1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/bitops.h> 22 #include <linux/blkdev.h> 23 #include <linux/buffer_head.h> 24 #include <linux/device.h> 25 #include <linux/highmem.h> 26 #include <linux/slab.h> 27 #include <linux/backing-dev.h> 28 #include <linux/string.h> 29 #include <linux/vmalloc.h> 30 #include <linux/err.h> 31 #include <linux/idr.h> 32 #include <linux/sysfs.h> 33 #include <linux/debugfs.h> 34 #include <linux/cpuhotplug.h> 35 #include <linux/part_stat.h> 36 37 #include "zram_drv.h" 38 39 static DEFINE_IDR(zram_index_idr); 40 /* idr index must be protected */ 41 static DEFINE_MUTEX(zram_index_mutex); 42 43 static int zram_major; 44 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP; 45 46 /* Module params (documentation at end) */ 47 static unsigned int num_devices = 1; 48 /* 49 * Pages that compress to sizes equals or greater than this are stored 50 * uncompressed in memory. 51 */ 52 static size_t huge_class_size; 53 54 static const struct block_device_operations zram_devops; 55 56 static void zram_free_page(struct zram *zram, size_t index); 57 static int zram_read_page(struct zram *zram, struct page *page, u32 index, 58 struct bio *parent); 59 60 static int zram_slot_trylock(struct zram *zram, u32 index) 61 { 62 return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags); 63 } 64 65 static void zram_slot_lock(struct zram *zram, u32 index) 66 { 67 bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags); 68 } 69 70 static void zram_slot_unlock(struct zram *zram, u32 index) 71 { 72 bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags); 73 } 74 75 static inline bool init_done(struct zram *zram) 76 { 77 return zram->disksize; 78 } 79 80 static inline struct zram *dev_to_zram(struct device *dev) 81 { 82 return (struct zram *)dev_to_disk(dev)->private_data; 83 } 84 85 static unsigned long zram_get_handle(struct zram *zram, u32 index) 86 { 87 return zram->table[index].handle; 88 } 89 90 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle) 91 { 92 zram->table[index].handle = handle; 93 } 94 95 /* flag operations require table entry bit_spin_lock() being held */ 96 static bool zram_test_flag(struct zram *zram, u32 index, 97 enum zram_pageflags flag) 98 { 99 return zram->table[index].flags & BIT(flag); 100 } 101 102 static void zram_set_flag(struct zram *zram, u32 index, 103 enum zram_pageflags flag) 104 { 105 zram->table[index].flags |= BIT(flag); 106 } 107 108 static void zram_clear_flag(struct zram *zram, u32 index, 109 enum zram_pageflags flag) 110 { 111 zram->table[index].flags &= ~BIT(flag); 112 } 113 114 static inline void zram_set_element(struct zram *zram, u32 index, 115 unsigned long element) 116 { 117 zram->table[index].element = element; 118 } 119 120 static unsigned long zram_get_element(struct zram *zram, u32 index) 121 { 122 return zram->table[index].element; 123 } 124 125 static size_t zram_get_obj_size(struct zram *zram, u32 index) 126 { 127 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1); 128 } 129 130 static void zram_set_obj_size(struct zram *zram, 131 u32 index, size_t size) 132 { 133 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT; 134 135 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size; 136 } 137 138 static inline bool zram_allocated(struct zram *zram, u32 index) 139 { 140 return zram_get_obj_size(zram, index) || 141 zram_test_flag(zram, index, ZRAM_SAME) || 142 zram_test_flag(zram, index, ZRAM_WB); 143 } 144 145 #if PAGE_SIZE != 4096 146 static inline bool is_partial_io(struct bio_vec *bvec) 147 { 148 return bvec->bv_len != PAGE_SIZE; 149 } 150 #define ZRAM_PARTIAL_IO 1 151 #else 152 static inline bool is_partial_io(struct bio_vec *bvec) 153 { 154 return false; 155 } 156 #endif 157 158 static inline void zram_set_priority(struct zram *zram, u32 index, u32 prio) 159 { 160 prio &= ZRAM_COMP_PRIORITY_MASK; 161 /* 162 * Clear previous priority value first, in case if we recompress 163 * further an already recompressed page 164 */ 165 zram->table[index].flags &= ~(ZRAM_COMP_PRIORITY_MASK << 166 ZRAM_COMP_PRIORITY_BIT1); 167 zram->table[index].flags |= (prio << ZRAM_COMP_PRIORITY_BIT1); 168 } 169 170 static inline u32 zram_get_priority(struct zram *zram, u32 index) 171 { 172 u32 prio = zram->table[index].flags >> ZRAM_COMP_PRIORITY_BIT1; 173 174 return prio & ZRAM_COMP_PRIORITY_MASK; 175 } 176 177 static void zram_accessed(struct zram *zram, u32 index) 178 { 179 zram_clear_flag(zram, index, ZRAM_IDLE); 180 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME 181 zram->table[index].ac_time = ktime_get_boottime(); 182 #endif 183 } 184 185 static inline void update_used_max(struct zram *zram, 186 const unsigned long pages) 187 { 188 unsigned long cur_max = atomic_long_read(&zram->stats.max_used_pages); 189 190 do { 191 if (cur_max >= pages) 192 return; 193 } while (!atomic_long_try_cmpxchg(&zram->stats.max_used_pages, 194 &cur_max, pages)); 195 } 196 197 static inline void zram_fill_page(void *ptr, unsigned long len, 198 unsigned long value) 199 { 200 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long))); 201 memset_l(ptr, value, len / sizeof(unsigned long)); 202 } 203 204 static bool page_same_filled(void *ptr, unsigned long *element) 205 { 206 unsigned long *page; 207 unsigned long val; 208 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1; 209 210 page = (unsigned long *)ptr; 211 val = page[0]; 212 213 if (val != page[last_pos]) 214 return false; 215 216 for (pos = 1; pos < last_pos; pos++) { 217 if (val != page[pos]) 218 return false; 219 } 220 221 *element = val; 222 223 return true; 224 } 225 226 static ssize_t initstate_show(struct device *dev, 227 struct device_attribute *attr, char *buf) 228 { 229 u32 val; 230 struct zram *zram = dev_to_zram(dev); 231 232 down_read(&zram->init_lock); 233 val = init_done(zram); 234 up_read(&zram->init_lock); 235 236 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 237 } 238 239 static ssize_t disksize_show(struct device *dev, 240 struct device_attribute *attr, char *buf) 241 { 242 struct zram *zram = dev_to_zram(dev); 243 244 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 245 } 246 247 static ssize_t mem_limit_store(struct device *dev, 248 struct device_attribute *attr, const char *buf, size_t len) 249 { 250 u64 limit; 251 char *tmp; 252 struct zram *zram = dev_to_zram(dev); 253 254 limit = memparse(buf, &tmp); 255 if (buf == tmp) /* no chars parsed, invalid input */ 256 return -EINVAL; 257 258 down_write(&zram->init_lock); 259 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; 260 up_write(&zram->init_lock); 261 262 return len; 263 } 264 265 static ssize_t mem_used_max_store(struct device *dev, 266 struct device_attribute *attr, const char *buf, size_t len) 267 { 268 int err; 269 unsigned long val; 270 struct zram *zram = dev_to_zram(dev); 271 272 err = kstrtoul(buf, 10, &val); 273 if (err || val != 0) 274 return -EINVAL; 275 276 down_read(&zram->init_lock); 277 if (init_done(zram)) { 278 atomic_long_set(&zram->stats.max_used_pages, 279 zs_get_total_pages(zram->mem_pool)); 280 } 281 up_read(&zram->init_lock); 282 283 return len; 284 } 285 286 /* 287 * Mark all pages which are older than or equal to cutoff as IDLE. 288 * Callers should hold the zram init lock in read mode 289 */ 290 static void mark_idle(struct zram *zram, ktime_t cutoff) 291 { 292 int is_idle = 1; 293 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 294 int index; 295 296 for (index = 0; index < nr_pages; index++) { 297 /* 298 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race. 299 * See the comment in writeback_store. 300 */ 301 zram_slot_lock(zram, index); 302 if (zram_allocated(zram, index) && 303 !zram_test_flag(zram, index, ZRAM_UNDER_WB)) { 304 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME 305 is_idle = !cutoff || ktime_after(cutoff, 306 zram->table[index].ac_time); 307 #endif 308 if (is_idle) 309 zram_set_flag(zram, index, ZRAM_IDLE); 310 } 311 zram_slot_unlock(zram, index); 312 } 313 } 314 315 static ssize_t idle_store(struct device *dev, 316 struct device_attribute *attr, const char *buf, size_t len) 317 { 318 struct zram *zram = dev_to_zram(dev); 319 ktime_t cutoff_time = 0; 320 ssize_t rv = -EINVAL; 321 322 if (!sysfs_streq(buf, "all")) { 323 /* 324 * If it did not parse as 'all' try to treat it as an integer 325 * when we have memory tracking enabled. 