1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/bitops.h> 22 #include <linux/blkdev.h> 23 #include <linux/buffer_head.h> 24 #include <linux/device.h> 25 #include <linux/genhd.h> 26 #include <linux/highmem.h> 27 #include <linux/slab.h> 28 #include <linux/string.h> 29 #include <linux/vmalloc.h> 30 #include <linux/err.h> 31 #include <linux/idr.h> 32 #include <linux/sysfs.h> 33 34 #include "zram_drv.h" 35 36 static DEFINE_IDR(zram_index_idr); 37 /* idr index must be protected */ 38 static DEFINE_MUTEX(zram_index_mutex); 39 40 static int zram_major; 41 static const char *default_compressor = "lzo"; 42 43 /* Module params (documentation at end) */ 44 static unsigned int num_devices = 1; 45 46 static inline void deprecated_attr_warn(const char *name) 47 { 48 pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n", 49 task_pid_nr(current), 50 current->comm, 51 name, 52 "See zram documentation."); 53 } 54 55 #define ZRAM_ATTR_RO(name) \ 56 static ssize_t name##_show(struct device *d, \ 57 struct device_attribute *attr, char *b) \ 58 { \ 59 struct zram *zram = dev_to_zram(d); \ 60 \ 61 deprecated_attr_warn(__stringify(name)); \ 62 return scnprintf(b, PAGE_SIZE, "%llu\n", \ 63 (u64)atomic64_read(&zram->stats.name)); \ 64 } \ 65 static DEVICE_ATTR_RO(name); 66 67 static inline bool init_done(struct zram *zram) 68 { 69 return zram->disksize; 70 } 71 72 static inline struct zram *dev_to_zram(struct device *dev) 73 { 74 return (struct zram *)dev_to_disk(dev)->private_data; 75 } 76 77 /* flag operations require table entry bit_spin_lock() being held */ 78 static int zram_test_flag(struct zram_meta *meta, u32 index, 79 enum zram_pageflags flag) 80 { 81 return meta->table[index].value & BIT(flag); 82 } 83 84 static void zram_set_flag(struct zram_meta *meta, u32 index, 85 enum zram_pageflags flag) 86 { 87 meta->table[index].value |= BIT(flag); 88 } 89 90 static void zram_clear_flag(struct zram_meta *meta, u32 index, 91 enum zram_pageflags flag) 92 { 93 meta->table[index].value &= ~BIT(flag); 94 } 95 96 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index) 97 { 98 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1); 99 } 100 101 static void zram_set_obj_size(struct zram_meta *meta, 102 u32 index, size_t size) 103 { 104 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT; 105 106 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size; 107 } 108 109 static inline bool is_partial_io(struct bio_vec *bvec) 110 { 111 return bvec->bv_len != PAGE_SIZE; 112 } 113 114 /* 115 * Check if request is within bounds and aligned on zram logical blocks. 116 */ 117 static inline bool valid_io_request(struct zram *zram, 118 sector_t start, unsigned int size) 119 { 120 u64 end, bound; 121 122 /* unaligned request */ 123 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1))) 124 return false; 125 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1))) 126 return false; 127 128 end = start + (size >> SECTOR_SHIFT); 129 bound = zram->disksize >> SECTOR_SHIFT; 130 /* out of range range */ 131 if (unlikely(start >= bound || end > bound || start > end)) 132 return false; 133 134 /* I/O request is valid */ 135 return true; 136 } 137 138 static void update_position(u32 *index, int *offset, struct bio_vec *bvec) 139 { 140 if (*offset + bvec->bv_len >= PAGE_SIZE) 141 (*index)++; 142 *offset = (*offset + bvec->bv_len) % PAGE_SIZE; 143 } 144 145 static inline void update_used_max(struct zram *zram, 146 const unsigned long pages) 147 { 148 unsigned long old_max, cur_max; 149 150 old_max = atomic_long_read(&zram->stats.max_used_pages); 151 152 do { 153 cur_max = old_max; 154 if (pages > cur_max) 155 old_max = atomic_long_cmpxchg( 156 &zram->stats.max_used_pages, cur_max, pages); 157 } while (old_max != cur_max); 158 } 159 160 static bool page_zero_filled(void *ptr) 161 { 162 unsigned int pos; 163 unsigned long *page; 164 165 page = (unsigned long *)ptr; 166 167 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) { 168 if (page[pos]) 169 return false; 170 } 171 172 return true; 173 } 174 175 static void handle_zero_page(struct bio_vec *bvec) 176 { 177 struct page *page = bvec->bv_page; 178 void *user_mem; 179 180 user_mem = kmap_atomic(page); 181 if (is_partial_io(bvec)) 182 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len); 183 else 184 clear_page(user_mem); 185 kunmap_atomic(user_mem); 186 187 flush_dcache_page(page); 188 } 189 190 static ssize_t initstate_show(struct device *dev, 191 struct device_attribute *attr, char *buf) 192 { 193 u32 val; 194 struct zram *zram = dev_to_zram(dev); 195 196 down_read(&zram->init_lock); 197 val = init_done(zram); 198 up_read(&zram->init_lock); 199 200 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 201 } 202 203 static ssize_t disksize_show(struct device *dev, 204 struct device_attribute *attr, char *buf) 205 { 206 struct zram *zram = dev_to_zram(dev); 207 208 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 209 } 210 211 static ssize_t