xref: /linux/drivers/block/zram/zram_drv.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/debugfs.h>
35 #include <linux/cpuhotplug.h>
36 
37 #include "zram_drv.h"
38 
39 static DEFINE_IDR(zram_index_idr);
40 /* idr index must be protected */
41 static DEFINE_MUTEX(zram_index_mutex);
42 
43 static int zram_major;
44 static const char *default_compressor = "lzo-rle";
45 
46 /* Module params (documentation at end) */
47 static unsigned int num_devices = 1;
48 /*
49  * Pages that compress to sizes equals or greater than this are stored
50  * uncompressed in memory.
51  */
52 static size_t huge_class_size;
53 
54 static void zram_free_page(struct zram *zram, size_t index);
55 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
56 				u32 index, int offset, struct bio *bio);
57 
58 
59 static int zram_slot_trylock(struct zram *zram, u32 index)
60 {
61 	return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags);
62 }
63 
64 static void zram_slot_lock(struct zram *zram, u32 index)
65 {
66 	bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags);
67 }
68 
69 static void zram_slot_unlock(struct zram *zram, u32 index)
70 {
71 	bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags);
72 }
73 
74 static inline bool init_done(struct zram *zram)
75 {
76 	return zram->disksize;
77 }
78 
79 static inline struct zram *dev_to_zram(struct device *dev)
80 {
81 	return (struct zram *)dev_to_disk(dev)->private_data;
82 }
83 
84 static unsigned long zram_get_handle(struct zram *zram, u32 index)
85 {
86 	return zram->table[index].handle;
87 }
88 
89 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
90 {
91 	zram->table[index].handle = handle;
92 }
93 
94 /* flag operations require table entry bit_spin_lock() being held */
95 static bool zram_test_flag(struct zram *zram, u32 index,
96 			enum zram_pageflags flag)
97 {
98 	return zram->table[index].flags & BIT(flag);
99 }
100 
101 static void zram_set_flag(struct zram *zram, u32 index,
102 			enum zram_pageflags flag)
103 {
104 	zram->table[index].flags |= BIT(flag);
105 }
106 
107 static void zram_clear_flag(struct zram *zram, u32 index,
108 			enum zram_pageflags flag)
109 {
110 	zram->table[index].flags &= ~BIT(flag);
111 }
112 
113 static inline void zram_set_element(struct zram *zram, u32 index,
114 			unsigned long element)
115 {
116 	zram->table[index].element = element;
117 }
118 
119 static unsigned long zram_get_element(struct zram *zram, u32 index)
120 {
121 	return zram->table[index].element;
122 }
123 
124 static size_t zram_get_obj_size(struct zram *zram, u32 index)
125 {
126 	return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
127 }
128 
129 static void zram_set_obj_size(struct zram *zram,
130 					u32 index, size_t size)
131 {
132 	unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
133 
134 	zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
135 }
136 
137 static inline bool zram_allocated(struct zram *zram, u32 index)
138 {
139 	return zram_get_obj_size(zram, index) ||
140 			zram_test_flag(zram, index, ZRAM_SAME) ||
141 			zram_test_flag(zram, index, ZRAM_WB);
142 }
143 
144 #if PAGE_SIZE != 4096
145 static inline bool is_partial_io(struct bio_vec *bvec)
146 {
147 	return bvec->bv_len != PAGE_SIZE;
148 }
149 #else
150 static inline bool is_partial_io(struct bio_vec *bvec)
151 {
152 	return false;
153 }
154 #endif
155 
156 /*
157  * Check if request is within bounds and aligned on zram logical blocks.
158  */
159 static inline bool valid_io_request(struct zram *zram,
160 		sector_t start, unsigned int size)
161 {
162 	u64 end, bound;
163 
164 	/* unaligned request */
165 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
166 		return false;
167 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
168 		return false;
169 
170 	end = start + (size >> SECTOR_SHIFT);
171 	bound = zram->disksize >> SECTOR_SHIFT;
172 	/* out of range range */
173 	if (unlikely(start >= bound || end > bound || start > end))
174 		return false;
175 
176 	/* I/O request is valid */
177 	return true;
178 }
179 
180 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
181 {
182 	*index  += (*offset + bvec->bv_len) / PAGE_SIZE;
183 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
184 }
185 
186 static inline void update_used_max(struct zram *zram,
187 					const unsigned long pages)
188 {
189 	unsigned long old_max, cur_max;
190 
191 	old_max = atomic_long_read(&zram->stats.max_used_pages);
192 
193 	do {
194 		cur_max = old_max;
195 		if (pages > cur_max)
196 			old_max = atomic_long_cmpxchg(
197 				&zram->stats.max_used_pages, cur_max, pages);
198 	} while (old_max != cur_max);
199 }
200 
201 static inline void zram_fill_page(void *ptr, unsigned long len,
202 					unsigned long value)
203 {
204 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
205 	memset_l(ptr, value, len / sizeof(unsigned long));
206 }
207 
208 static bool page_same_filled(void *ptr, unsigned long *element)
209 {
210 	unsigned int pos;
211 	unsigned long *page;
212 	unsigned long val;
213 
214 	page = (unsigned long *)ptr;
215 	val = page[0];
216 
217 	for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
218 		if (val != page[pos])
219 			return false;
220 	}
221 
222 	*element = val;
223 
224 	return true;
225 }
226 
227 static ssize_t initstate_show(struct device *dev,
228 		struct device_attribute *attr, char *buf)
229 {
230 	u32 val;
231 	struct zram *zram = dev_to_zram(dev);
232 
233 	down_read(&zram->init_lock);
234 	val = init_done(zram);
235 	up_read(&zram->init_lock);
236 
237 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
238 }
239 
240 static ssize_t disksize_show(struct device *dev,
241 		struct device_attribute *attr, char *buf)
242 {
243 	struct zram *zram = dev_to_zram(dev);
244 
245 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
246 }
247 
248 static ssize_t mem_limit_store(struct device *dev,
249 		struct device_attribute *attr, const char *buf, size_t len)
250 {
251 	u64 limit;
252 	char *tmp;
253 	struct zram *zram = dev_to_zram(dev);
254 
255 	limit = memparse(buf, &tmp);
256 	if (buf == tmp) /* no chars parsed, invalid input */
257 		return -EINVAL;
258 
259 	down_write(&zram->init_lock);
260 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
261 	up_write(&zram->init_lock);
262 
263 	return len;
264 }
265 
266 static ssize_t mem_used_max_store(struct device *dev,
267 		struct device_attribute *attr, const char *buf, size_t len)
268 {
269 	int err;
270 	unsigned long val;
271 	struct zram *zram = dev_to_zram(dev);
272 
273 	err = kstrtoul(buf, 10, &val);
274 	if (err || val != 0)
275 		return -EINVAL;
276 
277 	down_read(&zram->init_lock);
278 	if (init_done(zram)) {
279 		atomic_long_set(&zram->stats.max_used_pages,
280 				zs_get_total_pages(zram->mem_pool));
281 	}
282 	up_read(&zram->init_lock);
283 
284 	return len;
285 }
286 
287 static ssize_t idle_store(struct device *dev,
288 		struct device_attribute *attr, const char *buf, size_t len)
289 {
290 	struct zram *zram = dev_to_zram(dev);
291 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
292 	int index;
293 	char mode_buf[8];
294 	ssize_t sz;
295 
296 	sz = strscpy(mode_buf, buf, sizeof(mode_buf));
297 	if (sz <= 0)
298 		return -EINVAL;
299 
300 	/* ignore trailing new line */
301 	if (mode_buf[sz - 1] == '\n')
302 		mode_buf[sz - 1] = 0x00;
303 
304 	if (strcmp(mode_buf, "all"))
305 		return -EINVAL;
306 
307 	down_read(&zram->init_lock);
308 	if (!init_done(zram)) {
309 		up_read(&zram->init_lock);
310 		return -EINVAL;
311 	}
312 
313 	for (index = 0; index < nr_pages; index++) {
314 		/*
315 		 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race.
316 		 * See the comment in writeback_store.
