xref: /linux/drivers/block/zram/zram_drv.c (revision 172cdcaefea5c297fdb3d20b7d5aff60ae4fbce6)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/debugfs.h>
35 #include <linux/cpuhotplug.h>
36 #include <linux/part_stat.h>
37 
38 #include "zram_drv.h"
39 
40 static DEFINE_IDR(zram_index_idr);
41 /* idr index must be protected */
42 static DEFINE_MUTEX(zram_index_mutex);
43 
44 static int zram_major;
45 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP;
46 
47 /* Module params (documentation at end) */
48 static unsigned int num_devices = 1;
49 /*
50  * Pages that compress to sizes equals or greater than this are stored
51  * uncompressed in memory.
52  */
53 static size_t huge_class_size;
54 
55 static const struct block_device_operations zram_devops;
56 static const struct block_device_operations zram_wb_devops;
57 
58 static void zram_free_page(struct zram *zram, size_t index);
59 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
60 				u32 index, int offset, struct bio *bio);
61 
62 
63 static int zram_slot_trylock(struct zram *zram, u32 index)
64 {
65 	return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags);
66 }
67 
68 static void zram_slot_lock(struct zram *zram, u32 index)
69 {
70 	bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags);
71 }
72 
73 static void zram_slot_unlock(struct zram *zram, u32 index)
74 {
75 	bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags);
76 }
77 
78 static inline bool init_done(struct zram *zram)
79 {
80 	return zram->disksize;
81 }
82 
83 static inline struct zram *dev_to_zram(struct device *dev)
84 {
85 	return (struct zram *)dev_to_disk(dev)->private_data;
86 }
87 
88 static unsigned long zram_get_handle(struct zram *zram, u32 index)
89 {
90 	return zram->table[index].handle;
91 }
92 
93 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
94 {
95 	zram->table[index].handle = handle;
96 }
97 
98 /* flag operations require table entry bit_spin_lock() being held */
99 static bool zram_test_flag(struct zram *zram, u32 index,
100 			enum zram_pageflags flag)
101 {
102 	return zram->table[index].flags & BIT(flag);
103 }
104 
105 static void zram_set_flag(struct zram *zram, u32 index,
106 			enum zram_pageflags flag)
107 {
108 	zram->table[index].flags |= BIT(flag);
109 }
110 
111 static void zram_clear_flag(struct zram *zram, u32 index,
112 			enum zram_pageflags flag)
113 {
114 	zram->table[index].flags &= ~BIT(flag);
115 }
116 
117 static inline void zram_set_element(struct zram *zram, u32 index,
118 			unsigned long element)
119 {
120 	zram->table[index].element = element;
121 }
122 
123 static unsigned long zram_get_element(struct zram *zram, u32 index)
124 {
125 	return zram->table[index].element;
126 }
127 
128 static size_t zram_get_obj_size(struct zram *zram, u32 index)
129 {
130 	return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
131 }
132 
133 static void zram_set_obj_size(struct zram *zram,
134 					u32 index, size_t size)
135 {
136 	unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
137 
138 	zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
139 }
140 
141 static inline bool zram_allocated(struct zram *zram, u32 index)
142 {
143 	return zram_get_obj_size(zram, index) ||
144 			zram_test_flag(zram, index, ZRAM_SAME) ||
145 			zram_test_flag(zram, index, ZRAM_WB);
146 }
147 
148 #if PAGE_SIZE != 4096
149 static inline bool is_partial_io(struct bio_vec *bvec)
150 {
151 	return bvec->bv_len != PAGE_SIZE;
152 }
153 #else
154 static inline bool is_partial_io(struct bio_vec *bvec)
155 {
156 	return false;
157 }
158 #endif
159 
160 /*
161  * Check if request is within bounds and aligned on zram logical blocks.
162  */
163 static inline bool valid_io_request(struct zram *zram,
164 		sector_t start, unsigned int size)
165 {
166 	u64 end, bound;
167 
168 	/* unaligned request */
169 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
170 		return false;
171 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
172 		return false;
173 
174 	end = start + (size >> SECTOR_SHIFT);
175 	bound = zram->disksize >> SECTOR_SHIFT;
176 	/* out of range range */
177 	if (unlikely(start >= bound || end > bound || start > end))
178 		return false;
179 
180 	/* I/O request is valid */
181 	return true;
182 }
183 
184 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
185 {
186 	*index  += (*offset + bvec->bv_len) / PAGE_SIZE;
187 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
188 }
189 
190 static inline void update_used_max(struct zram *zram,
191 					const unsigned long pages)
192 {
193 	unsigned long old_max, cur_max;
194 
195 	old_max = atomic_long_read(&zram->stats.max_used_pages);
196 
197 	do {
198 		cur_max = old_max;
199 		if (pages > cur_max)
200 			old_max = atomic_long_cmpxchg(
201 				&zram->stats.max_used_pages, cur_max, pages);
202 	} while (old_max != cur_max);
203 }
204 
205 static inline void zram_fill_page(void *ptr, unsigned long len,
206 					unsigned long value)
207 {
208 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
209 	memset_l(ptr, value, len / sizeof(unsigned long));
210 }
211 
212 static bool page_same_filled(void *ptr, unsigned long *element)
213 {
214 	unsigned long *page;
215 	unsigned long val;
216 	unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
217 
218 	page = (unsigned long *)ptr;
219 	val = page[0];
220 
221 	if (val != page[last_pos])
222 		return false;
223 
224 	for (pos = 1; pos < last_pos; pos++) {
225 		if (val != page[pos])
226 			return false;
227 	}
228 
229 	*element = val;
230 
231 	return true;
232 }
233 
234 static ssize_t initstate_show(struct device *dev,
235 		struct device_attribute *attr, char *buf)
236 {
237 	u32 val;
238 	struct zram *zram = dev_to_zram(dev);
239 
240 	down_read(&zram->init_lock);
241 	val = init_done(zram);
242 	up_read(&zram->init_lock);
243 
244 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
245 }
246 
247 static ssize_t disksize_show(struct device *dev,
248 		struct device_attribute *attr, char *buf)
249 {
250 	struct zram *zram = dev_to_zram(dev);
251 
252 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
253 }
254 
255 static ssize_t mem_limit_store(struct device *dev,
256 		struct device_attribute *attr, const char *buf, size_t len)
257 {
258 	u64 limit;
259 	char *tmp;
260 	struct zram *zram = dev_to_zram(dev);
261 
262 	limit = memparse(buf, &tmp);
263 	if (buf == tmp) /* no chars parsed, invalid input */
264 		return -EINVAL;
265 
266 	down_write(&zram->init_lock);
267 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
268 	up_write(&zram->init_lock);
269 
270 	return len;
271 }
272 
273 static ssize_t mem_used_max_store(struct device *dev,
274 		struct device_attribute *attr, const char *buf, size_t len)
275 {
276 	int err;
277 	unsigned long val;
278 	struct zram *zram = dev_to_zram(dev);
279 
280 	err = kstrtoul(buf, 10, &val);
281 	if (err || val != 0)
282 		return -EINVAL;
283 
284 	down_read(&zram->init_lock);
285 	if (init_done(zram)) {
286 		atomic_long_set(&zram->stats.max_used_pages,
287 				zs_get_total_pages(zram->mem_pool));
288 	}
289 	up_read(&zram->init_lock);
290 
291 	return len;
292 }
293 
294 static ssize_t idle_store(struct device *dev,
295 		struct device_attribute *attr, const char *buf, size_t len)
296 {
297 	struct zram *zram = dev_to_zram(dev);
298 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
299 	int index;
300 
301 	if (!sysfs_streq(buf, "all"))
302 		return -EINVAL;
303 
304 	down_read(&zram->init_lock);
305 	if (!init_done(zram)) {
306 		up_read(&zram->init_lock);
307 		return -EINVAL;
308 	}
309 
310 	for (index = 0; index < nr_pages; index++) {
311 		/*
312 		 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race.
313 		 * See the comment in writeback_store.
