1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/bitops.h> 22 #include <linux/blkdev.h> 23 #include <linux/buffer_head.h> 24 #include <linux/device.h> 25 #include <linux/highmem.h> 26 #include <linux/slab.h> 27 #include <linux/backing-dev.h> 28 #include <linux/string.h> 29 #include <linux/vmalloc.h> 30 #include <linux/err.h> 31 #include <linux/idr.h> 32 #include <linux/sysfs.h> 33 #include <linux/debugfs.h> 34 #include <linux/cpuhotplug.h> 35 #include <linux/part_stat.h> 36 37 #include "zram_drv.h" 38 39 static DEFINE_IDR(zram_index_idr); 40 /* idr index must be protected */ 41 static DEFINE_MUTEX(zram_index_mutex); 42 43 static int zram_major; 44 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP; 45 46 /* Module params (documentation at end) */ 47 static unsigned int num_devices = 1; 48 /* 49 * Pages that compress to sizes equals or greater than this are stored 50 * uncompressed in memory. 51 */ 52 static size_t huge_class_size; 53 54 static const struct block_device_operations zram_devops; 55 56 static void zram_free_page(struct zram *zram, size_t index); 57 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 58 u32 index, int offset, struct bio *bio); 59 60 61 static int zram_slot_trylock(struct zram *zram, u32 index) 62 { 63 return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags); 64 } 65 66 static void zram_slot_lock(struct zram *zram, u32 index) 67 { 68 bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags); 69 } 70 71 static void zram_slot_unlock(struct zram *zram, u32 index) 72 { 73 bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags); 74 } 75 76 static inline bool init_done(struct zram *zram) 77 { 78 return zram->disksize; 79 } 80 81 static inline struct zram *dev_to_zram(struct device *dev) 82 { 83 return (struct zram *)dev_to_disk(dev)->private_data; 84 } 85 86 static unsigned long zram_get_handle(struct zram *zram, u32 index) 87 { 88 return zram->table[index].handle; 89 } 90 91 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle) 92 { 93 zram->table[index].handle = handle; 94 } 95 96 /* flag operations require table entry bit_spin_lock() being held */ 97 static bool zram_test_flag(struct zram *zram, u32 index, 98 enum zram_pageflags flag) 99 { 100 return zram->table[index].flags & BIT(flag); 101 } 102 103 static void zram_set_flag(struct zram *zram, u32 index, 104 enum zram_pageflags flag) 105 { 106 zram->table[index].flags |= BIT(flag); 107 } 108 109 static void zram_clear_flag(struct zram *zram, u32 index, 110 enum zram_pageflags flag) 111 { 112 zram->table[index].flags &= ~BIT(flag); 113 } 114 115 static inline void zram_set_element(struct zram *zram, u32 index, 116 unsigned long element) 117 { 118 zram->table[index].element = element; 119 } 120 121 static unsigned long zram_get_element(struct zram *zram, u32 index) 122 { 123 return zram->table[index].element; 124 } 125 126 static size_t zram_get_obj_size(struct zram *zram, u32 index) 127 { 128 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1); 129 } 130 131 static void zram_set_obj_size(struct zram *zram, 132 u32 index, size_t size) 133 { 134 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT; 135 136 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size; 137 } 138 139 static inline bool zram_allocated(struct zram *zram, u32 index) 140 { 141 return zram_get_obj_size(zram, index) || 142 zram_test_flag(zram, index, ZRAM_SAME) || 143 zram_test_flag(zram, index, ZRAM_WB); 144 } 145 146 #if PAGE_SIZE != 4096 147 static inline bool is_partial_io(struct bio_vec *bvec) 148 { 149 return bvec->bv_len != PAGE_SIZE; 150 } 151 #else 152 static inline bool is_partial_io(struct bio_vec *bvec) 153 { 154 return false; 155 } 156 #endif 157 158 static inline void zram_set_priority(struct zram *zram, u32 index, u32 prio) 159 { 160 prio &= ZRAM_COMP_PRIORITY_MASK; 161 /* 162 * Clear previous priority value first, in case if we recompress 163 * further an already recompressed page 164 */ 165 zram->table[index].flags &= ~(ZRAM_COMP_PRIORITY_MASK << 166 ZRAM_COMP_PRIORITY_BIT1); 167 zram->table[index].flags |= (prio << ZRAM_COMP_PRIORITY_BIT1); 168 } 169 170 static inline u32 zram_get_priority(struct zram *zram, u32 index) 171 { 172 u32 prio = zram->table[index].flags >> ZRAM_COMP_PRIORITY_BIT1; 173 174 return prio & ZRAM_COMP_PRIORITY_MASK; 175 } 176 177 /* 178 * Check if request is within bounds and aligned on zram logical blocks. 179 */ 180 static inline bool valid_io_request(struct zram *zram, 181 sector_t start, unsigned int size) 182 { 183 u64 end, bound; 184 185 /* unaligned request */ 186 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1))) 187 return false; 188 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1))) 189 return false; 190 191 end = start + (size >> SECTOR_SHIFT); 192 bound = zram->disksize >> SECTOR_SHIFT; 193 /* out of range range */ 194 if (unlikely(start >= bound || end > bound || start > end)) 195 return false; 196 197 /* I/O request is valid */ 198 return true; 199 } 200 201 static void update_position(u32 *index, int *offset, struct bio_vec *bvec) 202 { 203 *index += (*offset + bvec->bv_len) / PAGE_SIZE; 204 *offset = (*offset + bvec->bv_len) % PAGE_SIZE; 205 } 206 207 static inline void update_used_max(struct zram *zram, 208 const unsigned long pages) 209 { 210 unsigned long cur_max = atomic_long_read(&zram->stats.max_used_pages); 211 212 do { 213 if (cur_max >= pages) 214 return; 215 } while (!atomic_long_try_cmpxchg(&zram->stats.max_used_pages, 216 &cur_max, pages)); 217 } 218 219 static inline void zram_fill_page(void *ptr, unsigned long len, 220 unsigned long value) 221 { 222 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long))); 223 memset_l(ptr, value, len / sizeof(unsigned long)); 224 } 225 226 static bool page_same_filled(void *ptr, unsigned long *element) 227 { 228 unsigned long *page; 229 unsigned long val; 230 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1; 231 232 page = (unsigned long *)ptr; 233 val = page[0]; 234 235 if (val != page[last_pos]) 236 return false; 237 238 for (pos = 1; pos < last_pos; pos++) { 239 if (val != page[pos]) 240 return false; 241 } 242 243 *element = val; 244 245 return true; 246 } 247 248 static ssize_t initstate_show(struct device *dev, 249 struct device_attribute *attr, char *buf) 250 { 251 u32 val; 252 struct zram *zram = dev_to_zram(dev); 253 254 down_read(&zram->init_lock); 255 val = init_done(zram); 256 up_read(&zram->init_lock); 257 258 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 259 } 260 261 static ssize_t disksize_show(struct device *dev, 262 struct device_attribute *attr, char *buf) 263 { 264 struct zram *zram = dev_to_zram(dev); 265 266 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 267 } 268 269 static ssize_t mem_limit_store(struct device *dev, 270 struct device_attribute *attr, const char *buf, size_t len) 271 { 272 u64 limit; 273 char *tmp; 274 struct zram *zram = dev_to_zram(dev); 275 276 limit = memparse(buf, &tmp); 277 if (buf == tmp) /* no chars parsed, invalid input */ 278 return -EINVAL; 279 280 down_write(&zram->init_lock); 281 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; 282 up_write(&zram->init_lock); 283 284 return len; 285 } 286 287 static ssize_t mem_used_max_store(struct device *dev, 288 struct device_attribute *attr, const char *buf, size_t len) 289 { 290 int err; 291 unsigned long val; 292 struct zram *zram = dev_to_zram(dev); 293 294 err = kstrtoul(buf, 10, &val); 295 if (err || val != 0) 296 return -EINVAL; 297 298 down_read(&zram->init_lock); 299 if (init_done(zram)) { 300 atomic_long_set(&zram->stats.max_used_pages, 301 zs_get_total_pages(zram->mem_pool)); 302 } 303 up_read(&zram->init_lock); 304 305 return len; 306 } 307 308 /* 309 * Mark all pages which are older than or equal to cutoff as IDLE. 310 * Callers should hold the zram init lock in read mode 311 */ 312 static void mark_idle(struct zram *zram, ktime_t cutoff) 313 { 314 int is_idle = 1; 315 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 316 int index; 317 318 for (index = 0; index < nr_pages; index++) { 319 /* 320 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race. 321 * See the comment in writeback_store. 322 */ 323 zram_slot_lock(zram, index); 324 if (zram_allocated(zram, index) && 325 !zram_test_flag(zram, index, ZRAM_UNDER_WB)) { 326 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 327 is_idle = !cutoff || ktime_after(cutoff, zram->table[index].ac_time); 328 #endif 329 if (is_idle) 330 zram_set_flag(zram, index, ZRAM_IDLE); 331 } 332 zram_slot_unlock(zram, index); 333 } 334 } 335 336 static ssize_t idle_store(struct device *dev, 337 struct device_attribute *attr, const char *buf, size_t len) 338 { 339 struct zram *zram = dev_to_zram(dev); 340 ktime_t cutoff_time = 0; 341 ssize_t rv = -EINVAL; 342 343 if (!sysfs_streq(buf, "all")) { 344 /* 345 * If it did not parse as 'all' try to treat it as an integer 346 * when we have memory tracking enabled. 