326 */ 327 u64 age_sec; 328 329 if (IS_ENABLED(CONFIG_ZRAM_TRACK_ENTRY_ACTIME) && !kstrtoull(buf, 0, &age_sec)) 330 cutoff_time = ktime_sub(ktime_get_boottime(), 331 ns_to_ktime(age_sec * NSEC_PER_SEC)); 332 else 333 goto out; 334 } 335 336 down_read(&zram->init_lock); 337 if (!init_done(zram)) 338 goto out_unlock; 339 340 /* 341 * A cutoff_time of 0 marks everything as idle, this is the 342 * "all" behavior. 343 */ 344 mark_idle(zram, cutoff_time); 345 rv = len; 346 347 out_unlock: 348 up_read(&zram->init_lock); 349 out: 350 return rv; 351 } 352 353 #ifdef CONFIG_ZRAM_WRITEBACK 354 static ssize_t writeback_limit_enable_store(struct device *dev, 355 struct device_attribute *attr, const char *buf, size_t len) 356 { 357 struct zram *zram = dev_to_zram(dev); 358 u64 val; 359 ssize_t ret = -EINVAL; 360 361 if (kstrtoull(buf, 10, &val)) 362 return ret; 363 364 down_read(&zram->init_lock); 365 spin_lock(&zram->wb_limit_lock); 366 zram->wb_limit_enable = val; 367 spin_unlock(&zram->wb_limit_lock); 368 up_read(&zram->init_lock); 369 ret = len; 370 371 return ret; 372 } 373 374 static ssize_t writeback_limit_enable_show(struct device *dev, 375 struct device_attribute *attr, char *buf) 376 { 377 bool val; 378 struct zram *zram = dev_to_zram(dev); 379 380 down_read(&zram->init_lock); 381 spin_lock(&zram->wb_limit_lock); 382 val = zram->wb_limit_enable; 383 spin_unlock(&zram->wb_limit_lock); 384 up_read(&zram->init_lock); 385 386 return scnprintf(buf, PAGE_SIZE, "%d\n", val); 387 } 388 389 static ssize_t writeback_limit_store(struct device *dev, 390 struct device_attribute *attr, const char *buf, size_t len) 391 { 392 struct zram *zram = dev_to_zram(dev); 393 u64 val; 394 ssize_t ret = -EINVAL; 395 396 if (kstrtoull(buf, 10, &val)) 397 return ret; 398 399 down_read(&zram->init_lock); 400 spin_lock(&zram->wb_limit_lock); 401 zram->bd_wb_limit = val; 402 spin_unlock(&zram->wb_limit_lock); 403 up_read(&zram->init_lock); 404 ret = len; 405 406 return ret; 407 } 408 409 static ssize_t writeback_limit_show(struct device *dev, 410 struct device_attribute *attr, char *buf) 411 { 412 u64 val; 413 struct zram *zram = dev_to_zram(dev); 414 415 down_read(&zram->init_lock); 416 spin_lock(&zram->wb_limit_lock); 417 val = zram->bd_wb_limit; 418 spin_unlock(&zram->wb_limit_lock); 419 up_read(&zram->init_lock); 420 421 return scnprintf(buf, PAGE_SIZE, "%llu\n", val); 422 } 423 424 static void reset_bdev(struct zram *zram) 425 { 426 if (!zram->backing_dev) 427 return; 428 429 /* hope filp_close flush all of IO */ 430 filp_close(zram->backing_dev, NULL); 431 zram->backing_dev = NULL; 432 zram->bdev = NULL; 433 zram->disk->fops = &zram_devops; 434 kvfree(zram->bitmap); 435 zram->bitmap = NULL; 436 } 437 438 static ssize_t backing_dev_show(struct device *dev, 439 struct device_attribute *attr, char *buf) 440 { 441 struct file *file; 442 struct zram *zram = dev_to_zram(dev); 443 char *p; 444 ssize_t ret; 445 446 down_read(&zram->init_lock); 447 file = zram->backing_dev; 448 if (!file) { 449 memcpy(buf, "none\n", 5); 450 up_read(&zram->init_lock); 451 return 5; 452 } 453 454 p = file_path(file, buf, PAGE_SIZE - 1); 455 if (IS_ERR(p)) { 456 ret = PTR_ERR(p); 457 goto out; 458 } 459 460 ret = strlen(p); 461 memmove(buf, p, ret); 462 buf[ret++] = '\n'; 463 out: 464 up_read(&zram->init_lock); 465 return ret; 466 } 467 468 static ssize_t backing_dev_store(struct device *dev, 469 struct device_attribute *attr, const char *buf, size_t len) 470 { 471 char *file_name; 472 size_t sz; 473 struct file *backing_dev = NULL; 474 struct inode *inode; 475 unsigned int bitmap_sz; 476 unsigned long nr_pages, *bitmap = NULL; 477 int err; 478 struct zram *zram = dev_to_zram(dev); 479 480 file_name = kmalloc(PATH_MAX, GFP_KERNEL); 481 if (!file_name) 482 return -ENOMEM; 483 484 down_write(&zram->init_lock); 485 if (init_done(zram)) { 486 pr_info("Can't setup backing device for initialized device\n"); 487 err = -EBUSY; 488 goto out; 489 } 490 491 strscpy(file_name, buf, PATH_MAX); 492 /* ignore trailing newline */ 493 sz = strlen(file_name); 494 if (sz > 0 && file_name[sz - 1] == '\n') 495 file_name[sz - 1] = 0x00; 496 497 backing_dev = filp_open(file_name, O_RDWR | O_LARGEFILE | O_EXCL, 0); 498 if (IS_ERR(backing_dev)) { 499 err = PTR_ERR(backing_dev); 500 backing_dev = NULL; 501 goto out; 502 } 503 504 inode = backing_dev->f_mapping->host; 505 506 /* Support only block device in this moment */ 507 if (!S_ISBLK(inode->i_mode)) { 508 err = -ENOTBLK; 509 goto out; 510 } 511 512 nr_pages = i_size_read(inode) >> PAGE_SHIFT; 513 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long); 514 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL); 515 if (!bitmap) { 516 err = -ENOMEM; 517 goto out; 518 } 519 520 reset_bdev(zram); 521 522 zram->bdev = I_BDEV(inode); 523 zram->backing_dev = backing_dev; 524 zram->bitmap = bitmap; 525 zram->nr_pages = nr_pages; 526 up_write(&zram->init_lock); 527 528 pr_info("setup backing device %s\n", file_name); 529 kfree(file_name); 530 531 return len; 532 out: 533 kvfree(bitmap); 534 535 if (backing_dev) 536 filp_close(backing_dev, NULL); 537 538 up_write(&zram->init_lock); 539 540 kfree(file_name); 541 542 return err; 543 } 544 545 static unsigned long alloc_block_bdev(struct zram *zram) 546 { 547 unsigned long blk_idx = 1; 548 retry: 549 /* skip 0 bit to confuse zram.handle = 0 */ 550 blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx); 551 if (blk_idx == zram->nr_pages) 552 return 0; 553 554 if (test_and_set_bit(blk_idx, zram->bitmap)) 555 goto retry; 556 557 atomic64_inc(&zram->stats.bd_count); 558 return blk_idx; 559 } 560 561 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) 562 { 563 int was_set; 564 565 was_set = test_and_clear_bit(blk_idx, zram->bitmap); 566 WARN_ON_ONCE(!was_set); 567 atomic64_dec(&zram->stats.bd_count); 568 } 569 570 static void read_from_bdev_async(struct zram *zram, struct page *page, 571 unsigned long entry, struct bio *parent) 572 { 573 struct bio *bio; 574 575 bio = bio_alloc(zram->bdev, 1, parent->bi_opf, GFP_NOIO); 576 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9); 577 __bio_add_page(bio, page, PAGE_SIZE, 0); 578 bio_chain(bio, parent); 579 submit_bio(bio); 580 } 581 582 #define PAGE_WB_SIG "page_index=" 583 584 #define PAGE_WRITEBACK 0 585 #define HUGE_WRITEBACK (1<<0) 586 #define IDLE_WRITEBACK (1<<1) 587 #define INCOMPRESSIBLE_WRITEBACK (1<<2) 588 589 static ssize_t writeback_store(struct device *dev, 590 struct device_attribute *attr, const char *buf, size_t len) 591 { 592 struct zram *zram = dev_to_zram(dev); 593 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 594 unsigned long index = 0; 595 struct bio bio; 596 struct bio_vec bio_vec; 597 struct page *page; 598 ssize_t ret = len; 599 int mode, err; 600 unsigned long blk_idx = 0; 601 602 if (sysfs_streq(buf, "idle")) 603 mode = IDLE_WRITEBACK; 604 else if (sysfs_streq(buf, "huge")) 605 mode = HUGE_WRITEBACK; 606 else if (sysfs_streq(buf, "huge_idle")) 607 mode = IDLE_WRITEBACK | HUGE_WRITEBACK; 608 else if (sysfs_streq(buf, "incompressible")) 609 mode = INCOMPRESSIBLE_WRITEBACK; 610 else { 611 if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1)) 612 return -EINVAL; 613 614 if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) || 615 index >= nr_pages) 616 return -EINVAL; 617 618 nr_pages = 1; 619 mode = PAGE_WRITEBACK; 620 } 621 622 down_read(&zram->init_lock); 623 if (!init_done(zram)) { 624 ret = -EINVAL; 625 goto release_init_lock; 626 } 627 628 if (!zram->backing_dev) { 629 ret = -ENODEV; 630 goto release_init_lock; 631 } 632 633 page = alloc_page(GFP_KERNEL); 634 if (!page) { 635 ret = -ENOMEM; 636 goto release_init_lock; 637 } 638 639 for (; nr_pages != 0; index++, nr_pages--) { 640 spin_lock(&zram->wb_limit_lock); 641 if (zram->wb_limit_enable && !zram->bd_wb_limit) { 642 spin_unlock(&zram->wb_limit_lock); 643 ret = -EIO; 644 break; 645 } 646 spin_unlock(&zram->wb_limit_lock); 647 648 if (!blk_idx) { 649 blk_idx = alloc_block_bdev(zram); 650 if (!blk_idx) { 651 ret = -ENOSPC; 652 break; 653 } 654 } 655 656 zram_slot_lock(zram, index); 657 if (!zram_allocated(zram, index)) 658 goto next; 659 660 if (zram_test_flag(zram, index, ZRAM_WB) || 661 zram_test_flag(zram, index, ZRAM_SAME) || 662 zram_test_flag(zram, index, ZRAM_UNDER_WB)) 663 goto next; 664 665 if (mode & IDLE_WRITEBACK && 666 !zram_test_flag(zram, index, ZRAM_IDLE)) 667 goto next; 668 if (mode & HUGE_WRITEBACK && 669 !zram_test_flag(zram, index, ZRAM_HUGE)) 670 goto next; 671 if (mode & INCOMPRESSIBLE_WRITEBACK && 672 !zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 673 goto next; 674 675 /* 676 * Clearing ZRAM_UNDER_WB is duty of caller. 