1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/bitops.h> 22 #include <linux/blkdev.h> 23 #include <linux/buffer_head.h> 24 #include <linux/device.h> 25 #include <linux/genhd.h> 26 #include <linux/highmem.h> 27 #include <linux/slab.h> 28 #include <linux/string.h> 29 #include <linux/vmalloc.h> 30 #include <linux/err.h> 31 #include <linux/idr.h> 32 #include <linux/sysfs.h> 33 34 #include "zram_drv.h" 35 36 static DEFINE_IDR(zram_index_idr); 37 /* idr index must be protected */ 38 static DEFINE_MUTEX(zram_index_mutex); 39 40 static int zram_major; 41 static const char *default_compressor = "lzo"; 42 43 /* Module params (documentation at end) */ 44 static unsigned int num_devices = 1; 45 46 static inline void deprecated_attr_warn(const char *name) 47 { 48 pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n", 49 task_pid_nr(current), 50 current->comm, 51 name, 52 "See zram documentation."); 53 } 54 55 #define ZRAM_ATTR_RO(name) \ 56 static ssize_t name##_show(struct device *d, \ 57 struct device_attribute *attr, char *b) \ 58 { \ 59 struct zram *zram = dev_to_zram(d); \ 60 \ 61 deprecated_attr_warn(__stringify(name)); \ 62 return scnprintf(b, PAGE_SIZE, "%llu\n", \ 63 (u64)atomic64_read(&zram->stats.name)); \ 64 } \ 65 static DEVICE_ATTR_RO(name); 66 67 static inline bool init_done(struct zram *zram) 68 { 69 return zram->disksize; 70 } 71 72 static inline struct zram *dev_to_zram(struct device *dev) 73 { 74 return (struct zram *)dev_to_disk(dev)->private_data; 75 } 76 77 /* flag operations require table entry bit_spin_lock() being held */ 78 static int zram_test_flag(struct zram_meta *meta, u32 index, 79 enum zram_pageflags flag) 80 { 81 return meta->table[index].value & BIT(flag); 82 } 83 84 static void zram_set_flag(struct zram_meta *meta, u32 index, 85 enum zram_pageflags flag) 86 { 87 meta->table[index].value |= BIT(flag); 88 } 89 90 static void zram_clear_flag(struct zram_meta *meta, u32 index, 91 enum zram_pageflags flag) 92 { 93 meta->table[index].value &= ~BIT(flag); 94 } 95 96 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index) 97 { 98 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1); 99 } 100 101 static void zram_set_obj_size(struct zram_meta *meta, 102 u32 index, size_t size) 103 { 104 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT; 105 106 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size; 107 } 108 109 static inline int is_partial_io(struct bio_vec *bvec) 110 { 111 return bvec->bv_len != PAGE_SIZE; 112 } 113 114 /* 115 * Check if request is within bounds and aligned on zram logical blocks. 116 */ 117 static inline int valid_io_request(struct zram *zram, 118 sector_t start, unsigned int size) 119 { 120 u64 end, bound; 121 122 /* unaligned request */ 123 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1))) 124 return 0; 125 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1))) 126 return 0; 127 128 end = start + (size >> SECTOR_SHIFT); 129 bound = zram->disksize >> SECTOR_SHIFT; 130 /* out of range range */ 131 if (unlikely(start >= bound || end > bound || start > end)) 132 return 0; 133 134 /* I/O request is valid */ 135 return 1; 136 } 137 138 static void update_position(u32 *index, int *offset, struct bio_vec *bvec) 139 { 140 if (*offset + bvec->bv_len >= PAGE_SIZE) 141 (*index)++; 142 *offset = (*offset + bvec->bv_len) % PAGE_SIZE; 143 } 144 145 static inline void update_used_max(struct zram *zram, 146 const unsigned long pages) 147 { 148 unsigned long old_max, cur_max; 149 150 old_max = atomic_long_read(&zram->stats.max_used_pages); 151 152 do { 153 cur_max = old_max; 154 if (pages > cur_max) 155 old_max = atomic_long_cmpxchg( 156 &zram->stats.max_used_pages, cur_max, pages); 157 } while (old_max != cur_max); 158 } 159 160 static int page_zero_filled(void *ptr) 161 { 162 unsigned int pos; 163 unsigned long *page; 164 165 page = (unsigned long *)ptr; 166 167 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) { 168 if (page[pos]) 169 return 0; 170 } 171 172 return 1; 173 } 174 175 static void handle_zero_page(struct bio_vec *bvec) 176 { 177 struct page *page = bvec->bv_page; 178 void *user_mem; 179 180 user_mem = kmap_atomic(page); 181 if (is_partial_io(bvec)) 182 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len); 183 else 184 clear_page(user_mem); 185 kunmap_atomic(user_mem); 186 187 flush_dcache_page(page); 188 } 189 190 static ssize_t initstate_show(struct device *dev, 191 struct device_attribute *attr, char *buf) 192 { 193 u32 val; 194 struct zram *zram = dev_to_zram(dev); 195 196 down_read(&zram->init_lock); 197 val = init_done(zram); 198 up_read(&zram->init_lock); 199 200 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 201 } 202 203 static ssize_t disksize_show(struct device *dev, 204 struct device_attribute *attr, char *buf) 205 { 206 struct zram *zram = dev_to_zram(dev); 207 208 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 209 } 210 211 static ssize_t orig_data_size_show(struct device *dev, 212 struct device_attribute *attr, char *buf) 213 { 214 struct zram *zram = dev_to_zram(dev); 215 216 deprecated_attr_warn("orig_data_size"); 217 return scnprintf(buf, PAGE_SIZE, "%llu\n", 218 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT); 219 } 220 221 static ssize_t mem_used_total_show(struct device *dev, 222 struct device_attribute *attr, char *buf) 223 { 224 u64 val = 0; 225 struct zram *zram = dev_to_zram(dev); 226 227 deprecated_attr_warn("mem_used_total"); 228 down_read(&zram->init_lock); 229 if (init_done(zram)) { 230 struct zram_meta *meta = zram->meta; 231 val = zs_get_total_pages(meta->mem_pool); 232 } 233 up_read(&zram->init_lock); 234 235 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT); 236 } 237 238 static ssize_t mem_limit_show(struct device *dev, 239 struct device_attribute *attr, char *buf) 240 { 241 u64 val; 242 struct zram *zram = dev_to_zram(dev); 243 244 deprecated_attr_warn("mem_limit"); 245 down_read(&zram->init_lock); 246 val = zram->limit_pages; 247 up_read(&zram->init_lock); 248 249 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT); 250 } 251 252 static ssize_t mem_limit_store(struct device *dev, 253 struct device_attribute *attr, const char *buf, size_t len) 254 { 255 u64 limit; 256 char *tmp; 257 struct zram *zram = dev_to_zram(dev); 258 259 limit = memparse(buf, &tmp); 260 if (buf == tmp) /* no chars parsed, invalid input */ 261 return -EINVAL; 262 263 down_write(&zram->init_lock); 264 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; 265 up_write(&zram->init_lock); 266 267 return len; 268 } 269 270 static ssize_t mem_used_max_show(struct device *dev, 271 struct device_attribute *attr, char *buf) 272 { 273 u64 val = 0; 274 struct zram *zram = dev_to_zram(dev); 275 276 deprecated_attr_warn("mem_used_max"); 277 down_read(&zram->init_lock); 278 if (init_done(zram)) 279 val = atomic_long_read(&zram->stats.max_used_pages); 280 up_read(&zram->init_lock); 281 282 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT); 283 } 284 285 static ssize_t mem_used_max_store(struct device *dev, 286 struct device_attribute *attr, const char *buf, size_t len) 287 { 288 int err; 289 unsigned long val; 290 struct zram *zram = dev_to_zram(dev); 291 292 err = kstrtoul(buf, 10, &val); 293 if (err || val != 0) 294 return -EINVAL; 295 296 down_read(&zram->init_lock); 297 if (init_done(zram)) { 298 struct zram_meta *meta = zram->meta; 299 atomic_long_set(&zram->stats.max_used_pages, 300 zs_get_total_pages(meta->mem_pool)); 301 } 302 up_read(&zram->init_lock); 303 304 return len; 305 } 306 307 static ssize_t max_comp_streams_show(struct device *dev, 308 struct device_attribute *attr, char *buf) 309 { 310 int val; 311 struct zram *zram = dev_to_zram(dev); 312 313 down_read(&zram->init_lock); 314 val = zram->max_comp_streams; 315 up_read(&zram->init_lock); 316 317 return scnprintf(buf, PAGE_SIZE, "%d\n", val); 318 } 319 320 static ssize_t max_comp_streams_store(struct device *dev, 321 struct device_attribute *attr, const char *buf, size_t len) 322 { 323 int num; 324 struct zram *zram = dev_to_zram(dev); 325 int ret; 326 327 ret = kstrtoint(buf, 0, &num); 328 if (ret < 0) 329 return ret; 330 if (num < 1) 331 return -EINVAL; 332 333 down_write(&zram->init_lock); 334 if (init_done(zram)) { 335 if (!zcomp_set_max_streams(zram->comp, num)) { 336 pr_info("Cannot change max compression streams\n"); 337 ret = -EINVAL; 338 goto out; 339 } 340 } 341 342 zram->max_comp_streams = num; 343 ret = len; 344 out: 345 up_write(&zram->init_lock); 346 return ret; 347 } 348 349 static ssize_t comp_algorithm_show(struct device *dev, 350 struct device_attribute *attr, char *buf) 351 { 352 size_t sz; 353 struct zram *zram = dev_to_zram(dev); 354 355 down_read(&zram->init_lock); 356 sz = zcomp_available_show(zram->compressor, buf); 357 up_read(&zram->init_lock); 358 359 return sz; 360 } 361 362 static ssize_t comp_algorithm_store(struct device *dev, 363 struct device_attribute *attr, const char *buf, size_t len) 364 { 365 struct zram *zram = dev_to_zram(dev); 366 size_t sz; 367 368 down_write(&zram->init_lock); 369 if (init_done(zram)) { 370 up_write(&zram->init_lock); 371 pr_info("Can't change algorithm for initialized device\n"); 372 return -EBUSY; 373 } 374 strlcpy(zram->compressor, buf, sizeof(zram->compressor)); 375 376 /* ignore trailing newline */ 377 sz = strlen(zram->compressor); 378 if (sz > 0 && zram->compressor[sz - 1] == '\n') 379 zram->compressor[sz - 1] = 0x00; 380 381 if (!zcomp_available_algorithm(zram->compressor)) 382 len = -EINVAL; 383 384 up_write(&zram->init_lock); 385 return len; 386 } 387 388 static ssize_t compact_store(struct device *dev, 389 