xref: /linux/drivers/block/zram/zram_drv.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
33 
34 #include "zram_drv.h"
35 
36 static DEFINE_IDR(zram_index_idr);
37 /* idr index must be protected */
38 static DEFINE_MUTEX(zram_index_mutex);
39 
40 static int zram_major;
41 static const char *default_compressor = "lzo";
42 
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
45 
46 static inline void deprecated_attr_warn(const char *name)
47 {
48 	pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
49 			task_pid_nr(current),
50 			current->comm,
51 			name,
52 			"See zram documentation.");
53 }
54 
55 #define ZRAM_ATTR_RO(name)						\
56 static ssize_t name##_show(struct device *d,				\
57 				struct device_attribute *attr, char *b)	\
58 {									\
59 	struct zram *zram = dev_to_zram(d);				\
60 									\
61 	deprecated_attr_warn(__stringify(name));			\
62 	return scnprintf(b, PAGE_SIZE, "%llu\n",			\
63 		(u64)atomic64_read(&zram->stats.name));			\
64 }									\
65 static DEVICE_ATTR_RO(name);
66 
67 static inline bool init_done(struct zram *zram)
68 {
69 	return zram->disksize;
70 }
71 
72 static inline struct zram *dev_to_zram(struct device *dev)
73 {
74 	return (struct zram *)dev_to_disk(dev)->private_data;
75 }
76 
77 /* flag operations require table entry bit_spin_lock() being held */
78 static int zram_test_flag(struct zram_meta *meta, u32 index,
79 			enum zram_pageflags flag)
80 {
81 	return meta->table[index].value & BIT(flag);
82 }
83 
84 static void zram_set_flag(struct zram_meta *meta, u32 index,
85 			enum zram_pageflags flag)
86 {
87 	meta->table[index].value |= BIT(flag);
88 }
89 
90 static void zram_clear_flag(struct zram_meta *meta, u32 index,
91 			enum zram_pageflags flag)
92 {
93 	meta->table[index].value &= ~BIT(flag);
94 }
95 
96 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
97 {
98 	return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
99 }
100 
101 static void zram_set_obj_size(struct zram_meta *meta,
102 					u32 index, size_t size)
103 {
104 	unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
105 
106 	meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
107 }
108 
109 static inline bool is_partial_io(struct bio_vec *bvec)
110 {
111 	return bvec->bv_len != PAGE_SIZE;
112 }
113 
114 /*
115  * Check if request is within bounds and aligned on zram logical blocks.
116  */
117 static inline bool valid_io_request(struct zram *zram,
118 		sector_t start, unsigned int size)
119 {
120 	u64 end, bound;
121 
122 	/* unaligned request */
123 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
124 		return false;
125 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
126 		return false;
127 
128 	end = start + (size >> SECTOR_SHIFT);
129 	bound = zram->disksize >> SECTOR_SHIFT;
130 	/* out of range range */
131 	if (unlikely(start >= bound || end > bound || start > end))
132 		return false;
133 
134 	/* I/O request is valid */
135 	return true;
136 }
137 
138 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
139 {
140 	if (*offset + bvec->bv_len >= PAGE_SIZE)
141 		(*index)++;
142 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
143 }
144 
145 static inline void update_used_max(struct zram *zram,
146 					const unsigned long pages)
147 {
148 	unsigned long old_max, cur_max;
149 
150 	old_max = atomic_long_read(&zram->stats.max_used_pages);
151 
152 	do {
153 		cur_max = old_max;
154 		if (pages > cur_max)
155 			old_max = atomic_long_cmpxchg(
156 				&zram->stats.max_used_pages, cur_max, pages);
157 	} while (old_max != cur_max);
158 }
159 
160 static bool page_zero_filled(void *ptr)
161 {
162 	unsigned int pos;
163 	unsigned long *page;
164 
165 	page = (unsigned long *)ptr;
166 
167 	for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
168 		if (page[pos])
169 			return false;
170 	}
171 
172 	return true;
173 }
174 
175 static void handle_zero_page(struct bio_vec *bvec)
176 {
177 	struct page *page = bvec->bv_page;
178 	void *user_mem;
179 
180 	user_mem = kmap_atomic(page);
181 	if (is_partial_io(bvec))
182 		memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
183 	else
184 		clear_page(user_mem);
185 	kunmap_atomic(user_mem);
186 
187 	flush_dcache_page(page);
188 }
189 
190 static ssize_t initstate_show(struct device *dev,
191 		struct device_attribute *attr, char *buf)
192 {
193 	u32 val;
194 	struct zram *zram = dev_to_zram(dev);
195 
196 	down_read(&zram->init_lock);
197 	val = init_done(zram);
198 	up_read(&zram->init_lock);
199 
200 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
201 }
202 
203 static ssize_t disksize_show(struct device *dev,
204 		struct device_attribute *attr, char *buf)
205 {
206 	struct zram *zram = dev_to_zram(dev);
207 