677 * IOW, zram_free_page never clear it. 678 */ 679 zram_set_flag(zram, index, ZRAM_UNDER_WB); 680 /* Need for hugepage writeback racing */ 681 zram_set_flag(zram, index, ZRAM_IDLE); 682 zram_slot_unlock(zram, index); 683 if (zram_read_page(zram, page, index, NULL)) { 684 zram_slot_lock(zram, index); 685 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 686 zram_clear_flag(zram, index, ZRAM_IDLE); 687 zram_slot_unlock(zram, index); 688 continue; 689 } 690 691 bio_init(&bio, zram->bdev, &bio_vec, 1, 692 REQ_OP_WRITE | REQ_SYNC); 693 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9); 694 __bio_add_page(&bio, page, PAGE_SIZE, 0); 695 696 /* 697 * XXX: A single page IO would be inefficient for write 698 * but it would be not bad as starter. 699 */ 700 err = submit_bio_wait(&bio); 701 if (err) { 702 zram_slot_lock(zram, index); 703 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 704 zram_clear_flag(zram, index, ZRAM_IDLE); 705 zram_slot_unlock(zram, index); 706 /* 707 * BIO errors are not fatal, we continue and simply 708 * attempt to writeback the remaining objects (pages). 709 * At the same time we need to signal user-space that 710 * some writes (at least one, but also could be all of 711 * them) were not successful and we do so by returning 712 * the most recent BIO error. 713 */ 714 ret = err; 715 continue; 716 } 717 718 atomic64_inc(&zram->stats.bd_writes); 719 /* 720 * We released zram_slot_lock so need to check if the slot was 721 * changed. If there is freeing for the slot, we can catch it 722 * easily by zram_allocated. 723 * A subtle case is the slot is freed/reallocated/marked as 724 * ZRAM_IDLE again. To close the race, idle_store doesn't 725 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB. 726 * Thus, we could close the race by checking ZRAM_IDLE bit. 727 */ 728 zram_slot_lock(zram, index); 729 if (!zram_allocated(zram, index) || 730 !zram_test_flag(zram, index, ZRAM_IDLE)) { 731 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 732 zram_clear_flag(zram, index, ZRAM_IDLE); 733 goto next; 734 } 735 736 zram_free_page(zram, index); 737 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 738 zram_set_flag(zram, index, ZRAM_WB); 739 zram_set_element(zram, index, blk_idx); 740 blk_idx = 0; 741 atomic64_inc(&zram->stats.pages_stored); 742 spin_lock(&zram->wb_limit_lock); 743 if (zram->wb_limit_enable && zram->bd_wb_limit > 0) 744 zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12); 745 spin_unlock(&zram->wb_limit_lock); 746 next: 747 zram_slot_unlock(zram, index); 748 } 749 750 if (blk_idx) 751 free_block_bdev(zram, blk_idx); 752 __free_page(page); 753 release_init_lock: 754 up_read(&zram->init_lock); 755 756 return ret; 757 } 758 759 struct zram_work { 760 struct work_struct work; 761 struct zram *zram; 762 unsigned long entry; 763 struct page *page; 764 int error; 765 }; 766 767 static void zram_sync_read(struct work_struct *work) 768 { 769 struct zram_work *zw = container_of(work, struct zram_work, work); 770 struct bio_vec bv; 771 struct bio bio; 772 773 bio_init(&bio, zw->zram->bdev, &bv, 1, REQ_OP_READ); 774 bio.bi_iter.bi_sector = zw->entry * (PAGE_SIZE >> 9); 775 __bio_add_page(&bio, zw->page, PAGE_SIZE, 0); 776 zw->error = submit_bio_wait(&bio); 777 } 778 779 /* 780 * Block layer want one ->submit_bio to be active at a time, so if we use 781 * chained IO with parent IO in same context, it's a deadlock. To avoid that, 782 * use a worker thread context. 783 */ 784 static int read_from_bdev_sync(struct zram *zram, struct page *page, 785 unsigned long entry) 786 { 787 struct zram_work work; 788 789 work.page = page; 790 work.zram = zram; 791 work.entry = entry; 792 793 INIT_WORK_ONSTACK(&work.work, zram_sync_read); 794 queue_work(system_unbound_wq, &work.work); 795 flush_work(&work.work); 796 destroy_work_on_stack(&work.work); 797 798 return work.error; 799 } 800 801 static int read_from_bdev(struct zram *zram, struct page *page, 802 unsigned long entry, struct bio *parent) 803 { 804 atomic64_inc(&zram->stats.bd_reads); 805 if (!parent) { 806 if (WARN_ON_ONCE(!IS_ENABLED(ZRAM_PARTIAL_IO))) 807 return -EIO; 808 return read_from_bdev_sync(zram, page, entry); 809 } 810 read_from_bdev_async(zram, page, entry, parent); 811 return 0; 812 } 813 #else 814 static inline void reset_bdev(struct zram *zram) {}; 815 static int read_from_bdev(struct zram *zram, struct page *page, 816 unsigned long entry, struct bio *parent) 817 { 818 return -EIO; 819 } 820 821 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {}; 822 #endif 823 824 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 825 826 static struct dentry *zram_debugfs_root; 827 828 static void zram_debugfs_create(void) 829 { 830 zram_debugfs_root = debugfs_create_dir("zram", NULL); 831 } 832 833 static void zram_debugfs_destroy(void) 834 { 835 debugfs_remove_recursive(zram_debugfs_root); 836 } 837 838 static ssize_t read_block_state(struct file *file, char __user *buf, 839 size_t count, loff_t *ppos) 840 { 841 char *kbuf; 842 ssize_t index, written = 0; 843 struct zram *zram = file->private_data; 844 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 845 struct timespec64 ts; 846 847 kbuf = kvmalloc(count, GFP_KERNEL); 848 if (!kbuf) 849 return -ENOMEM; 850 851 down_read(&zram->init_lock); 852 if (!init_done(zram)) { 853 up_read(&zram->init_lock); 854 kvfree(kbuf); 855 return -EINVAL; 856 } 857 858 for (index = *ppos; index < nr_pages; index++) { 859 int copied; 860 861 zram_slot_lock(zram, index); 862 if (!zram_allocated(zram, index)) 863 goto next; 864 865 ts = ktime_to_timespec64(zram->table[index].ac_time); 866 copied = snprintf(kbuf + written, count, 867 "%12zd %12lld.%06lu %c%c%c%c%c%c\n", 868 index, (s64)ts.tv_sec, 869 ts.tv_nsec / NSEC_PER_USEC, 870 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.', 871 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.', 872 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.', 873 zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.', 874 zram_get_priority(zram, index) ? 'r' : '.', 875 zram_test_flag(zram, index, 876 ZRAM_INCOMPRESSIBLE) ? 'n' : '.'); 877 878 if (count <= copied) { 879 zram_slot_unlock(zram, index); 880 break; 881 } 882 written += copied; 883 count -= copied; 884 next: 885 zram_slot_unlock(zram, index); 886 *ppos += 1; 887 } 888 889 up_read(&zram->init_lock); 890 if (copy_to_user(buf, kbuf, written)) 891 written = -EFAULT; 892 kvfree(kbuf); 893 894 return written; 895 } 896 897 static const struct file_operations proc_zram_block_state_op = { 898 .open = simple_open, 899 .read = read_block_state, 900 .llseek = default_llseek, 901 }; 902 903 static void zram_debugfs_register(struct zram *zram) 904 { 905 if (!zram_debugfs_root) 906 return; 907 908 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name, 909 zram_debugfs_root); 910 debugfs_create_file("block_state", 0400, zram->debugfs_dir, 911 zram, &proc_zram_block_state_op); 912 } 913 914 static void zram_debugfs_unregister(struct zram *zram) 915 { 916 debugfs_remove_recursive(zram->debugfs_dir); 917 } 918 #else 919 static void zram_debugfs_create(void) {}; 920 static void zram_debugfs_destroy(void) {}; 921 static void zram_debugfs_register(struct zram *zram) {}; 922 static void zram_debugfs_unregister(struct zram *zram) {}; 923 #endif 924 925 /* 926 * We switched to per-cpu streams and this attr is not needed anymore. 927 * However, we will keep it around for some time, because: 928 * a) we may revert per-cpu streams in the future 929 * b) it's visible to user space and we need to follow our 2 years 930 * retirement rule; but we already have a number of 'soon to be 931 * altered' attrs, so max_comp_streams need to wait for the next 932 * layoff cycle. 