347 */ 348 u64 age_sec; 349 350 if (IS_ENABLED(CONFIG_ZRAM_MEMORY_TRACKING) && !kstrtoull(buf, 0, &age_sec)) 351 cutoff_time = ktime_sub(ktime_get_boottime(), 352 ns_to_ktime(age_sec * NSEC_PER_SEC)); 353 else 354 goto out; 355 } 356 357 down_read(&zram->init_lock); 358 if (!init_done(zram)) 359 goto out_unlock; 360 361 /* 362 * A cutoff_time of 0 marks everything as idle, this is the 363 * "all" behavior. 364 */ 365 mark_idle(zram, cutoff_time); 366 rv = len; 367 368 out_unlock: 369 up_read(&zram->init_lock); 370 out: 371 return rv; 372 } 373 374 #ifdef CONFIG_ZRAM_WRITEBACK 375 static ssize_t writeback_limit_enable_store(struct device *dev, 376 struct device_attribute *attr, const char *buf, size_t len) 377 { 378 struct zram *zram = dev_to_zram(dev); 379 u64 val; 380 ssize_t ret = -EINVAL; 381 382 if (kstrtoull(buf, 10, &val)) 383 return ret; 384 385 down_read(&zram->init_lock); 386 spin_lock(&zram->wb_limit_lock); 387 zram->wb_limit_enable = val; 388 spin_unlock(&zram->wb_limit_lock); 389 up_read(&zram->init_lock); 390 ret = len; 391 392 return ret; 393 } 394 395 static ssize_t writeback_limit_enable_show(struct device *dev, 396 struct device_attribute *attr, char *buf) 397 { 398 bool val; 399 struct zram *zram = dev_to_zram(dev); 400 401 down_read(&zram->init_lock); 402 spin_lock(&zram->wb_limit_lock); 403 val = zram->wb_limit_enable; 404 spin_unlock(&zram->wb_limit_lock); 405 up_read(&zram->init_lock); 406 407 return scnprintf(buf, PAGE_SIZE, "%d\n", val); 408 } 409 410 static ssize_t writeback_limit_store(struct device *dev, 411 struct device_attribute *attr, const char *buf, size_t len) 412 { 413 struct zram *zram = dev_to_zram(dev); 414 u64 val; 415 ssize_t ret = -EINVAL; 416 417 if (kstrtoull(buf, 10, &val)) 418 return ret; 419 420 down_read(&zram->init_lock); 421 spin_lock(&zram->wb_limit_lock); 422 zram->bd_wb_limit = val; 423 spin_unlock(&zram->wb_limit_lock); 424 up_read(&zram->init_lock); 425 ret = len; 426 427 return ret; 428 } 429 430 static ssize_t writeback_limit_show(struct device *dev, 431 struct device_attribute *attr, char *buf) 432 { 433 u64 val; 434 struct zram *zram = dev_to_zram(dev); 435 436 down_read(&zram->init_lock); 437 spin_lock(&zram->wb_limit_lock); 438 val = zram->bd_wb_limit; 439 spin_unlock(&zram->wb_limit_lock); 440 up_read(&zram->init_lock); 441 442 return scnprintf(buf, PAGE_SIZE, "%llu\n", val); 443 } 444 445 static void reset_bdev(struct zram *zram) 446 { 447 struct block_device *bdev; 448 449 if (!zram->backing_dev) 450 return; 451 452 bdev = zram->bdev; 453 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 454 /* hope filp_close flush all of IO */ 455 filp_close(zram->backing_dev, NULL); 456 zram->backing_dev = NULL; 457 zram->bdev = NULL; 458 zram->disk->fops = &zram_devops; 459 kvfree(zram->bitmap); 460 zram->bitmap = NULL; 461 } 462 463 static ssize_t backing_dev_show(struct device *dev, 464 struct device_attribute *attr, char *buf) 465 { 466 struct file *file; 467 struct zram *zram = dev_to_zram(dev); 468 char *p; 469 ssize_t ret; 470 471 down_read(&zram->init_lock); 472 file = zram->backing_dev; 473 if (!file) { 474 memcpy(buf, "none\n", 5); 475 up_read(&zram->init_lock); 476 return 5; 477 } 478 479 p = file_path(file, buf, PAGE_SIZE - 1); 480 if (IS_ERR(p)) { 481 ret = PTR_ERR(p); 482 goto out; 483 } 484 485 ret = strlen(p); 486 memmove(buf, p, ret); 487 buf[ret++] = '\n'; 488 out: 489 up_read(&zram->init_lock); 490 return ret; 491 } 492 493 static ssize_t backing_dev_store(struct device *dev, 494 struct device_attribute *attr, const char *buf, size_t len) 495 { 496 char *file_name; 497 size_t sz; 498 struct file *backing_dev = NULL; 499 struct inode *inode; 500 struct address_space *mapping; 501 unsigned int bitmap_sz; 502 unsigned long nr_pages, *bitmap = NULL; 503 struct block_device *bdev = NULL; 504 int err; 505 struct zram *zram = dev_to_zram(dev); 506 507 file_name = kmalloc(PATH_MAX, GFP_KERNEL); 508 if (!file_name) 509 return -ENOMEM; 510 511 down_write(&zram->init_lock); 512 if (init_done(zram)) { 513 pr_info("Can't setup backing device for initialized device\n"); 514 err = -EBUSY; 515 goto out; 516 } 517 518 strscpy(file_name, buf, PATH_MAX); 519 /* ignore trailing newline */ 520 sz = strlen(file_name); 521 if (sz > 0 && file_name[sz - 1] == '\n') 522 file_name[sz - 1] = 0x00; 523 524 backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0); 525 if (IS_ERR(backing_dev)) { 526 err = PTR_ERR(backing_dev); 527 backing_dev = NULL; 528 goto out; 529 } 530 531 mapping = backing_dev->f_mapping; 532 inode = mapping->host; 533 534 /* Support only block device in this moment */ 535 if (!S_ISBLK(inode->i_mode)) { 536 err = -ENOTBLK; 537 goto out; 538 } 539 540 bdev = blkdev_get_by_dev(inode->i_rdev, 541 FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram); 542 if (IS_ERR(bdev)) { 543 err = PTR_ERR(bdev); 544 bdev = NULL; 545 goto out; 546 } 547 548 nr_pages = i_size_read(inode) >> PAGE_SHIFT; 549 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long); 550 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL); 551 if (!bitmap) { 552 err = -ENOMEM; 553 goto out; 554 } 555 556 reset_bdev(zram); 557 558 zram->bdev = bdev; 559 zram->backing_dev = backing_dev; 560 zram->bitmap = bitmap; 561 zram->nr_pages = nr_pages; 562 up_write(&zram->init_lock); 563 564 pr_info("setup backing device %s\n", file_name); 565 kfree(file_name); 566 567 return len; 568 out: 569 kvfree(bitmap); 570 571 if (bdev) 572 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 573 574 if (backing_dev) 575 filp_close(backing_dev, NULL); 576 577 up_write(&zram->init_lock); 578 579 kfree(file_name); 580 581 return err; 582 } 583 584 static unsigned long alloc_block_bdev(struct zram *zram) 585 { 586 unsigned long blk_idx = 1; 587 retry: 588 /* skip 0 bit to confuse zram.handle = 0 */ 589 blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx); 590 if (blk_idx == zram->nr_pages) 591 return 0; 592 593 if (test_and_set_bit(blk_idx, zram->bitmap)) 594 goto retry; 595 596 atomic64_inc(&zram->stats.bd_count); 597 return blk_idx; 598 } 599 600 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) 601 { 602 int was_set; 603 604 was_set = test_and_clear_bit(blk_idx, zram->bitmap); 605 WARN_ON_ONCE(!was_set); 606 atomic64_dec(&zram->stats.bd_count); 607 } 608 609 static void zram_page_end_io(struct bio *bio) 610 { 611 struct page *page = bio_first_page_all(bio); 612 613 page_endio(page, op_is_write(bio_op(bio)), 614 blk_status_to_errno(bio->bi_status)); 615 bio_put(bio); 616 } 617 618 /* 619 * Returns 1 if the submission is successful. 620 */ 621 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec, 622 unsigned long entry, struct bio *parent) 623 { 624 struct bio *bio; 625 626 bio = bio_alloc(zram->bdev, 1, parent ? parent->bi_opf : REQ_OP_READ, 627 GFP_NOIO); 628 if (!bio) 629 return -ENOMEM; 630 631 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9); 632 if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) { 633 bio_put(bio); 634 return -EIO; 635 } 636 637 if (!parent) 638 bio->bi_end_io = zram_page_end_io; 639 else 640 bio_chain(bio, parent); 641 642 submit_bio(bio); 643 return 1; 644 } 645 646 #define PAGE_WB_SIG "page_index=" 647 648 #define PAGE_WRITEBACK 0 649 #define HUGE_WRITEBACK (1<<0) 650 #define IDLE_WRITEBACK (1<<1) 651 #define INCOMPRESSIBLE_WRITEBACK (1<<2) 652 653 static ssize_t writeback_store(struct device *dev, 654 struct device_attribute *attr, const char *buf, size_t len) 655 { 656 struct zram *zram = dev_to_zram(dev); 657 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 658 unsigned long index = 0; 659 struct bio bio; 660 struct bio_vec bio_vec; 661 struct page *page; 662 ssize_t ret = len; 663 int mode, err; 664 unsigned long blk_idx = 0; 665 666 if (sysfs_streq(buf, "idle")) 667 mode = IDLE_WRITEBACK; 668 else if (sysfs_streq(buf, "huge")) 669 mode = HUGE_WRITEBACK; 670 else if (sysfs_streq(buf, "huge_idle")) 671 mode = IDLE_WRITEBACK | HUGE_WRITEBACK; 672 else if (sysfs_streq(buf, "incompressible")) 673 mode = INCOMPRESSIBLE_WRITEBACK; 674 else { 675 if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1)) 676 return -EINVAL; 677 678 if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) || 679 index >= nr_pages) 680 return -EINVAL; 681 682 nr_pages = 1; 683 mode = PAGE_WRITEBACK; 684 } 685 686 down_read(&zram->init_lock); 687 if (!init_done(zram)) { 688 ret = -EINVAL; 689 goto release_init_lock; 690 } 691 692 if (!zram->backing_dev) { 693 ret = -ENODEV; 694 goto release_init_lock; 695 } 696 697 page = alloc_page(GFP_KERNEL); 698 if (!page) { 699 ret = -ENOMEM; 700 goto release_init_lock; 701 } 702 703 for (; nr_pages != 0; index++, nr_pages--) { 704 struct bio_vec bvec; 705 706 bvec.bv_page = page; 707 bvec.bv_len = PAGE_SIZE; 708 bvec.bv_offset = 0; 709 710 spin_lock(&zram->wb_limit_lock); 711 if (zram->wb_limit_enable && !zram->bd_wb_limit) { 712 spin_unlock(&zram->wb_limit_lock); 713 ret = -EIO; 714 break; 715 } 716 spin_unlock(&zram->wb_limit_lock); 717 718 if (!blk_idx) { 719 blk_idx = alloc_block_bdev(zram); 720 if (!blk_idx) { 721 ret = -ENOSPC; 722 break; 723 } 724 } 725 726 zram_slot_lock(zram, index); 727 if (!zram_allocated(zram, index)) 728 goto next; 729 730 if (zram_test_flag(zram, index, ZRAM_WB) || 731 zram_test_flag(zram, index, ZRAM_SAME) || 732 zram_test_flag(zram, index, ZRAM_UNDER_WB)) 733 goto next; 734 735 if (mode & IDLE_WRITEBACK && 736 !zram_test_flag(zram, index, ZRAM_IDLE)) 737 goto next; 738 if (mode & HUGE_WRITEBACK && 739 !zram_test_flag(zram, index, ZRAM_HUGE)) 740 goto next; 741 if (mode & INCOMPRESSIBLE_WRITEBACK && 742 !zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 743 goto next; 744 745 /* 746 * Clearing ZRAM_UNDER_WB is duty of caller. 