xref: /linux/drivers/block/xen-blkfront.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /*
2  * blkfront.c
3  *
4  * XenLinux virtual block device driver.
5  *
6  * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
7  * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
8  * Copyright (c) 2004, Christian Limpach
9  * Copyright (c) 2004, Andrew Warfield
10  * Copyright (c) 2005, Christopher Clark
11  * Copyright (c) 2005, XenSource Ltd
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License version 2
15  * as published by the Free Software Foundation; or, when distributed
16  * separately from the Linux kernel or incorporated into other
17  * software packages, subject to the following license:
18  *
19  * Permission is hereby granted, free of charge, to any person obtaining a copy
20  * of this source file (the "Software"), to deal in the Software without
21  * restriction, including without limitation the rights to use, copy, modify,
22  * merge, publish, distribute, sublicense, and/or sell copies of the Software,
23  * and to permit persons to whom the Software is furnished to do so, subject to
24  * the following conditions:
25  *
26  * The above copyright notice and this permission notice shall be included in
27  * all copies or substantial portions of the Software.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
30  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
31  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
32  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
33  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
34  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
35  * IN THE SOFTWARE.
36  */
37 
38 #include <linux/interrupt.h>
39 #include <linux/blkdev.h>
40 #include <linux/blk-mq.h>
41 #include <linux/hdreg.h>
42 #include <linux/cdrom.h>
43 #include <linux/module.h>
44 #include <linux/slab.h>
45 #include <linux/major.h>
46 #include <linux/mutex.h>
47 #include <linux/scatterlist.h>
48 #include <linux/bitmap.h>
49 #include <linux/list.h>
50 #include <linux/workqueue.h>
51 #include <linux/sched/mm.h>
52 
53 #include <xen/xen.h>
54 #include <xen/xenbus.h>
55 #include <xen/grant_table.h>
56 #include <xen/events.h>
57 #include <xen/page.h>
58 #include <xen/platform_pci.h>
59 
60 #include <xen/interface/grant_table.h>
61 #include <xen/interface/io/blkif.h>
62 #include <xen/interface/io/protocols.h>
63 
64 #include <asm/xen/hypervisor.h>
65 
66 /*
67  * The minimal size of segment supported by the block framework is PAGE_SIZE.
68  * When Linux is using a different page size than Xen, it may not be possible
69  * to put all the data in a single segment.
70  * This can happen when the backend doesn't support indirect descriptor and
71  * therefore the maximum amount of data that a request can carry is
72  * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB
73  *
74  * Note that we only support one extra request. So the Linux page size
75  * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) =
76  * 88KB.
77  */
78 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE)
79 
80 enum blkif_state {
81 	BLKIF_STATE_DISCONNECTED,
82 	BLKIF_STATE_CONNECTED,
83 	BLKIF_STATE_SUSPENDED,
84 	BLKIF_STATE_ERROR,
85 };
86 
87 struct grant {
88 	grant_ref_t gref;
89 	struct page *page;
90 	struct list_head node;
91 };
92 
93 enum blk_req_status {
94 	REQ_PROCESSING,
95 	REQ_WAITING,
96 	REQ_DONE,
97 	REQ_ERROR,
98 	REQ_EOPNOTSUPP,
99 };
100 
101 struct blk_shadow {
102 	struct blkif_request req;
103 	struct request *request;
104 	struct grant **grants_used;
105 	struct grant **indirect_grants;
106 	struct scatterlist *sg;
107 	unsigned int num_sg;
108 	enum blk_req_status status;
109 
110 	#define NO_ASSOCIATED_ID ~0UL
111 	/*
112 	 * Id of the sibling if we ever need 2 requests when handling a
113 	 * block I/O request
114 	 */
115 	unsigned long associated_id;
116 };
117 
118 struct blkif_req {
119 	blk_status_t	error;
120 };
121 
122 static inline struct blkif_req *blkif_req(struct request *rq)
123 {
124 	return blk_mq_rq_to_pdu(rq);
125 }
126 
127 static DEFINE_MUTEX(blkfront_mutex);
128 static const struct block_device_operations xlvbd_block_fops;
129 static struct delayed_work blkfront_work;
130 static LIST_HEAD(info_list);
131 
132 /*
133  * Maximum number of segments in indirect requests, the actual value used by
134  * the frontend driver is the minimum of this value and the value provided
135  * by the backend driver.
