xref: /linux/drivers/block/zram/zram_drv.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
33 
34 #include "zram_drv.h"
35 
36 static DEFINE_IDR(zram_index_idr);
37 /* idr index must be protected */
38 static DEFINE_MUTEX(zram_index_mutex);
39 
40 static int zram_major;
41 static const char *default_compressor = "lzo";
42 
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
45 
46 static inline void deprecated_attr_warn(const char *name)
47 {
48 	pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
49 			task_pid_nr(current),
50 			current->comm,
51 			name,
52 			"See zram documentation.");
53 }
54 
55 #define ZRAM_ATTR_RO(name)						\
56 static ssize_t name##_show(struct device *d,				\
57 				struct device_attribute *attr, char *b)	\
58 {									\
59 	struct zram *zram = dev_to_zram(d);				\
60 									\
61 	deprecated_attr_warn(__stringify(name));			\
62 	return scnprintf(b, PAGE_SIZE, "%llu\n",			\
63 		(u64)atomic64_read(&zram->stats.name));			\
64 }									\
65 static DEVICE_ATTR_RO(name);
66 
67 static inline bool init_done(struct zram *zram)
68 {
69 	return zram->disksize;
70 }
71 
72 static inline struct zram *dev_to_zram(struct device *dev)
73 {
74 	return (struct zram *)dev_to_disk(dev)->private_data;
75 }
76 
77 /* flag operations require table entry bit_spin_lock() being held */
78 static int zram_test_flag(struct zram_meta *meta, u32 index,
79 			enum zram_pageflags flag)
80 {
81 	return meta->table[index].value & BIT(flag);
82 }
83 
84 static void zram_set_flag(struct zram_meta *meta, u32 index,
85 			enum zram_pageflags flag)
86 {
87 	meta->table[index].value |= BIT(flag);
88 }
89 
90 static void zram_clear_flag(struct zram_meta *meta, u32 index,
91 			enum zram_pageflags flag)
92 {
93 	meta->table[index].value &= ~BIT(flag);
94 }
95 
96 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
97 {
98 	return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
99 }
100 
101 static void zram_set_obj_size(struct zram_meta *meta,
102 					u32 index, size_t size)
103 {
104 	unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
105 
106 	meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
107 }
108 
109 static inline int is_partial_io(struct bio_vec *bvec)
110 {
111 	return bvec->bv_len != PAGE_SIZE;
112 }
113 
114 /*
115  * Check if request is within bounds and aligned on zram logical blocks.
116  */
117 static inline int valid_io_request(struct zram *zram,
118 		sector_t start, unsigned int size)
119 {
120 	u64 end, bound;
121 
122 	/* unaligned request */
123 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
124 		return 0;
125 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
126 		return 0;
127 
128 	end = start + (size >> SECTOR_SHIFT);
129 	bound = zram->disksize >> SECTOR_SHIFT;
130 	/* out of range range */
131 	if (unlikely(start >= bound || end > bound || start > end))
132 		return 0;
133 
134 	/* I/O request is valid */
135 	return 1;
136 }
137 
138 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
139 {
140 	if (*offset + bvec->bv_len >= PAGE_SIZE)
141 		(*index)++;
142 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
143 }
144 
145 static inline void update_used_max(struct zram *zram,
146 					const unsigned long pages)
147 {
148 	unsigned long old_max, cur_max;
149 
150 	old_max = atomic_long_read(&zram->stats.max_used_pages);
151 
152 	do {
153 		cur_max = old_max;
154 		if (pages > cur_max)
155 			old_max = atomic_long_cmpxchg(
156 				&zram->stats.max_used_pages, cur_max, pages);
157 	} while (old_max != cur_max);
158 }
159 
160 static int page_zero_filled(void *ptr)
161 {
162 	unsigned int pos;
163 	unsigned long *page;
164 
165 	page = (unsigned long *)ptr;
166 
167 	for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
168 		if (page[pos])
169 			return 0;
170 	}
171 
172 	return 1;
173 }
174 
175 static void handle_zero_page(struct bio_vec *bvec)
176 {
177 	struct page *page = bvec->bv_page;
178 	void *user_mem;
179 
180 	user_mem = kmap_atomic(page);
181 	if (is_partial_io(bvec))
182 		memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
183 	else
184 		clear_page(user_mem);
185 	kunmap_atomic(user_mem);
186 
187 	flush_dcache_page(page);
188 }
189 
190 static ssize_t initstate_show(struct device *dev,
191 		struct device_attribute *attr, char *buf)
192 {
193 	u32 val;
194 	struct zram *zram = dev_to_zram(dev);
195 
196 	down_read(&zram->init_lock);
197 	val = init_done(zram);
198 	up_read(&zram->init_lock);
199 
200 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
201 }
202 
203 static ssize_t disksize_show(struct device *dev,
204 		struct device_attribute *attr, char *buf)
205 {
206 	struct zram *zram = dev_to_zram(dev);