933 */ 934 static ssize_t max_comp_streams_show(struct device *dev, 935 struct device_attribute *attr, char *buf) 936 { 937 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus()); 938 } 939 940 static ssize_t max_comp_streams_store(struct device *dev, 941 struct device_attribute *attr, const char *buf, size_t len) 942 { 943 return len; 944 } 945 946 static void comp_algorithm_set(struct zram *zram, u32 prio, const char *alg) 947 { 948 /* Do not free statically defined compression algorithms */ 949 if (zram->comp_algs[prio] != default_compressor) 950 kfree(zram->comp_algs[prio]); 951 952 zram->comp_algs[prio] = alg; 953 } 954 955 static ssize_t __comp_algorithm_show(struct zram *zram, u32 prio, char *buf) 956 { 957 ssize_t sz; 958 959 down_read(&zram->init_lock); 960 sz = zcomp_available_show(zram->comp_algs[prio], buf); 961 up_read(&zram->init_lock); 962 963 return sz; 964 } 965 966 static int __comp_algorithm_store(struct zram *zram, u32 prio, const char *buf) 967 { 968 char *compressor; 969 size_t sz; 970 971 sz = strlen(buf); 972 if (sz >= CRYPTO_MAX_ALG_NAME) 973 return -E2BIG; 974 975 compressor = kstrdup(buf, GFP_KERNEL); 976 if (!compressor) 977 return -ENOMEM; 978 979 /* ignore trailing newline */ 980 if (sz > 0 && compressor[sz - 1] == '\n') 981 compressor[sz - 1] = 0x00; 982 983 if (!zcomp_available_algorithm(compressor)) { 984 kfree(compressor); 985 return -EINVAL; 986 } 987 988 down_write(&zram->init_lock); 989 if (init_done(zram)) { 990 up_write(&zram->init_lock); 991 kfree(compressor); 992 pr_info("Can't change algorithm for initialized device\n"); 993 return -EBUSY; 994 } 995 996 comp_algorithm_set(zram, prio, compressor); 997 up_write(&zram->init_lock); 998 return 0; 999 } 1000 1001 static ssize_t comp_algorithm_show(struct device *dev, 1002 struct device_attribute *attr, 1003 char *buf) 1004 { 1005 struct zram *zram = dev_to_zram(dev); 1006 1007 return __comp_algorithm_show(zram, ZRAM_PRIMARY_COMP, buf); 1008 } 1009 1010 static ssize_t comp_algorithm_store(struct device *dev, 1011 struct device_attribute *attr, 1012 const char *buf, 1013 size_t len) 1014 { 1015 struct zram *zram = dev_to_zram(dev); 1016 int ret; 1017 1018 ret = __comp_algorithm_store(zram, ZRAM_PRIMARY_COMP, buf); 1019 return ret ? ret : len; 1020 } 1021 1022 #ifdef CONFIG_ZRAM_MULTI_COMP 1023 static ssize_t recomp_algorithm_show(struct device *dev, 1024 struct device_attribute *attr, 1025 char *buf) 1026 { 1027 struct zram *zram = dev_to_zram(dev); 1028 ssize_t sz = 0; 1029 u32 prio; 1030 1031 for (prio = ZRAM_SECONDARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { 1032 if (!zram->comp_algs[prio]) 1033 continue; 1034 1035 sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2, "#%d: ", prio); 1036 sz += __comp_algorithm_show(zram, prio, buf + sz); 1037 } 1038 1039 return sz; 1040 } 1041 1042 static ssize_t recomp_algorithm_store(struct device *dev, 1043 struct device_attribute *attr, 1044 const char *buf, 1045 size_t len) 1046 { 1047 struct zram *zram = dev_to_zram(dev); 1048 int prio = ZRAM_SECONDARY_COMP; 1049 char *args, *param, *val; 1050 char *alg = NULL; 1051 int ret; 1052 1053 args = skip_spaces(buf); 1054 while (*args) { 1055 args = next_arg(args, ¶m, &val); 1056 1057 if (!val || !*val) 1058 return -EINVAL; 1059 1060 if (!strcmp(param, "algo")) { 1061 alg = val; 1062 continue; 1063 } 1064 1065 if (!strcmp(param, "priority")) { 1066 ret = kstrtoint(val, 10, &prio); 1067 if (ret) 1068 return ret; 1069 continue; 1070 } 1071 } 1072 1073 if (!alg) 1074 return -EINVAL; 1075 1076 if (prio < ZRAM_SECONDARY_COMP || prio >= ZRAM_MAX_COMPS) 1077 return -EINVAL; 1078 1079 ret = __comp_algorithm_store(zram, prio, alg); 1080 return ret ? ret : len; 1081 } 1082 #endif 1083 1084 static ssize_t compact_store(struct device *dev, 1085 struct device_attribute *attr, const char *buf, size_t len) 1086 { 1087 struct zram *zram = dev_to_zram(dev); 1088 1089 down_read(&zram->init_lock); 1090 if (!init_done(zram)) { 1091 up_read(&zram->init_lock); 1092 return -EINVAL; 1093 } 1094 1095 zs_compact(zram->mem_pool); 1096 up_read(&zram->init_lock); 1097 1098 return len; 1099 } 1100 1101 static ssize_t io_stat_show(struct device *dev, 1102 struct device_attribute *attr, char *buf) 1103 { 1104 struct zram *zram = dev_to_zram(dev); 1105 ssize_t ret; 1106 1107 down_read(&zram->init_lock); 1108 ret = scnprintf(buf, PAGE_SIZE, 1109 "%8llu %8llu 0 %8llu\n", 1110 (u64)atomic64_read(&zram->stats.failed_reads), 1111 (u64)atomic64_read(&zram->stats.failed_writes), 1112 (u64)atomic64_read(&zram->stats.notify_free)); 1113 up_read(&zram->init_lock); 1114 1115 return ret; 1116 } 1117 1118 static ssize_t mm_stat_show(struct device *dev, 1119 struct device_attribute *attr, char *buf) 1120 { 1121 struct zram *zram = dev_to_zram(dev); 1122 struct zs_pool_stats pool_stats; 1123 u64 orig_size, mem_used = 0; 1124 long max_used; 1125 ssize_t ret; 1126 1127 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); 1128 1129 down_read(&zram->init_lock); 1130 if (init_done(zram)) { 1131 mem_used = zs_get_total_pages(zram->mem_pool); 1132 zs_pool_stats(zram->mem_pool, &pool_stats); 1133 } 1134 1135 orig_size = atomic64_read(&zram->stats.pages_stored); 1136 max_used = atomic_long_read(&zram->stats.max_used_pages); 1137 1138 ret = scnprintf(buf, PAGE_SIZE, 1139 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n", 1140 orig_size << PAGE_SHIFT, 1141 (u64)atomic64_read(&zram->stats.compr_data_size), 1142 mem_used << PAGE_SHIFT, 1143 zram->limit_pages << PAGE_SHIFT, 1144 max_used << PAGE_SHIFT, 1145 (u64)atomic64_read(&zram->stats.same_pages), 1146 atomic_long_read(&pool_stats.pages_compacted), 1147 (u64)atomic64_read(&zram->stats.huge_pages), 1148 (u64)atomic64_read(&zram->stats.huge_pages_since)); 1149 up_read(&zram->init_lock); 1150 1151 return ret; 1152 } 1153 1154 #ifdef CONFIG_ZRAM_WRITEBACK 1155 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12))) 1156 static ssize_t bd_stat_show(struct device *dev, 1157 struct device_attribute *attr, char *buf) 1158 { 1159 struct zram *zram = dev_to_zram(dev); 1160 ssize_t ret; 1161 1162 down_read(&zram->init_lock); 1163 ret = scnprintf(buf, PAGE_SIZE, 1164 "%8llu %8llu %8llu\n", 1165 FOUR_K((u64)atomic64_read(&zram->stats.bd_count)), 1166 FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)), 1167 FOUR_K((u64)atomic64_read(&zram->stats.bd_writes))); 1168 up_read(&zram->init_lock); 1169 1170 return ret; 1171 } 1172 #endif 1173 1174 static ssize_t debug_stat_show(struct device *dev, 1175 struct device_attribute *attr, char *buf) 1176 { 1177 int version = 1; 1178 struct zram *zram = dev_to_zram(dev); 1179 ssize_t ret; 1180 1181 down_read(&zram->init_lock); 1182 ret = scnprintf(buf, PAGE_SIZE, 1183 "version: %d\n%8llu %8llu\n", 1184 version, 1185 (u64)atomic64_read(&zram->stats.writestall), 1186 (u64)atomic64_read(&zram->stats.miss_free)); 1187 up_read(&zram->init_lock); 1188 1189 return ret; 1190 } 1191 1192 static DEVICE_ATTR_RO(io_stat); 1193 static DEVICE_ATTR_RO(mm_stat); 1194 #ifdef CONFIG_ZRAM_WRITEBACK 1195 static DEVICE_ATTR_RO(bd_stat); 1196 #endif 1197 static DEVICE_ATTR_RO(debug_stat); 1198 1199 static void zram_meta_free(struct zram *zram, u64 disksize) 1200 { 1201 size_t num_pages = disksize >> PAGE_SHIFT; 1202 size_t index; 1203 1204 /* Free all pages that are still in this zram device */ 1205 for (index = 0; index < num_pages; index++) 1206 zram_free_page(zram, index); 1207 1208 zs_destroy_pool(zram->mem_pool); 1209 vfree(zram->table); 1210 } 1211 1212 static bool zram_meta_alloc(struct zram *zram, u64 disksize) 1213 { 1214 size_t num_pages; 1215 1216 num_pages = disksize >> PAGE_SHIFT; 1217 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table))); 1218 if (!zram->table) 1219 return false; 1220 1221 zram->mem_pool = zs_create_pool(zram->disk->disk_name); 1222 if (!zram->mem_pool) { 1223 vfree(zram->table); 1224 return false; 1225 } 1226 1227 if (!huge_class_size) 1228 huge_class_size = zs_huge_class_size(zram->mem_pool); 1229 return true; 1230 } 1231 1232 /* 1233 * To protect concurrent access to the same index entry, 1234 * caller should hold this table index entry's bit_spinlock to 1235 * indicate this index entry is accessing. 1236 */ 1237 static void zram_free_page(struct zram *zram, size_t index) 1238 { 1239 unsigned long handle; 1240 1241 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME 1242 zram->table[index].ac_time = 0; 1243 #endif 1244 if (zram_test_flag(zram, index, ZRAM_IDLE)) 1245 zram_clear_flag(zram, index, ZRAM_IDLE); 1246 1247 if (zram_test_flag(zram, index, ZRAM_HUGE)) { 1248 zram_clear_flag(zram, index, ZRAM_HUGE); 1249 atomic64_dec(&zram->stats.huge_pages); 1250 } 1251 1252 if (zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 1253 zram_clear_flag(zram, index, ZRAM_INCOMPRESSIBLE); 1254 1255 zram_set_priority(zram, index, 0); 1256 1257 if (zram_test_flag(zram, index, ZRAM_WB)) { 1258 zram_clear_flag(zram, index, ZRAM_WB); 1259 free_block_bdev(zram, zram_get_element(zram, index)); 1260 goto out; 1261 } 1262 1263 /* 1264 * No memory is allocated for same element filled pages. 