136  */
137 
138 static unsigned int xen_blkif_max_segments = 32;
139 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 0444);
140 MODULE_PARM_DESC(max_indirect_segments,
141 		 "Maximum amount of segments in indirect requests (default is 32)");
142 
143 static unsigned int xen_blkif_max_queues = 4;
144 module_param_named(max_queues, xen_blkif_max_queues, uint, 0444);
145 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk");
146 
147 /*
148  * Maximum order of pages to be used for the shared ring between front and
149  * backend, 4KB page granularity is used.
150  */
151 static unsigned int xen_blkif_max_ring_order;
152 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, 0444);
153 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
154 
155 static bool __read_mostly xen_blkif_trusted = true;
156 module_param_named(trusted, xen_blkif_trusted, bool, 0644);
157 MODULE_PARM_DESC(trusted, "Is the backend trusted");
158 
159 #define BLK_RING_SIZE(info)	\
160 	__CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages)
161 
162 /*
163  * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
164  * characters are enough. Define to 20 to keep consistent with backend.
165  */
166 #define RINGREF_NAME_LEN (20)
167 /*
168  * queue-%u would take 7 + 10(UINT_MAX) = 17 characters.
169  */
170 #define QUEUE_NAME_LEN (17)
171 
172 /*
173  *  Per-ring info.
174  *  Every blkfront device can associate with one or more blkfront_ring_info,
175  *  depending on how many hardware queues/rings to be used.
176  */
177 struct blkfront_ring_info {
178 	/* Lock to protect data in every ring buffer. */
179 	spinlock_t ring_lock;
180 	struct blkif_front_ring ring;
181 	unsigned int ring_ref[XENBUS_MAX_RING_GRANTS];
182 	unsigned int evtchn, irq;
183 	struct work_struct work;
184 	struct gnttab_free_callback callback;
185 	struct list_head indirect_pages;
186 	struct list_head grants;
187 	unsigned int persistent_gnts_c;
188 	unsigned long shadow_free;
189 	struct blkfront_info *dev_info;
190 	struct blk_shadow shadow[];
191 };
192 
193 /*
194  * We have one of these per vbd, whether ide, scsi or 'other'.  They
195  * hang in private_data off the gendisk structure. We may end up
196  * putting all kinds of interesting stuff here :-)
197  */
198 struct blkfront_info
199 {
200 	struct mutex mutex;
201 	struct xenbus_device *xbdev;
202 	struct gendisk *gd;
203 	u16 sector_size;
204 	unsigned int physical_sector_size;
205 	unsigned long vdisk_info;
206 	int vdevice;
207 	blkif_vdev_t handle;
208 	enum blkif_state connected;
209 	/* Number of pages per ring buffer. */
210 	unsigned int nr_ring_pages;
211 	struct request_queue *rq;
212 	unsigned int feature_flush:1;
213 	unsigned int feature_fua:1;
214 	unsigned int feature_discard:1;
215 	unsigned int feature_secdiscard:1;
216 	/* Connect-time cached feature_persistent parameter */
217 	unsigned int feature_persistent_parm:1;
218 	/* Persistent grants feature negotiation result */
219 	unsigned int feature_persistent:1;
220 	unsigned int bounce:1;
221 	unsigned int discard_granularity;
222 	unsigned int discard_alignment;
223 	/* Number of 4KB segments handled */
224 	unsigned int max_indirect_segments;
225 	int is_ready;
226 	struct blk_mq_tag_set tag_set;
227 	struct blkfront_ring_info *rinfo;
228 	unsigned int nr_rings;
229 	unsigned int rinfo_size;
230 	/* Save uncomplete reqs and bios for migration. */
231 	struct list_head requests;
232 	struct bio_list bio_list;
233 	struct list_head info_list;
234 };
235 
236 static unsigned int nr_minors;
237 static unsigned long *minors;
238 static DEFINE_SPINLOCK(minor_lock);
239 
240 #define PARTS_PER_DISK		16
241 #define PARTS_PER_EXT_DISK      256
242 
243 #define BLKIF_MAJOR(dev) ((dev)>>8)
244 #define BLKIF_MINOR(dev) ((dev) & 0xff)
245 
246 #define EXT_SHIFT 28
247 #define EXTENDED (1<<EXT_SHIFT)
248 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
249 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
250 #define EMULATED_HD_DISK_MINOR_OFFSET (0)
251 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
252 #define EMULATED_SD_DISK_MINOR_OFFSET (0)
253 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
254 
255 #define DEV_NAME	"xvd"	/* name in /dev */
256 
257 /*
258  * Grants are always the same size as a Xen page (i.e 4KB).
259  * A physical segment is always the same size as a Linux page.