314 		 */
315 		zram_slot_lock(zram, index);
316 		if (zram_allocated(zram, index) &&
317 				!zram_test_flag(zram, index, ZRAM_UNDER_WB))
318 			zram_set_flag(zram, index, ZRAM_IDLE);
319 		zram_slot_unlock(zram, index);
320 	}
321 
322 	up_read(&zram->init_lock);
323 
324 	return len;
325 }
326 
327 #ifdef CONFIG_ZRAM_WRITEBACK
328 static ssize_t writeback_limit_enable_store(struct device *dev,
329 		struct device_attribute *attr, const char *buf, size_t len)
330 {
331 	struct zram *zram = dev_to_zram(dev);
332 	u64 val;
333 	ssize_t ret = -EINVAL;
334 
335 	if (kstrtoull(buf, 10, &val))
336 		return ret;
337 
338 	down_read(&zram->init_lock);
339 	spin_lock(&zram->wb_limit_lock);
340 	zram->wb_limit_enable = val;
341 	spin_unlock(&zram->wb_limit_lock);
342 	up_read(&zram->init_lock);
343 	ret = len;
344 
345 	return ret;
346 }
347 
348 static ssize_t writeback_limit_enable_show(struct device *dev,
349 		struct device_attribute *attr, char *buf)
350 {
351 	bool val;
352 	struct zram *zram = dev_to_zram(dev);
353 
354 	down_read(&zram->init_lock);
355 	spin_lock(&zram->wb_limit_lock);
356 	val = zram->wb_limit_enable;
357 	spin_unlock(&zram->wb_limit_lock);
358 	up_read(&zram->init_lock);
359 
360 	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
361 }
362 
363 static ssize_t writeback_limit_store(struct device *dev,
364 		struct device_attribute *attr, const char *buf, size_t len)
365 {
366 	struct zram *zram = dev_to_zram(dev);
367 	u64 val;
368 	ssize_t ret = -EINVAL;
369 
370 	if (kstrtoull(buf, 10, &val))
371 		return ret;
372 
373 	down_read(&zram->init_lock);
374 	spin_lock(&zram->wb_limit_lock);
375 	zram->bd_wb_limit = val;
376 	spin_unlock(&zram->wb_limit_lock);
377 	up_read(&zram->init_lock);
378 	ret = len;
379 
380 	return ret;
381 }
382 
383 static ssize_t writeback_limit_show(struct device *dev,
384 		struct device_attribute *attr, char *buf)
385 {
386 	u64 val;
387 	struct zram *zram = dev_to_zram(dev);
388 
389 	down_read(&zram->init_lock);
390 	spin_lock(&zram->wb_limit_lock);
391 	val = zram->bd_wb_limit;
392 	spin_unlock(&zram->wb_limit_lock);
393 	up_read(&zram->init_lock);
394 
395 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
396 }
397 
398 static void reset_bdev(struct zram *zram)
399 {
400 	struct block_device *bdev;
401 
402 	if (!zram->backing_dev)
403 		return;
404 
405 	bdev = zram->bdev;
406 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
407 	/* hope filp_close flush all of IO */
408 	filp_close(zram->backing_dev, NULL);
409 	zram->backing_dev = NULL;
410 	zram->bdev = NULL;
411 	zram->disk->fops = &zram_devops;
412 	kvfree(zram->bitmap);
413 	zram->bitmap = NULL;
414 }
415 
416 static ssize_t backing_dev_show(struct device *dev,
417 		struct device_attribute *attr, char *buf)
418 {
419 	struct file *file;
420 	struct zram *zram = dev_to_zram(dev);
421 	char *p;
422 	ssize_t ret;
423 
424 	down_read(&zram->init_lock);
425 	file = zram->backing_dev;
426 	if (!file) {
427 		memcpy(buf, "none\n", 5);
428 		up_read(&zram->init_lock);
429 		return 5;
430 	}
431 
432 	p = file_path(file, buf, PAGE_SIZE - 1);
433 	if (IS_ERR(p)) {
434 		ret = PTR_ERR(p);
435 		goto out;
436 	}
437 
438 	ret = strlen(p);
439 	memmove(buf, p, ret);
440 	buf[ret++] = '\n';
441 out:
442 	up_read(&zram->init_lock);
443 	return ret;
444 }
445 
446 static ssize_t backing_dev_store(struct device *dev,
447 		struct device_attribute *attr, const char *buf, size_t len)
448 {
449 	char *file_name;
450 	size_t sz;
451 	struct file *backing_dev = NULL;
452 	struct inode *inode;
453 	struct address_space *mapping;
454 	unsigned int bitmap_sz;
455 	unsigned long nr_pages, *bitmap = NULL;
456 	struct block_device *bdev = NULL;
457 	int err;
458 	struct zram *zram = dev_to_zram(dev);
459 
460 	file_name = kmalloc(PATH_MAX, GFP_KERNEL);
461 	if (!file_name)
462 		return -ENOMEM;
463 
464 	down_write(&zram->init_lock);
465 	if (init_done(zram)) {
466 		pr_info("Can't setup backing device for initialized device\n");
467 		err = -EBUSY;
468 		goto out;
469 	}
470 
471 	strlcpy(file_name, buf, PATH_MAX);
472 	/* ignore trailing newline */
473 	sz = strlen(file_name);
474 	if (sz > 0 && file_name[sz - 1] == '\n')
475 		file_name[sz - 1] = 0x00;
476 
477 	backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
478 	if (IS_ERR(backing_dev)) {
479 		err = PTR_ERR(backing_dev);
480 		backing_dev = NULL;
481 		goto out;
482 	}
483 
484 	mapping = backing_dev->f_mapping;
485 	inode = mapping->host;
486 
487 	/* Support only block device in this moment */
488 	if (!S_ISBLK(inode->i_mode)) {
489 		err = -ENOTBLK;
490 		goto out;
491 	}
492 
493 	bdev = blkdev_get_by_dev(inode->i_rdev,
494 			FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
495 	if (IS_ERR(bdev)) {
496 		err = PTR_ERR(bdev);
497 		bdev = NULL;
498 		goto out;
499 	}
500 
501 	nr_pages = i_size_read(inode) >> PAGE_SHIFT;
502 	bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
503 	bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
504 	if (!bitmap) {
505 		err = -ENOMEM;
506 		goto out;
507 	}
508 
509 	reset_bdev(zram);
510 
511 	zram->bdev = bdev;
512 	zram->backing_dev = backing_dev;
513 	zram->bitmap = bitmap;
514 	zram->nr_pages = nr_pages;
515 	/*
516 	 * With writeback feature, zram does asynchronous IO so it's no longer
517 	 * synchronous device so let's remove synchronous io flag. Othewise,
518 	 * upper layer(e.g., swap) could wait IO completion rather than
519 	 * (submit and return), which will cause system sluggish.
520 	 * Furthermore, when the IO function returns(e.g., swap_readpage),
521 	 * upper layer expects IO was done so it could deallocate the page
522 	 * freely but in fact, IO is going on so finally could cause
523 	 * use-after-free when the IO is really done.
524 	 */
525 	zram->disk->fops = &zram_wb_devops;
526 	up_write(&zram->init_lock);
527 
528 	pr_info("setup backing device %s\n", file_name);
529 	kfree(file_name);
530 
531 	return len;
532 out:
533 	kvfree(bitmap);
534 
535 	if (bdev)
536 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
537 
538 	if (backing_dev)
539 		filp_close(backing_dev, NULL);
540 
541 	up_write(&zram->init_lock);
542 
543 	kfree(file_name);
544 
545 	return err;
546 }
547 
548 static unsigned long alloc_block_bdev(struct zram *zram)
549 {
550 	unsigned long blk_idx = 1;
551 retry:
552 	/* skip 0 bit to confuse zram.handle = 0 */
553 	blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
554 	if (blk_idx == zram->nr_pages)
555 		return 0;
556 
557 	if (test_and_set_bit(blk_idx, zram->bitmap))
558 		goto retry;
559 
560 	atomic64_inc(&zram->stats.bd_count);
561 	return blk_idx;
562 }
563 
564 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
565 {
566 	int was_set;
567 
568 	was_set = test_and_clear_bit(blk_idx, zram->bitmap);
569 	WARN_ON_ONCE(!was_set);
570 	atomic64_dec(&zram->stats.bd_count);
571 }
572 
573 static void zram_page_end_io(struct bio *bio)
574 {
575 	struct page *page = bio_first_page_all(bio);
576 
577 	page_endio(page, op_is_write(bio_op(bio)),
578 			blk_status_to_errno(bio->bi_status));
579 	bio_put(bio);
580 }
581 
582 /*
583  * Returns 1 if the submission is successful.
