xref: /linux/drivers/block/zram/zram_drv.c (revision 0a94608f0f7de9b1135ffea3546afe68eafef57f)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
33 #include <linux/debugfs.h>
34 #include <linux/cpuhotplug.h>
35 #include <linux/part_stat.h>
36 
37 #include "zram_drv.h"
38 
39 static DEFINE_IDR(zram_index_idr);
40 /* idr index must be protected */
41 static DEFINE_MUTEX(zram_index_mutex);
42 
43 static int zram_major;
44 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP;
45 
46 /* Module params (documentation at end) */
47 static unsigned int num_devices = 1;
48 /*
49  * Pages that compress to sizes equals or greater than this are stored
50  * uncompressed in memory.
51  */
52 static size_t huge_class_size;
53 
54 static const struct block_device_operations zram_devops;
55 static const struct block_device_operations zram_wb_devops;
56 
57 static void zram_free_page(struct zram *zram, size_t index);
58 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
59 				u32 index, int offset, struct bio *bio);
60 
61 
62 static int zram_slot_trylock(struct zram *zram, u32 index)
63 {
64 	return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags);
65 }
66 
67 static void zram_slot_lock(struct zram *zram, u32 index)
68 {
69 	bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags);
70 }
71 
72 static void zram_slot_unlock(struct zram *zram, u32 index)
73 {
74 	bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags);
75 }
76 
77 static inline bool init_done(struct zram *zram)
78 {
79 	return zram->disksize;
80 }
81 
82 static inline struct zram *dev_to_zram(struct device *dev)
83 {
84 	return (struct zram *)dev_to_disk(dev)->private_data;
85 }
86 
87 static unsigned long zram_get_handle(struct zram *zram, u32 index)
88 {
89 	return zram->table[index].handle;
90 }
91 
92 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
93 {
94 	zram->table[index].handle = handle;
95 }
96 
97 /* flag operations require table entry bit_spin_lock() being held */
98 static bool zram_test_flag(struct zram *zram, u32 index,
99 			enum zram_pageflags flag)
100 {
101 	return zram->table[index].flags & BIT(flag);
102 }
103 
104 static void zram_set_flag(struct zram *zram, u32 index,
105 			enum zram_pageflags flag)
106 {
107 	zram->table[index].flags |= BIT(flag);
108 }
109 
110 static void zram_clear_flag(struct zram *zram, u32 index,
111 			enum zram_pageflags flag)
112 {
113 	zram->table[index].flags &= ~BIT(flag);
114 }
115 
116 static inline void zram_set_element(struct zram *zram, u32 index,
117 			unsigned long element)
118 {
119 	zram->table[index].element = element;
120 }
121 
122 static unsigned long zram_get_element(struct zram *zram, u32 index)
123 {
124 	return zram->table[index].element;
125 }
126 
127 static size_t zram_get_obj_size(struct zram *zram, u32 index)
128 {
129 	return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
130 }
131 
132 static void zram_set_obj_size(struct zram *zram,
133 					u32 index, size_t size)
134 {
135 	unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
136 
137 	zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
138 }
139 
140 static inline bool zram_allocated(struct zram *zram, u32 index)
141 {
142 	return zram_get_obj_size(zram, index) ||
143 			zram_test_flag(zram, index, ZRAM_SAME) ||
144 			zram_test_flag(zram, index, ZRAM_WB);
145 }
146 
147 #if PAGE_SIZE != 4096
148 static inline bool is_partial_io(struct bio_vec *bvec)
149 {
150 	return bvec->bv_len != PAGE_SIZE;
151 }
152 #else
153 static inline bool is_partial_io(struct bio_vec *bvec)
154 {
155 	return false;
156 }
157 #endif
158 
159 /*
160  * Check if request is within bounds and aligned on zram logical blocks.
161  */
162 static inline bool valid_io_request(struct zram *zram,
163 		sector_t start, unsigned int size)
164 {
165 	u64 end, bound;
166 
167 	/* unaligned request */
168 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
169 		return false;
170 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
171 		return false;
172 
173 	end = start + (size >> SECTOR_SHIFT);
174 	bound = zram->disksize >> SECTOR_SHIFT;
175 	/* out of range range */
176 	if (unlikely(start >= bound || end > bound || start > end))
177 		return false;
178 
179 	/* I/O request is valid */
180 	return true;
181 }
182 
183 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
184 {
185 	*index  += (*offset + bvec->bv_len) / PAGE_SIZE;
186 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
187 }
188 
189 static inline void update_used_max(struct zram *zram,
190 					const unsigned long pages)
191 {
192 	unsigned long old_max, cur_max;
193 
194 	old_max = atomic_long_read(&zram->stats.max_used_pages);
195 
196 	do {
197 		cur_max = old_max;
198 		if (pages > cur_max)
199 			old_max = atomic_long_cmpxchg(
200 				&zram->stats.max_used_pages, cur_max, pages);
201 	} while (old_max != cur_max);
202 }
203 
204 static inline void zram_fill_page(void *ptr, unsigned long len,
205 					unsigned long value)
206 {
207 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
208 	memset_l(ptr, value, len / sizeof(unsigned long));
209 }
210 
211 static bool page_same_filled(void *ptr, unsigned long *element)
212 {
213 	unsigned long *page;
214 	unsigned long val;
215 	unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
216 
217 	page = (unsigned long *)ptr;
218 	val = page[0];
219 
220 	if (val != page[last_pos])
221 		return false;
222 
223 	for (pos = 1; pos < last_pos; pos++) {
224 		if (val != page[pos])
225 			return false;
226 	}
227 
228 	*element = val;
229 
230 	return true;
231 }
232 
233 static ssize_t initstate_show(struct device *dev,
234 		struct device_attribute *attr, char *buf)
235 {
236 	u32 val;
237 	struct zram *zram = dev_to_zram(dev);
238 
239 	down_read(&zram->init_lock);
240 	val = init_done(zram);
241 	up_read(&zram->init_lock);
242 
243 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
244 }
245 
246 static ssize_t disksize_show(struct device *dev,
247 		struct device_attribute *attr, char *buf)
248 {
249 	struct zram *zram = dev_to_zram(dev);
250 
251 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
252 }
253 
254 static ssize_t mem_limit_store(struct device *dev,
255 		struct device_attribute *attr, const char *buf, size_t len)
256 {
257 	u64 limit;
258 	char *tmp;
259 	struct zram *zram = dev_to_zram(dev);
260 
261 	limit = memparse(buf, &tmp);
262 	if (buf == tmp) /* no chars parsed, invalid input */
263 		return -EINVAL;
264 
265 	down_write(&zram->init_lock);
266 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
267 	up_write(&zram->init_lock);
268 
269 	return len;
270 }
271 
272 static ssize_t mem_used_max_store(struct device *dev,
273 		struct device_attribute *attr, const char *buf, size_t len)
274 {
275 	int err;
276 	unsigned long val;
277 	struct zram *zram = dev_to_zram(dev);
278 
279 	err = kstrtoul(buf, 10, &val);
280 	if (err || val != 0)
281 		return -EINVAL;
282 
283 	down_read(&zram->init_lock);
284 	if (init_done(zram)) {
285 		atomic_long_set(&zram->stats.max_used_pages,
286 				zs_get_total_pages(zram->mem_pool));
287 	}
288 	up_read(&zram->init_lock);
289 
290 	return len;
291 }
292 
293 /*
294  * Mark all pages which are older than or equal to cutoff as IDLE.
295  * Callers should hold the zram init lock in read mode
296  */
297 static void mark_idle(struct zram *zram, ktime_t cutoff)
298 {
299 	int is_idle = 1;
300 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
301 	int index;
302 
303 	for (index = 0; index < nr_pages; index++) {
304 		/*
305 		 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race.
306 		 * See the comment in writeback_store.
307 		 */
308 		zram_slot_lock(zram, index);
309 		if (zram_allocated(zram, index) &&
310 				!zram_test_flag(zram, index, ZRAM_UNDER_WB)) {
311 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
312 			is_idle = !cutoff || ktime_after(cutoff, zram->table[index].ac_time);
313 #endif
314 			if (is_idle)
315 				zram_set_flag(zram, index, ZRAM_IDLE);
316 		}
317 		zram_slot_unlock(zram, index);
318 	}
319 }
320 
321 static ssize_t idle_store(struct device *dev,
322 		struct device_attribute *attr, const char *buf, size_t len)
323 {
324 	struct zram *zram = dev_to_zram(dev);
325 	ktime_t cutoff_time = 0;
326 	ssize_t rv = -EINVAL;
327 
328 	if (!sysfs_streq(buf, "all")) {
329 		/*
330 		 * If it did not parse as 'all' try to treat it as an integer when
331 		 * we have memory tracking enabled.
