(struct zram_meta *meta)
245 {
246 	zs_destroy_pool(meta->mem_pool);
247 	vfree(meta->table);
248 	kfree(meta);
249 }
250 
251 static struct zram_meta *zram_meta_alloc(u64 disksize)
252 {
253 	size_t num_pages;
254 	struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
255 	if (!meta)
256 		goto out;
257 
258 	num_pages = disksize >> PAGE_SHIFT;
259 	meta->table = vzalloc(num_pages * sizeof(*meta->table));
260 	if (!meta->table) {
261 		pr_err("Error allocating zram address table\n");
262 		goto free_meta;
263 	}
264 
265 	meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM);
266 	if (!meta->mem_pool) {
267 		pr_err("Error creating memory pool\n");
268 		goto free_table;
269 	}
270 
271 	return meta;
272 
273 free_table:
274 	vfree(meta->table);
275 free_meta:
276 	kfree(meta);
277 	meta = NULL;
278 out:
279 	return meta;
280 }
281 
282 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
283 {
284 	if (*offset + bvec->bv_len >= PAGE_SIZE)
285 		(*index)++;
286 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
287 }
288 
289 static int page_zero_filled(void *ptr)
290 {
291 	unsigned int pos;
292 	unsigned long *page;
293 
294 	page = (unsigned long *)ptr;
295 
296 	for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
297 		if (page[pos])
298 			return 0;
299 	}
300 
301 	return 1;
302 }
303 
304 static void handle_zero_page(struct bio_vec *bvec)
305 {
306 	struct page *page = bvec->bv_page;
307 	void *user_mem;
308 
309 	user_mem = kmap_atomic(page);
310 	if (is_partial_io(bvec))
311 		memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
312 	else
313 		clear_page(user_mem);
314 	kunmap_atomic(user_mem);
315 
316 	flush_dcache_page(page);
317 }
318 
319 
320 /*
321  * To protect concurrent access to the same index entry,
322  * caller should hold this table index entry's bit_spinlock to
323  * indicate this index entry is accessing.
324  */
325 static void zram_free_page(struct zram *zram, size_t index)
326 {
327 	struct zram_meta *meta = zram->meta;
328 	unsigned long handle = meta->table[index].handle;
329 
330 	if (unlikely(!handle)) {
331 		/*
332 		 * No memory is allocated for zero filled pages.
333 		 * Simply clear zero page flag.
334 		 */
335 		if (zram_test_flag(meta, index, ZRAM_ZERO)) {
336 			zram_clear_flag(meta, index, ZRAM_ZERO);
337 			atomic64_dec(&zram->stats.zero_pages);
338 		}
339 		return;
340 	}
341 
342 	zs_free(meta->mem_pool, handle);
343 
344 	atomic64_sub(zram_get_obj_size(meta, index),
345 			&zram->stats.compr_data_size);
346 	atomic64_dec(&zram->stats.pages_stored);
347 
348 	meta->table[index].handle = 0;
349 	zram_set_obj_size(meta, index, 0);
350 }
351 
352 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
353 {
354 	int ret = 0;
355 	unsigned char *cmem;
356 	struct zram_meta *meta = zram->meta;
357 	unsigned long handle;
358 	size_t size;
359 
360 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
361 	handle = meta->table[index].handle;
362 	size = zram_get_obj_size(meta, index);
363 
364 	if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
365 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
366 		clear_page(mem);
367 		return 0;
368 	}
369 
370 	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
371 	if (size == PAGE_SIZE)
372 		copy_page(mem, cmem);
373 	else
374 		ret = zcomp_decompress(zram->comp, cmem, size, mem);
375 	zs_unmap_object(meta->mem_pool, handle);
376 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
377 
378 	/* Should NEVER happen. Return bio error if it does. */
379 	if (unlikely(ret)) {
380 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
381 		return ret;
382 	}
383 
384 	return 0;
385 }
386 
387 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
388 			  u32 index, int offset, struct bio *bio)
389 {
390 	int ret;
391 	struct page *page;
392 	unsigned char *user_mem, *uncmem = NULL;