584  */
585 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
586 			unsigned long entry, struct bio *parent)
587 {
588 	struct bio *bio;
589 
590 	bio = bio_alloc(GFP_ATOMIC, 1);
591 	if (!bio)
592 		return -ENOMEM;
593 
594 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
595 	bio_set_dev(bio, zram->bdev);
596 	if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
597 		bio_put(bio);
598 		return -EIO;
599 	}
600 
601 	if (!parent) {
602 		bio->bi_opf = REQ_OP_READ;
603 		bio->bi_end_io = zram_page_end_io;
604 	} else {
605 		bio->bi_opf = parent->bi_opf;
606 		bio_chain(bio, parent);
607 	}
608 
609 	submit_bio(bio);
610 	return 1;
611 }
612 
613 #define PAGE_WB_SIG "page_index="
614 
615 #define PAGE_WRITEBACK 0
616 #define HUGE_WRITEBACK 1
617 #define IDLE_WRITEBACK 2
618 
619 
620 static ssize_t writeback_store(struct device *dev,
621 		struct device_attribute *attr, const char *buf, size_t len)
622 {
623 	struct zram *zram = dev_to_zram(dev);
624 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
625 	unsigned long index = 0;
626 	struct bio bio;
627 	struct bio_vec bio_vec;
628 	struct page *page;
629 	ssize_t ret = len;
630 	int mode, err;
631 	unsigned long blk_idx = 0;
632 
633 	if (sysfs_streq(buf, "idle"))
634 		mode = IDLE_WRITEBACK;
635 	else if (sysfs_streq(buf, "huge"))
636 		mode = HUGE_WRITEBACK;
637 	else {
638 		if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1))
639 			return -EINVAL;
640 
641 		if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) ||
642 				index >= nr_pages)
643 			return -EINVAL;
644 
645 		nr_pages = 1;
646 		mode = PAGE_WRITEBACK;
647 	}
648 
649 	down_read(&zram->init_lock);
650 	if (!init_done(zram)) {
651 		ret = -EINVAL;
652 		goto release_init_lock;
653 	}
654 
655 	if (!zram->backing_dev) {
656 		ret = -ENODEV;
657 		goto release_init_lock;
658 	}
659 
660 	page = alloc_page(GFP_KERNEL);
661 	if (!page) {
662 		ret = -ENOMEM;
663 		goto release_init_lock;
664 	}
665 
666 	for (; nr_pages != 0; index++, nr_pages--) {
667 		struct bio_vec bvec;
668 
669 		bvec.bv_page = page;
670 		bvec.bv_len = PAGE_SIZE;
671 		bvec.bv_offset = 0;
672 
673 		spin_lock(&zram->wb_limit_lock);
674 		if (zram->wb_limit_enable && !zram->bd_wb_limit) {
675 			spin_unlock(&zram->wb_limit_lock);
676 			ret = -EIO;
677 			break;
678 		}
679 		spin_unlock(&zram->wb_limit_lock);
680 
681 		if (!blk_idx) {
682 			blk_idx = alloc_block_bdev(zram);
683 			if (!blk_idx) {
684 				ret = -ENOSPC;
685 				break;
686 			}
687 		}
688 
689 		zram_slot_lock(zram, index);
690 		if (!zram_allocated(zram, index))
691 			goto next;
692 
693 		if (zram_test_flag(zram, index, ZRAM_WB) ||
694 				zram_test_flag(zram, index, ZRAM_SAME) ||
695 				zram_test_flag(zram, index, ZRAM_UNDER_WB))
696 			goto next;
697 
698 		if (mode == IDLE_WRITEBACK &&
699 			  !zram_test_flag(zram, index, ZRAM_IDLE))
700 			goto next;
701 		if (mode == HUGE_WRITEBACK &&
702 			  !zram_test_flag(zram, index, ZRAM_HUGE))
703 			goto next;
704 		/*
705 		 * Clearing ZRAM_UNDER_WB is duty of caller.
706 		 * IOW, zram_free_page never clear it.
707 		 */
708 		zram_set_flag(zram, index, ZRAM_UNDER_WB);
709 		/* Need for hugepage writeback racing */
710 		zram_set_flag(zram, index, ZRAM_IDLE);
711 		zram_slot_unlock(zram, index);
712 		if (zram_bvec_read(zram, &bvec, index, 0, NULL)) {
713 			zram_slot_lock(zram, index);
714 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
715 			zram_clear_flag(zram, index, ZRAM_IDLE);
716 			zram_slot_unlock(zram, index);
717 			continue;
718 		}
719 
720 		bio_init(&bio, &bio_vec, 1);
721 		bio_set_dev(&bio, zram->bdev);
722 		bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
723 		bio.bi_opf = REQ_OP_WRITE | REQ_SYNC;
724 
725 		bio_add_page(&bio, bvec.bv_page, bvec.bv_len,
726 				bvec.bv_offset);
727 		/*
728 		 * XXX: A single page IO would be inefficient for write
729 		 * but it would be not bad as starter.
730 		 */
731 		err = submit_bio_wait(&bio);
732 		if (err) {
733 			zram_slot_lock(zram, index);
734 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
735 			zram_clear_flag(zram, index, ZRAM_IDLE);
736 			zram_slot_unlock(zram, index);
737 			/*
738 			 * Return last IO error unless every IO were
739 			 * not suceeded.
740 			 */
741 			ret = err;
742 			continue;
743 		}
744 
745 		atomic64_inc(&zram->stats.bd_writes);
746 		/*
747 		 * We released zram_slot_lock so need to check if the slot was
748 		 * changed. If there is freeing for the slot, we can catch it
749 		 * easily by zram_allocated.
750 		 * A subtle case is the slot is freed/reallocated/marked as
751 		 * ZRAM_IDLE again. To close the race, idle_store doesn't
752 		 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB.
753 		 * Thus, we could close the race by checking ZRAM_IDLE bit.
754 		 */
755 		zram_slot_lock(zram, index);
756 		if (!zram_allocated(zram, index) ||
757 			  !zram_test_flag(zram, index, ZRAM_IDLE)) {
758 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
759 			zram_clear_flag(zram, index, ZRAM_IDLE);
760 			goto next;
761 		}
762 
763 		zram_free_page(zram, index);
764 		zram_clear_flag(zram, index, ZRAM_UNDER_WB);
765 		zram_set_flag(zram, index, ZRAM_WB);
766 		zram_set_element(zram, index, blk_idx);
767 		blk_idx = 0;
768 		atomic64_inc(&zram->stats.pages_stored);
769 		spin_lock(&zram->wb_limit_lock);
770 		if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
771 			zram->bd_wb_limit -=  1UL << (PAGE_SHIFT - 12);
772 		spin_unlock(&zram->wb_limit_lock);
773 next:
774 		zram_slot_unlock(zram, index);
775 	}
776 
777 	if (blk_idx)
778 		free_block_bdev(zram, blk_idx);
779 	__free_page(page);
780 release_init_lock:
781 	up_read(&zram->init_lock);
782 
783 	return ret;
784 }
785 
786 struct zram_work {
787 	struct work_struct work;
788 	struct zram *zram;
789 	unsigned long entry;
790 	struct bio *bio;
791 	struct bio_vec bvec;
792 };
793 
794 #if PAGE_SIZE != 4096
795 static void zram_sync_read(struct work_struct *work)
796 {
797 	struct zram_work *zw = container_of(work, struct zram_work, work);
798 	struct zram *zram = zw->zram;
799 	unsigned long entry = zw->entry;
800 	struct bio *bio = zw->bio;
801 
802 	read_from_bdev_async(zram, &zw->bvec, entry, bio);
803 }
804 
805 /*
806  * Block layer want one ->submit_bio to be active at a time, so if we use
807  * chained IO with parent IO in same context, it's a deadlock. To avoid that,
808  * use a worker thread context.