207 
208 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
209 }
210 
211 static ssize_t orig_data_size_show(struct device *dev,
212 		struct device_attribute *attr, char *buf)
213 {
214 	struct zram *zram = dev_to_zram(dev);
215 
216 	deprecated_attr_warn("orig_data_size");
217 	return scnprintf(buf, PAGE_SIZE, "%llu\n",
218 		(u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
219 }
220 
221 static ssize_t mem_used_total_show(struct device *dev,
222 		struct device_attribute *attr, char *buf)
223 {
224 	u64 val = 0;
225 	struct zram *zram = dev_to_zram(dev);
226 
227 	deprecated_attr_warn("mem_used_total");
228 	down_read(&zram->init_lock);
229 	if (init_done(zram)) {
230 		struct zram_meta *meta = zram->meta;
231 		val = zs_get_total_pages(meta->mem_pool);
232 	}
233 	up_read(&zram->init_lock);
234 
235 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
236 }
237 
238 static ssize_t mem_limit_show(struct device *dev,
239 		struct device_attribute *attr, char *buf)
240 {
241 	u64 val;
242 	struct zram *zram = dev_to_zram(dev);
243 
244 	deprecated_attr_warn("mem_limit");
245 	down_read(&zram->init_lock);
246 	val = zram->limit_pages;
247 	up_read(&zram->init_lock);
248 
249 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
250 }
251 
252 static ssize_t mem_limit_store(struct device *dev,
253 		struct device_attribute *attr, const char *buf, size_t len)
254 {
255 	u64 limit;
256 	char *tmp;
257 	struct zram *zram = dev_to_zram(dev);
258 
259 	limit = memparse(buf, &tmp);
260 	if (buf == tmp) /* no chars parsed, invalid input */
261 		return -EINVAL;
262 
263 	down_write(&zram->init_lock);
264 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
265 	up_write(&zram->init_lock);
266 
267 	return len;
268 }
269 
270 static ssize_t mem_used_max_show(struct device *dev,
271 		struct device_attribute *attr, char *buf)
272 {
273 	u64 val = 0;
274 	struct zram *zram = dev_to_zram(dev);
275 
276 	deprecated_attr_warn("mem_used_max");
277 	down_read(&zram->init_lock);
278 	if (init_done(zram))
279 		val = atomic_long_read(&zram->stats.max_used_pages);
280 	up_read(&zram->init_lock);
281 
282 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
283 }
284 
285 static ssize_t mem_used_max_store(struct device *dev,
286 		struct device_attribute *attr, const char *buf, size_t len)
287 {
288 	int err;
289 	unsigned long val;
290 	struct zram *zram = dev_to_zram(dev);
291 
292 	err = kstrtoul(buf, 10, &val);
293 	if (err || val != 0)
294 		return -EINVAL;
295 
296 	down_read(&zram->init_lock);
297 	if (init_done(zram)) {
298 		struct zram_meta *meta = zram->meta;
299 		atomic_long_set(&zram->stats.max_used_pages,
300 				zs_get_total_pages(meta->mem_pool));
301 	}
302 	up_read(&zram->init_lock);
303 
304 	return len;
305 }
306 
307 static ssize_t max_comp_streams_show(struct device *dev,
308 		struct device_attribute *attr, char *buf)
309 {
310 	int val;
311 	struct zram *zram = dev_to_zram(dev);
312 
313 	down_read(&zram->init_lock);
314 	val = zram->max_comp_streams;
315 	up_read(&zram->init_lock);
316 
317 	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
318 }
319 
320 static ssize_t max_comp_streams_store(struct device *dev,
321 		struct device_attribute *attr, const char *buf, size_t len)
322 {
323 	int num;
324 	struct zram *zram = dev_to_zram(dev);
325 	int ret;
326 
327 	ret = kstrtoint(buf, 0, &num);
328 	if (ret < 0)
329 		return ret;
330 	if (num < 1)
331 		return -EINVAL;
332 
333 	down_write(&zram->init_lock);
334 	if (init_done(zram)) {
335 		if (!zcomp_set_max_streams(zram->comp, num)) {
336 			pr_info("Cannot change max compression streams\n");
337 			ret = -EINVAL;
338 			goto out;
339 		}
340 	}
341 
342 	zram->max_comp_streams = num;
343 	ret = len;
344 out:
345 	up_write(&zram->init_lock);
346 	return ret;
347 }
348 
349 static ssize_t comp_algorithm_show(struct device *dev,
350 		struct device_attribute *attr, char *buf)
351 {
352 	size_t sz;
353 	struct zram *zram = dev_to_zram(dev);
354 
355 	down_read(&zram->init_lock);
356 	sz = zcomp_available_show(zram->compressor, buf);
357 	up_read(&zram->init_lock);
358 
359 	return sz;
360 }
361 
362 static ssize_t comp_algorithm_store(struct device *dev,
363 		struct device_attribute *attr, const char *buf, size_t len)
364 {
365 	struct zram *zram = dev_to_zram(dev);
366 	size_t sz;
367 
368 	down_write(&zram->init_lock);
369 	if (init_done(zram)) {
370 		up_write(&zram->init_lock);
371 		pr_info("Can't change algorithm for initialized device\n");
372 		return -EBUSY;
373 	}
374 	strlcpy(zram->compressor, buf, sizeof(zram->compressor));
375 
376 	/* ignore trailing newline */
377 	sz = strlen(zram->compressor);