393 	struct zram_meta *meta = zram->meta;
394 	page = bvec->bv_page;
395 
396 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
397 	if (unlikely(!meta->table[index].handle) ||
398 			zram_test_flag(meta, index, ZRAM_ZERO)) {
399 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
400 		handle_zero_page(bvec);
401 		return 0;
402 	}
403 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
404 
405 	if (is_partial_io(bvec))
406 		/* Use  a temporary buffer to decompress the page */
407 		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
408 
409 	user_mem = kmap_atomic(page);
410 	if (!is_partial_io(bvec))
411 		uncmem = user_mem;
412 
413 	if (!uncmem) {
414 		pr_info("Unable to allocate temp memory\n");
415 		ret = -ENOMEM;
416 		goto out_cleanup;
417 	}
418 
419 	ret = zram_decompress_page(zram, uncmem, index);
420 	/* Should NEVER happen. Return bio error if it does. */
421 	if (unlikely(ret))
422 		goto out_cleanup;
423 
424 	if (is_partial_io(bvec))
425 		memcpy(user_mem + bvec->bv_offset, uncmem + offset,
426 				bvec->bv_len);
427 
428 	flush_dcache_page(page);
429 	ret = 0;
430 out_cleanup:
431 	kunmap_atomic(user_mem);
432 	if (is_partial_io(bvec))
433 		kfree(uncmem);
434 	return ret;
435 }
436 
437 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
438 			   int offset)
439 {
440 	int ret = 0;
441 	size_t clen;
442 	unsigned long handle;
443 	struct page *page;
444 	unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
445 	struct zram_meta *meta = zram->meta;
446 	struct zcomp_strm *zstrm;
447 	bool locked = false;
448 
449 	page = bvec->bv_page;
450 	if (is_partial_io(bvec)) {
451 		/*
452 		 * This is a partial IO. We need to read the full page
453 		 * before to write the changes.
454 		 */
455 		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
456 		if (!uncmem) {
457 			ret = -ENOMEM;
458 			goto out;
459 		}
460 		ret = zram_decompress_page(zram, uncmem, index);
461 		if (ret)
462 			goto out;
463 	}
464 
465 	zstrm = zcomp_strm_find(zram->comp);
466 	locked = true;
467 	user_mem = kmap_atomic(page);
468 
469 	if (is_partial_io(bvec)) {
470 		memcpy(uncmem + offset, user_mem + bvec->bv_offset,
471 		       bvec->bv_len);
472 		kunmap_atomic(user_mem);
473 		user_mem = NULL;
474 	} else {
475 		uncmem = user_mem;
476 	}
477 
478 	if (page_zero_filled(uncmem)) {
479 		kunmap_atomic(user_mem);
480 		/* Free memory associated with this sector now. */
481 		bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
482 		zram_free_page(zram, index);
483 		zram_set_flag(meta, index, ZRAM_ZERO);
484 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
485 
486 		atomic64_inc(&zram->stats.zero_pages);
487 		ret = 0;
488 		goto out;
489 	}
490 
491 	ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
492 	if (!is_partial_io(bvec)) {
493 		kunmap_atomic(user_mem);
494 		user_mem = NULL;
495 		uncmem = NULL;
496 	}
497 
498 	if (unlikely(ret)) {
499 		pr_err("Compression failed! err=%d\n", ret);
500 		goto out;
501 	}
502 	src = zstrm->buffer;
503 	if (unlikely(clen > max_zpage_size)) {
504 		clen = PAGE_SIZE;
505 		if (is_partial_io(bvec))
506 			src = uncmem;
507 	}
508 
509 	handle = zs_malloc(meta->mem_pool, clen);
510 	if (!handle) {
511 		pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
512 			index, clen);
513 		ret = -ENOMEM;
514 		goto out;
515 	}
516 	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
517 
518 	if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
519 		src = kmap_atomic(page);
520 		copy_page(cmem, src);
521 		kunmap_atomic(src);
522 	} else {
523 		memcpy(cmem, src, clen);
524 	}
525 
526 	zcomp_strm_release(zram->comp, zstrm);
527 	locked = false;
528 	zs_unmap_object(meta->mem_pool, handle);
529 
530 	/*
531 	 * Free memory associated with this sector
532 	 * before overwriting unused sectors.