747 * IOW, zram_free_page never clear it. 748 */ 749 zram_set_flag(zram, index, ZRAM_UNDER_WB); 750 /* Need for hugepage writeback racing */ 751 zram_set_flag(zram, index, ZRAM_IDLE); 752 zram_slot_unlock(zram, index); 753 if (zram_bvec_read(zram, &bvec, index, 0, NULL)) { 754 zram_slot_lock(zram, index); 755 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 756 zram_clear_flag(zram, index, ZRAM_IDLE); 757 zram_slot_unlock(zram, index); 758 continue; 759 } 760 761 bio_init(&bio, zram->bdev, &bio_vec, 1, 762 REQ_OP_WRITE | REQ_SYNC); 763 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9); 764 765 bio_add_page(&bio, bvec.bv_page, bvec.bv_len, 766 bvec.bv_offset); 767 /* 768 * XXX: A single page IO would be inefficient for write 769 * but it would be not bad as starter. 770 */ 771 err = submit_bio_wait(&bio); 772 if (err) { 773 zram_slot_lock(zram, index); 774 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 775 zram_clear_flag(zram, index, ZRAM_IDLE); 776 zram_slot_unlock(zram, index); 777 /* 778 * BIO errors are not fatal, we continue and simply 779 * attempt to writeback the remaining objects (pages). 780 * At the same time we need to signal user-space that 781 * some writes (at least one, but also could be all of 782 * them) were not successful and we do so by returning 783 * the most recent BIO error. 784 */ 785 ret = err; 786 continue; 787 } 788 789 atomic64_inc(&zram->stats.bd_writes); 790 /* 791 * We released zram_slot_lock so need to check if the slot was 792 * changed. If there is freeing for the slot, we can catch it 793 * easily by zram_allocated. 794 * A subtle case is the slot is freed/reallocated/marked as 795 * ZRAM_IDLE again. To close the race, idle_store doesn't 796 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB. 797 * Thus, we could close the race by checking ZRAM_IDLE bit. 798 */ 799 zram_slot_lock(zram, index); 800 if (!zram_allocated(zram, index) || 801 !zram_test_flag(zram, index, ZRAM_IDLE)) { 802 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 803 zram_clear_flag(zram, index, ZRAM_IDLE); 804 goto next; 805 } 806 807 zram_free_page(zram, index); 808 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 809 zram_set_flag(zram, index, ZRAM_WB); 810 zram_set_element(zram, index, blk_idx); 811 blk_idx = 0; 812 atomic64_inc(&zram->stats.pages_stored); 813 spin_lock(&zram->wb_limit_lock); 814 if (zram->wb_limit_enable && zram->bd_wb_limit > 0) 815 zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12); 816 spin_unlock(&zram->wb_limit_lock); 817 next: 818 zram_slot_unlock(zram, index); 819 } 820 821 if (blk_idx) 822 free_block_bdev(zram, blk_idx); 823 __free_page(page); 824 release_init_lock: 825 up_read(&zram->init_lock); 826 827 return ret; 828 } 829 830 struct zram_work { 831 struct work_struct work; 832 struct zram *zram; 833 unsigned long entry; 834 struct bio *bio; 835 struct bio_vec bvec; 836 }; 837 838 #if PAGE_SIZE != 4096 839 static void zram_sync_read(struct work_struct *work) 840 { 841 struct zram_work *zw = container_of(work, struct zram_work, work); 842 struct zram *zram = zw->zram; 843 unsigned long entry = zw->entry; 844 struct bio *bio = zw->bio; 845 846 read_from_bdev_async(zram, &zw->bvec, entry, bio); 847 } 848 849 /* 850 * Block layer want one ->submit_bio to be active at a time, so if we use 851 * chained IO with parent IO in same context, it's a deadlock. To avoid that, 852 * use a worker thread context. 853 */ 854 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec, 855 unsigned long entry, struct bio *bio) 856 { 857 struct zram_work work; 858 859 work.bvec = *bvec; 860 work.zram = zram; 861 work.entry = entry; 862 work.bio = bio; 863 864 INIT_WORK_ONSTACK(&work.work, zram_sync_read); 865 queue_work(system_unbound_wq, &work.work); 866 flush_work(&work.work); 867 destroy_work_on_stack(&work.work); 868 869 return 1; 870 } 871 #else 872 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec, 873 unsigned long entry, struct bio *bio) 874 { 875 WARN_ON(1); 876 return -EIO; 877 } 878 #endif 879 880 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec, 881 unsigned long entry, struct bio *parent, bool sync) 882 { 883 atomic64_inc(&zram->stats.bd_reads); 884 if (sync) 885 return read_from_bdev_sync(zram, bvec, entry, parent); 886 else 887 return read_from_bdev_async(zram, bvec, entry, parent); 888 } 889 #else 890 static inline void reset_bdev(struct zram *zram) {}; 891 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec, 892 unsigned long entry, struct bio *parent, bool sync) 893 { 894 return -EIO; 895 } 896 897 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {}; 898 #endif 899 900 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 901 902 static struct dentry *zram_debugfs_root; 903 904 static void zram_debugfs_create(void) 905 { 906 zram_debugfs_root = debugfs_create_dir("zram", NULL); 907 } 908 909 static void zram_debugfs_destroy(void) 910 { 911 debugfs_remove_recursive(zram_debugfs_root); 912 } 913 914 static void zram_accessed(struct zram *zram, u32 index) 915 { 916 zram_clear_flag(zram, index, ZRAM_IDLE); 917 zram->table[index].ac_time = ktime_get_boottime(); 918 } 919 920 static ssize_t read_block_state(struct file *file, char __user *buf, 921 size_t count, loff_t *ppos) 922 { 923 char *kbuf; 924 ssize_t index, written = 0; 925 struct zram *zram = file->private_data; 926 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 927 struct timespec64 ts; 928 929 kbuf = kvmalloc(count, GFP_KERNEL); 930 if (!kbuf) 931 return -ENOMEM; 932 933 down_read(&zram->init_lock); 934 if (!init_done(zram)) { 935 up_read(&zram->init_lock); 936 kvfree(kbuf); 937 return -EINVAL; 938 } 939 940 for (index = *ppos; index < nr_pages; index++) { 941 int copied; 942 943 zram_slot_lock(zram, index); 944 if (!zram_allocated(zram, index)) 945 goto next; 946 947 ts = ktime_to_timespec64(zram->table[index].ac_time); 948 copied = snprintf(kbuf + written, count, 949 "%12zd %12lld.%06lu %c%c%c%c%c%c\n", 950 index, (s64)ts.tv_sec, 951 ts.tv_nsec / NSEC_PER_USEC, 952 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.', 953 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.', 954 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.', 955 zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.', 956 zram_get_priority(zram, index) ? 'r' : '.', 957 zram_test_flag(zram, index, 958 ZRAM_INCOMPRESSIBLE) ? 'n' : '.'); 959 960 if (count <= copied) { 961 zram_slot_unlock(zram, index); 962 break; 963 } 964 written += copied; 965 count -= copied; 966 next: 967 zram_slot_unlock(zram, index); 968 *ppos += 1; 969 } 970 971 up_read(&zram->init_lock); 972 if (copy_to_user(buf, kbuf, written)) 973 written = -EFAULT; 974 kvfree(kbuf); 975 976 return written; 977 } 978 979 static const struct file_operations proc_zram_block_state_op = { 980 .open = simple_open, 981 .read = read_block_state, 982 .llseek = default_llseek, 983 }; 984 985 static void zram_debugfs_register(struct zram *zram) 986 { 987 if (!zram_debugfs_root) 988 return; 989 990 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name, 991 zram_debugfs_root); 992 debugfs_create_file("block_state", 0400, zram->debugfs_dir, 993 zram, &proc_zram_block_state_op); 994 } 995 996 static void zram_debugfs_unregister(struct zram *zram) 997 { 998 debugfs_remove_recursive(zram->debugfs_dir); 999 } 1000 #else 1001 static void zram_debugfs_create(void) {}; 1002 static void zram_debugfs_destroy(void) {}; 1003 static void zram_accessed(struct zram *zram, u32 index) 1004 { 1005 zram_clear_flag(zram, index, ZRAM_IDLE); 1006 }; 1007 static void zram_debugfs_register(struct zram *zram) {}; 1008 static void zram_debugfs_unregister(struct zram *zram) {}; 1009 #endif 1010 1011 /* 1012 * We switched to per-cpu streams and this attr is not needed anymore. 1013 * However, we will keep it around for some time, because: 1014 * a) we may revert per-cpu streams in the future 1015 * b) it's visible to user space and we need to follow our 2 years 1016 * retirement rule; but we already have a number of 'soon to be 1017 * altered' attrs, so max_comp_streams need to wait for the next 1018 * layoff cycle. 