378 	if (sz > 0 && zram->compressor[sz - 1] == '\n')
379 		zram->compressor[sz - 1] = 0x00;
380 
381 	if (!zcomp_available_algorithm(zram->compressor))
382 		len = -EINVAL;
383 
384 	up_write(&zram->init_lock);
385 	return len;
386 }
387 
388 static ssize_t compact_store(struct device *dev,
389 		struct device_attribute *attr, const char *buf, size_t len)
390 {
391 	unsigned long nr_migrated;
392 	struct zram *zram = dev_to_zram(dev);
393 	struct zram_meta *meta;
394 
395 	down_read(&zram->init_lock);
396 	if (!init_done(zram)) {
397 		up_read(&zram->init_lock);
398 		return -EINVAL;
399 	}
400 
401 	meta = zram->meta;
402 	nr_migrated = zs_compact(meta->mem_pool);
403 	atomic64_add(nr_migrated, &zram->stats.num_migrated);
404 	up_read(&zram->init_lock);
405 
406 	return len;
407 }
408 
409 static ssize_t io_stat_show(struct device *dev,
410 		struct device_attribute *attr, char *buf)
411 {
412 	struct zram *zram = dev_to_zram(dev);
413 	ssize_t ret;
414 
415 	down_read(&zram->init_lock);
416 	ret = scnprintf(buf, PAGE_SIZE,
417 			"%8llu %8llu %8llu %8llu\n",
418 			(u64)atomic64_read(&zram->stats.failed_reads),
419 			(u64)atomic64_read(&zram->stats.failed_writes),
420 			(u64)atomic64_read(&zram->stats.invalid_io),
421 			(u64)atomic64_read(&zram->stats.notify_free));
422 	up_read(&zram->init_lock);
423 
424 	return ret;
425 }
426 
427 static ssize_t mm_stat_show(struct device *dev,
428 		struct device_attribute *attr, char *buf)
429 {
430 	struct zram *zram = dev_to_zram(dev);
431 	u64 orig_size, mem_used = 0;
432 	long max_used;
433 	ssize_t ret;
434 
435 	down_read(&zram->init_lock);
436 	if (init_done(zram))
437 		mem_used = zs_get_total_pages(zram->meta->mem_pool);
438 
439 	orig_size = atomic64_read(&zram->stats.pages_stored);
440 	max_used = atomic_long_read(&zram->stats.max_used_pages);
441 
442 	ret = scnprintf(buf, PAGE_SIZE,
443 			"%8llu %8llu %8llu %8lu %8ld %8llu %8llu\n",
444 			orig_size << PAGE_SHIFT,
445 			(u64)atomic64_read(&zram->stats.compr_data_size),
446 			mem_used << PAGE_SHIFT,
447 			zram->limit_pages << PAGE_SHIFT,
448 			max_used << PAGE_SHIFT,
449 			(u64)atomic64_read(&zram->stats.zero_pages),
450 			(u64)atomic64_read(&zram->stats.num_migrated));
451 	up_read(&zram->init_lock);
452 
453 	return ret;
454 }
455 
456 static DEVICE_ATTR_RO(io_stat);
457 static DEVICE_ATTR_RO(mm_stat);
458 ZRAM_ATTR_RO(num_reads);
459 ZRAM_ATTR_RO(num_writes);
460 ZRAM_ATTR_RO(failed_reads);
461 ZRAM_ATTR_RO(failed_writes);
462 ZRAM_ATTR_RO(invalid_io);
463 ZRAM_ATTR_RO(notify_free);
464 ZRAM_ATTR_RO(zero_pages);
465 ZRAM_ATTR_RO(compr_data_size);
466 
467 static inline bool zram_meta_get(struct zram *zram)
468 {
469 	if (atomic_inc_not_zero(&zram->refcount))
470 		return true;
471 	return false;
472 }
473 
474 static inline void zram_meta_put(struct zram *zram)
475 {
476 	atomic_dec(&zram->refcount);
477 }
478 
479 static void zram_meta_free(struct zram_meta *meta, u64 disksize)
480 {
481 	size_t num_pages = disksize >> PAGE_SHIFT;
482 	size_t index;
483 
484 	/* Free all pages that are still in this zram device */
485 	for (index = 0; index < num_pages; index++) {
486 		unsigned long handle = meta->table[index].handle;
487 
488 		if (!handle)
489 			continue;
490 
491 		zs_free(meta->mem_pool, handle);
492 	}
493 
494 	zs_destroy_pool(meta->mem_pool);
495 	vfree(meta->table);
496 	kfree(meta);
497 }
498 
499 static struct zram_meta *zram_meta_alloc(int device_id, u64 disksize)
500 {
501 	size_t num_pages;
502 	char pool_name[8];
503 	struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
504 
505 	if (!meta)
506 		return NULL;
507 
508 	num_pages = disksize >> PAGE_SHIFT;
509 	meta->table = vzalloc(num_pages * sizeof(*meta->table));
510 	if (!meta->table) {
511 		pr_err("Error allocating zram address table\n");
512 		goto out_error;
513 	}
514 
515 	snprintf(pool_name, sizeof(pool_name), "zram%d", device_id);
516 	meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM);
517 	if (!meta->mem_pool) {
518 		pr_err("Error creating memory pool\n");
519 		goto out_error;
520 	}
521 
522 	return meta;
523 
524 out_error:
525 	vfree(meta->table);
526 	kfree(meta);
527 	return NULL;
528 }
529 
530 /*
531  * To protect concurrent access to the same index entry,
532  * caller should hold this table index entry's bit_spinlock to
533  * indicate this index entry is accessing.
534  */
535 static void zram_free_page(struct zram *zram, size_t index)
536 {
537 	struct zram_meta *meta = zram->meta;
538 	unsigned long handle = meta->table[index].handle;
539 
540 	if (unlikely(!handle)) {
541 		/*
542 		 * No memory is allocated for zero filled pages.
543 		 * Simply clear zero page flag.