208 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
209 }
210 
211 static ssize_t orig_data_size_show(struct device *dev,
212 		struct device_attribute *attr, char *buf)
213 {
214 	struct zram *zram = dev_to_zram(dev);
215 
216 	deprecated_attr_warn("orig_data_size");
217 	return scnprintf(buf, PAGE_SIZE, "%llu\n",
218 		(u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
219 }
220 
221 static ssize_t mem_used_total_show(struct device *dev,
222 		struct device_attribute *attr, char *buf)
223 {
224 	u64 val = 0;
225 	struct zram *zram = dev_to_zram(dev);
226 
227 	deprecated_attr_warn("mem_used_total");
228 	down_read(&zram->init_lock);
229 	if (init_done(zram)) {
230 		struct zram_meta *meta = zram->meta;
231 		val = zs_get_total_pages(meta->mem_pool);
232 	}
233 	up_read(&zram->init_lock);
234 
235 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
236 }
237 
238 static ssize_t mem_limit_show(struct device *dev,
239 		struct device_attribute *attr, char *buf)
240 {
241 	u64 val;
242 	struct zram *zram = dev_to_zram(dev);
243 
244 	deprecated_attr_warn("mem_limit");
245 	down_read(&zram->init_lock);
246 	val = zram->limit_pages;
247 	up_read(&zram->init_lock);
248 
249 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
250 }
251 
252 static ssize_t mem_limit_store(struct device *dev,
253 		struct device_attribute *attr, const char *buf, size_t len)
254 {
255 	u64 limit;
256 	char *tmp;
257 	struct zram *zram = dev_to_zram(dev);
258 
259 	limit = memparse(buf, &tmp);
260 	if (buf == tmp) /* no chars parsed, invalid input */
261 		return -EINVAL;
262 
263 	down_write(&zram->init_lock);
264 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
265 	up_write(&zram->init_lock);
266 
267 	return len;
268 }
269 
270 static ssize_t mem_used_max_show(struct device *dev,
271 		struct device_attribute *attr, char *buf)
272 {
273 	u64 val = 0;
274 	struct zram *zram = dev_to_zram(dev);
275 
276 	deprecated_attr_warn("mem_used_max");
277 	down_read(&zram->init_lock);
278 	if (init_done(zram))
279 		val = atomic_long_read(&zram->stats.max_used_pages);
280 	up_read(&zram->init_lock);
281 
282 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
283 }
284 
285 static ssize_t mem_used_max_store(struct device *dev,
286 		struct device_attribute *attr, const char *buf, size_t len)
287 {
288 	int err;
289 	unsigned long val;
290 	struct zram *zram = dev_to_zram(dev);
291 
292 	err = kstrtoul(buf, 10, &val);
293 	if (err || val != 0)
294 		return -EINVAL;
295 
296 	down_read(&zram->init_lock);
297 	if (init_done(zram)) {
298 		struct zram_meta *meta = zram->meta;
299 		atomic_long_set(&zram->stats.max_used_pages,
300 				zs_get_total_pages(meta->mem_pool));
301 	}
302 	up_read(&zram->init_lock);
303 
304 	return len;
305 }
306 
307 /*
308  * We switched to per-cpu streams and this attr is not needed anymore.
309  * However, we will keep it around for some time, because:
310  * a) we may revert per-cpu streams in the future
311  * b) it's visible to user space and we need to follow our 2 years
312  *    retirement rule; but we already have a number of 'soon to be
313  *    altered' attrs, so max_comp_streams need to wait for the next
314  *    layoff cycle.
315  */
316 static ssize_t max_comp_streams_show(struct device *dev,
317 		struct device_attribute *attr, char *buf)
318 {
319 	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
320 }
321 
322 static ssize_t max_comp_streams_store(struct device *dev,
323 		struct device_attribute *attr, const char *buf, size_t len)
324 {
325 	return len;
326 }
327 
328 static ssize_t comp_algorithm_show(struct device *dev,
329 		struct device_attribute *attr, char *buf)
330 {
331 	size_t sz;
332 	struct zram *zram = dev_to_zram(dev);
333 
334 	down_read(&zram->init_lock);
335 	sz = zcomp_available_show(zram->compressor, buf);
336 	up_read(&zram->init_lock);
337 
338 	return sz;
339 }
340 
341 static ssize_t comp_algorithm_store(struct device *dev,
342 		struct device_attribute *attr, const char *buf, size_t len)
343 {
344 	struct zram *zram = dev_to_zram(dev);
345 	size_t sz;
346 
347 	if (!zcomp_available_algorithm(buf))
348 		return -EINVAL;
349 
350 	down_write(&zram->init_lock);
351 	if (init_done(zram)) {
352 		up_write(&zram->init_lock);
353 		pr_info("Can't change algorithm for initialized device\n");
354 		return -EBUSY;
355 	}
356 	strlcpy(zram->compressor, buf, sizeof(zram->compressor));
357 
358 	/* ignore trailing newline */
359 	sz = strlen(zram->compressor);
360 	if (sz > 0 && zram->compressor[sz - 1] == '\n')
361 		zram->compressor[sz - 1] = 0x00;
362 
363 	up_write(&zram->init_lock);
364 	return len;
365 }
366 
367 static ssize_t compact_store(struct device *dev,
368 		struct device_attribute *attr, const char *buf, size_t len)
