1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/bitops.h> 22 #include <linux/blkdev.h> 23 #include <linux/buffer_head.h> 24 #include <linux/device.h> 25 #include <linux/highmem.h> 26 #include <linux/slab.h> 27 #include <linux/backing-dev.h> 28 #include <linux/string.h> 29 #include <linux/vmalloc.h> 30 #include <linux/err.h> 31 #include <linux/idr.h> 32 #include <linux/sysfs.h> 33 #include <linux/debugfs.h> 34 #include <linux/cpuhotplug.h> 35 #include <linux/part_stat.h> 36 37 #include "zram_drv.h" 38 39 static DEFINE_IDR(zram_index_idr); 40 /* idr index must be protected */ 41 static DEFINE_MUTEX(zram_index_mutex); 42 43 static int zram_major; 44 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP; 45 46 /* Module params (documentation at end) */ 47 static unsigned int num_devices = 1; 48 /* 49 * Pages that compress to sizes equals or greater than this are stored 50 * uncompressed in memory. 51 */ 52 static size_t huge_class_size; 53 54 static const struct block_device_operations zram_devops; 55 56 static void zram_free_page(struct zram *zram, size_t index); 57 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 58 u32 index, int offset, struct bio *bio); 59 60 61 static int zram_slot_trylock(struct zram *zram, u32 index) 62 { 63 return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags); 64 } 65 66 static void zram_slot_lock(struct zram *zram, u32 index) 67 { 68 bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags); 69 } 70 71 static void zram_slot_unlock(struct zram *zram, u32 index) 72 { 73 bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags); 74 } 75 76 static inline bool init_done(struct zram *zram) 77 { 78 return zram->disksize; 79 } 80 81 static inline struct zram *dev_to_zram(struct device *dev) 82 { 83 return (struct zram *)dev_to_disk(dev)->private_data; 84 } 85 86 static unsigned long zram_get_handle(struct zram *zram, u32 index) 87 { 88 return zram->table[index].handle; 89 } 90 91 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle) 92 { 93 zram->table[index].handle = handle; 94 } 95 96 /* flag operations require table entry bit_spin_lock() being held */ 97 static bool zram_test_flag(struct zram *zram, u32 index, 98 enum zram_pageflags flag) 99 { 100 return zram->table[index].flags & BIT(flag); 101 } 102 103 static void zram_set_flag(struct zram *zram, u32 index, 104 enum zram_pageflags flag) 105 { 106 zram->table[index].flags |= BIT(flag); 107 } 108 109 static void zram_clear_flag(struct zram *zram, u32 index, 110 enum zram_pageflags flag) 111 { 112 zram->table[index].flags &= ~BIT(flag); 113 } 114 115 static inline void zram_set_element(struct zram *zram, u32 index, 116 unsigned long element) 117 { 118 zram->table[index].element = element; 119 } 120 121 static unsigned long zram_get_element(struct zram *zram, u32 index) 122 { 123 return zram->table[index].element; 124 } 125 126 static size_t zram_get_obj_size(struct zram *zram, u32 index) 127 { 128 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1); 129 } 130 131 static void zram_set_obj_size(struct zram *zram, 132 u32 index, size_t size) 133 { 134 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT; 135 136 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size; 137 } 138 139 static inline bool zram_allocated(struct zram *zram, u32 index) 140 { 141 return zram_get_obj_size(zram, index) || 142 zram_test_flag(zram, index, ZRAM_SAME) || 143 zram_test_flag(zram, index, ZRAM_WB); 144 } 145 146 #if PAGE_SIZE != 4096 147 static inline bool is_partial_io(struct bio_vec *bvec) 148 { 149 return bvec->bv_len != PAGE_SIZE; 150 } 151 #else 152 static inline bool is_partial_io(struct bio_vec *bvec) 153 { 154 return false; 155 } 156 #endif 157 158 static inline void zram_set_priority(struct zram *zram, u32 index, u32 prio) 159 { 160 prio &= ZRAM_COMP_PRIORITY_MASK; 161 /* 162 * Clear previous priority value first, in case if we recompress 163 * further an already recompressed page 164 */ 165 zram->table[index].flags &= ~(ZRAM_COMP_PRIORITY_MASK << 166 ZRAM_COMP_PRIORITY_BIT1); 167 zram->table[index].flags |= (prio << ZRAM_COMP_PRIORITY_BIT1); 168 } 169 170 static inline u32 zram_get_priority(struct zram *zram, u32 index) 171 { 172 u32 prio = zram->table[index].flags >> ZRAM_COMP_PRIORITY_BIT1; 173 174 return prio & ZRAM_COMP_PRIORITY_MASK; 175 } 176 177 /* 178 * Check if request is within bounds and aligned on zram logical blocks. 179 */ 180 static inline bool valid_io_request(struct zram *zram, 181 sector_t start, unsigned int size) 182 { 183 u64 end, bound; 184 185 /* unaligned request */ 186 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1))) 187 return false; 188 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1))) 189 return false; 190 191 end = start + (size >> SECTOR_SHIFT); 192 bound = zram->disksize >> SECTOR_SHIFT; 193 /* out of range */ 194 if (unlikely(start >= bound || end > bound || start > end)) 195 return false; 196 197 /* I/O request is valid */ 198 return true; 199 } 200 201 static void update_position(u32 *index, int *offset, struct bio_vec *bvec) 202 { 203 *index += (*offset + bvec->bv_len) / PAGE_SIZE; 204 *offset = (*offset + bvec->bv_len) % PAGE_SIZE; 205 } 206 207 static inline void update_used_max(struct zram *zram, 208 const unsigned long pages) 209 { 210 unsigned long cur_max = atomic_long_read(&zram->stats.max_used_pages); 211 212 do { 213 if (cur_max >= pages) 214 return; 215 } while (!atomic_long_try_cmpxchg(&zram->stats.max_used_pages, 216 &cur_max, pages)); 217 } 218 219 static inline void zram_fill_page(void *ptr, unsigned long len, 220 unsigned long value) 221 { 222 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long))); 223 memset_l(ptr, value, len / sizeof(unsigned long)); 224 } 225 226 static bool page_same_filled(void *ptr, unsigned long *element) 227 { 228 unsigned long *page; 229 unsigned long val; 230 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1; 231 232 page = (unsigned long *)ptr; 233 val = page[0]; 234 235 if (val != page[last_pos]) 236 return false; 237 238 for (pos = 1; pos < last_pos; pos++) { 239 if (val != page[pos]) 240 return false; 241 } 242 243 *element = val; 244 245 return true; 246 } 247 248 static ssize_t initstate_show(struct device *dev, 249 struct device_attribute *attr, char *buf) 250 { 251 u32 val; 252 struct zram *zram = dev_to_zram(dev); 253 254 down_read(&zram->init_lock); 255 val = init_done(zram); 256 up_read(&zram->init_lock); 257 258 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 259 } 260 261 static ssize_t disksize_show(struct device *dev, 262 struct device_attribute *attr, char *buf) 263 { 264 struct zram *zram = dev_to_zram(dev); 265 266 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 267 } 268 269 static ssize_t mem_limit_store(struct device *dev, 270 struct device_attribute *attr, const char *buf, size_t len) 271 { 272 u64 limit; 273 char *tmp; 274 struct zram *zram = dev_to_zram(dev); 275 276 limit = memparse(buf, &tmp); 277 if (buf == tmp) /* no chars parsed, invalid input */ 278 return -EINVAL; 279 280 down_write(&zram->init_lock); 281 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; 282 up_write(&zram->init_lock); 283 284 return len; 285 } 286 287 static ssize_t mem_used_max_store(struct device *dev, 288 struct device_attribute *attr, const char *buf, size_t len) 289 { 290 int err; 291 unsigned long val; 292 struct zram *zram = dev_to_zram(dev); 293 294 err = kstrtoul(buf, 10, &val); 295 if (err || val != 0) 296 return -EINVAL; 297 298 down_read(&zram->init_lock); 299 if (init_done(zram)) { 300 atomic_long_set(&zram->stats.max_used_pages, 301 zs_get_total_pages(zram->mem_pool)); 302 } 303 up_read(&zram->init_lock); 304 305 return len; 306 } 307 308 /* 309 * Mark all pages which are older than or equal to cutoff as IDLE. 310 * Callers should hold the zram init lock in read mode 311 */ 312 static void mark_idle(struct zram *zram, ktime_t cutoff) 313 { 314 int is_idle = 1; 315 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 316 int index; 317 318 for (index = 0; index < nr_pages; index++) { 319 /* 320 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race. 321 * See the comment in writeback_store. 322 */ 323 zram_slot_lock(zram, index); 324 if (zram_allocated(zram, index) && 325 !zram_test_flag(zram, index, ZRAM_UNDER_WB)) { 326 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 327 is_idle = !cutoff || ktime_after(cutoff, zram->table[index].ac_time); 328 #endif 329 if (is_idle) 330 zram_set_flag(zram, index, ZRAM_IDLE); 331 } 332 zram_slot_unlock(zram, index); 333 } 334 } 335 336 static ssize_t idle_store(struct device *dev, 337 struct device_attribute *attr, const char *buf, size_t len) 338 { 339 struct zram *zram = dev_to_zram(dev); 340 ktime_t cutoff_time = 0; 341 ssize_t rv = -EINVAL; 342 343 if (!sysfs_streq(buf, "all")) { 344 /* 345 * If it did not parse as 'all' try to treat it as an integer 346 * when we have memory tracking enabled. 