struct device_attribute *attr, const char *buf, size_t len) 390 { 391 unsigned long nr_migrated; 392 struct zram *zram = dev_to_zram(dev); 393 struct zram_meta *meta; 394 395 down_read(&zram->init_lock); 396 if (!init_done(zram)) { 397 up_read(&zram->init_lock); 398 return -EINVAL; 399 } 400 401 meta = zram->meta; 402 nr_migrated = zs_compact(meta->mem_pool); 403 atomic64_add(nr_migrated, &zram->stats.num_migrated); 404 up_read(&zram->init_lock); 405 406 return len; 407 } 408 409 static ssize_t io_stat_show(struct device *dev, 410 struct device_attribute *attr, char *buf) 411 { 412 struct zram *zram = dev_to_zram(dev); 413 ssize_t ret; 414 415 down_read(&zram->init_lock); 416 ret = scnprintf(buf, PAGE_SIZE, 417 "%8llu %8llu %8llu %8llu\n", 418 (u64)atomic64_read(&zram->stats.failed_reads), 419 (u64)atomic64_read(&zram->stats.failed_writes), 420 (u64)atomic64_read(&zram->stats.invalid_io), 421 (u64)atomic64_read(&zram->stats.notify_free)); 422 up_read(&zram->init_lock); 423 424 return ret; 425 } 426 427 static ssize_t mm_stat_show(struct device *dev, 428 struct device_attribute *attr, char *buf) 429 { 430 struct zram *zram = dev_to_zram(dev); 431 u64 orig_size, mem_used = 0; 432 long max_used; 433 ssize_t ret; 434 435 down_read(&zram->init_lock); 436 if (init_done(zram)) 437 mem_used = zs_get_total_pages(zram->meta->mem_pool); 438 439 orig_size = atomic64_read(&zram->stats.pages_stored); 440 max_used = atomic_long_read(&zram->stats.max_used_pages); 441 442 ret = scnprintf(buf, PAGE_SIZE, 443 "%8llu %8llu %8llu %8lu %8ld %8llu %8llu\n", 444 orig_size << PAGE_SHIFT, 445 (u64)atomic64_read(&zram->stats.compr_data_size), 446 mem_used << PAGE_SHIFT, 447 zram->limit_pages << PAGE_SHIFT, 448 max_used << PAGE_SHIFT, 449 (u64)atomic64_read(&zram->stats.zero_pages), 450 (u64)atomic64_read(&zram->stats.num_migrated)); 451 up_read(&zram->init_lock); 452 453 return ret; 454 } 455 456 static DEVICE_ATTR_RO(io_stat); 457 static DEVICE_ATTR_RO(mm_stat); 458 ZRAM_ATTR_RO(num_reads); 459 ZRAM_ATTR_RO(num_writes); 460 ZRAM_ATTR_RO(failed_reads); 461 ZRAM_ATTR_RO(failed_writes); 462 ZRAM_ATTR_RO(invalid_io); 463 ZRAM_ATTR_RO(notify_free); 464 ZRAM_ATTR_RO(zero_pages); 465 ZRAM_ATTR_RO(compr_data_size); 466 467 static inline bool zram_meta_get(struct zram *zram) 468 { 469 if (atomic_inc_not_zero(&zram->refcount)) 470 return true; 471 return false; 472 } 473 474 static inline void zram_meta_put(struct zram *zram) 475 { 476 atomic_dec(&zram->refcount); 477 } 478 479 static void zram_meta_free(struct zram_meta *meta, u64 disksize) 480 { 481 size_t num_pages = disksize >> PAGE_SHIFT; 482 size_t index; 483 484 /* Free all pages that are still in this zram device */ 485 for (index = 0; index < num_pages; index++) { 486 unsigned long handle = meta->table[index].handle; 487 488 if (!handle) 489 continue; 490 491 zs_free(meta->mem_pool, handle); 492 } 493 494 zs_destroy_pool(meta->mem_pool); 495 vfree(meta->table); 496 kfree(meta); 497 } 498 499 static struct zram_meta *zram_meta_alloc(int device_id, u64 disksize) 500 { 501 size_t num_pages; 502 char pool_name[8]; 503 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL); 504 505 if (!meta) 506 return NULL; 507 508 num_pages = disksize >> PAGE_SHIFT; 509 meta->table = vzalloc(num_pages * sizeof(*meta->table)); 510 if (!meta->table) { 511 pr_err("Error allocating zram address table\n"); 512 goto out_error; 513 } 514 515 snprintf(pool_name, sizeof(pool_name), "zram%d", device_id); 516 meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM); 517 if (!meta->mem_pool) { 518 pr_err("Error creating memory pool\n"); 519 goto out_error; 520 } 521 522 return meta; 523 524 out_error: 525 vfree(meta->table); 526 kfree(meta); 527 return NULL; 528 } 529 530 /* 531 * To protect concurrent access to the same index entry, 532 * caller should hold this table index entry's bit_spinlock to 533 * indicate this index entry is accessing. 534 */ 535 static void zram_free_page(struct zram *zram, size_t index) 536 { 537 struct zram_meta *meta = zram->meta; 538 unsigned long handle = meta->table[index].handle; 539 540 if (unlikely(!handle)) { 541 /* 542 * No memory is allocated for zero filled pages. 