orig_data_size_show(struct device *dev, 212 struct device_attribute *attr, char *buf) 213 { 214 struct zram *zram = dev_to_zram(dev); 215 216 deprecated_attr_warn("orig_data_size"); 217 return scnprintf(buf, PAGE_SIZE, "%llu\n", 218 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT); 219 } 220 221 static ssize_t mem_used_total_show(struct device *dev, 222 struct device_attribute *attr, char *buf) 223 { 224 u64 val = 0; 225 struct zram *zram = dev_to_zram(dev); 226 227 deprecated_attr_warn("mem_used_total"); 228 down_read(&zram->init_lock); 229 if (init_done(zram)) { 230 struct zram_meta *meta = zram->meta; 231 val = zs_get_total_pages(meta->mem_pool); 232 } 233 up_read(&zram->init_lock); 234 235 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT); 236 } 237 238 static ssize_t mem_limit_show(struct device *dev, 239 struct device_attribute *attr, char *buf) 240 { 241 u64 val; 242 struct zram *zram = dev_to_zram(dev); 243 244 deprecated_attr_warn("mem_limit"); 245 down_read(&zram->init_lock); 246 val = zram->limit_pages; 247 up_read(&zram->init_lock); 248 249 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT); 250 } 251 252 static ssize_t mem_limit_store(struct device *dev, 253 struct device_attribute *attr, const char *buf, size_t len) 254 { 255 u64 limit; 256 char *tmp; 257 struct zram *zram = dev_to_zram(dev); 258 259 limit = memparse(buf, &tmp); 260 if (buf == tmp) /* no chars parsed, invalid input */ 261 return -EINVAL; 262 263 down_write(&zram->init_lock); 264 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; 265 up_write(&zram->init_lock); 266 267 return len; 268 } 269 270 static ssize_t mem_used_max_show(struct device *dev, 271 struct device_attribute *attr, char *buf) 272 { 273 u64 val = 0; 274 struct zram *zram = dev_to_zram(dev); 275 276 deprecated_attr_warn("mem_used_max"); 277 down_read(&zram->init_lock); 278 if (init_done(zram)) 279 val = atomic_long_read(&zram->stats.max_used_pages); 280 up_read(&zram->init_lock); 281 282 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT); 283 } 284 285 static ssize_t mem_used_max_store(struct device *dev, 286 struct device_attribute *attr, const char *buf, size_t len) 287 { 288 int err; 289 unsigned long val; 290 struct zram *zram = dev_to_zram(dev); 291 292 err = kstrtoul(buf, 10, &val); 293 if (err || val != 0) 294 return -EINVAL; 295 296 down_read(&zram->init_lock); 297 if (init_done(zram)) { 298 struct zram_meta *meta = zram->meta; 299 atomic_long_set(&zram->stats.max_used_pages, 300 zs_get_total_pages(meta->mem_pool)); 301 } 302 up_read(&zram->init_lock); 303 304 return len; 305 } 306 307 /* 308 * We switched to per-cpu streams and this attr is not needed anymore. 309 * However, we will keep it around for some time, because: 310 * a) we may revert per-cpu streams in the future 311 * b) it's visible to user space and we need to follow our 2 years 312 * retirement rule; but we already have a number of 'soon to be 313 * altered' attrs, so max_comp_streams need to wait for the next 314 * layoff cycle. 315 */ 316 static ssize_t max_comp_streams_show(struct device *dev, 317 struct device_attribute *attr, char *buf) 318 { 319 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus()); 320 } 321 322 static ssize_t max_comp_streams_store(struct device *dev, 323 struct device_attribute *attr, const char *buf, size_t len) 324 { 325 return len; 326 } 327 328 static ssize_t comp_algorithm_show(struct device *dev, 329 struct device_attribute *attr, char *buf) 330 { 331 size_t sz; 332 struct zram *zram = dev_to_zram(dev); 333 334 down_read(&zram->init_lock); 335 sz = zcomp_available_show(zram->compressor, buf); 336 up_read(&zram->init_lock); 337 338 return sz; 339 } 340 341 static ssize_t comp_algorithm_store(struct device *dev, 342 struct device_attribute *attr, const char *buf, size_t len) 343 { 344 struct zram *zram = dev_to_zram(dev); 345 size_t sz; 346 347 if (!zcomp_available_algorithm(buf)) 348 return -EINVAL; 349 350 down_write(&zram->init_lock); 351 if (init_done(zram)) { 352 up_write(&zram->init_lock); 353 pr_info("Can't change algorithm for initialized device\n"); 354 return -EBUSY; 355 } 356 strlcpy(zram->compressor, buf, sizeof(zram->compressor)); 357 358 /* ignore trailing newline */ 359 sz = strlen(zram->compressor); 360 if (sz > 0 && zram->compressor[sz - 1] == '\n') 361 zram->compressor[sz - 1] = 0x00; 362 363 up_write(&zram->init_lock); 364 return len; 365 } 366 367 static ssize_t compact_store(struct device *dev, 368 struct device_attribute *attr, const char *buf, size_t len) 369 { 370 struct zram *zram = dev_to_zram(dev); 371 struct zram_meta *meta; 372 373 down_read(&zram->init_lock); 374 if (!init_done(zram)) { 375 up_read(&zram->init_lock); 376 return -EINVAL; 377 } 378 379 meta = zram->meta; 380 zs_compact(meta->mem_pool); 381 up_read(&zram->init_lock); 382 383 return len; 384 } 385 386 static ssize_t io_stat_show(struct device *dev, 387 struct device_attribute *attr, char *buf) 