347 */ 348 u64 age_sec; 349 350 if (IS_ENABLED(CONFIG_ZRAM_MEMORY_TRACKING) && !kstrtoull(buf, 0, &age_sec)) 351 cutoff_time = ktime_sub(ktime_get_boottime(), 352 ns_to_ktime(age_sec * NSEC_PER_SEC)); 353 else 354 goto out; 355 } 356 357 down_read(&zram->init_lock); 358 if (!init_done(zram)) 359 goto out_unlock; 360 361 /* 362 * A cutoff_time of 0 marks everything as idle, this is the 363 * "all" behavior. 364 */ 365 mark_idle(zram, cutoff_time); 366 rv = len; 367 368 out_unlock: 369 up_read(&zram->init_lock); 370 out: 371 return rv; 372 } 373 374 #ifdef CONFIG_ZRAM_WRITEBACK 375 static ssize_t writeback_limit_enable_store(struct device *dev, 376 struct device_attribute *attr, const char *buf, size_t len) 377 { 378 struct zram *zram = dev_to_zram(dev); 379 u64 val; 380 ssize_t ret = -EINVAL; 381 382 if (kstrtoull(buf, 10, &val)) 383 return ret; 384 385 down_read(&zram->init_lock); 386 spin_lock(&zram->wb_limit_lock); 387 zram->wb_limit_enable = val; 388 spin_unlock(&zram->wb_limit_lock); 389 up_read(&zram->init_lock); 390 ret = len; 391 392 return ret; 393 } 394 395 static ssize_t writeback_limit_enable_show(struct device *dev, 396 struct device_attribute *attr, char *buf) 397 { 398 bool val; 399 struct zram *zram = dev_to_zram(dev); 400 401 down_read(&zram->init_lock); 402 spin_lock(&zram->wb_limit_lock); 403 val = zram->wb_limit_enable; 404 spin_unlock(&zram->wb_limit_lock); 405 up_read(&zram->init_lock); 406 407 return scnprintf(buf, PAGE_SIZE, "%d\n", val); 408 } 409 410 static ssize_t writeback_limit_store(struct device *dev, 411 struct device_attribute *attr, const char *buf, size_t len) 412 { 413 struct zram *zram = dev_to_zram(dev); 414 u64 val; 415 ssize_t ret = -EINVAL; 416 417 if (kstrtoull(buf, 10, &val)) 418 return ret; 419 420 down_read(&zram->init_lock); 421 spin_lock(&zram->wb_limit_lock); 422 zram->bd_wb_limit = val; 423 spin_unlock(&zram->wb_limit_lock); 424 up_read(&zram->init_lock); 425 ret = len; 426 427 return ret; 428 } 429 430 static ssize_t writeback_limit_show(struct device *dev, 431 struct device_attribute *attr, char *buf) 432 { 433 u64 val; 434 struct zram *zram = dev_to_zram(dev); 435 436 down_read(&zram->init_lock); 437 spin_lock(&zram->wb_limit_lock); 438 val = zram->bd_wb_limit; 439 spin_unlock(&zram->wb_limit_lock); 440 up_read(&zram->init_lock); 441 442 return scnprintf(buf, PAGE_SIZE, "%llu\n", val); 443 } 444 445 static void reset_bdev(struct zram *zram) 446 { 447 struct block_device *bdev; 448 449 if (!zram->backing_dev) 450 return; 451 452 bdev = zram->bdev; 453 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 454 /* hope filp_close flush all of IO */ 455 filp_close(zram->backing_dev, NULL); 456 zram->backing_dev = NULL; 457 zram->bdev = NULL; 458 zram->disk->fops = &zram_devops; 459 kvfree(zram->bitmap); 460 zram->bitmap = NULL; 461 } 462 463 static ssize_t backing_dev_show(struct device *dev, 464 struct device_attribute *attr, char *buf) 465 { 466 struct file *file; 467 struct zram *zram = dev_to_zram(dev); 468 char *p; 469 ssize_t ret; 470 471 down_read(&zram->init_lock); 472 file = zram->backing_dev; 473 if (!file) { 474 memcpy(buf, "none\n", 5); 475 up_read(&zram->init_lock); 476 return 5; 477 } 478 479 p = file_path(file, buf, PAGE_SIZE - 1); 480 if (IS_ERR(p)) { 481 ret = PTR_ERR(p); 482 goto out; 483 } 484 485 ret = strlen(p); 486 memmove(buf, p, ret); 487 buf[ret++] = '\n'; 488 out: 489 up_read(&zram->init_lock); 490 return ret; 491 } 492 493 static ssize_t backing_dev_store(struct device *dev, 494 struct device_attribute *attr, const char *buf, size_t len) 495 { 496 char *file_name; 497 size_t sz; 498 struct file *backing_dev = NULL; 499 struct inode *inode; 500 struct address_space *mapping; 501 unsigned int bitmap_sz; 502 unsigned long nr_pages, *bitmap = NULL; 503 struct block_device *bdev = NULL; 504 int err; 505 struct zram *zram = dev_to_zram(dev); 506 507 file_name = kmalloc(PATH_MAX, GFP_KERNEL); 508 if (!file_name) 509 return -ENOMEM; 510 511 down_write(&zram->init_lock); 512 if (init_done(zram)) { 513 pr_info("Can't setup backing device for initialized device\n"); 514 err = -EBUSY; 515 goto out; 516 } 517 518 strscpy(file_name, buf, PATH_MAX); 519 /* ignore trailing newline */ 520 sz = strlen(file_name); 521 if (sz > 0 && file_name[sz - 1] == '\n') 522 file_name[sz - 1] = 0x00; 523 524 backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0); 525 if (IS_ERR(backing_dev)) { 526 err = PTR_ERR(backing_dev); 527 backing_dev = NULL; 528 goto out; 529 } 530 531 mapping = backing_dev->f_mapping; 532 inode = mapping->host; 533 534 /* Support only block device in this moment */ 535 if (!S_ISBLK(inode->i_mode)) { 536 err = -ENOTBLK; 537 goto out; 538 } 539 540 bdev = blkdev_get_by_dev(inode->i_rdev, 541 FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram); 542 if (IS_ERR(bdev)) { 543 err = PTR_ERR(bdev); 544 bdev = NULL; 545 goto out; 546 } 547 548 nr_pages = i_size_read(inode) >> PAGE_SHIFT; 549 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long); 550 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL); 551 if (!bitmap) { 552 err = -ENOMEM; 553 goto out; 554 } 555 556 reset_bdev(zram); 557 558 zram->bdev = bdev; 559 zram->backing_dev = backing_dev; 560 zram->bitmap = bitmap; 561 zram->nr_pages = nr_pages; 562 up_write(&zram->init_lock); 563 564 pr_info("setup backing device %s\n", file_name); 565 kfree(file_name); 566 567 return len; 568 out: 569 kvfree(bitmap); 570 571 if (bdev) 572 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 573 574 if (backing_dev) 575 filp_close(backing_dev, NULL); 576 577 up_write(&zram->init_lock); 578 579 kfree(file_name); 580 581 return err; 582 } 583 584 static unsigned long alloc_block_bdev(struct zram *zram) 585 { 586 unsigned long blk_idx = 1; 587 retry: 588 /* skip 0 bit to confuse zram.handle = 0 */ 589 blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx); 590 if (blk_idx == zram->nr_pages) 591 return 0; 592 593 if (test_and_set_bit(blk_idx, zram->bitmap)) 594 goto retry; 595 596 atomic64_inc(&zram->stats.bd_count); 597 return blk_idx; 598 } 599 600 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) 601 { 602 int was_set; 603 604 was_set = test_and_clear_bit(blk_idx, zram->bitmap); 605 WARN_ON_ONCE(!was_set); 606 atomic64_dec(&zram->stats.bd_count); 607 } 608 609 static void zram_page_end_io(struct bio *bio) 610 { 611 struct page *page = bio_first_page_all(bio); 612 613 page_endio(page, op_is_write(bio_op(bio)), 614 blk_status_to_errno(bio->bi_status)); 615 bio_put(bio); 616 } 617 618 /* 619 * Returns 1 if the submission is successful. 620 */ 621 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec, 622 unsigned long entry, struct bio *parent) 623 { 624 struct bio *bio; 625 626 bio = bio_alloc(zram->bdev, 1, parent ? parent->bi_opf : REQ_OP_READ, 627 GFP_NOIO); 628 if (!bio) 629 return -ENOMEM; 630 631 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9); 632 if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) { 633 bio_put(bio); 634 return -EIO; 635 } 636 637 if (!parent) 638 bio->bi_end_io = zram_page_end_io; 639 else 640 bio_chain(bio, parent); 641 642 submit_bio(bio); 643 return 1; 644 } 645 646 #define PAGE_WB_SIG "page_index=" 647 648 #define PAGE_WRITEBACK 0 649 #define HUGE_WRITEBACK (1<<0) 650 #define IDLE_WRITEBACK (1<<1) 651 #define INCOMPRESSIBLE_WRITEBACK (1<<2) 652 653 static ssize_t writeback_store(struct device *dev, 654 struct device_attribute *attr, const char *buf, size_t len) 655 { 656 struct zram *zram = dev_to_zram(dev); 657 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 658 unsigned long index = 0; 659 struct bio bio; 660 struct bio_vec bio_vec; 661 struct page *page; 662 ssize_t ret = len; 663 int mode, err; 664 unsigned long blk_idx = 0; 665 666 if (sysfs_streq(buf, "idle")) 667 mode = IDLE_WRITEBACK; 668 else if (sysfs_streq(buf, "huge")) 669 mode = HUGE_WRITEBACK; 670 else if (sysfs_streq(buf, "huge_idle")) 671 mode = IDLE_WRITEBACK | HUGE_WRITEBACK; 672 else if (sysfs_streq(buf, "incompressible")) 673 mode = INCOMPRESSIBLE_WRITEBACK; 674 else { 675 if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1)) 676 return -EINVAL; 677 678 if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) || 679 index >= nr_pages) 680 return -EINVAL; 681 682 nr_pages = 1; 683 mode = PAGE_WRITEBACK; 684 } 685 686 down_read(&zram->init_lock); 687 if (!init_done(zram)) { 688 ret = -EINVAL; 689 goto release_init_lock; 690 } 691 692 if (!zram->backing_dev) { 693 ret = -ENODEV; 694 goto release_init_lock; 695 } 696 697 page = alloc_page(GFP_KERNEL); 698 if (!page) { 699 ret = -ENOMEM; 700 goto release_init_lock; 701 } 702 703 for (; nr_pages != 0; index++, nr_pages--) { 704 struct bio_vec bvec; 705 706 bvec_set_page(&bvec, page, PAGE_SIZE, 0); 707 708 spin_lock(&zram->wb_limit_lock); 709 if (zram->wb_limit_enable && !zram->bd_wb_limit) { 710 spin_unlock(&zram->wb_limit_lock); 711 ret = -EIO; 712 break; 713 } 714 spin_unlock(&zram->wb_limit_lock); 715 716 if (!blk_idx) { 717 blk_idx = alloc_block_bdev(zram); 718 if (!blk_idx) { 719 ret = -ENOSPC; 720 break; 721 } 722 } 723 724 zram_slot_lock(zram, index); 725 if (!zram_allocated(zram, index)) 726 goto next; 727 728 if (zram_test_flag(zram, index, ZRAM_WB) || 729 zram_test_flag(zram, index, ZRAM_SAME) || 730 zram_test_flag(zram, index, ZRAM_UNDER_WB)) 731 goto next; 732 733 if (mode & IDLE_WRITEBACK && 734 !zram_test_flag(zram, index, ZRAM_IDLE)) 735 goto next; 736 if (mode & HUGE_WRITEBACK && 737 !zram_test_flag(zram, index, ZRAM_HUGE)) 738 goto next; 739 if (mode & INCOMPRESSIBLE_WRITEBACK && 740 !zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 741 goto next; 742 743 /* 744 * Clearing ZRAM_UNDER_WB is duty of caller. 