544 		 */
545 		if (zram_test_flag(meta, index, ZRAM_ZERO)) {
546 			zram_clear_flag(meta, index, ZRAM_ZERO);
547 			atomic64_dec(&zram->stats.zero_pages);
548 		}
549 		return;
550 	}
551 
552 	zs_free(meta->mem_pool, handle);
553 
554 	atomic64_sub(zram_get_obj_size(meta, index),
555 			&zram->stats.compr_data_size);
556 	atomic64_dec(&zram->stats.pages_stored);
557 
558 	meta->table[index].handle = 0;
559 	zram_set_obj_size(meta, index, 0);
560 }
561 
562 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
563 {
564 	int ret = 0;
565 	unsigned char *cmem;
566 	struct zram_meta *meta = zram->meta;
567 	unsigned long handle;
568 	size_t size;
569 
570 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
571 	handle = meta->table[index].handle;
572 	size = zram_get_obj_size(meta, index);
573 
574 	if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
575 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
576 		clear_page(mem);
577 		return 0;
578 	}
579 
580 	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
581 	if (size == PAGE_SIZE)
582 		copy_page(mem, cmem);
583 	else
584 		ret = zcomp_decompress(zram->comp, cmem, size, mem);
585 	zs_unmap_object(meta->mem_pool, handle);
586 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
587 
588 	/* Should NEVER happen. Return bio error if it does. */
589 	if (unlikely(ret)) {
590 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
591 		return ret;
592 	}
593 
594 	return 0;
595 }
596 
597 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
598 			  u32 index, int offset)
599 {
600 	int ret;
601 	struct page *page;
602 	unsigned char *user_mem, *uncmem = NULL;
603 	struct zram_meta *meta = zram->meta;
604 	page = bvec->bv_page;
605 
606 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
607 	if (unlikely(!meta->table[index].handle) ||
608 			zram_test_flag(meta, index, ZRAM_ZERO)) {
609 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
610 		handle_zero_page(bvec);
611 		return 0;
612 	}
613 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
614 
615 	if (is_partial_io(bvec))
616 		/* Use  a temporary buffer to decompress the page */
617 		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
618 
619 	user_mem = kmap_atomic(page);
620 	if (!is_partial_io(bvec))
621 		uncmem = user_mem;
622 
623 	if (!uncmem) {
624 		pr_info("Unable to allocate temp memory\n");
625 		ret = -ENOMEM;
626 		goto out_cleanup;
627 	}
628 
629 	ret = zram_decompress_page(zram, uncmem, index);
630 	/* Should NEVER happen. Return bio error if it does. */
631 	if (unlikely(ret))
632 		goto out_cleanup;
633 
634 	if (is_partial_io(bvec))
635 		memcpy(user_mem + bvec->bv_offset, uncmem + offset,
636 				bvec->bv_len);
637 
638 	flush_dcache_page(page);
639 	ret = 0;
640 out_cleanup:
641 	kunmap_atomic(user_mem);
642 	if (is_partial_io(bvec))
643 		kfree(uncmem);
644 	return ret;
645 }
646 
647 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
648 			   int offset)
649 {
650 	int ret = 0;
651 	size_t clen;
652 	unsigned long handle;
653 	struct page *page;
654 	unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
655 	struct zram_meta *meta = zram->meta;
656 	struct zcomp_strm *zstrm = NULL;
657 	unsigned long alloced_pages;
658 
659 	page = bvec->bv_page;
660 	if (is_partial_io(bvec)) {
661 		/*
662 		 * This is a partial IO. We need to read the full page
663 		 * before to write the changes.
664 		 */
665 		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
666 		if (!uncmem) {
667 			ret = -ENOMEM;
668 			goto out;
669 		}
670 		ret = zram_decompress_page(zram, uncmem, index);
671 		if (ret)
672 			goto out;
673 	}
674 
675 	zstrm = zcomp_strm_find(zram->comp);
676 	user_mem = kmap_atomic(page);
677 
678 	if (is_partial_io(bvec)) {
679 		memcpy(uncmem + offset, user_mem + bvec->bv_offset,
680 		       bvec->bv_len);
681 		kunmap_atomic(user_mem);
682 		user_mem = NULL;
683 	} else {
684 		uncmem = user_mem;
685 	}
686 
687 	if (page_zero_filled(uncmem)) {
688 		if (user_mem)
689 			kunmap_atomic(user_mem);
690 		/* Free memory associated with this sector now. */
691 		bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
692 		zram_free_page(zram, index);
693 		zram_set_flag(meta, index, ZRAM_ZERO);
694 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
695 
696 		atomic64_inc(&zram->stats.zero_pages);
697 		ret = 0;
698 		goto out;
699 	}
700 
701 	ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
702 	if (!is_partial_io(bvec)) {
703 		kunmap_atomic(user_mem);
704 		user_mem = NULL;
705 		uncmem = NULL;
706 	}
707 
708 	if (unlikely(ret)) {
709 		pr_err("Compression failed! err=%d\n", ret);
710 		goto out;
711 	}
712 	src = zstrm->buffer;
713 	if (unlikely(clen > max_zpage_size)) {
714 		clen = PAGE_SIZE;
715 		if (is_partial_io(bvec))
716 			src = uncmem;
717 	}
718 
719 	handle = zs_malloc(meta->mem_pool, clen);
720 	if (!handle) {
721 		pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
722 			index, clen);
723 		ret = -ENOMEM;
724 		goto out;
725 	}
726 
727 	alloced_pages = zs_get_total_pages(meta->mem_pool);
728 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
729 		zs_free(meta->mem_pool, handle);
730 		ret = -ENOMEM;
731 		goto out;
732 	}
733 
734 	update_used_max(zram, alloced_pages);
735 
736 	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
737 
738 	if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
739 		src = kmap_atomic(page);
740 		copy_page(cmem, src);
741 		kunmap_atomic(src);
742 	} else {
743 		memcpy(cmem, src, clen);
744 	}
745 
746 	zcomp_strm_release(zram->comp, zstrm);
747 	zstrm = NULL;
748 	zs_unmap_object(meta->mem_pool, handle);
749 
750 	/*
751 	 * Free memory associated with this sector
752 	 * before overwriting unused sectors.