317 		 */
318 		zram_slot_lock(zram, index);
319 		if (zram_allocated(zram, index) &&
320 				!zram_test_flag(zram, index, ZRAM_UNDER_WB))
321 			zram_set_flag(zram, index, ZRAM_IDLE);
322 		zram_slot_unlock(zram, index);
323 	}
324 
325 	up_read(&zram->init_lock);
326 
327 	return len;
328 }
329 
330 #ifdef CONFIG_ZRAM_WRITEBACK
331 static ssize_t writeback_limit_enable_store(struct device *dev,
332 		struct device_attribute *attr, const char *buf, size_t len)
333 {
334 	struct zram *zram = dev_to_zram(dev);
335 	u64 val;
336 	ssize_t ret = -EINVAL;
337 
338 	if (kstrtoull(buf, 10, &val))
339 		return ret;
340 
341 	down_read(&zram->init_lock);
342 	spin_lock(&zram->wb_limit_lock);
343 	zram->wb_limit_enable = val;
344 	spin_unlock(&zram->wb_limit_lock);
345 	up_read(&zram->init_lock);
346 	ret = len;
347 
348 	return ret;
349 }
350 
351 static ssize_t writeback_limit_enable_show(struct device *dev,
352 		struct device_attribute *attr, char *buf)
353 {
354 	bool val;
355 	struct zram *zram = dev_to_zram(dev);
356 
357 	down_read(&zram->init_lock);
358 	spin_lock(&zram->wb_limit_lock);
359 	val = zram->wb_limit_enable;
360 	spin_unlock(&zram->wb_limit_lock);
361 	up_read(&zram->init_lock);
362 
363 	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
364 }
365 
366 static ssize_t writeback_limit_store(struct device *dev,
367 		struct device_attribute *attr, const char *buf, size_t len)
368 {
369 	struct zram *zram = dev_to_zram(dev);
370 	u64 val;
371 	ssize_t ret = -EINVAL;
372 
373 	if (kstrtoull(buf, 10, &val))
374 		return ret;
375 
376 	down_read(&zram->init_lock);
377 	spin_lock(&zram->wb_limit_lock);
378 	zram->bd_wb_limit = val;
379 	spin_unlock(&zram->wb_limit_lock);
380 	up_read(&zram->init_lock);
381 	ret = len;
382 
383 	return ret;
384 }
385 
386 static ssize_t writeback_limit_show(struct device *dev,
387 		struct device_attribute *attr, char *buf)
388 {
389 	u64 val;
390 	struct zram *zram = dev_to_zram(dev);
391 
392 	down_read(&zram->init_lock);
393 	spin_lock(&zram->wb_limit_lock);
394 	val = zram->bd_wb_limit;
395 	spin_unlock(&zram->wb_limit_lock);
396 	up_read(&zram->init_lock);
397 
398 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
399 }
400 
401 static void reset_bdev(struct zram *zram)
402 {
403 	struct block_device *bdev;
404 
405 	if (!zram->backing_dev)
406 		return;
407 
408 	bdev = zram->bdev;
409 	if (zram->old_block_size)
410 		set_blocksize(bdev, zram->old_block_size);
411 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
412 	/* hope filp_close flush all of IO */
413 	filp_close(zram->backing_dev, NULL);
414 	zram->backing_dev = NULL;
415 	zram->old_block_size = 0;
416 	zram->bdev = NULL;
417 	zram->disk->queue->backing_dev_info->capabilities |=
418 				BDI_CAP_SYNCHRONOUS_IO;
419 	kvfree(zram->bitmap);
420 	zram->bitmap = NULL;
421 }
422 
423 static ssize_t backing_dev_show(struct device *dev,
424 		struct device_attribute *attr, char *buf)
425 {
426 	struct zram *zram = dev_to_zram(dev);
427 	struct file *file = zram->backing_dev;
428 	char *p;
429 	ssize_t ret;
430 
431 	down_read(&zram->init_lock);
432 	if (!zram->backing_dev) {
433 		memcpy(buf, "none\n", 5);
434 		up_read(&zram->init_lock);
435 		return 5;
436 	}
437 
438 	p = file_path(file, buf, PAGE_SIZE - 1);
439 	if (IS_ERR(p)) {
440 		ret = PTR_ERR(p);
441 		goto out;
442 	}
443 
444 	ret = strlen(p);
445 	memmove(buf, p, ret);
446 	buf[ret++] = '\n';
447 out:
448 	up_read(&zram->init_lock);
449 	return ret;
450 }
451 
452 static ssize_t backing_dev_store(struct device *dev,
453 		struct device_attribute *attr, const char *buf, size_t len)
454 {
455 	char *file_name;
456 	size_t sz;
457 	struct file *backing_dev = NULL;
458 	struct inode *inode;
459 	struct address_space *mapping;
460 	unsigned int bitmap_sz, old_block_size = 0;
461 	unsigned long nr_pages, *bitmap = NULL;
462 	struct block_device *bdev = NULL;
463 	int err;
464 	struct zram *zram = dev_to_zram(dev);
465 
466 	file_name = kmalloc(PATH_MAX, GFP_KERNEL);
467 	if (!file_name)
468 		return -ENOMEM;
469 
470 	down_write(&zram->init_lock);
471 	if (init_done(zram)) {
472 		pr_info("Can't setup backing device for initialized device\n");
473 		err = -EBUSY;
474 		goto out;
475 	}
476 
477 	strlcpy(file_name, buf, PATH_MAX);
478 	/* ignore trailing newline */
479 	sz = strlen(file_name);
480 	if (sz > 0 && file_name[sz - 1] == '\n')
481 		file_name[sz - 1] = 0x00;
482 
483 	backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
484 	if (IS_ERR(backing_dev)) {
485 		err = PTR_ERR(backing_dev);
486 		backing_dev = NULL;
487 		goto out;
488 	}
489 
490 	mapping = backing_dev->f_mapping;
491 	inode = mapping->host;
492 
493 	/* Support only block device in this moment */
494 	if (!S_ISBLK(inode->i_mode)) {
495 		err = -ENOTBLK;
496 		goto out;
497 	}
498 
499 	bdev = bdgrab(I_BDEV(inode));
500 	err = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
501 	if (err < 0) {
502 		bdev = NULL;
503 		goto out;
504 	}
505 
506 	nr_pages = i_size_read(inode) >> PAGE_SHIFT;
507 	bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
508 	bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
509 	if (!bitmap) {
510 		err = -ENOMEM;
511 		goto out;
512 	}
513 
514 	old_block_size = block_size(bdev);
515 	err = set_blocksize(bdev, PAGE_SIZE);
516 	if (err)
517 		goto out;
518 
519 	reset_bdev(zram);
520 
521 	zram->old_block_size = old_block_size;
522 	zram->bdev = bdev;
523 	zram->backing_dev = backing_dev;
524 	zram->bitmap = bitmap;
525 	zram->nr_pages = nr_pages;
526 	/*
527 	 * With writeback feature, zram does asynchronous IO so it's no longer
528 	 * synchronous device so let's remove synchronous io flag. Othewise,
529 	 * upper layer(e.g., swap) could wait IO completion rather than
530 	 * (submit and return), which will cause system sluggish.
531 	 * Furthermore, when the IO function returns(e.g., swap_readpage),
532 	 * upper layer expects IO was done so it could deallocate the page
533 	 * freely but in fact, IO is going on so finally could cause
534 	 * use-after-free when the IO is really done.
535 	 */
536 	zram->disk->queue->backing_dev_info->capabilities &=
537 			~BDI_CAP_SYNCHRONOUS_IO;
538 	up_write(&zram->init_lock);
539 
540 	pr_info("setup backing device %s\n", file_name);
541 	kfree(file_name);
542 
543 	return len;
544 out:
545 	if (bitmap)
546 		kvfree(bitmap);
547 
548 	if (bdev)
549 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
550 
551 	if (backing_dev)
552 		filp_close(backing_dev, NULL);
553 
554 	up_write(&zram->init_lock);
555 
556 	kfree(file_name);
557 
558 	return err;
559 }
560 
561 static unsigned long alloc_block_bdev(struct zram *zram)
562 {
563 	unsigned long blk_idx = 1;
564 retry:
565 	/* skip 0 bit to confuse zram.handle = 0 */
566 	blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
567 	if (blk_idx == zram->nr_pages)
568 		return 0;
569 
570 	if (test_and_set_bit(blk_idx, zram->bitmap))
571 		goto retry;
572 
573 	atomic64_inc(&zram->stats.bd_count);
574 	return blk_idx;
575 }
576 
577 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
578 {
579 	int was_set;
580 
581 	was_set = test_and_clear_bit(blk_idx, zram->bitmap);
582 	WARN_ON_ONCE(!was_set);
583 	atomic64_dec(&zram->stats.bd_count);
584 }
585 
586 static void zram_page_end_io(struct bio *bio)
587 {
588 	struct page *page = bio_first_page_all(bio);
589 
590 	page_endio(page, op_is_write(bio_op(bio)),
591 			blk_status_to_errno(bio->bi_status));
592 	bio_put(bio);
593 }
594 
595 /*
596  * Returns 1 if the submission is successful.