745 * IOW, zram_free_page never clear it. 746 */ 747 zram_set_flag(zram, index, ZRAM_UNDER_WB); 748 /* Need for hugepage writeback racing */ 749 zram_set_flag(zram, index, ZRAM_IDLE); 750 zram_slot_unlock(zram, index); 751 if (zram_bvec_read(zram, &bvec, index, 0, NULL)) { 752 zram_slot_lock(zram, index); 753 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 754 zram_clear_flag(zram, index, ZRAM_IDLE); 755 zram_slot_unlock(zram, index); 756 continue; 757 } 758 759 bio_init(&bio, zram->bdev, &bio_vec, 1, 760 REQ_OP_WRITE | REQ_SYNC); 761 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9); 762 763 bio_add_page(&bio, bvec.bv_page, bvec.bv_len, 764 bvec.bv_offset); 765 /* 766 * XXX: A single page IO would be inefficient for write 767 * but it would be not bad as starter. 768 */ 769 err = submit_bio_wait(&bio); 770 if (err) { 771 zram_slot_lock(zram, index); 772 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 773 zram_clear_flag(zram, index, ZRAM_IDLE); 774 zram_slot_unlock(zram, index); 775 /* 776 * BIO errors are not fatal, we continue and simply 777 * attempt to writeback the remaining objects (pages). 778 * At the same time we need to signal user-space that 779 * some writes (at least one, but also could be all of 780 * them) were not successful and we do so by returning 781 * the most recent BIO error. 782 */ 783 ret = err; 784 continue; 785 } 786 787 atomic64_inc(&zram->stats.bd_writes); 788 /* 789 * We released zram_slot_lock so need to check if the slot was 790 * changed. If there is freeing for the slot, we can catch it 791 * easily by zram_allocated. 792 * A subtle case is the slot is freed/reallocated/marked as 793 * ZRAM_IDLE again. To close the race, idle_store doesn't 794 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB. 795 * Thus, we could close the race by checking ZRAM_IDLE bit. 796 */ 797 zram_slot_lock(zram, index); 798 if (!zram_allocated(zram, index) || 799 !zram_test_flag(zram, index, ZRAM_IDLE)) { 800 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 801 zram_clear_flag(zram, index, ZRAM_IDLE); 802 goto next; 803 } 804 805 zram_free_page(zram, index); 806 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 807 zram_set_flag(zram, index, ZRAM_WB); 808 zram_set_element(zram, index, blk_idx); 809 blk_idx = 0; 810 atomic64_inc(&zram->stats.pages_stored); 811 spin_lock(&zram->wb_limit_lock); 812 if (zram->wb_limit_enable && zram->bd_wb_limit > 0) 813 zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12); 814 spin_unlock(&zram->wb_limit_lock); 815 next: 816 zram_slot_unlock(zram, index); 817 } 818 819 if (blk_idx) 820 free_block_bdev(zram, blk_idx); 821 __free_page(page); 822 release_init_lock: 823 up_read(&zram->init_lock); 824 825 return ret; 826 } 827 828 struct zram_work { 829 struct work_struct work; 830 struct zram *zram; 831 unsigned long entry; 832 struct bio *bio; 833 struct bio_vec bvec; 834 }; 835 836 #if PAGE_SIZE != 4096 837 static void zram_sync_read(struct work_struct *work) 838 { 839 struct zram_work *zw = container_of(work, struct zram_work, work); 840 struct zram *zram = zw->zram; 841 unsigned long entry = zw->entry; 842 struct bio *bio = zw->bio; 843 844 read_from_bdev_async(zram, &zw->bvec, entry, bio); 845 } 846 847 /* 848 * Block layer want one ->submit_bio to be active at a time, so if we use 849 * chained IO with parent IO in same context, it's a deadlock. To avoid that, 850 * use a worker thread context. 851 */ 852 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec, 853 unsigned long entry, struct bio *bio) 854 { 855 struct zram_work work; 856 857 work.bvec = *bvec; 858 work.zram = zram; 859 work.entry = entry; 860 work.bio = bio; 861 862 INIT_WORK_ONSTACK(&work.work, zram_sync_read); 863 queue_work(system_unbound_wq, &work.work); 864 flush_work(&work.work); 865 destroy_work_on_stack(&work.work); 866 867 return 1; 868 } 869 #else 870 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec, 871 unsigned long entry, struct bio *bio) 872 { 873 WARN_ON(1); 874 return -EIO; 875 } 876 #endif 877 878 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec, 879 unsigned long entry, struct bio *parent, bool sync) 880 { 881 atomic64_inc(&zram->stats.bd_reads); 882 if (sync) 883 return read_from_bdev_sync(zram, bvec, entry, parent); 884 else 885 return read_from_bdev_async(zram, bvec, entry, parent); 886 } 887 #else 888 static inline void reset_bdev(struct zram *zram) {}; 889 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec, 890 unsigned long entry, struct bio *parent, bool sync) 891 { 892 return -EIO; 893 } 894 895 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {}; 896 #endif 897 898 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 899 900 static struct dentry *zram_debugfs_root; 901 902 static void zram_debugfs_create(void) 903 { 904 zram_debugfs_root = debugfs_create_dir("zram", NULL); 905 } 906 907 static void zram_debugfs_destroy(void) 908 { 909 debugfs_remove_recursive(zram_debugfs_root); 910 } 911 912 static void zram_accessed(struct zram *zram, u32 index) 913 { 914 zram_clear_flag(zram, index, ZRAM_IDLE); 915 zram->table[index].ac_time = ktime_get_boottime(); 916 } 917 918 static ssize_t read_block_state(struct file *file, char __user *buf, 919 size_t count, loff_t *ppos) 920 { 921 char *kbuf; 922 ssize_t index, written = 0; 923 struct zram *zram = file->private_data; 924 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 925 struct timespec64 ts; 926 927 kbuf = kvmalloc(count, GFP_KERNEL); 928 if (!kbuf) 929 return -ENOMEM; 930 931 down_read(&zram->init_lock); 932 if (!init_done(zram)) { 933 up_read(&zram->init_lock); 934 kvfree(kbuf); 935 return -EINVAL; 936 } 937 938 for (index = *ppos; index < nr_pages; index++) { 939 int copied; 940 941 zram_slot_lock(zram, index); 942 if (!zram_allocated(zram, index)) 943 goto next; 944 945 ts = ktime_to_timespec64(zram->table[index].ac_time); 946 copied = snprintf(kbuf + written, count, 947 "%12zd %12lld.%06lu %c%c%c%c%c%c\n", 948 index, (s64)ts.tv_sec, 949 ts.tv_nsec / NSEC_PER_USEC, 950 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.', 951 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.', 952 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.', 953 zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.', 954 zram_get_priority(zram, index) ? 'r' : '.', 955 zram_test_flag(zram, index, 956 ZRAM_INCOMPRESSIBLE) ? 'n' : '.'); 957 958 if (count <= copied) { 959 zram_slot_unlock(zram, index); 960 break; 961 } 962 written += copied; 963 count -= copied; 964 next: 965 zram_slot_unlock(zram, index); 966 *ppos += 1; 967 } 968 969 up_read(&zram->init_lock); 970 if (copy_to_user(buf, kbuf, written)) 971 written = -EFAULT; 972 kvfree(kbuf); 973 974 return written; 975 } 976 977 static const struct file_operations proc_zram_block_state_op = { 978 .open = simple_open, 979 .read = read_block_state, 980 .llseek = default_llseek, 981 }; 982 983 static void zram_debugfs_register(struct zram *zram) 984 { 985 if (!zram_debugfs_root) 986 return; 987 988 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name, 989 zram_debugfs_root); 990 debugfs_create_file("block_state", 0400, zram->debugfs_dir, 991 zram, &proc_zram_block_state_op); 992 } 993 994 static void zram_debugfs_unregister(struct zram *zram) 995 { 996 debugfs_remove_recursive(zram->debugfs_dir); 997 } 998 #else 999 static void zram_debugfs_create(void) {}; 1000 static void zram_debugfs_destroy(void) {}; 1001 static void zram_accessed(struct zram *zram, u32 index) 1002 { 1003 zram_clear_flag(zram, index, ZRAM_IDLE); 1004 }; 1005 static void zram_debugfs_register(struct zram *zram) {}; 1006 static void zram_debugfs_unregister(struct zram *zram) {}; 1007 #endif 1008 1009 /* 1010 * We switched to per-cpu streams and this attr is not needed anymore. 