332 		 */
333 		u64 age_sec;
334 
335 		if (IS_ENABLED(CONFIG_ZRAM_MEMORY_TRACKING) && !kstrtoull(buf, 0, &age_sec))
336 			cutoff_time = ktime_sub(ktime_get_boottime(),
337 					ns_to_ktime(age_sec * NSEC_PER_SEC));
338 		else
339 			goto out;
340 	}
341 
342 	down_read(&zram->init_lock);
343 	if (!init_done(zram))
344 		goto out_unlock;
345 
346 	/* A cutoff_time of 0 marks everything as idle, this is the "all" behavior */
347 	mark_idle(zram, cutoff_time);
348 	rv = len;
349 
350 out_unlock:
351 	up_read(&zram->init_lock);
352 out:
353 	return rv;
354 }
355 
356 #ifdef CONFIG_ZRAM_WRITEBACK
357 static ssize_t writeback_limit_enable_store(struct device *dev,
358 		struct device_attribute *attr, const char *buf, size_t len)
359 {
360 	struct zram *zram = dev_to_zram(dev);
361 	u64 val;
362 	ssize_t ret = -EINVAL;
363 
364 	if (kstrtoull(buf, 10, &val))
365 		return ret;
366 
367 	down_read(&zram->init_lock);
368 	spin_lock(&zram->wb_limit_lock);
369 	zram->wb_limit_enable = val;
370 	spin_unlock(&zram->wb_limit_lock);
371 	up_read(&zram->init_lock);
372 	ret = len;
373 
374 	return ret;
375 }
376 
377 static ssize_t writeback_limit_enable_show(struct device *dev,
378 		struct device_attribute *attr, char *buf)
379 {
380 	bool val;
381 	struct zram *zram = dev_to_zram(dev);
382 
383 	down_read(&zram->init_lock);
384 	spin_lock(&zram->wb_limit_lock);
385 	val = zram->wb_limit_enable;
386 	spin_unlock(&zram->wb_limit_lock);
387 	up_read(&zram->init_lock);
388 
389 	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
390 }
391 
392 static ssize_t writeback_limit_store(struct device *dev,
393 		struct device_attribute *attr, const char *buf, size_t len)
394 {
395 	struct zram *zram = dev_to_zram(dev);
396 	u64 val;
397 	ssize_t ret = -EINVAL;
398 
399 	if (kstrtoull(buf, 10, &val))
400 		return ret;
401 
402 	down_read(&zram->init_lock);
403 	spin_lock(&zram->wb_limit_lock);
404 	zram->bd_wb_limit = val;
405 	spin_unlock(&zram->wb_limit_lock);
406 	up_read(&zram->init_lock);
407 	ret = len;
408 
409 	return ret;
410 }
411 
412 static ssize_t writeback_limit_show(struct device *dev,
413 		struct device_attribute *attr, char *buf)
414 {
415 	u64 val;
416 	struct zram *zram = dev_to_zram(dev);
417 
418 	down_read(&zram->init_lock);
419 	spin_lock(&zram->wb_limit_lock);
420 	val = zram->bd_wb_limit;
421 	spin_unlock(&zram->wb_limit_lock);
422 	up_read(&zram->init_lock);
423 
424 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
425 }
426 
427 static void reset_bdev(struct zram *zram)
428 {
429 	struct block_device *bdev;
430 
431 	if (!zram->backing_dev)
432 		return;
433 
434 	bdev = zram->bdev;
435 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
436 	/* hope filp_close flush all of IO */
437 	filp_close(zram->backing_dev, NULL);
438 	zram->backing_dev = NULL;
439 	zram->bdev = NULL;
440 	zram->disk->fops = &zram_devops;
441 	kvfree(zram->bitmap);
442 	zram->bitmap = NULL;
443 }
444 
445 static ssize_t backing_dev_show(struct device *dev,
446 		struct device_attribute *attr, char *buf)
447 {
448 	struct file *file;
449 	struct zram *zram = dev_to_zram(dev);
450 	char *p;
451 	ssize_t ret;
452 
453 	down_read(&zram->init_lock);
454 	file = zram->backing_dev;
455 	if (!file) {
456 		memcpy(buf, "none\n", 5);
457 		up_read(&zram->init_lock);
458 		return 5;
459 	}
460 
461 	p = file_path(file, buf, PAGE_SIZE - 1);
462 	if (IS_ERR(p)) {
463 		ret = PTR_ERR(p);
464 		goto out;
465 	}
466 
467 	ret = strlen(p);
468 	memmove(buf, p, ret);
469 	buf[ret++] = '\n';
470 out:
471 	up_read(&zram->init_lock);
472 	return ret;
473 }
474 
475 static ssize_t backing_dev_store(struct device *dev,
476 		struct device_attribute *attr, const char *buf, size_t len)
477 {
478 	char *file_name;
479 	size_t sz;
480 	struct file *backing_dev = NULL;
481 	struct inode *inode;
482 	struct address_space *mapping;
483 	unsigned int bitmap_sz;
484 	unsigned long nr_pages, *bitmap = NULL;
485 	struct block_device *bdev = NULL;
486 	int err;
487 	struct zram *zram = dev_to_zram(dev);
488 
489 	file_name = kmalloc(PATH_MAX, GFP_KERNEL);
490 	if (!file_name)
491 		return -ENOMEM;
492 
493 	down_write(&zram->init_lock);
494 	if (init_done(zram)) {
495 		pr_info("Can't setup backing device for initialized device\n");
496 		err = -EBUSY;
497 		goto out;
498 	}
499 
500 	strlcpy(file_name, buf, PATH_MAX);
501 	/* ignore trailing newline */
502 	sz = strlen(file_name);
503 	if (sz > 0 && file_name[sz - 1] == '\n')
504 		file_name[sz - 1] = 0x00;
505 
506 	backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
507 	if (IS_ERR(backing_dev)) {
508 		err = PTR_ERR(backing_dev);
509 		backing_dev = NULL;
510 		goto out;
511 	}
512 
513 	mapping = backing_dev->f_mapping;
514 	inode = mapping->host;
515 
516 	/* Support only block device in this moment */
517 	if (!S_ISBLK(inode->i_mode)) {
518 		err = -ENOTBLK;
519 		goto out;
520 	}
521 
522 	bdev = blkdev_get_by_dev(inode->i_rdev,
523 			FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
524 	if (IS_ERR(bdev)) {
525 		err = PTR_ERR(bdev);
526 		bdev = NULL;
527 		goto out;
528 	}
529 
530 	nr_pages = i_size_read(inode) >> PAGE_SHIFT;
531 	bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
532 	bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
533 	if (!bitmap) {
534 		err = -ENOMEM;
535 		goto out;
536 	}
537 
538 	reset_bdev(zram);
539 
540 	zram->bdev = bdev;
541 	zram->backing_dev = backing_dev;
542 	zram->bitmap = bitmap;
543 	zram->nr_pages = nr_pages;
544 	/*
545 	 * With writeback feature, zram does asynchronous IO so it's no longer
546 	 * synchronous device so let's remove synchronous io flag. Othewise,
547 	 * upper layer(e.g., swap) could wait IO completion rather than
548 	 * (submit and return), which will cause system sluggish.
549 	 * Furthermore, when the IO function returns(e.g., swap_readpage),
550 	 * upper layer expects IO was done so it could deallocate the page
551 	 * freely but in fact, IO is going on so finally could cause
552 	 * use-after-free when the IO is really done.
553 	 */
554 	zram->disk->fops = &zram_wb_devops;
555 	up_write(&zram->init_lock);
556 
557 	pr_info("setup backing device %s\n", file_name);
558 	kfree(file_name);
559 
560 	return len;
561 out:
562 	kvfree(bitmap);
563 
564 	if (bdev)
565 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
566 
567 	if (backing_dev)
568 		filp_close(backing_dev, NULL);
569 
570 	up_write(&zram->init_lock);
571 
572 	kfree(file_name);
573 
574 	return err;
575 }
576 
577 static unsigned long alloc_block_bdev(struct zram *zram)
578 {
579 	unsigned long blk_idx = 1;
580 retry:
581 	/* skip 0 bit to confuse zram.handle = 0 */
582 	blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
583 	if (blk_idx == zram->nr_pages)
584 		return 0;
585 
586 	if (test_and_set_bit(blk_idx, zram->bitmap))
587 		goto retry;
588 
589 	atomic64_inc(&zram->stats.bd_count);
590 	return blk_idx;
591 }
592 
593 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
594 {
595 	int was_set;
596 
597 	was_set = test_and_clear_bit(blk_idx, zram->bitmap);
598 	WARN_ON_ONCE(!was_set);
599 	atomic64_dec(&zram->stats.bd_count);
600 }
601 
602 static void zram_page_end_io(struct bio *bio)
603 {
604 	struct page *page = bio_first_page_all(bio);
605 
606 	page_endio(page, op_is_write(bio_op(bio)),
607 			blk_status_to_errno(bio->bi_status));
608 	bio_put(bio);
609 }
610 
611 /*
612  * Returns 1 if the submission is successful.