597  */
598 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
599 			unsigned long entry, struct bio *parent)
600 {
601 	struct bio *bio;
602 
603 	bio = bio_alloc(GFP_ATOMIC, 1);
604 	if (!bio)
605 		return -ENOMEM;
606 
607 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
608 	bio_set_dev(bio, zram->bdev);
609 	if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
610 		bio_put(bio);
611 		return -EIO;
612 	}
613 
614 	if (!parent) {
615 		bio->bi_opf = REQ_OP_READ;
616 		bio->bi_end_io = zram_page_end_io;
617 	} else {
618 		bio->bi_opf = parent->bi_opf;
619 		bio_chain(bio, parent);
620 	}
621 
622 	submit_bio(bio);
623 	return 1;
624 }
625 
626 #define HUGE_WRITEBACK 1
627 #define IDLE_WRITEBACK 2
628 
629 static ssize_t writeback_store(struct device *dev,
630 		struct device_attribute *attr, const char *buf, size_t len)
631 {
632 	struct zram *zram = dev_to_zram(dev);
633 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
634 	unsigned long index;
635 	struct bio bio;
636 	struct bio_vec bio_vec;
637 	struct page *page;
638 	ssize_t ret, sz;
639 	char mode_buf[8];
640 	int mode = -1;
641 	unsigned long blk_idx = 0;
642 
643 	sz = strscpy(mode_buf, buf, sizeof(mode_buf));
644 	if (sz <= 0)
645 		return -EINVAL;
646 
647 	/* ignore trailing newline */
648 	if (mode_buf[sz - 1] == '\n')
649 		mode_buf[sz - 1] = 0x00;
650 
651 	if (!strcmp(mode_buf, "idle"))
652 		mode = IDLE_WRITEBACK;
653 	else if (!strcmp(mode_buf, "huge"))
654 		mode = HUGE_WRITEBACK;
655 
656 	if (mode == -1)
657 		return -EINVAL;
658 
659 	down_read(&zram->init_lock);
660 	if (!init_done(zram)) {
661 		ret = -EINVAL;
662 		goto release_init_lock;
663 	}
664 
665 	if (!zram->backing_dev) {
666 		ret = -ENODEV;
667 		goto release_init_lock;
668 	}
669 
670 	page = alloc_page(GFP_KERNEL);
671 	if (!page) {
672 		ret = -ENOMEM;
673 		goto release_init_lock;
674 	}
675 
676 	for (index = 0; index < nr_pages; index++) {
677 		struct bio_vec bvec;
678 
679 		bvec.bv_page = page;
680 		bvec.bv_len = PAGE_SIZE;
681 		bvec.bv_offset = 0;
682 
683 		spin_lock(&zram->wb_limit_lock);
684 		if (zram->wb_limit_enable && !zram->bd_wb_limit) {
685 			spin_unlock(&zram->wb_limit_lock);
686 			ret = -EIO;
687 			break;
688 		}
689 		spin_unlock(&zram->wb_limit_lock);
690 
691 		if (!blk_idx) {
692 			blk_idx = alloc_block_bdev(zram);
693 			if (!blk_idx) {
694 				ret = -ENOSPC;
695 				break;
696 			}
697 		}
698 
699 		zram_slot_lock(zram, index);
700 		if (!zram_allocated(zram, index))
701 			goto next;
702 
703 		if (zram_test_flag(zram, index, ZRAM_WB) ||
704 				zram_test_flag(zram, index, ZRAM_SAME) ||
705 				zram_test_flag(zram, index, ZRAM_UNDER_WB))
706 			goto next;
707 
708 		if (mode == IDLE_WRITEBACK &&
709 			  !zram_test_flag(zram, index, ZRAM_IDLE))
710 			goto next;
711 		if (mode == HUGE_WRITEBACK &&
712 			  !zram_test_flag(zram, index, ZRAM_HUGE))
713 			goto next;
714 		/*
715 		 * Clearing ZRAM_UNDER_WB is duty of caller.
716 		 * IOW, zram_free_page never clear it.
717 		 */
718 		zram_set_flag(zram, index, ZRAM_UNDER_WB);
719 		/* Need for hugepage writeback racing */
720 		zram_set_flag(zram, index, ZRAM_IDLE);
721 		zram_slot_unlock(zram, index);
722 		if (zram_bvec_read(zram, &bvec, index, 0, NULL)) {
723 			zram_slot_lock(zram, index);
724 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
725 			zram_clear_flag(zram, index, ZRAM_IDLE);
726 			zram_slot_unlock(zram, index);
727 			continue;
728 		}
729 
730 		bio_init(&bio, &bio_vec, 1);
731 		bio_set_dev(&bio, zram->bdev);
732 		bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
733 		bio.bi_opf = REQ_OP_WRITE | REQ_SYNC;
734 
735 		bio_add_page(&bio, bvec.bv_page, bvec.bv_len,
736 				bvec.bv_offset);
737 		/*
738 		 * XXX: A single page IO would be inefficient for write
739 		 * but it would be not bad as starter.
740 		 */
741 		ret = submit_bio_wait(&bio);
742 		if (ret) {
743 			zram_slot_lock(zram, index);
744 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
745 			zram_clear_flag(zram, index, ZRAM_IDLE);
746 			zram_slot_unlock(zram, index);
747 			continue;
748 		}
749 
750 		atomic64_inc(&zram->stats.bd_writes);
751 		/*
752 		 * We released zram_slot_lock so need to check if the slot was
753 		 * changed. If there is freeing for the slot, we can catch it
754 		 * easily by zram_allocated.
755 		 * A subtle case is the slot is freed/reallocated/marked as
756 		 * ZRAM_IDLE again. To close the race, idle_store doesn't
757 		 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB.
758 		 * Thus, we could close the race by checking ZRAM_IDLE bit.
759 		 */
760 		zram_slot_lock(zram, index);
761 		if (!zram_allocated(zram, index) ||
762 			  !zram_test_flag(zram, index, ZRAM_IDLE)) {
763 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
764 			zram_clear_flag(zram, index, ZRAM_IDLE);
765 			goto next;
766 		}
767 
768 		zram_free_page(zram, index);
769 		zram_clear_flag(zram, index, ZRAM_UNDER_WB);
770 		zram_set_flag(zram, index, ZRAM_WB);
771 		zram_set_element(zram, index, blk_idx);
772 		blk_idx = 0;
773 		atomic64_inc(&zram->stats.pages_stored);
774 		spin_lock(&zram->wb_limit_lock);
775 		if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
776 			zram->bd_wb_limit -=  1UL << (PAGE_SHIFT - 12);
777 		spin_unlock(&zram->wb_limit_lock);
778 next:
779 		zram_slot_unlock(zram, index);
780 	}
781 
782 	if (blk_idx)
783 		free_block_bdev(zram, blk_idx);
784 	ret = len;
785 	__free_page(page);
786 release_init_lock:
787 	up_read(&zram->init_lock);
788 
789 	return ret;
790 }
791 
792 struct zram_work {
793 	struct work_struct work;
794 	struct zram *zram;
795 	unsigned long entry;
796 	struct bio *bio;
797 };
798 
799 #if PAGE_SIZE != 4096
800 static void zram_sync_read(struct work_struct *work)
801 {
802 	struct bio_vec bvec;
803 	struct zram_work *zw = container_of(work, struct zram_work, work);
804 	struct zram *zram = zw->zram;
805 	unsigned long entry = zw->entry;
806 	struct bio *bio = zw->bio;
807 
808 	read_from_bdev_async(zram, &bvec, entry, bio);
809 }
810 
811 /*
812  * Block layer want one ->make_request_fn to be active at a time
813  * so if we use chained IO with parent IO in same context,
814  * it's a deadlock. To avoid, it, it uses worker thread context.