533 	 */
534 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
535 	zram_free_page(zram, index);
536 
537 	meta->table[index].handle = handle;
538 	zram_set_obj_size(meta, index, clen);
539 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
540 
541 	/* Update stats */
542 	atomic64_add(clen, &zram->stats.compr_data_size);
543 	atomic64_inc(&zram->stats.pages_stored);
544 out:
545 	if (locked)
546 		zcomp_strm_release(zram->comp, zstrm);
547 	if (is_partial_io(bvec))
548 		kfree(uncmem);
549 	return ret;
550 }
551 
552 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
553 			int offset, struct bio *bio)
554 {
555 	int ret;
556 	int rw = bio_data_dir(bio);
557 
558 	if (rw == READ) {
559 		atomic64_inc(&zram->stats.num_reads);
560 		ret = zram_bvec_read(zram, bvec, index, offset, bio);
561 	} else {
562 		atomic64_inc(&zram->stats.num_writes);
563 		ret = zram_bvec_write(zram, bvec, index, offset);
564 	}
565 
566 	if (unlikely(ret)) {
567 		if (rw == READ)
568 			atomic64_inc(&zram->stats.failed_reads);
569 		else
570 			atomic64_inc(&zram->stats.failed_writes);
571 	}
572 
573 	return ret;
574 }
575 
576 /*
577  * zram_bio_discard - handler on discard request
578  * @index: physical block index in PAGE_SIZE units
579  * @offset: byte offset within physical block
580  */
581 static void zram_bio_discard(struct zram *zram, u32 index,
582 			     int offset, struct bio *bio)
583 {
584 	size_t n = bio->bi_iter.bi_size;
585 	struct zram_meta *meta = zram->meta;
586 
587 	/*
588 	 * zram manages data in physical block size units. Because logical block
589 	 * size isn't identical with physical block size on some arch, we
590 	 * could get a discard request pointing to a specific offset within a
591 	 * certain physical block.  Although we can handle this request by
592 	 * reading that physiclal block and decompressing and partially zeroing
593 	 * and re-compressing and then re-storing it, this isn't reasonable
594 	 * because our intent with a discard request is to save memory.  So
595 	 * skipping this logical block is appropriate here.
596 	 */
597 	if (offset) {
598 		if (n <= (PAGE_SIZE - offset))
599 			return;
600 
601 		n -= (PAGE_SIZE - offset);
602 		index++;
603 	}
604 
605 	while (n >= PAGE_SIZE) {
606 		bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
607 		zram_free_page(zram, index);
608 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
609 		index++;
610 		n -= PAGE_SIZE;
611 	}
612 }
613 
614 static void zram_reset_device(struct zram *zram, bool reset_capacity)
615 {
616 	size_t index;
617 	struct zram_meta *meta;
618 
619 	down_write(&zram->init_lock);
620 	if (!init_done(zram)) {
621 		up_write(&zram->init_lock);
622 		return;
623 	}
624 
625 	meta = zram->meta;
626 	/* Free all pages that are still in this zram device */
627 	for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
628 		unsigned long handle = meta->table[index].handle;
629 		if (!handle)
630 			continue;
631 
632 		zs_free(meta->mem_pool, handle);
633 	}
634 
635 	zcomp_destroy(zram->comp);
636 	zram->max_comp_streams = 1;
637 
638 	zram_meta_free(zram->meta);
639 	zram->meta = NULL;
640 	/* Reset stats */
641 	memset(&zram->stats, 0, sizeof(zram->stats));
642 
643 	zram->disksize = 0;
644 	if (reset_capacity)
645 		set_capacity(zram->disk, 0);
646 
647 	up_write(&zram->init_lock);
648 
649 	/*
650 	 * Revalidate disk out of the init_lock to avoid lockdep splat.
651 	 * It's okay because disk's capacity is protected by init_lock
652 	 * so that revalidate_disk always sees up-to-date capacity.
653 	 */
654 	if (reset_capacity)
655 		revalidate_disk(zram->disk);
656 }
657 
658 static ssize_t disksize_store(struct device *dev,
659 		struct device_attribute *attr, const char *buf, size_t len)
660 {
661 	u64 disksize;
662 	struct zcomp *comp;
663 	struct zram_meta *meta;
664 	struct zram *zram = dev_to_zram(dev);
665 	int err;
666 
667 	disksize = memparse(buf, NULL);
668 	if (!disksize)
669 		return -EINVAL;
670 
671 	disksize = PAGE_ALIGN(disksize);
672 	meta = zram_meta_alloc(disksize);
673 	if (!meta)
674 		return -ENOMEM;
675 
676 	comp = zcomp_create(zram->compressor, zram->max_comp_streams);
677 	if (IS_ERR(comp)) {
678 		pr_info("Cannot initialise %s compressing backend\n",
679 				zram->compressor);
680 		err = PTR_ERR(comp);
681 		goto out_free_meta;
682 	}
683 
684 	down_write(&zram->init_lock);
685 	if (init_done(zram)) {
686 		pr_info("Cannot change disksize for initialized device\n");
687 		err = -EBUSY;
688 		goto out_destroy_comp;
689 	}
690 
691 	zram->meta = meta;
692 	zram->comp = comp;
693 	zram->disksize = disksize;
694 	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
695 	up_write(&zram->init_lock);
696 
697 	/*
698 	 * Revalidate disk out of the init_lock to avoid lockdep splat.