753 	 */
754 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
755 	zram_free_page(zram, index);
756 
757 	meta->table[index].handle = handle;
758 	zram_set_obj_size(meta, index, clen);
759 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
760 
761 	/* Update stats */
762 	atomic64_add(clen, &zram->stats.compr_data_size);
763 	atomic64_inc(&zram->stats.pages_stored);
764 out:
765 	if (zstrm)
766 		zcomp_strm_release(zram->comp, zstrm);
767 	if (is_partial_io(bvec))
768 		kfree(uncmem);
769 	return ret;
770 }
771 
772 /*
773  * zram_bio_discard - handler on discard request
774  * @index: physical block index in PAGE_SIZE units
775  * @offset: byte offset within physical block
776  */
777 static void zram_bio_discard(struct zram *zram, u32 index,
778 			     int offset, struct bio *bio)
779 {
780 	size_t n = bio->bi_iter.bi_size;
781 	struct zram_meta *meta = zram->meta;
782 
783 	/*
784 	 * zram manages data in physical block size units. Because logical block
785 	 * size isn't identical with physical block size on some arch, we
786 	 * could get a discard request pointing to a specific offset within a
787 	 * certain physical block.  Although we can handle this request by
788 	 * reading that physiclal block and decompressing and partially zeroing
789 	 * and re-compressing and then re-storing it, this isn't reasonable
790 	 * because our intent with a discard request is to save memory.  So
791 	 * skipping this logical block is appropriate here.
792 	 */
793 	if (offset) {
794 		if (n <= (PAGE_SIZE - offset))
795 			return;
796 
797 		n -= (PAGE_SIZE - offset);
798 		index++;
799 	}
800 
801 	while (n >= PAGE_SIZE) {
802 		bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
803 		zram_free_page(zram, index);
804 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
805 		atomic64_inc(&zram->stats.notify_free);
806 		index++;
807 		n -= PAGE_SIZE;
808 	}
809 }
810 
811 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
812 			int offset, int rw)
813 {
814 	unsigned long start_time = jiffies;
815 	int ret;
816 
817 	generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
818 			&zram->disk->part0);
819 
820 	if (rw == READ) {
821 		atomic64_inc(&zram->stats.num_reads);
822 		ret = zram_bvec_read(zram, bvec, index, offset);
823 	} else {
824 		atomic64_inc(&zram->stats.num_writes);
825 		ret = zram_bvec_write(zram, bvec, index, offset);
826 	}
827 
828 	generic_end_io_acct(rw, &zram->disk->part0, start_time);
829 
830 	if (unlikely(ret)) {
831 		if (rw == READ)
832 			atomic64_inc(&zram->stats.failed_reads);
833 		else
834 			atomic64_inc(&zram->stats.failed_writes);
835 	}
836 
837 	return ret;
838 }
839 
840 static void __zram_make_request(struct zram *zram, struct bio *bio)
841 {
842 	int offset, rw;
843 	u32 index;
844 	struct bio_vec bvec;
845 	struct bvec_iter iter;
846 
847 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
848 	offset = (bio->bi_iter.bi_sector &
849 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
850 
851 	if (unlikely(bio->bi_rw & REQ_DISCARD)) {
852 		zram_bio_discard(zram, index, offset, bio);
853 		bio_endio(bio, 0);
854 		return;
855 	}
856 
857 	rw = bio_data_dir(bio);
858 	bio_for_each_segment(bvec, bio, iter) {
859 		int max_transfer_size = PAGE_SIZE - offset;
860 
861 		if (bvec.bv_len > max_transfer_size) {
862 			/*
863 			 * zram_bvec_rw() can only make operation on a single
864 			 * zram page. Split the bio vector.
865 			 */
866 			struct bio_vec bv;
867 
868 			bv.bv_page = bvec.bv_page;
869 			bv.bv_len = max_transfer_size;
870 			bv.bv_offset = bvec.bv_offset;
871 
872 			if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
873 				goto out;
874 
875 			bv.bv_len = bvec.bv_len - max_transfer_size;
876 			bv.bv_offset += max_transfer_size;
877 			if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
878 				goto out;
879 		} else
880 			if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
881 				goto out;
882 
883 		update_position(&index, &offset, &bvec);
884 	}
885 
886 	set_bit(BIO_UPTODATE, &bio->bi_flags);
887 	bio_endio(bio, 0);
888 	return;
889 
890 out:
891 	bio_io_error(bio);
892 }
893 
894 /*
895  * Handler function for all zram I/O requests.
896  */
897 static void zram_make_request(struct request_queue *queue, struct bio *bio)
898 {
899 	struct zram *zram = queue->queuedata;
900 
901 	if (unlikely(!zram_meta_get(zram)))
902 		goto error;
903 
904 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
905 					bio->bi_iter.bi_size)) {
906 		atomic64_inc(&zram->stats.invalid_io);
907 		goto put_zram;
908 	}
909 
910 	__zram_make_request(zram, bio);
911 	zram_meta_put(zram);
912 	return;
913 put_zram:
914 	zram_meta_put(zram);
915 error:
916 	bio_io_error(bio);
917 }
918 
919 static void zram_slot_free_notify(struct block_device *bdev,
920 				unsigned long index)
921 {
922 	struct zram *zram;
923 	struct zram_meta *meta;
924 
925 	zram = bdev->bd_disk->private_data;
926 	meta = zram->meta;
927 
928 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
929 	zram_free_page(zram, index);
930 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
931 	atomic64_inc(&zram->stats.notify_free);
932 }
933 
934 static int zram_rw_page(struct block_device *bdev, sector_t sector,
935 		       struct page *page, int rw)
936 {
937 	int offset, err = -EIO;
938 	u32 index;
939 	struct zram *zram;
940 	struct bio_vec bv;
941 
942 	zram = bdev->bd_disk->private_data;
943 	if (unlikely(!zram_meta_get(zram)))
944 		goto out;
945 
946 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
947 		atomic64_inc(&zram->stats.invalid_io);
948 		err = -EINVAL;
949 		goto put_zram;
950 	}
951 
952 	index = sector >> SECTORS_PER_PAGE_SHIFT;
953 	offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
954 
955 	bv.bv_page = page;
956 	bv.bv_len = PAGE_SIZE;
957 	bv.bv_offset = 0;
958 
959 	err = zram_bvec_rw(zram, &bv, index, offset, rw);
960 put_zram:
961 	zram_meta_put(zram);
962 out:
963 	/*
964 	 * If I/O fails, just return error(ie, non-zero) without
965 	 * calling page_endio.