815  */
816 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
817 				unsigned long entry, struct bio *bio)
818 {
819 	struct zram_work work;
820 
821 	work.zram = zram;
822 	work.entry = entry;
823 	work.bio = bio;
824 
825 	INIT_WORK_ONSTACK(&work.work, zram_sync_read);
826 	queue_work(system_unbound_wq, &work.work);
827 	flush_work(&work.work);
828 	destroy_work_on_stack(&work.work);
829 
830 	return 1;
831 }
832 #else
833 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
834 				unsigned long entry, struct bio *bio)
835 {
836 	WARN_ON(1);
837 	return -EIO;
838 }
839 #endif
840 
841 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
842 			unsigned long entry, struct bio *parent, bool sync)
843 {
844 	atomic64_inc(&zram->stats.bd_reads);
845 	if (sync)
846 		return read_from_bdev_sync(zram, bvec, entry, parent);
847 	else
848 		return read_from_bdev_async(zram, bvec, entry, parent);
849 }
850 #else
851 static inline void reset_bdev(struct zram *zram) {};
852 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
853 			unsigned long entry, struct bio *parent, bool sync)
854 {
855 	return -EIO;
856 }
857 
858 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
859 #endif
860 
861 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
862 
863 static struct dentry *zram_debugfs_root;
864 
865 static void zram_debugfs_create(void)
866 {
867 	zram_debugfs_root = debugfs_create_dir("zram", NULL);
868 }
869 
870 static void zram_debugfs_destroy(void)
871 {
872 	debugfs_remove_recursive(zram_debugfs_root);
873 }
874 
875 static void zram_accessed(struct zram *zram, u32 index)
876 {
877 	zram_clear_flag(zram, index, ZRAM_IDLE);
878 	zram->table[index].ac_time = ktime_get_boottime();
879 }
880 
881 static ssize_t read_block_state(struct file *file, char __user *buf,
882 				size_t count, loff_t *ppos)
883 {
884 	char *kbuf;
885 	ssize_t index, written = 0;
886 	struct zram *zram = file->private_data;
887 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
888 	struct timespec64 ts;
889 
890 	kbuf = kvmalloc(count, GFP_KERNEL);
891 	if (!kbuf)
892 		return -ENOMEM;
893 
894 	down_read(&zram->init_lock);
895 	if (!init_done(zram)) {
896 		up_read(&zram->init_lock);
897 		kvfree(kbuf);
898 		return -EINVAL;
899 	}
900 
901 	for (index = *ppos; index < nr_pages; index++) {
902 		int copied;
903 
904 		zram_slot_lock(zram, index);
905 		if (!zram_allocated(zram, index))
906 			goto next;
907 
908 		ts = ktime_to_timespec64(zram->table[index].ac_time);
909 		copied = snprintf(kbuf + written, count,
910 			"%12zd %12lld.%06lu %c%c%c%c\n",
911 			index, (s64)ts.tv_sec,
912 			ts.tv_nsec / NSEC_PER_USEC,
913 			zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
914 			zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
915 			zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
916 			zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.');
917 
918 		if (count < copied) {
919 			zram_slot_unlock(zram, index);
920 			break;
921 		}
922 		written += copied;
923 		count -= copied;
924 next:
925 		zram_slot_unlock(zram, index);
926 		*ppos += 1;
927 	}
928 
929 	up_read(&zram->init_lock);
930 	if (copy_to_user(buf, kbuf, written))
931 		written = -EFAULT;
932 	kvfree(kbuf);
933 
934 	return written;
935 }
936 
937 static const struct file_operations proc_zram_block_state_op = {
938 	.open = simple_open,
939 	.read = read_block_state,
940 	.llseek = default_llseek,
941 };
942 
943 static void zram_debugfs_register(struct zram *zram)
944 {
945 	if (!zram_debugfs_root)
946 		return;
947 
948 	zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
949 						zram_debugfs_root);
950 	debugfs_create_file("block_state", 0400, zram->debugfs_dir,
951 				zram, &proc_zram_block_state_op);
952 }
953 
954 static void zram_debugfs_unregister(struct zram *zram)
955 {
956 	debugfs_remove_recursive(zram->debugfs_dir);
957 }
958 #else
959 static void zram_debugfs_create(void) {};
960 static void zram_debugfs_destroy(void) {};
961 static void zram_accessed(struct zram *zram, u32 index)
962 {
963 	zram_clear_flag(zram, index, ZRAM_IDLE);
964 };
965 static void zram_debugfs_register(struct zram *zram) {};
966 static void zram_debugfs_unregister(struct zram *zram) {};
967 #endif
968 
969 /*
970  * We switched to per-cpu streams and this attr is not needed anymore.
971  * However, we will keep it around for some time, because:
972  * a) we may revert per-cpu streams in the future
973  * b) it's visible to user space and we need to follow our 2 years
974  *    retirement rule; but we already have a number of 'soon to be
975  *    altered' attrs, so max_comp_streams need to wait for the next
976  *    layoff cycle.
977  */
978 static ssize_t max_comp_streams_show(struct device *dev,
979 		struct device_attribute *attr, char *buf)
980 {
981 	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
982 }
983 
984 static ssize_t max_comp_streams_store(struct device *dev,
985 		struct device_attribute *attr, const char *buf, size_t len)
986 {
987 	return len;
988 }
989 
990 static ssize_t comp_algorithm_show(struct device *dev,
991 		struct device_attribute *attr, char *buf)
992 {
993 	size_t sz;
994 	struct zram *zram = dev_to_zram(dev);
995 
996 	down_read(&zram->init_lock);
997 	sz = zcomp_available_show(zram->compressor, buf);
998 	up_read(&zram->init_lock);
999 
1000 	return sz;
1001 }
1002 
1003 static ssize_t comp_algorithm_store(struct device *dev,
1004 		struct device_attribute *attr, const char *buf, size_t len)
1005 {
1006 	struct zram *zram = dev_to_zram(dev);
1007 	char compressor[ARRAY_SIZE(zram->compressor)];
1008 	size_t sz;
1009 
1010 	strlcpy(compressor, buf, sizeof(compressor));
1011 	/* ignore trailing newline */
1012 	sz = strlen(compressor);
1013 	if (sz > 0 && compressor[sz - 1] == '\n')
1014 		compressor[sz - 1] = 0x00;
1015 
1016 	if (!zcomp_available_algorithm(compressor))
1017 		return -EINVAL;
1018 
1019 	down_write(&zram->init_lock);
1020 	if (init_done(zram)) {
1021 		up_write(&zram->init_lock);
1022 		pr_info("Can't change algorithm for initialized device\n");
1023 		return -EBUSY;
1024 	}
1025 
1026 	strcpy(zram->compressor, compressor);
1027 	up_write(&zram->init_lock);
1028 	return len;
1029 }
1030 
1031 static ssize_t compact_store(struct device *dev,
1032 		struct device_attribute *attr, const char *buf, size_t len)
1033 {
1034 	struct zram *zram = dev_to_zram(dev);
1035 
1036 	down_read(&zram->init_lock);
1037 	if (!init_done(zram)) {
1038 		up_read(&zram->init_lock);
1039 		return -EINVAL;
1040 	}
1041 
1042 	zs_compact(zram->mem_pool);
1043 	up_read(&zram->init_lock);
1044 
1045 	return len;
1046 }
1047 
1048 static ssize_t io_stat_show(struct device *dev,
1049 		struct device_attribute *attr, char *buf)
1050 {
1051 	struct zram *zram = dev_to_zram(dev);
1052 	ssize_t ret;
1053 
1054 	down_read(&zram->init_lock);
1055 	ret = scnprintf(buf, PAGE_SIZE,
1056 			"%8llu %8llu %8llu %8llu\n",
1057 			(u64)atomic64_read(&zram->stats.failed_reads),
1058 			(u64)atomic64_read(&zram->stats.failed_writes),
1059 			(u64)atomic64_read(&zram->stats.invalid_io),
1060 			(u64)atomic64_read(&zram->stats.notify_free));
1061 	up_read(&zram->init_lock);
1062 
1063 	return ret;
1064 }
1065 
1066 static ssize_t mm_stat_show(struct device *dev,
1067 		struct device_attribute *attr, char *buf)
1068 {
1069 	struct zram *zram = dev_to_zram(dev);
1070 	struct zs_pool_stats pool_stats;
1071 	u64 orig_size, mem_used = 0;
1072 	long max_used;
1073 	ssize_t ret;
1074 
1075 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1076 
1077 	down_read(&zram->init_lock);
1078 	if (init_done(zram)) {
1079 		mem_used = zs_get_total_pages(zram->mem_pool);
1080 		zs_pool_stats(zram->mem_pool, &pool_stats);
1081 	}
1082 
1083 	orig_size = atomic64_read(&zram->stats.pages_stored);
1084 	max_used = atomic_long_read(&zram->stats.max_used_pages);
1085 
1086 	ret = scnprintf(buf, PAGE_SIZE,
1087 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu\n",
1088 			orig_size << PAGE_SHIFT,
1089 			(u64)atomic64_read(&zram->stats.compr_data_size),
1090 			mem_used << PAGE_SHIFT,
1091 			zram->limit_pages << PAGE_SHIFT,
1092 			max_used << PAGE_SHIFT,
1093 			(u64)atomic64_read(&zram->stats.same_pages),
1094 			pool_stats.pages_compacted,
1095 			(u64)atomic64_read(&zram->stats.huge_pages));
1096 	up_read(&zram->init_lock);
1097 
1098 	return ret;
1099 }
1100 
1101 #ifdef CONFIG_ZRAM_WRITEBACK
1102 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
1103 static ssize_t bd_stat_show(struct device *dev,
1104 		struct device_attribute *attr, char *buf)
1105 {
1106 	struct zram *zram = dev_to_zram(dev);
1107 	ssize_t ret;
1108 
1109 	down_read(&zram->init_lock);
1110 	ret = scnprintf(buf, PAGE_SIZE,
1111 		"%8llu %8llu %8llu\n",
1112 			FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1113 			FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1114 			FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1115 	up_read(&zram->init_lock);
1116 
1117 	return ret;
1118 }
1119 #endif
1120 
1121 static ssize_t debug_stat_show(struct device *dev,
1122 		struct device_attribute *attr, char *buf)
1123 {
1124 	int version = 1;
1125 	struct zram *zram = dev_to_zram(dev);
1126 	ssize_t ret;
1127 
1128 	down_read(&zram->init_lock);
1129 	ret = scnprintf(buf, PAGE_SIZE,
1130 			"version: %d\n%8llu %8llu\n",
1131 			version,
1132 			(u64)atomic64_read(&zram->stats.writestall),
1133 			(u64)atomic64_read(&zram->stats.miss_free));
1134 	up_read(&zram->init_lock);
1135 
1136 	return ret;
1137 }
1138 
1139 static DEVICE_ATTR_RO(io_stat);
1140 static DEVICE_ATTR_RO(mm_stat);
1141 #ifdef CONFIG_ZRAM_WRITEBACK
1142 static DEVICE_ATTR_RO(bd_stat);
1143 #endif
1144 static DEVICE_ATTR_RO(debug_stat);
1145 
1146 static void zram_meta_free(struct zram *zram, u64 disksize)
1147 {
1148 	size_t num_pages = disksize >> PAGE_SHIFT;
1149 	size_t index;
1150 
1151 	/* Free all pages that are still in this zram device */
1152 	for (index = 0; index < num_pages; index++)
1153 		zram_free_page(zram, index);
1154 
1155 	zs_destroy_pool(zram->mem_pool);
1156 	vfree(zram->table);
1157 }
1158 
1159 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1160 {
1161 	size_t num_pages;
1162 
1163 	num_pages = disksize >> PAGE_SHIFT;
1164 	zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1165 	if (!zram->table)
1166 		return false;
1167 
1168 	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1169 	if (!zram->mem_pool) {
1170 		vfree(zram->table);
1171 		return false;
1172 	}
1173 
1174 	if (!huge_class_size)
1175 		huge_class_size = zs_huge_class_size(zram->mem_pool);
1176 	return true;
1177 }
1178 
1179 /*
1180  * To protect concurrent access to the same index entry,
1181  * caller should hold this table index entry's bit_spinlock to
1182  * indicate this index entry is accessing.