613  */
614 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
615 			unsigned long entry, struct bio *parent)
616 {
617 	struct bio *bio;
618 
619 	bio = bio_alloc(zram->bdev, 1, parent ? parent->bi_opf : REQ_OP_READ,
620 			GFP_NOIO);
621 	if (!bio)
622 		return -ENOMEM;
623 
624 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
625 	if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
626 		bio_put(bio);
627 		return -EIO;
628 	}
629 
630 	if (!parent)
631 		bio->bi_end_io = zram_page_end_io;
632 	else
633 		bio_chain(bio, parent);
634 
635 	submit_bio(bio);
636 	return 1;
637 }
638 
639 #define PAGE_WB_SIG "page_index="
640 
641 #define PAGE_WRITEBACK 0
642 #define HUGE_WRITEBACK 1
643 #define IDLE_WRITEBACK 2
644 
645 
646 static ssize_t writeback_store(struct device *dev,
647 		struct device_attribute *attr, const char *buf, size_t len)
648 {
649 	struct zram *zram = dev_to_zram(dev);
650 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
651 	unsigned long index = 0;
652 	struct bio bio;
653 	struct bio_vec bio_vec;
654 	struct page *page;
655 	ssize_t ret = len;
656 	int mode, err;
657 	unsigned long blk_idx = 0;
658 
659 	if (sysfs_streq(buf, "idle"))
660 		mode = IDLE_WRITEBACK;
661 	else if (sysfs_streq(buf, "huge"))
662 		mode = HUGE_WRITEBACK;
663 	else {
664 		if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1))
665 			return -EINVAL;
666 
667 		if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) ||
668 				index >= nr_pages)
669 			return -EINVAL;
670 
671 		nr_pages = 1;
672 		mode = PAGE_WRITEBACK;
673 	}
674 
675 	down_read(&zram->init_lock);
676 	if (!init_done(zram)) {
677 		ret = -EINVAL;
678 		goto release_init_lock;
679 	}
680 
681 	if (!zram->backing_dev) {
682 		ret = -ENODEV;
683 		goto release_init_lock;
684 	}
685 
686 	page = alloc_page(GFP_KERNEL);
687 	if (!page) {
688 		ret = -ENOMEM;
689 		goto release_init_lock;
690 	}
691 
692 	for (; nr_pages != 0; index++, nr_pages--) {
693 		struct bio_vec bvec;
694 
695 		bvec.bv_page = page;
696 		bvec.bv_len = PAGE_SIZE;
697 		bvec.bv_offset = 0;
698 
699 		spin_lock(&zram->wb_limit_lock);
700 		if (zram->wb_limit_enable && !zram->bd_wb_limit) {
701 			spin_unlock(&zram->wb_limit_lock);
702 			ret = -EIO;
703 			break;
704 		}
705 		spin_unlock(&zram->wb_limit_lock);
706 
707 		if (!blk_idx) {
708 			blk_idx = alloc_block_bdev(zram);
709 			if (!blk_idx) {
710 				ret = -ENOSPC;
711 				break;
712 			}
713 		}
714 
715 		zram_slot_lock(zram, index);
716 		if (!zram_allocated(zram, index))
717 			goto next;
718 
719 		if (zram_test_flag(zram, index, ZRAM_WB) ||
720 				zram_test_flag(zram, index, ZRAM_SAME) ||
721 				zram_test_flag(zram, index, ZRAM_UNDER_WB))
722 			goto next;
723 
724 		if (mode == IDLE_WRITEBACK &&
725 			  !zram_test_flag(zram, index, ZRAM_IDLE))
726 			goto next;
727 		if (mode == HUGE_WRITEBACK &&
728 			  !zram_test_flag(zram, index, ZRAM_HUGE))
729 			goto next;
730 		/*
731 		 * Clearing ZRAM_UNDER_WB is duty of caller.
732 		 * IOW, zram_free_page never clear it.
733 		 */
734 		zram_set_flag(zram, index, ZRAM_UNDER_WB);
735 		/* Need for hugepage writeback racing */
736 		zram_set_flag(zram, index, ZRAM_IDLE);
737 		zram_slot_unlock(zram, index);
738 		if (zram_bvec_read(zram, &bvec, index, 0, NULL)) {
739 			zram_slot_lock(zram, index);
740 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
741 			zram_clear_flag(zram, index, ZRAM_IDLE);
742 			zram_slot_unlock(zram, index);
743 			continue;
744 		}
745 
746 		bio_init(&bio, zram->bdev, &bio_vec, 1,
747 			 REQ_OP_WRITE | REQ_SYNC);
748 		bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
749 
750 		bio_add_page(&bio, bvec.bv_page, bvec.bv_len,
751 				bvec.bv_offset);
752 		/*
753 		 * XXX: A single page IO would be inefficient for write
754 		 * but it would be not bad as starter.
755 		 */
756 		err = submit_bio_wait(&bio);
757 		if (err) {
758 			zram_slot_lock(zram, index);
759 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
760 			zram_clear_flag(zram, index, ZRAM_IDLE);
761 			zram_slot_unlock(zram, index);
762 			/*
763 			 * Return last IO error unless every IO were
764 			 * not suceeded.
765 			 */
766 			ret = err;
767 			continue;
768 		}
769 
770 		atomic64_inc(&zram->stats.bd_writes);
771 		/*
772 		 * We released zram_slot_lock so need to check if the slot was
773 		 * changed. If there is freeing for the slot, we can catch it
774 		 * easily by zram_allocated.
775 		 * A subtle case is the slot is freed/reallocated/marked as
776 		 * ZRAM_IDLE again. To close the race, idle_store doesn't
777 		 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB.
778 		 * Thus, we could close the race by checking ZRAM_IDLE bit.
779 		 */
780 		zram_slot_lock(zram, index);
781 		if (!zram_allocated(zram, index) ||
782 			  !zram_test_flag(zram, index, ZRAM_IDLE)) {
783 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
784 			zram_clear_flag(zram, index, ZRAM_IDLE);
785 			goto next;
786 		}
787 
788 		zram_free_page(zram, index);
789 		zram_clear_flag(zram, index, ZRAM_UNDER_WB);
790 		zram_set_flag(zram, index, ZRAM_WB);
791 		zram_set_element(zram, index, blk_idx);
792 		blk_idx = 0;
793 		atomic64_inc(&zram->stats.pages_stored);
794 		spin_lock(&zram->wb_limit_lock);
795 		if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
796 			zram->bd_wb_limit -=  1UL << (PAGE_SHIFT - 12);
797 		spin_unlock(&zram->wb_limit_lock);
798 next:
799 		zram_slot_unlock(zram, index);
800 	}
801 
802 	if (blk_idx)
803 		free_block_bdev(zram, blk_idx);
804 	__free_page(page);
805 release_init_lock:
806 	up_read(&zram->init_lock);
807 
808 	return ret;
809 }
810 
811 struct zram_work {
812 	struct work_struct work;
813 	struct zram *zram;
814 	unsigned long entry;
815 	struct bio *bio;
816 	struct bio_vec bvec;
817 };
818 
819 #if PAGE_SIZE != 4096
820 static void zram_sync_read(struct work_struct *work)
821 {
822 	struct zram_work *zw = container_of(work, struct zram_work, work);
823 	struct zram *zram = zw->zram;
824 	unsigned long entry = zw->entry;
825 	struct bio *bio = zw->bio;
826 
827 	read_from_bdev_async(zram, &zw->bvec, entry, bio);
828 }
829 
830 /*
831  * Block layer want one ->submit_bio to be active at a time, so if we use
832  * chained IO with parent IO in same context, it's a deadlock. To avoid that,
833  * use a worker thread context.