1019 */ 1020 static ssize_t max_comp_streams_show(struct device *dev, 1021 struct device_attribute *attr, char *buf) 1022 { 1023 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus()); 1024 } 1025 1026 static ssize_t max_comp_streams_store(struct device *dev, 1027 struct device_attribute *attr, const char *buf, size_t len) 1028 { 1029 return len; 1030 } 1031 1032 static void comp_algorithm_set(struct zram *zram, u32 prio, const char *alg) 1033 { 1034 /* Do not free statically defined compression algorithms */ 1035 if (zram->comp_algs[prio] != default_compressor) 1036 kfree(zram->comp_algs[prio]); 1037 1038 zram->comp_algs[prio] = alg; 1039 } 1040 1041 static ssize_t __comp_algorithm_show(struct zram *zram, u32 prio, char *buf) 1042 { 1043 ssize_t sz; 1044 1045 down_read(&zram->init_lock); 1046 sz = zcomp_available_show(zram->comp_algs[prio], buf); 1047 up_read(&zram->init_lock); 1048 1049 return sz; 1050 } 1051 1052 static int __comp_algorithm_store(struct zram *zram, u32 prio, const char *buf) 1053 { 1054 char *compressor; 1055 size_t sz; 1056 1057 sz = strlen(buf); 1058 if (sz >= CRYPTO_MAX_ALG_NAME) 1059 return -E2BIG; 1060 1061 compressor = kstrdup(buf, GFP_KERNEL); 1062 if (!compressor) 1063 return -ENOMEM; 1064 1065 /* ignore trailing newline */ 1066 if (sz > 0 && compressor[sz - 1] == '\n') 1067 compressor[sz - 1] = 0x00; 1068 1069 if (!zcomp_available_algorithm(compressor)) { 1070 kfree(compressor); 1071 return -EINVAL; 1072 } 1073 1074 down_write(&zram->init_lock); 1075 if (init_done(zram)) { 1076 up_write(&zram->init_lock); 1077 kfree(compressor); 1078 pr_info("Can't change algorithm for initialized device\n"); 1079 return -EBUSY; 1080 } 1081 1082 comp_algorithm_set(zram, prio, compressor); 1083 up_write(&zram->init_lock); 1084 return 0; 1085 } 1086 1087 static ssize_t comp_algorithm_show(struct device *dev, 1088 struct device_attribute *attr, 1089 char *buf) 1090 { 1091 struct zram *zram = dev_to_zram(dev); 1092 1093 return __comp_algorithm_show(zram, ZRAM_PRIMARY_COMP, buf); 1094 } 1095 1096 static ssize_t comp_algorithm_store(struct device *dev, 1097 struct device_attribute *attr, 1098 const char *buf, 1099 size_t len) 1100 { 1101 struct zram *zram = dev_to_zram(dev); 1102 int ret; 1103 1104 ret = __comp_algorithm_store(zram, ZRAM_PRIMARY_COMP, buf); 1105 return ret ? ret : len; 1106 } 1107 1108 #ifdef CONFIG_ZRAM_MULTI_COMP 1109 static ssize_t recomp_algorithm_show(struct device *dev, 1110 struct device_attribute *attr, 1111 char *buf) 1112 { 1113 struct zram *zram = dev_to_zram(dev); 1114 ssize_t sz = 0; 1115 u32 prio; 1116 1117 for (prio = ZRAM_SECONDARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { 1118 if (!zram->comp_algs[prio]) 1119 continue; 1120 1121 sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2, "#%d: ", prio); 1122 sz += __comp_algorithm_show(zram, prio, buf + sz); 1123 } 1124 1125 return sz; 1126 } 1127 1128 static ssize_t recomp_algorithm_store(struct device *dev, 1129 struct device_attribute *attr, 1130 const char *buf, 1131 size_t len) 1132 { 1133 struct zram *zram = dev_to_zram(dev); 1134 int prio = ZRAM_SECONDARY_COMP; 1135 char *args, *param, *val; 1136 char *alg = NULL; 1137 int ret; 1138 1139 args = skip_spaces(buf); 1140 while (*args) { 1141 args = next_arg(args, ¶m, &val); 1142 1143 if (!*val) 1144 return -EINVAL; 1145 1146 if (!strcmp(param, "algo")) { 1147 alg = val; 1148 continue; 1149 } 1150 1151 if (!strcmp(param, "priority")) { 1152 ret = kstrtoint(val, 10, &prio); 1153 if (ret) 1154 return ret; 1155 continue; 1156 } 1157 } 1158 1159 if (!alg) 1160 return -EINVAL; 1161 1162 if (prio < ZRAM_SECONDARY_COMP || prio >= ZRAM_MAX_COMPS) 1163 return -EINVAL; 1164 1165 ret = __comp_algorithm_store(zram, prio, alg); 1166 return ret ? ret : len; 1167 } 1168 #endif 1169 1170 static ssize_t compact_store(struct device *dev, 1171 struct device_attribute *attr, const char *buf, size_t len) 1172 { 1173 struct zram *zram = dev_to_zram(dev); 1174 1175 down_read(&zram->init_lock); 1176 if (!init_done(zram)) { 1177 up_read(&zram->init_lock); 1178 return -EINVAL; 1179 } 1180 1181 zs_compact(zram->mem_pool); 1182 up_read(&zram->init_lock); 1183 1184 return len; 1185 } 1186 1187 static ssize_t io_stat_show(struct device *dev, 1188 struct device_attribute *attr, char *buf) 1189 { 1190 struct zram *zram = dev_to_zram(dev); 1191 ssize_t ret; 1192 1193 down_read(&zram->init_lock); 1194 ret = scnprintf(buf, PAGE_SIZE, 1195 "%8llu %8llu %8llu %8llu\n", 1196 (u64)atomic64_read(&zram->stats.failed_reads), 1197 (u64)atomic64_read(&zram->stats.failed_writes), 1198 (u64)atomic64_read(&zram->stats.invalid_io), 1199 (u64)atomic64_read(&zram->stats.notify_free)); 1200 up_read(&zram->init_lock); 1201 1202 return ret; 1203 } 1204 1205 static ssize_t mm_stat_show(struct device *dev, 1206 struct device_attribute *attr, char *buf) 1207 { 1208 struct zram *zram = dev_to_zram(dev); 1209 struct zs_pool_stats pool_stats; 1210 u64 orig_size, mem_used = 0; 1211 long max_used; 1212 ssize_t ret; 1213 1214 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); 1215 1216 down_read(&zram->init_lock); 1217 if (init_done(zram)) { 1218 mem_used = zs_get_total_pages(zram->mem_pool); 1219 zs_pool_stats(zram->mem_pool, &pool_stats); 1220 } 1221 1222 orig_size = atomic64_read(&zram->stats.pages_stored); 1223 max_used = atomic_long_read(&zram->stats.max_used_pages); 1224 1225 ret = scnprintf(buf, PAGE_SIZE, 1226 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n", 1227 orig_size << PAGE_SHIFT, 1228 (u64)atomic64_read(&zram->stats.compr_data_size), 1229 mem_used << PAGE_SHIFT, 1230 zram->limit_pages << PAGE_SHIFT, 1231 max_used << PAGE_SHIFT, 1232 (u64)atomic64_read(&zram->stats.same_pages), 1233 atomic_long_read(&pool_stats.pages_compacted), 1234 (u64)atomic64_read(&zram->stats.huge_pages), 1235 (u64)atomic64_read(&zram->stats.huge_pages_since)); 1236 up_read(&zram->init_lock); 1237 1238 return ret; 1239 } 1240 1241 #ifdef CONFIG_ZRAM_WRITEBACK 1242 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12))) 1243 static ssize_t bd_stat_show(struct device *dev, 1244 struct device_attribute *attr, char *buf) 1245 { 1246 struct zram *zram = dev_to_zram(dev); 1247 ssize_t ret; 1248 1249 down_read(&zram->init_lock); 1250 ret = scnprintf(buf, PAGE_SIZE, 1251 "%8llu %8llu %8llu\n", 1252 FOUR_K((u64)atomic64_read(&zram->stats.bd_count)), 1253 FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)), 1254 FOUR_K((u64)atomic64_read(&zram->stats.bd_writes))); 1255 up_read(&zram->init_lock); 1256 1257 return ret; 1258 } 1259 #endif 1260 1261 static ssize_t debug_stat_show(struct device *dev, 1262 struct device_attribute *attr, char *buf) 1263 { 1264 int version = 1; 1265 struct zram *zram = dev_to_zram(dev); 1266 ssize_t ret; 1267 1268 down_read(&zram->init_lock); 1269 ret = scnprintf(buf, PAGE_SIZE, 1270 "version: %d\n%8llu %8llu\n", 1271 version, 1272 (u64)atomic64_read(&zram->stats.writestall), 1273 (u64)atomic64_read(&zram->stats.miss_free)); 1274 up_read(&zram->init_lock); 1275 1276 return ret; 1277 } 1278 1279 static DEVICE_ATTR_RO(io_stat); 1280 static DEVICE_ATTR_RO(mm_stat); 1281 #ifdef CONFIG_ZRAM_WRITEBACK 1282 static DEVICE_ATTR_RO(bd_stat); 1283 #endif 1284 static DEVICE_ATTR_RO(debug_stat); 1285 1286 static void zram_meta_free(struct zram *zram, u64 disksize) 1287 { 1288 size_t num_pages = disksize >> PAGE_SHIFT; 1289 size_t index; 1290 1291 /* Free all pages that are still in this zram device */ 1292 for (index = 0; index < num_pages; index++) 1293 zram_free_page(zram, index); 1294 1295 zs_destroy_pool(zram->mem_pool); 1296 vfree(zram->table); 1297 } 1298 1299 static bool zram_meta_alloc(struct zram *zram, u64 disksize) 1300 { 1301 size_t num_pages; 1302 1303 num_pages = disksize >> PAGE_SHIFT; 1304 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table))); 1305 if (!zram->table) 1306 return false; 1307 1308 zram->mem_pool = zs_create_pool(zram->disk->disk_name); 1309 if (!zram->mem_pool) { 1310 vfree(zram->table); 1311 return false; 1312 } 1313 1314 if (!huge_class_size) 1315 huge_class_size = zs_huge_class_size(zram->mem_pool); 1316 return true; 1317 } 1318 1319 /* 1320 * To protect concurrent access to the same index entry, 1321 * caller should hold this table index entry's bit_spinlock to 1322 * indicate this index entry is accessing. 1323 */ 1324 static void zram_free_page(struct zram *zram, size_t index) 1325 { 1326 unsigned long handle; 1327 1328 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 1329 zram->table[index].ac_time = 0; 1330 #endif 1331 if (zram_test_flag(zram, index, ZRAM_IDLE)) 1332 zram_clear_flag(zram, index, ZRAM_IDLE); 1333 1334 if (zram_test_flag(zram, index, ZRAM_HUGE)) { 1335 zram_clear_flag(zram, index, ZRAM_HUGE); 1336 atomic64_dec(&zram->stats.huge_pages); 1337 } 1338 1339 if (zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 1340 zram_clear_flag(zram, index, ZRAM_INCOMPRESSIBLE); 1341 1342 zram_set_priority(zram, index, 0); 1343 1344 if (zram_test_flag(zram, index, ZRAM_WB)) { 1345 zram_clear_flag(zram, index, ZRAM_WB); 1346 free_block_bdev(zram, zram_get_element(zram, index)); 1347 goto out; 1348 } 1349 1350 /* 1351 * No memory is allocated for same element filled pages. 