1183  */
1184 static void zram_free_page(struct zram *zram, size_t index)
1185 {
1186 	unsigned long handle;
1187 
1188 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
1189 	zram->table[index].ac_time = 0;
1190 #endif
1191 	if (zram_test_flag(zram, index, ZRAM_IDLE))
1192 		zram_clear_flag(zram, index, ZRAM_IDLE);
1193 
1194 	if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1195 		zram_clear_flag(zram, index, ZRAM_HUGE);
1196 		atomic64_dec(&zram->stats.huge_pages);
1197 	}
1198 
1199 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1200 		zram_clear_flag(zram, index, ZRAM_WB);
1201 		free_block_bdev(zram, zram_get_element(zram, index));
1202 		goto out;
1203 	}
1204 
1205 	/*
1206 	 * No memory is allocated for same element filled pages.
1207 	 * Simply clear same page flag.
1208 	 */
1209 	if (zram_test_flag(zram, index, ZRAM_SAME)) {
1210 		zram_clear_flag(zram, index, ZRAM_SAME);
1211 		atomic64_dec(&zram->stats.same_pages);
1212 		goto out;
1213 	}
1214 
1215 	handle = zram_get_handle(zram, index);
1216 	if (!handle)
1217 		return;
1218 
1219 	zs_free(zram->mem_pool, handle);
1220 
1221 	atomic64_sub(zram_get_obj_size(zram, index),
1222 			&zram->stats.compr_data_size);
1223 out:
1224 	atomic64_dec(&zram->stats.pages_stored);
1225 	zram_set_handle(zram, index, 0);
1226 	zram_set_obj_size(zram, index, 0);
1227 	WARN_ON_ONCE(zram->table[index].flags &
1228 		~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB));
1229 }
1230 
1231 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
1232 				struct bio *bio, bool partial_io)
1233 {
1234 	int ret;
1235 	unsigned long handle;
1236 	unsigned int size;
1237 	void *src, *dst;
1238 
1239 	zram_slot_lock(zram, index);
1240 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1241 		struct bio_vec bvec;
1242 
1243 		zram_slot_unlock(zram, index);
1244 
1245 		bvec.bv_page = page;
1246 		bvec.bv_len = PAGE_SIZE;
1247 		bvec.bv_offset = 0;
1248 		return read_from_bdev(zram, &bvec,
1249 				zram_get_element(zram, index),
1250 				bio, partial_io);
1251 	}
1252 
1253 	handle = zram_get_handle(zram, index);
1254 	if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1255 		unsigned long value;
1256 		void *mem;
1257 
1258 		value = handle ? zram_get_element(zram, index) : 0;
1259 		mem = kmap_atomic(page);
1260 		zram_fill_page(mem, PAGE_SIZE, value);
1261 		kunmap_atomic(mem);
1262 		zram_slot_unlock(zram, index);
1263 		return 0;
1264 	}
1265 
1266 	size = zram_get_obj_size(zram, index);
1267 
1268 	src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1269 	if (size == PAGE_SIZE) {
1270 		dst = kmap_atomic(page);
1271 		memcpy(dst, src, PAGE_SIZE);
1272 		kunmap_atomic(dst);
1273 		ret = 0;
1274 	} else {
1275 		struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
1276 
1277 		dst = kmap_atomic(page);
1278 		ret = zcomp_decompress(zstrm, src, size, dst);
1279 		kunmap_atomic(dst);
1280 		zcomp_stream_put(zram->comp);
1281 	}
1282 	zs_unmap_object(zram->mem_pool, handle);
1283 	zram_slot_unlock(zram, index);
1284 
1285 	/* Should NEVER happen. Return bio error if it does. */
1286 	if (unlikely(ret))
1287 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1288 
1289 	return ret;
1290 }
1291 
1292 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1293 				u32 index, int offset, struct bio *bio)
1294 {
1295 	int ret;
1296 	struct page *page;
1297 
1298 	page = bvec->bv_page;
1299 	if (is_partial_io(bvec)) {
1300 		/* Use a temporary buffer to decompress the page */
1301 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1302 		if (!page)
1303 			return -ENOMEM;
1304 	}
1305 
1306 	ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1307 	if (unlikely(ret))
1308 		goto out;
1309 
1310 	if (is_partial_io(bvec)) {
1311 		void *dst = kmap_atomic(bvec->bv_page);
1312 		void *src = kmap_atomic(page);
1313 
1314 		memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
1315 		kunmap_atomic(src);
1316 		kunmap_atomic(dst);
1317 	}
1318 out:
1319 	if (is_partial_io(bvec))
1320 		__free_page(page);
1321 
1322 	return ret;
1323 }
1324 
1325 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1326 				u32 index, struct bio *bio)
1327 {
1328 	int ret = 0;
1329 	unsigned long alloced_pages;
1330 	unsigned long handle = 0;
1331 	unsigned int comp_len = 0;
1332 	void *src, *dst, *mem;
1333 	struct zcomp_strm *zstrm;
1334 	struct page *page = bvec->bv_page;
1335 	unsigned long element = 0;
1336 	enum zram_pageflags flags = 0;
1337 
1338 	mem = kmap_atomic(page);
1339 	if (page_same_filled(mem, &element)) {
1340 		kunmap_atomic(mem);
1341 		/* Free memory associated with this sector now. */
1342 		flags = ZRAM_SAME;
1343 		atomic64_inc(&zram->stats.same_pages);
1344 		goto out;
1345 	}
1346 	kunmap_atomic(mem);
1347 
1348 compress_again:
1349 	zstrm = zcomp_stream_get(zram->comp);
1350 	src = kmap_atomic(page);
1351 	ret = zcomp_compress(zstrm, src, &comp_len);
1352 	kunmap_atomic(src);
1353 
1354 	if (unlikely(ret)) {
1355 		zcomp_stream_put(zram->comp);
1356 		pr_err("Compression failed! err=%d\n", ret);
1357 		zs_free(zram->mem_pool, handle);
1358 		return ret;
1359 	}
1360 
1361 	if (comp_len >= huge_class_size)
1362 		comp_len = PAGE_SIZE;
1363 	/*
1364 	 * handle allocation has 2 paths:
1365 	 * a) fast path is executed with preemption disabled (for
1366 	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1367 	 *  since we can't sleep;
1368 	 * b) slow path enables preemption and attempts to allocate
1369 	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
1370 	 *  put per-cpu compression stream and, thus, to re-do
1371 	 *  the compression once handle is allocated.
1372 	 *
1373 	 * if we have a 'non-null' handle here then we are coming
1374 	 * from the slow path and handle has already been allocated.