834  */
835 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
836 				unsigned long entry, struct bio *bio)
837 {
838 	struct zram_work work;
839 
840 	work.bvec = *bvec;
841 	work.zram = zram;
842 	work.entry = entry;
843 	work.bio = bio;
844 
845 	INIT_WORK_ONSTACK(&work.work, zram_sync_read);
846 	queue_work(system_unbound_wq, &work.work);
847 	flush_work(&work.work);
848 	destroy_work_on_stack(&work.work);
849 
850 	return 1;
851 }
852 #else
853 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
854 				unsigned long entry, struct bio *bio)
855 {
856 	WARN_ON(1);
857 	return -EIO;
858 }
859 #endif
860 
861 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
862 			unsigned long entry, struct bio *parent, bool sync)
863 {
864 	atomic64_inc(&zram->stats.bd_reads);
865 	if (sync)
866 		return read_from_bdev_sync(zram, bvec, entry, parent);
867 	else
868 		return read_from_bdev_async(zram, bvec, entry, parent);
869 }
870 #else
871 static inline void reset_bdev(struct zram *zram) {};
872 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
873 			unsigned long entry, struct bio *parent, bool sync)
874 {
875 	return -EIO;
876 }
877 
878 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
879 #endif
880 
881 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
882 
883 static struct dentry *zram_debugfs_root;
884 
885 static void zram_debugfs_create(void)
886 {
887 	zram_debugfs_root = debugfs_create_dir("zram", NULL);
888 }
889 
890 static void zram_debugfs_destroy(void)
891 {
892 	debugfs_remove_recursive(zram_debugfs_root);
893 }
894 
895 static void zram_accessed(struct zram *zram, u32 index)
896 {
897 	zram_clear_flag(zram, index, ZRAM_IDLE);
898 	zram->table[index].ac_time = ktime_get_boottime();
899 }
900 
901 static ssize_t read_block_state(struct file *file, char __user *buf,
902 				size_t count, loff_t *ppos)
903 {
904 	char *kbuf;
905 	ssize_t index, written = 0;
906 	struct zram *zram = file->private_data;
907 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
908 	struct timespec64 ts;
909 
910 	kbuf = kvmalloc(count, GFP_KERNEL);
911 	if (!kbuf)
912 		return -ENOMEM;
913 
914 	down_read(&zram->init_lock);
915 	if (!init_done(zram)) {
916 		up_read(&zram->init_lock);
917 		kvfree(kbuf);
918 		return -EINVAL;
919 	}
920 
921 	for (index = *ppos; index < nr_pages; index++) {
922 		int copied;
923 
924 		zram_slot_lock(zram, index);
925 		if (!zram_allocated(zram, index))
926 			goto next;
927 
928 		ts = ktime_to_timespec64(zram->table[index].ac_time);
929 		copied = snprintf(kbuf + written, count,
930 			"%12zd %12lld.%06lu %c%c%c%c\n",
931 			index, (s64)ts.tv_sec,
932 			ts.tv_nsec / NSEC_PER_USEC,
933 			zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
934 			zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
935 			zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
936 			zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.');
937 
938 		if (count <= copied) {
939 			zram_slot_unlock(zram, index);
940 			break;
941 		}
942 		written += copied;
943 		count -= copied;
944 next:
945 		zram_slot_unlock(zram, index);
946 		*ppos += 1;
947 	}
948 
949 	up_read(&zram->init_lock);
950 	if (copy_to_user(buf, kbuf, written))
951 		written = -EFAULT;
952 	kvfree(kbuf);
953 
954 	return written;
955 }
956 
957 static const struct file_operations proc_zram_block_state_op = {
958 	.open = simple_open,
959 	.read = read_block_state,
960 	.llseek = default_llseek,
961 };
962 
963 static void zram_debugfs_register(struct zram *zram)
964 {
965 	if (!zram_debugfs_root)
966 		return;
967 
968 	zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
969 						zram_debugfs_root);
970 	debugfs_create_file("block_state", 0400, zram->debugfs_dir,
971 				zram, &proc_zram_block_state_op);
972 }
973 
974 static void zram_debugfs_unregister(struct zram *zram)
975 {
976 	debugfs_remove_recursive(zram->debugfs_dir);
977 }
978 #else
979 static void zram_debugfs_create(void) {};
980 static void zram_debugfs_destroy(void) {};
981 static void zram_accessed(struct zram *zram, u32 index)
982 {
983 	zram_clear_flag(zram, index, ZRAM_IDLE);
984 };
985 static void zram_debugfs_register(struct zram *zram) {};
986 static void zram_debugfs_unregister(struct zram *zram) {};
987 #endif
988 
989 /*
990  * We switched to per-cpu streams and this attr is not needed anymore.
991  * However, we will keep it around for some time, because:
992  * a) we may revert per-cpu streams in the future
993  * b) it's visible to user space and we need to follow our 2 years
994  *    retirement rule; but we already have a number of 'soon to be
995  *    altered' attrs, so max_comp_streams need to wait for the next
996  *    layoff cycle.
997  */
998 static ssize_t max_comp_streams_show(struct device *dev,
999 		struct device_attribute *attr, char *buf)
1000 {
1001 	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
1002 }
1003 
1004 static ssize_t max_comp_streams_store(struct device *dev,
1005 		struct device_attribute *attr, const char *buf, size_t len)
1006 {
1007 	return len;
1008 }
1009 
1010 static ssize_t comp_algorithm_show(struct device *dev,
1011 		struct device_attribute *attr, char *buf)
1012 {
1013 	size_t sz;
1014 	struct zram *zram = dev_to_zram(dev);
1015 
1016 	down_read(&zram->init_lock);
1017 	sz = zcomp_available_show(zram->compressor, buf);
1018 	up_read(&zram->init_lock);
1019 
1020 	return sz;
1021 }
1022 
1023 static ssize_t comp_algorithm_store(struct device *dev,
1024 		struct device_attribute *attr, const char *buf, size_t len)
1025 {
1026 	struct zram *zram = dev_to_zram(dev);
1027 	char compressor[ARRAY_SIZE(zram->compressor)];
1028 	size_t sz;
1029 
1030 	strlcpy(compressor, buf, sizeof(compressor));
1031 	/* ignore trailing newline */
1032 	sz = strlen(compressor);
1033 	if (sz > 0 && compressor[sz - 1] == '\n')
1034 		compressor[sz - 1] = 0x00;
1035 
1036 	if (!zcomp_available_algorithm(compressor))
1037 		return -EINVAL;
1038 
1039 	down_write(&zram->init_lock);
1040 	if (init_done(zram)) {
1041 		up_write(&zram->init_lock);
1042 		pr_info("Can't change algorithm for initialized device\n");
1043 		return -EBUSY;
1044 	}
1045 
1046 	strcpy(zram->compressor, compressor);
1047 	up_write(&zram->init_lock);
1048 	return len;
1049 }
1050 
1051 static ssize_t compact_store(struct device *dev,
1052 		struct device_attribute *attr, const char *buf, size_t len)
1053 {
1054 	struct zram *zram = dev_to_zram(dev);
1055 
1056 	down_read(&zram->init_lock);
1057 	if (!init_done(zram)) {
1058 		up_read(&zram->init_lock);
1059 		return -EINVAL;
1060 	}
1061 
1062 	zs_compact(zram->mem_pool);
1063 	up_read(&zram->init_lock);
1064 
1065 	return len;
1066 }
1067 
1068 static ssize_t io_stat_show(struct device *dev,
1069 		struct device_attribute *attr, char *buf)
1070 {
1071 	struct zram *zram = dev_to_zram(dev);
1072 	ssize_t ret;
1073 
1074 	down_read(&zram->init_lock);
1075 	ret = scnprintf(buf, PAGE_SIZE,
1076 			"%8llu %8llu %8llu %8llu\n",
1077 			(u64)atomic64_read(&zram->stats.failed_reads),
1078 			(u64)atomic64_read(&zram->stats.failed_writes),
1079 			(u64)atomic64_read(&zram->stats.invalid_io),
1080 			(u64)atomic64_read(&zram->stats.notify_free));
1081 	up_read(&zram->init_lock);
1082 
1083 	return ret;
1084 }
1085 
1086 static ssize_t mm_stat_show(struct device *dev,
1087 		struct device_attribute *attr, char *buf)
1088 {
1089 	struct zram *zram = dev_to_zram(dev);
1090 	struct zs_pool_stats pool_stats;
1091 	u64 orig_size, mem_used = 0;
1092 	long max_used;
1093 	ssize_t ret;
1094 
1095 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1096 
1097 	down_read(&zram->init_lock);
1098 	if (init_done(zram)) {
1099 		mem_used = zs_get_total_pages(zram->mem_pool);
1100 		zs_pool_stats(zram->mem_pool, &pool_stats);
1101 	}
1102 
1103 	orig_size = atomic64_read(&zram->stats.pages_stored);
1104 	max_used = atomic_long_read(&zram->stats.max_used_pages);
1105 
1106 	ret = scnprintf(buf, PAGE_SIZE,
1107 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n",
1108 			orig_size << PAGE_SHIFT,
1109 			(u64)atomic64_read(&zram->stats.compr_data_size),
1110 			mem_used << PAGE_SHIFT,
1111 			zram->limit_pages << PAGE_SHIFT,
1112 			max_used << PAGE_SHIFT,
1113 			(u64)atomic64_read(&zram->stats.same_pages),
1114 			atomic_long_read(&pool_stats.pages_compacted),
1115 			(u64)atomic64_read(&zram->stats.huge_pages),
1116 			(u64)atomic64_read(&zram->stats.huge_pages_since));
1117 	up_read(&zram->init_lock);
1118 
1119 	return ret;
1120 }
1121 
1122 #ifdef CONFIG_ZRAM_WRITEBACK
1123 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
1124 static ssize_t bd_stat_show(struct device *dev,
1125 		struct device_attribute *attr, char *buf)
1126 {
1127 	struct zram *zram = dev_to_zram(dev);
1128 	ssize_t ret;
1129 
1130 	down_read(&zram->init_lock);
1131 	ret = scnprintf(buf, PAGE_SIZE,
1132 		"%8llu %8llu %8llu\n",
1133 			FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1134 			FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1135 			FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1136 	up_read(&zram->init_lock);
1137 
1138 	return ret;
1139 }
1140 #endif
1141 
1142 static ssize_t debug_stat_show(struct device *dev,
1143 		struct device_attribute *attr, char *buf)
1144 {
1145 	int version = 1;
1146 	struct zram *zram = dev_to_zram(dev);
1147 	ssize_t ret;
1148 
1149 	down_read(&zram->init_lock);
1150 	ret = scnprintf(buf, PAGE_SIZE,
1151 			"version: %d\n%8llu %8llu\n",
1152 			version,
1153 			(u64)atomic64_read(&zram->stats.writestall),
1154 			(u64)atomic64_read(&zram->stats.miss_free));
1155 	up_read(&zram->init_lock);
1156 
1157 	return ret;
1158 }
1159 
1160 static DEVICE_ATTR_RO(io_stat);
1161 static DEVICE_ATTR_RO(mm_stat);
1162 #ifdef CONFIG_ZRAM_WRITEBACK
1163 static DEVICE_ATTR_RO(bd_stat);
1164 #endif
1165 static DEVICE_ATTR_RO(debug_stat);
1166 
1167 static void zram_meta_free(struct zram *zram, u64 disksize)
1168 {
1169 	size_t num_pages = disksize >> PAGE_SHIFT;
1170 	size_t index;
1171 
1172 	/* Free all pages that are still in this zram device */
1173 	for (index = 0; index < num_pages; index++)
1174 		zram_free_page(zram, index);
1175 
1176 	zs_destroy_pool(zram->mem_pool);
1177 	vfree(zram->table);
1178 }
1179 
1180 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1181 {
1182 	size_t num_pages;
1183 
1184 	num_pages = disksize >> PAGE_SHIFT;
1185 	zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1186 	if (!zram->table)
1187 		return false;
1188 
1189 	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1190 	if (!zram->mem_pool) {
1191 		vfree(zram->table);
1192 		return false;
1193 	}
1194 
1195 	if (!huge_class_size)
1196 		huge_class_size = zs_huge_class_size(zram->mem_pool);
1197 	return true;
1198 }
1199 
1200 /*
1201  * To protect concurrent access to the same index entry,
1202  * caller should hold this table index entry's bit_spinlock to
1203  * indicate this index entry is accessing.