369 {
370 	struct zram *zram = dev_to_zram(dev);
371 	struct zram_meta *meta;
372 
373 	down_read(&zram->init_lock);
374 	if (!init_done(zram)) {
375 		up_read(&zram->init_lock);
376 		return -EINVAL;
377 	}
378 
379 	meta = zram->meta;
380 	zs_compact(meta->mem_pool);
381 	up_read(&zram->init_lock);
382 
383 	return len;
384 }
385 
386 static ssize_t io_stat_show(struct device *dev,
387 		struct device_attribute *attr, char *buf)
388 {
389 	struct zram *zram = dev_to_zram(dev);
390 	ssize_t ret;
391 
392 	down_read(&zram->init_lock);
393 	ret = scnprintf(buf, PAGE_SIZE,
394 			"%8llu %8llu %8llu %8llu\n",
395 			(u64)atomic64_read(&zram->stats.failed_reads),
396 			(u64)atomic64_read(&zram->stats.failed_writes),
397 			(u64)atomic64_read(&zram->stats.invalid_io),
398 			(u64)atomic64_read(&zram->stats.notify_free));
399 	up_read(&zram->init_lock);
400 
401 	return ret;
402 }
403 
404 static ssize_t mm_stat_show(struct device *dev,
405 		struct device_attribute *attr, char *buf)
406 {
407 	struct zram *zram = dev_to_zram(dev);
408 	struct zs_pool_stats pool_stats;
409 	u64 orig_size, mem_used = 0;
410 	long max_used;
411 	ssize_t ret;
412 
413 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
414 
415 	down_read(&zram->init_lock);
416 	if (init_done(zram)) {
417 		mem_used = zs_get_total_pages(zram->meta->mem_pool);
418 		zs_pool_stats(zram->meta->mem_pool, &pool_stats);
419 	}
420 
421 	orig_size = atomic64_read(&zram->stats.pages_stored);
422 	max_used = atomic_long_read(&zram->stats.max_used_pages);
423 
424 	ret = scnprintf(buf, PAGE_SIZE,
425 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
426 			orig_size << PAGE_SHIFT,
427 			(u64)atomic64_read(&zram->stats.compr_data_size),
428 			mem_used << PAGE_SHIFT,
429 			zram->limit_pages << PAGE_SHIFT,
430 			max_used << PAGE_SHIFT,
431 			(u64)atomic64_read(&zram->stats.zero_pages),
432 			pool_stats.pages_compacted);
433 	up_read(&zram->init_lock);
434 
435 	return ret;
436 }
437 
438 static ssize_t debug_stat_show(struct device *dev,
439 		struct device_attribute *attr, char *buf)
440 {
441 	int version = 1;
442 	struct zram *zram = dev_to_zram(dev);
443 	ssize_t ret;
444 
445 	down_read(&zram->init_lock);
446 	ret = scnprintf(buf, PAGE_SIZE,
447 			"version: %d\n%8llu\n",
448 			version,
449 			(u64)atomic64_read(&zram->stats.writestall));
450 	up_read(&zram->init_lock);
451 
452 	return ret;
453 }
454 
455 static DEVICE_ATTR_RO(io_stat);
456 static DEVICE_ATTR_RO(mm_stat);
457 static DEVICE_ATTR_RO(debug_stat);
458 ZRAM_ATTR_RO(num_reads);
459 ZRAM_ATTR_RO(num_writes);
460 ZRAM_ATTR_RO(failed_reads);
461 ZRAM_ATTR_RO(failed_writes);
462 ZRAM_ATTR_RO(invalid_io);
463 ZRAM_ATTR_RO(notify_free);
464 ZRAM_ATTR_RO(zero_pages);
465 ZRAM_ATTR_RO(compr_data_size);
466 
467 static inline bool zram_meta_get(struct zram *zram)
468 {
469 	if (atomic_inc_not_zero(&zram->refcount))
470 		return true;
471 	return false;
472 }
473 
474 static inline void zram_meta_put(struct zram *zram)
475 {
476 	atomic_dec(&zram->refcount);
477 }
478 
479 static void zram_meta_free(struct zram_meta *meta, u64 disksize)
480 {
481 	size_t num_pages = disksize >> PAGE_SHIFT;
482 	size_t index;
483 
484 	/* Free all pages that are still in this zram device */
485 	for (index = 0; index < num_pages; index++) {
486 		unsigned long handle = meta->table[index].handle;
487 
488 		if (!handle)
489 			continue;
490 
491 		zs_free(meta->mem_pool, handle);
492 	}
493 
494 	zs_destroy_pool(meta->mem_pool);
495 	vfree(meta->table);
496 	kfree(meta);
497 }
498 
499 static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize)
500 {
501 	size_t num_pages;
502 	struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
503 
504 	if (!meta)
505 		return NULL;
506 
507 	num_pages = disksize >> PAGE_SHIFT;
508 	meta->table = vzalloc(num_pages * sizeof(*meta->table));
509 	if (!meta->table) {
510 		pr_err("Error allocating zram address table\n");
511 		goto out_error;
512 	}
513 
514 	meta->mem_pool = zs_create_pool(pool_name);
515 	if (!meta->mem_pool) {
516 		pr_err("Error creating memory pool\n");
517 		goto out_error;
518 	}
519 
520 	return meta;
521 
522 out_error:
523 	vfree(meta->table);
524 	kfree(meta);
525 	return NULL;
526 }
527 
528 /*
529  * To protect concurrent access to the same index entry,
530  * caller should hold this table index entry's bit_spinlock to
531  * indicate this index entry is accessing.
532  */
533 static void zram_free_page(struct zram *zram, size_t index)
534 {
535 	struct zram_meta *meta = zram->meta;
536 	unsigned long handle = meta->table[index].handle;
537 
538 	if (unlikely(!handle)) {
539 		/*
540 		 * No memory is allocated for zero filled pages.
541 		 * Simply clear zero page flag.