543 * Simply clear zero page flag. 544 */ 545 if (zram_test_flag(meta, index, ZRAM_ZERO)) { 546 zram_clear_flag(meta, index, ZRAM_ZERO); 547 atomic64_dec(&zram->stats.zero_pages); 548 } 549 return; 550 } 551 552 zs_free(meta->mem_pool, handle); 553 554 atomic64_sub(zram_get_obj_size(meta, index), 555 &zram->stats.compr_data_size); 556 atomic64_dec(&zram->stats.pages_stored); 557 558 meta->table[index].handle = 0; 559 zram_set_obj_size(meta, index, 0); 560 } 561 562 static int zram_decompress_page(struct zram *zram, char *mem, u32 index) 563 { 564 int ret = 0; 565 unsigned char *cmem; 566 struct zram_meta *meta = zram->meta; 567 unsigned long handle; 568 size_t size; 569 570 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 571 handle = meta->table[index].handle; 572 size = zram_get_obj_size(meta, index); 573 574 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) { 575 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 576 clear_page(mem); 577 return 0; 578 } 579 580 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO); 581 if (size == PAGE_SIZE) 582 copy_page(mem, cmem); 583 else 584 ret = zcomp_decompress(zram->comp, cmem, size, mem); 585 zs_unmap_object(meta->mem_pool, handle); 586 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 587 588 /* Should NEVER happen. Return bio error if it does. */ 589 if (unlikely(ret)) { 590 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 591 return ret; 592 } 593 594 return 0; 595 } 596 597 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 598 u32 index, int offset) 599 { 600 int ret; 601 struct page *page; 602 unsigned char *user_mem, *uncmem = NULL; 603 struct zram_meta *meta = zram->meta; 604 page = bvec->bv_page; 605 606 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 607 if (unlikely(!meta->table[index].handle) || 608 zram_test_flag(meta, index, ZRAM_ZERO)) { 609 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 610 handle_zero_page(bvec); 611 return 0; 612 } 613 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 614 615 if (is_partial_io(bvec)) 616 /* Use a temporary buffer to decompress the page */ 617 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO); 618 619 user_mem = kmap_atomic(page); 620 if (!is_partial_io(bvec)) 621 uncmem = user_mem; 622 623 if (!uncmem) { 624 pr_info("Unable to allocate temp memory\n"); 625 ret = -ENOMEM; 626 goto out_cleanup; 627 } 628 629 ret = zram_decompress_page(zram, uncmem, index); 630 /* Should NEVER happen. Return bio error if it does. */ 631 if (unlikely(ret)) 632 goto out_cleanup; 633 634 if (is_partial_io(bvec)) 635 memcpy(user_mem + bvec->bv_offset, uncmem + offset, 636 bvec->bv_len); 637 638 flush_dcache_page(page); 639 ret = 0; 640 out_cleanup: 641 kunmap_atomic(user_mem); 642 if (is_partial_io(bvec)) 643 kfree(uncmem); 644 return ret; 645 } 646 647 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index, 648 int offset) 649 { 650 int ret = 0; 651 size_t clen; 652 unsigned long handle; 653 struct page *page; 654 unsigned char *user_mem, *cmem, *src, *uncmem = NULL; 655 struct zram_meta *meta = zram->meta; 656 struct zcomp_strm *zstrm = NULL; 657 unsigned long alloced_pages; 658 659 page = bvec->bv_page; 660 if (is_partial_io(bvec)) { 661 /* 662 * This is a partial IO. We need to read the full page 663 * before to write the changes. 664 */ 665 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO); 666 if (!uncmem) { 667 ret = -ENOMEM; 668 goto out; 669 } 670 ret = zram_decompress_page(zram, uncmem, index); 671 if (ret) 672 goto out; 673 } 674 675 zstrm = zcomp_strm_find(zram->comp); 676 user_mem = kmap_atomic(page); 677 678 if (is_partial_io(bvec)) { 679 memcpy(uncmem + offset, user_mem + bvec->bv_offset, 680 bvec->bv_len); 681 kunmap_atomic(user_mem); 682 user_mem = NULL; 683 } else { 684 uncmem = user_mem; 685 } 686 687 if (page_zero_filled(uncmem)) { 688 if (user_mem) 689 kunmap_atomic(user_mem); 690 /* Free memory associated with this sector now. */ 691 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 692 zram_free_page(zram, index); 693 zram_set_flag(meta, index, ZRAM_ZERO); 694 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 695 696 atomic64_inc(&zram->stats.zero_pages); 697 ret = 0; 698 goto out; 699 } 700 701 ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen); 702 if (!is_partial_io(bvec)) { 703 kunmap_atomic(user_mem); 704 user_mem = NULL; 705 uncmem = NULL; 706 } 707 708 if (unlikely(ret)) { 709 pr_err("Compression failed! err=%d\n", ret); 710 goto out; 711 } 712 src = zstrm->buffer; 713 if (unlikely(clen > max_zpage_size)) { 714 clen = PAGE_SIZE; 715 if (is_partial_io(bvec)) 716 src = uncmem; 717 } 718 719 handle = zs_malloc(meta->mem_pool, clen); 720 if (!handle) { 721 pr_info("Error allocating memory for compressed page: %u, size=%zu\n", 722 index, clen); 723 ret = -ENOMEM; 724 goto out; 725 } 726 727 alloced_pages = zs_get_total_pages(meta->mem_pool); 728 if (zram->limit_pages && alloced_pages > zram->limit_pages) { 729 zs_free(meta->mem_pool, handle); 730 ret = -ENOMEM; 731 goto out; 732 } 733 734 update_used_max(zram, alloced_pages); 735 736 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO); 737 738 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) { 739 src = kmap_atomic(page); 740 copy_page(cmem, src); 741 kunmap_atomic(src); 742 } else { 743 memcpy(cmem, src, clen); 744 } 745 746 zcomp_strm_release(zram->comp, zstrm); 747 zstrm = NULL; 748 zs_unmap_object(meta->mem_pool, handle); 749 750 /* 751 * Free memory associated with this sector 752 * before overwriting unused sectors. 