388 { 389 struct zram *zram = dev_to_zram(dev); 390 ssize_t ret; 391 392 down_read(&zram->init_lock); 393 ret = scnprintf(buf, PAGE_SIZE, 394 "%8llu %8llu %8llu %8llu\n", 395 (u64)atomic64_read(&zram->stats.failed_reads), 396 (u64)atomic64_read(&zram->stats.failed_writes), 397 (u64)atomic64_read(&zram->stats.invalid_io), 398 (u64)atomic64_read(&zram->stats.notify_free)); 399 up_read(&zram->init_lock); 400 401 return ret; 402 } 403 404 static ssize_t mm_stat_show(struct device *dev, 405 struct device_attribute *attr, char *buf) 406 { 407 struct zram *zram = dev_to_zram(dev); 408 struct zs_pool_stats pool_stats; 409 u64 orig_size, mem_used = 0; 410 long max_used; 411 ssize_t ret; 412 413 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); 414 415 down_read(&zram->init_lock); 416 if (init_done(zram)) { 417 mem_used = zs_get_total_pages(zram->meta->mem_pool); 418 zs_pool_stats(zram->meta->mem_pool, &pool_stats); 419 } 420 421 orig_size = atomic64_read(&zram->stats.pages_stored); 422 max_used = atomic_long_read(&zram->stats.max_used_pages); 423 424 ret = scnprintf(buf, PAGE_SIZE, 425 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n", 426 orig_size << PAGE_SHIFT, 427 (u64)atomic64_read(&zram->stats.compr_data_size), 428 mem_used << PAGE_SHIFT, 429 zram->limit_pages << PAGE_SHIFT, 430 max_used << PAGE_SHIFT, 431 (u64)atomic64_read(&zram->stats.zero_pages), 432 pool_stats.pages_compacted); 433 up_read(&zram->init_lock); 434 435 return ret; 436 } 437 438 static ssize_t debug_stat_show(struct device *dev, 439 struct device_attribute *attr, char *buf) 440 { 441 int version = 1; 442 struct zram *zram = dev_to_zram(dev); 443 ssize_t ret; 444 445 down_read(&zram->init_lock); 446 ret = scnprintf(buf, PAGE_SIZE, 447 "version: %d\n%8llu\n", 448 version, 449 (u64)atomic64_read(&zram->stats.writestall)); 450 up_read(&zram->init_lock); 451 452 return ret; 453 } 454 455 static DEVICE_ATTR_RO(io_stat); 456 static DEVICE_ATTR_RO(mm_stat); 457 static DEVICE_ATTR_RO(debug_stat); 458 ZRAM_ATTR_RO(num_reads); 459 ZRAM_ATTR_RO(num_writes); 460 ZRAM_ATTR_RO(failed_reads); 461 ZRAM_ATTR_RO(failed_writes); 462 ZRAM_ATTR_RO(invalid_io); 463 ZRAM_ATTR_RO(notify_free); 464 ZRAM_ATTR_RO(zero_pages); 465 ZRAM_ATTR_RO(compr_data_size); 466 467 static inline bool zram_meta_get(struct zram *zram) 468 { 469 if (atomic_inc_not_zero(&zram->refcount)) 470 return true; 471 return false; 472 } 473 474 static inline void zram_meta_put(struct zram *zram) 475 { 476 atomic_dec(&zram->refcount); 477 } 478 479 static void zram_meta_free(struct zram_meta *meta, u64 disksize) 480 { 481 size_t num_pages = disksize >> PAGE_SHIFT; 482 size_t index; 483 484 /* Free all pages that are still in this zram device */ 485 for (index = 0; index < num_pages; index++) { 486 unsigned long handle = meta->table[index].handle; 487 488 if (!handle) 489 continue; 490 491 zs_free(meta->mem_pool, handle); 492 } 493 494 zs_destroy_pool(meta->mem_pool); 495 vfree(meta->table); 496 kfree(meta); 497 } 498 499 static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize) 500 { 501 size_t num_pages; 502 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL); 503 504 if (!meta) 505 return NULL; 506 507 num_pages = disksize >> PAGE_SHIFT; 508 meta->table = vzalloc(num_pages * sizeof(*meta->table)); 509 if (!meta->table) { 510 pr_err("Error allocating zram address table\n"); 511 goto out_error; 512 } 513 514 meta->mem_pool = zs_create_pool(pool_name); 515 if (!meta->mem_pool) { 516 pr_err("Error creating memory pool\n"); 517 goto out_error; 518 } 519 520 return meta; 521 522 out_error: 523 vfree(meta->table); 524 kfree(meta); 525 return NULL; 526 } 527 528 /* 529 * To protect concurrent access to the same index entry, 530 * caller should hold this table index entry's bit_spinlock to 531 * indicate this index entry is accessing. 532 */ 533 static void zram_free_page(struct zram *zram, size_t index) 534 { 535 struct zram_meta *meta = zram->meta; 536 unsigned long handle = meta->table[index].handle; 537 538 if (unlikely(!handle)) { 539 /* 540 * No memory is allocated for zero filled pages. 541 * Simply clear zero page flag. 542 */ 543 if (zram_test_flag(meta, index, ZRAM_ZERO)) { 544 zram_clear_flag(meta, index, ZRAM_ZERO); 545 atomic64_dec(&zram->stats.zero_pages); 546 } 547 return; 548 } 549 550 zs_free(meta->mem_pool, handle); 551 552 atomic64_sub(zram_get_obj_size(meta, index), 553 &zram->stats.compr_data_size); 554 atomic64_dec(&zram->stats.pages_stored); 555 556 meta->table[index].handle = 0; 557 zram_set_obj_size(meta, index, 0); 558 } 559 560 static int zram_decompress_page(struct zram *zram, char *mem, u32 index) 561 { 562 int ret = 0; 563 unsigned char *cmem; 564 struct zram_meta *meta = zram->meta; 565 unsigned long handle; 566 size_t size; 567 568 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 569 handle = meta->table[index].handle; 570 size = zram_get_obj_size(meta, index); 571 572 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) { 