1011 * However, we will keep it around for some time, because: 1012 * a) we may revert per-cpu streams in the future 1013 * b) it's visible to user space and we need to follow our 2 years 1014 * retirement rule; but we already have a number of 'soon to be 1015 * altered' attrs, so max_comp_streams need to wait for the next 1016 * layoff cycle. 1017 */ 1018 static ssize_t max_comp_streams_show(struct device *dev, 1019 struct device_attribute *attr, char *buf) 1020 { 1021 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus()); 1022 } 1023 1024 static ssize_t max_comp_streams_store(struct device *dev, 1025 struct device_attribute *attr, const char *buf, size_t len) 1026 { 1027 return len; 1028 } 1029 1030 static void comp_algorithm_set(struct zram *zram, u32 prio, const char *alg) 1031 { 1032 /* Do not free statically defined compression algorithms */ 1033 if (zram->comp_algs[prio] != default_compressor) 1034 kfree(zram->comp_algs[prio]); 1035 1036 zram->comp_algs[prio] = alg; 1037 } 1038 1039 static ssize_t __comp_algorithm_show(struct zram *zram, u32 prio, char *buf) 1040 { 1041 ssize_t sz; 1042 1043 down_read(&zram->init_lock); 1044 sz = zcomp_available_show(zram->comp_algs[prio], buf); 1045 up_read(&zram->init_lock); 1046 1047 return sz; 1048 } 1049 1050 static int __comp_algorithm_store(struct zram *zram, u32 prio, const char *buf) 1051 { 1052 char *compressor; 1053 size_t sz; 1054 1055 sz = strlen(buf); 1056 if (sz >= CRYPTO_MAX_ALG_NAME) 1057 return -E2BIG; 1058 1059 compressor = kstrdup(buf, GFP_KERNEL); 1060 if (!compressor) 1061 return -ENOMEM; 1062 1063 /* ignore trailing newline */ 1064 if (sz > 0 && compressor[sz - 1] == '\n') 1065 compressor[sz - 1] = 0x00; 1066 1067 if (!zcomp_available_algorithm(compressor)) { 1068 kfree(compressor); 1069 return -EINVAL; 1070 } 1071 1072 down_write(&zram->init_lock); 1073 if (init_done(zram)) { 1074 up_write(&zram->init_lock); 1075 kfree(compressor); 1076 pr_info("Can't change algorithm for initialized device\n"); 1077 return -EBUSY; 1078 } 1079 1080 comp_algorithm_set(zram, prio, compressor); 1081 up_write(&zram->init_lock); 1082 return 0; 1083 } 1084 1085 static ssize_t comp_algorithm_show(struct device *dev, 1086 struct device_attribute *attr, 1087 char *buf) 1088 { 1089 struct zram *zram = dev_to_zram(dev); 1090 1091 return __comp_algorithm_show(zram, ZRAM_PRIMARY_COMP, buf); 1092 } 1093 1094 static ssize_t comp_algorithm_store(struct device *dev, 1095 struct device_attribute *attr, 1096 const char *buf, 1097 size_t len) 1098 { 1099 struct zram *zram = dev_to_zram(dev); 1100 int ret; 1101 1102 ret = __comp_algorithm_store(zram, ZRAM_PRIMARY_COMP, buf); 1103 return ret ? ret : len; 1104 } 1105 1106 #ifdef CONFIG_ZRAM_MULTI_COMP 1107 static ssize_t recomp_algorithm_show(struct device *dev, 1108 struct device_attribute *attr, 1109 char *buf) 1110 { 1111 struct zram *zram = dev_to_zram(dev); 1112 ssize_t sz = 0; 1113 u32 prio; 1114 1115 for (prio = ZRAM_SECONDARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { 1116 if (!zram->comp_algs[prio]) 1117 continue; 1118 1119 sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2, "#%d: ", prio); 1120 sz += __comp_algorithm_show(zram, prio, buf + sz); 1121 } 1122 1123 return sz; 1124 } 1125 1126 static ssize_t recomp_algorithm_store(struct device *dev, 1127 struct device_attribute *attr, 1128 const char *buf, 1129 size_t len) 1130 { 1131 struct zram *zram = dev_to_zram(dev); 1132 int prio = ZRAM_SECONDARY_COMP; 1133 char *args, *param, *val; 1134 char *alg = NULL; 1135 int ret; 1136 1137 args = skip_spaces(buf); 1138 while (*args) { 1139 args = next_arg(args, ¶m, &val); 1140 1141 if (!val || !*val) 1142 return -EINVAL; 1143 1144 if (!strcmp(param, "algo")) { 1145 alg = val; 1146 continue; 1147 } 1148 1149 if (!strcmp(param, "priority")) { 1150 ret = kstrtoint(val, 10, &prio); 1151 if (ret) 1152 return ret; 1153 continue; 1154 } 1155 } 1156 1157 if (!alg) 1158 return -EINVAL; 1159 1160 if (prio < ZRAM_SECONDARY_COMP || prio >= ZRAM_MAX_COMPS) 1161 return -EINVAL; 1162 1163 ret = __comp_algorithm_store(zram, prio, alg); 1164 return ret ? ret : len; 1165 } 1166 #endif 1167 1168 static ssize_t compact_store(struct device *dev, 1169 struct device_attribute *attr, const char *buf, size_t len) 1170 { 1171 struct zram *zram = dev_to_zram(dev); 1172 1173 down_read(&zram->init_lock); 1174 if (!init_done(zram)) { 1175 up_read(&zram->init_lock); 1176 return -EINVAL; 1177 } 1178 1179 zs_compact(zram->mem_pool); 1180 up_read(&zram->init_lock); 1181 1182 return len; 1183 } 1184 1185 static ssize_t io_stat_show(struct device *dev, 1186 struct device_attribute *attr, char *buf) 1187 { 1188 struct zram *zram = dev_to_zram(dev); 1189 ssize_t ret; 1190 1191 down_read(&zram->init_lock); 1192 ret = scnprintf(buf, PAGE_SIZE, 1193 "%8llu %8llu %8llu %8llu\n", 1194 (u64)atomic64_read(&zram->stats.failed_reads), 1195 (u64)atomic64_read(&zram->stats.failed_writes), 1196 (u64)atomic64_read(&zram->stats.invalid_io), 1197 (u64)atomic64_read(&zram->stats.notify_free)); 1198 up_read(&zram->init_lock); 1199 1200 return ret; 1201 } 1202 1203 static ssize_t mm_stat_show(struct device *dev, 1204 struct device_attribute *attr, char *buf) 1205 { 1206 struct zram *zram = dev_to_zram(dev); 1207 struct zs_pool_stats pool_stats; 1208 u64 orig_size, mem_used = 0; 1209 long max_used; 1210 ssize_t ret; 1211 1212 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); 1213 1214 down_read(&zram->init_lock); 1215 if (init_done(zram)) { 1216 mem_used = zs_get_total_pages(zram->mem_pool); 1217 zs_pool_stats(zram->mem_pool, &pool_stats); 1218 } 1219 1220 orig_size = atomic64_read(&zram->stats.pages_stored); 1221 max_used = atomic_long_read(&zram->stats.max_used_pages); 1222 1223 ret = scnprintf(buf, PAGE_SIZE, 1224 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n", 1225 orig_size << PAGE_SHIFT, 1226 (u64)atomic64_read(&zram->stats.compr_data_size), 1227 mem_used << PAGE_SHIFT, 1228 zram->limit_pages << PAGE_SHIFT, 1229 max_used << PAGE_SHIFT, 1230 (u64)atomic64_read(&zram->stats.same_pages), 1231 atomic_long_read(&pool_stats.pages_compacted), 1232 (u64)atomic64_read(&zram->stats.huge_pages), 1233 (u64)atomic64_read(&zram->stats.huge_pages_since)); 1234 up_read(&zram->init_lock); 1235 1236 return ret; 1237 } 1238 1239 #ifdef CONFIG_ZRAM_WRITEBACK 1240 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12))) 1241 static ssize_t bd_stat_show(struct device *dev, 1242 struct device_attribute *attr, char *buf) 1243 { 1244 struct zram *zram = dev_to_zram(dev); 1245 ssize_t ret; 1246 1247 down_read(&zram->init_lock); 1248 ret = scnprintf(buf, PAGE_SIZE, 1249 "%8llu %8llu %8llu\n", 1250 FOUR_K((u64)atomic64_read(&zram->stats.bd_count)), 1251 FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)), 1252 FOUR_K((u64)atomic64_read(&zram->stats.bd_writes))); 1253 up_read(&zram->init_lock); 1254 1255 return ret; 1256 } 1257 #endif 1258 1259 static ssize_t debug_stat_show(struct device *dev, 1260 struct device_attribute *attr, char *buf) 1261 { 1262 int version = 1; 1263 struct zram *zram = dev_to_zram(dev); 1264 ssize_t ret; 1265 1266 down_read(&zram->init_lock); 1267 ret = scnprintf(buf, PAGE_SIZE, 1268 "version: %d\n%8llu %8llu\n", 1269 version, 1270 (u64)atomic64_read(&zram->stats.writestall), 1271 (u64)atomic64_read(&zram->stats.miss_free)); 1272 up_read(&zram->init_lock); 1273 1274 return ret; 1275 } 1276 1277 static DEVICE_ATTR_RO(io_stat); 1278 static DEVICE_ATTR_RO(mm_stat); 1279 #ifdef CONFIG_ZRAM_WRITEBACK 1280 static DEVICE_ATTR_RO(bd_stat); 1281 #endif 1282 static DEVICE_ATTR_RO(debug_stat); 1283 1284 static void zram_meta_free(struct zram *zram, u64 disksize) 1285 { 1286 size_t num_pages = disksize >> PAGE_SHIFT; 1287 size_t index; 1288 1289 /* Free all pages that are still in this zram device */ 1290 for (index = 0; index < num_pages; index++) 1291 zram_free_page(zram, index); 1292 1293 zs_destroy_pool(zram->mem_pool); 1294 vfree(zram->table); 1295 } 1296 1297 static bool zram_meta_alloc(struct zram *zram, u64 disksize) 1298 { 1299 size_t num_pages; 1300 1301 num_pages = disksize >> PAGE_SHIFT; 1302 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table))); 1303 if (!zram->table) 1304 return false; 1305 1306 zram->mem_pool = zs_create_pool(zram->disk->disk_name); 1307 if (!zram->mem_pool) { 1308 vfree(zram->table); 1309 return false; 1310 } 1311 1312 if (!huge_class_size) 1313 huge_class_size = zs_huge_class_size(zram->mem_pool); 1314 return true; 1315 } 1316 1317 /* 1318 * To protect concurrent access to the same index entry, 1319 * caller should hold this table index entry's bit_spinlock to 1320 * indicate this index entry is accessing. 