542 		 */
543 		if (zram_test_flag(meta, index, ZRAM_ZERO)) {
544 			zram_clear_flag(meta, index, ZRAM_ZERO);
545 			atomic64_dec(&zram->stats.zero_pages);
546 		}
547 		return;
548 	}
549 
550 	zs_free(meta->mem_pool, handle);
551 
552 	atomic64_sub(zram_get_obj_size(meta, index),
553 			&zram->stats.compr_data_size);
554 	atomic64_dec(&zram->stats.pages_stored);
555 
556 	meta->table[index].handle = 0;
557 	zram_set_obj_size(meta, index, 0);
558 }
559 
560 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
561 {
562 	int ret = 0;
563 	unsigned char *cmem;
564 	struct zram_meta *meta = zram->meta;
565 	unsigned long handle;
566 	size_t size;
567 
568 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
569 	handle = meta->table[index].handle;
570 	size = zram_get_obj_size(meta, index);
571 
572 	if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
573 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
574 		clear_page(mem);
575 		return 0;
576 	}
577 
578 	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
579 	if (size == PAGE_SIZE)
580 		copy_page(mem, cmem);
581 	else
582 		ret = zcomp_decompress(zram->comp, cmem, size, mem);
583 	zs_unmap_object(meta->mem_pool, handle);
584 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
585 
586 	/* Should NEVER happen. Return bio error if it does. */
587 	if (unlikely(ret)) {
588 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
589 		return ret;
590 	}
591 
592 	return 0;
593 }
594 
595 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
596 			  u32 index, int offset)
597 {
598 	int ret;
599 	struct page *page;
600 	unsigned char *user_mem, *uncmem = NULL;
601 	struct zram_meta *meta = zram->meta;
602 	page = bvec->bv_page;
603 
604 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
605 	if (unlikely(!meta->table[index].handle) ||
606 			zram_test_flag(meta, index, ZRAM_ZERO)) {
607 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
608 		handle_zero_page(bvec);
609 		return 0;
610 	}
611 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
612 
613 	if (is_partial_io(bvec))
614 		/* Use  a temporary buffer to decompress the page */
615 		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
616 
617 	user_mem = kmap_atomic(page);
618 	if (!is_partial_io(bvec))
619 		uncmem = user_mem;
620 
621 	if (!uncmem) {
622 		pr_err("Unable to allocate temp memory\n");
623 		ret = -ENOMEM;
624 		goto out_cleanup;
625 	}
626 
627 	ret = zram_decompress_page(zram, uncmem, index);
628 	/* Should NEVER happen. Return bio error if it does. */
629 	if (unlikely(ret))
630 		goto out_cleanup;
631 
632 	if (is_partial_io(bvec))
633 		memcpy(user_mem + bvec->bv_offset, uncmem + offset,
634 				bvec->bv_len);
635 
636 	flush_dcache_page(page);
637 	ret = 0;
638 out_cleanup:
639 	kunmap_atomic(user_mem);
640 	if (is_partial_io(bvec))
641 		kfree(uncmem);
642 	return ret;
643 }
644 
645 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
646 			   int offset)
647 {
648 	int ret = 0;
649 	size_t clen;
650 	unsigned long handle = 0;
651 	struct page *page;
652 	unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
653 	struct zram_meta *meta = zram->meta;
654 	struct zcomp_strm *zstrm = NULL;
655 	unsigned long alloced_pages;
656 
657 	page = bvec->bv_page;
658 	if (is_partial_io(bvec)) {
659 		/*
660 		 * This is a partial IO. We need to read the full page
661 		 * before to write the changes.
662 		 */
663 		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
664 		if (!uncmem) {
665 			ret = -ENOMEM;
666 			goto out;
667 		}
668 		ret = zram_decompress_page(zram, uncmem, index);
669 		if (ret)
670 			goto out;
671 	}
672 
673 compress_again:
674 	user_mem = kmap_atomic(page);
675 	if (is_partial_io(bvec)) {
676 		memcpy(uncmem + offset, user_mem + bvec->bv_offset,
677 		       bvec->bv_len);
678 		kunmap_atomic(user_mem);
679 		user_mem = NULL;
680 	} else {
681 		uncmem = user_mem;
682 	}
683 
684 	if (page_zero_filled(uncmem)) {
685 		if (user_mem)
686 			kunmap_atomic(user_mem);
687 		/* Free memory associated with this sector now. */
688 		bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
689 		zram_free_page(zram, index);
690 		zram_set_flag(meta, index, ZRAM_ZERO);
691 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
692 
693 		atomic64_inc(&zram->stats.zero_pages);
694 		ret = 0;
695 		goto out;
696 	}
697 
698 	zstrm = zcomp_strm_find(zram->comp);
699 	ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
700 	if (!is_partial_io(bvec)) {
701 		kunmap_atomic(user_mem);
702 		user_mem = NULL;
703 		uncmem = NULL;
704 	}
705 
706 	if (unlikely(ret)) {
707 		pr_err("Compression failed! err=%d\n", ret);
708 		goto out;
709 	}
710 
711 	src = zstrm->buffer;
712 	if (unlikely(clen > max_zpage_size)) {
713 		clen = PAGE_SIZE;
714 		if (is_partial_io(bvec))
715 			src = uncmem;
716 	}
717 
718 	/*
719 	 * handle allocation has 2 paths:
720 	 * a) fast path is executed with preemption disabled (for
721 	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
722 	 *  since we can't sleep;
723 	 * b) slow path enables preemption and attempts to allocate
724 	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
725 	 *  put per-cpu compression stream and, thus, to re-do
726 	 *  the compression once handle is allocated.
727 	 *
728 	 * if we have a 'non-null' handle here then we are coming
729 	 * from the slow path and handle has already been allocated.
730 	 */
731 	if (!handle)
732 		handle = zs_malloc(meta->mem_pool, clen,
733 				__GFP_KSWAPD_RECLAIM |
734 				__GFP_NOWARN |
735 				__GFP_HIGHMEM);
736 	if (!handle) {
737 		zcomp_strm_release(zram->comp, zstrm);
738 		zstrm = NULL;
739 
740 		atomic64_inc(&zram->stats.writestall);
741 
742 		handle = zs_malloc(meta->mem_pool, clen,
743 				GFP_NOIO | __GFP_HIGHMEM);
744 		if (handle)
745 			goto compress_again;
746 
747 		pr_err("Error allocating memory for compressed page: %u, size=%zu\n",
748 			index, clen);
749 		ret = -ENOMEM;
750 		goto out;
751 	}
752 
753 	alloced_pages = zs_get_total_pages(meta->mem_pool);
754 	update_used_max(zram, alloced_pages);
755 
756 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
757 		zs_free(meta->mem_pool, handle);
758 		ret = -ENOMEM;
759 		goto out;
760 	}
761 
762 	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
763 
764 	if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
765 		src = kmap_atomic(page);
766 		copy_page(cmem, src);
767 		kunmap_atomic(src);
768 	} else {
769 		memcpy(cmem, src, clen);
770 	}
771 
772 	zcomp_strm_release(zram->comp, zstrm);
773 	zstrm = NULL;
774 	zs_unmap_object(meta->mem_pool, handle);
775 
776 	/*
777 	 * Free memory associated with this sector
778 	 * before overwriting unused sectors.