573 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 574 clear_page(mem); 575 return 0; 576 } 577 578 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO); 579 if (size == PAGE_SIZE) 580 copy_page(mem, cmem); 581 else 582 ret = zcomp_decompress(zram->comp, cmem, size, mem); 583 zs_unmap_object(meta->mem_pool, handle); 584 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 585 586 /* Should NEVER happen. Return bio error if it does. */ 587 if (unlikely(ret)) { 588 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 589 return ret; 590 } 591 592 return 0; 593 } 594 595 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 596 u32 index, int offset) 597 { 598 int ret; 599 struct page *page; 600 unsigned char *user_mem, *uncmem = NULL; 601 struct zram_meta *meta = zram->meta; 602 page = bvec->bv_page; 603 604 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 605 if (unlikely(!meta->table[index].handle) || 606 zram_test_flag(meta, index, ZRAM_ZERO)) { 607 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 608 handle_zero_page(bvec); 609 return 0; 610 } 611 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 612 613 if (is_partial_io(bvec)) 614 /* Use a temporary buffer to decompress the page */ 615 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO); 616 617 user_mem = kmap_atomic(page); 618 if (!is_partial_io(bvec)) 619 uncmem = user_mem; 620 621 if (!uncmem) { 622 pr_err("Unable to allocate temp memory\n"); 623 ret = -ENOMEM; 624 goto out_cleanup; 625 } 626 627 ret = zram_decompress_page(zram, uncmem, index); 628 /* Should NEVER happen. Return bio error if it does. */ 629 if (unlikely(ret)) 630 goto out_cleanup; 631 632 if (is_partial_io(bvec)) 633 memcpy(user_mem + bvec->bv_offset, uncmem + offset, 634 bvec->bv_len); 635 636 flush_dcache_page(page); 637 ret = 0; 638 out_cleanup: 639 kunmap_atomic(user_mem); 640 if (is_partial_io(bvec)) 641 kfree(uncmem); 642 return ret; 643 } 644 645 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index, 646 int offset) 647 { 648 int ret = 0; 649 size_t clen; 650 unsigned long handle = 0; 651 struct page *page; 652 unsigned char *user_mem, *cmem, *src, *uncmem = NULL; 653 struct zram_meta *meta = zram->meta; 654 struct zcomp_strm *zstrm = NULL; 655 unsigned long alloced_pages; 656 657 page = bvec->bv_page; 658 if (is_partial_io(bvec)) { 659 /* 660 * This is a partial IO. We need to read the full page 661 * before to write the changes. 662 */ 663 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO); 664 if (!uncmem) { 665 ret = -ENOMEM; 666 goto out; 667 } 668 ret = zram_decompress_page(zram, uncmem, index); 669 if (ret) 670 goto out; 671 } 672 673 compress_again: 674 user_mem = kmap_atomic(page); 675 if (is_partial_io(bvec)) { 676 memcpy(uncmem + offset, user_mem + bvec->bv_offset, 677 bvec->bv_len); 678 kunmap_atomic(user_mem); 679 user_mem = NULL; 680 } else { 681 uncmem = user_mem; 682 } 683 684 if (page_zero_filled(uncmem)) { 685 if (user_mem) 686 kunmap_atomic(user_mem); 687 /* Free memory associated with this sector now. */ 688 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 689 zram_free_page(zram, index); 690 zram_set_flag(meta, index, ZRAM_ZERO); 691 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 692 693 atomic64_inc(&zram->stats.zero_pages); 694 ret = 0; 695 goto out; 696 } 697 698 zstrm = zcomp_strm_find(zram->comp); 699 ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen); 700 if (!is_partial_io(bvec)) { 701 kunmap_atomic(user_mem); 702 user_mem = NULL; 703 uncmem = NULL; 704 } 705 706 if (unlikely(ret)) { 707 pr_err("Compression failed! err=%d\n", ret); 708 goto out; 709 } 710 711 src = zstrm->buffer; 712 if (unlikely(clen > max_zpage_size)) { 713 clen = PAGE_SIZE; 714 if (is_partial_io(bvec)) 715 src = uncmem; 716 } 717 718 /* 719 * handle allocation has 2 paths: 720 * a) fast path is executed with preemption disabled (for 721 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear, 722 * since we can't sleep; 723 * b) slow path enables preemption and attempts to allocate 724 * the page with __GFP_DIRECT_RECLAIM bit set. we have to 725 * put per-cpu compression stream and, thus, to re-do 726 * the compression once handle is allocated. 727 * 728 * if we have a 'non-null' handle here then we are coming 729 * from the slow path and handle has already been allocated. 