1375 	 */
1376 	if (!handle)
1377 		handle = zs_malloc(zram->mem_pool, comp_len,
1378 				__GFP_KSWAPD_RECLAIM |
1379 				__GFP_NOWARN |
1380 				__GFP_HIGHMEM |
1381 				__GFP_MOVABLE);
1382 	if (!handle) {
1383 		zcomp_stream_put(zram->comp);
1384 		atomic64_inc(&zram->stats.writestall);
1385 		handle = zs_malloc(zram->mem_pool, comp_len,
1386 				GFP_NOIO | __GFP_HIGHMEM |
1387 				__GFP_MOVABLE);
1388 		if (handle)
1389 			goto compress_again;
1390 		return -ENOMEM;
1391 	}
1392 
1393 	alloced_pages = zs_get_total_pages(zram->mem_pool);
1394 	update_used_max(zram, alloced_pages);
1395 
1396 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1397 		zcomp_stream_put(zram->comp);
1398 		zs_free(zram->mem_pool, handle);
1399 		return -ENOMEM;
1400 	}
1401 
1402 	dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1403 
1404 	src = zstrm->buffer;
1405 	if (comp_len == PAGE_SIZE)
1406 		src = kmap_atomic(page);
1407 	memcpy(dst, src, comp_len);
1408 	if (comp_len == PAGE_SIZE)
1409 		kunmap_atomic(src);
1410 
1411 	zcomp_stream_put(zram->comp);
1412 	zs_unmap_object(zram->mem_pool, handle);
1413 	atomic64_add(comp_len, &zram->stats.compr_data_size);
1414 out:
1415 	/*
1416 	 * Free memory associated with this sector
1417 	 * before overwriting unused sectors.
1418 	 */
1419 	zram_slot_lock(zram, index);
1420 	zram_free_page(zram, index);
1421 
1422 	if (comp_len == PAGE_SIZE) {
1423 		zram_set_flag(zram, index, ZRAM_HUGE);
1424 		atomic64_inc(&zram->stats.huge_pages);
1425 	}
1426 
1427 	if (flags) {
1428 		zram_set_flag(zram, index, flags);
1429 		zram_set_element(zram, index, element);
1430 	}  else {
1431 		zram_set_handle(zram, index, handle);
1432 		zram_set_obj_size(zram, index, comp_len);
1433 	}
1434 	zram_slot_unlock(zram, index);
1435 
1436 	/* Update stats */
1437 	atomic64_inc(&zram->stats.pages_stored);
1438 	return ret;
1439 }
1440 
1441 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1442 				u32 index, int offset, struct bio *bio)
1443 {
1444 	int ret;
1445 	struct page *page = NULL;
1446 	void *src;
1447 	struct bio_vec vec;
1448 
1449 	vec = *bvec;
1450 	if (is_partial_io(bvec)) {
1451 		void *dst;
1452 		/*
1453 		 * This is a partial IO. We need to read the full page
1454 		 * before to write the changes.
1455 		 */
1456 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1457 		if (!page)
1458 			return -ENOMEM;
1459 
1460 		ret = __zram_bvec_read(zram, page, index, bio, true);
1461 		if (ret)
1462 			goto out;
1463 
1464 		src = kmap_atomic(bvec->bv_page);
1465 		dst = kmap_atomic(page);
1466 		memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
1467 		kunmap_atomic(dst);
1468 		kunmap_atomic(src);
1469 
1470 		vec.bv_page = page;
1471 		vec.bv_len = PAGE_SIZE;
1472 		vec.bv_offset = 0;
1473 	}
1474 
1475 	ret = __zram_bvec_write(zram, &vec, index, bio);
1476 out:
1477 	if (is_partial_io(bvec))
1478 		__free_page(page);
1479 	return ret;
1480 }
1481 
1482 /*
1483  * zram_bio_discard - handler on discard request
1484  * @index: physical block index in PAGE_SIZE units
1485  * @offset: byte offset within physical block
1486  */
1487 static void zram_bio_discard(struct zram *zram, u32 index,
1488 			     int offset, struct bio *bio)
1489 {
1490 	size_t n = bio->bi_iter.bi_size;
1491 
1492 	/*
1493 	 * zram manages data in physical block size units. Because logical block
1494 	 * size isn't identical with physical block size on some arch, we
1495 	 * could get a discard request pointing to a specific offset within a
1496 	 * certain physical block.  Although we can handle this request by
1497 	 * reading that physiclal block and decompressing and partially zeroing
1498 	 * and re-compressing and then re-storing it, this isn't reasonable
1499 	 * because our intent with a discard request is to save memory.  So
1500 	 * skipping this logical block is appropriate here.
1501 	 */
1502 	if (offset) {
1503 		if (n <= (PAGE_SIZE - offset))
1504 			return;
1505 
1506 		n -= (PAGE_SIZE - offset);
1507 		index++;
1508 	}
1509 
1510 	while (n >= PAGE_SIZE) {
1511 		zram_slot_lock(zram, index);
1512 		zram_free_page(zram, index);
1513 		zram_slot_unlock(zram, index);
1514 		atomic64_inc(&zram->stats.notify_free);
1515 		index++;
1516 		n -= PAGE_SIZE;
1517 	}
1518 }
1519 
1520 /*
1521  * Returns errno if it has some problem. Otherwise return 0 or 1.
1522  * Returns 0 if IO request was done synchronously
1523  * Returns 1 if IO request was successfully submitted.
1524  */
1525 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1526 			int offset, unsigned int op, struct bio *bio)
1527 {
1528 	unsigned long start_time = jiffies;
1529 	struct request_queue *q = zram->disk->queue;
1530 	int ret;
1531 
1532 	generic_start_io_acct(q, op, bvec->bv_len >> SECTOR_SHIFT,
1533 			&zram->disk->part0);
1534 
1535 	if (!op_is_write(op)) {
1536 		atomic64_inc(&zram->stats.num_reads);
1537 		ret = zram_bvec_read(zram, bvec, index, offset, bio);
1538 		flush_dcache_page(bvec->bv_page);
1539 	} else {
1540 		atomic64_inc(&zram->stats.num_writes);
1541 		ret = zram_bvec_write(zram, bvec, index, offset, bio);
1542 	}
1543 
1544 	generic_end_io_acct(q, op, &zram->disk->part0, start_time);
1545 
1546 	zram_slot_lock(zram, index);
1547 	zram_accessed(zram, index);
1548 	zram_slot_unlock(zram, index);
1549 
1550 	if (unlikely(ret < 0)) {
1551 		if (!op_is_write(op))
1552 			atomic64_inc(&zram->stats.failed_reads);
1553 		else
1554 			atomic64_inc(&zram->stats.failed_writes);
1555 	}
1556 
1557 	return ret;
1558 }
1559 
1560 static void __zram_make_request(struct zram *zram, struct bio *bio)
1561 {
1562 	int offset;
1563 	u32 index;
1564 	struct bio_vec bvec;
1565 	struct bvec_iter iter;
1566 
1567 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1568 	offset = (bio->bi_iter.bi_sector &
1569 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1570 
1571 	switch (bio_op(bio)) {
1572 	case REQ_OP_DISCARD:
1573 	case REQ_OP_WRITE_ZEROES:
1574 		zram_bio_discard(zram, index, offset, bio);
1575 		bio_endio(bio);
1576 		return;
1577 	default:
1578 		break;
1579 	}
1580 
1581 	bio_for_each_segment(bvec, bio, iter) {
1582 		struct bio_vec bv = bvec;
1583 		unsigned int unwritten = bvec.bv_len;
1584 
1585 		do {
1586 			bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1587 							unwritten);
1588 			if (zram_bvec_rw(zram, &bv, index, offset,
1589 					 bio_op(bio), bio) < 0)
1590 				goto out;
1591 
1592 			bv.bv_offset += bv.bv_len;
1593 			unwritten -= bv.bv_len;
1594 
1595 			update_position(&index, &offset, &bv);
1596 		} while (unwritten);
1597 	}
1598 
1599 	bio_endio(bio);
1600 	return;
1601 
1602 out:
1603 	bio_io_error(bio);
1604 }
1605 
1606 /*
1607  * Handler function for all zram I/O requests.