1352 * Simply clear same page flag. 1353 */ 1354 if (zram_test_flag(zram, index, ZRAM_SAME)) { 1355 zram_clear_flag(zram, index, ZRAM_SAME); 1356 atomic64_dec(&zram->stats.same_pages); 1357 goto out; 1358 } 1359 1360 handle = zram_get_handle(zram, index); 1361 if (!handle) 1362 return; 1363 1364 zs_free(zram->mem_pool, handle); 1365 1366 atomic64_sub(zram_get_obj_size(zram, index), 1367 &zram->stats.compr_data_size); 1368 out: 1369 atomic64_dec(&zram->stats.pages_stored); 1370 zram_set_handle(zram, index, 0); 1371 zram_set_obj_size(zram, index, 0); 1372 WARN_ON_ONCE(zram->table[index].flags & 1373 ~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB)); 1374 } 1375 1376 /* 1377 * Reads a page from the writeback devices. Corresponding ZRAM slot 1378 * should be unlocked. 1379 */ 1380 static int zram_bvec_read_from_bdev(struct zram *zram, struct page *page, 1381 u32 index, struct bio *bio, bool partial_io) 1382 { 1383 struct bio_vec bvec = { 1384 .bv_page = page, 1385 .bv_len = PAGE_SIZE, 1386 .bv_offset = 0, 1387 }; 1388 1389 return read_from_bdev(zram, &bvec, zram_get_element(zram, index), bio, 1390 partial_io); 1391 } 1392 1393 /* 1394 * Reads (decompresses if needed) a page from zspool (zsmalloc). 1395 * Corresponding ZRAM slot should be locked. 1396 */ 1397 static int zram_read_from_zspool(struct zram *zram, struct page *page, 1398 u32 index) 1399 { 1400 struct zcomp_strm *zstrm; 1401 unsigned long handle; 1402 unsigned int size; 1403 void *src, *dst; 1404 u32 prio; 1405 int ret; 1406 1407 handle = zram_get_handle(zram, index); 1408 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) { 1409 unsigned long value; 1410 void *mem; 1411 1412 value = handle ? zram_get_element(zram, index) : 0; 1413 mem = kmap_atomic(page); 1414 zram_fill_page(mem, PAGE_SIZE, value); 1415 kunmap_atomic(mem); 1416 return 0; 1417 } 1418 1419 size = zram_get_obj_size(zram, index); 1420 1421 if (size != PAGE_SIZE) { 1422 prio = zram_get_priority(zram, index); 1423 zstrm = zcomp_stream_get(zram->comps[prio]); 1424 } 1425 1426 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO); 1427 if (size == PAGE_SIZE) { 1428 dst = kmap_atomic(page); 1429 memcpy(dst, src, PAGE_SIZE); 1430 kunmap_atomic(dst); 1431 ret = 0; 1432 } else { 1433 dst = kmap_atomic(page); 1434 ret = zcomp_decompress(zstrm, src, size, dst); 1435 kunmap_atomic(dst); 1436 zcomp_stream_put(zram->comps[prio]); 1437 } 1438 zs_unmap_object(zram->mem_pool, handle); 1439 return ret; 1440 } 1441 1442 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index, 1443 struct bio *bio, bool partial_io) 1444 { 1445 int ret; 1446 1447 zram_slot_lock(zram, index); 1448 if (!zram_test_flag(zram, index, ZRAM_WB)) { 1449 /* Slot should be locked through out the function call */ 1450 ret = zram_read_from_zspool(zram, page, index); 1451 zram_slot_unlock(zram, index); 1452 } else { 1453 /* Slot should be unlocked before the function call */ 1454 zram_slot_unlock(zram, index); 1455 1456 /* A null bio means rw_page was used, we must fallback to bio */ 1457 if (!bio) 1458 return -EOPNOTSUPP; 1459 1460 ret = zram_bvec_read_from_bdev(zram, page, index, bio, 1461 partial_io); 1462 } 1463 1464 /* Should NEVER happen. Return bio error if it does. */ 1465 if (WARN_ON(ret < 0)) 1466 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 1467 1468 return ret; 1469 } 1470 1471 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 1472 u32 index, int offset, struct bio *bio) 1473 { 1474 int ret; 1475 struct page *page; 1476 1477 page = bvec->bv_page; 1478 if (is_partial_io(bvec)) { 1479 /* Use a temporary buffer to decompress the page */ 1480 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM); 1481 if (!page) 1482 return -ENOMEM; 1483 } 1484 1485 ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec)); 1486 if (unlikely(ret)) 1487 goto out; 1488 1489 if (is_partial_io(bvec)) { 1490 void *src = kmap_atomic(page); 1491 1492 memcpy_to_bvec(bvec, src + offset); 1493 kunmap_atomic(src); 1494 } 1495 out: 1496 if (is_partial_io(bvec)) 1497 __free_page(page); 1498 1499 return ret; 1500 } 1501 1502 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1503 u32 index, struct bio *bio) 1504 { 1505 int ret = 0; 1506 unsigned long alloced_pages; 1507 unsigned long handle = -ENOMEM; 1508 unsigned int comp_len = 0; 1509 void *src, *dst, *mem; 1510 struct zcomp_strm *zstrm; 1511 struct page *page = bvec->bv_page; 1512 unsigned long element = 0; 1513 enum zram_pageflags flags = 0; 1514 1515 mem = kmap_atomic(page); 1516 if (page_same_filled(mem, &element)) { 1517 kunmap_atomic(mem); 1518 /* Free memory associated with this sector now. */ 1519 flags = ZRAM_SAME; 1520 atomic64_inc(&zram->stats.same_pages); 1521 goto out; 1522 } 1523 kunmap_atomic(mem); 1524 1525 compress_again: 1526 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]); 1527 src = kmap_atomic(page); 1528 ret = zcomp_compress(zstrm, src, &comp_len); 1529 kunmap_atomic(src); 1530 1531 if (unlikely(ret)) { 1532 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1533 pr_err("Compression failed! err=%d\n", ret); 1534 zs_free(zram->mem_pool, handle); 1535 return ret; 1536 } 1537 1538 if (comp_len >= huge_class_size) 1539 comp_len = PAGE_SIZE; 1540 /* 1541 * handle allocation has 2 paths: 1542 * a) fast path is executed with preemption disabled (for 1543 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear, 1544 * since we can't sleep; 1545 * b) slow path enables preemption and attempts to allocate 1546 * the page with __GFP_DIRECT_RECLAIM bit set. we have to 1547 * put per-cpu compression stream and, thus, to re-do 1548 * the compression once handle is allocated. 1549 * 1550 * if we have a 'non-null' handle here then we are coming 1551 * from the slow path and handle has already been allocated. 1552 */ 1553 if (IS_ERR_VALUE(handle)) 1554 handle = zs_malloc(zram->mem_pool, comp_len, 1555 __GFP_KSWAPD_RECLAIM | 1556 __GFP_NOWARN | 1557 __GFP_HIGHMEM | 1558 __GFP_MOVABLE); 1559 if (IS_ERR_VALUE(handle)) { 1560 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1561 atomic64_inc(&zram->stats.writestall); 1562 handle = zs_malloc(zram->mem_pool, comp_len, 1563 GFP_NOIO | __GFP_HIGHMEM | 1564 __GFP_MOVABLE); 1565 if (IS_ERR_VALUE(handle)) 1566 return PTR_ERR((void *)handle); 1567 1568 if (comp_len != PAGE_SIZE) 1569 goto compress_again; 1570 /* 1571 * If the page is not compressible, you need to acquire the 1572 * lock and execute the code below. The zcomp_stream_get() 1573 * call is needed to disable the cpu hotplug and grab the 1574 * zstrm buffer back. It is necessary that the dereferencing 1575 * of the zstrm variable below occurs correctly. 1576 */ 1577 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]); 1578 } 1579 1580 alloced_pages = zs_get_total_pages(zram->mem_pool); 1581 update_used_max(zram, alloced_pages); 1582 1583 if (zram->limit_pages && alloced_pages > zram->limit_pages) { 1584 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1585 zs_free(zram->mem_pool, handle); 1586 return -ENOMEM; 1587 } 1588 1589 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO); 1590 1591 src = zstrm->buffer; 1592 if (comp_len == PAGE_SIZE) 1593 src = kmap_atomic(page); 1594 memcpy(dst, src, comp_len); 1595 if (comp_len == PAGE_SIZE) 1596 kunmap_atomic(src); 1597 1598 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1599 zs_unmap_object(zram->mem_pool, handle); 1600 atomic64_add(comp_len, &zram->stats.compr_data_size); 1601 out: 1602 /* 1603 * Free memory associated with this sector 1604 * before overwriting unused sectors. 1605 */ 1606 zram_slot_lock(zram, index); 1607 zram_free_page(zram, index); 1608 1609 if (comp_len == PAGE_SIZE) { 1610 zram_set_flag(zram, index, ZRAM_HUGE); 1611 atomic64_inc(&zram->stats.huge_pages); 1612 atomic64_inc(&zram->stats.huge_pages_since); 1613 } 1614 1615 if (flags) { 1616 zram_set_flag(zram, index, flags); 1617 zram_set_element(zram, index, element); 1618 } else { 1619 zram_set_handle(zram, index, handle); 1620 zram_set_obj_size(zram, index, comp_len); 1621 } 1622 zram_slot_unlock(zram, index); 1623 1624 /* Update stats */ 1625 atomic64_inc(&zram->stats.pages_stored); 1626 return ret; 1627 } 1628 1629 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1630 u32 index, int offset, struct bio *bio) 1631 { 1632 int ret; 1633 struct page *page = NULL; 1634 struct bio_vec vec; 1635 1636 vec = *bvec; 1637 if (is_partial_io(bvec)) { 1638 void *dst; 1639 /* 1640 * This is a partial IO. We need to read the full page 1641 * before to write the changes. 