779 	 */
780 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
781 	zram_free_page(zram, index);
782 
783 	meta->table[index].handle = handle;
784 	zram_set_obj_size(meta, index, clen);
785 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
786 
787 	/* Update stats */
788 	atomic64_add(clen, &zram->stats.compr_data_size);
789 	atomic64_inc(&zram->stats.pages_stored);
790 out:
791 	if (zstrm)
792 		zcomp_strm_release(zram->comp, zstrm);
793 	if (is_partial_io(bvec))
794 		kfree(uncmem);
795 	return ret;
796 }
797 
798 /*
799  * zram_bio_discard - handler on discard request
800  * @index: physical block index in PAGE_SIZE units
801  * @offset: byte offset within physical block
802  */
803 static void zram_bio_discard(struct zram *zram, u32 index,
804 			     int offset, struct bio *bio)
805 {
806 	size_t n = bio->bi_iter.bi_size;
807 	struct zram_meta *meta = zram->meta;
808 
809 	/*
810 	 * zram manages data in physical block size units. Because logical block
811 	 * size isn't identical with physical block size on some arch, we
812 	 * could get a discard request pointing to a specific offset within a
813 	 * certain physical block.  Although we can handle this request by
814 	 * reading that physiclal block and decompressing and partially zeroing
815 	 * and re-compressing and then re-storing it, this isn't reasonable
816 	 * because our intent with a discard request is to save memory.  So
817 	 * skipping this logical block is appropriate here.
818 	 */
819 	if (offset) {
820 		if (n <= (PAGE_SIZE - offset))
821 			return;
822 
823 		n -= (PAGE_SIZE - offset);
824 		index++;
825 	}
826 
827 	while (n >= PAGE_SIZE) {
828 		bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
829 		zram_free_page(zram, index);
830 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
831 		atomic64_inc(&zram->stats.notify_free);
832 		index++;
833 		n -= PAGE_SIZE;
834 	}
835 }
836 
837 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
838 			int offset, int rw)
839 {
840 	unsigned long start_time = jiffies;
841 	int ret;
842 
843 	generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
844 			&zram->disk->part0);
845 
846 	if (rw == READ) {
847 		atomic64_inc(&zram->stats.num_reads);
848 		ret = zram_bvec_read(zram, bvec, index, offset);
849 	} else {
850 		atomic64_inc(&zram->stats.num_writes);
851 		ret = zram_bvec_write(zram, bvec, index, offset);
852 	}
853 
854 	generic_end_io_acct(rw, &zram->disk->part0, start_time);
855 
856 	if (unlikely(ret)) {
857 		if (rw == READ)
858 			atomic64_inc(&zram->stats.failed_reads);
859 		else
860 			atomic64_inc(&zram->stats.failed_writes);
861 	}
862 
863 	return ret;
864 }
865 
866 static void __zram_make_request(struct zram *zram, struct bio *bio)
867 {
868 	int offset, rw;
869 	u32 index;
870 	struct bio_vec bvec;
871 	struct bvec_iter iter;
872 
873 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
874 	offset = (bio->bi_iter.bi_sector &
875 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
876 
877 	if (unlikely(bio->bi_rw & REQ_DISCARD)) {
878 		zram_bio_discard(zram, index, offset, bio);
879 		bio_endio(bio);
880 		return;
881 	}
882 
883 	rw = bio_data_dir(bio);
884 	bio_for_each_segment(bvec, bio, iter) {
885 		int max_transfer_size = PAGE_SIZE - offset;
886 
887 		if (bvec.bv_len > max_transfer_size) {
888 			/*
889 			 * zram_bvec_rw() can only make operation on a single
890 			 * zram page. Split the bio vector.
891 			 */
892 			struct bio_vec bv;
893 
894 			bv.bv_page = bvec.bv_page;
895 			bv.bv_len = max_transfer_size;
896 			bv.bv_offset = bvec.bv_offset;
897 
898 			if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
899 				goto out;
900 
901 			bv.bv_len = bvec.bv_len - max_transfer_size;
902 			bv.bv_offset += max_transfer_size;
903 			if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
904 				goto out;
905 		} else
906 			if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
907 				goto out;
908 
909 		update_position(&index, &offset, &bvec);
910 	}
911 
912 	bio_endio(bio);
913 	return;
914 
915 out:
916 	bio_io_error(bio);
917 }
918 
919 /*
920  * Handler function for all zram I/O requests.
921  */
922 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
923 {
924 	struct zram *zram = queue->queuedata;
925 
926 	if (unlikely(!zram_meta_get(zram)))
927 		goto error;
928 
929 	blk_queue_split(queue, &bio, queue->bio_split);
930 
931 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
932 					bio->bi_iter.bi_size)) {
933 		atomic64_inc(&zram->stats.invalid_io);
934 		goto put_zram;
935 	}
936 
937 	__zram_make_request(zram, bio);
938 	zram_meta_put(zram);
939 	return BLK_QC_T_NONE;
940 put_zram:
941 	zram_meta_put(zram);
942 error:
943 	bio_io_error(bio);
944 	return BLK_QC_T_NONE;
945 }
946 
947 static void zram_slot_free_notify(struct block_device *bdev,
948 				unsigned long index)
949 {
950 	struct zram *zram;
951 	struct zram_meta *meta;
952 
953 	zram = bdev->bd_disk->private_data;
954 	meta = zram->meta;
955 
956 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
957 	zram_free_page(zram, index);
958 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
959 	atomic64_inc(&zram->stats.notify_free);
960 }
961 
962 static int zram_rw_page(struct block_device *bdev, sector_t sector,
963 		       struct page *page, int rw)
964 {
965 	int offset, err = -EIO;
966 	u32 index;
967 	struct zram *zram;
968 	struct bio_vec bv;
969 
970 	zram = bdev->bd_disk->private_data;
971 	if (unlikely(!zram_meta_get(zram)))
972 		goto out;
973 
974 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
975 		atomic64_inc(&zram->stats.invalid_io);
976 		err = -EINVAL;
977 		goto put_zram;
978 	}
979 
980 	index = sector >> SECTORS_PER_PAGE_SHIFT;
981 	offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
982 
983 	bv.bv_page = page;
984 	bv.bv_len = PAGE_SIZE;
985 	bv.bv_offset = 0;
986 
987 	err = zram_bvec_rw(zram, &bv, index, offset, rw);
988 put_zram:
989 	zram_meta_put(zram);
990 out:
991 	/*
992 	 * If I/O fails, just return error(ie, non-zero) without
993 	 * calling page_endio.