753 */ 754 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 755 zram_free_page(zram, index); 756 757 meta->table[index].handle = handle; 758 zram_set_obj_size(meta, index, clen); 759 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 760 761 /* Update stats */ 762 atomic64_add(clen, &zram->stats.compr_data_size); 763 atomic64_inc(&zram->stats.pages_stored); 764 out: 765 if (zstrm) 766 zcomp_strm_release(zram->comp, zstrm); 767 if (is_partial_io(bvec)) 768 kfree(uncmem); 769 return ret; 770 } 771 772 /* 773 * zram_bio_discard - handler on discard request 774 * @index: physical block index in PAGE_SIZE units 775 * @offset: byte offset within physical block 776 */ 777 static void zram_bio_discard(struct zram *zram, u32 index, 778 int offset, struct bio *bio) 779 { 780 size_t n = bio->bi_iter.bi_size; 781 struct zram_meta *meta = zram->meta; 782 783 /* 784 * zram manages data in physical block size units. Because logical block 785 * size isn't identical with physical block size on some arch, we 786 * could get a discard request pointing to a specific offset within a 787 * certain physical block. Although we can handle this request by 788 * reading that physiclal block and decompressing and partially zeroing 789 * and re-compressing and then re-storing it, this isn't reasonable 790 * because our intent with a discard request is to save memory. So 791 * skipping this logical block is appropriate here. 792 */ 793 if (offset) { 794 if (n <= (PAGE_SIZE - offset)) 795 return; 796 797 n -= (PAGE_SIZE - offset); 798 index++; 799 } 800 801 while (n >= PAGE_SIZE) { 802 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 803 zram_free_page(zram, index); 804 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 805 atomic64_inc(&zram->stats.notify_free); 806 index++; 807 n -= PAGE_SIZE; 808 } 809 } 810 811 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index, 812 int offset, int rw) 813 { 814 unsigned long start_time = jiffies; 815 int ret; 816 817 generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT, 818 &zram->disk->part0); 819 820 if (rw == READ) { 821 atomic64_inc(&zram->stats.num_reads); 822 ret = zram_bvec_read(zram, bvec, index, offset); 823 } else { 824 atomic64_inc(&zram->stats.num_writes); 825 ret = zram_bvec_write(zram, bvec, index, offset); 826 } 827 828 generic_end_io_acct(rw, &zram->disk->part0, start_time); 829 830 if (unlikely(ret)) { 831 if (rw == READ) 832 atomic64_inc(&zram->stats.failed_reads); 833 else 834 atomic64_inc(&zram->stats.failed_writes); 835 } 836 837 return ret; 838 } 839 840 static void __zram_make_request(struct zram *zram, struct bio *bio) 841 { 842 int offset, rw; 843 u32 index; 844 struct bio_vec bvec; 845 struct bvec_iter iter; 846 847 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 848 offset = (bio->bi_iter.bi_sector & 849 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; 850 851 if (unlikely(bio->bi_rw & REQ_DISCARD)) { 852 zram_bio_discard(zram, index, offset, bio); 853 bio_endio(bio, 0); 854 return; 855 } 856 857 rw = bio_data_dir(bio); 858 bio_for_each_segment(bvec, bio, iter) { 859 int max_transfer_size = PAGE_SIZE - offset; 860 861 if (bvec.bv_len > max_transfer_size) { 862 /* 863 * zram_bvec_rw() can only make operation on a single 864 * zram page. Split the bio vector. 865 */ 866 struct bio_vec bv; 867 868 bv.bv_page = bvec.bv_page; 869 bv.bv_len = max_transfer_size; 870 bv.bv_offset = bvec.bv_offset; 871 872 if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0) 873 goto out; 874 875 bv.bv_len = bvec.bv_len - max_transfer_size; 876 bv.bv_offset += max_transfer_size; 877 if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0) 878 goto out; 879 } else 880 if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0) 881 goto out; 882 883 update_position(&index, &offset, &bvec); 884 } 885 886 set_bit(BIO_UPTODATE, &bio->bi_flags); 887 bio_endio(bio, 0); 888 return; 889 890 out: 891 bio_io_error(bio); 892 } 893 894 /* 895 * Handler function for all zram I/O requests. 896 */ 897 static void zram_make_request(struct request_queue *queue, struct bio *bio) 898 { 899 struct zram *zram = queue->queuedata; 900 901 if (unlikely(!zram_meta_get(zram))) 902 goto error; 903 904 if (!valid_io_request(zram, bio->bi_iter.bi_sector, 905 bio->bi_iter.bi_size)) { 906 atomic64_inc(&zram->stats.invalid_io); 907 goto put_zram; 908 } 909 910 __zram_make_request(zram, bio); 911 zram_meta_put(zram); 912 return; 913 put_zram: 914 zram_meta_put(zram); 915 error: 916 bio_io_error(bio); 917 } 918 919 static void zram_slot_free_notify(struct block_device *bdev, 920 unsigned long index) 921 { 922 struct zram *zram; 923 struct zram_meta *meta; 924 925 zram = bdev->bd_disk->private_data; 926 meta = zram->meta; 