1642 */ 1643 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM); 1644 if (!page) 1645 return -ENOMEM; 1646 1647 ret = __zram_bvec_read(zram, page, index, bio, true); 1648 if (ret) 1649 goto out; 1650 1651 dst = kmap_atomic(page); 1652 memcpy_from_bvec(dst + offset, bvec); 1653 kunmap_atomic(dst); 1654 1655 vec.bv_page = page; 1656 vec.bv_len = PAGE_SIZE; 1657 vec.bv_offset = 0; 1658 } 1659 1660 ret = __zram_bvec_write(zram, &vec, index, bio); 1661 out: 1662 if (is_partial_io(bvec)) 1663 __free_page(page); 1664 return ret; 1665 } 1666 1667 #ifdef CONFIG_ZRAM_MULTI_COMP 1668 /* 1669 * This function will decompress (unless it's ZRAM_HUGE) the page and then 1670 * attempt to compress it using provided compression algorithm priority 1671 * (which is potentially more effective). 1672 * 1673 * Corresponding ZRAM slot should be locked. 1674 */ 1675 static int zram_recompress(struct zram *zram, u32 index, struct page *page, 1676 u32 threshold, u32 prio, u32 prio_max) 1677 { 1678 struct zcomp_strm *zstrm = NULL; 1679 unsigned long handle_old; 1680 unsigned long handle_new; 1681 unsigned int comp_len_old; 1682 unsigned int comp_len_new; 1683 unsigned int class_index_old; 1684 unsigned int class_index_new; 1685 u32 num_recomps = 0; 1686 void *src, *dst; 1687 int ret; 1688 1689 handle_old = zram_get_handle(zram, index); 1690 if (!handle_old) 1691 return -EINVAL; 1692 1693 comp_len_old = zram_get_obj_size(zram, index); 1694 /* 1695 * Do not recompress objects that are already "small enough". 1696 */ 1697 if (comp_len_old < threshold) 1698 return 0; 1699 1700 ret = zram_read_from_zspool(zram, page, index); 1701 if (ret) 1702 return ret; 1703 1704 class_index_old = zs_lookup_class_index(zram->mem_pool, comp_len_old); 1705 /* 1706 * Iterate the secondary comp algorithms list (in order of priority) 1707 * and try to recompress the page. 1708 */ 1709 for (; prio < prio_max; prio++) { 1710 if (!zram->comps[prio]) 1711 continue; 1712 1713 /* 1714 * Skip if the object is already re-compressed with a higher 1715 * priority algorithm (or same algorithm). 1716 */ 1717 if (prio <= zram_get_priority(zram, index)) 1718 continue; 1719 1720 num_recomps++; 1721 zstrm = zcomp_stream_get(zram->comps[prio]); 1722 src = kmap_atomic(page); 1723 ret = zcomp_compress(zstrm, src, &comp_len_new); 1724 kunmap_atomic(src); 1725 1726 if (ret) { 1727 zcomp_stream_put(zram->comps[prio]); 1728 return ret; 1729 } 1730 1731 class_index_new = zs_lookup_class_index(zram->mem_pool, 1732 comp_len_new); 1733 1734 /* Continue until we make progress */ 1735 if (class_index_new >= class_index_old || 1736 (threshold && comp_len_new >= threshold)) { 1737 zcomp_stream_put(zram->comps[prio]); 1738 continue; 1739 } 1740 1741 /* Recompression was successful so break out */ 1742 break; 1743 } 1744 1745 /* 1746 * We did not try to recompress, e.g. when we have only one 1747 * secondary algorithm and the page is already recompressed 1748 * using that algorithm 1749 */ 1750 if (!zstrm) 1751 return 0; 1752 1753 if (class_index_new >= class_index_old) { 1754 /* 1755 * Secondary algorithms failed to re-compress the page 1756 * in a way that would save memory, mark the object as 1757 * incompressible so that we will not try to compress 1758 * it again. 1759 * 1760 * We need to make sure that all secondary algorithms have 1761 * failed, so we test if the number of recompressions matches 1762 * the number of active secondary algorithms. 1763 */ 1764 if (num_recomps == zram->num_active_comps - 1) 1765 zram_set_flag(zram, index, ZRAM_INCOMPRESSIBLE); 1766 return 0; 1767 } 1768 1769 /* Successful recompression but above threshold */ 1770 if (threshold && comp_len_new >= threshold) 1771 return 0; 1772 1773 /* 1774 * No direct reclaim (slow path) for handle allocation and no 1775 * re-compression attempt (unlike in __zram_bvec_write()) since 1776 * we already have stored that object in zsmalloc. If we cannot 1777 * alloc memory for recompressed object then we bail out and 1778 * simply keep the old (existing) object in zsmalloc. 1779 */ 1780 handle_new = zs_malloc(zram->mem_pool, comp_len_new, 1781 __GFP_KSWAPD_RECLAIM | 1782 __GFP_NOWARN | 1783 __GFP_HIGHMEM | 1784 __GFP_MOVABLE); 1785 if (IS_ERR_VALUE(handle_new)) { 1786 zcomp_stream_put(zram->comps[prio]); 1787 return PTR_ERR((void *)handle_new); 1788 } 1789 1790 dst = zs_map_object(zram->mem_pool, handle_new, ZS_MM_WO); 1791 memcpy(dst, zstrm->buffer, comp_len_new); 1792 zcomp_stream_put(zram->comps[prio]); 1793 1794 zs_unmap_object(zram->mem_pool, handle_new); 1795 1796 zram_free_page(zram, index); 1797 zram_set_handle(zram, index, handle_new); 1798 zram_set_obj_size(zram, index, comp_len_new); 1799 zram_set_priority(zram, index, prio); 1800 1801 atomic64_add(comp_len_new, &zram->stats.compr_data_size); 1802 atomic64_inc(&zram->stats.pages_stored); 1803 1804 return 0; 1805 } 1806 1807 #define RECOMPRESS_IDLE (1 << 0) 1808 #define RECOMPRESS_HUGE (1 << 1) 1809 1810 static ssize_t recompress_store(struct device *dev, 1811 struct device_attribute *attr, 1812 const char *buf, size_t len) 1813 { 1814 u32 prio = ZRAM_SECONDARY_COMP, prio_max = ZRAM_MAX_COMPS; 1815 struct zram *zram = dev_to_zram(dev); 1816 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 1817 char *args, *param, *val, *algo = NULL; 1818 u32 mode = 0, threshold = 0; 1819 unsigned long index; 1820 struct page *page; 1821 ssize_t ret; 1822 1823 args = skip_spaces(buf); 1824 while (*args) { 1825 args = next_arg(args, ¶m, &val); 1826 1827 if (!*val) 1828 return -EINVAL; 1829 1830 if (!strcmp(param, "type")) { 1831 if (!strcmp(val, "idle")) 1832 mode = RECOMPRESS_IDLE; 1833 if (!strcmp(val, "huge")) 1834 mode = RECOMPRESS_HUGE; 1835 if (!strcmp(val, "huge_idle")) 1836 mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE; 1837 continue; 1838 } 1839 1840 if (!strcmp(param, "threshold")) { 1841 /* 1842 * We will re-compress only idle objects equal or 1843 * greater in size than watermark. 1844 */ 1845 ret = kstrtouint(val, 10, &threshold); 1846 if (ret) 1847 return ret; 1848 continue; 1849 } 1850 1851 if (!strcmp(param, "algo")) { 1852 algo = val; 1853 continue; 1854 } 1855 } 1856 1857 if (threshold >= PAGE_SIZE) 1858 return -EINVAL; 1859 1860 down_read(&zram->init_lock); 1861 if (!init_done(zram)) { 1862 ret = -EINVAL; 1863 goto release_init_lock; 1864 } 1865 1866 if (algo) { 1867 bool found = false; 1868 1869 for (; prio < ZRAM_MAX_COMPS; prio++) { 1870 if (!zram->comp_algs[prio]) 1871 continue; 1872 1873 if (!strcmp(zram->comp_algs[prio], algo)) { 1874 prio_max = min(prio + 1, ZRAM_MAX_COMPS); 1875 found = true; 1876 break; 1877 } 1878 } 1879 1880 if (!found) { 1881 ret = -EINVAL; 1882 goto release_init_lock; 1883 } 1884 } 1885 1886 page = alloc_page(GFP_KERNEL); 1887 if (!page) { 1888 ret = -ENOMEM; 1889 goto release_init_lock; 1890 } 1891 1892 ret = len; 1893 for (index = 0; index < nr_pages; index++) { 1894 int err = 0; 1895 1896 zram_slot_lock(zram, index); 1897 1898 if (!zram_allocated(zram, index)) 1899 goto next; 1900 1901 if (mode & RECOMPRESS_IDLE && 1902 !zram_test_flag(zram, index, ZRAM_IDLE)) 1903 goto next; 1904 1905 if (mode & RECOMPRESS_HUGE && 1906 !zram_test_flag(zram, index, ZRAM_HUGE)) 1907 goto next; 1908 1909 if (zram_test_flag(zram, index, ZRAM_WB) || 1910 zram_test_flag(zram, index, ZRAM_UNDER_WB) || 1911 zram_test_flag(zram, index, ZRAM_SAME) || 1912 zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 1913 goto next; 1914 1915 err = zram_recompress(zram, index, page, threshold, 1916 prio, prio_max); 1917 next: 1918 zram_slot_unlock(zram, index); 1919 if (err) { 1920 ret = err; 1921 break; 1922 } 1923 1924 cond_resched(); 1925 } 1926 1927 __free_page(page); 1928 1929 release_init_lock: 1930 up_read(&zram->init_lock); 1931 return ret; 1932 } 1933 #endif 1934 1935 /* 1936 * zram_bio_discard - handler on discard request 1937 * @index: physical block index in PAGE_SIZE units 1938 * @offset: byte offset within physical block 1939 */ 1940 static void zram_bio_discard(struct zram *zram, u32 index, 1941 int offset, struct bio *bio) 1942 { 1943 size_t n = bio->bi_iter.bi_size; 1944 1945 /* 1946 * zram manages data in physical block size units. Because logical block 1947 * size isn't identical with physical block size on some arch, we 1948 * could get a discard request pointing to a specific offset within a 1949 * certain physical block. Although we can handle this request by 1950 * reading that physiclal block and decompressing and partially zeroing 1951 * and re-compressing and then re-storing it, this isn't reasonable 1952 * because our intent with a discard request is to save memory. So 1953 * skipping this logical block is appropriate here. 1954 */ 1955 if (offset) { 1956 if (n <= (PAGE_SIZE - offset)) 1957 return; 1958 1959 n -= (PAGE_SIZE - offset); 1960 index++; 1961 } 1962 1963 while (n >= PAGE_SIZE) { 1964 zram_slot_lock(zram, index); 1965 zram_free_page(zram, index); 1966 zram_slot_unlock(zram, index); 1967 atomic64_inc(&zram->stats.notify_free); 1968 index++; 1969 n -= PAGE_SIZE; 1970 } 1971 } 1972 1973 /* 1974 * Returns errno if it has some problem. Otherwise return 0 or 1. 