994 	 * It causes resubmit the I/O with bio request by upper functions
995 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
996 	 * bio->bi_end_io does things to handle the error
997 	 * (e.g., SetPageError, set_page_dirty and extra works).
998 	 */
999 	if (err == 0)
1000 		page_endio(page, rw, 0);
1001 	return err;
1002 }
1003 
1004 static void zram_reset_device(struct zram *zram)
1005 {
1006 	struct zram_meta *meta;
1007 	struct zcomp *comp;
1008 	u64 disksize;
1009 
1010 	down_write(&zram->init_lock);
1011 
1012 	zram->limit_pages = 0;
1013 
1014 	if (!init_done(zram)) {
1015 		up_write(&zram->init_lock);
1016 		return;
1017 	}
1018 
1019 	meta = zram->meta;
1020 	comp = zram->comp;
1021 	disksize = zram->disksize;
1022 	/*
1023 	 * Refcount will go down to 0 eventually and r/w handler
1024 	 * cannot handle further I/O so it will bail out by
1025 	 * check zram_meta_get.
1026 	 */
1027 	zram_meta_put(zram);
1028 	/*
1029 	 * We want to free zram_meta in process context to avoid
1030 	 * deadlock between reclaim path and any other locks.
1031 	 */
1032 	wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
1033 
1034 	/* Reset stats */
1035 	memset(&zram->stats, 0, sizeof(zram->stats));
1036 	zram->disksize = 0;
1037 
1038 	set_capacity(zram->disk, 0);
1039 	part_stat_set_all(&zram->disk->part0, 0);
1040 
1041 	up_write(&zram->init_lock);
1042 	/* I/O operation under all of CPU are done so let's free */
1043 	zram_meta_free(meta, disksize);
1044 	zcomp_destroy(comp);
1045 }
1046 
1047 static ssize_t disksize_store(struct device *dev,
1048 		struct device_attribute *attr, const char *buf, size_t len)
1049 {
1050 	u64 disksize;
1051 	struct zcomp *comp;
1052 	struct zram_meta *meta;
1053 	struct zram *zram = dev_to_zram(dev);
1054 	int err;
1055 
1056 	disksize = memparse(buf, NULL);
1057 	if (!disksize)
1058 		return -EINVAL;
1059 
1060 	disksize = PAGE_ALIGN(disksize);
1061 	meta = zram_meta_alloc(zram->disk->disk_name, disksize);
1062 	if (!meta)
1063 		return -ENOMEM;
1064 
1065 	comp = zcomp_create(zram->compressor);
1066 	if (IS_ERR(comp)) {
1067 		pr_err("Cannot initialise %s compressing backend\n",
1068 				zram->compressor);
1069 		err = PTR_ERR(comp);
1070 		goto out_free_meta;
1071 	}
1072 
1073 	down_write(&zram->init_lock);
1074 	if (init_done(zram)) {
1075 		pr_info("Cannot change disksize for initialized device\n");
1076 		err = -EBUSY;
1077 		goto out_destroy_comp;
1078 	}
1079 
1080 	init_waitqueue_head(&zram->io_done);
1081 	atomic_set(&zram->refcount, 1);
1082 	zram->meta = meta;
1083 	zram->comp = comp;
1084 	zram->disksize = disksize;
1085 	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1086 	up_write(&zram->init_lock);
1087 
1088 	/*
1089 	 * Revalidate disk out of the init_lock to avoid lockdep splat.
1090 	 * It's okay because disk's capacity is protected by init_lock
1091 	 * so that revalidate_disk always sees up-to-date capacity.