1265 * Simply clear same page flag. 1266 */ 1267 if (zram_test_flag(zram, index, ZRAM_SAME)) { 1268 zram_clear_flag(zram, index, ZRAM_SAME); 1269 atomic64_dec(&zram->stats.same_pages); 1270 goto out; 1271 } 1272 1273 handle = zram_get_handle(zram, index); 1274 if (!handle) 1275 return; 1276 1277 zs_free(zram->mem_pool, handle); 1278 1279 atomic64_sub(zram_get_obj_size(zram, index), 1280 &zram->stats.compr_data_size); 1281 out: 1282 atomic64_dec(&zram->stats.pages_stored); 1283 zram_set_handle(zram, index, 0); 1284 zram_set_obj_size(zram, index, 0); 1285 WARN_ON_ONCE(zram->table[index].flags & 1286 ~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB)); 1287 } 1288 1289 /* 1290 * Reads (decompresses if needed) a page from zspool (zsmalloc). 1291 * Corresponding ZRAM slot should be locked. 1292 */ 1293 static int zram_read_from_zspool(struct zram *zram, struct page *page, 1294 u32 index) 1295 { 1296 struct zcomp_strm *zstrm; 1297 unsigned long handle; 1298 unsigned int size; 1299 void *src, *dst; 1300 u32 prio; 1301 int ret; 1302 1303 handle = zram_get_handle(zram, index); 1304 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) { 1305 unsigned long value; 1306 void *mem; 1307 1308 value = handle ? zram_get_element(zram, index) : 0; 1309 mem = kmap_local_page(page); 1310 zram_fill_page(mem, PAGE_SIZE, value); 1311 kunmap_local(mem); 1312 return 0; 1313 } 1314 1315 size = zram_get_obj_size(zram, index); 1316 1317 if (size != PAGE_SIZE) { 1318 prio = zram_get_priority(zram, index); 1319 zstrm = zcomp_stream_get(zram->comps[prio]); 1320 } 1321 1322 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO); 1323 if (size == PAGE_SIZE) { 1324 dst = kmap_local_page(page); 1325 copy_page(dst, src); 1326 kunmap_local(dst); 1327 ret = 0; 1328 } else { 1329 dst = kmap_local_page(page); 1330 ret = zcomp_decompress(zstrm, src, size, dst); 1331 kunmap_local(dst); 1332 zcomp_stream_put(zram->comps[prio]); 1333 } 1334 zs_unmap_object(zram->mem_pool, handle); 1335 return ret; 1336 } 1337 1338 static int zram_read_page(struct zram *zram, struct page *page, u32 index, 1339 struct bio *parent) 1340 { 1341 int ret; 1342 1343 zram_slot_lock(zram, index); 1344 if (!zram_test_flag(zram, index, ZRAM_WB)) { 1345 /* Slot should be locked through out the function call */ 1346 ret = zram_read_from_zspool(zram, page, index); 1347 zram_slot_unlock(zram, index); 1348 } else { 1349 /* 1350 * The slot should be unlocked before reading from the backing 1351 * device. 1352 */ 1353 zram_slot_unlock(zram, index); 1354 1355 ret = read_from_bdev(zram, page, zram_get_element(zram, index), 1356 parent); 1357 } 1358 1359 /* Should NEVER happen. Return bio error if it does. */ 1360 if (WARN_ON(ret < 0)) 1361 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 1362 1363 return ret; 1364 } 1365 1366 /* 1367 * Use a temporary buffer to decompress the page, as the decompressor 1368 * always expects a full page for the output. 1369 */ 1370 static int zram_bvec_read_partial(struct zram *zram, struct bio_vec *bvec, 1371 u32 index, int offset) 1372 { 1373 struct page *page = alloc_page(GFP_NOIO); 1374 int ret; 1375 1376 if (!page) 1377 return -ENOMEM; 1378 ret = zram_read_page(zram, page, index, NULL); 1379 if (likely(!ret)) 1380 memcpy_to_bvec(bvec, page_address(page) + offset); 1381 __free_page(page); 1382 return ret; 1383 } 1384 1385 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 1386 u32 index, int offset, struct bio *bio) 1387 { 1388 if (is_partial_io(bvec)) 1389 return zram_bvec_read_partial(zram, bvec, index, offset); 1390 return zram_read_page(zram, bvec->bv_page, index, bio); 1391 } 1392 1393 static int zram_write_page(struct zram *zram, struct page *page, u32 index) 1394 { 1395 int ret = 0; 1396 unsigned long alloced_pages; 1397 unsigned long handle = -ENOMEM; 1398 unsigned int comp_len = 0; 1399 void *src, *dst, *mem; 1400 struct zcomp_strm *zstrm; 1401 unsigned long element = 0; 1402 enum zram_pageflags flags = 0; 1403 1404 mem = kmap_local_page(page); 1405 if (page_same_filled(mem, &element)) { 1406 kunmap_local(mem); 1407 /* Free memory associated with this sector now. */ 1408 flags = ZRAM_SAME; 1409 atomic64_inc(&zram->stats.same_pages); 1410 goto out; 1411 } 1412 kunmap_local(mem); 1413 1414 compress_again: 1415 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]); 1416 src = kmap_local_page(page); 1417 ret = zcomp_compress(zstrm, src, &comp_len); 1418 kunmap_local(src); 1419 1420 if (unlikely(ret)) { 1421 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1422 pr_err("Compression failed! err=%d\n", ret); 1423 zs_free(zram->mem_pool, handle); 1424 return ret; 1425 } 1426 1427 if (comp_len >= huge_class_size) 1428 comp_len = PAGE_SIZE; 1429 /* 1430 * handle allocation has 2 paths: 1431 * a) fast path is executed with preemption disabled (for 1432 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear, 1433 * since we can't sleep; 1434 * b) slow path enables preemption and attempts to allocate 1435 * the page with __GFP_DIRECT_RECLAIM bit set. we have to 1436 * put per-cpu compression stream and, thus, to re-do 1437 * the compression once handle is allocated. 1438 * 1439 * if we have a 'non-null' handle here then we are coming 1440 * from the slow path and handle has already been allocated. 1441 */ 1442 if (IS_ERR_VALUE(handle)) 1443 handle = zs_malloc(zram->mem_pool, comp_len, 1444 __GFP_KSWAPD_RECLAIM | 1445 __GFP_NOWARN | 1446 __GFP_HIGHMEM | 1447 __GFP_MOVABLE); 1448 if (IS_ERR_VALUE(handle)) { 1449 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1450 atomic64_inc(&zram->stats.writestall); 1451 handle = zs_malloc(zram->mem_pool, comp_len, 1452 GFP_NOIO | __GFP_HIGHMEM | 1453 __GFP_MOVABLE); 1454 if (IS_ERR_VALUE(handle)) 1455 return PTR_ERR((void *)handle); 1456 1457 if (comp_len != PAGE_SIZE) 1458 goto compress_again; 1459 /* 1460 * If the page is not compressible, you need to acquire the 1461 * lock and execute the code below. The zcomp_stream_get() 1462 * call is needed to disable the cpu hotplug and grab the 1463 * zstrm buffer back. It is necessary that the dereferencing 1464 * of the zstrm variable below occurs correctly. 1465 */ 1466 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]); 1467 } 1468 1469 alloced_pages = zs_get_total_pages(zram->mem_pool); 1470 update_used_max(zram, alloced_pages); 1471 1472 if (zram->limit_pages && alloced_pages > zram->limit_pages) { 1473 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1474 zs_free(zram->mem_pool, handle); 1475 return -ENOMEM; 1476 } 1477 1478 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO); 1479 1480 src = zstrm->buffer; 1481 if (comp_len == PAGE_SIZE) 1482 src = kmap_local_page(page); 1483 memcpy(dst, src, comp_len); 1484 if (comp_len == PAGE_SIZE) 1485 kunmap_local(src); 1486 1487 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1488 zs_unmap_object(zram->mem_pool, handle); 1489 atomic64_add(comp_len, &zram->stats.compr_data_size); 1490 out: 1491 /* 1492 * Free memory associated with this sector 1493 * before overwriting unused sectors. 1494 */ 1495 zram_slot_lock(zram, index); 1496 zram_free_page(zram, index); 1497 1498 if (comp_len == PAGE_SIZE) { 1499 zram_set_flag(zram, index, ZRAM_HUGE); 1500 atomic64_inc(&zram->stats.huge_pages); 1501 atomic64_inc(&zram->stats.huge_pages_since); 1502 } 1503 1504 if (flags) { 1505 zram_set_flag(zram, index, flags); 1506 zram_set_element(zram, index, element); 1507 } else { 1508 zram_set_handle(zram, index, handle); 1509 zram_set_obj_size(zram, index, comp_len); 1510 } 1511 zram_slot_unlock(zram, index); 1512 1513 /* Update stats */ 1514 atomic64_inc(&zram->stats.pages_stored); 1515 return ret; 1516 } 1517 1518 /* 1519 * This is a partial IO. Read the full page before writing the changes. 1520 */ 1521 static int zram_bvec_write_partial(struct zram *zram, struct bio_vec *bvec, 1522 u32 index, int offset, struct bio *bio) 1523 { 1524 struct page *page = alloc_page(GFP_NOIO); 1525 int ret; 1526 1527 if (!page) 1528 return -ENOMEM; 1529 1530 ret = zram_read_page(zram, page, index, bio); 1531 if (!ret) { 1532 memcpy_from_bvec(page_address(page) + offset, bvec); 1533 ret = zram_write_page(zram, page, index); 1534 } 1535 __free_page(page); 1536 return ret; 1537 } 1538 1539 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1540 u32 index, int offset, struct bio *bio) 1541 { 1542 if (is_partial_io(bvec)) 1543 return zram_bvec_write_partial(zram, bvec, index, offset, bio); 1544 return zram_write_page(zram, bvec->bv_page, index); 1545 } 1546 1547 #ifdef CONFIG_ZRAM_MULTI_COMP 1548 /* 1549 * This function will decompress (unless it's ZRAM_HUGE) the page and then 1550 * attempt to compress it using provided compression algorithm priority 1551 * (which is potentially more effective). 