927 928 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); 929 zram_free_page(zram, index); 930 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); 931 atomic64_inc(&zram->stats.notify_free); 932 } 933 934 static int zram_rw_page(struct block_device *bdev, sector_t sector, 935 struct page *page, int rw) 936 { 937 int offset, err = -EIO; 938 u32 index; 939 struct zram *zram; 940 struct bio_vec bv; 941 942 zram = bdev->bd_disk->private_data; 943 if (unlikely(!zram_meta_get(zram))) 944 goto out; 945 946 if (!valid_io_request(zram, sector, PAGE_SIZE)) { 947 atomic64_inc(&zram->stats.invalid_io); 948 err = -EINVAL; 949 goto put_zram; 950 } 951 952 index = sector >> SECTORS_PER_PAGE_SHIFT; 953 offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT; 954 955 bv.bv_page = page; 956 bv.bv_len = PAGE_SIZE; 957 bv.bv_offset = 0; 958 959 err = zram_bvec_rw(zram, &bv, index, offset, rw); 960 put_zram: 961 zram_meta_put(zram); 962 out: 963 /* 964 * If I/O fails, just return error(ie, non-zero) without 965 * calling page_endio. 966 * It causes resubmit the I/O with bio request by upper functions 967 * of rw_page(e.g., swap_readpage, __swap_writepage) and 968 * bio->bi_end_io does things to handle the error 969 * (e.g., SetPageError, set_page_dirty and extra works). 970 */ 971 if (err == 0) 972 page_endio(page, rw, 0); 973 return err; 974 } 975 976 static void zram_reset_device(struct zram *zram) 977 { 978 struct zram_meta *meta; 979 struct zcomp *comp; 980 u64 disksize; 981 982 down_write(&zram->init_lock); 983 984 zram->limit_pages = 0; 985 986 if (!init_done(zram)) { 987 up_write(&zram->init_lock); 988 return; 989 } 990 991 meta = zram->meta; 992 comp = zram->comp; 993 disksize = zram->disksize; 994 /* 995 * Refcount will go down to 0 eventually and r/w handler 996 * cannot handle further I/O so it will bail out by 997 * check zram_meta_get. 998 */ 999 zram_meta_put(zram); 1000 /* 1001 * We want to free zram_meta in process context to avoid 1002 * deadlock between reclaim path and any other locks. 1003 */ 1004 wait_event(zram->io_done, atomic_read(&zram->refcount) == 0); 1005 1006 /* Reset stats */ 1007 memset(&zram->stats, 0, sizeof(zram->stats)); 1008 zram->disksize = 0; 1009 zram->max_comp_streams = 1; 1010 1011 set_capacity(zram->disk, 0); 1012 part_stat_set_all(&zram->disk->part0, 0); 1013 1014 up_write(&zram->init_lock); 1015 /* I/O operation under all of CPU are done so let's free */ 1016 zram_meta_free(meta, disksize); 1017 zcomp_destroy(comp); 1018 } 1019 1020 static ssize_t disksize_store(struct device *dev, 1021 struct device_attribute *attr, const char *buf, size_t len) 1022 { 1023 u64 disksize; 1024 struct zcomp *comp; 1025 struct zram_meta *meta; 1026 struct zram *zram = dev_to_zram(dev); 1027 int err; 1028 1029 disksize = memparse(buf, NULL); 1030 if (!disksize) 1031 return -EINVAL; 1032 1033 disksize = PAGE_ALIGN(disksize); 1034 meta = zram_meta_alloc(zram->disk->first_minor, disksize); 1035 if (!meta) 1036 return -ENOMEM; 1037 1038 comp = zcomp_create(zram->compressor, zram->max_comp_streams); 1039 if (IS_ERR(comp)) { 1040 pr_info("Cannot initialise %s compressing backend\n", 1041 zram->compressor); 1042 err = PTR_ERR(comp); 1043 goto out_free_meta; 1044 } 1045 1046 down_write(&zram->init_lock); 1047 if (init_done(zram)) { 1048 pr_info("Cannot change disksize for initialized device\n"); 1049 err = -EBUSY; 1050 goto out_destroy_comp; 1051 } 1052 1053 init_waitqueue_head(&zram->io_done); 1054 atomic_set(&zram->refcount, 1); 1055 zram->meta = meta; 1056 zram->comp = comp; 1057 zram->disksize = disksize; 1058 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT); 1059 up_write(&zram->init_lock); 1060 1061 /* 1062 * Revalidate disk out of the init_lock to avoid lockdep splat. 1063 * It's okay because disk's capacity is protected by init_lock 1064 * so that revalidate_disk always sees up-to-date capacity. 1065 */ 1066 revalidate_disk(zram->disk); 1067 1068 return len; 1069 1070 out_destroy_comp: 1071 up_write(&zram->init_lock); 1072 zcomp_destroy(comp); 1073 out_free_meta: 1074 zram_meta_free(meta, disksize); 1075 return err; 1076 } 1077 1078 static ssize_t reset_store(struct device *dev, 1079 struct device_attribute *attr, const char *buf, size_t len) 1080 { 1081 int ret; 1082 unsigned short do_reset; 1083 struct zram *zram; 1084 struct block_device *bdev; 1085 1086 ret = kstrtou16(buf, 10, &do_reset); 1087 if (ret) 1088 return ret; 1089 1090 if (!do_reset) 1091 return -EINVAL; 1092 1093 zram = dev_to_zram(dev); 1094 bdev = bdget_disk(zram->disk, 0); 1095 if (!bdev) 1096 return -ENOMEM; 1097 1098 mutex_lock(&bdev->bd_mutex); 1099 /* Do not reset an active device or claimed device */ 1100 if (bdev->bd_openers || zram->claim) { 1101 mutex_unlock(&bdev->bd_mutex); 1102 bdput(bdev); 1103 return -EBUSY; 1104 } 1105 1106 /* From now on, anyone can't open /dev/zram[0-9] */ 1107 zram->claim = true; 1108 mutex_unlock(&bdev->bd_mutex); 1109 1110 /* Make sure all the pending I/O are finished */ 1111 fsync_bdev(bdev); 1112 zram_reset_device(zram); 1113 revalidate_disk(zram->disk); 1114 bdput(bdev); 1115 1116 mutex_lock(&bdev->bd_mutex); 1117 zram->claim = false; 1118 mutex_unlock(&bdev->bd_mutex); 1119 1120 return len; 1121 } 1122 1123 static int zram_open(struct block_device *bdev, fmode_t mode) 1124 { 1125 int ret = 0; 1126 struct zram *zram; 1127 1128 WARN_ON(!mutex_is_locked(&bdev->bd_mutex)); 1129 1130 zram = bdev->bd_disk->private_data; 1131 /* zram was claimed to reset so open request fails */ 1132 if (zram->claim) 1133 ret = -EBUSY; 1134 1135 return ret; 1136 } 1137 1138 static const struct block_device_operations zram_devops = { 1139 .open = zram_open, 1140 .swap_slot_free_notify = zram_slot_free_notify, 1141 .rw_page = zram_rw_page, 1142 .owner = THIS_MODULE 1143 }; 1144 1145 static DEVICE_ATTR_WO(compact); 1146 static DEVICE_ATTR_RW(disksize); 1147 static DEVICE_ATTR_RO(initstate); 1148 static DEVICE_ATTR_WO(reset); 1149 static DEVICE_ATTR_RO(orig_data_size); 1150 static DEVICE_ATTR_RO(mem_used_total); 1151 static DEVICE_ATTR_RW(mem_limit); 1152 static DEVICE_ATTR_RW(mem_used_max); 1153 static DEVICE_ATTR_RW(max_comp_streams); 1154 static DEVICE_ATTR_RW(comp_algorithm); 1155 1156 static struct attribute *zram_disk_attrs[] = { 1157 &dev_attr_disksize.attr, 1158 &dev_attr_initstate.attr, 1159 &dev_attr_reset.attr, 1160 &dev_attr_num_reads.attr, 1161 &dev_attr_num_writes.attr, 1162 &dev_attr_failed_reads.attr, 1163 &dev_attr_failed_writes.attr, 1164 &dev_attr_compact.attr, 1165 &dev_attr_invalid_io.attr, 1166 &dev_attr_notify_free.attr, 1167 &dev_attr_zero_pages.attr, 1168 &dev_attr_orig_data_size.attr, 1169 &dev_attr_compr_data_size.attr, 1170 &dev_attr_mem_used_total.attr, 1171 &dev_attr_mem_limit.attr, 1172 &dev_attr_mem_used_max.attr, 1173 &dev_attr_max_comp_streams.attr, 1174 &dev_attr_comp_algorithm.attr, 1175 &dev_attr_io_stat.attr, 1176 &dev_attr_mm_stat.attr, 1177 NULL, 1178 }; 1179 1180 static struct attribute_group zram_disk_attr_group = { 1181 .attrs = zram_disk_attrs, 1182 }; 1183 1184 /* 1185 * Allocate and initialize new zram device. the function returns 1186 * '>= 0' device_id upon success, and negative value otherwise. 1187 */ 1188 static int zram_add(void) 1189 { 1190 struct zram *zram; 1191 struct request_queue *queue; 1192 int ret, device_id; 1193 1194 zram = kzalloc(sizeof(struct zram), GFP_KERNEL); 1195 if (!zram) 1196 return -ENOMEM; 1197 1198 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); 1199 if (ret < 0) 1200 goto out_free_dev; 1201 device_id = ret; 1202 1203 init_rwsem(&zram->init_lock); 1204 1205 queue = blk_alloc_queue(GFP_KERNEL); 1206 if (!queue) { 1207 pr_err("Error allocating disk queue for device %d\n", 1208 device_id); 1209 ret = -ENOMEM; 1210 goto out_free_idr; 1211 } 1212 1213 blk_queue_make_request(queue, zram_make_request); 1214 1215 /* gendisk structure */ 1216 zram->disk = alloc_disk(1); 1217 if (!zram->disk) { 1218 pr_warn("Error allocating disk structure for device %d\n", 1219 device_id); 1220 ret = -ENOMEM; 1221 goto out_free_queue; 1222 } 1223 1224 zram->disk->major = zram_major; 1225 zram->disk->first_minor = device_id; 1226 zram->disk->fops = &zram_devops; 1227 zram->disk->queue = queue; 1228 zram->disk->queue->queuedata = zram; 1229 zram->disk->private_data = zram; 1230 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 1231 1232 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */ 1233 set_capacity(zram->disk, 0); 1234 /* zram devices sort of resembles non-rotational disks */ 1235 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue); 1236 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue); 1237 /* 1238 * To ensure that we always get PAGE_SIZE aligned 1239 * and n*PAGE_SIZED sized I/O requests. 1240 */ 1241 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); 1242 blk_queue_logical_block_size(zram->disk->queue, 1243 ZRAM_LOGICAL_BLOCK_SIZE); 1244 blk_queue_io_min(zram->disk->queue, PAGE_SIZE); 1245 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); 1246 zram->disk->queue->limits.discard_granularity = PAGE_SIZE; 1247 zram->disk->queue->limits.max_discard_sectors = UINT_MAX; 1248 /* 1249 * zram_bio_discard() will clear all logical blocks if logical block 1250 * size is identical with physical block size(PAGE_SIZE). But if it is 1251 * different, we will skip discarding some parts of logical blocks in 1252 * the part of the request range which isn't aligned to physical block 1253 * size. So we can't ensure that all discarded logical blocks are 1254 * zeroed. 