1321 */ 1322 static void zram_free_page(struct zram *zram, size_t index) 1323 { 1324 unsigned long handle; 1325 1326 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 1327 zram->table[index].ac_time = 0; 1328 #endif 1329 if (zram_test_flag(zram, index, ZRAM_IDLE)) 1330 zram_clear_flag(zram, index, ZRAM_IDLE); 1331 1332 if (zram_test_flag(zram, index, ZRAM_HUGE)) { 1333 zram_clear_flag(zram, index, ZRAM_HUGE); 1334 atomic64_dec(&zram->stats.huge_pages); 1335 } 1336 1337 if (zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 1338 zram_clear_flag(zram, index, ZRAM_INCOMPRESSIBLE); 1339 1340 zram_set_priority(zram, index, 0); 1341 1342 if (zram_test_flag(zram, index, ZRAM_WB)) { 1343 zram_clear_flag(zram, index, ZRAM_WB); 1344 free_block_bdev(zram, zram_get_element(zram, index)); 1345 goto out; 1346 } 1347 1348 /* 1349 * No memory is allocated for same element filled pages. 1350 * Simply clear same page flag. 1351 */ 1352 if (zram_test_flag(zram, index, ZRAM_SAME)) { 1353 zram_clear_flag(zram, index, ZRAM_SAME); 1354 atomic64_dec(&zram->stats.same_pages); 1355 goto out; 1356 } 1357 1358 handle = zram_get_handle(zram, index); 1359 if (!handle) 1360 return; 1361 1362 zs_free(zram->mem_pool, handle); 1363 1364 atomic64_sub(zram_get_obj_size(zram, index), 1365 &zram->stats.compr_data_size); 1366 out: 1367 atomic64_dec(&zram->stats.pages_stored); 1368 zram_set_handle(zram, index, 0); 1369 zram_set_obj_size(zram, index, 0); 1370 WARN_ON_ONCE(zram->table[index].flags & 1371 ~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB)); 1372 } 1373 1374 /* 1375 * Reads a page from the writeback devices. Corresponding ZRAM slot 1376 * should be unlocked. 1377 */ 1378 static int zram_bvec_read_from_bdev(struct zram *zram, struct page *page, 1379 u32 index, struct bio *bio, bool partial_io) 1380 { 1381 struct bio_vec bvec; 1382 1383 bvec_set_page(&bvec, page, PAGE_SIZE, 0); 1384 return read_from_bdev(zram, &bvec, zram_get_element(zram, index), bio, 1385 partial_io); 1386 } 1387 1388 /* 1389 * Reads (decompresses if needed) a page from zspool (zsmalloc). 1390 * Corresponding ZRAM slot should be locked. 1391 */ 1392 static int zram_read_from_zspool(struct zram *zram, struct page *page, 1393 u32 index) 1394 { 1395 struct zcomp_strm *zstrm; 1396 unsigned long handle; 1397 unsigned int size; 1398 void *src, *dst; 1399 u32 prio; 1400 int ret; 1401 1402 handle = zram_get_handle(zram, index); 1403 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) { 1404 unsigned long value; 1405 void *mem; 1406 1407 value = handle ? zram_get_element(zram, index) : 0; 1408 mem = kmap_atomic(page); 1409 zram_fill_page(mem, PAGE_SIZE, value); 1410 kunmap_atomic(mem); 1411 return 0; 1412 } 1413 1414 size = zram_get_obj_size(zram, index); 1415 1416 if (size != PAGE_SIZE) { 1417 prio = zram_get_priority(zram, index); 1418 zstrm = zcomp_stream_get(zram->comps[prio]); 1419 } 1420 1421 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO); 1422 if (size == PAGE_SIZE) { 1423 dst = kmap_atomic(page); 1424 memcpy(dst, src, PAGE_SIZE); 1425 kunmap_atomic(dst); 1426 ret = 0; 1427 } else { 1428 dst = kmap_atomic(page); 1429 ret = zcomp_decompress(zstrm, src, size, dst); 1430 kunmap_atomic(dst); 1431 zcomp_stream_put(zram->comps[prio]); 1432 } 1433 zs_unmap_object(zram->mem_pool, handle); 1434 return ret; 1435 } 1436 1437 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index, 1438 struct bio *bio, bool partial_io) 1439 { 1440 int ret; 1441 1442 zram_slot_lock(zram, index); 1443 if (!zram_test_flag(zram, index, ZRAM_WB)) { 1444 /* Slot should be locked through out the function call */ 1445 ret = zram_read_from_zspool(zram, page, index); 1446 zram_slot_unlock(zram, index); 1447 } else { 1448 /* Slot should be unlocked before the function call */ 1449 zram_slot_unlock(zram, index); 1450 1451 ret = zram_bvec_read_from_bdev(zram, page, index, bio, 1452 partial_io); 1453 } 1454 1455 /* Should NEVER happen. Return bio error if it does. */ 1456 if (WARN_ON(ret < 0)) 1457 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 1458 1459 return ret; 1460 } 1461 1462 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 1463 u32 index, int offset, struct bio *bio) 1464 { 1465 int ret; 1466 struct page *page; 1467 1468 page = bvec->bv_page; 1469 if (is_partial_io(bvec)) { 1470 /* Use a temporary buffer to decompress the page */ 1471 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM); 1472 if (!page) 1473 return -ENOMEM; 1474 } 1475 1476 ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec)); 1477 if (unlikely(ret)) 1478 goto out; 1479 1480 if (is_partial_io(bvec)) { 1481 void *src = kmap_atomic(page); 1482 1483 memcpy_to_bvec(bvec, src + offset); 1484 kunmap_atomic(src); 1485 } 1486 out: 1487 if (is_partial_io(bvec)) 1488 __free_page(page); 1489 1490 return ret; 1491 } 1492 1493 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1494 u32 index, struct bio *bio) 1495 { 1496 int ret = 0; 1497 unsigned long alloced_pages; 1498 unsigned long handle = -ENOMEM; 1499 unsigned int comp_len = 0; 1500 void *src, *dst, *mem; 1501 struct zcomp_strm *zstrm; 1502 struct page *page = bvec->bv_page; 1503 unsigned long element = 0; 1504 enum zram_pageflags flags = 0; 1505 1506 mem = kmap_atomic(page); 1507 if (page_same_filled(mem, &element)) { 1508 kunmap_atomic(mem); 1509 /* Free memory associated with this sector now. */ 1510 flags = ZRAM_SAME; 1511 atomic64_inc(&zram->stats.same_pages); 1512 goto out; 1513 } 1514 kunmap_atomic(mem); 1515 1516 compress_again: 1517 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]); 1518 src = kmap_atomic(page); 1519 ret = zcomp_compress(zstrm, src, &comp_len); 1520 kunmap_atomic(src); 1521 1522 if (unlikely(ret)) { 1523 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1524 pr_err("Compression failed! err=%d\n", ret); 1525 zs_free(zram->mem_pool, handle); 1526 return ret; 1527 } 1528 1529 if (comp_len >= huge_class_size) 1530 comp_len = PAGE_SIZE; 1531 /* 1532 * handle allocation has 2 paths: 1533 * a) fast path is executed with preemption disabled (for 1534 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear, 1535 * since we can't sleep; 1536 * b) slow path enables preemption and attempts to allocate 1537 * the page with __GFP_DIRECT_RECLAIM bit set. we have to 1538 * put per-cpu compression stream and, thus, to re-do 1539 * the compression once handle is allocated. 1540 * 1541 * if we have a 'non-null' handle here then we are coming 1542 * from the slow path and handle has already been allocated. 1543 */ 1544 if (IS_ERR_VALUE(handle)) 1545 handle = zs_malloc(zram->mem_pool, comp_len, 1546 __GFP_KSWAPD_RECLAIM | 1547 __GFP_NOWARN | 1548 __GFP_HIGHMEM | 1549 __GFP_MOVABLE); 1550 if (IS_ERR_VALUE(handle)) { 1551 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1552 atomic64_inc(&zram->stats.writestall); 1553 handle = zs_malloc(zram->mem_pool, comp_len, 1554 GFP_NOIO | __GFP_HIGHMEM | 1555 __GFP_MOVABLE); 1556 if (IS_ERR_VALUE(handle)) 1557 return PTR_ERR((void *)handle); 1558 1559 if (comp_len != PAGE_SIZE) 1560 goto compress_again; 1561 /* 1562 * If the page is not compressible, you need to acquire the 1563 * lock and execute the code below. The zcomp_stream_get() 1564 * call is needed to disable the cpu hotplug and grab the 1565 * zstrm buffer back. It is necessary that the dereferencing 1566 * of the zstrm variable below occurs correctly. 1567 */ 1568 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]); 1569 } 1570 1571 alloced_pages = zs_get_total_pages(zram->mem_pool); 1572 update_used_max(zram, alloced_pages); 1573 1574 if (zram->limit_pages && alloced_pages > zram->limit_pages) { 1575 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1576 zs_free(zram->mem_pool, handle); 1577 return -ENOMEM; 1578 } 1579 1580 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO); 1581 1582 src = zstrm->buffer; 1583 if (comp_len == PAGE_SIZE) 1584 src = kmap_atomic(page); 1585 memcpy(dst, src, comp_len); 1586 if (comp_len == PAGE_SIZE) 1587 kunmap_atomic(src); 1588 1589 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1590 zs_unmap_object(zram->mem_pool, handle); 1591 atomic64_add(comp_len, &zram->stats.compr_data_size); 1592 out: 1593 /* 1594 * Free memory associated with this sector 1595 * before overwriting unused sectors. 