1552 * 1553 * Corresponding ZRAM slot should be locked. 1554 */ 1555 static int zram_recompress(struct zram *zram, u32 index, struct page *page, 1556 u64 *num_recomp_pages, u32 threshold, u32 prio, 1557 u32 prio_max) 1558 { 1559 struct zcomp_strm *zstrm = NULL; 1560 unsigned long handle_old; 1561 unsigned long handle_new; 1562 unsigned int comp_len_old; 1563 unsigned int comp_len_new; 1564 unsigned int class_index_old; 1565 unsigned int class_index_new; 1566 u32 num_recomps = 0; 1567 void *src, *dst; 1568 int ret; 1569 1570 handle_old = zram_get_handle(zram, index); 1571 if (!handle_old) 1572 return -EINVAL; 1573 1574 comp_len_old = zram_get_obj_size(zram, index); 1575 /* 1576 * Do not recompress objects that are already "small enough". 1577 */ 1578 if (comp_len_old < threshold) 1579 return 0; 1580 1581 ret = zram_read_from_zspool(zram, page, index); 1582 if (ret) 1583 return ret; 1584 1585 class_index_old = zs_lookup_class_index(zram->mem_pool, comp_len_old); 1586 /* 1587 * Iterate the secondary comp algorithms list (in order of priority) 1588 * and try to recompress the page. 1589 */ 1590 for (; prio < prio_max; prio++) { 1591 if (!zram->comps[prio]) 1592 continue; 1593 1594 /* 1595 * Skip if the object is already re-compressed with a higher 1596 * priority algorithm (or same algorithm). 1597 */ 1598 if (prio <= zram_get_priority(zram, index)) 1599 continue; 1600 1601 num_recomps++; 1602 zstrm = zcomp_stream_get(zram->comps[prio]); 1603 src = kmap_local_page(page); 1604 ret = zcomp_compress(zstrm, src, &comp_len_new); 1605 kunmap_local(src); 1606 1607 if (ret) { 1608 zcomp_stream_put(zram->comps[prio]); 1609 return ret; 1610 } 1611 1612 class_index_new = zs_lookup_class_index(zram->mem_pool, 1613 comp_len_new); 1614 1615 /* Continue until we make progress */ 1616 if (class_index_new >= class_index_old || 1617 (threshold && comp_len_new >= threshold)) { 1618 zcomp_stream_put(zram->comps[prio]); 1619 continue; 1620 } 1621 1622 /* Recompression was successful so break out */ 1623 break; 1624 } 1625 1626 /* 1627 * We did not try to recompress, e.g. when we have only one 1628 * secondary algorithm and the page is already recompressed 1629 * using that algorithm 1630 */ 1631 if (!zstrm) 1632 return 0; 1633 1634 /* 1635 * Decrement the limit (if set) on pages we can recompress, even 1636 * when current recompression was unsuccessful or did not compress 1637 * the page below the threshold, because we still spent resources 1638 * on it. 1639 */ 1640 if (*num_recomp_pages) 1641 *num_recomp_pages -= 1; 1642 1643 if (class_index_new >= class_index_old) { 1644 /* 1645 * Secondary algorithms failed to re-compress the page 1646 * in a way that would save memory, mark the object as 1647 * incompressible so that we will not try to compress 1648 * it again. 1649 * 1650 * We need to make sure that all secondary algorithms have 1651 * failed, so we test if the number of recompressions matches 1652 * the number of active secondary algorithms. 1653 */ 1654 if (num_recomps == zram->num_active_comps - 1) 1655 zram_set_flag(zram, index, ZRAM_INCOMPRESSIBLE); 1656 return 0; 1657 } 1658 1659 /* Successful recompression but above threshold */ 1660 if (threshold && comp_len_new >= threshold) 1661 return 0; 1662 1663 /* 1664 * No direct reclaim (slow path) for handle allocation and no 1665 * re-compression attempt (unlike in zram_write_bvec()) since 1666 * we already have stored that object in zsmalloc. If we cannot 1667 * alloc memory for recompressed object then we bail out and 1668 * simply keep the old (existing) object in zsmalloc. 1669 */ 1670 handle_new = zs_malloc(zram->mem_pool, comp_len_new, 1671 __GFP_KSWAPD_RECLAIM | 1672 __GFP_NOWARN | 1673 __GFP_HIGHMEM | 1674 __GFP_MOVABLE); 1675 if (IS_ERR_VALUE(handle_new)) { 1676 zcomp_stream_put(zram->comps[prio]); 1677 return PTR_ERR((void *)handle_new); 1678 } 1679 1680 dst = zs_map_object(zram->mem_pool, handle_new, ZS_MM_WO); 1681 memcpy(dst, zstrm->buffer, comp_len_new); 1682 zcomp_stream_put(zram->comps[prio]); 1683 1684 zs_unmap_object(zram->mem_pool, handle_new); 1685 1686 zram_free_page(zram, index); 1687 zram_set_handle(zram, index, handle_new); 1688 zram_set_obj_size(zram, index, comp_len_new); 1689 zram_set_priority(zram, index, prio); 1690 1691 atomic64_add(comp_len_new, &zram->stats.compr_data_size); 1692 atomic64_inc(&zram->stats.pages_stored); 1693 1694 return 0; 1695 } 1696 1697 #define RECOMPRESS_IDLE (1 << 0) 1698 #define RECOMPRESS_HUGE (1 << 1) 1699 1700 static ssize_t recompress_store(struct device *dev, 1701 struct device_attribute *attr, 1702 const char *buf, size_t len) 1703 { 1704 u32 prio = ZRAM_SECONDARY_COMP, prio_max = ZRAM_MAX_COMPS; 1705 struct zram *zram = dev_to_zram(dev); 1706 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 1707 char *args, *param, *val, *algo = NULL; 1708 u64 num_recomp_pages = ULLONG_MAX; 1709 u32 mode = 0, threshold = 0; 1710 unsigned long index; 1711 struct page *page; 1712 ssize_t ret; 1713 1714 args = skip_spaces(buf); 1715 while (*args) { 1716 args = next_arg(args, ¶m, &val); 1717 1718 if (!val || !*val) 1719 return -EINVAL; 1720 1721 if (!strcmp(param, "type")) { 1722 if (!strcmp(val, "idle")) 1723 mode = RECOMPRESS_IDLE; 1724 if (!strcmp(val, "huge")) 1725 mode = RECOMPRESS_HUGE; 1726 if (!strcmp(val, "huge_idle")) 1727 mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE; 1728 continue; 1729 } 1730 1731 if (!strcmp(param, "max_pages")) { 1732 /* 1733 * Limit the number of entries (pages) we attempt to 1734 * recompress. 1735 */ 1736 ret = kstrtoull(val, 10, &num_recomp_pages); 1737 if (ret) 1738 return ret; 1739 continue; 1740 } 1741 1742 if (!strcmp(param, "threshold")) { 1743 /* 1744 * We will re-compress only idle objects equal or 1745 * greater in size than watermark. 1746 */ 1747 ret = kstrtouint(val, 10, &threshold); 1748 if (ret) 1749 return ret; 1750 continue; 1751 } 1752 1753 if (!strcmp(param, "algo")) { 1754 algo = val; 1755 continue; 1756 } 1757 } 1758 1759 if (threshold >= huge_class_size) 1760 return -EINVAL; 1761 1762 down_read(&zram->init_lock); 1763 if (!init_done(zram)) { 1764 ret = -EINVAL; 1765 goto release_init_lock; 1766 } 1767 1768 if (algo) { 1769 bool found = false; 1770 1771 for (; prio < ZRAM_MAX_COMPS; prio++) { 1772 if (!zram->comp_algs[prio]) 1773 continue; 1774 1775 if (!strcmp(zram->comp_algs[prio], algo)) { 1776 prio_max = min(prio + 1, ZRAM_MAX_COMPS); 1777 found = true; 1778 break; 1779 } 1780 } 1781 1782 if (!found) { 1783 ret = -EINVAL; 1784 goto release_init_lock; 1785 } 1786 } 1787 1788 page = alloc_page(GFP_KERNEL); 1789 if (!page) { 1790 ret = -ENOMEM; 1791 goto release_init_lock; 1792 } 1793 1794 ret = len; 1795 for (index = 0; index < nr_pages; index++) { 1796 int err = 0; 1797 1798 if (!num_recomp_pages) 1799 break; 1800 1801 zram_slot_lock(zram, index); 1802 1803 if (!zram_allocated(zram, index)) 1804 goto next; 1805 1806 if (mode & RECOMPRESS_IDLE && 1807 !zram_test_flag(zram, index, ZRAM_IDLE)) 1808 goto next; 1809 1810 if (mode & RECOMPRESS_HUGE && 1811 !zram_test_flag(zram, index, ZRAM_HUGE)) 1812 goto next; 1813 1814 if (zram_test_flag(zram, index, ZRAM_WB) || 1815 zram_test_flag(zram, index, ZRAM_UNDER_WB) || 1816 zram_test_flag(zram, index, ZRAM_SAME) || 1817 zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 1818 goto next; 1819 1820 err = zram_recompress(zram, index, page, &num_recomp_pages, 1821 threshold, prio, prio_max); 1822 next: 1823 zram_slot_unlock(zram, index); 1824 if (err) { 1825 ret = err; 1826 break; 1827 } 1828 1829 cond_resched(); 1830 } 1831 1832 __free_page(page); 1833 1834 release_init_lock: 1835 up_read(&zram->init_lock); 1836 return ret; 1837 } 1838 #endif 1839 1840 static void zram_bio_discard(struct zram *zram, struct bio *bio) 1841 { 1842 size_t n = bio->bi_iter.bi_size; 1843 u32 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 1844 u32 offset = (bio->bi_iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 1845 SECTOR_SHIFT; 1846 1847 /* 1848 * zram manages data in physical block size units. Because logical block 1849 * size isn't identical with physical block size on some arch, we 1850 * could get a discard request pointing to a specific offset within a 1851 * certain physical block. Although we