1608  */
1609 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
1610 {
1611 	struct zram *zram = queue->queuedata;
1612 
1613 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1614 					bio->bi_iter.bi_size)) {
1615 		atomic64_inc(&zram->stats.invalid_io);
1616 		goto error;
1617 	}
1618 
1619 	__zram_make_request(zram, bio);
1620 	return BLK_QC_T_NONE;
1621 
1622 error:
1623 	bio_io_error(bio);
1624 	return BLK_QC_T_NONE;
1625 }
1626 
1627 static void zram_slot_free_notify(struct block_device *bdev,
1628 				unsigned long index)
1629 {
1630 	struct zram *zram;
1631 
1632 	zram = bdev->bd_disk->private_data;
1633 
1634 	atomic64_inc(&zram->stats.notify_free);
1635 	if (!zram_slot_trylock(zram, index)) {
1636 		atomic64_inc(&zram->stats.miss_free);
1637 		return;
1638 	}
1639 
1640 	zram_free_page(zram, index);
1641 	zram_slot_unlock(zram, index);
1642 }
1643 
1644 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1645 		       struct page *page, unsigned int op)
1646 {
1647 	int offset, ret;
1648 	u32 index;
1649 	struct zram *zram;
1650 	struct bio_vec bv;
1651 
1652 	if (PageTransHuge(page))
1653 		return -ENOTSUPP;
1654 	zram = bdev->bd_disk->private_data;
1655 
1656 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1657 		atomic64_inc(&zram->stats.invalid_io);
1658 		ret = -EINVAL;
1659 		goto out;
1660 	}
1661 
1662 	index = sector >> SECTORS_PER_PAGE_SHIFT;
1663 	offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1664 
1665 	bv.bv_page = page;
1666 	bv.bv_len = PAGE_SIZE;
1667 	bv.bv_offset = 0;
1668 
1669 	ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL);
1670 out:
1671 	/*
1672 	 * If I/O fails, just return error(ie, non-zero) without
1673 	 * calling page_endio.
1674 	 * It causes resubmit the I/O with bio request by upper functions
1675 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1676 	 * bio->bi_end_io does things to handle the error
1677 	 * (e.g., SetPageError, set_page_dirty and extra works).
1678 	 */
1679 	if (unlikely(ret < 0))
1680 		return ret;
1681 
1682 	switch (ret) {
1683 	case 0:
1684 		page_endio(page, op_is_write(op), 0);
1685 		break;
1686 	case 1:
1687 		ret = 0;
1688 		break;
1689 	default:
1690 		WARN_ON(1);
1691 	}
1692 	return ret;
1693 }
1694 
1695 static void zram_reset_device(struct zram *zram)
1696 {
1697 	struct zcomp *comp;
1698 	u64 disksize;
1699 
1700 	down_write(&zram->init_lock);
1701 
1702 	zram->limit_pages = 0;
1703 
1704 	if (!init_done(zram)) {
1705 		up_write(&zram->init_lock);
1706 		return;
1707 	}
1708 
1709 	comp = zram->comp;
1710 	disksize = zram->disksize;
1711 	zram->disksize = 0;
1712 
1713 	set_capacity(zram->disk, 0);
1714 	part_stat_set_all(&zram->disk->part0, 0);
1715 
1716 	up_write(&zram->init_lock);
1717 	/* I/O operation under all of CPU are done so let's free */
1718 	zram_meta_free(zram, disksize);
1719 	memset(&zram->stats, 0, sizeof(zram->stats));
1720 	zcomp_destroy(comp);
1721 	reset_bdev(zram);
1722 }
1723 
1724 static ssize_t disksize_store(struct device *dev,
1725 		struct device_attribute *attr, const char *buf, size_t len)
1726 {
1727 	u64 disksize;
1728 	struct zcomp *comp;
1729 	struct zram *zram = dev_to_zram(dev);
1730 	int err;
1731 
1732 	disksize = memparse(buf, NULL);
1733 	if (!disksize)
1734 		return -EINVAL;
1735 
1736 	down_write(&zram->init_lock);
1737 	if (init_done(zram)) {
1738 		pr_info("Cannot change disksize for initialized device\n");
1739 		err = -EBUSY;
1740 		goto out_unlock;
1741 	}
1742 
1743 	disksize = PAGE_ALIGN(disksize);
1744 	if (!zram_meta_alloc(zram, disksize)) {
1745 		err = -ENOMEM;
1746 		goto out_unlock;
1747 	}
1748 
1749 	comp = zcomp_create(zram->compressor);
1750 	if (IS_ERR(comp)) {
1751 		pr_err("Cannot initialise %s compressing backend\n",
1752 				zram->compressor);
1753 		err = PTR_ERR(comp);
1754 		goto out_free_meta;
1755 	}
1756 
1757 	zram->comp = comp;
1758 	zram->disksize = disksize;
1759 	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1760 
1761 	revalidate_disk(zram->disk);
1762 	up_write(&zram->init_lock);
1763 
1764 	return len;
1765 
1766 out_free_meta:
1767 	zram_meta_free(zram, disksize);
1768 out_unlock:
1769 	up_write(&zram->init_lock);
1770 	return err;
1771 }
1772 
1773 static ssize_t reset_store(struct device *dev,
1774 		struct device_attribute *attr, const char *buf, size_t len)
1775 {
1776 	int ret;
1777 	unsigned short do_reset;
1778 	struct zram *zram;
1779 	struct block_device *bdev;
1780 
1781 	ret = kstrtou16(buf, 10, &do_reset);
1782 	if (ret)
1783 		return ret;
1784 
1785 	if (!do_reset)
1786 		return -EINVAL;
1787 
1788 	zram = dev_to_zram(dev);
1789 	bdev = bdget_disk(zram->disk, 0);
1790 	if (!bdev)
1791 		return -ENOMEM;
1792 
1793 	mutex_lock(&bdev->bd_mutex);
1794 	/* Do not reset an active device or claimed device */
1795 	if (bdev->bd_openers || zram->claim) {
1796 		mutex_unlock(&bdev->bd_mutex);
1797 		bdput(bdev);
1798 		return -EBUSY;
1799 	}
1800 
1801 	/* From now on, anyone can't open /dev/zram[0-9] */
1802 	zram->claim = true;
1803 	mutex_unlock(&bdev->bd_mutex);
1804 
1805 	/* Make sure all the pending I/O are finished */
1806 	fsync_bdev(bdev);
1807 	zram_reset_device(zram);
1808 	revalidate_disk(zram->disk);
1809 	bdput(bdev);
1810 
1811 	mutex_lock(&bdev->bd_mutex);
1812 	zram->claim = false;
1813 	mutex_unlock(&bdev->bd_mutex);
1814 
1815 	return len;
1816 }
1817 
1818 static int zram_open(struct block_device *bdev, fmode_t mode)
1819 {
1820 	int ret = 0;
1821 	struct zram *zram;
1822 
1823 	WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1824 
1825 	zram = bdev->bd_disk->private_data;
1826 	/* zram was claimed to reset so open request fails */
1827 	if (zram->claim)
1828 		ret = -EBUSY;
1829 
1830 	return ret;
1831 }
1832 
1833 static const struct block_device_operations zram_devops = {
1834 	.open = zram_open,
1835 	.swap_slot_free_notify = zram_slot_free_notify,
1836 	.rw_page = zram_rw_page,
1837 	.owner = THIS_MODULE
1838 };
1839 
1840 static DEVICE_ATTR_WO(compact);
1841 static DEVICE_ATTR_RW(disksize);
1842 static DEVICE_ATTR_RO(initstate);
1843 static DEVICE_ATTR_WO(reset);
1844 static DEVICE_ATTR_WO(mem_limit);
1845 static DEVICE_ATTR_WO(mem_used_max);
1846 static DEVICE_ATTR_WO(idle);
1847 static DEVICE_ATTR_RW(max_comp_streams);
1848 static DEVICE_ATTR_RW(comp_algorithm);
1849 #ifdef CONFIG_ZRAM_WRITEBACK
1850 static DEVICE_ATTR_RW(backing_dev);
1851 static DEVICE_ATTR_WO(writeback);
1852 static DEVICE_ATTR_RW(writeback_limit);
1853 static DEVICE_ATTR_RW(writeback_limit_enable);
1854 #endif
1855 
1856 static struct attribute *zram_disk_attrs[] = {
1857 	&dev_attr_disksize.attr,
1858 	&dev_attr_initstate.attr,
1859 	&dev_attr_reset.attr,
1860 	&dev_attr_compact.attr,
1861 	&dev_attr_mem_limit.attr,
1862 	&dev_attr_mem_used_max.attr,
1863 	&dev_attr_idle.attr,
1864 	&dev_attr_max_comp_streams.attr,
1865 	&dev_attr_comp_algorithm.attr,
1866 #ifdef CONFIG_ZRAM_WRITEBACK
1867 	&dev_attr_backing_dev.attr,
1868 	&dev_attr_writeback.attr,
1869 	&dev_attr_writeback_limit.attr,
1870 	&dev_attr_writeback_limit_enable.attr,
1871 #endif
1872 	&dev_attr_io_stat.attr,
1873 	&dev_attr_mm_stat.attr,
1874 #ifdef CONFIG_ZRAM_WRITEBACK
1875 	&dev_attr_bd_stat.attr,
1876 #endif
1877 	&dev_attr_debug_stat.attr,
1878 	NULL,
1879 };
1880 
1881 static const struct attribute_group zram_disk_attr_group = {
1882 	.attrs = zram_disk_attrs,
1883 };
1884 
1885 static const struct attribute_group *zram_disk_attr_groups[] = {
1886 	&zram_disk_attr_group,
1887 	NULL,
1888 };
1889 
1890 /*
1891  * Allocate and initialize new zram device. the function returns
1892  * '>= 0' device_id upon success, and negative value otherwise.