809  */
810 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
811 				unsigned long entry, struct bio *bio)
812 {
813 	struct zram_work work;
814 
815 	work.bvec = *bvec;
816 	work.zram = zram;
817 	work.entry = entry;
818 	work.bio = bio;
819 
820 	INIT_WORK_ONSTACK(&work.work, zram_sync_read);
821 	queue_work(system_unbound_wq, &work.work);
822 	flush_work(&work.work);
823 	destroy_work_on_stack(&work.work);
824 
825 	return 1;
826 }
827 #else
828 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
829 				unsigned long entry, struct bio *bio)
830 {
831 	WARN_ON(1);
832 	return -EIO;
833 }
834 #endif
835 
836 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
837 			unsigned long entry, struct bio *parent, bool sync)
838 {
839 	atomic64_inc(&zram->stats.bd_reads);
840 	if (sync)
841 		return read_from_bdev_sync(zram, bvec, entry, parent);
842 	else
843 		return read_from_bdev_async(zram, bvec, entry, parent);
844 }
845 #else
846 static inline void reset_bdev(struct zram *zram) {};
847 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
848 			unsigned long entry, struct bio *parent, bool sync)
849 {
850 	return -EIO;
851 }
852 
853 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
854 #endif
855 
856 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
857 
858 static struct dentry *zram_debugfs_root;
859 
860 static void zram_debugfs_create(void)
861 {
862 	zram_debugfs_root = debugfs_create_dir("zram", NULL);
863 }
864 
865 static void zram_debugfs_destroy(void)
866 {
867 	debugfs_remove_recursive(zram_debugfs_root);
868 }
869 
870 static void zram_accessed(struct zram *zram, u32 index)
871 {
872 	zram_clear_flag(zram, index, ZRAM_IDLE);
873 	zram->table[index].ac_time = ktime_get_boottime();
874 }
875 
876 static ssize_t read_block_state(struct file *file, char __user *buf,
877 				size_t count, loff_t *ppos)
878 {
879 	char *kbuf;
880 	ssize_t index, written = 0;
881 	struct zram *zram = file->private_data;
882 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
883 	struct timespec64 ts;
884 
885 	kbuf = kvmalloc(count, GFP_KERNEL);
886 	if (!kbuf)
887 		return -ENOMEM;
888 
889 	down_read(&zram->init_lock);
890 	if (!init_done(zram)) {
891 		up_read(&zram->init_lock);
892 		kvfree(kbuf);
893 		return -EINVAL;
894 	}
895 
896 	for (index = *ppos; index < nr_pages; index++) {
897 		int copied;
898 
899 		zram_slot_lock(zram, index);
900 		if (!zram_allocated(zram, index))
901 			goto next;
902 
903 		ts = ktime_to_timespec64(zram->table[index].ac_time);
904 		copied = snprintf(kbuf + written, count,
905 			"%12zd %12lld.%06lu %c%c%c%c\n",
906 			index, (s64)ts.tv_sec,
907 			ts.tv_nsec / NSEC_PER_USEC,
908 			zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
909 			zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
910 			zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
911 			zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.');
912 
913 		if (count < copied) {
914 			zram_slot_unlock(zram, index);
915 			break;
916 		}
917 		written += copied;
918 		count -= copied;
919 next:
920 		zram_slot_unlock(zram, index);
921 		*ppos += 1;
922 	}
923 
924 	up_read(&zram->init_lock);
925 	if (copy_to_user(buf, kbuf, written))
926 		written = -EFAULT;
927 	kvfree(kbuf);
928 
929 	return written;
930 }
931 
932 static const struct file_operations proc_zram_block_state_op = {
933 	.open = simple_open,
934 	.read = read_block_state,
935 	.llseek = default_llseek,
936 };
937 
938 static void zram_debugfs_register(struct zram *zram)
939 {
940 	if (!zram_debugfs_root)
941 		return;
942 
943 	zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
944 						zram_debugfs_root);
945 	debugfs_create_file("block_state", 0400, zram->debugfs_dir,
946 				zram, &proc_zram_block_state_op);
947 }
948 
949 static void zram_debugfs_unregister(struct zram *zram)
950 {
951 	debugfs_remove_recursive(zram->debugfs_dir);
952 }
953 #else
954 static void zram_debugfs_create(void) {};
955 static void zram_debugfs_destroy(void) {};
956 static void zram_accessed(struct zram *zram, u32 index)
957 {
958 	zram_clear_flag(zram, index, ZRAM_IDLE);
959 };
960 static void zram_debugfs_register(struct zram *zram) {};
961 static void zram_debugfs_unregister(struct zram *zram) {};
962 #endif
963 
964 /*
965  * We switched to per-cpu streams and this attr is not needed anymore.
966  * However, we will keep it around for some time, because:
967  * a) we may revert per-cpu streams in the future
968  * b) it's visible to user space and we need to follow our 2 years
969  *    retirement rule; but we already have a number of 'soon to be
970  *    altered' attrs, so max_comp_streams need to wait for the next
971  *    layoff cycle.
972  */
973 static ssize_t max_comp_streams_show(struct device *dev,
974 		struct device_attribute *attr, char *buf)
975 {
976 	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
977 }
978 
979 static ssize_t max_comp_streams_store(struct device *dev,
980 		struct device_attribute *attr, const char *buf, size_t len)
981 {
982 	return len;
983 }
984 
985 static ssize_t comp_algorithm_show(struct device *dev,
986 		struct device_attribute *attr, char *buf)
987 {
988 	size_t sz;
989 	struct zram *zram = dev_to_zram(dev);
990 
991 	down_read(&zram->init_lock);
992 	sz = zcomp_available_show(zram->compressor, buf);
993 	up_read(&zram->init_lock);
994 
995 	return sz;
996 }
997 
998 static ssize_t comp_algorithm_store(struct device *dev,
999 		struct device_attribute *attr, const char *buf, size_t len)
1000 {
1001 	struct zram *zram = dev_to_zram(dev);
1002 	char compressor[ARRAY_SIZE(zram->compressor)];
1003 	size_t sz;
1004 
1005 	strlcpy(compressor, buf, sizeof(compressor));
1006 	/* ignore trailing newline */
1007 	sz = strlen(compressor);
1008 	if (sz > 0 && compressor[sz - 1] == '\n')
1009 		compressor[sz - 1] = 0x00;
1010 
1011 	if (!zcomp_available_algorithm(compressor))
1012 		return -EINVAL;
1013 
1014 	down_write(&zram->init_lock);
1015 	if (init_done(zram)) {
1016 		up_write(&zram->init_lock);
1017 		pr_info("Can't change algorithm for initialized device\n");
1018 		return -EBUSY;
1019 	}
1020 
1021 	strcpy(zram->compressor, compressor);
1022 	up_write(&zram->init_lock);
1023 	return len;
1024 }
1025 
1026 static ssize_t compact_store(struct device *dev,
1027 		struct device_attribute *attr, const char *buf, size_t len)
1028 {
1029 	struct zram *zram = dev_to_zram(dev);
1030 
1031 	down_read(&zram->init_lock);
1032 	if (!init_done(zram)) {
1033 		up_read(&zram->init_lock);
1034 		return -EINVAL;
1035 	}
1036 
1037 	zs_compact(zram->mem_pool);
1038 	up_read(&zram->init_lock);
1039 
1040 	return len;
1041 }
1042 
1043 static ssize_t io_stat_show(struct device *dev,
1044 		struct device_attribute *attr, char *buf)
1045 {
1046 	struct zram *zram = dev_to_zram(dev);
1047 	ssize_t ret;
1048 
1049 	down_read(&zram->init_lock);
1050 	ret = scnprintf(buf, PAGE_SIZE,
1051 			"%8llu %8llu %8llu %8llu\n",
1052 			(u64)atomic64_read(&zram->stats.failed_reads),
1053 			(u64)atomic64_read(&zram->stats.failed_writes),
1054 			(u64)atomic64_read(&zram->stats.invalid_io),
1055 			(u64)atomic64_read(&zram->stats.notify_free));
1056 	up_read(&zram->init_lock);
1057 
1058 	return ret;
1059 }
1060 
1061 static ssize_t mm_stat_show(struct device *dev,
1062 		struct device_attribute *attr, char *buf)
1063 {
1064 	struct zram *zram = dev_to_zram(dev);
1065 	struct zs_pool_stats pool_stats;
1066 	u64 orig_size, mem_used = 0;
1067 	long max_used;
1068 	ssize_t ret;
1069 
1070 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1071 
1072 	down_read(&zram->init_lock);
1073 	if (init_done(zram)) {
1074 		mem_used = zs_get_total_pages(zram->mem_pool);
1075 		zs_pool_stats(zram->mem_pool, &pool_stats);
1076 	}
1077 
1078 	orig_size = atomic64_read(&zram->stats.pages_stored);
1079 	max_used = atomic_long_read(&zram->stats.max_used_pages);
1080 
1081 	ret = scnprintf(buf, PAGE_SIZE,
1082 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n",
1083 			orig_size << PAGE_SHIFT,
1084 			(u64)atomic64_read(&zram->stats.compr_data_size),
1085 			mem_used << PAGE_SHIFT,
1086 			zram->limit_pages << PAGE_SHIFT,
1087 			max_used << PAGE_SHIFT,
1088 			(u64)atomic64_read(&zram->stats.same_pages),
1089 			atomic_long_read(&pool_stats.pages_compacted),
1090 			(u64)atomic64_read(&zram->stats.huge_pages),
1091 			(u64)atomic64_read(&zram->stats.huge_pages_since));
1092 	up_read(&zram->init_lock);
1093 
1094 	return ret;
1095 }
1096 
1097 #ifdef CONFIG_ZRAM_WRITEBACK
1098 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
1099 static ssize_t bd_stat_show(struct device *dev,
1100 		struct device_attribute *attr, char *buf)
1101 {
1102 	struct zram *zram = dev_to_zram(dev);
1103 	ssize_t ret;
1104 
1105 	down_read(&zram->init_lock);
1106 	ret = scnprintf(buf, PAGE_SIZE,
1107 		"%8llu %8llu %8llu\n",
1108 			FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1109 			FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1110 			FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1111 	up_read(&zram->init_lock);
1112 
1113 	return ret;
1114 }
1115 #endif
1116 
1117 static ssize_t debug_stat_show(struct device *dev,
1118 		struct device_attribute *attr, char *buf)
1119 {
1120 	int version = 1;
1121 	struct zram *zram = dev_to_zram(dev);
1122 	ssize_t ret;
1123 
1124 	down_read(&zram->init_lock);
1125 	ret = scnprintf(buf, PAGE_SIZE,
1126 			"version: %d\n%8llu %8llu\n",
1127 			version,
1128 			(u64)atomic64_read(&zram->stats.writestall),
1129 			(u64)atomic64_read(&zram->stats.miss_free));
1130 	up_read(&zram->init_lock);
1131 
1132 	return ret;
1133 }
1134 
1135 static DEVICE_ATTR_RO(io_stat);
1136 static DEVICE_ATTR_RO(mm_stat);
1137 #ifdef CONFIG_ZRAM_WRITEBACK
1138 static DEVICE_ATTR_RO(bd_stat);
1139 #endif
1140 static DEVICE_ATTR_RO(debug_stat);
1141 
1142 static void zram_meta_free(struct zram *zram, u64 disksize)
1143 {
1144 	size_t num_pages = disksize >> PAGE_SHIFT;
1145 	size_t index;
1146 
1147 	/* Free all pages that are still in this zram device */
1148 	for (index = 0; index < num_pages; index++)
1149 		zram_free_page(zram, index);
1150 
1151 	zs_destroy_pool(zram->mem_pool);
1152 	vfree(zram->table);
1153 }
1154 
1155 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1156 {
1157 	size_t num_pages;
1158 
1159 	num_pages = disksize >> PAGE_SHIFT;
1160 	zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1161 	if (!zram->table)
1162 		return false;
1163 
1164 	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1165 	if (!zram->mem_pool) {
1166 		vfree(zram->table);
1167 		return false;
1168 	}
1169 
1170 	if (!huge_class_size)
1171 		huge_class_size = zs_huge_class_size(zram->mem_pool);
1172 	return true;
1173 }
1174 
1175 /*
1176  * To protect concurrent access to the same index entry,
1177  * caller should hold this table index entry's bit_spinlock to
1178  * indicate this index entry is accessing.