can handle this request by 1852 * reading that physiclal block and decompressing and partially zeroing 1853 * and re-compressing and then re-storing it, this isn't reasonable 1854 * because our intent with a discard request is to save memory. So 1855 * skipping this logical block is appropriate here. 1856 */ 1857 if (offset) { 1858 if (n <= (PAGE_SIZE - offset)) 1859 return; 1860 1861 n -= (PAGE_SIZE - offset); 1862 index++; 1863 } 1864 1865 while (n >= PAGE_SIZE) { 1866 zram_slot_lock(zram, index); 1867 zram_free_page(zram, index); 1868 zram_slot_unlock(zram, index); 1869 atomic64_inc(&zram->stats.notify_free); 1870 index++; 1871 n -= PAGE_SIZE; 1872 } 1873 1874 bio_endio(bio); 1875 } 1876 1877 static void zram_bio_read(struct zram *zram, struct bio *bio) 1878 { 1879 unsigned long start_time = bio_start_io_acct(bio); 1880 struct bvec_iter iter = bio->bi_iter; 1881 1882 do { 1883 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 1884 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 1885 SECTOR_SHIFT; 1886 struct bio_vec bv = bio_iter_iovec(bio, iter); 1887 1888 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset); 1889 1890 if (zram_bvec_read(zram, &bv, index, offset, bio) < 0) { 1891 atomic64_inc(&zram->stats.failed_reads); 1892 bio->bi_status = BLK_STS_IOERR; 1893 break; 1894 } 1895 flush_dcache_page(bv.bv_page); 1896 1897 zram_slot_lock(zram, index); 1898 zram_accessed(zram, index); 1899 zram_slot_unlock(zram, index); 1900 1901 bio_advance_iter_single(bio, &iter, bv.bv_len); 1902 } while (iter.bi_size); 1903 1904 bio_end_io_acct(bio, start_time); 1905 bio_endio(bio); 1906 } 1907 1908 static void zram_bio_write(struct zram *zram, struct bio *bio) 1909 { 1910 unsigned long start_time = bio_start_io_acct(bio); 1911 struct bvec_iter iter = bio->bi_iter; 1912 1913 do { 1914 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 1915 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 1916 SECTOR_SHIFT; 1917 struct bio_vec bv = bio_iter_iovec(bio, iter); 1918 1919 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset); 1920 1921 if (zram_bvec_write(zram, &bv, index, offset, bio) < 0) { 1922 atomic64_inc(&zram->stats.failed_writes); 1923 bio->bi_status = BLK_STS_IOERR; 1924 break; 1925 } 1926 1927 zram_slot_lock(zram, index); 1928 zram_accessed(zram, index); 1929 zram_slot_unlock(zram, index); 1930 1931 bio_advance_iter_single(bio, &iter, bv.bv_len); 1932 } while (iter.bi_size); 1933 1934 bio_end_io_acct(bio, start_time); 1935 bio_endio(bio); 1936 } 1937 1938 /* 1939 * Handler function for all zram I/O requests. 1940 */ 1941 static void zram_submit_bio(struct bio *bio) 1942 { 1943 struct zram *zram = bio->bi_bdev->bd_disk->private_data; 1944 1945 switch (bio_op(bio)) { 1946 case REQ_OP_READ: 1947 zram_bio_read(zram, bio); 1948 break; 1949 case REQ_OP_WRITE: 1950 zram_bio_write(zram, bio); 1951 break; 1952 case REQ_OP_DISCARD: 1953 case REQ_OP_WRITE_ZEROES: 1954 zram_bio_discard(zram, bio); 1955 break; 1956 default: 1957 WARN_ON_ONCE(1); 1958 bio_endio(bio); 1959 } 1960 } 1961 1962 static void zram_slot_free_notify(struct block_device *bdev, 1963 unsigned long index) 1964 { 1965 struct zram *zram; 1966 1967 zram = bdev->bd_disk->private_data; 1968 1969 atomic64_inc(&zram->stats.notify_free); 1970 if (!zram_slot_trylock(zram, index)) { 1971 atomic64_inc(&zram->stats.miss_free); 1972 return; 1973 } 1974 1975 zram_free_page(zram, index); 1976 zram_slot_unlock(zram, index); 1977 } 1978 1979 static void zram_destroy_comps(struct zram *zram) 1980 { 1981 u32 prio; 1982 1983 for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) { 1984 struct zcomp *comp = zram->comps[prio]; 1985 1986 zram->comps[prio] = NULL; 1987 if (!comp) 1988 continue; 1989 zcomp_destroy(comp); 1990 zram->num_active_comps--; 1991 } 1992 } 1993 1994 static void zram_reset_device(struct zram *zram) 1995 { 1996 down_write(&zram->init_lock); 1997 1998 zram->limit_pages = 0; 1999 2000 if (!init_done(zram)) { 2001 up_write(&zram->init_lock); 2002 return; 2003 } 2004 2005 set_capacity_and_notify(zram->disk, 0); 2006 part_stat_set_all(zram->disk->part0, 0); 2007 2008 /* I/O operation under all of CPU are done so let's free */ 2009 zram_meta_free(zram, zram->disksize); 2010 zram->disksize = 0; 2011 zram_destroy_comps(zram); 2012 memset(&zram->stats, 0, sizeof(zram->stats)); 2013 reset_bdev(zram); 2014 2015 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor); 2016 up_write(&zram->init_lock); 2017 } 2018 2019 static ssize_t disksize_store(struct device *dev, 2020 struct device_attribute *attr, const char *buf, size_t len) 2021 { 2022 u64 disksize; 2023 struct zcomp *comp; 2024 struct zram *zram = dev_to_zram(dev); 2025 int err; 2026 u32 prio; 2027 2028 disksize = memparse(buf, NULL); 2029 if (!disksize) 2030 return -EINVAL; 2031 2032 down_write(&zram->init_lock); 2033 if (init_done(zram)) { 2034 pr_info("Cannot change disksize for initialized device\n"); 2035 err = -EBUSY; 2036 goto out_unlock; 2037 } 2038 2039 disksize = PAGE_ALIGN(disksize); 2040 if (!zram_meta_alloc(zram, disksize)) { 2041 err = -ENOMEM; 2042 goto out_unlock; 2043 } 2044 2045 for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) { 2046 if (!zram->comp_algs[prio]) 2047 continue; 2048 2049 comp = zcomp_create(zram->comp_algs[prio]); 2050 if (IS_ERR(comp)) { 2051 pr_err("Cannot initialise %s compressing backend\n", 2052 zram->comp_algs[prio]); 2053 err = PTR_ERR(comp); 2054 goto out_free_comps; 2055 } 2056 2057 zram->comps[prio] = comp; 2058 zram->num_active_comps++; 2059 } 2060 zram->disksize = disksize; 2061 set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT); 2062 up_write(&zram->init_lock); 2063 2064 return len; 2065 2066 out_free_comps: 2067 zram_destroy_comps(zram); 2068 zram_meta_free(zram, disksize); 2069 out_unlock: 2070 up_write(&zram->init_lock); 2071 return err; 2072 } 2073 2074 static ssize_t reset_store(struct device *dev, 2075 struct device_attribute *attr, const char *buf, size_t len) 2076 { 2077 int ret; 2078 unsigned short do_reset; 2079 struct zram *zram; 2080 struct gendisk *disk; 2081 2082 ret = kstrtou16(buf, 10, &do_reset); 2083 if (ret) 2084 return ret; 2085 2086 if (!do_reset) 2087 return -EINVAL; 2088 2089 zram = dev_to_zram(dev); 2090 disk = zram->disk; 2091 2092 mutex_lock(&disk->open_mutex); 2093 /* Do not reset an active device or claimed device */ 2094 if (disk_openers(disk) || zram->claim) { 2095 mutex_unlock(&disk->open_mutex); 2096 return -EBUSY; 2097 } 2098 2099 /* From now on, anyone can't open /dev/zram[0-9] */ 2100 zram->claim = true; 2101 mutex_unlock(&disk->open_mutex); 2102 2103 /* Make sure all the pending I/O are finished */ 2104 sync_blockdev(disk->part0); 2105 zram_reset_device(zram); 2106 2107 mutex_lock(&disk->open_mutex); 2108 zram->claim = false; 2109 mutex_unlock(&disk->open_mutex); 2110 2111 return len; 2112 } 2113 2114 static int zram_open(struct gendisk *disk, blk_mode_t mode) 2115 { 2116 struct zram *zram = disk->private_data; 2117 2118 WARN_ON(!mutex_is_locked(&disk->open_mutex)); 2119 2120 /* zram was claimed to reset so open request fails */ 2121 if (zram->claim) 2122 return -EBUSY; 2123 return 0; 2124 } 2125 2126 static const struct block_device_operations zram_devops = { 2127 .open = zram_open, 2128 .submit_bio = zram_submit_bio, 2129 .swap_slot_free_notify = zram_slot_free_notify, 2130 .owner = THIS_MODULE 2131 }; 2132 2133 static DEVICE_ATTR_WO(compact); 2134 static DEVICE_ATTR_RW(disksize); 2135 static DEVICE_ATTR_RO(initstate); 2136 static DEVICE_ATTR_WO(reset); 2137 static DEVICE_ATTR_WO(mem_limit); 2138 static DEVICE_ATTR_WO(mem_used_max); 2139 static DEVICE_ATTR_WO(idle); 2140 static DEVICE_ATTR_RW(max_comp_streams); 2141 static DEVICE_ATTR_RW(comp_algorithm); 2142 #ifdef CONFIG_ZRAM_WRITEBACK 2143 static DEVICE_ATTR_RW(backing_dev); 2144 static DEVICE_ATTR_WO(writeback); 2145 static DEVICE_ATTR_RW(writeback_limit); 2146 static DEVICE_ATTR_RW(writeback_limit_enable); 2147 #endif 2148 #ifdef CONFIG_ZRAM_MULTI_COMP 2149 static DEVICE_ATTR_RW(recomp_algorithm); 2150 static DEVICE_ATTR_WO(recompress); 2151 #endif 2152 2153 static struct attribute *zram_disk_attrs[] = { 2154 &dev_attr_disksize.attr, 2155 &dev_attr_initstate.attr, 2156 &dev_attr_reset.attr, 2157 &dev_attr_compact.attr, 2158 &dev_attr_mem_limit.attr, 2159 &dev_attr_mem_used_max.attr, 2160 &dev_attr_idle.attr, 2161 &dev_attr_max_comp_streams.attr, 2162 &dev_attr_comp_algorithm.attr, 2163 #ifdef CONFIG_ZRAM_WRITEBACK 2164 &dev_attr_backing_dev.attr, 2165 &dev_attr_writeback.attr, 2166 &dev_attr_writeback_limit.attr, 2167 &dev_attr_writeback_limit_enable.attr, 2168 #endif 2169 &dev_attr_io_stat.attr, 2170 &dev_attr_mm_stat.attr, 2171 #ifdef CONFIG_ZRAM_WRITEBACK 2172 &dev_attr_bd_stat.attr, 2173 #endif 2174 &dev_attr_debug_stat.attr, 2175 #ifdef CONFIG_ZRAM_MULTI_COMP 2176 &dev_attr_recomp_algorithm.attr, 2177 &dev_attr_recompress.attr, 2178 #endif 2179 NULL, 2180 }; 2181 2182 ATTRIBUTE_GROUPS(zram_disk); 2183 2184 /* 2185 * Allocate and initialize new zram device. the function returns 2186 * '>= 0' device_id upon success, and negative value otherwise. 