730 */ 731 if (!handle) 732 handle = zs_malloc(meta->mem_pool, clen, 733 __GFP_KSWAPD_RECLAIM | 734 __GFP_NOWARN | 735 __GFP_HIGHMEM); 736 if (!handle) { 737 zcomp_strm_release(zram->comp, zstrm); 738 zstrm = NULL; 739 740 atomic64_inc(&zram->stats.writestall); 741 742 handle = zs_malloc(meta->mem_pool, clen, 743 GFP_NOIO | __GFP_HIGHMEM); 744 if (handle) 745 goto compress_again; 746 747 pr_err("Error allocating memory for compressed page: %u, size=%zu\n", 748 index, clen); 749 ret = -ENOMEM; 750 goto out; 751 } 752 753 alloced_pages = zs_get_total_pages(meta->mem_pool); 754 update_used_max(zram, alloced_pages); 755 756 if (zram->limit_pages && alloced_pages > zram->limit_pages) { 757 zs_free(meta->mem_pool, handle); 758 ret = -ENOMEM; 759 goto out; 760 } 761 762 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO); 763 764 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) { 765 src = kmap_atomic(page); 766 copy_page(cmem, src); 767 kunmap_atomic(src); 768 } else { 769 memcpy(cmem, src, clen); 770 } 771 772 zcomp_strm_release(zram->comp, zstrm); 773 zstrm = NULL; 774 zs_unmap_object(meta->mem_pool, handle); 775 776 /* 777 * Free memory associated with this sector 778 * before overwriting unused sectors. 779 */ 780 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 781 zram_free_page(zram, index); 782 783 meta->table[index].handle = handle; 784 zram_set_obj_size(meta, index, clen); 785 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 786 787 /* Update stats */ 788 atomic64_add(clen, &zram->stats.compr_data_size); 789 atomic64_inc(&zram->stats.pages_stored); 790 out: 791 if (zstrm) 792 zcomp_strm_release(zram->comp, zstrm); 793 if (is_partial_io(bvec)) 794 kfree(uncmem); 795 return ret; 796 } 797 798 /* 799 * zram_bio_discard - handler on discard request 800 * @index: physical block index in PAGE_SIZE units 801 * @offset: byte offset within physical block 802 */ 803 static void zram_bio_discard(struct zram *zram, u32 index, 804 int offset, struct bio *bio) 805 { 806 size_t n = bio->bi_iter.bi_size; 807 struct zram_meta *meta = zram->meta; 808 809 /* 810 * zram manages data in physical block size units. Because logical block 811 * size isn't identical with physical block size on some arch, we 812 * could get a discard request pointing to a specific offset within a 813 * certain physical block. Although we can handle this request by 814 * reading that physiclal block and decompressing and partially zeroing 815 * and re-compressing and then re-storing it, this isn't reasonable 816 * because our intent with a discard request is to save memory. So 817 * skipping this logical block is appropriate here. 818 */ 819 if (offset) { 820 if (n <= (PAGE_SIZE - offset)) 821 return; 822 823 n -= (PAGE_SIZE - offset); 824 index++; 825 } 826 827 while (n >= PAGE_SIZE) { 828 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 829 zram_free_page(zram, index); 830 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 831 atomic64_inc(&zram->stats.notify_free); 832 index++; 833 n -= PAGE_SIZE; 834 } 835 } 836 837 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index, 838 int offset, int rw) 839 { 840 unsigned long start_time = jiffies; 841 int ret; 842 843 generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT, 844 &zram->disk->part0); 845 846 if (rw == READ) { 847 atomic64_inc(&zram->stats.num_reads); 848 ret = zram_bvec_read(zram, bvec, index, offset); 849 } else { 850 atomic64_inc(&zram->stats.num_writes); 851 ret = zram_bvec_write(zram, bvec, index, offset); 852 } 853 854 generic_end_io_acct(rw, &zram->disk->part0, start_time); 855 856 if (unlikely(ret)) { 857 if (rw == READ) 858 atomic64_inc(&zram->stats.failed_reads); 859 else 860 atomic64_inc(&zram->stats.failed_writes); 861 } 862 863 return ret; 864 } 865 866 static void __zram_make_request(struct zram *zram, struct bio *bio) 867 { 868 int offset, rw; 869 u32 index; 870 struct bio_vec bvec; 871 struct bvec_iter iter; 872 873 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 874 offset = (bio->bi_iter.bi_sector & 875 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 876 877 if (unlikely(bio->bi_rw & REQ_DISCARD)) { 878 zram_bio_discard(zram, index, offset, bio); 879 bio_endio(bio); 880 return; 881 } 882 883 rw = bio_data_dir(bio); 884 bio_for_each_segment(bvec, bio, iter) { 885 int max_transfer_size = PAGE_SIZE - offset; 886 887 if (bvec.bv_len > max_transfer_size) { 888 /* 889 * zram_bvec_rw() can only make operation on a single 890 * zram page. Split the bio vector. 891 */ 892 struct bio_vec bv; 893 894 bv.bv_page = bvec.bv_page; 895 bv.bv_len = max_transfer_size; 896 bv.bv_offset = bvec.bv_offset; 897 898 if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0) 899 goto out; 900 901 bv.bv_len = bvec.bv_len - max_transfer_size; 902 bv.bv_offset += max_transfer_size; 903 if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0) 904 goto out; 905 } else 906 if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0) 907 goto out; 908 909 update_position(&index, &offset, &bvec); 910 } 911 912 bio_endio(bio); 913 return; 914 915 out: 916 bio_io_error(bio); 917 } 918 919 /* 920 * Handler function for all zram I/O requests. 