1179  */
1180 static void zram_free_page(struct zram *zram, size_t index)
1181 {
1182 	unsigned long handle;
1183 
1184 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
1185 	zram->table[index].ac_time = 0;
1186 #endif
1187 	if (zram_test_flag(zram, index, ZRAM_IDLE))
1188 		zram_clear_flag(zram, index, ZRAM_IDLE);
1189 
1190 	if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1191 		zram_clear_flag(zram, index, ZRAM_HUGE);
1192 		atomic64_dec(&zram->stats.huge_pages);
1193 	}
1194 
1195 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1196 		zram_clear_flag(zram, index, ZRAM_WB);
1197 		free_block_bdev(zram, zram_get_element(zram, index));
1198 		goto out;
1199 	}
1200 
1201 	/*
1202 	 * No memory is allocated for same element filled pages.
1203 	 * Simply clear same page flag.
1204 	 */
1205 	if (zram_test_flag(zram, index, ZRAM_SAME)) {
1206 		zram_clear_flag(zram, index, ZRAM_SAME);
1207 		atomic64_dec(&zram->stats.same_pages);
1208 		goto out;
1209 	}
1210 
1211 	handle = zram_get_handle(zram, index);
1212 	if (!handle)
1213 		return;
1214 
1215 	zs_free(zram->mem_pool, handle);
1216 
1217 	atomic64_sub(zram_get_obj_size(zram, index),
1218 			&zram->stats.compr_data_size);
1219 out:
1220 	atomic64_dec(&zram->stats.pages_stored);
1221 	zram_set_handle(zram, index, 0);
1222 	zram_set_obj_size(zram, index, 0);
1223 	WARN_ON_ONCE(zram->table[index].flags &
1224 		~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB));
1225 }
1226 
1227 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
1228 				struct bio *bio, bool partial_io)
1229 {
1230 	struct zcomp_strm *zstrm;
1231 	unsigned long handle;
1232 	unsigned int size;
1233 	void *src, *dst;
1234 	int ret;
1235 
1236 	zram_slot_lock(zram, index);
1237 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1238 		struct bio_vec bvec;
1239 
1240 		zram_slot_unlock(zram, index);
1241 
1242 		bvec.bv_page = page;
1243 		bvec.bv_len = PAGE_SIZE;
1244 		bvec.bv_offset = 0;
1245 		return read_from_bdev(zram, &bvec,
1246 				zram_get_element(zram, index),
1247 				bio, partial_io);
1248 	}
1249 
1250 	handle = zram_get_handle(zram, index);
1251 	if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1252 		unsigned long value;
1253 		void *mem;
1254 
1255 		value = handle ? zram_get_element(zram, index) : 0;
1256 		mem = kmap_atomic(page);
1257 		zram_fill_page(mem, PAGE_SIZE, value);
1258 		kunmap_atomic(mem);
1259 		zram_slot_unlock(zram, index);
1260 		return 0;
1261 	}
1262 
1263 	size = zram_get_obj_size(zram, index);
1264 
1265 	if (size != PAGE_SIZE)
1266 		zstrm = zcomp_stream_get(zram->comp);
1267 
1268 	src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1269 	if (size == PAGE_SIZE) {
1270 		dst = kmap_atomic(page);
1271 		memcpy(dst, src, PAGE_SIZE);
1272 		kunmap_atomic(dst);
1273 		ret = 0;
1274 	} else {
1275 		dst = kmap_atomic(page);
1276 		ret = zcomp_decompress(zstrm, src, size, dst);
1277 		kunmap_atomic(dst);
1278 		zcomp_stream_put(zram->comp);
1279 	}
1280 	zs_unmap_object(zram->mem_pool, handle);
1281 	zram_slot_unlock(zram, index);
1282 
1283 	/* Should NEVER happen. Return bio error if it does. */
1284 	if (WARN_ON(ret))
1285 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1286 
1287 	return ret;
1288 }
1289 
1290 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1291 				u32 index, int offset, struct bio *bio)
1292 {
1293 	int ret;
1294 	struct page *page;
1295 
1296 	page = bvec->bv_page;
1297 	if (is_partial_io(bvec)) {
1298 		/* Use a temporary buffer to decompress the page */
1299 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1300 		if (!page)
1301 			return -ENOMEM;
1302 	}
1303 
1304 	ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1305 	if (unlikely(ret))
1306 		goto out;
1307 
1308 	if (is_partial_io(bvec)) {
1309 		void *dst = kmap_atomic(bvec->bv_page);
1310 		void *src = kmap_atomic(page);
1311 
1312 		memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
1313 		kunmap_atomic(src);
1314 		kunmap_atomic(dst);
1315 	}
1316 out:
1317 	if (is_partial_io(bvec))
1318 		__free_page(page);
1319 
1320 	return ret;
1321 }
1322 
1323 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1324 				u32 index, struct bio *bio)
1325 {
1326 	int ret = 0;
1327 	unsigned long alloced_pages;
1328 	unsigned long handle = 0;
1329 	unsigned int comp_len = 0;
1330 	void *src, *dst, *mem;
1331 	struct zcomp_strm *zstrm;
1332 	struct page *page = bvec->bv_page;
1333 	unsigned long element = 0;
1334 	enum zram_pageflags flags = 0;
1335 
1336 	mem = kmap_atomic(page);
1337 	if (page_same_filled(mem, &element)) {
1338 		kunmap_atomic(mem);
1339 		/* Free memory associated with this sector now. */
1340 		flags = ZRAM_SAME;
1341 		atomic64_inc(&zram->stats.same_pages);
1342 		goto out;
1343 	}
1344 	kunmap_atomic(mem);
1345 
1346 compress_again:
1347 	zstrm = zcomp_stream_get(zram->comp);
1348 	src = kmap_atomic(page);
1349 	ret = zcomp_compress(zstrm, src, &comp_len);
1350 	kunmap_atomic(src);
1351 
1352 	if (unlikely(ret)) {
1353 		zcomp_stream_put(zram->comp);
1354 		pr_err("Compression failed! err=%d\n", ret);
1355 		zs_free(zram->mem_pool, handle);
1356 		return ret;
1357 	}
1358 
1359 	if (comp_len >= huge_class_size)
1360 		comp_len = PAGE_SIZE;
1361 	/*
1362 	 * handle allocation has 2 paths:
1363 	 * a) fast path is executed with preemption disabled (for
1364 	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1365 	 *  since we can't sleep;
1366 	 * b) slow path enables preemption and attempts to allocate
1367 	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
1368 	 *  put per-cpu compression stream and, thus, to re-do
1369 	 *  the compression once handle is allocated.
1370 	 *
1371 	 * if we have a 'non-null' handle here then we are coming
1372 	 * from the slow path and handle has already been allocated.