1596 */ 1597 zram_slot_lock(zram, index); 1598 zram_free_page(zram, index); 1599 1600 if (comp_len == PAGE_SIZE) { 1601 zram_set_flag(zram, index, ZRAM_HUGE); 1602 atomic64_inc(&zram->stats.huge_pages); 1603 atomic64_inc(&zram->stats.huge_pages_since); 1604 } 1605 1606 if (flags) { 1607 zram_set_flag(zram, index, flags); 1608 zram_set_element(zram, index, element); 1609 } else { 1610 zram_set_handle(zram, index, handle); 1611 zram_set_obj_size(zram, index, comp_len); 1612 } 1613 zram_slot_unlock(zram, index); 1614 1615 /* Update stats */ 1616 atomic64_inc(&zram->stats.pages_stored); 1617 return ret; 1618 } 1619 1620 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1621 u32 index, int offset, struct bio *bio) 1622 { 1623 int ret; 1624 struct page *page = NULL; 1625 struct bio_vec vec; 1626 1627 vec = *bvec; 1628 if (is_partial_io(bvec)) { 1629 void *dst; 1630 /* 1631 * This is a partial IO. We need to read the full page 1632 * before to write the changes. 1633 */ 1634 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM); 1635 if (!page) 1636 return -ENOMEM; 1637 1638 ret = __zram_bvec_read(zram, page, index, bio, true); 1639 if (ret) 1640 goto out; 1641 1642 dst = kmap_atomic(page); 1643 memcpy_from_bvec(dst + offset, bvec); 1644 kunmap_atomic(dst); 1645 1646 bvec_set_page(&vec, page, PAGE_SIZE, 0); 1647 } 1648 1649 ret = __zram_bvec_write(zram, &vec, index, bio); 1650 out: 1651 if (is_partial_io(bvec)) 1652 __free_page(page); 1653 return ret; 1654 } 1655 1656 #ifdef CONFIG_ZRAM_MULTI_COMP 1657 /* 1658 * This function will decompress (unless it's ZRAM_HUGE) the page and then 1659 * attempt to compress it using provided compression algorithm priority 1660 * (which is potentially more effective). 1661 * 1662 * Corresponding ZRAM slot should be locked. 1663 */ 1664 static int zram_recompress(struct zram *zram, u32 index, struct page *page, 1665 u32 threshold, u32 prio, u32 prio_max) 1666 { 1667 struct zcomp_strm *zstrm = NULL; 1668 unsigned long handle_old; 1669 unsigned long handle_new; 1670 unsigned int comp_len_old; 1671 unsigned int comp_len_new; 1672 unsigned int class_index_old; 1673 unsigned int class_index_new; 1674 u32 num_recomps = 0; 1675 void *src, *dst; 1676 int ret; 1677 1678 handle_old = zram_get_handle(zram, index); 1679 if (!handle_old) 1680 return -EINVAL; 1681 1682 comp_len_old = zram_get_obj_size(zram, index); 1683 /* 1684 * Do not recompress objects that are already "small enough". 1685 */ 1686 if (comp_len_old < threshold) 1687 return 0; 1688 1689 ret = zram_read_from_zspool(zram, page, index); 1690 if (ret) 1691 return ret; 1692 1693 class_index_old = zs_lookup_class_index(zram->mem_pool, comp_len_old); 1694 /* 1695 * Iterate the secondary comp algorithms list (in order of priority) 1696 * and try to recompress the page. 1697 */ 1698 for (; prio < prio_max; prio++) { 1699 if (!zram->comps[prio]) 1700 continue; 1701 1702 /* 1703 * Skip if the object is already re-compressed with a higher 1704 * priority algorithm (or same algorithm). 1705 */ 1706 if (prio <= zram_get_priority(zram, index)) 1707 continue; 1708 1709 num_recomps++; 1710 zstrm = zcomp_stream_get(zram->comps[prio]); 1711 src = kmap_atomic(page); 1712 ret = zcomp_compress(zstrm, src, &comp_len_new); 1713 kunmap_atomic(src); 1714 1715 if (ret) { 1716 zcomp_stream_put(zram->comps[prio]); 1717 return ret; 1718 } 1719 1720 class_index_new = zs_lookup_class_index(zram->mem_pool, 1721 comp_len_new); 1722 1723 /* Continue until we make progress */ 1724 if (class_index_new >= class_index_old || 1725 (threshold && comp_len_new >= threshold)) { 1726 zcomp_stream_put(zram->comps[prio]); 1727 continue; 1728 } 1729 1730 /* Recompression was successful so break out */ 1731 break; 1732 } 1733 1734 /* 1735 * We did not try to recompress, e.g. when we have only one 1736 * secondary algorithm and the page is already recompressed 1737 * using that algorithm 1738 */ 1739 if (!zstrm) 1740 return 0; 1741 1742 if (class_index_new >= class_index_old) { 1743 /* 1744 * Secondary algorithms failed to re-compress the page 1745 * in a way that would save memory, mark the object as 1746 * incompressible so that we will not try to compress 1747 * it again. 1748 * 1749 * We need to make sure that all secondary algorithms have 1750 * failed, so we test if the number of recompressions matches 1751 * the number of active secondary algorithms. 1752 */ 1753 if (num_recomps == zram->num_active_comps - 1) 1754 zram_set_flag(zram, index, ZRAM_INCOMPRESSIBLE); 1755 return 0; 1756 } 1757 1758 /* Successful recompression but above threshold */ 1759 if (threshold && comp_len_new >= threshold) 1760 return 0; 1761 1762 /* 1763 * No direct reclaim (slow path) for handle allocation and no 1764 * re-compression attempt (unlike in __zram_bvec_write()) since 1765 * we already have stored that object in zsmalloc. If we cannot 1766 * alloc memory for recompressed object then we bail out and 1767 * simply keep the old (existing) object in zsmalloc. 1768 */ 1769 handle_new = zs_malloc(zram->mem_pool, comp_len_new, 1770 __GFP_KSWAPD_RECLAIM | 1771 __GFP_NOWARN | 1772 __GFP_HIGHMEM | 1773 __GFP_MOVABLE); 1774 if (IS_ERR_VALUE(handle_new)) { 1775 zcomp_stream_put(zram->comps[prio]); 1776 return PTR_ERR((void *)handle_new); 1777 } 1778 1779 dst = zs_map_object(zram->mem_pool, handle_new, ZS_MM_WO); 1780 memcpy(dst, zstrm->buffer, comp_len_new); 1781 zcomp_stream_put(zram->comps[prio]); 1782 1783 zs_unmap_object(zram->mem_pool, handle_new); 1784 1785 zram_free_page(zram, index); 1786 zram_set_handle(zram, index, handle_new); 1787 zram_set_obj_size(zram, index, comp_len_new); 1788 zram_set_priority(zram, index, prio); 1789 1790 atomic64_add(comp_len_new, &zram->stats.compr_data_size); 1791 atomic64_inc(&zram->stats.pages_stored); 1792 1793 return 0; 1794 } 1795 1796 #define RECOMPRESS_IDLE (1 << 0) 1797 #define RECOMPRESS_HUGE (1 << 1) 1798 1799 static ssize_t recompress_store(struct device *dev, 1800 struct device_attribute *attr, 1801 const char *buf, size_t len) 1802 { 1803 u32 prio = ZRAM_SECONDARY_COMP, prio_max = ZRAM_MAX_COMPS; 1804 struct zram *zram = dev_to_zram(dev); 1805 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 1806 char *args, *param, *val, *algo = NULL; 1807 u32 mode = 0, threshold = 0; 1808 unsigned long index; 1809 struct page *page; 1810 ssize_t ret; 1811 1812 args = skip_spaces(buf); 1813 while (*args) { 1814 args = next_arg(args, ¶m, &val); 1815 1816 if (!val || !*val) 1817 return -EINVAL; 1818 1819 if (!strcmp(param, "type")) { 1820 if (!strcmp(val, "idle")) 1821 mode = RECOMPRESS_IDLE; 1822 if (!strcmp(val, "huge")) 1823 mode = RECOMPRESS_HUGE; 1824 if (!strcmp(val, "huge_idle")) 1825 mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE; 1826 continue; 1827 } 1828 1829 if (!strcmp(param, "threshold")) { 1830 /* 1831 * We will re-compress only idle objects equal or 1832 * greater in size than watermark. 1833 */ 1834 ret = kstrtouint(val, 10, &threshold); 1835 if (ret) 1836 return ret; 1837 continue; 1838 } 1839 1840 if (!strcmp(param, "algo")) { 1841 algo = val; 1842 continue; 1843 } 1844 } 1845 1846 if (threshold >= PAGE_SIZE) 1847 return -EINVAL; 1848 1849 down_read(&zram->init_lock); 1850 if (!init_done(zram)) { 1851 ret = -EINVAL; 1852 goto release_init_lock; 1853 } 1854 1855 if (algo) { 1856 bool found = false; 1857 1858 for (; prio < ZRAM_MAX_COMPS; prio++) { 1859 if (!zram->comp_algs[prio]) 1860 continue; 1861 1862 if (!strcmp(zram->comp_algs[prio], algo)) { 1863 prio_max = min(prio + 1, ZRAM_MAX_COMPS); 1864 found = true; 1865 break; 1866 } 1867 } 1868 1869 if (!found) { 1870 ret = -EINVAL; 1871 goto release_init_lock; 1872 } 1873 } 1874 1875 page = alloc_page(GFP_KERNEL); 1876 if (!page) { 1877 ret = -ENOMEM; 1878 goto release_init_lock; 1879 } 1880 1881 ret = len; 1882 for (index = 0; index < nr_pages; index++) { 1883 int err = 0; 1884 1885 zram_slot_lock(zram, index); 1886 1887 if (!zram_allocated(zram, index)) 1888 goto next; 1889 1890 if (mode & RECOMPRESS_IDLE && 1891 !zram_test_flag(zram, index, ZRAM_IDLE)) 1892 goto next; 1893 1894 if (mode & RECOMPRESS_HUGE && 1895 !zram_test_flag(zram, index, ZRAM_HUGE)) 1896 goto next; 1897 1898 if (zram_test_flag(zram, index, ZRAM_WB) || 1899 zram_test_flag(zram, index, ZRAM_UNDER_WB) || 1900 zram_test_flag(zram, index, ZRAM_SAME) || 1901 zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 1902 goto next; 1903 1904 err = zram_recompress(zram, index, page, threshold, 1905 prio, prio_max); 1906 next: 1907 zram_slot_unlock(zram, index); 1908 if (err) { 1909 ret = err; 1910 break; 1911 } 1912 1913 cond_resched(); 1914 } 1915 1916 __free_page(page); 1917 1918 release_init_lock: 1919 up_read(&zram->init_lock); 1920 return ret; 1921 } 1922 #endif 1923 1924 /* 1925 * zram_bio_discard - handler on discard request 1926 * @index: physical block index in PAGE_SIZE units 1927 * @offset: byte offset within physical block 1928 */ 1929 static void zram_bio_discard(struct zram *zram, u32 index, 1930 int offset, struct bio *bio) 1931 { 1932 size_t n = bio->bi_iter.bi_size; 1933 1934 /* 1935 * zram manages data in physical block size units. Because logical block 1936 * size isn't identical with physical block size on some arch, we 1937 * could get a discard request pointing to a specific offset within a 1938 * certain physical block. Although we can handle this request by 1939 * reading that physiclal block and decompressing and partially zeroing 1940 * and re-compressing and then re-storing it, this isn't reasonable 1941 * because our intent with a discard request is to save memory. So 1942 * skipping this logical block is appropriate here. 1943 */ 1944 if (offset) { 1945 if (n <= (PAGE_SIZE - offset)) 1946 return; 1947 1948 n -= (PAGE_SIZE - offset); 1949 index++; 1950 } 1951 1952 while (n >= PAGE_SIZE) { 1953 zram_slot_lock(zram, index); 1954 zram_free_page(zram, index); 1955 zram_slot_unlock(zram, index); 1956 atomic64_inc(&zram->stats.notify_free); 1957 index++; 1958 n -= PAGE_SIZE; 1959 } 1960 } 1961 1962 /* 1963 * Returns errno if it has some problem. Otherwise return 0 or 1. 