921 */ 922 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio) 923 { 924 struct zram *zram = queue->queuedata; 925 926 if (unlikely(!zram_meta_get(zram))) 927 goto error; 928 929 blk_queue_split(queue, &bio, queue->bio_split); 930 931 if (!valid_io_request(zram, bio->bi_iter.bi_sector, 932 bio->bi_iter.bi_size)) { 933 atomic64_inc(&zram->stats.invalid_io); 934 goto put_zram; 935 } 936 937 __zram_make_request(zram, bio); 938 zram_meta_put(zram); 939 return BLK_QC_T_NONE; 940 put_zram: 941 zram_meta_put(zram); 942 error: 943 bio_io_error(bio); 944 return BLK_QC_T_NONE; 945 } 946 947 static void zram_slot_free_notify(struct block_device *bdev, 948 unsigned long index) 949 { 950 struct zram *zram; 951 struct zram_meta *meta; 952 953 zram = bdev->bd_disk->private_data; 954 meta = zram->meta; 955 956 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 957 zram_free_page(zram, index); 958 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 959 atomic64_inc(&zram->stats.notify_free); 960 } 961 962 static int zram_rw_page(struct block_device *bdev, sector_t sector, 963 struct page *page, int rw) 964 { 965 int offset, err = -EIO; 966 u32 index; 967 struct zram *zram; 968 struct bio_vec bv; 969 970 zram = bdev->bd_disk->private_data; 971 if (unlikely(!zram_meta_get(zram))) 972 goto out; 973 974 if (!valid_io_request(zram, sector, PAGE_SIZE)) { 975 atomic64_inc(&zram->stats.invalid_io); 976 err = -EINVAL; 977 goto put_zram; 978 } 979 980 index = sector >> SECTORS_PER_PAGE_SHIFT; 981 offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT; 982 983 bv.bv_page = page; 984 bv.bv_len = PAGE_SIZE; 985 bv.bv_offset = 0; 986 987 err = zram_bvec_rw(zram, &bv, index, offset, rw); 988 put_zram: 989 zram_meta_put(zram); 990 out: 991 /* 992 * If I/O fails, just return error(ie, non-zero) without 993 * calling page_endio. 994 * It causes resubmit the I/O with bio request by upper functions 995 * of rw_page(e.g., swap_readpage, __swap_writepage) and 996 * bio->bi_end_io does things to handle the error 997 * (e.g., SetPageError, set_page_dirty and extra works). 998 */ 999 if (err == 0) 1000 page_endio(page, rw, 0); 1001 return err; 1002 } 1003 1004 static void zram_reset_device(struct zram *zram) 1005 { 1006 struct zram_meta *meta; 1007 struct zcomp *comp; 1008 u64 disksize; 1009 1010 down_write(&zram->init_lock); 1011 1012 zram->limit_pages = 0; 1013 1014 if (!init_done(zram)) { 1015 up_write(&zram->init_lock); 1016 return; 1017 } 1018 1019 meta = zram->meta; 1020 comp = zram->comp; 1021 disksize = zram->disksize; 1022 /* 1023 * Refcount will go down to 0 eventually and r/w handler 1024 * cannot handle further I/O so it will bail out by 1025 * check zram_meta_get. 1026 */ 1027 zram_meta_put(zram); 1028 /* 1029 * We want to free zram_meta in process context to avoid 1030 * deadlock between reclaim path and any other locks. 1031 */ 1032 wait_event(zram->io_done, atomic_read(&zram->refcount) == 0); 1033 1034 /* Reset stats */ 1035 memset(&zram->stats, 0, sizeof(zram->stats)); 1036 zram->disksize = 0; 1037 1038 set_capacity(zram->disk, 0); 1039 part_stat_set_all(&zram->disk->part0, 0); 1040 1041 up_write(&zram->init_lock); 1042 /* I/O operation under all of CPU are done so let's free */ 1043 zram_meta_free(meta, disksize); 1044 zcomp_destroy(comp); 1045 } 1046 1047 static ssize_t disksize_store(struct device *dev, 1048 struct device_attribute *attr, const char *buf, size_t len) 1049 { 1050 u64 disksize; 1051 struct zcomp *comp; 1052 struct zram_meta *meta; 1053 struct zram *zram = dev_to_zram(dev); 1054 int err; 1055 1056 disksize = memparse(buf, NULL); 1057 if (!disksize) 1058 return -EINVAL; 1059 1060 disksize = PAGE_ALIGN(disksize); 1061 meta = zram_meta_alloc(zram->disk->disk_name, disksize); 1062 if (!meta) 1063 return -ENOMEM; 1064 1065 comp = zcomp_create(zram->compressor); 1066 if (IS_ERR(comp)) { 1067 pr_err("Cannot initialise %s compressing backend\n", 1068 zram->compressor); 1069 err = PTR_ERR(comp); 1070 goto out_free_meta; 1071 } 1072 1073 down_write(&zram->init_lock); 1074 if (init_done(zram)) { 1075 pr_info("Cannot change disksize for initialized device\n"); 1076 err = -EBUSY; 1077 goto out_destroy_comp; 1078 } 1079 1080 init_waitqueue_head(&zram->io_done); 1081 atomic_set(&zram->refcount, 1); 1082 zram->meta = meta; 1083 zram->comp = comp; 1084 zram->disksize = disksize; 1085 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT); 1086 up_write(&zram->init_lock); 1087 1088 /* 1089 * Revalidate disk out of the init_lock to avoid lockdep splat. 1090 * It's okay because disk's capacity is protected by init_lock 1091 * so that revalidate_disk always sees up-to-date capacity. 