1373 	 */
1374 	if (!handle)
1375 		handle = zs_malloc(zram->mem_pool, comp_len,
1376 				__GFP_KSWAPD_RECLAIM |
1377 				__GFP_NOWARN |
1378 				__GFP_HIGHMEM |
1379 				__GFP_MOVABLE);
1380 	if (!handle) {
1381 		zcomp_stream_put(zram->comp);
1382 		atomic64_inc(&zram->stats.writestall);
1383 		handle = zs_malloc(zram->mem_pool, comp_len,
1384 				GFP_NOIO | __GFP_HIGHMEM |
1385 				__GFP_MOVABLE);
1386 		if (handle)
1387 			goto compress_again;
1388 		return -ENOMEM;
1389 	}
1390 
1391 	alloced_pages = zs_get_total_pages(zram->mem_pool);
1392 	update_used_max(zram, alloced_pages);
1393 
1394 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1395 		zcomp_stream_put(zram->comp);
1396 		zs_free(zram->mem_pool, handle);
1397 		return -ENOMEM;
1398 	}
1399 
1400 	dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1401 
1402 	src = zstrm->buffer;
1403 	if (comp_len == PAGE_SIZE)
1404 		src = kmap_atomic(page);
1405 	memcpy(dst, src, comp_len);
1406 	if (comp_len == PAGE_SIZE)
1407 		kunmap_atomic(src);
1408 
1409 	zcomp_stream_put(zram->comp);
1410 	zs_unmap_object(zram->mem_pool, handle);
1411 	atomic64_add(comp_len, &zram->stats.compr_data_size);
1412 out:
1413 	/*
1414 	 * Free memory associated with this sector
1415 	 * before overwriting unused sectors.
1416 	 */
1417 	zram_slot_lock(zram, index);
1418 	zram_free_page(zram, index);
1419 
1420 	if (comp_len == PAGE_SIZE) {
1421 		zram_set_flag(zram, index, ZRAM_HUGE);
1422 		atomic64_inc(&zram->stats.huge_pages);
1423 		atomic64_inc(&zram->stats.huge_pages_since);
1424 	}
1425 
1426 	if (flags) {
1427 		zram_set_flag(zram, index, flags);
1428 		zram_set_element(zram, index, element);
1429 	}  else {
1430 		zram_set_handle(zram, index, handle);
1431 		zram_set_obj_size(zram, index, comp_len);
1432 	}
1433 	zram_slot_unlock(zram, index);
1434 
1435 	/* Update stats */
1436 	atomic64_inc(&zram->stats.pages_stored);
1437 	return ret;
1438 }
1439 
1440 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1441 				u32 index, int offset, struct bio *bio)
1442 {
1443 	int ret;
1444 	struct page *page = NULL;
1445 	void *src;
1446 	struct bio_vec vec;
1447 
1448 	vec = *bvec;
1449 	if (is_partial_io(bvec)) {
1450 		void *dst;
1451 		/*
1452 		 * This is a partial IO. We need to read the full page
1453 		 * before to write the changes.
1454 		 */
1455 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1456 		if (!page)
1457 			return -ENOMEM;
1458 
1459 		ret = __zram_bvec_read(zram, page, index, bio, true);
1460 		if (ret)
1461 			goto out;
1462 
1463 		src = kmap_atomic(bvec->bv_page);
1464 		dst = kmap_atomic(page);
1465 		memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
1466 		kunmap_atomic(dst);
1467 		kunmap_atomic(src);
1468 
1469 		vec.bv_page = page;
1470 		vec.bv_len = PAGE_SIZE;
1471 		vec.bv_offset = 0;
1472 	}
1473 
1474 	ret = __zram_bvec_write(zram, &vec, index, bio);
1475 out:
1476 	if (is_partial_io(bvec))
1477 		__free_page(page);
1478 	return ret;
1479 }
1480 
1481 /*
1482  * zram_bio_discard - handler on discard request
1483  * @index: physical block index in PAGE_SIZE units
1484  * @offset: byte offset within physical block
1485  */
1486 static void zram_bio_discard(struct zram *zram, u32 index,
1487 			     int offset, struct bio *bio)
1488 {
1489 	size_t n = bio->bi_iter.bi_size;
1490 
1491 	/*
1492 	 * zram manages data in physical block size units. Because logical block
1493 	 * size isn't identical with physical block size on some arch, we
1494 	 * could get a discard request pointing to a specific offset within a
1495 	 * certain physical block.  Although we can handle this request by
1496 	 * reading that physiclal block and decompressing and partially zeroing
1497 	 * and re-compressing and then re-storing it, this isn't reasonable
1498 	 * because our intent with a discard request is to save memory.  So
1499 	 * skipping this logical block is appropriate here.
1500 	 */
1501 	if (offset) {
1502 		if (n <= (PAGE_SIZE - offset))
1503 			return;
1504 
1505 		n -= (PAGE_SIZE - offset);
1506 		index++;
1507 	}
1508 
1509 	while (n >= PAGE_SIZE) {
1510 		zram_slot_lock(zram, index);
1511 		zram_free_page(zram, index);
1512 		zram_slot_unlock(zram, index);
1513 		atomic64_inc(&zram->stats.notify_free);
1514 		index++;
1515 		n -= PAGE_SIZE;
1516 	}
1517 }
1518 
1519 /*
1520  * Returns errno if it has some problem. Otherwise return 0 or 1.
1521  * Returns 0 if IO request was done synchronously
1522  * Returns 1 if IO request was successfully submitted.
1523  */
1524 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1525 			int offset, unsigned int op, struct bio *bio)
1526 {
1527 	int ret;
1528 
1529 	if (!op_is_write(op)) {
1530 		atomic64_inc(&zram->stats.num_reads);
1531 		ret = zram_bvec_read(zram, bvec, index, offset, bio);
1532 		flush_dcache_page(bvec->bv_page);
1533 	} else {
1534 		atomic64_inc(&zram->stats.num_writes);
1535 		ret = zram_bvec_write(zram, bvec, index, offset, bio);
1536 	}
1537 
1538 	zram_slot_lock(zram, index);
1539 	zram_accessed(zram, index);
1540 	zram_slot_unlock(zram, index);
1541 
1542 	if (unlikely(ret < 0)) {
1543 		if (!op_is_write(op))
1544 			atomic64_inc(&zram->stats.failed_reads);
1545 		else
1546 			atomic64_inc(&zram->stats.failed_writes);
1547 	}
1548 
1549 	return ret;
1550 }
1551 
1552 static void __zram_make_request(struct zram *zram, struct bio *bio)
1553 {
1554 	int offset;
1555 	u32 index;
1556 	struct bio_vec bvec;
1557 	struct bvec_iter iter;
1558 	unsigned long start_time;
1559 
1560 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1561 	offset = (bio->bi_iter.bi_sector &
1562 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1563 
1564 	switch (bio_op(bio)) {
1565 	case REQ_OP_DISCARD:
1566 	case REQ_OP_WRITE_ZEROES:
1567 		zram_bio_discard(zram, index, offset, bio);
1568 		bio_endio(bio);
1569 		return;
1570 	default:
1571 		break;
1572 	}
1573 
1574 	start_time = bio_start_io_acct(bio);
1575 	bio_for_each_segment(bvec, bio, iter) {
1576 		struct bio_vec bv = bvec;
1577 		unsigned int unwritten = bvec.bv_len;
1578 
1579 		do {
1580 			bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1581 							unwritten);
1582 			if (zram_bvec_rw(zram, &bv, index, offset,
1583 					 bio_op(bio), bio) < 0) {
1584 				bio->bi_status = BLK_STS_IOERR;
1585 				break;
1586 			}
1587 
1588 			bv.bv_offset += bv.bv_len;
1589 			unwritten -= bv.bv_len;
1590 
1591 			update_position(&index, &offset, &bv);
1592 		} while (unwritten);
1593 	}
1594 	bio_end_io_acct(bio, start_time);
1595 	bio_endio(bio);
1596 }
1597 
1598 /*
1599  * Handler function for all zram I/O requests.