1204  */
1205 static void zram_free_page(struct zram *zram, size_t index)
1206 {
1207 	unsigned long handle;
1208 
1209 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
1210 	zram->table[index].ac_time = 0;
1211 #endif
1212 	if (zram_test_flag(zram, index, ZRAM_IDLE))
1213 		zram_clear_flag(zram, index, ZRAM_IDLE);
1214 
1215 	if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1216 		zram_clear_flag(zram, index, ZRAM_HUGE);
1217 		atomic64_dec(&zram->stats.huge_pages);
1218 	}
1219 
1220 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1221 		zram_clear_flag(zram, index, ZRAM_WB);
1222 		free_block_bdev(zram, zram_get_element(zram, index));
1223 		goto out;
1224 	}
1225 
1226 	/*
1227 	 * No memory is allocated for same element filled pages.
1228 	 * Simply clear same page flag.
1229 	 */
1230 	if (zram_test_flag(zram, index, ZRAM_SAME)) {
1231 		zram_clear_flag(zram, index, ZRAM_SAME);
1232 		atomic64_dec(&zram->stats.same_pages);
1233 		goto out;
1234 	}
1235 
1236 	handle = zram_get_handle(zram, index);
1237 	if (!handle)
1238 		return;
1239 
1240 	zs_free(zram->mem_pool, handle);
1241 
1242 	atomic64_sub(zram_get_obj_size(zram, index),
1243 			&zram->stats.compr_data_size);
1244 out:
1245 	atomic64_dec(&zram->stats.pages_stored);
1246 	zram_set_handle(zram, index, 0);
1247 	zram_set_obj_size(zram, index, 0);
1248 	WARN_ON_ONCE(zram->table[index].flags &
1249 		~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB));
1250 }
1251 
1252 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
1253 				struct bio *bio, bool partial_io)
1254 {
1255 	struct zcomp_strm *zstrm;
1256 	unsigned long handle;
1257 	unsigned int size;
1258 	void *src, *dst;
1259 	int ret;
1260 
1261 	zram_slot_lock(zram, index);
1262 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1263 		struct bio_vec bvec;
1264 
1265 		zram_slot_unlock(zram, index);
1266 
1267 		bvec.bv_page = page;
1268 		bvec.bv_len = PAGE_SIZE;
1269 		bvec.bv_offset = 0;
1270 		return read_from_bdev(zram, &bvec,
1271 				zram_get_element(zram, index),
1272 				bio, partial_io);
1273 	}
1274 
1275 	handle = zram_get_handle(zram, index);
1276 	if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1277 		unsigned long value;
1278 		void *mem;
1279 
1280 		value = handle ? zram_get_element(zram, index) : 0;
1281 		mem = kmap_atomic(page);
1282 		zram_fill_page(mem, PAGE_SIZE, value);
1283 		kunmap_atomic(mem);
1284 		zram_slot_unlock(zram, index);
1285 		return 0;
1286 	}
1287 
1288 	size = zram_get_obj_size(zram, index);
1289 
1290 	if (size != PAGE_SIZE)
1291 		zstrm = zcomp_stream_get(zram->comp);
1292 
1293 	src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1294 	if (size == PAGE_SIZE) {
1295 		dst = kmap_atomic(page);
1296 		memcpy(dst, src, PAGE_SIZE);
1297 		kunmap_atomic(dst);
1298 		ret = 0;
1299 	} else {
1300 		dst = kmap_atomic(page);
1301 		ret = zcomp_decompress(zstrm, src, size, dst);
1302 		kunmap_atomic(dst);
1303 		zcomp_stream_put(zram->comp);
1304 	}
1305 	zs_unmap_object(zram->mem_pool, handle);
1306 	zram_slot_unlock(zram, index);
1307 
1308 	/* Should NEVER happen. Return bio error if it does. */
1309 	if (WARN_ON(ret))
1310 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1311 
1312 	return ret;
1313 }
1314 
1315 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1316 				u32 index, int offset, struct bio *bio)
1317 {
1318 	int ret;
1319 	struct page *page;
1320 
1321 	page = bvec->bv_page;
1322 	if (is_partial_io(bvec)) {
1323 		/* Use a temporary buffer to decompress the page */
1324 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1325 		if (!page)
1326 			return -ENOMEM;
1327 	}
1328 
1329 	ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1330 	if (unlikely(ret))
1331 		goto out;
1332 
1333 	if (is_partial_io(bvec)) {
1334 		void *src = kmap_atomic(page);
1335 
1336 		memcpy_to_bvec(bvec, src + offset);
1337 		kunmap_atomic(src);
1338 	}
1339 out:
1340 	if (is_partial_io(bvec))
1341 		__free_page(page);
1342 
1343 	return ret;
1344 }
1345 
1346 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1347 				u32 index, struct bio *bio)
1348 {
1349 	int ret = 0;
1350 	unsigned long alloced_pages;
1351 	unsigned long handle = 0;
1352 	unsigned int comp_len = 0;
1353 	void *src, *dst, *mem;
1354 	struct zcomp_strm *zstrm;
1355 	struct page *page = bvec->bv_page;
1356 	unsigned long element = 0;
1357 	enum zram_pageflags flags = 0;
1358 
1359 	mem = kmap_atomic(page);
1360 	if (page_same_filled(mem, &element)) {
1361 		kunmap_atomic(mem);
1362 		/* Free memory associated with this sector now. */
1363 		flags = ZRAM_SAME;
1364 		atomic64_inc(&zram->stats.same_pages);
1365 		goto out;
1366 	}
1367 	kunmap_atomic(mem);
1368 
1369 compress_again:
1370 	zstrm = zcomp_stream_get(zram->comp);
1371 	src = kmap_atomic(page);
1372 	ret = zcomp_compress(zstrm, src, &comp_len);
1373 	kunmap_atomic(src);
1374 
1375 	if (unlikely(ret)) {
1376 		zcomp_stream_put(zram->comp);
1377 		pr_err("Compression failed! err=%d\n", ret);
1378 		zs_free(zram->mem_pool, handle);
1379 		return ret;
1380 	}
1381 
1382 	if (comp_len >= huge_class_size)
1383 		comp_len = PAGE_SIZE;
1384 	/*
1385 	 * handle allocation has 2 paths:
1386 	 * a) fast path is executed with preemption disabled (for
1387 	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1388 	 *  since we can't sleep;
1389 	 * b) slow path enables preemption and attempts to allocate
1390 	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
1391 	 *  put per-cpu compression stream and, thus, to re-do
1392 	 *  the compression once handle is allocated.
1393 	 *
1394 	 * if we have a 'non-null' handle here then we are coming
1395 	 * from the slow path and handle has already been allocated.