1092 */ 1093 revalidate_disk(zram->disk); 1094 1095 return len; 1096 1097 out_destroy_comp: 1098 up_write(&zram->init_lock); 1099 zcomp_destroy(comp); 1100 out_free_meta: 1101 zram_meta_free(meta, disksize); 1102 return err; 1103 } 1104 1105 static ssize_t reset_store(struct device *dev, 1106 struct device_attribute *attr, const char *buf, size_t len) 1107 { 1108 int ret; 1109 unsigned short do_reset; 1110 struct zram *zram; 1111 struct block_device *bdev; 1112 1113 ret = kstrtou16(buf, 10, &do_reset); 1114 if (ret) 1115 return ret; 1116 1117 if (!do_reset) 1118 return -EINVAL; 1119 1120 zram = dev_to_zram(dev); 1121 bdev = bdget_disk(zram->disk, 0); 1122 if (!bdev) 1123 return -ENOMEM; 1124 1125 mutex_lock(&bdev->bd_mutex); 1126 /* Do not reset an active device or claimed device */ 1127 if (bdev->bd_openers || zram->claim) { 1128 mutex_unlock(&bdev->bd_mutex); 1129 bdput(bdev); 1130 return -EBUSY; 1131 } 1132 1133 /* From now on, anyone can't open /dev/zram[0-9] */ 1134 zram->claim = true; 1135 mutex_unlock(&bdev->bd_mutex); 1136 1137 /* Make sure all the pending I/O are finished */ 1138 fsync_bdev(bdev); 1139 zram_reset_device(zram); 1140 revalidate_disk(zram->disk); 1141 bdput(bdev); 1142 1143 mutex_lock(&bdev->bd_mutex); 1144 zram->claim = false; 1145 mutex_unlock(&bdev->bd_mutex); 1146 1147 return len; 1148 } 1149 1150 static int zram_open(struct block_device *bdev, fmode_t mode) 1151 { 1152 int ret = 0; 1153 struct zram *zram; 1154 1155 WARN_ON(!mutex_is_locked(&bdev->bd_mutex)); 1156 1157 zram = bdev->bd_disk->private_data; 1158 /* zram was claimed to reset so open request fails */ 1159 if (zram->claim) 1160 ret = -EBUSY; 1161 1162 return ret; 1163 } 1164 1165 static const struct block_device_operations zram_devops = { 1166 .open = zram_open, 1167 .swap_slot_free_notify = zram_slot_free_notify, 1168 .rw_page = zram_rw_page, 1169 .owner = THIS_MODULE 1170 }; 1171 1172 static DEVICE_ATTR_WO(compact); 1173 static DEVICE_ATTR_RW(disksize); 1174 static DEVICE_ATTR_RO(initstate); 1175 static DEVICE_ATTR_WO(reset); 1176 static DEVICE_ATTR_RO(orig_data_size); 1177 static DEVICE_ATTR_RO(mem_used_total); 1178 static DEVICE_ATTR_RW(mem_limit); 1179 static DEVICE_ATTR_RW(mem_used_max); 1180 static DEVICE_ATTR_RW(max_comp_streams); 1181 static DEVICE_ATTR_RW(comp_algorithm); 1182 1183 static struct attribute *zram_disk_attrs[] = { 1184 &dev_attr_disksize.attr, 1185 &dev_attr_initstate.attr, 1186 &dev_attr_reset.attr, 1187 &dev_attr_num_reads.attr, 1188 &dev_attr_num_writes.attr, 1189 &dev_attr_failed_reads.attr, 1190 &dev_attr_failed_writes.attr, 1191 &dev_attr_compact.attr, 1192 &dev_attr_invalid_io.attr, 1193 &dev_attr_notify_free.attr, 1194 &dev_attr_zero_pages.attr, 1195 &dev_attr_orig_data_size.attr, 1196 &dev_attr_compr_data_size.attr, 1197 &dev_attr_mem_used_total.attr, 1198 &dev_attr_mem_limit.attr, 1199 &dev_attr_mem_used_max.attr, 1200 &dev_attr_max_comp_streams.attr, 1201 &dev_attr_comp_algorithm.attr, 1202 &dev_attr_io_stat.attr, 1203 &dev_attr_mm_stat.attr, 1204 &dev_attr_debug_stat.attr, 1205 NULL, 1206 }; 1207 1208 static struct attribute_group zram_disk_attr_group = { 1209 .attrs = zram_disk_attrs, 1210 }; 1211 1212 /* 1213 * Allocate and initialize new zram device. the function returns 1214 * '>= 0' device_id upon success, and negative value otherwise. 1215 */ 1216 static int zram_add(void) 1217 { 1218 struct zram *zram; 1219 struct request_queue *queue; 1220 int ret, device_id; 1221 1222 zram = kzalloc(sizeof(struct zram), GFP_KERNEL); 1223 if (!zram) 1224 return -ENOMEM; 1225 1226 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); 1227 if (ret < 0) 1228 goto out_free_dev; 1229 device_id = ret; 1230 1231 init_rwsem(&zram->init_lock); 1232 1233 queue = blk_alloc_queue(GFP_KERNEL); 1234 if (!queue) { 1235 pr_err("Error allocating disk queue for device %d\n", 1236 device_id); 1237 ret = -ENOMEM; 1238 goto out_free_idr; 1239 } 1240 1241 blk_queue_make_request(queue, zram_make_request); 1242 1243 /* gendisk structure */ 1244 zram->disk = alloc_disk(1); 1245 if (!zram->disk) { 1246 pr_err("Error allocating disk structure for device %d\n", 1247 device_id); 1248 ret = -ENOMEM; 1249 goto out_free_queue; 1250 } 1251 1252 zram->disk->major = zram_major; 1253 zram->disk->first_minor = device_id; 1254 zram->disk->fops = &zram_devops; 1255 zram->disk->queue = queue; 1256 zram->disk->queue->queuedata = zram; 1257 zram->disk->private_data = zram; 1258 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 1259 1260 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */ 1261 set_capacity(zram->disk, 0); 1262 /* zram devices sort of resembles non-rotational disks */ 1263 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue); 1264 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue); 1265 /* 1266 * To ensure that we always get PAGE_SIZE aligned 1267 * and n*PAGE_SIZED sized I/O requests. 1268 */ 1269 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); 1270 blk_queue_logical_block_size(zram->disk->queue, 1271 ZRAM_LOGICAL_BLOCK_SIZE); 1272 blk_queue_io_min(zram->disk->queue, PAGE_SIZE); 1273 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); 1274 zram->disk->queue->limits.discard_granularity = PAGE_SIZE; 1275 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX); 1276 /* 1277 * zram_bio_discard() will clear all logical blocks if logical block 1278 * size is identical with physical block size(PAGE_SIZE). But if it is 1279 * different, we will skip discarding some parts of logical blocks in 1280 * the part of the request range which isn't aligned to physical block 1281 * size. So we can't ensure that all discarded logical blocks are 1282 * zeroed. 