2187 */ 2188 static int zram_add(void) 2189 { 2190 struct queue_limits lim = { 2191 .logical_block_size = ZRAM_LOGICAL_BLOCK_SIZE, 2192 /* 2193 * To ensure that we always get PAGE_SIZE aligned and 2194 * n*PAGE_SIZED sized I/O requests. 2195 */ 2196 .physical_block_size = PAGE_SIZE, 2197 .io_min = PAGE_SIZE, 2198 .io_opt = PAGE_SIZE, 2199 .max_hw_discard_sectors = UINT_MAX, 2200 /* 2201 * zram_bio_discard() will clear all logical blocks if logical 2202 * block size is identical with physical block size(PAGE_SIZE). 2203 * But if it is different, we will skip discarding some parts of 2204 * logical blocks in the part of the request range which isn't 2205 * aligned to physical block size. So we can't ensure that all 2206 * discarded logical blocks are zeroed. 2207 */ 2208 #if ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE 2209 .max_write_zeroes_sectors = UINT_MAX, 2210 #endif 2211 }; 2212 struct zram *zram; 2213 int ret, device_id; 2214 2215 zram = kzalloc(sizeof(struct zram), GFP_KERNEL); 2216 if (!zram) 2217 return -ENOMEM; 2218 2219 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); 2220 if (ret < 0) 2221 goto out_free_dev; 2222 device_id = ret; 2223 2224 init_rwsem(&zram->init_lock); 2225 #ifdef CONFIG_ZRAM_WRITEBACK 2226 spin_lock_init(&zram->wb_limit_lock); 2227 #endif 2228 2229 /* gendisk structure */ 2230 zram->disk = blk_alloc_disk(&lim, NUMA_NO_NODE); 2231 if (IS_ERR(zram->disk)) { 2232 pr_err("Error allocating disk structure for device %d\n", 2233 device_id); 2234 ret = PTR_ERR(zram->disk); 2235 goto out_free_idr; 2236 } 2237 2238 zram->disk->major = zram_major; 2239 zram->disk->first_minor = device_id; 2240 zram->disk->minors = 1; 2241 zram->disk->flags |= GENHD_FL_NO_PART; 2242 zram->disk->fops = &zram_devops; 2243 zram->disk->private_data = zram; 2244 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 2245 2246 /* Actual capacity set using sysfs (/sys/block/zram<id>/disksize */ 2247 set_capacity(zram->disk, 0); 2248 /* zram devices sort of resembles non-rotational disks */ 2249 blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue); 2250 blk_queue_flag_set(QUEUE_FLAG_SYNCHRONOUS, zram->disk->queue); 2251 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, zram->disk->queue); 2252 ret = device_add_disk(NULL, zram->disk, zram_disk_groups); 2253 if (ret) 2254 goto out_cleanup_disk; 2255 2256 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor); 2257 2258 zram_debugfs_register(zram); 2259 pr_info("Added device: %s\n", zram->disk->disk_name); 2260 return device_id; 2261 2262 out_cleanup_disk: 2263 put_disk(zram->disk); 2264 out_free_idr: 2265 idr_remove(&zram_index_idr, device_id); 2266 out_free_dev: 2267 kfree(zram); 2268 return ret; 2269 } 2270 2271 static int zram_remove(struct zram *zram) 2272 { 2273 bool claimed; 2274 2275 mutex_lock(&zram->disk->open_mutex); 2276 if (disk_openers(zram->disk)) { 2277 mutex_unlock(&zram->disk->open_mutex); 2278 return -EBUSY; 2279 } 2280 2281 claimed = zram->claim; 2282 if (!claimed) 2283 zram->claim = true; 2284 mutex_unlock(&zram->disk->open_mutex); 2285 2286 zram_debugfs_unregister(zram); 2287 2288 if (claimed) { 2289 /* 2290 * If we were claimed by reset_store(), del_gendisk() will 2291 * wait until reset_store() is done, so nothing need to do. 2292 */ 2293 ; 2294 } else { 2295 /* Make sure all the pending I/O are finished */ 2296 sync_blockdev(zram->disk->part0); 2297 zram_reset_device(zram); 2298 } 2299 2300 pr_info("Removed device: %s\n", zram->disk->disk_name); 2301 2302 del_gendisk(zram->disk); 2303 2304 /* del_gendisk drains pending reset_store */ 2305 WARN_ON_ONCE(claimed && zram->claim); 2306 2307 /* 2308 * disksize_store() may be called in between zram_reset_device() 2309 * and del_gendisk(), so run the last reset to avoid leaking 2310 * anything allocated with disksize_store() 2311 */ 2312 zram_reset_device(zram); 2313 2314 put_disk(zram->disk); 2315 kfree(zram); 2316 return 0; 2317 } 2318 2319 /* zram-control sysfs attributes */ 2320 2321 /* 2322 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a 2323 * sense that reading from this file does alter the state of your system -- it 2324 * creates a new un-initialized zram device and returns back this device's 2325 * device_id (or an error code if it fails to create a new device). 2326 */ 2327 static ssize_t hot_add_show(const struct class *class, 2328 const struct class_attribute *attr, 2329 char *buf) 2330 { 2331 int ret; 2332 2333 mutex_lock(&zram_index_mutex); 2334 ret = zram_add(); 2335 mutex_unlock(&zram_index_mutex); 2336 2337 if (ret < 0) 2338 return ret; 2339 return scnprintf(buf, PAGE_SIZE, "%d\n", ret); 2340 } 2341 /* This attribute must be set to 0400, so CLASS_ATTR_RO() can not be used */ 2342 static struct class_attribute class_attr_hot_add = 2343 __ATTR(hot_add, 0400, hot_add_show, NULL); 2344 2345 static ssize_t hot_remove_store(const struct class *class, 2346 const struct class_attribute *attr, 2347 const char *buf, 2348 size_t count) 2349 { 2350 struct zram *zram; 2351 int ret, dev_id; 2352 2353 /* dev_id is gendisk->first_minor, which is `int' */ 2354 ret = kstrtoint(buf, 10, &dev_id); 2355 if (ret) 2356 return ret; 2357 if (dev_id < 0) 2358 return -EINVAL; 2359 2360 mutex_lock(&zram_index_mutex); 2361 2362 zram = idr_find(&zram_index_idr, dev_id); 2363 if (zram) { 2364 ret = zram_remove(zram); 2365 if (!ret) 2366 idr_remove(&zram_index_idr, dev_id); 2367 } else { 2368 ret = -ENODEV; 2369 } 2370 2371 mutex_unlock(&zram_index_mutex); 2372 return ret ? ret : count; 2373 } 2374 static CLASS_ATTR_WO(hot_remove); 2375 2376 static struct attribute *zram_control_class_attrs[] = { 2377 &class_attr_hot_add.attr, 2378 &class_attr_hot_remove.attr, 2379 NULL, 2380 }; 2381 ATTRIBUTE_GROUPS(zram_control_class); 2382 2383 static struct class zram_control_class = { 2384 .name = "zram-control", 2385 .class_groups = zram_control_class_groups, 2386 }; 2387 2388 static int zram_remove_cb(int id, void *ptr, void *data) 2389 { 2390 WARN_ON_ONCE(zram_remove(ptr)); 2391 return 0; 2392 } 2393 2394 static void destroy_devices(void) 2395 { 2396 class_unregister(&zram_control_class); 2397 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); 2398 zram_debugfs_destroy(); 2399 idr_destroy(&zram_index_idr); 2400 unregister_blkdev(zram_major, "zram"); 2401 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2402 } 2403 2404 static int __init zram_init(void) 2405 { 2406 int ret; 2407 2408 BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > BITS_PER_LONG); 2409 2410 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare", 2411 zcomp_cpu_up_prepare, zcomp_cpu_dead); 2412 if (ret < 0) 2413 return ret; 2414 2415 ret = class_register(&zram_control_class); 2416 if (ret) { 2417 pr_err("Unable to register zram-control class\n"); 2418 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2419 return ret; 2420 } 2421 2422 zram_debugfs_create(); 2423 zram_major = register_blkdev(0, "zram"); 2424 if (zram_major <= 0) { 2425 pr_err("Unable to get major number\n"); 2426 class_unregister(&zram_control_class); 2427 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2428 return -EBUSY; 2429 } 2430 2431 while (num_devices != 0) { 2432 mutex_lock(&zram_index_mutex); 2433 ret = zram_add(); 2434 mutex_unlock(&zram_index_mutex); 2435 if (ret < 0) 2436 goto out_error; 2437 num_devices--; 2438 } 2439 2440 return 0; 2441 2442 out_error: 2443 destroy_devices(); 2444 return ret; 2445 } 2446 2447 static void __exit zram_exit(void) 2448 { 2449 destroy_devices(); 2450 } 2451 2452 module_init(zram_init); 2453 module_exit(zram_exit); 2454 2455 module_param(num_devices, uint, 0); 2456 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); 2457 2458 MODULE_LICENSE("Dual BSD/GPL"); 2459 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2460 MODULE_DESCRIPTION("Compressed RAM Block Device"); 2461