1396 	 */
1397 	if (!handle)
1398 		handle = zs_malloc(zram->mem_pool, comp_len,
1399 				__GFP_KSWAPD_RECLAIM |
1400 				__GFP_NOWARN |
1401 				__GFP_HIGHMEM |
1402 				__GFP_MOVABLE);
1403 	if (!handle) {
1404 		zcomp_stream_put(zram->comp);
1405 		atomic64_inc(&zram->stats.writestall);
1406 		handle = zs_malloc(zram->mem_pool, comp_len,
1407 				GFP_NOIO | __GFP_HIGHMEM |
1408 				__GFP_MOVABLE);
1409 		if (handle)
1410 			goto compress_again;
1411 		return -ENOMEM;
1412 	}
1413 
1414 	alloced_pages = zs_get_total_pages(zram->mem_pool);
1415 	update_used_max(zram, alloced_pages);
1416 
1417 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1418 		zcomp_stream_put(zram->comp);
1419 		zs_free(zram->mem_pool, handle);
1420 		return -ENOMEM;
1421 	}
1422 
1423 	dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1424 
1425 	src = zstrm->buffer;
1426 	if (comp_len == PAGE_SIZE)
1427 		src = kmap_atomic(page);
1428 	memcpy(dst, src, comp_len);
1429 	if (comp_len == PAGE_SIZE)
1430 		kunmap_atomic(src);
1431 
1432 	zcomp_stream_put(zram->comp);
1433 	zs_unmap_object(zram->mem_pool, handle);
1434 	atomic64_add(comp_len, &zram->stats.compr_data_size);
1435 out:
1436 	/*
1437 	 * Free memory associated with this sector
1438 	 * before overwriting unused sectors.
1439 	 */
1440 	zram_slot_lock(zram, index);
1441 	zram_free_page(zram, index);
1442 
1443 	if (comp_len == PAGE_SIZE) {
1444 		zram_set_flag(zram, index, ZRAM_HUGE);
1445 		atomic64_inc(&zram->stats.huge_pages);
1446 		atomic64_inc(&zram->stats.huge_pages_since);
1447 	}
1448 
1449 	if (flags) {
1450 		zram_set_flag(zram, index, flags);
1451 		zram_set_element(zram, index, element);
1452 	}  else {
1453 		zram_set_handle(zram, index, handle);
1454 		zram_set_obj_size(zram, index, comp_len);
1455 	}
1456 	zram_slot_unlock(zram, index);
1457 
1458 	/* Update stats */
1459 	atomic64_inc(&zram->stats.pages_stored);
1460 	return ret;
1461 }
1462 
1463 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1464 				u32 index, int offset, struct bio *bio)
1465 {
1466 	int ret;
1467 	struct page *page = NULL;
1468 	struct bio_vec vec;
1469 
1470 	vec = *bvec;
1471 	if (is_partial_io(bvec)) {
1472 		void *dst;
1473 		/*
1474 		 * This is a partial IO. We need to read the full page
1475 		 * before to write the changes.
1476 		 */
1477 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1478 		if (!page)
1479 			return -ENOMEM;
1480 
1481 		ret = __zram_bvec_read(zram, page, index, bio, true);
1482 		if (ret)
1483 			goto out;
1484 
1485 		dst = kmap_atomic(page);
1486 		memcpy_from_bvec(dst + offset, bvec);
1487 		kunmap_atomic(dst);
1488 
1489 		vec.bv_page = page;
1490 		vec.bv_len = PAGE_SIZE;
1491 		vec.bv_offset = 0;
1492 	}
1493 
1494 	ret = __zram_bvec_write(zram, &vec, index, bio);
1495 out:
1496 	if (is_partial_io(bvec))
1497 		__free_page(page);
1498 	return ret;
1499 }
1500 
1501 /*
1502  * zram_bio_discard - handler on discard request
1503  * @index: physical block index in PAGE_SIZE units
1504  * @offset: byte offset within physical block
1505  */
1506 static void zram_bio_discard(struct zram *zram, u32 index,
1507 			     int offset, struct bio *bio)
1508 {
1509 	size_t n = bio->bi_iter.bi_size;
1510 
1511 	/*
1512 	 * zram manages data in physical block size units. Because logical block
1513 	 * size isn't identical with physical block size on some arch, we
1514 	 * could get a discard request pointing to a specific offset within a
1515 	 * certain physical block.  Although we can handle this request by
1516 	 * reading that physiclal block and decompressing and partially zeroing
1517 	 * and re-compressing and then re-storing it, this isn't reasonable
1518 	 * because our intent with a discard request is to save memory.  So
1519 	 * skipping this logical block is appropriate here.
1520 	 */
1521 	if (offset) {
1522 		if (n <= (PAGE_SIZE - offset))
1523 			return;
1524 
1525 		n -= (PAGE_SIZE - offset);
1526 		index++;
1527 	}
1528 
1529 	while (n >= PAGE_SIZE) {
1530 		zram_slot_lock(zram, index);
1531 		zram_free_page(zram, index);
1532 		zram_slot_unlock(zram, index);
1533 		atomic64_inc(&zram->stats.notify_free);
1534 		index++;
1535 		n -= PAGE_SIZE;
1536 	}
1537 }
1538 
1539 /*
1540  * Returns errno if it has some problem. Otherwise return 0 or 1.
1541  * Returns 0 if IO request was done synchronously
1542  * Returns 1 if IO request was successfully submitted.
1543  */
1544 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1545 			int offset, unsigned int op, struct bio *bio)
1546 {
1547 	int ret;
1548 
1549 	if (!op_is_write(op)) {
1550 		atomic64_inc(&zram->stats.num_reads);
1551 		ret = zram_bvec_read(zram, bvec, index, offset, bio);
1552 		flush_dcache_page(bvec->bv_page);
1553 	} else {
1554 		atomic64_inc(&zram->stats.num_writes);
1555 		ret = zram_bvec_write(zram, bvec, index, offset, bio);
1556 	}
1557 
1558 	zram_slot_lock(zram, index);
1559 	zram_accessed(zram, index);
1560 	zram_slot_unlock(zram, index);
1561 
1562 	if (unlikely(ret < 0)) {
1563 		if (!op_is_write(op))
1564 			atomic64_inc(&zram->stats.failed_reads);
1565 		else
1566 			atomic64_inc(&zram->stats.failed_writes);
1567 	}
1568 
1569 	return ret;
1570 }
1571 
1572 static void __zram_make_request(struct zram *zram, struct bio *bio)
1573 {
1574 	int offset;
1575 	u32 index;
1576 	struct bio_vec bvec;
1577 	struct bvec_iter iter;
1578 	unsigned long start_time;
1579 
1580 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1581 	offset = (bio->bi_iter.bi_sector &
1582 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1583 
1584 	switch (bio_op(bio)) {
1585 	case REQ_OP_DISCARD:
1586 	case REQ_OP_WRITE_ZEROES:
1587 		zram_bio_discard(zram, index, offset, bio);
1588 		bio_endio(bio);
1589 		return;
1590 	default:
1591 		break;
1592 	}
1593 
1594 	start_time = bio_start_io_acct(bio);
1595 	bio_for_each_segment(bvec, bio, iter) {
1596 		struct bio_vec bv = bvec;
1597 		unsigned int unwritten = bvec.bv_len;
1598 
1599 		do {
1600 			bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1601 							unwritten);
1602 			if (zram_bvec_rw(zram, &bv, index, offset,
1603 					 bio_op(bio), bio) < 0) {
1604 				bio->bi_status = BLK_STS_IOERR;
1605 				break;
1606 			}
1607 
1608 			bv.bv_offset += bv.bv_len;
1609 			unwritten -= bv.bv_len;
1610 
1611 			update_position(&index, &offset, &bv);
1612 		} while (unwritten);
1613 	}
1614 	bio_end_io_acct(bio, start_time);
1615 	bio_endio(bio);
1616 }
1617 
1618 /*
1619  * Handler function for all zram I/O requests.