1283 */ 1284 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) 1285 zram->disk->queue->limits.discard_zeroes_data = 1; 1286 else 1287 zram->disk->queue->limits.discard_zeroes_data = 0; 1288 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue); 1289 1290 add_disk(zram->disk); 1291 1292 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj, 1293 &zram_disk_attr_group); 1294 if (ret < 0) { 1295 pr_err("Error creating sysfs group for device %d\n", 1296 device_id); 1297 goto out_free_disk; 1298 } 1299 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor)); 1300 zram->meta = NULL; 1301 1302 pr_info("Added device: %s\n", zram->disk->disk_name); 1303 return device_id; 1304 1305 out_free_disk: 1306 del_gendisk(zram->disk); 1307 put_disk(zram->disk); 1308 out_free_queue: 1309 blk_cleanup_queue(queue); 1310 out_free_idr: 1311 idr_remove(&zram_index_idr, device_id); 1312 out_free_dev: 1313 kfree(zram); 1314 return ret; 1315 } 1316 1317 static int zram_remove(struct zram *zram) 1318 { 1319 struct block_device *bdev; 1320 1321 bdev = bdget_disk(zram->disk, 0); 1322 if (!bdev) 1323 return -ENOMEM; 1324 1325 mutex_lock(&bdev->bd_mutex); 1326 if (bdev->bd_openers || zram->claim) { 1327 mutex_unlock(&bdev->bd_mutex); 1328 bdput(bdev); 1329 return -EBUSY; 1330 } 1331 1332 zram->claim = true; 1333 mutex_unlock(&bdev->bd_mutex); 1334 1335 /* 1336 * Remove sysfs first, so no one will perform a disksize 1337 * store while we destroy the devices. This also helps during 1338 * hot_remove -- zram_reset_device() is the last holder of 1339 * ->init_lock, no later/concurrent disksize_store() or any 1340 * other sysfs handlers are possible. 1341 */ 1342 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj, 1343 &zram_disk_attr_group); 1344 1345 /* Make sure all the pending I/O are finished */ 1346 fsync_bdev(bdev); 1347 zram_reset_device(zram); 1348 bdput(bdev); 1349 1350 pr_info("Removed device: %s\n", zram->disk->disk_name); 1351 1352 blk_cleanup_queue(zram->disk->queue); 1353 del_gendisk(zram->disk); 1354 put_disk(zram->disk); 1355 kfree(zram); 1356 return 0; 1357 } 1358 1359 /* zram-control sysfs attributes */ 1360 static ssize_t hot_add_show(struct class *class, 1361 struct class_attribute *attr, 1362 char *buf) 1363 { 1364 int ret; 1365 1366 mutex_lock(&zram_index_mutex); 1367 ret = zram_add(); 1368 mutex_unlock(&zram_index_mutex); 1369 1370 if (ret < 0) 1371 return ret; 1372 return scnprintf(buf, PAGE_SIZE, "%d\n", ret); 1373 } 1374 1375 static ssize_t hot_remove_store(struct class *class, 1376 struct class_attribute *attr, 1377 const char *buf, 1378 size_t count) 1379 { 1380 struct zram *zram; 1381 int ret, dev_id; 1382 1383 /* dev_id is gendisk->first_minor, which is `int' */ 1384 ret = kstrtoint(buf, 10, &dev_id); 1385 if (ret) 1386 return ret; 1387 if (dev_id < 0) 1388 return -EINVAL; 1389 1390 mutex_lock(&zram_index_mutex); 1391 1392 zram = idr_find(&zram_index_idr, dev_id); 1393 if (zram) { 1394 ret = zram_remove(zram); 1395 idr_remove(&zram_index_idr, dev_id); 1396 } else { 1397 ret = -ENODEV; 1398 } 1399 1400 mutex_unlock(&zram_index_mutex); 1401 return ret ? ret : count; 1402 } 1403 1404 static struct class_attribute zram_control_class_attrs[] = { 1405 __ATTR_RO(hot_add), 1406 __ATTR_WO(hot_remove), 1407 __ATTR_NULL, 1408 }; 1409 1410 static struct class zram_control_class = { 1411 .name = "zram-control", 1412 .owner = THIS_MODULE, 1413 .class_attrs = zram_control_class_attrs, 1414 }; 1415 1416 static int zram_remove_cb(int id, void *ptr, void *data) 1417 { 1418 zram_remove(ptr); 1419 return 0; 1420 } 1421 1422 static void destroy_devices(void) 1423 { 1424 class_unregister(&zram_control_class); 1425 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); 1426 idr_destroy(&zram_index_idr); 1427 unregister_blkdev(zram_major, "zram"); 1428 } 1429 1430 static int __init zram_init(void) 1431 { 1432 int ret; 1433 1434 ret = class_register(&zram_control_class); 1435 if (ret) { 1436 pr_err("Unable to register zram-control class\n"); 1437 return ret; 1438 } 1439 1440 zram_major = register_blkdev(0, "zram"); 1441 if (zram_major <= 0) { 1442 pr_err("Unable to get major number\n"); 1443 class_unregister(&zram_control_class); 1444 return -EBUSY; 1445 } 1446 1447 while (num_devices != 0) { 1448 mutex_lock(&zram_index_mutex); 1449 ret = zram_add(); 1450 mutex_unlock(&zram_index_mutex); 1451 if (ret < 0) 1452 goto out_error; 1453 num_devices--; 1454 } 1455 1456 return 0; 1457 1458 out_error: 1459 destroy_devices(); 1460 return ret; 1461 } 1462 1463 static void __exit zram_exit(void) 1464 { 1465 destroy_devices(); 1466 } 1467 1468 module_init(zram_init); 1469 module_exit(zram_exit); 1470 1471 module_param(num_devices, uint, 0); 1472 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); 1473 1474 MODULE_LICENSE("Dual BSD/GPL"); 1475 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 1476 MODULE_DESCRIPTION("Compressed RAM Block Device"); 1477