1975 * Returns 0 if IO request was done synchronously 1976 * Returns 1 if IO request was successfully submitted. 1977 */ 1978 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index, 1979 int offset, enum req_op op, struct bio *bio) 1980 { 1981 int ret; 1982 1983 if (!op_is_write(op)) { 1984 ret = zram_bvec_read(zram, bvec, index, offset, bio); 1985 flush_dcache_page(bvec->bv_page); 1986 } else { 1987 ret = zram_bvec_write(zram, bvec, index, offset, bio); 1988 } 1989 1990 zram_slot_lock(zram, index); 1991 zram_accessed(zram, index); 1992 zram_slot_unlock(zram, index); 1993 1994 if (unlikely(ret < 0)) { 1995 if (!op_is_write(op)) 1996 atomic64_inc(&zram->stats.failed_reads); 1997 else 1998 atomic64_inc(&zram->stats.failed_writes); 1999 } 2000 2001 return ret; 2002 } 2003 2004 static void __zram_make_request(struct zram *zram, struct bio *bio) 2005 { 2006 int offset; 2007 u32 index; 2008 struct bio_vec bvec; 2009 struct bvec_iter iter; 2010 unsigned long start_time; 2011 2012 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 2013 offset = (bio->bi_iter.bi_sector & 2014 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 2015 2016 switch (bio_op(bio)) { 2017 case REQ_OP_DISCARD: 2018 case REQ_OP_WRITE_ZEROES: 2019 zram_bio_discard(zram, index, offset, bio); 2020 bio_endio(bio); 2021 return; 2022 default: 2023 break; 2024 } 2025 2026 start_time = bio_start_io_acct(bio); 2027 bio_for_each_segment(bvec, bio, iter) { 2028 struct bio_vec bv = bvec; 2029 unsigned int unwritten = bvec.bv_len; 2030 2031 do { 2032 bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset, 2033 unwritten); 2034 if (zram_bvec_rw(zram, &bv, index, offset, 2035 bio_op(bio), bio) < 0) { 2036 bio->bi_status = BLK_STS_IOERR; 2037 break; 2038 } 2039 2040 bv.bv_offset += bv.bv_len; 2041 unwritten -= bv.bv_len; 2042 2043 update_position(&index, &offset, &bv); 2044 } while (unwritten); 2045 } 2046 bio_end_io_acct(bio, start_time); 2047 bio_endio(bio); 2048 } 2049 2050 /* 2051 * Handler function for all zram I/O requests. 2052 */ 2053 static void zram_submit_bio(struct bio *bio) 2054 { 2055 struct zram *zram = bio->bi_bdev->bd_disk->private_data; 2056 2057 if (!valid_io_request(zram, bio->bi_iter.bi_sector, 2058 bio->bi_iter.bi_size)) { 2059 atomic64_inc(&zram->stats.invalid_io); 2060 bio_io_error(bio); 2061 return; 2062 } 2063 2064 __zram_make_request(zram, bio); 2065 } 2066 2067 static void zram_slot_free_notify(struct block_device *bdev, 2068 unsigned long index) 2069 { 2070 struct zram *zram; 2071 2072 zram = bdev->bd_disk->private_data; 2073 2074 atomic64_inc(&zram->stats.notify_free); 2075 if (!zram_slot_trylock(zram, index)) { 2076 atomic64_inc(&zram->stats.miss_free); 2077 return; 2078 } 2079 2080 zram_free_page(zram, index); 2081 zram_slot_unlock(zram, index); 2082 } 2083 2084 static int zram_rw_page(struct block_device *bdev, sector_t sector, 2085 struct page *page, enum req_op op) 2086 { 2087 int offset, ret; 2088 u32 index; 2089 struct zram *zram; 2090 struct bio_vec bv; 2091 unsigned long start_time; 2092 2093 if (PageTransHuge(page)) 2094 return -ENOTSUPP; 2095 zram = bdev->bd_disk->private_data; 2096 2097 if (!valid_io_request(zram, sector, PAGE_SIZE)) { 2098 atomic64_inc(&zram->stats.invalid_io); 2099 ret = -EINVAL; 2100 goto out; 2101 } 2102 2103 index = sector >> SECTORS_PER_PAGE_SHIFT; 2104 offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 2105 2106 bv.bv_page = page; 2107 bv.bv_len = PAGE_SIZE; 2108 bv.bv_offset = 0; 2109 2110 start_time = bdev_start_io_acct(bdev->bd_disk->part0, 2111 SECTORS_PER_PAGE, op, jiffies); 2112 ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL); 2113 bdev_end_io_acct(bdev->bd_disk->part0, op, start_time); 2114 out: 2115 /* 2116 * If I/O fails, just return error(ie, non-zero) without 2117 * calling page_endio. 2118 * It causes resubmit the I/O with bio request by upper functions 2119 * of rw_page(e.g., swap_readpage, __swap_writepage) and 2120 * bio->bi_end_io does things to handle the error 2121 * (e.g., SetPageError, set_page_dirty and extra works). 2122 */ 2123 if (unlikely(ret < 0)) 2124 return ret; 2125 2126 switch (ret) { 2127 case 0: 2128 page_endio(page, op_is_write(op), 0); 2129 break; 2130 case 1: 2131 ret = 0; 2132 break; 2133 default: 2134 WARN_ON(1); 2135 } 2136 return ret; 2137 } 2138 2139 static void zram_destroy_comps(struct zram *zram) 2140 { 2141 u32 prio; 2142 2143 for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) { 2144 struct zcomp *comp = zram->comps[prio]; 2145 2146 zram->comps[prio] = NULL; 2147 if (!comp) 2148 continue; 2149 zcomp_destroy(comp); 2150 zram->num_active_comps--; 2151 } 2152 } 2153 2154 static void zram_reset_device(struct zram *zram) 2155 { 2156 down_write(&zram->init_lock); 2157 2158 zram->limit_pages = 0; 2159 2160 if (!init_done(zram)) { 2161 up_write(&zram->init_lock); 2162 return; 2163 } 2164 2165 set_capacity_and_notify(zram->disk, 0); 2166 part_stat_set_all(zram->disk->part0, 0); 2167 2168 /* I/O operation under all of CPU are done so let's free */ 2169 zram_meta_free(zram, zram->disksize); 2170 zram->disksize = 0; 2171 zram_destroy_comps(zram); 2172 memset(&zram->stats, 0, sizeof(zram->stats)); 2173 reset_bdev(zram); 2174 2175 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor); 2176 up_write(&zram->init_lock); 2177 } 2178 2179 static ssize_t disksize_store(struct device *dev, 2180 struct device_attribute *attr, const char *buf, size_t len) 2181 { 2182 u64 disksize; 2183 struct zcomp *comp; 2184 struct zram *zram = dev_to_zram(dev); 2185 int err; 2186 u32 prio; 2187 2188 disksize = memparse(buf, NULL); 2189 if (!disksize) 2190 return -EINVAL; 2191 2192 down_write(&zram->init_lock); 2193 if (init_done(zram)) { 2194 pr_info("Cannot change disksize for initialized device\n"); 2195 err = -EBUSY; 2196 goto out_unlock; 2197 } 2198 2199 disksize = PAGE_ALIGN(disksize); 2200 if (!zram_meta_alloc(zram, disksize)) { 2201 err = -ENOMEM; 2202 goto out_unlock; 2203 } 2204 2205 for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) { 2206 if (!zram->comp_algs[prio]) 2207 continue; 2208 2209 comp = zcomp_create(zram->comp_algs[prio]); 2210 if (IS_ERR(comp)) { 2211 pr_err("Cannot initialise %s compressing backend\n", 2212 zram->comp_algs[prio]); 2213 err = PTR_ERR(comp); 2214 goto out_free_comps; 2215 } 2216 2217 zram->comps[prio] = comp; 2218 zram->num_active_comps++; 2219 } 2220 zram->disksize = disksize; 2221 set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT); 2222 up_write(&zram->init_lock); 2223 2224 return len; 2225 2226 out_free_comps: 2227 zram_destroy_comps(zram); 2228 zram_meta_free(zram, disksize); 2229 out_unlock: 2230 up_write(&zram->init_lock); 2231 return err; 2232 } 2233 2234 static ssize_t reset_store(struct device *dev, 2235 struct device_attribute *attr, const char *buf, size_t len) 2236 { 2237 int ret; 2238 unsigned short do_reset; 2239 struct zram *zram; 2240 struct gendisk *disk; 2241 2242 ret = kstrtou16(buf, 10, &do_reset); 2243 if (ret) 2244 return ret; 2245 2246 if (!do_reset) 2247 return -EINVAL; 2248 2249 zram = dev_to_zram(dev); 2250 disk = zram->disk; 2251 2252 mutex_lock(&disk->open_mutex); 2253 /* Do not reset an active device or claimed device */ 2254 if (disk_openers(disk) || zram->claim) { 2255 mutex_unlock(&disk->open_mutex); 2256 return -EBUSY; 2257 } 2258 2259 /* From now on, anyone can't open /dev/zram[0-9] */ 2260 zram->claim = true; 2261 mutex_unlock(&disk->open_mutex); 2262 2263 /* Make sure all the pending I/O are finished */ 2264 sync_blockdev(disk->part0); 2265 zram_reset_device(zram); 2266 2267 mutex_lock(&disk->open_mutex); 2268 zram->claim = false; 2269 mutex_unlock(&disk->open_mutex); 2270 2271 return len; 2272 } 2273 2274 static int zram_open(struct block_device *bdev, fmode_t mode) 2275 { 2276 int ret = 0; 2277 struct zram *zram; 2278 2279 WARN_ON(!mutex_is_locked(&bdev->bd_disk->open_mutex)); 2280 2281 zram = bdev->bd_disk->private_data; 2282 /* zram was claimed to reset so open request fails */ 2283 if (zram->claim) 2284 ret = -EBUSY; 2285 2286 return ret; 2287 } 2288 2289 static const struct block_device_operations zram_devops = { 2290 .open = zram_open, 2291 .submit_bio = zram_submit_bio, 2292 .swap_slot_free_notify = zram_slot_free_notify, 2293 .rw_page = zram_rw_page, 2294 .owner = THIS_MODULE 2295 }; 2296 2297 static DEVICE_ATTR_WO(compact); 2298 static DEVICE_ATTR_RW(disksize); 2299 static DEVICE_ATTR_RO(initstate); 2300 static DEVICE_ATTR_WO(reset); 2301 static DEVICE_ATTR_WO(mem_limit); 2302 static DEVICE_ATTR_WO(mem_used_max); 2303 static DEVICE_ATTR_WO(idle); 2304 static DEVICE_ATTR_RW(max_comp_streams); 2305 static DEVICE_ATTR_RW(comp_algorithm); 2306 #ifdef CONFIG_ZRAM_WRITEBACK 2307 static DEVICE_ATTR_RW(backing_dev); 2308 static DEVICE_ATTR_WO(writeback); 2309 static DEVICE_ATTR_RW(writeback_limit); 2310 static DEVICE_ATTR_RW(writeback_limit_enable); 2311 #endif 2312 #ifdef CONFIG_ZRAM_MULTI_COMP 2313 static DEVICE_ATTR_RW(recomp_algorithm); 2314 static DEVICE_ATTR_WO(recompress); 2315 #endif 2316 2317 static struct attribute *zram_disk_attrs[] = { 2318 &dev_attr_disksize.attr, 2319 &dev_attr_initstate.attr, 2320 &dev_attr_reset.attr, 2321 &dev_attr_compact.attr, 2322 &dev_attr_mem_limit.attr, 2323 &dev_attr_mem_used_max.attr, 2324 &dev_attr_idle.attr, 2325 &dev_attr_max_comp_streams.attr, 2326 &dev_attr_comp_algorithm.attr, 2327 #ifdef CONFIG_ZRAM_WRITEBACK 2328 &dev_attr_backing_dev.attr, 2329 &dev_attr_writeback.attr, 2330 &dev_attr_writeback_limit.attr, 2331 &dev_attr_writeback_limit_enable.attr, 2332 #endif 2333 &dev_attr_io_stat.attr, 2334 &dev_attr_mm_stat.attr, 2335 #ifdef CONFIG_ZRAM_WRITEBACK 2336 &dev_attr_bd_stat.attr, 2337 #endif 2338 &dev_attr_debug_stat.attr, 2339 #ifdef CONFIG_ZRAM_MULTI_COMP 2340 &dev_attr_recomp_algorithm.attr, 2341 &dev_attr_recompress.attr, 2342 #endif 2343 NULL, 2344 }; 2345 2346 ATTRIBUTE_GROUPS(zram_disk); 2347 2348 /* 2349 * Allocate and initialize new zram device. the function returns 2350 * '>= 0' device_id upon success, and negative value otherwise. 