1092 	 */
1093 	revalidate_disk(zram->disk);
1094 
1095 	return len;
1096 
1097 out_destroy_comp:
1098 	up_write(&zram->init_lock);
1099 	zcomp_destroy(comp);
1100 out_free_meta:
1101 	zram_meta_free(meta, disksize);
1102 	return err;
1103 }
1104 
1105 static ssize_t reset_store(struct device *dev,
1106 		struct device_attribute *attr, const char *buf, size_t len)
1107 {
1108 	int ret;
1109 	unsigned short do_reset;
1110 	struct zram *zram;
1111 	struct block_device *bdev;
1112 
1113 	ret = kstrtou16(buf, 10, &do_reset);
1114 	if (ret)
1115 		return ret;
1116 
1117 	if (!do_reset)
1118 		return -EINVAL;
1119 
1120 	zram = dev_to_zram(dev);
1121 	bdev = bdget_disk(zram->disk, 0);
1122 	if (!bdev)
1123 		return -ENOMEM;
1124 
1125 	mutex_lock(&bdev->bd_mutex);
1126 	/* Do not reset an active device or claimed device */
1127 	if (bdev->bd_openers || zram->claim) {
1128 		mutex_unlock(&bdev->bd_mutex);
1129 		bdput(bdev);
1130 		return -EBUSY;
1131 	}
1132 
1133 	/* From now on, anyone can't open /dev/zram[0-9] */
1134 	zram->claim = true;
1135 	mutex_unlock(&bdev->bd_mutex);
1136 
1137 	/* Make sure all the pending I/O are finished */
1138 	fsync_bdev(bdev);
1139 	zram_reset_device(zram);
1140 	revalidate_disk(zram->disk);
1141 	bdput(bdev);
1142 
1143 	mutex_lock(&bdev->bd_mutex);
1144 	zram->claim = false;
1145 	mutex_unlock(&bdev->bd_mutex);
1146 
1147 	return len;
1148 }
1149 
1150 static int zram_open(struct block_device *bdev, fmode_t mode)
1151 {
1152 	int ret = 0;
1153 	struct zram *zram;
1154 
1155 	WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1156 
1157 	zram = bdev->bd_disk->private_data;
1158 	/* zram was claimed to reset so open request fails */
1159 	if (zram->claim)
1160 		ret = -EBUSY;
1161 
1162 	return ret;
1163 }
1164 
1165 static const struct block_device_operations zram_devops = {
1166 	.open = zram_open,
1167 	.swap_slot_free_notify = zram_slot_free_notify,
1168 	.rw_page = zram_rw_page,
1169 	.owner = THIS_MODULE
1170 };
1171 
1172 static DEVICE_ATTR_WO(compact);
1173 static DEVICE_ATTR_RW(disksize);
1174 static DEVICE_ATTR_RO(initstate);
1175 static DEVICE_ATTR_WO(reset);
1176 static DEVICE_ATTR_RO(orig_data_size);
1177 static DEVICE_ATTR_RO(mem_used_total);
1178 static DEVICE_ATTR_RW(mem_limit);
1179 static DEVICE_ATTR_RW(mem_used_max);
1180 static DEVICE_ATTR_RW(max_comp_streams);
1181 static DEVICE_ATTR_RW(comp_algorithm);
1182 
1183 static struct attribute *zram_disk_attrs[] = {
1184 	&dev_attr_disksize.attr,
1185 	&dev_attr_initstate.attr,
1186 	&dev_attr_reset.attr,
1187 	&dev_attr_num_reads.attr,
1188 	&dev_attr_num_writes.attr,
1189 	&dev_attr_failed_reads.attr,
1190 	&dev_attr_failed_writes.attr,
1191 	&dev_attr_compact.attr,
1192 	&dev_attr_invalid_io.attr,
1193 	&dev_attr_notify_free.attr,
1194 	&dev_attr_zero_pages.attr,
1195 	&dev_attr_orig_data_size.attr,
1196 	&dev_attr_compr_data_size.attr,
1197 	&dev_attr_mem_used_total.attr,
1198 	&dev_attr_mem_limit.attr,
1199 	&dev_attr_mem_used_max.attr,
1200 	&dev_attr_max_comp_streams.attr,
1201 	&dev_attr_comp_algorithm.attr,
1202 	&dev_attr_io_stat.attr,
1203 	&dev_attr_mm_stat.attr,
1204 	&dev_attr_debug_stat.attr,
1205 	NULL,
1206 };
1207 
1208 static struct attribute_group zram_disk_attr_group = {
1209 	.attrs = zram_disk_attrs,
1210 };
1211 
1212 /*
1213  * Allocate and initialize new zram device. the function returns
1214  * '>= 0' device_id upon success, and negative value otherwise.
1215  */
1216 static int zram_add(void)
1217 {
1218 	struct zram *zram;
1219 	struct request_queue *queue;
1220 	int ret, device_id;
1221 
1222 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1223 	if (!zram)
1224 		return -ENOMEM;
1225 
1226 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1227 	if (ret < 0)
1228 		goto out_free_dev;
1229 	device_id = ret;
1230 
1231 	init_rwsem(&zram->init_lock);
1232 
1233 	queue = blk_alloc_queue(GFP_KERNEL);
1234 	if (!queue) {
1235 		pr_err("Error allocating disk queue for device %d\n",
1236 			device_id);
1237 		ret = -ENOMEM;
1238 		goto out_free_idr;
1239 	}
1240 
1241 	blk_queue_make_request(queue, zram_make_request);
1242 
1243 	/* gendisk structure */
1244 	zram->disk = alloc_disk(1);
1245 	if (!zram->disk) {
1246 		pr_err("Error allocating disk structure for device %d\n",
1247 			device_id);
1248 		ret = -ENOMEM;
1249 		goto out_free_queue;
1250 	}
1251 
1252 	zram->disk->major = zram_major;
1253 	zram->disk->first_minor = device_id;
1254 	zram->disk->fops = &zram_devops;
1255 	zram->disk->queue = queue;
1256 	zram->disk->queue->queuedata = zram;
1257 	zram->disk->private_data = zram;
1258 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1259 
1260 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1261 	set_capacity(zram->disk, 0);
1262 	/* zram devices sort of resembles non-rotational disks */
1263 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1264 	queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1265 	/*
1266 	 * To ensure that we always get PAGE_SIZE aligned
1267 	 * and n*PAGE_SIZED sized I/O requests.
1268 	 */
1269 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1270 	blk_queue_logical_block_size(zram->disk->queue,
1271 					ZRAM_LOGICAL_BLOCK_SIZE);
1272 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1273 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1274 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1275 	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1276 	/*
1277 	 * zram_bio_discard() will clear all logical blocks if logical block
1278 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1279 	 * different, we will skip discarding some parts of logical blocks in
1280 	 * the part of the request range which isn't aligned to physical block
1281 	 * size.  So we can't ensure that all discarded logical blocks are
1282 	 * zeroed.