1964 * Returns 0 if IO request was done synchronously 1965 * Returns 1 if IO request was successfully submitted. 1966 */ 1967 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index, 1968 int offset, enum req_op op, struct bio *bio) 1969 { 1970 int ret; 1971 1972 if (!op_is_write(op)) { 1973 ret = zram_bvec_read(zram, bvec, index, offset, bio); 1974 flush_dcache_page(bvec->bv_page); 1975 } else { 1976 ret = zram_bvec_write(zram, bvec, index, offset, bio); 1977 } 1978 1979 zram_slot_lock(zram, index); 1980 zram_accessed(zram, index); 1981 zram_slot_unlock(zram, index); 1982 1983 if (unlikely(ret < 0)) { 1984 if (!op_is_write(op)) 1985 atomic64_inc(&zram->stats.failed_reads); 1986 else 1987 atomic64_inc(&zram->stats.failed_writes); 1988 } 1989 1990 return ret; 1991 } 1992 1993 static void __zram_make_request(struct zram *zram, struct bio *bio) 1994 { 1995 int offset; 1996 u32 index; 1997 struct bio_vec bvec; 1998 struct bvec_iter iter; 1999 unsigned long start_time; 2000 2001 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 2002 offset = (bio->bi_iter.bi_sector & 2003 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 2004 2005 switch (bio_op(bio)) { 2006 case REQ_OP_DISCARD: 2007 case REQ_OP_WRITE_ZEROES: 2008 zram_bio_discard(zram, index, offset, bio); 2009 bio_endio(bio); 2010 return; 2011 default: 2012 break; 2013 } 2014 2015 start_time = bio_start_io_acct(bio); 2016 bio_for_each_segment(bvec, bio, iter) { 2017 struct bio_vec bv = bvec; 2018 unsigned int unwritten = bvec.bv_len; 2019 2020 do { 2021 bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset, 2022 unwritten); 2023 if (zram_bvec_rw(zram, &bv, index, offset, 2024 bio_op(bio), bio) < 0) { 2025 bio->bi_status = BLK_STS_IOERR; 2026 break; 2027 } 2028 2029 bv.bv_offset += bv.bv_len; 2030 unwritten -= bv.bv_len; 2031 2032 update_position(&index, &offset, &bv); 2033 } while (unwritten); 2034 } 2035 bio_end_io_acct(bio, start_time); 2036 bio_endio(bio); 2037 } 2038 2039 /* 2040 * Handler function for all zram I/O requests. 2041 */ 2042 static void zram_submit_bio(struct bio *bio) 2043 { 2044 struct zram *zram = bio->bi_bdev->bd_disk->private_data; 2045 2046 if (!valid_io_request(zram, bio->bi_iter.bi_sector, 2047 bio->bi_iter.bi_size)) { 2048 atomic64_inc(&zram->stats.invalid_io); 2049 bio_io_error(bio); 2050 return; 2051 } 2052 2053 __zram_make_request(zram, bio); 2054 } 2055 2056 static void zram_slot_free_notify(struct block_device *bdev, 2057 unsigned long index) 2058 { 2059 struct zram *zram; 2060 2061 zram = bdev->bd_disk->private_data; 2062 2063 atomic64_inc(&zram->stats.notify_free); 2064 if (!zram_slot_trylock(zram, index)) { 2065 atomic64_inc(&zram->stats.miss_free); 2066 return; 2067 } 2068 2069 zram_free_page(zram, index); 2070 zram_slot_unlock(zram, index); 2071 } 2072 2073 static void zram_destroy_comps(struct zram *zram) 2074 { 2075 u32 prio; 2076 2077 for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) { 2078 struct zcomp *comp = zram->comps[prio]; 2079 2080 zram->comps[prio] = NULL; 2081 if (!comp) 2082 continue; 2083 zcomp_destroy(comp); 2084 zram->num_active_comps--; 2085 } 2086 } 2087 2088 static void zram_reset_device(struct zram *zram) 2089 { 2090 down_write(&zram->init_lock); 2091 2092 zram->limit_pages = 0; 2093 2094 if (!init_done(zram)) { 2095 up_write(&zram->init_lock); 2096 return; 2097 } 2098 2099 set_capacity_and_notify(zram->disk, 0); 2100 part_stat_set_all(zram->disk->part0, 0); 2101 2102 /* I/O operation under all of CPU are done so let's free */ 2103 zram_meta_free(zram, zram->disksize); 2104 zram->disksize = 0; 2105 zram_destroy_comps(zram); 2106 memset(&zram->stats, 0, sizeof(zram->stats)); 2107 reset_bdev(zram); 2108 2109 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor); 2110 up_write(&zram->init_lock); 2111 } 2112 2113 static ssize_t disksize_store(struct device *dev, 2114 struct device_attribute *attr, const char *buf, size_t len) 2115 { 2116 u64 disksize; 2117 struct zcomp *comp; 2118 struct zram *zram = dev_to_zram(dev); 2119 int err; 2120 u32 prio; 2121 2122 disksize = memparse(buf, NULL); 2123 if (!disksize) 2124 return -EINVAL; 2125 2126 down_write(&zram->init_lock); 2127 if (init_done(zram)) { 2128 pr_info("Cannot change disksize for initialized device\n"); 2129 err = -EBUSY; 2130 goto out_unlock; 2131 } 2132 2133 disksize = PAGE_ALIGN(disksize); 2134 if (!zram_meta_alloc(zram, disksize)) { 2135 err = -ENOMEM; 2136 goto out_unlock; 2137 } 2138 2139 for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) { 2140 if (!zram->comp_algs[prio]) 2141 continue; 2142 2143 comp = zcomp_create(zram->comp_algs[prio]); 2144 if (IS_ERR(comp)) { 2145 pr_err("Cannot initialise %s compressing backend\n", 2146 zram->comp_algs[prio]); 2147 err = PTR_ERR(comp); 2148 goto out_free_comps; 2149 } 2150 2151 zram->comps[prio] = comp; 2152 zram->num_active_comps++; 2153 } 2154 zram->disksize = disksize; 2155 set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT); 2156 up_write(&zram->init_lock); 2157 2158 return len; 2159 2160 out_free_comps: 2161 zram_destroy_comps(zram); 2162 zram_meta_free(zram, disksize); 2163 out_unlock: 2164 up_write(&zram->init_lock); 2165 return err; 2166 } 2167 2168 static ssize_t reset_store(struct device *dev, 2169 struct device_attribute *attr, const char *buf, size_t len) 2170 { 2171 int ret; 2172 unsigned short do_reset; 2173 struct zram *zram; 2174 struct gendisk *disk; 2175 2176 ret = kstrtou16(buf, 10, &do_reset); 2177 if (ret) 2178 return ret; 2179 2180 if (!do_reset) 2181 return -EINVAL; 2182 2183 zram = dev_to_zram(dev); 2184 disk = zram->disk; 2185 2186 mutex_lock(&disk->open_mutex); 2187 /* Do not reset an active device or claimed device */ 2188 if (disk_openers(disk) || zram->claim) { 2189 mutex_unlock(&disk->open_mutex); 2190 return -EBUSY; 2191 } 2192 2193 /* From now on, anyone can't open /dev/zram[0-9] */ 2194 zram->claim = true; 2195 mutex_unlock(&disk->open_mutex); 2196 2197 /* Make sure all the pending I/O are finished */ 2198 sync_blockdev(disk->part0); 2199 zram_reset_device(zram); 2200 2201 mutex_lock(&disk->open_mutex); 2202 zram->claim = false; 2203 mutex_unlock(&disk->open_mutex); 2204 2205 return len; 2206 } 2207 2208 static int zram_open(struct block_device *bdev, fmode_t mode) 2209 { 2210 int ret = 0; 2211 struct zram *zram; 2212 2213 WARN_ON(!mutex_is_locked(&bdev->bd_disk->open_mutex)); 2214 2215 zram = bdev->bd_disk->private_data; 2216 /* zram was claimed to reset so open request fails */ 2217 if (zram->claim) 2218 ret = -EBUSY; 2219 2220 return ret; 2221 } 2222 2223 static const struct block_device_operations zram_devops = { 2224 .open = zram_open, 2225 .submit_bio = zram_submit_bio, 2226 .swap_slot_free_notify = zram_slot_free_notify, 2227 .owner = THIS_MODULE 2228 }; 2229 2230 static DEVICE_ATTR_WO(compact); 2231 static DEVICE_ATTR_RW(disksize); 2232 static DEVICE_ATTR_RO(initstate); 2233 static DEVICE_ATTR_WO(reset); 2234 static DEVICE_ATTR_WO(mem_limit); 2235 static DEVICE_ATTR_WO(mem_used_max); 2236 static DEVICE_ATTR_WO(idle); 2237 static DEVICE_ATTR_RW(max_comp_streams); 2238 static DEVICE_ATTR_RW(comp_algorithm); 2239 #ifdef CONFIG_ZRAM_WRITEBACK 2240 static DEVICE_ATTR_RW(backing_dev); 2241 static DEVICE_ATTR_WO(writeback); 2242 static DEVICE_ATTR_RW(writeback_limit); 2243 static DEVICE_ATTR_RW(writeback_limit_enable); 2244 #endif 2245 #ifdef CONFIG_ZRAM_MULTI_COMP 2246 static DEVICE_ATTR_RW(recomp_algorithm); 2247 static DEVICE_ATTR_WO(recompress); 2248 #endif 2249 2250 static struct attribute *zram_disk_attrs[] = { 2251 &dev_attr_disksize.attr, 2252 &dev_attr_initstate.attr, 2253 &dev_attr_reset.attr, 2254 &dev_attr_compact.attr, 2255 &dev_attr_mem_limit.attr, 2256 &dev_attr_mem_used_max.attr, 2257 &dev_attr_idle.attr, 2258 &dev_attr_max_comp_streams.attr, 2259 &dev_attr_comp_algorithm.attr, 2260 #ifdef CONFIG_ZRAM_WRITEBACK 2261 &dev_attr_backing_dev.attr, 2262 &dev_attr_writeback.attr, 2263 &dev_attr_writeback_limit.attr, 2264 &dev_attr_writeback_limit_enable.attr, 2265 #endif 2266 &dev_attr_io_stat.attr, 2267 &dev_attr_mm_stat.attr, 2268 #ifdef CONFIG_ZRAM_WRITEBACK 2269 &dev_attr_bd_stat.attr, 2270 #endif 2271 &dev_attr_debug_stat.attr, 2272 #ifdef CONFIG_ZRAM_MULTI_COMP 2273 &dev_attr_recomp_algorithm.attr, 2274 &dev_attr_recompress.attr, 2275 #endif 2276 NULL, 2277 }; 2278 2279 ATTRIBUTE_GROUPS(zram_disk); 2280 2281 /* 2282 * Allocate and initialize new zram device. the function returns 2283 * '>= 0' device_id upon success, and negative value otherwise. 