699 	 * It's okay because disk's capacity is protected by init_lock
700 	 * so that revalidate_disk always sees up-to-date capacity.
701 	 */
702 	revalidate_disk(zram->disk);
703 
704 	return len;
705 
706 out_destroy_comp:
707 	up_write(&zram->init_lock);
708 	zcomp_destroy(comp);
709 out_free_meta:
710 	zram_meta_free(meta);
711 	return err;
712 }
713 
714 static ssize_t reset_store(struct device *dev,
715 		struct device_attribute *attr, const char *buf, size_t len)
716 {
717 	int ret;
718 	unsigned short do_reset;
719 	struct zram *zram;
720 	struct block_device *bdev;
721 
722 	zram = dev_to_zram(dev);
723 	bdev = bdget_disk(zram->disk, 0);
724 
725 	if (!bdev)
726 		return -ENOMEM;
727 
728 	/* Do not reset an active device! */
729 	if (bdev->bd_holders) {
730 		ret = -EBUSY;
731 		goto out;
732 	}
733 
734 	ret = kstrtou16(buf, 10, &do_reset);
735 	if (ret)
736 		goto out;
737 
738 	if (!do_reset) {
739 		ret = -EINVAL;
740 		goto out;
741 	}
742 
743 	/* Make sure all pending I/O is finished */
744 	fsync_bdev(bdev);
745 	bdput(bdev);
746 
747 	zram_reset_device(zram, true);
748 	return len;
749 
750 out:
751 	bdput(bdev);
752 	return ret;
753 }
754 
755 static void __zram_make_request(struct zram *zram, struct bio *bio)
756 {
757 	int offset;
758 	u32 index;
759 	struct bio_vec bvec;
760 	struct bvec_iter iter;
761 
762 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
763 	offset = (bio->bi_iter.bi_sector &
764 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
765 
766 	if (unlikely(bio->bi_rw & REQ_DISCARD)) {
767 		zram_bio_discard(zram, index, offset, bio);
768 		bio_endio(bio, 0);
769 		return;
770 	}
771 
772 	bio_for_each_segment(bvec, bio, iter) {
773 		int max_transfer_size = PAGE_SIZE - offset;
774 
775 		if (bvec.bv_len > max_transfer_size) {
776 			/*
777 			 * zram_bvec_rw() can only make operation on a single
778 			 * zram page. Split the bio vector.
779 			 */
780 			struct bio_vec bv;
781 
782 			bv.bv_page = bvec.bv_page;
783 			bv.bv_len = max_transfer_size;
784 			bv.bv_offset = bvec.bv_offset;
785 
786 			if (zram_bvec_rw(zram, &bv, index, offset, bio) < 0)
787 				goto out;
788 
789 			bv.bv_len = bvec.bv_len - max_transfer_size;
790 			bv.bv_offset += max_transfer_size;
791 			if (zram_bvec_rw(zram, &bv, index + 1, 0, bio) < 0)
792 				goto out;
793 		} else
794 			if (zram_bvec_rw(zram, &bvec, index, offset, bio) < 0)
795 				goto out;
796 
797 		update_position(&index, &offset, &bvec);
798 	}
799 
800 	set_bit(BIO_UPTODATE, &bio->bi_flags);
801 	bio_endio(bio, 0);
802 	return;
803 
804 out:
805 	bio_io_error(bio);
806 }
807 
808 /*
809  * Handler function for all zram I/O requests.