1255 */ 1256 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) 1257 zram->disk->queue->limits.discard_zeroes_data = 1; 1258 else 1259 zram->disk->queue->limits.discard_zeroes_data = 0; 1260 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue); 1261 1262 add_disk(zram->disk); 1263 1264 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj, 1265 &zram_disk_attr_group); 1266 if (ret < 0) { 1267 pr_warn("Error creating sysfs group"); 1268 goto out_free_disk; 1269 } 1270 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor)); 1271 zram->meta = NULL; 1272 zram->max_comp_streams = 1; 1273 1274 pr_info("Added device: %s\n", zram->disk->disk_name); 1275 return device_id; 1276 1277 out_free_disk: 1278 del_gendisk(zram->disk); 1279 put_disk(zram->disk); 1280 out_free_queue: 1281 blk_cleanup_queue(queue); 1282 out_free_idr: 1283 idr_remove(&zram_index_idr, device_id); 1284 out_free_dev: 1285 kfree(zram); 1286 return ret; 1287 } 1288 1289 static int zram_remove(struct zram *zram) 1290 { 1291 struct block_device *bdev; 1292 1293 bdev = bdget_disk(zram->disk, 0); 1294 if (!bdev) 1295 return -ENOMEM; 1296 1297 mutex_lock(&bdev->bd_mutex); 1298 if (bdev->bd_openers || zram->claim) { 1299 mutex_unlock(&bdev->bd_mutex); 1300 bdput(bdev); 1301 return -EBUSY; 1302 } 1303 1304 zram->claim = true; 1305 mutex_unlock(&bdev->bd_mutex); 1306 1307 /* 1308 * Remove sysfs first, so no one will perform a disksize 1309 * store while we destroy the devices. This also helps during 1310 * hot_remove -- zram_reset_device() is the last holder of 1311 * ->init_lock, no later/concurrent disksize_store() or any 1312 * other sysfs handlers are possible. 1313 */ 1314 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj, 1315 &zram_disk_attr_group); 1316 1317 /* Make sure all the pending I/O are finished */ 1318 fsync_bdev(bdev); 1319 zram_reset_device(zram); 1320 bdput(bdev); 1321 1322 pr_info("Removed device: %s\n", zram->disk->disk_name); 1323 1324 idr_remove(&zram_index_idr, zram->disk->first_minor); 1325 blk_cleanup_queue(zram->disk->queue); 1326 del_gendisk(zram->disk); 1327 put_disk(zram->disk); 1328 kfree(zram); 1329 return 0; 1330 } 1331 1332 /* zram-control sysfs attributes */ 1333 static ssize_t hot_add_show(struct class *class, 1334 struct class_attribute *attr, 1335 char *buf) 1336 { 1337 int ret; 1338 1339 mutex_lock(&zram_index_mutex); 1340 ret = zram_add(); 1341 mutex_unlock(&zram_index_mutex); 1342 1343 if (ret < 0) 1344 return ret; 1345 return scnprintf(buf, PAGE_SIZE, "%d\n", ret); 1346 } 1347 1348 static ssize_t hot_remove_store(struct class *class, 1349 struct class_attribute *attr, 1350 const char *buf, 1351 size_t count) 1352 { 1353 struct zram *zram; 1354 int ret, dev_id; 1355 1356 /* dev_id is gendisk->first_minor, which is `int' */ 1357 ret = kstrtoint(buf, 10, &dev_id); 1358 if (ret) 1359 return ret; 1360 if (dev_id < 0) 1361 return -EINVAL; 1362 1363 mutex_lock(&zram_index_mutex); 1364 1365 zram = idr_find(&zram_index_idr, dev_id); 1366 if (zram) 1367 ret = zram_remove(zram); 1368 else 1369 ret = -ENODEV; 1370 1371 mutex_unlock(&zram_index_mutex); 1372 return ret ? ret : count; 1373 } 1374 1375 static struct class_attribute zram_control_class_attrs[] = { 1376 __ATTR_RO(hot_add), 1377 __ATTR_WO(hot_remove), 1378 __ATTR_NULL, 1379 }; 1380 1381 static struct class zram_control_class = { 1382 .name = "zram-control", 1383 .owner = THIS_MODULE, 1384 .class_attrs = zram_control_class_attrs, 1385 }; 1386 1387 static int zram_remove_cb(int id, void *ptr, void *data) 1388 { 1389 zram_remove(ptr); 1390 return 0; 1391 } 1392 1393 static void destroy_devices(void) 1394 { 1395 class_unregister(&zram_control_class); 1396 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); 1397 idr_destroy(&zram_index_idr); 1398 unregister_blkdev(zram_major, "zram"); 1399 } 1400 1401 static int __init zram_init(void) 1402 { 1403 int ret; 1404 1405 ret = class_register(&zram_control_class); 1406 if (ret) { 1407 pr_warn("Unable to register zram-control class\n"); 1408 return ret; 1409 } 1410 1411 zram_major = register_blkdev(0, "zram"); 1412 if (zram_major <= 0) { 1413 pr_warn("Unable to get major number\n"); 1414 class_unregister(&zram_control_class); 1415 return -EBUSY; 1416 } 1417 1418 while (num_devices != 0) { 1419 mutex_lock(&zram_index_mutex); 1420 ret = zram_add(); 1421 mutex_unlock(&zram_index_mutex); 1422 if (ret < 0) 1423 goto out_error; 1424 num_devices--; 1425 } 1426 1427 return 0; 1428 1429 out_error: 1430 destroy_devices(); 1431 return ret; 1432 } 1433 1434 static void __exit zram_exit(void) 1435 { 1436 destroy_devices(); 1437 } 1438 1439 module_init(zram_init); 1440 module_exit(zram_exit); 1441 1442 module_param(num_devices, uint, 0); 1443 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); 1444 1445 MODULE_LICENSE("Dual BSD/GPL"); 1446 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 1447 MODULE_DESCRIPTION("Compressed RAM Block Device"); 1448