2351 */ 2352 static int zram_add(void) 2353 { 2354 struct zram *zram; 2355 int ret, device_id; 2356 2357 zram = kzalloc(sizeof(struct zram), GFP_KERNEL); 2358 if (!zram) 2359 return -ENOMEM; 2360 2361 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); 2362 if (ret < 0) 2363 goto out_free_dev; 2364 device_id = ret; 2365 2366 init_rwsem(&zram->init_lock); 2367 #ifdef CONFIG_ZRAM_WRITEBACK 2368 spin_lock_init(&zram->wb_limit_lock); 2369 #endif 2370 2371 /* gendisk structure */ 2372 zram->disk = blk_alloc_disk(NUMA_NO_NODE); 2373 if (!zram->disk) { 2374 pr_err("Error allocating disk structure for device %d\n", 2375 device_id); 2376 ret = -ENOMEM; 2377 goto out_free_idr; 2378 } 2379 2380 zram->disk->major = zram_major; 2381 zram->disk->first_minor = device_id; 2382 zram->disk->minors = 1; 2383 zram->disk->flags |= GENHD_FL_NO_PART; 2384 zram->disk->fops = &zram_devops; 2385 zram->disk->private_data = zram; 2386 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 2387 2388 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */ 2389 set_capacity(zram->disk, 0); 2390 /* zram devices sort of resembles non-rotational disks */ 2391 blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue); 2392 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue); 2393 2394 /* 2395 * To ensure that we always get PAGE_SIZE aligned 2396 * and n*PAGE_SIZED sized I/O requests. 2397 */ 2398 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); 2399 blk_queue_logical_block_size(zram->disk->queue, 2400 ZRAM_LOGICAL_BLOCK_SIZE); 2401 blk_queue_io_min(zram->disk->queue, PAGE_SIZE); 2402 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); 2403 zram->disk->queue->limits.discard_granularity = PAGE_SIZE; 2404 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX); 2405 2406 /* 2407 * zram_bio_discard() will clear all logical blocks if logical block 2408 * size is identical with physical block size(PAGE_SIZE). But if it is 2409 * different, we will skip discarding some parts of logical blocks in 2410 * the part of the request range which isn't aligned to physical block 2411 * size. So we can't ensure that all discarded logical blocks are 2412 * zeroed. 2413 */ 2414 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) 2415 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX); 2416 2417 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, zram->disk->queue); 2418 ret = device_add_disk(NULL, zram->disk, zram_disk_groups); 2419 if (ret) 2420 goto out_cleanup_disk; 2421 2422 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor); 2423 2424 zram_debugfs_register(zram); 2425 pr_info("Added device: %s\n", zram->disk->disk_name); 2426 return device_id; 2427 2428 out_cleanup_disk: 2429 put_disk(zram->disk); 2430 out_free_idr: 2431 idr_remove(&zram_index_idr, device_id); 2432 out_free_dev: 2433 kfree(zram); 2434 return ret; 2435 } 2436 2437 static int zram_remove(struct zram *zram) 2438 { 2439 bool claimed; 2440 2441 mutex_lock(&zram->disk->open_mutex); 2442 if (disk_openers(zram->disk)) { 2443 mutex_unlock(&zram->disk->open_mutex); 2444 return -EBUSY; 2445 } 2446 2447 claimed = zram->claim; 2448 if (!claimed) 2449 zram->claim = true; 2450 mutex_unlock(&zram->disk->open_mutex); 2451 2452 zram_debugfs_unregister(zram); 2453 2454 if (claimed) { 2455 /* 2456 * If we were claimed by reset_store(), del_gendisk() will 2457 * wait until reset_store() is done, so nothing need to do. 2458 */ 2459 ; 2460 } else { 2461 /* Make sure all the pending I/O are finished */ 2462 sync_blockdev(zram->disk->part0); 2463 zram_reset_device(zram); 2464 } 2465 2466 pr_info("Removed device: %s\n", zram->disk->disk_name); 2467 2468 del_gendisk(zram->disk); 2469 2470 /* del_gendisk drains pending reset_store */ 2471 WARN_ON_ONCE(claimed && zram->claim); 2472 2473 /* 2474 * disksize_store() may be called in between zram_reset_device() 2475 * and del_gendisk(), so run the last reset to avoid leaking 2476 * anything allocated with disksize_store() 2477 */ 2478 zram_reset_device(zram); 2479 2480 put_disk(zram->disk); 2481 kfree(zram); 2482 return 0; 2483 } 2484 2485 /* zram-control sysfs attributes */ 2486 2487 /* 2488 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a 2489 * sense that reading from this file does alter the state of your system -- it 2490 * creates a new un-initialized zram device and returns back this device's 2491 * device_id (or an error code if it fails to create a new device). 2492 */ 2493 static ssize_t hot_add_show(struct class *class, 2494 struct class_attribute *attr, 2495 char *buf) 2496 { 2497 int ret; 2498 2499 mutex_lock(&zram_index_mutex); 2500 ret = zram_add(); 2501 mutex_unlock(&zram_index_mutex); 2502 2503 if (ret < 0) 2504 return ret; 2505 return scnprintf(buf, PAGE_SIZE, "%d\n", ret); 2506 } 2507 static struct class_attribute class_attr_hot_add = 2508 __ATTR(hot_add, 0400, hot_add_show, NULL); 2509 2510 static ssize_t hot_remove_store(struct class *class, 2511 struct class_attribute *attr, 2512 const char *buf, 2513 size_t count) 2514 { 2515 struct zram *zram; 2516 int ret, dev_id; 2517 2518 /* dev_id is gendisk->first_minor, which is `int' */ 2519 ret = kstrtoint(buf, 10, &dev_id); 2520 if (ret) 2521 return ret; 2522 if (dev_id < 0) 2523 return -EINVAL; 2524 2525 mutex_lock(&zram_index_mutex); 2526 2527 zram = idr_find(&zram_index_idr, dev_id); 2528 if (zram) { 2529 ret = zram_remove(zram); 2530 if (!ret) 2531 idr_remove(&zram_index_idr, dev_id); 2532 } else { 2533 ret = -ENODEV; 2534 } 2535 2536 mutex_unlock(&zram_index_mutex); 2537 return ret ? ret : count; 2538 } 2539 static CLASS_ATTR_WO(hot_remove); 2540 2541 static struct attribute *zram_control_class_attrs[] = { 2542 &class_attr_hot_add.attr, 2543 &class_attr_hot_remove.attr, 2544 NULL, 2545 }; 2546 ATTRIBUTE_GROUPS(zram_control_class); 2547 2548 static struct class zram_control_class = { 2549 .name = "zram-control", 2550 .owner = THIS_MODULE, 2551 .class_groups = zram_control_class_groups, 2552 }; 2553 2554 static int zram_remove_cb(int id, void *ptr, void *data) 2555 { 2556 WARN_ON_ONCE(zram_remove(ptr)); 2557 return 0; 2558 } 2559 2560 static void destroy_devices(void) 2561 { 2562 class_unregister(&zram_control_class); 2563 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); 2564 zram_debugfs_destroy(); 2565 idr_destroy(&zram_index_idr); 2566 unregister_blkdev(zram_major, "zram"); 2567 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2568 } 2569 2570 static int __init zram_init(void) 2571 { 2572 int ret; 2573 2574 BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > BITS_PER_LONG); 2575 2576 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare", 2577 zcomp_cpu_up_prepare, zcomp_cpu_dead); 2578 if (ret < 0) 2579 return ret; 2580 2581 ret = class_register(&zram_control_class); 2582 if (ret) { 2583 pr_err("Unable to register zram-control class\n"); 2584 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2585 return ret; 2586 } 2587 2588 zram_debugfs_create(); 2589 zram_major = register_blkdev(0, "zram"); 2590 if (zram_major <= 0) { 2591 pr_err("Unable to get major number\n"); 2592 class_unregister(&zram_control_class); 2593 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2594 return -EBUSY; 2595 } 2596 2597 while (num_devices != 0) { 2598 mutex_lock(&zram_index_mutex); 2599 ret = zram_add(); 2600 mutex_unlock(&zram_index_mutex); 2601 if (ret < 0) 2602 goto out_error; 2603 num_devices--; 2604 } 2605 2606 return 0; 2607 2608 out_error: 2609 destroy_devices(); 2610 return ret; 2611 } 2612 2613 static void __exit zram_exit(void) 2614 { 2615 destroy_devices(); 2616 } 2617 2618 module_init(zram_init); 2619 module_exit(zram_exit); 2620 2621 module_param(num_devices, uint, 0); 2622 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); 2623 2624 MODULE_LICENSE("Dual BSD/GPL"); 2625 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2626 MODULE_DESCRIPTION("Compressed RAM Block Device"); 2627