966 	 * It causes resubmit the I/O with bio request by upper functions
967 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
968 	 * bio->bi_end_io does things to handle the error
969 	 * (e.g., SetPageError, set_page_dirty and extra works).
970 	 */
971 	if (err == 0)
972 		page_endio(page, rw, 0);
973 	return err;
974 }
975 
976 static void zram_reset_device(struct zram *zram)
977 {
978 	struct zram_meta *meta;
979 	struct zcomp *comp;
980 	u64 disksize;
981 
982 	down_write(&zram->init_lock);
983 
984 	zram->limit_pages = 0;
985 
986 	if (!init_done(zram)) {
987 		up_write(&zram->init_lock);
988 		return;
989 	}
990 
991 	meta = zram->meta;
992 	comp = zram->comp;
993 	disksize = zram->disksize;
994 	/*
995 	 * Refcount will go down to 0 eventually and r/w handler
996 	 * cannot handle further I/O so it will bail out by
997 	 * check zram_meta_get.
998 	 */
999 	zram_meta_put(zram);
1000 	/*
1001 	 * We want to free zram_meta in process context to avoid
1002 	 * deadlock between reclaim path and any other locks.
1003 	 */
1004 	wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
1005 
1006 	/* Reset stats */
1007 	memset(&zram->stats, 0, sizeof(zram->stats));
1008 	zram->disksize = 0;
1009 	zram->max_comp_streams = 1;
1010 
1011 	set_capacity(zram->disk, 0);
1012 	part_stat_set_all(&zram->disk->part0, 0);
1013 
1014 	up_write(&zram->init_lock);
1015 	/* I/O operation under all of CPU are done so let's free */
1016 	zram_meta_free(meta, disksize);
1017 	zcomp_destroy(comp);
1018 }
1019 
1020 static ssize_t disksize_store(struct device *dev,
1021 		struct device_attribute *attr, const char *buf, size_t len)
1022 {
1023 	u64 disksize;
1024 	struct zcomp *comp;
1025 	struct zram_meta *meta;
1026 	struct zram *zram = dev_to_zram(dev);
1027 	int err;
1028 
1029 	disksize = memparse(buf, NULL);
1030 	if (!disksize)
1031 		return -EINVAL;
1032 
1033 	disksize = PAGE_ALIGN(disksize);
1034 	meta = zram_meta_alloc(zram->disk->first_minor, disksize);
1035 	if (!meta)
1036 		return -ENOMEM;
1037 
1038 	comp = zcomp_create(zram->compressor, zram->max_comp_streams);
1039 	if (IS_ERR(comp)) {
1040 		pr_info("Cannot initialise %s compressing backend\n",
1041 				zram->compressor);
1042 		err = PTR_ERR(comp);
1043 		goto out_free_meta;
1044 	}
1045 
1046 	down_write(&zram->init_lock);
1047 	if (init_done(zram)) {
1048 		pr_info("Cannot change disksize for initialized device\n");
1049 		err = -EBUSY;
1050 		goto out_destroy_comp;
1051 	}
1052 
1053 	init_waitqueue_head(&zram->io_done);
1054 	atomic_set(&zram->refcount, 1);
1055 	zram->meta = meta;
1056 	zram->comp = comp;
1057 	zram->disksize = disksize;
1058 	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1059 	up_write(&zram->init_lock);
1060 
1061 	/*
1062 	 * Revalidate disk out of the init_lock to avoid lockdep splat.
1063 	 * It's okay because disk's capacity is protected by init_lock
1064 	 * so that revalidate_disk always sees up-to-date capacity.