810  */
811 static void zram_make_request(struct request_queue *queue, struct bio *bio)
812 {
813 	struct zram *zram = queue->queuedata;
814 
815 	down_read(&zram->init_lock);
816 	if (unlikely(!init_done(zram)))
817 		goto error;
818 
819 	if (!valid_io_request(zram, bio)) {
820 		atomic64_inc(&zram->stats.invalid_io);
821 		goto error;
822 	}
823 
824 	__zram_make_request(zram, bio);
825 	up_read(&zram->init_lock);
826 
827 	return;
828 
829 error:
830 	up_read(&zram->init_lock);
831 	bio_io_error(bio);
832 }
833 
834 static void zram_slot_free_notify(struct block_device *bdev,
835 				unsigned long index)
836 {
837 	struct zram *zram;
838 	struct zram_meta *meta;
839 
840 	zram = bdev->bd_disk->private_data;
841 	meta = zram->meta;
842 
843 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
844 	zram_free_page(zram, index);
845 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
846 	atomic64_inc(&zram->stats.notify_free);
847 }
848 
849 static const struct block_device_operations zram_devops = {
850 	.swap_slot_free_notify = zram_slot_free_notify,
851 	.owner = THIS_MODULE
852 };
853 
854 static DEVICE_ATTR(disksize, S_IRUGO | S_IWUSR,
855 		disksize_show, disksize_store);
856 static DEVICE_ATTR(initstate, S_IRUGO, initstate_show, NULL);
857 static DEVICE_ATTR(reset, S_IWUSR, NULL, reset_store);
858 static DEVICE_ATTR(orig_data_size, S_IRUGO, orig_data_size_show, NULL);
859 static DEVICE_ATTR(mem_used_total, S_IRUGO, mem_used_total_show, NULL);
860 static DEVICE_ATTR(max_comp_streams, S_IRUGO | S_IWUSR,
861 		max_comp_streams_show, max_comp_streams_store);
862 static DEVICE_ATTR(comp_algorithm, S_IRUGO | S_IWUSR,
863 		comp_algorithm_show, comp_algorithm_store);
864 
865 ZRAM_ATTR_RO(num_reads);
866 ZRAM_ATTR_RO(num_writes);
867 ZRAM_ATTR_RO(failed_reads);
868 ZRAM_ATTR_RO(failed_writes);
869 ZRAM_ATTR_RO(invalid_io);
870 ZRAM_ATTR_RO(notify_free);
871 ZRAM_ATTR_RO(zero_pages);
872 ZRAM_ATTR_RO(compr_data_size);
873 
874 static struct attribute *zram_disk_attrs[] = {
875 	&dev_attr_disksize.attr,
876 	&dev_attr_initstate.attr,
877 	&dev_attr_reset.attr,
878 	&dev_attr_num_reads.attr,
879 	&dev_attr_num_writes.attr,
880 	&dev_attr_failed_reads.attr,
881 	&dev_attr_failed_writes.attr,
882 	&dev_attr_invalid_io.attr,
883 	&dev_attr_notify_free.attr,
884 	&dev_attr_zero_pages.attr,
885 	&dev_attr_orig_data_size.attr,
886 	&dev_attr_compr_data_size.attr,
887 	&dev_attr_mem_used_total.attr,
888 	&dev_attr_max_comp_streams.attr,
889 	&dev_attr_comp_algorithm.attr,
890 	NULL,
891 };
892 
893 static struct attribute_group zram_disk_attr_group = {
894 	.attrs = zram_disk_attrs,
895 };
896 
897 static int create_device(struct zram *zram, int device_id)
898 {
899 	int ret = -ENOMEM;
900 
901 	init_rwsem(&zram->init_lock);
902 
903 	zram->queue = blk_alloc_queue(GFP_KERNEL);
904 	if (!zram->queue) {
905 		pr_err("Error allocating disk queue for device %d\n",
906 			device_id);
907 		goto out;
908 	}
909 
910 	blk_queue_make_request(zram->queue, zram_make_request);
911 	zram->queue->queuedata = zram;
912 
913 	 /* gendisk structure */
914 	zram->disk = alloc_disk(1);
915 	if (!zram->disk) {
916 		pr_warn("Error allocating disk structure for device %d\n",
917 			device_id);
918 		goto out_free_queue;
919 	}
920 
921 	zram->disk->major = zram_major;
922 	zram->disk->first_minor = device_id;
923 	zram->disk->fops = &zram_devops;
924 	zram->disk->queue = zram->queue;
925 	zram->disk->private_data = zram;
926 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
927 
928 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
929 	set_capacity(zram->disk, 0);
930 	/* zram devices sort of resembles non-rotational disks */
931 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
932 	/*
933 	 * To ensure that we always get PAGE_SIZE aligned
934 	 * and n*PAGE_SIZED sized I/O requests.