1620  */
1621 static void zram_submit_bio(struct bio *bio)
1622 {
1623 	struct zram *zram = bio->bi_bdev->bd_disk->private_data;
1624 
1625 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1626 					bio->bi_iter.bi_size)) {
1627 		atomic64_inc(&zram->stats.invalid_io);
1628 		bio_io_error(bio);
1629 		return;
1630 	}
1631 
1632 	__zram_make_request(zram, bio);
1633 }
1634 
1635 static void zram_slot_free_notify(struct block_device *bdev,
1636 				unsigned long index)
1637 {
1638 	struct zram *zram;
1639 
1640 	zram = bdev->bd_disk->private_data;
1641 
1642 	atomic64_inc(&zram->stats.notify_free);
1643 	if (!zram_slot_trylock(zram, index)) {
1644 		atomic64_inc(&zram->stats.miss_free);
1645 		return;
1646 	}
1647 
1648 	zram_free_page(zram, index);
1649 	zram_slot_unlock(zram, index);
1650 }
1651 
1652 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1653 		       struct page *page, unsigned int op)
1654 {
1655 	int offset, ret;
1656 	u32 index;
1657 	struct zram *zram;
1658 	struct bio_vec bv;
1659 	unsigned long start_time;
1660 
1661 	if (PageTransHuge(page))
1662 		return -ENOTSUPP;
1663 	zram = bdev->bd_disk->private_data;
1664 
1665 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1666 		atomic64_inc(&zram->stats.invalid_io);
1667 		ret = -EINVAL;
1668 		goto out;
1669 	}
1670 
1671 	index = sector >> SECTORS_PER_PAGE_SHIFT;
1672 	offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1673 
1674 	bv.bv_page = page;
1675 	bv.bv_len = PAGE_SIZE;
1676 	bv.bv_offset = 0;
1677 
1678 	start_time = disk_start_io_acct(bdev->bd_disk, SECTORS_PER_PAGE, op);
1679 	ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL);
1680 	disk_end_io_acct(bdev->bd_disk, op, start_time);
1681 out:
1682 	/*
1683 	 * If I/O fails, just return error(ie, non-zero) without
1684 	 * calling page_endio.
1685 	 * It causes resubmit the I/O with bio request by upper functions
1686 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1687 	 * bio->bi_end_io does things to handle the error
1688 	 * (e.g., SetPageError, set_page_dirty and extra works).
1689 	 */
1690 	if (unlikely(ret < 0))
1691 		return ret;
1692 
1693 	switch (ret) {
1694 	case 0:
1695 		page_endio(page, op_is_write(op), 0);
1696 		break;
1697 	case 1:
1698 		ret = 0;
1699 		break;
1700 	default:
1701 		WARN_ON(1);
1702 	}
1703 	return ret;
1704 }
1705 
1706 static void zram_reset_device(struct zram *zram)
1707 {
1708 	struct zcomp *comp;
1709 	u64 disksize;
1710 
1711 	down_write(&zram->init_lock);
1712 
1713 	zram->limit_pages = 0;
1714 
1715 	if (!init_done(zram)) {
1716 		up_write(&zram->init_lock);
1717 		return;
1718 	}
1719 
1720 	comp = zram->comp;
1721 	disksize = zram->disksize;
1722 	zram->disksize = 0;
1723 
1724 	set_capacity_and_notify(zram->disk, 0);
1725 	part_stat_set_all(zram->disk->part0, 0);
1726 
1727 	/* I/O operation under all of CPU are done so let's free */
1728 	zram_meta_free(zram, disksize);
1729 	memset(&zram->stats, 0, sizeof(zram->stats));
1730 	zcomp_destroy(comp);
1731 	reset_bdev(zram);
1732 
1733 	up_write(&zram->init_lock);
1734 }
1735 
1736 static ssize_t disksize_store(struct device *dev,
1737 		struct device_attribute *attr, const char *buf, size_t len)
1738 {
1739 	u64 disksize;
1740 	struct zcomp *comp;
1741 	struct zram *zram = dev_to_zram(dev);
1742 	int err;
1743 
1744 	disksize = memparse(buf, NULL);
1745 	if (!disksize)
1746 		return -EINVAL;
1747 
1748 	down_write(&zram->init_lock);
1749 	if (init_done(zram)) {
1750 		pr_info("Cannot change disksize for initialized device\n");
1751 		err = -EBUSY;
1752 		goto out_unlock;
1753 	}
1754 
1755 	disksize = PAGE_ALIGN(disksize);
1756 	if (!zram_meta_alloc(zram, disksize)) {
1757 		err = -ENOMEM;
1758 		goto out_unlock;
1759 	}
1760 
1761 	comp = zcomp_create(zram->compressor);
1762 	if (IS_ERR(comp)) {
1763 		pr_err("Cannot initialise %s compressing backend\n",
1764 				zram->compressor);
1765 		err = PTR_ERR(comp);
1766 		goto out_free_meta;
1767 	}
1768 
1769 	zram->comp = comp;
1770 	zram->disksize = disksize;
1771 	set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT);
1772 	up_write(&zram->init_lock);
1773 
1774 	return len;
1775 
1776 out_free_meta:
1777 	zram_meta_free(zram, disksize);
1778 out_unlock:
1779 	up_write(&zram->init_lock);
1780 	return err;
1781 }
1782 
1783 static ssize_t reset_store(struct device *dev,
1784 		struct device_attribute *attr, const char *buf, size_t len)
1785 {
1786 	int ret;
1787 	unsigned short do_reset;
1788 	struct zram *zram;
1789 	struct block_device *bdev;
1790 
1791 	ret = kstrtou16(buf, 10, &do_reset);
1792 	if (ret)
1793 		return ret;
1794 
1795 	if (!do_reset)
1796 		return -EINVAL;
1797 
1798 	zram = dev_to_zram(dev);
1799 	bdev = zram->disk->part0;
1800 
1801 	mutex_lock(&bdev->bd_disk->open_mutex);
1802 	/* Do not reset an active device or claimed device */
1803 	if (bdev->bd_openers || zram->claim) {
1804 		mutex_unlock(&bdev->bd_disk->open_mutex);
1805 		return -EBUSY;
1806 	}
1807 
1808 	/* From now on, anyone can't open /dev/zram[0-9] */
1809 	zram->claim = true;
1810 	mutex_unlock(&bdev->bd_disk->open_mutex);
1811 
1812 	/* Make sure all the pending I/O are finished */
1813 	sync_blockdev(bdev);
1814 	zram_reset_device(zram);
1815 
1816 	mutex_lock(&bdev->bd_disk->open_mutex);
1817 	zram->claim = false;
1818 	mutex_unlock(&bdev->bd_disk->open_mutex);
1819 
1820 	return len;
1821 }
1822 
1823 static int zram_open(struct block_device *bdev, fmode_t mode)
1824 {
1825 	int ret = 0;
1826 	struct zram *zram;
1827 
1828 	WARN_ON(!mutex_is_locked(&bdev->bd_disk->open_mutex));
1829 
1830 	zram = bdev->bd_disk->private_data;
1831 	/* zram was claimed to reset so open request fails */
1832 	if (zram->claim)
1833 		ret = -EBUSY;
1834 
1835 	return ret;
1836 }
1837 
1838 static const struct block_device_operations zram_devops = {
1839 	.open = zram_open,
1840 	.submit_bio = zram_submit_bio,
1841 	.swap_slot_free_notify = zram_slot_free_notify,
1842 	.rw_page = zram_rw_page,
1843 	.owner = THIS_MODULE
1844 };
1845 
1846 #ifdef CONFIG_ZRAM_WRITEBACK
1847 static const struct block_device_operations zram_wb_devops = {
1848 	.open = zram_open,
1849 	.submit_bio = zram_submit_bio,
1850 	.swap_slot_free_notify = zram_slot_free_notify,
1851 	.owner = THIS_MODULE
1852 };
1853 #endif
1854 
1855 static DEVICE_ATTR_WO(compact);
1856 static DEVICE_ATTR_RW(disksize);
1857 static DEVICE_ATTR_RO(initstate);
1858 static DEVICE_ATTR_WO(reset);
1859 static DEVICE_ATTR_WO(mem_limit);
1860 static DEVICE_ATTR_WO(mem_used_max);
1861 static DEVICE_ATTR_WO(idle);
1862 static DEVICE_ATTR_RW(max_comp_streams);
1863 static DEVICE_ATTR_RW(comp_algorithm);
1864 #ifdef CONFIG_ZRAM_WRITEBACK
1865 static DEVICE_ATTR_RW(backing_dev);
1866 static DEVICE_ATTR_WO(writeback);
1867 static DEVICE_ATTR_RW(writeback_limit);
1868 static DEVICE_ATTR_RW(writeback_limit_enable);
1869 #endif
1870 
1871 static struct attribute *zram_disk_attrs[] = {
1872 	&dev_attr_disksize.attr,
1873 	&dev_attr_initstate.attr,
1874 	&dev_attr_reset.attr,
1875 	&dev_attr_compact.attr,
1876 	&dev_attr_mem_limit.attr,
1877 	&dev_attr_mem_used_max.attr,
1878 	&dev_attr_idle.attr,
1879 	&dev_attr_max_comp_streams.attr,
1880 	&dev_attr_comp_algorithm.attr,
1881 #ifdef CONFIG_ZRAM_WRITEBACK
1882 	&dev_attr_backing_dev.attr,
1883 	&dev_attr_writeback.attr,
1884 	&dev_attr_writeback_limit.attr,
1885 	&dev_attr_writeback_limit_enable.attr,
1886 #endif
1887 	&dev_attr_io_stat.attr,
1888 	&dev_attr_mm_stat.attr,
1889 #ifdef CONFIG_ZRAM_WRITEBACK
1890 	&dev_attr_bd_stat.attr,
1891 #endif
1892 	&dev_attr_debug_stat.attr,
1893 	NULL,
1894 };
1895 
1896 ATTRIBUTE_GROUPS(zram_disk);
1897 
1898 /*
1899  * Allocate and initialize new zram device. the function returns
1900  * '>= 0' device_id upon success, and negative value otherwise.