1893  */
1894 static int zram_add(void)
1895 {
1896 	struct zram *zram;
1897 	struct request_queue *queue;
1898 	int ret, device_id;
1899 
1900 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1901 	if (!zram)
1902 		return -ENOMEM;
1903 
1904 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1905 	if (ret < 0)
1906 		goto out_free_dev;
1907 	device_id = ret;
1908 
1909 	init_rwsem(&zram->init_lock);
1910 #ifdef CONFIG_ZRAM_WRITEBACK
1911 	spin_lock_init(&zram->wb_limit_lock);
1912 #endif
1913 	queue = blk_alloc_queue(GFP_KERNEL);
1914 	if (!queue) {
1915 		pr_err("Error allocating disk queue for device %d\n",
1916 			device_id);
1917 		ret = -ENOMEM;
1918 		goto out_free_idr;
1919 	}
1920 
1921 	blk_queue_make_request(queue, zram_make_request);
1922 
1923 	/* gendisk structure */
1924 	zram->disk = alloc_disk(1);
1925 	if (!zram->disk) {
1926 		pr_err("Error allocating disk structure for device %d\n",
1927 			device_id);
1928 		ret = -ENOMEM;
1929 		goto out_free_queue;
1930 	}
1931 
1932 	zram->disk->major = zram_major;
1933 	zram->disk->first_minor = device_id;
1934 	zram->disk->fops = &zram_devops;
1935 	zram->disk->queue = queue;
1936 	zram->disk->queue->queuedata = zram;
1937 	zram->disk->private_data = zram;
1938 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1939 
1940 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1941 	set_capacity(zram->disk, 0);
1942 	/* zram devices sort of resembles non-rotational disks */
1943 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1944 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1945 
1946 	/*
1947 	 * To ensure that we always get PAGE_SIZE aligned
1948 	 * and n*PAGE_SIZED sized I/O requests.
1949 	 */
1950 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1951 	blk_queue_logical_block_size(zram->disk->queue,
1952 					ZRAM_LOGICAL_BLOCK_SIZE);
1953 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1954 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1955 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1956 	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1957 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue);
1958 
1959 	/*
1960 	 * zram_bio_discard() will clear all logical blocks if logical block
1961 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1962 	 * different, we will skip discarding some parts of logical blocks in
1963 	 * the part of the request range which isn't aligned to physical block
1964 	 * size.  So we can't ensure that all discarded logical blocks are
1965 	 * zeroed.
1966 	 */
1967 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1968 		blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1969 
1970 	zram->disk->queue->backing_dev_info->capabilities |=
1971 			(BDI_CAP_STABLE_WRITES | BDI_CAP_SYNCHRONOUS_IO);
1972 	device_add_disk(NULL, zram->disk, zram_disk_attr_groups);
1973 
1974 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1975 
1976 	zram_debugfs_register(zram);
1977 	pr_info("Added device: %s\n", zram->disk->disk_name);
1978 	return device_id;
1979 
1980 out_free_queue:
1981 	blk_cleanup_queue(queue);
1982 out_free_idr:
1983 	idr_remove(&zram_index_idr, device_id);
1984 out_free_dev:
1985 	kfree(zram);
1986 	return ret;
1987 }
1988 
1989 static int zram_remove(struct zram *zram)
1990 {
1991 	struct block_device *bdev;
1992 
1993 	bdev = bdget_disk(zram->disk, 0);
1994 	if (!bdev)
1995 		return -ENOMEM;
1996 
1997 	mutex_lock(&bdev->bd_mutex);
1998 	if (bdev->bd_openers || zram->claim) {
1999 		mutex_unlock(&bdev->bd_mutex);
2000 		bdput(bdev);
2001 		return -EBUSY;
2002 	}
2003 
2004 	zram->claim = true;
2005 	mutex_unlock(&bdev->bd_mutex);
2006 
2007 	zram_debugfs_unregister(zram);
2008 
2009 	/* Make sure all the pending I/O are finished */
2010 	fsync_bdev(bdev);
2011 	zram_reset_device(zram);
2012 	bdput(bdev);
2013 
2014 	pr_info("Removed device: %s\n", zram->disk->disk_name);
2015 
2016 	del_gendisk(zram->disk);
2017 	blk_cleanup_queue(zram->disk->queue);
2018 	put_disk(zram->disk);
2019 	kfree(zram);
2020 	return 0;
2021 }
2022 
2023 /* zram-control sysfs attributes */
2024 
2025 /*
2026  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2027  * sense that reading from this file does alter the state of your system -- it
2028  * creates a new un-initialized zram device and returns back this device's
2029  * device_id (or an error code if it fails to create a new device).
2030  */
2031 static ssize_t hot_add_show(struct class *class,
2032 			struct class_attribute *attr,
2033 			char *buf)
2034 {
2035 	int ret;
2036 
2037 	mutex_lock(&zram_index_mutex);
2038 	ret = zram_add();
2039 	mutex_unlock(&zram_index_mutex);
2040 
2041 	if (ret < 0)
2042 		return ret;
2043 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
2044 }
2045 static CLASS_ATTR_RO(hot_add);
2046 
2047 static ssize_t hot_remove_store(struct class *class,
2048 			struct class_attribute *attr,
2049 			const char *buf,
2050 			size_t count)
2051 {
2052 	struct zram *zram;
2053 	int ret, dev_id;
2054 
2055 	/* dev_id is gendisk->first_minor, which is `int' */
2056 	ret = kstrtoint(buf, 10, &dev_id);
2057 	if (ret)
2058 		return ret;
2059 	if (dev_id < 0)
2060 		return -EINVAL;
2061 
2062 	mutex_lock(&zram_index_mutex);
2063 
2064 	zram = idr_find(&zram_index_idr, dev_id);
2065 	if (zram) {
2066 		ret = zram_remove(zram);
2067 		if (!ret)
2068 			idr_remove(&zram_index_idr, dev_id);
2069 	} else {
2070 		ret = -ENODEV;
2071 	}
2072 
2073 	mutex_unlock(&zram_index_mutex);
2074 	return ret ? ret : count;
2075 }
2076 static CLASS_ATTR_WO(hot_remove);
2077 
2078 static struct attribute *zram_control_class_attrs[] = {
2079 	&class_attr_hot_add.attr,
2080 	&class_attr_hot_remove.attr,
2081 	NULL,
2082 };
2083 ATTRIBUTE_GROUPS(zram_control_class);
2084 
2085 static struct class zram_control_class = {
2086 	.name		= "zram-control",
2087 	.owner		= THIS_MODULE,
2088 	.class_groups	= zram_control_class_groups,
2089 };
2090 
2091 static int zram_remove_cb(int id, void *ptr, void *data)
2092 {
2093 	zram_remove(ptr);
2094 	return 0;
2095 }
2096 
2097 static void destroy_devices(void)
2098 {
2099 	class_unregister(&zram_control_class);
2100 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2101 	zram_debugfs_destroy();
2102 	idr_destroy(&zram_index_idr);
2103 	unregister_blkdev(zram_major, "zram");
2104 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2105 }
2106 
2107 static int __init zram_init(void)
2108 {
2109 	int ret;
2110 
2111 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2112 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
2113 	if (ret < 0)
2114 		return ret;
2115 
2116 	ret = class_register(&zram_control_class);
2117 	if (ret) {
2118 		pr_err("Unable to register zram-control class\n");
2119 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2120 		return ret;
2121 	}
2122 
2123 	zram_debugfs_create();
2124 	zram_major = register_blkdev(0, "zram");
2125 	if (zram_major <= 0) {
2126 		pr_err("Unable to get major number\n");
2127 		class_unregister(&zram_control_class);
2128 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2129 		return -EBUSY;
2130 	}
2131 
2132 	while (num_devices != 0) {
2133 		mutex_lock(&zram_index_mutex);
2134 		ret = zram_add();
2135 		mutex_unlock(&zram_index_mutex);
2136 		if (ret < 0)
2137 			goto out_error;
2138 		num_devices--;
2139 	}
2140 
2141 	return 0;
2142 
2143 out_error:
2144 	destroy_devices();
2145 	return ret;
2146 }
2147 
2148 static void __exit zram_exit(void)
2149 {
2150 	destroy_devices();
2151 }
2152 
2153 module_init(zram_init);
2154 module_exit(zram_exit);
2155 
2156 module_param(num_devices, uint, 0);
2157 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2158 
2159 MODULE_LICENSE("Dual BSD/GPL");
2160 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2161 MODULE_DESCRIPTION("Compressed RAM Block Device");
2162