1600  */
1601 static blk_qc_t zram_submit_bio(struct bio *bio)
1602 {
1603 	struct zram *zram = bio->bi_bdev->bd_disk->private_data;
1604 
1605 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1606 					bio->bi_iter.bi_size)) {
1607 		atomic64_inc(&zram->stats.invalid_io);
1608 		goto error;
1609 	}
1610 
1611 	__zram_make_request(zram, bio);
1612 	return BLK_QC_T_NONE;
1613 
1614 error:
1615 	bio_io_error(bio);
1616 	return BLK_QC_T_NONE;
1617 }
1618 
1619 static void zram_slot_free_notify(struct block_device *bdev,
1620 				unsigned long index)
1621 {
1622 	struct zram *zram;
1623 
1624 	zram = bdev->bd_disk->private_data;
1625 
1626 	atomic64_inc(&zram->stats.notify_free);
1627 	if (!zram_slot_trylock(zram, index)) {
1628 		atomic64_inc(&zram->stats.miss_free);
1629 		return;
1630 	}
1631 
1632 	zram_free_page(zram, index);
1633 	zram_slot_unlock(zram, index);
1634 }
1635 
1636 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1637 		       struct page *page, unsigned int op)
1638 {
1639 	int offset, ret;
1640 	u32 index;
1641 	struct zram *zram;
1642 	struct bio_vec bv;
1643 	unsigned long start_time;
1644 
1645 	if (PageTransHuge(page))
1646 		return -ENOTSUPP;
1647 	zram = bdev->bd_disk->private_data;
1648 
1649 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1650 		atomic64_inc(&zram->stats.invalid_io);
1651 		ret = -EINVAL;
1652 		goto out;
1653 	}
1654 
1655 	index = sector >> SECTORS_PER_PAGE_SHIFT;
1656 	offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1657 
1658 	bv.bv_page = page;
1659 	bv.bv_len = PAGE_SIZE;
1660 	bv.bv_offset = 0;
1661 
1662 	start_time = disk_start_io_acct(bdev->bd_disk, SECTORS_PER_PAGE, op);
1663 	ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL);
1664 	disk_end_io_acct(bdev->bd_disk, op, start_time);
1665 out:
1666 	/*
1667 	 * If I/O fails, just return error(ie, non-zero) without
1668 	 * calling page_endio.
1669 	 * It causes resubmit the I/O with bio request by upper functions
1670 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1671 	 * bio->bi_end_io does things to handle the error
1672 	 * (e.g., SetPageError, set_page_dirty and extra works).
1673 	 */
1674 	if (unlikely(ret < 0))
1675 		return ret;
1676 
1677 	switch (ret) {
1678 	case 0:
1679 		page_endio(page, op_is_write(op), 0);
1680 		break;
1681 	case 1:
1682 		ret = 0;
1683 		break;
1684 	default:
1685 		WARN_ON(1);
1686 	}
1687 	return ret;
1688 }
1689 
1690 static void zram_reset_device(struct zram *zram)
1691 {
1692 	struct zcomp *comp;
1693 	u64 disksize;
1694 
1695 	down_write(&zram->init_lock);
1696 
1697 	zram->limit_pages = 0;
1698 
1699 	if (!init_done(zram)) {
1700 		up_write(&zram->init_lock);
1701 		return;
1702 	}
1703 
1704 	comp = zram->comp;
1705 	disksize = zram->disksize;
1706 	zram->disksize = 0;
1707 
1708 	set_capacity_and_notify(zram->disk, 0);
1709 	part_stat_set_all(zram->disk->part0, 0);
1710 
1711 	up_write(&zram->init_lock);
1712 	/* I/O operation under all of CPU are done so let's free */
1713 	zram_meta_free(zram, disksize);
1714 	memset(&zram->stats, 0, sizeof(zram->stats));
1715 	zcomp_destroy(comp);
1716 	reset_bdev(zram);
1717 }
1718 
1719 static ssize_t disksize_store(struct device *dev,
1720 		struct device_attribute *attr, const char *buf, size_t len)
1721 {
1722 	u64 disksize;
1723 	struct zcomp *comp;
1724 	struct zram *zram = dev_to_zram(dev);
1725 	int err;
1726 
1727 	disksize = memparse(buf, NULL);
1728 	if (!disksize)
1729 		return -EINVAL;
1730 
1731 	down_write(&zram->init_lock);
1732 	if (init_done(zram)) {
1733 		pr_info("Cannot change disksize for initialized device\n");
1734 		err = -EBUSY;
1735 		goto out_unlock;
1736 	}
1737 
1738 	disksize = PAGE_ALIGN(disksize);
1739 	if (!zram_meta_alloc(zram, disksize)) {
1740 		err = -ENOMEM;
1741 		goto out_unlock;
1742 	}
1743 
1744 	comp = zcomp_create(zram->compressor);
1745 	if (IS_ERR(comp)) {
1746 		pr_err("Cannot initialise %s compressing backend\n",
1747 				zram->compressor);
1748 		err = PTR_ERR(comp);
1749 		goto out_free_meta;
1750 	}
1751 
1752 	zram->comp = comp;
1753 	zram->disksize = disksize;
1754 	set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT);
1755 	up_write(&zram->init_lock);
1756 
1757 	return len;
1758 
1759 out_free_meta:
1760 	zram_meta_free(zram, disksize);
1761 out_unlock:
1762 	up_write(&zram->init_lock);
1763 	return err;
1764 }
1765 
1766 static ssize_t reset_store(struct device *dev,
1767 		struct device_attribute *attr, const char *buf, size_t len)
1768 {
1769 	int ret;
1770 	unsigned short do_reset;
1771 	struct zram *zram;
1772 	struct block_device *bdev;
1773 
1774 	ret = kstrtou16(buf, 10, &do_reset);
1775 	if (ret)
1776 		return ret;
1777 
1778 	if (!do_reset)
1779 		return -EINVAL;
1780 
1781 	zram = dev_to_zram(dev);
1782 	bdev = zram->disk->part0;
1783 
1784 	mutex_lock(&bdev->bd_mutex);
1785 	/* Do not reset an active device or claimed device */
1786 	if (bdev->bd_openers || zram->claim) {
1787 		mutex_unlock(&bdev->bd_mutex);
1788 		return -EBUSY;
1789 	}
1790 
1791 	/* From now on, anyone can't open /dev/zram[0-9] */
1792 	zram->claim = true;
1793 	mutex_unlock(&bdev->bd_mutex);
1794 
1795 	/* Make sure all the pending I/O are finished */
1796 	fsync_bdev(bdev);
1797 	zram_reset_device(zram);
1798 
1799 	mutex_lock(&bdev->bd_mutex);
1800 	zram->claim = false;
1801 	mutex_unlock(&bdev->bd_mutex);
1802 
1803 	return len;
1804 }
1805 
1806 static int zram_open(struct block_device *bdev, fmode_t mode)
1807 {
1808 	int ret = 0;
1809 	struct zram *zram;
1810 
1811 	WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1812 
1813 	zram = bdev->bd_disk->private_data;
1814 	/* zram was claimed to reset so open request fails */
1815 	if (zram->claim)
1816 		ret = -EBUSY;
1817 
1818 	return ret;
1819 }
1820 
1821 static const struct block_device_operations zram_devops = {
1822 	.open = zram_open,
1823 	.submit_bio = zram_submit_bio,
1824 	.swap_slot_free_notify = zram_slot_free_notify,
1825 	.rw_page = zram_rw_page,
1826 	.owner = THIS_MODULE
1827 };
1828 
1829 static const struct block_device_operations zram_wb_devops = {
1830 	.open = zram_open,
1831 	.submit_bio = zram_submit_bio,
1832 	.swap_slot_free_notify = zram_slot_free_notify,
1833 	.owner = THIS_MODULE
1834 };
1835 
1836 static DEVICE_ATTR_WO(compact);
1837 static DEVICE_ATTR_RW(disksize);
1838 static DEVICE_ATTR_RO(initstate);
1839 static DEVICE_ATTR_WO(reset);
1840 static DEVICE_ATTR_WO(mem_limit);
1841 static DEVICE_ATTR_WO(mem_used_max);
1842 static DEVICE_ATTR_WO(idle);
1843 static DEVICE_ATTR_RW(max_comp_streams);
1844 static DEVICE_ATTR_RW(comp_algorithm);
1845 #ifdef CONFIG_ZRAM_WRITEBACK
1846 static DEVICE_ATTR_RW(backing_dev);
1847 static DEVICE_ATTR_WO(writeback);
1848 static DEVICE_ATTR_RW(writeback_limit);
1849 static DEVICE_ATTR_RW(writeback_limit_enable);
1850 #endif
1851 
1852 static struct attribute *zram_disk_attrs[] = {
1853 	&dev_attr_disksize.attr,
1854 	&dev_attr_initstate.attr,
1855 	&dev_attr_reset.attr,
1856 	&dev_attr_compact.attr,
1857 	&dev_attr_mem_limit.attr,
1858 	&dev_attr_mem_used_max.attr,
1859 	&dev_attr_idle.attr,
1860 	&dev_attr_max_comp_streams.attr,
1861 	&dev_attr_comp_algorithm.attr,
1862 #ifdef CONFIG_ZRAM_WRITEBACK
1863 	&dev_attr_backing_dev.attr,
1864 	&dev_attr_writeback.attr,
1865 	&dev_attr_writeback_limit.attr,
1866 	&dev_attr_writeback_limit_enable.attr,
1867 #endif
1868 	&dev_attr_io_stat.attr,
1869 	&dev_attr_mm_stat.attr,
1870 #ifdef CONFIG_ZRAM_WRITEBACK
1871 	&dev_attr_bd_stat.attr,
1872 #endif
1873 	&dev_attr_debug_stat.attr,
1874 	NULL,
1875 };
1876 
1877 static const struct attribute_group zram_disk_attr_group = {
1878 	.attrs = zram_disk_attrs,
1879 };
1880 
1881 static const struct attribute_group *zram_disk_attr_groups[] = {
1882 	&zram_disk_attr_group,
1883 	NULL,
1884 };
1885 
1886 /*
1887  * Allocate and initialize new zram device. the function returns
1888  * '>= 0' device_id upon success, and negative value otherwise.