935 	 */
936 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
937 	blk_queue_logical_block_size(zram->disk->queue,
938 					ZRAM_LOGICAL_BLOCK_SIZE);
939 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
940 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
941 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
942 	zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
943 	/*
944 	 * zram_bio_discard() will clear all logical blocks if logical block
945 	 * size is identical with physical block size(PAGE_SIZE). But if it is
946 	 * different, we will skip discarding some parts of logical blocks in
947 	 * the part of the request range which isn't aligned to physical block
948 	 * size.  So we can't ensure that all discarded logical blocks are
949 	 * zeroed.
950 	 */
951 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
952 		zram->disk->queue->limits.discard_zeroes_data = 1;
953 	else
954 		zram->disk->queue->limits.discard_zeroes_data = 0;
955 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
956 
957 	add_disk(zram->disk);
958 
959 	ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
960 				&zram_disk_attr_group);
961 	if (ret < 0) {
962 		pr_warn("Error creating sysfs group");
963 		goto out_free_disk;
964 	}
965 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
966 	zram->meta = NULL;
967 	zram->max_comp_streams = 1;
968 	return 0;
969 
970 out_free_disk:
971 	del_gendisk(zram->disk);
972 	put_disk(zram->disk);
973 out_free_queue:
974 	blk_cleanup_queue(zram->queue);
975 out:
976 	return ret;
977 }
978 
979 static void destroy_device(struct zram *zram)
980 {
981 	sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
982 			&zram_disk_attr_group);
983 
984 	del_gendisk(zram->disk);
985 	put_disk(zram->disk);
986 
987 	blk_cleanup_queue(zram->queue);
988 }
989 
990 static int __init zram_init(void)
991 {
992 	int ret, dev_id;
993 
994 	if (num_devices > max_num_devices) {
995 		pr_warn("Invalid value for num_devices: %u\n",
996 				num_devices);
997 		ret = -EINVAL;
998 		goto out;
999 	}
1000 
1001 	zram_major = register_blkdev(0, "zram");
1002 	if (zram_major <= 0) {
1003 		pr_warn("Unable to get major number\n");
1004 		ret = -EBUSY;
1005 		goto out;
1006 	}
1007 
1008 	/* Allocate the device array and initialize each one */
1009 	zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
1010 	if (!zram_devices) {
1011 		ret = -ENOMEM;
1012 		goto unregister;
1013 	}
1014 
1015 	for (dev_id = 0; dev_id < num_devices; dev_id++) {
1016 		ret = create_device(&zram_devices[dev_id], dev_id);
1017 		if (ret)
1018 			goto free_devices;
1019 	}
1020 
1021 	pr_info("Created %u device(s) ...\n", num_devices);
1022 
1023 	return 0;
1024 
1025 free_devices:
1026 	while (dev_id)
1027 		destroy_device(&zram_devices[--dev_id]);
1028 	kfree(zram_devices);
1029 unregister:
1030 	unregister_blkdev(zram_major, "zram");
1031 out:
1032 	return ret;
1033 }
1034 
1035 static void __exit zram_exit(void)
1036 {
1037 	int i;
1038 	struct zram *zram;
1039 
1040 	for (i = 0; i < num_devices; i++) {
1041 		zram = &zram_devices[i];
1042 
1043 		destroy_device(zram);
1044 		/*
1045 		 * Shouldn't access zram->disk after destroy_device
1046 		 * because destroy_device already released zram->disk.
1047 		 */
1048 		zram_reset_device(zram, false);
1049 	}
1050 
1051 	unregister_blkdev(zram_major, "zram");
1052 
1053 	kfree(zram_devices);
1054 	pr_debug("Cleanup done!\n");
1055 }
1056 
1057 module_init(zram_init);
1058 module_exit(zram_exit);
1059 
1060 module_param(num_devices, uint, 0);
1061 MODULE_PARM_DESC(num_devices, "Number of zram devices");
1062 
1063 MODULE_LICENSE("Dual BSD/GPL");
1064 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1065 MODULE_DESCRIPTION("Compressed RAM Block Device");
1066