1901  */
1902 static int zram_add(void)
1903 {
1904 	struct zram *zram;
1905 	int ret, device_id;
1906 
1907 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1908 	if (!zram)
1909 		return -ENOMEM;
1910 
1911 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1912 	if (ret < 0)
1913 		goto out_free_dev;
1914 	device_id = ret;
1915 
1916 	init_rwsem(&zram->init_lock);
1917 #ifdef CONFIG_ZRAM_WRITEBACK
1918 	spin_lock_init(&zram->wb_limit_lock);
1919 #endif
1920 
1921 	/* gendisk structure */
1922 	zram->disk = blk_alloc_disk(NUMA_NO_NODE);
1923 	if (!zram->disk) {
1924 		pr_err("Error allocating disk structure for device %d\n",
1925 			device_id);
1926 		ret = -ENOMEM;
1927 		goto out_free_idr;
1928 	}
1929 
1930 	zram->disk->major = zram_major;
1931 	zram->disk->first_minor = device_id;
1932 	zram->disk->minors = 1;
1933 	zram->disk->flags |= GENHD_FL_NO_PART;
1934 	zram->disk->fops = &zram_devops;
1935 	zram->disk->private_data = zram;
1936 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1937 
1938 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1939 	set_capacity(zram->disk, 0);
1940 	/* zram devices sort of resembles non-rotational disks */
1941 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1942 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1943 
1944 	/*
1945 	 * To ensure that we always get PAGE_SIZE aligned
1946 	 * and n*PAGE_SIZED sized I/O requests.
1947 	 */
1948 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1949 	blk_queue_logical_block_size(zram->disk->queue,
1950 					ZRAM_LOGICAL_BLOCK_SIZE);
1951 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1952 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1953 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1954 	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1955 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue);
1956 
1957 	/*
1958 	 * zram_bio_discard() will clear all logical blocks if logical block
1959 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1960 	 * different, we will skip discarding some parts of logical blocks in
1961 	 * the part of the request range which isn't aligned to physical block
1962 	 * size.  So we can't ensure that all discarded logical blocks are
1963 	 * zeroed.
1964 	 */
1965 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1966 		blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1967 
1968 	blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, zram->disk->queue);
1969 	ret = device_add_disk(NULL, zram->disk, zram_disk_groups);
1970 	if (ret)
1971 		goto out_cleanup_disk;
1972 
1973 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1974 
1975 	zram_debugfs_register(zram);
1976 	pr_info("Added device: %s\n", zram->disk->disk_name);
1977 	return device_id;
1978 
1979 out_cleanup_disk:
1980 	blk_cleanup_disk(zram->disk);
1981 out_free_idr:
1982 	idr_remove(&zram_index_idr, device_id);
1983 out_free_dev:
1984 	kfree(zram);
1985 	return ret;
1986 }
1987 
1988 static int zram_remove(struct zram *zram)
1989 {
1990 	struct block_device *bdev = zram->disk->part0;
1991 	bool claimed;
1992 
1993 	mutex_lock(&bdev->bd_disk->open_mutex);
1994 	if (bdev->bd_openers) {
1995 		mutex_unlock(&bdev->bd_disk->open_mutex);
1996 		return -EBUSY;
1997 	}
1998 
1999 	claimed = zram->claim;
2000 	if (!claimed)
2001 		zram->claim = true;
2002 	mutex_unlock(&bdev->bd_disk->open_mutex);
2003 
2004 	zram_debugfs_unregister(zram);
2005 
2006 	if (claimed) {
2007 		/*
2008 		 * If we were claimed by reset_store(), del_gendisk() will
2009 		 * wait until reset_store() is done, so nothing need to do.
2010 		 */
2011 		;
2012 	} else {
2013 		/* Make sure all the pending I/O are finished */
2014 		sync_blockdev(bdev);
2015 		zram_reset_device(zram);
2016 	}
2017 
2018 	pr_info("Removed device: %s\n", zram->disk->disk_name);
2019 
2020 	del_gendisk(zram->disk);
2021 
2022 	/* del_gendisk drains pending reset_store */
2023 	WARN_ON_ONCE(claimed && zram->claim);
2024 
2025 	/*
2026 	 * disksize_store() may be called in between zram_reset_device()
2027 	 * and del_gendisk(), so run the last reset to avoid leaking
2028 	 * anything allocated with disksize_store()
2029 	 */
2030 	zram_reset_device(zram);
2031 
2032 	blk_cleanup_disk(zram->disk);
2033 	kfree(zram);
2034 	return 0;
2035 }
2036 
2037 /* zram-control sysfs attributes */
2038 
2039 /*
2040  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2041  * sense that reading from this file does alter the state of your system -- it
2042  * creates a new un-initialized zram device and returns back this device's
2043  * device_id (or an error code if it fails to create a new device).
2044  */
2045 static ssize_t hot_add_show(struct class *class,
2046 			struct class_attribute *attr,
2047 			char *buf)
2048 {
2049 	int ret;
2050 
2051 	mutex_lock(&zram_index_mutex);
2052 	ret = zram_add();
2053 	mutex_unlock(&zram_index_mutex);
2054 
2055 	if (ret < 0)
2056 		return ret;
2057 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
2058 }
2059 static struct class_attribute class_attr_hot_add =
2060 	__ATTR(hot_add, 0400, hot_add_show, NULL);
2061 
2062 static ssize_t hot_remove_store(struct class *class,
2063 			struct class_attribute *attr,
2064 			const char *buf,
2065 			size_t count)
2066 {
2067 	struct zram *zram;
2068 	int ret, dev_id;
2069 
2070 	/* dev_id is gendisk->first_minor, which is `int' */
2071 	ret = kstrtoint(buf, 10, &dev_id);
2072 	if (ret)
2073 		return ret;
2074 	if (dev_id < 0)
2075 		return -EINVAL;
2076 
2077 	mutex_lock(&zram_index_mutex);
2078 
2079 	zram = idr_find(&zram_index_idr, dev_id);
2080 	if (zram) {
2081 		ret = zram_remove(zram);
2082 		if (!ret)
2083 			idr_remove(&zram_index_idr, dev_id);
2084 	} else {
2085 		ret = -ENODEV;
2086 	}
2087 
2088 	mutex_unlock(&zram_index_mutex);
2089 	return ret ? ret : count;
2090 }
2091 static CLASS_ATTR_WO(hot_remove);
2092 
2093 static struct attribute *zram_control_class_attrs[] = {
2094 	&class_attr_hot_add.attr,
2095 	&class_attr_hot_remove.attr,
2096 	NULL,
2097 };
2098 ATTRIBUTE_GROUPS(zram_control_class);
2099 
2100 static struct class zram_control_class = {
2101 	.name		= "zram-control",
2102 	.owner		= THIS_MODULE,
2103 	.class_groups	= zram_control_class_groups,
2104 };
2105 
2106 static int zram_remove_cb(int id, void *ptr, void *data)
2107 {
2108 	WARN_ON_ONCE(zram_remove(ptr));
2109 	return 0;
2110 }
2111 
2112 static void destroy_devices(void)
2113 {
2114 	class_unregister(&zram_control_class);
2115 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2116 	zram_debugfs_destroy();
2117 	idr_destroy(&zram_index_idr);
2118 	unregister_blkdev(zram_major, "zram");
2119 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2120 }
2121 
2122 static int __init zram_init(void)
2123 {
2124 	int ret;
2125 
2126 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2127 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
2128 	if (ret < 0)
2129 		return ret;
2130 
2131 	ret = class_register(&zram_control_class);
2132 	if (ret) {
2133 		pr_err("Unable to register zram-control class\n");
2134 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2135 		return ret;
2136 	}
2137 
2138 	zram_debugfs_create();
2139 	zram_major = register_blkdev(0, "zram");
2140 	if (zram_major <= 0) {
2141 		pr_err("Unable to get major number\n");
2142 		class_unregister(&zram_control_class);
2143 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2144 		return -EBUSY;
2145 	}
2146 
2147 	while (num_devices != 0) {
2148 		mutex_lock(&zram_index_mutex);
2149 		ret = zram_add();
2150 		mutex_unlock(&zram_index_mutex);
2151 		if (ret < 0)
2152 			goto out_error;
2153 		num_devices--;
2154 	}
2155 
2156 	return 0;
2157 
2158 out_error:
2159 	destroy_devices();
2160 	return ret;
2161 }
2162 
2163 static void __exit zram_exit(void)
2164 {
2165 	destroy_devices();
2166 }
2167 
2168 module_init(zram_init);
2169 module_exit(zram_exit);
2170 
2171 module_param(num_devices, uint, 0);
2172 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2173 
2174 MODULE_LICENSE("Dual BSD/GPL");
2175 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2176 MODULE_DESCRIPTION("Compressed RAM Block Device");
2177