1889  */
1890 static int zram_add(void)
1891 {
1892 	struct zram *zram;
1893 	struct request_queue *queue;
1894 	int ret, device_id;
1895 
1896 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1897 	if (!zram)
1898 		return -ENOMEM;
1899 
1900 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1901 	if (ret < 0)
1902 		goto out_free_dev;
1903 	device_id = ret;
1904 
1905 	init_rwsem(&zram->init_lock);
1906 #ifdef CONFIG_ZRAM_WRITEBACK
1907 	spin_lock_init(&zram->wb_limit_lock);
1908 #endif
1909 	queue = blk_alloc_queue(NUMA_NO_NODE);
1910 	if (!queue) {
1911 		pr_err("Error allocating disk queue for device %d\n",
1912 			device_id);
1913 		ret = -ENOMEM;
1914 		goto out_free_idr;
1915 	}
1916 
1917 	/* gendisk structure */
1918 	zram->disk = alloc_disk(1);
1919 	if (!zram->disk) {
1920 		pr_err("Error allocating disk structure for device %d\n",
1921 			device_id);
1922 		ret = -ENOMEM;
1923 		goto out_free_queue;
1924 	}
1925 
1926 	zram->disk->major = zram_major;
1927 	zram->disk->first_minor = device_id;
1928 	zram->disk->fops = &zram_devops;
1929 	zram->disk->queue = queue;
1930 	zram->disk->private_data = zram;
1931 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1932 
1933 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1934 	set_capacity(zram->disk, 0);
1935 	/* zram devices sort of resembles non-rotational disks */
1936 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1937 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1938 
1939 	/*
1940 	 * To ensure that we always get PAGE_SIZE aligned
1941 	 * and n*PAGE_SIZED sized I/O requests.
1942 	 */
1943 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1944 	blk_queue_logical_block_size(zram->disk->queue,
1945 					ZRAM_LOGICAL_BLOCK_SIZE);
1946 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1947 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1948 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1949 	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1950 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue);
1951 
1952 	/*
1953 	 * zram_bio_discard() will clear all logical blocks if logical block
1954 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1955 	 * different, we will skip discarding some parts of logical blocks in
1956 	 * the part of the request range which isn't aligned to physical block
1957 	 * size.  So we can't ensure that all discarded logical blocks are
1958 	 * zeroed.
1959 	 */
1960 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1961 		blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1962 
1963 	blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, zram->disk->queue);
1964 	device_add_disk(NULL, zram->disk, zram_disk_attr_groups);
1965 
1966 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1967 
1968 	zram_debugfs_register(zram);
1969 	pr_info("Added device: %s\n", zram->disk->disk_name);
1970 	return device_id;
1971 
1972 out_free_queue:
1973 	blk_cleanup_queue(queue);
1974 out_free_idr:
1975 	idr_remove(&zram_index_idr, device_id);
1976 out_free_dev:
1977 	kfree(zram);
1978 	return ret;
1979 }
1980 
1981 static int zram_remove(struct zram *zram)
1982 {
1983 	struct block_device *bdev = zram->disk->part0;
1984 
1985 	mutex_lock(&bdev->bd_mutex);
1986 	if (bdev->bd_openers || zram->claim) {
1987 		mutex_unlock(&bdev->bd_mutex);
1988 		return -EBUSY;
1989 	}
1990 
1991 	zram->claim = true;
1992 	mutex_unlock(&bdev->bd_mutex);
1993 
1994 	zram_debugfs_unregister(zram);
1995 
1996 	/* Make sure all the pending I/O are finished */
1997 	fsync_bdev(bdev);
1998 	zram_reset_device(zram);
1999 
2000 	pr_info("Removed device: %s\n", zram->disk->disk_name);
2001 
2002 	del_gendisk(zram->disk);
2003 	blk_cleanup_queue(zram->disk->queue);
2004 	put_disk(zram->disk);
2005 	kfree(zram);
2006 	return 0;
2007 }
2008 
2009 /* zram-control sysfs attributes */
2010 
2011 /*
2012  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2013  * sense that reading from this file does alter the state of your system -- it
2014  * creates a new un-initialized zram device and returns back this device's
2015  * device_id (or an error code if it fails to create a new device).
2016  */
2017 static ssize_t hot_add_show(struct class *class,
2018 			struct class_attribute *attr,
2019 			char *buf)
2020 {
2021 	int ret;
2022 
2023 	mutex_lock(&zram_index_mutex);
2024 	ret = zram_add();
2025 	mutex_unlock(&zram_index_mutex);
2026 
2027 	if (ret < 0)
2028 		return ret;
2029 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
2030 }
2031 static struct class_attribute class_attr_hot_add =
2032 	__ATTR(hot_add, 0400, hot_add_show, NULL);
2033 
2034 static ssize_t hot_remove_store(struct class *class,
2035 			struct class_attribute *attr,
2036 			const char *buf,
2037 			size_t count)
2038 {
2039 	struct zram *zram;
2040 	int ret, dev_id;
2041 
2042 	/* dev_id is gendisk->first_minor, which is `int' */
2043 	ret = kstrtoint(buf, 10, &dev_id);
2044 	if (ret)
2045 		return ret;
2046 	if (dev_id < 0)
2047 		return -EINVAL;
2048 
2049 	mutex_lock(&zram_index_mutex);
2050 
2051 	zram = idr_find(&zram_index_idr, dev_id);
2052 	if (zram) {
2053 		ret = zram_remove(zram);
2054 		if (!ret)
2055 			idr_remove(&zram_index_idr, dev_id);
2056 	} else {
2057 		ret = -ENODEV;
2058 	}
2059 
2060 	mutex_unlock(&zram_index_mutex);
2061 	return ret ? ret : count;
2062 }
2063 static CLASS_ATTR_WO(hot_remove);
2064 
2065 static struct attribute *zram_control_class_attrs[] = {
2066 	&class_attr_hot_add.attr,
2067 	&class_attr_hot_remove.attr,
2068 	NULL,
2069 };
2070 ATTRIBUTE_GROUPS(zram_control_class);
2071 
2072 static struct class zram_control_class = {
2073 	.name		= "zram-control",
2074 	.owner		= THIS_MODULE,
2075 	.class_groups	= zram_control_class_groups,
2076 };
2077 
2078 static int zram_remove_cb(int id, void *ptr, void *data)
2079 {
2080 	zram_remove(ptr);
2081 	return 0;
2082 }
2083 
2084 static void destroy_devices(void)
2085 {
2086 	class_unregister(&zram_control_class);
2087 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2088 	zram_debugfs_destroy();
2089 	idr_destroy(&zram_index_idr);
2090 	unregister_blkdev(zram_major, "zram");
2091 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2092 }
2093 
2094 static int __init zram_init(void)
2095 {
2096 	int ret;
2097 
2098 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2099 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
2100 	if (ret < 0)
2101 		return ret;
2102 
2103 	ret = class_register(&zram_control_class);
2104 	if (ret) {
2105 		pr_err("Unable to register zram-control class\n");
2106 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2107 		return ret;
2108 	}
2109 
2110 	zram_debugfs_create();
2111 	zram_major = register_blkdev(0, "zram");
2112 	if (zram_major <= 0) {
2113 		pr_err("Unable to get major number\n");
2114 		class_unregister(&zram_control_class);
2115 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2116 		return -EBUSY;
2117 	}
2118 
2119 	while (num_devices != 0) {
2120 		mutex_lock(&zram_index_mutex);
2121 		ret = zram_add();
2122 		mutex_unlock(&zram_index_mutex);
2123 		if (ret < 0)
2124 			goto out_error;
2125 		num_devices--;
2126 	}
2127 
2128 	return 0;
2129 
2130 out_error:
2131 	destroy_devices();
2132 	return ret;
2133 }
2134 
2135 static void __exit zram_exit(void)
2136 {
2137 	destroy_devices();
2138 }
2139 
2140 module_init(zram_init);
2141 module_exit(zram_exit);
2142 
2143 module_param(num_devices, uint, 0);
2144 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2145 
2146 MODULE_LICENSE("Dual BSD/GPL");
2147 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2148 MODULE_DESCRIPTION("Compressed RAM Block Device");
2149