1065 	 */
1066 	revalidate_disk(zram->disk);
1067 
1068 	return len;
1069 
1070 out_destroy_comp:
1071 	up_write(&zram->init_lock);
1072 	zcomp_destroy(comp);
1073 out_free_meta:
1074 	zram_meta_free(meta, disksize);
1075 	return err;
1076 }
1077 
1078 static ssize_t reset_store(struct device *dev,
1079 		struct device_attribute *attr, const char *buf, size_t len)
1080 {
1081 	int ret;
1082 	unsigned short do_reset;
1083 	struct zram *zram;
1084 	struct block_device *bdev;
1085 
1086 	ret = kstrtou16(buf, 10, &do_reset);
1087 	if (ret)
1088 		return ret;
1089 
1090 	if (!do_reset)
1091 		return -EINVAL;
1092 
1093 	zram = dev_to_zram(dev);
1094 	bdev = bdget_disk(zram->disk, 0);
1095 	if (!bdev)
1096 		return -ENOMEM;
1097 
1098 	mutex_lock(&bdev->bd_mutex);
1099 	/* Do not reset an active device or claimed device */
1100 	if (bdev->bd_openers || zram->claim) {
1101 		mutex_unlock(&bdev->bd_mutex);
1102 		bdput(bdev);
1103 		return -EBUSY;
1104 	}
1105 
1106 	/* From now on, anyone can't open /dev/zram[0-9] */
1107 	zram->claim = true;
1108 	mutex_unlock(&bdev->bd_mutex);
1109 
1110 	/* Make sure all the pending I/O are finished */
1111 	fsync_bdev(bdev);
1112 	zram_reset_device(zram);
1113 	revalidate_disk(zram->disk);
1114 	bdput(bdev);
1115 
1116 	mutex_lock(&bdev->bd_mutex);
1117 	zram->claim = false;
1118 	mutex_unlock(&bdev->bd_mutex);
1119 
1120 	return len;
1121 }
1122 
1123 static int zram_open(struct block_device *bdev, fmode_t mode)
1124 {
1125 	int ret = 0;
1126 	struct zram *zram;
1127 
1128 	WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1129 
1130 	zram = bdev->bd_disk->private_data;
1131 	/* zram was claimed to reset so open request fails */
1132 	if (zram->claim)
1133 		ret = -EBUSY;
1134 
1135 	return ret;
1136 }
1137 
1138 static const struct block_device_operations zram_devops = {
1139 	.open = zram_open,
1140 	.swap_slot_free_notify = zram_slot_free_notify,
1141 	.rw_page = zram_rw_page,
1142 	.owner = THIS_MODULE
1143 };
1144 
1145 static DEVICE_ATTR_WO(compact);
1146 static DEVICE_ATTR_RW(disksize);
1147 static DEVICE_ATTR_RO(initstate);
1148 static DEVICE_ATTR_WO(reset);
1149 static DEVICE_ATTR_RO(orig_data_size);
1150 static DEVICE_ATTR_RO(mem_used_total);
1151 static DEVICE_ATTR_RW(mem_limit);
1152 static DEVICE_ATTR_RW(mem_used_max);
1153 static DEVICE_ATTR_RW(max_comp_streams);
1154 static DEVICE_ATTR_RW(comp_algorithm);
1155 
1156 static struct attribute *zram_disk_attrs[] = {
1157 	&dev_attr_disksize.attr,
1158 	&dev_attr_initstate.attr,
1159 	&dev_attr_reset.attr,
1160 	&dev_attr_num_reads.attr,
1161 	&dev_attr_num_writes.attr,
1162 	&dev_attr_failed_reads.attr,
1163 	&dev_attr_failed_writes.attr,
1164 	&dev_attr_compact.attr,
1165 	&dev_attr_invalid_io.attr,
1166 	&dev_attr_notify_free.attr,
1167 	&dev_attr_zero_pages.attr,
1168 	&dev_attr_orig_data_size.attr,
1169 	&dev_attr_compr_data_size.attr,
1170 	&dev_attr_mem_used_total.attr,
1171 	&dev_attr_mem_limit.attr,
1172 	&dev_attr_mem_used_max.attr,
1173 	&dev_attr_max_comp_streams.attr,
1174 	&dev_attr_comp_algorithm.attr,
1175 	&dev_attr_io_stat.attr,
1176 	&dev_attr_mm_stat.attr,
1177 	NULL,
1178 };
1179 
1180 static struct attribute_group zram_disk_attr_group = {
1181 	.attrs = zram_disk_attrs,
1182 };
1183 
1184 /*
1185  * Allocate and initialize new zram device. the function returns
1186  * '>= 0' device_id upon success, and negative value otherwise.
1187  */
1188 static int zram_add(void)
1189 {
1190 	struct zram *zram;
1191 	struct request_queue *queue;
1192 	int ret, device_id;
1193 
1194 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1195 	if (!zram)
1196 		return -ENOMEM;
1197 
1198 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1199 	if (ret < 0)
1200 		goto out_free_dev;
1201 	device_id = ret;
1202 
1203 	init_rwsem(&zram->init_lock);
1204 
1205 	queue = blk_alloc_queue(GFP_KERNEL);
1206 	if (!queue) {
1207 		pr_err("Error allocating disk queue for device %d\n",
1208 			device_id);
1209 		ret = -ENOMEM;
1210 		goto out_free_idr;
1211 	}
1212 
1213 	blk_queue_make_request(queue, zram_make_request);
1214 
1215 	/* gendisk structure */
1216 	zram->disk = alloc_disk(1);
1217 	if (!zram->disk) {
1218 		pr_warn("Error allocating disk structure for device %d\n",
1219 			device_id);
1220 		ret = -ENOMEM;
1221 		goto out_free_queue;
1222 	}
1223 
1224 	zram->disk->major = zram_major;
1225 	zram->disk->first_minor = device_id;
1226 	zram->disk->fops = &zram_devops;
1227 	zram->disk->queue = queue;
1228 	zram->disk->queue->queuedata = zram;
1229 	zram->disk->private_data = zram;
1230 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1231 
1232 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1233 	set_capacity(zram->disk, 0);
1234 	/* zram devices sort of resembles non-rotational disks */
1235 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1236 	queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1237 	/*
1238 	 * To ensure that we always get PAGE_SIZE aligned
1239 	 * and n*PAGE_SIZED sized I/O requests.
1240 	 */
1241 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1242 	blk_queue_logical_block_size(zram->disk->queue,
1243 					ZRAM_LOGICAL_BLOCK_SIZE);
1244 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1245 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1246 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1247 	zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
1248 	/*
1249 	 * zram_bio_discard() will clear all logical blocks if logical block
1250 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1251 	 * different, we will skip discarding some parts of logical blocks in
1252 	 * the part of the request range which isn't aligned to physical block
1253 	 * size.  So we can't ensure that all discarded logical blocks are
1254 	 * zeroed.