2284 */ 2285 static int zram_add(void) 2286 { 2287 struct zram *zram; 2288 int ret, device_id; 2289 2290 zram = kzalloc(sizeof(struct zram), GFP_KERNEL); 2291 if (!zram) 2292 return -ENOMEM; 2293 2294 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); 2295 if (ret < 0) 2296 goto out_free_dev; 2297 device_id = ret; 2298 2299 init_rwsem(&zram->init_lock); 2300 #ifdef CONFIG_ZRAM_WRITEBACK 2301 spin_lock_init(&zram->wb_limit_lock); 2302 #endif 2303 2304 /* gendisk structure */ 2305 zram->disk = blk_alloc_disk(NUMA_NO_NODE); 2306 if (!zram->disk) { 2307 pr_err("Error allocating disk structure for device %d\n", 2308 device_id); 2309 ret = -ENOMEM; 2310 goto out_free_idr; 2311 } 2312 2313 zram->disk->major = zram_major; 2314 zram->disk->first_minor = device_id; 2315 zram->disk->minors = 1; 2316 zram->disk->flags |= GENHD_FL_NO_PART; 2317 zram->disk->fops = &zram_devops; 2318 zram->disk->private_data = zram; 2319 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 2320 2321 /* Actual capacity set using sysfs (/sys/block/zram<id>/disksize */ 2322 set_capacity(zram->disk, 0); 2323 /* zram devices sort of resembles non-rotational disks */ 2324 blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue); 2325 blk_queue_flag_set(QUEUE_FLAG_SYNCHRONOUS, zram->disk->queue); 2326 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue); 2327 2328 /* 2329 * To ensure that we always get PAGE_SIZE aligned 2330 * and n*PAGE_SIZED sized I/O requests. 2331 */ 2332 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); 2333 blk_queue_logical_block_size(zram->disk->queue, 2334 ZRAM_LOGICAL_BLOCK_SIZE); 2335 blk_queue_io_min(zram->disk->queue, PAGE_SIZE); 2336 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); 2337 zram->disk->queue->limits.discard_granularity = PAGE_SIZE; 2338 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX); 2339 2340 /* 2341 * zram_bio_discard() will clear all logical blocks if logical block 2342 * size is identical with physical block size(PAGE_SIZE). But if it is 2343 * different, we will skip discarding some parts of logical blocks in 2344 * the part of the request range which isn't aligned to physical block 2345 * size. So we can't ensure that all discarded logical blocks are 2346 * zeroed. 2347 */ 2348 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) 2349 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX); 2350 2351 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, zram->disk->queue); 2352 ret = device_add_disk(NULL, zram->disk, zram_disk_groups); 2353 if (ret) 2354 goto out_cleanup_disk; 2355 2356 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor); 2357 2358 zram_debugfs_register(zram); 2359 pr_info("Added device: %s\n", zram->disk->disk_name); 2360 return device_id; 2361 2362 out_cleanup_disk: 2363 put_disk(zram->disk); 2364 out_free_idr: 2365 idr_remove(&zram_index_idr, device_id); 2366 out_free_dev: 2367 kfree(zram); 2368 return ret; 2369 } 2370 2371 static int zram_remove(struct zram *zram) 2372 { 2373 bool claimed; 2374 2375 mutex_lock(&zram->disk->open_mutex); 2376 if (disk_openers(zram->disk)) { 2377 mutex_unlock(&zram->disk->open_mutex); 2378 return -EBUSY; 2379 } 2380 2381 claimed = zram->claim; 2382 if (!claimed) 2383 zram->claim = true; 2384 mutex_unlock(&zram->disk->open_mutex); 2385 2386 zram_debugfs_unregister(zram); 2387 2388 if (claimed) { 2389 /* 2390 * If we were claimed by reset_store(), del_gendisk() will 2391 * wait until reset_store() is done, so nothing need to do. 2392 */ 2393 ; 2394 } else { 2395 /* Make sure all the pending I/O are finished */ 2396 sync_blockdev(zram->disk->part0); 2397 zram_reset_device(zram); 2398 } 2399 2400 pr_info("Removed device: %s\n", zram->disk->disk_name); 2401 2402 del_gendisk(zram->disk); 2403 2404 /* del_gendisk drains pending reset_store */ 2405 WARN_ON_ONCE(claimed && zram->claim); 2406 2407 /* 2408 * disksize_store() may be called in between zram_reset_device() 2409 * and del_gendisk(), so run the last reset to avoid leaking 2410 * anything allocated with disksize_store() 2411 */ 2412 zram_reset_device(zram); 2413 2414 put_disk(zram->disk); 2415 kfree(zram); 2416 return 0; 2417 } 2418 2419 /* zram-control sysfs attributes */ 2420 2421 /* 2422 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a 2423 * sense that reading from this file does alter the state of your system -- it 2424 * creates a new un-initialized zram device and returns back this device's 2425 * device_id (or an error code if it fails to create a new device). 2426 */ 2427 static ssize_t hot_add_show(struct class *class, 2428 struct class_attribute *attr, 2429 char *buf) 2430 { 2431 int ret; 2432 2433 mutex_lock(&zram_index_mutex); 2434 ret = zram_add(); 2435 mutex_unlock(&zram_index_mutex); 2436 2437 if (ret < 0) 2438 return ret; 2439 return scnprintf(buf, PAGE_SIZE, "%d\n", ret); 2440 } 2441 static struct class_attribute class_attr_hot_add = 2442 __ATTR(hot_add, 0400, hot_add_show, NULL); 2443 2444 static ssize_t hot_remove_store(struct class *class, 2445 struct class_attribute *attr, 2446 const char *buf, 2447 size_t count) 2448 { 2449 struct zram *zram; 2450 int ret, dev_id; 2451 2452 /* dev_id is gendisk->first_minor, which is `int' */ 2453 ret = kstrtoint(buf, 10, &dev_id); 2454 if (ret) 2455 return ret; 2456 if (dev_id < 0) 2457 return -EINVAL; 2458 2459 mutex_lock(&zram_index_mutex); 2460 2461 zram = idr_find(&zram_index_idr, dev_id); 2462 if (zram) { 2463 ret = zram_remove(zram); 2464 if (!ret) 2465 idr_remove(&zram_index_idr, dev_id); 2466 } else { 2467 ret = -ENODEV; 2468 } 2469 2470 mutex_unlock(&zram_index_mutex); 2471 return ret ? ret : count; 2472 } 2473 static CLASS_ATTR_WO(hot_remove); 2474 2475 static struct attribute *zram_control_class_attrs[] = { 2476 &class_attr_hot_add.attr, 2477 &class_attr_hot_remove.attr, 2478 NULL, 2479 }; 2480 ATTRIBUTE_GROUPS(zram_control_class); 2481 2482 static struct class zram_control_class = { 2483 .name = "zram-control", 2484 .owner = THIS_MODULE, 2485 .class_groups = zram_control_class_groups, 2486 }; 2487 2488 static int zram_remove_cb(int id, void *ptr, void *data) 2489 { 2490 WARN_ON_ONCE(zram_remove(ptr)); 2491 return 0; 2492 } 2493 2494 static void destroy_devices(void) 2495 { 2496 class_unregister(&zram_control_class); 2497 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); 2498 zram_debugfs_destroy(); 2499 idr_destroy(&zram_index_idr); 2500 unregister_blkdev(zram_major, "zram"); 2501 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2502 } 2503 2504 static int __init zram_init(void) 2505 { 2506 int ret; 2507 2508 BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > BITS_PER_LONG); 2509 2510 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare", 2511 zcomp_cpu_up_prepare, zcomp_cpu_dead); 2512 if (ret < 0) 2513 return ret; 2514 2515 ret = class_register(&zram_control_class); 2516 if (ret) { 2517 pr_err("Unable to register zram-control class\n"); 2518 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2519 return ret; 2520 } 2521 2522 zram_debugfs_create(); 2523 zram_major = register_blkdev(0, "zram"); 2524 if (zram_major <= 0) { 2525 pr_err("Unable to get major number\n"); 2526 class_unregister(&zram_control_class); 2527 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2528 return -EBUSY; 2529 } 2530 2531 while (num_devices != 0) { 2532 mutex_lock(&zram_index_mutex); 2533 ret = zram_add(); 2534 mutex_unlock(&zram_index_mutex); 2535 if (ret < 0) 2536 goto out_error; 2537 num_devices--; 2538 } 2539 2540 return 0; 2541 2542 out_error: 2543 destroy_devices(); 2544 return ret; 2545 } 2546 2547 static void __exit zram_exit(void) 2548 { 2549 destroy_devices(); 2550 } 2551 2552 module_init(zram_init); 2553 module_exit(zram_exit); 2554 2555 module_param(num_devices, uint, 0); 2556 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); 2557 2558 MODULE_LICENSE("Dual BSD/GPL"); 2559 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2560 MODULE_DESCRIPTION("Compressed RAM Block Device"); 2561