1283 	 */
1284 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1285 		zram->disk->queue->limits.discard_zeroes_data = 1;
1286 	else
1287 		zram->disk->queue->limits.discard_zeroes_data = 0;
1288 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1289 
1290 	add_disk(zram->disk);
1291 
1292 	ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1293 				&zram_disk_attr_group);
1294 	if (ret < 0) {
1295 		pr_err("Error creating sysfs group for device %d\n",
1296 				device_id);
1297 		goto out_free_disk;
1298 	}
1299 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1300 	zram->meta = NULL;
1301 
1302 	pr_info("Added device: %s\n", zram->disk->disk_name);
1303 	return device_id;
1304 
1305 out_free_disk:
1306 	del_gendisk(zram->disk);
1307 	put_disk(zram->disk);
1308 out_free_queue:
1309 	blk_cleanup_queue(queue);
1310 out_free_idr:
1311 	idr_remove(&zram_index_idr, device_id);
1312 out_free_dev:
1313 	kfree(zram);
1314 	return ret;
1315 }
1316 
1317 static int zram_remove(struct zram *zram)
1318 {
1319 	struct block_device *bdev;
1320 
1321 	bdev = bdget_disk(zram->disk, 0);
1322 	if (!bdev)
1323 		return -ENOMEM;
1324 
1325 	mutex_lock(&bdev->bd_mutex);
1326 	if (bdev->bd_openers || zram->claim) {
1327 		mutex_unlock(&bdev->bd_mutex);
1328 		bdput(bdev);
1329 		return -EBUSY;
1330 	}
1331 
1332 	zram->claim = true;
1333 	mutex_unlock(&bdev->bd_mutex);
1334 
1335 	/*
1336 	 * Remove sysfs first, so no one will perform a disksize
1337 	 * store while we destroy the devices. This also helps during
1338 	 * hot_remove -- zram_reset_device() is the last holder of
1339 	 * ->init_lock, no later/concurrent disksize_store() or any
1340 	 * other sysfs handlers are possible.
1341 	 */
1342 	sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1343 			&zram_disk_attr_group);
1344 
1345 	/* Make sure all the pending I/O are finished */
1346 	fsync_bdev(bdev);
1347 	zram_reset_device(zram);
1348 	bdput(bdev);
1349 
1350 	pr_info("Removed device: %s\n", zram->disk->disk_name);
1351 
1352 	blk_cleanup_queue(zram->disk->queue);
1353 	del_gendisk(zram->disk);
1354 	put_disk(zram->disk);
1355 	kfree(zram);
1356 	return 0;
1357 }
1358 
1359 /* zram-control sysfs attributes */
1360 static ssize_t hot_add_show(struct class *class,
1361 			struct class_attribute *attr,
1362 			char *buf)
1363 {
1364 	int ret;
1365 
1366 	mutex_lock(&zram_index_mutex);
1367 	ret = zram_add();
1368 	mutex_unlock(&zram_index_mutex);
1369 
1370 	if (ret < 0)
1371 		return ret;
1372 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1373 }
1374 
1375 static ssize_t hot_remove_store(struct class *class,
1376 			struct class_attribute *attr,
1377 			const char *buf,
1378 			size_t count)
1379 {
1380 	struct zram *zram;
1381 	int ret, dev_id;
1382 
1383 	/* dev_id is gendisk->first_minor, which is `int' */
1384 	ret = kstrtoint(buf, 10, &dev_id);
1385 	if (ret)
1386 		return ret;
1387 	if (dev_id < 0)
1388 		return -EINVAL;
1389 
1390 	mutex_lock(&zram_index_mutex);
1391 
1392 	zram = idr_find(&zram_index_idr, dev_id);
1393 	if (zram) {
1394 		ret = zram_remove(zram);
1395 		idr_remove(&zram_index_idr, dev_id);
1396 	} else {
1397 		ret = -ENODEV;
1398 	}
1399 
1400 	mutex_unlock(&zram_index_mutex);
1401 	return ret ? ret : count;
1402 }
1403 
1404 static struct class_attribute zram_control_class_attrs[] = {
1405 	__ATTR_RO(hot_add),
1406 	__ATTR_WO(hot_remove),
1407 	__ATTR_NULL,
1408 };
1409 
1410 static struct class zram_control_class = {
1411 	.name		= "zram-control",
1412 	.owner		= THIS_MODULE,
1413 	.class_attrs	= zram_control_class_attrs,
1414 };
1415 
1416 static int zram_remove_cb(int id, void *ptr, void *data)
1417 {
1418 	zram_remove(ptr);
1419 	return 0;
1420 }
1421 
1422 static void destroy_devices(void)
1423 {
1424 	class_unregister(&zram_control_class);
1425 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1426 	idr_destroy(&zram_index_idr);
1427 	unregister_blkdev(zram_major, "zram");
1428 }
1429 
1430 static int __init zram_init(void)
1431 {
1432 	int ret;
1433 
1434 	ret = class_register(&zram_control_class);
1435 	if (ret) {
1436 		pr_err("Unable to register zram-control class\n");
1437 		return ret;
1438 	}
1439 
1440 	zram_major = register_blkdev(0, "zram");
1441 	if (zram_major <= 0) {
1442 		pr_err("Unable to get major number\n");
1443 		class_unregister(&zram_control_class);
1444 		return -EBUSY;
1445 	}
1446 
1447 	while (num_devices != 0) {
1448 		mutex_lock(&zram_index_mutex);
1449 		ret = zram_add();
1450 		mutex_unlock(&zram_index_mutex);
1451 		if (ret < 0)
1452 			goto out_error;
1453 		num_devices--;
1454 	}
1455 
1456 	return 0;
1457 
1458 out_error:
1459 	destroy_devices();
1460 	return ret;
1461 }
1462 
1463 static void __exit zram_exit(void)
1464 {
1465 	destroy_devices();
1466 }
1467 
1468 module_init(zram_init);
1469 module_exit(zram_exit);
1470 
1471 module_param(num_devices, uint, 0);
1472 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1473 
1474 MODULE_LICENSE("Dual BSD/GPL");
1475 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1476 MODULE_DESCRIPTION("Compressed RAM Block Device");
1477