1255 	 */
1256 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1257 		zram->disk->queue->limits.discard_zeroes_data = 1;
1258 	else
1259 		zram->disk->queue->limits.discard_zeroes_data = 0;
1260 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1261 
1262 	add_disk(zram->disk);
1263 
1264 	ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1265 				&zram_disk_attr_group);
1266 	if (ret < 0) {
1267 		pr_warn("Error creating sysfs group");
1268 		goto out_free_disk;
1269 	}
1270 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1271 	zram->meta = NULL;
1272 	zram->max_comp_streams = 1;
1273 
1274 	pr_info("Added device: %s\n", zram->disk->disk_name);
1275 	return device_id;
1276 
1277 out_free_disk:
1278 	del_gendisk(zram->disk);
1279 	put_disk(zram->disk);
1280 out_free_queue:
1281 	blk_cleanup_queue(queue);
1282 out_free_idr:
1283 	idr_remove(&zram_index_idr, device_id);
1284 out_free_dev:
1285 	kfree(zram);
1286 	return ret;
1287 }
1288 
1289 static int zram_remove(struct zram *zram)
1290 {
1291 	struct block_device *bdev;
1292 
1293 	bdev = bdget_disk(zram->disk, 0);
1294 	if (!bdev)
1295 		return -ENOMEM;
1296 
1297 	mutex_lock(&bdev->bd_mutex);
1298 	if (bdev->bd_openers || zram->claim) {
1299 		mutex_unlock(&bdev->bd_mutex);
1300 		bdput(bdev);
1301 		return -EBUSY;
1302 	}
1303 
1304 	zram->claim = true;
1305 	mutex_unlock(&bdev->bd_mutex);
1306 
1307 	/*
1308 	 * Remove sysfs first, so no one will perform a disksize
1309 	 * store while we destroy the devices. This also helps during
1310 	 * hot_remove -- zram_reset_device() is the last holder of
1311 	 * ->init_lock, no later/concurrent disksize_store() or any
1312 	 * other sysfs handlers are possible.
1313 	 */
1314 	sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1315 			&zram_disk_attr_group);
1316 
1317 	/* Make sure all the pending I/O are finished */
1318 	fsync_bdev(bdev);
1319 	zram_reset_device(zram);
1320 	bdput(bdev);
1321 
1322 	pr_info("Removed device: %s\n", zram->disk->disk_name);
1323 
1324 	idr_remove(&zram_index_idr, zram->disk->first_minor);
1325 	blk_cleanup_queue(zram->disk->queue);
1326 	del_gendisk(zram->disk);
1327 	put_disk(zram->disk);
1328 	kfree(zram);
1329 	return 0;
1330 }
1331 
1332 /* zram-control sysfs attributes */
1333 static ssize_t hot_add_show(struct class *class,
1334 			struct class_attribute *attr,
1335 			char *buf)
1336 {
1337 	int ret;
1338 
1339 	mutex_lock(&zram_index_mutex);
1340 	ret = zram_add();
1341 	mutex_unlock(&zram_index_mutex);
1342 
1343 	if (ret < 0)
1344 		return ret;
1345 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1346 }
1347 
1348 static ssize_t hot_remove_store(struct class *class,
1349 			struct class_attribute *attr,
1350 			const char *buf,
1351 			size_t count)
1352 {
1353 	struct zram *zram;
1354 	int ret, dev_id;
1355 
1356 	/* dev_id is gendisk->first_minor, which is `int' */
1357 	ret = kstrtoint(buf, 10, &dev_id);
1358 	if (ret)
1359 		return ret;
1360 	if (dev_id < 0)
1361 		return -EINVAL;
1362 
1363 	mutex_lock(&zram_index_mutex);
1364 
1365 	zram = idr_find(&zram_index_idr, dev_id);
1366 	if (zram)
1367 		ret = zram_remove(zram);
1368 	else
1369 		ret = -ENODEV;
1370 
1371 	mutex_unlock(&zram_index_mutex);
1372 	return ret ? ret : count;
1373 }
1374 
1375 static struct class_attribute zram_control_class_attrs[] = {
1376 	__ATTR_RO(hot_add),
1377 	__ATTR_WO(hot_remove),
1378 	__ATTR_NULL,
1379 };
1380 
1381 static struct class zram_control_class = {
1382 	.name		= "zram-control",
1383 	.owner		= THIS_MODULE,
1384 	.class_attrs	= zram_control_class_attrs,
1385 };
1386 
1387 static int zram_remove_cb(int id, void *ptr, void *data)
1388 {
1389 	zram_remove(ptr);
1390 	return 0;
1391 }
1392 
1393 static void destroy_devices(void)
1394 {
1395 	class_unregister(&zram_control_class);
1396 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1397 	idr_destroy(&zram_index_idr);
1398 	unregister_blkdev(zram_major, "zram");
1399 }
1400 
1401 static int __init zram_init(void)
1402 {
1403 	int ret;
1404 
1405 	ret = class_register(&zram_control_class);
1406 	if (ret) {
1407 		pr_warn("Unable to register zram-control class\n");
1408 		return ret;
1409 	}
1410 
1411 	zram_major = register_blkdev(0, "zram");
1412 	if (zram_major <= 0) {
1413 		pr_warn("Unable to get major number\n");
1414 		class_unregister(&zram_control_class);
1415 		return -EBUSY;
1416 	}
1417 
1418 	while (num_devices != 0) {
1419 		mutex_lock(&zram_index_mutex);
1420 		ret = zram_add();
1421 		mutex_unlock(&zram_index_mutex);
1422 		if (ret < 0)
1423 			goto out_error;
1424 		num_devices--;
1425 	}
1426 
1427 	return 0;
1428 
1429 out_error:
1430 	destroy_devices();
1431 	return ret;
1432 }
1433 
1434 static void __exit zram_exit(void)
1435 {
1436 	destroy_devices();
1437 }
1438 
1439 module_init(zram_init);
1440 module_exit(zram_exit);
1441 
1442 module_param(num_devices, uint, 0);
1443 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1444 
1445 MODULE_LICENSE("Dual BSD/GPL");
1446 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1447 MODULE_DESCRIPTION("Compressed RAM Block Device");
1448