260  * Number of grants per physical segment
261  */
262 #define GRANTS_PER_PSEG	(PAGE_SIZE / XEN_PAGE_SIZE)
263 
264 #define GRANTS_PER_INDIRECT_FRAME \
265 	(XEN_PAGE_SIZE / sizeof(struct blkif_request_segment))
266 
267 #define INDIRECT_GREFS(_grants)		\
268 	DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME)
269 
270 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo);
271 static void blkfront_gather_backend_features(struct blkfront_info *info);
272 static int negotiate_mq(struct blkfront_info *info);
273 
274 #define for_each_rinfo(info, ptr, idx)				\
275 	for ((ptr) = (info)->rinfo, (idx) = 0;			\
276 	     (idx) < (info)->nr_rings;				\
277 	     (idx)++, (ptr) = (void *)(ptr) + (info)->rinfo_size)
278 
279 static inline struct blkfront_ring_info *
280 get_rinfo(const struct blkfront_info *info, unsigned int i)
281 {
282 	BUG_ON(i >= info->nr_rings);
283 	return (void *)info->rinfo + i * info->rinfo_size;
284 }
285 
286 static int get_id_from_freelist(struct blkfront_ring_info *rinfo)
287 {
288 	unsigned long free = rinfo->shadow_free;
289 
290 	BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info));
291 	rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id;
292 	rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
293 	return free;
294 }
295 
296 static int add_id_to_freelist(struct blkfront_ring_info *rinfo,
297 			      unsigned long id)
298 {
299 	if (rinfo->shadow[id].req.u.rw.id != id)
300 		return -EINVAL;
301 	if (rinfo->shadow[id].request == NULL)
302 		return -EINVAL;
303 	rinfo->shadow[id].req.u.rw.id  = rinfo->shadow_free;
304 	rinfo->shadow[id].request = NULL;
305 	rinfo->shadow_free = id;
306 	return 0;
307 }
308 
309 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)
310 {
311 	struct blkfront_info *info = rinfo->dev_info;
312 	struct page *granted_page;
313 	struct grant *gnt_list_entry, *n;
314 	int i = 0;
315 
316 	while (i < num) {
317 		gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
318 		if (!gnt_list_entry)
319 			goto out_of_memory;
320 
321 		if (info->bounce) {
322 			granted_page = alloc_page(GFP_NOIO | __GFP_ZERO);
323 			if (!granted_page) {
324 				kfree(gnt_list_entry);
325 				goto out_of_memory;
326 			}
327 			gnt_list_entry->page = granted_page;
328 		}
329 
330 		gnt_list_entry->gref = INVALID_GRANT_REF;
331 		list_add(&gnt_list_entry->node, &rinfo->grants);
332 		i++;
333 	}
334 
335 	return 0;
336 
337 out_of_memory:
338 	list_for_each_entry_safe(gnt_list_entry, n,
339 	                         &rinfo->grants, node) {
340 		list_del(&gnt_list_entry->node);
341 		if (info->bounce)
342 			__free_page(gnt_list_entry->page);
343 		kfree(gnt_list_entry);
344 		i--;
345 	}
346 	BUG_ON(i != 0);
347 	return -ENOMEM;
348 }
349 
350 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo)
351 {
352 	struct grant *gnt_list_entry;
353 
354 	BUG_ON(list_empty(&rinfo->grants));
355 	gnt_list_entry = list_first_entry(&rinfo->grants, struct grant,
356 					  node);
357 	list_del(&gnt_list_entry->node);
358 
359 	if (gnt_list_entry->gref != INVALID_GRANT_REF)
360 		rinfo->persistent_gnts_c--;
361 
362 	return gnt_list_entry;
363 }
364 
365 static inline void grant_foreign_access(const struct grant *gnt_list_entry,
366 					const struct blkfront_info *info)
367 {
368 	gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref,
369 						 info->xbdev->otherend_id,
370 						 gnt_list_entry->page,
371 						 0);
372 }
373 
374 static struct grant *get_grant(grant_ref_t *gref_head,
375 			       unsigned long gfn,
376 			       struct blkfront_ring_info *rinfo)
377 {
378 	struct grant *gnt_list_entry = get_free_grant(rinfo);
379 	struct blkfront_info *info = rinfo->dev_info;
380 
381 	if (gnt_list_entry->gref != INVALID_GRANT_REF)
382 		return gnt_list_entry;
383 
384 	/* Assign a gref to this page */
385 	gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
386 	BUG_ON(gnt_list_entry->gref == -ENOSPC);
387 	if (info->bounce)
388 		grant_foreign_access(gnt_list_entry, info);
389 	else {
390 		/* Grant access to the GFN passed by the caller */
391 		gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
392 						info->xbdev->otherend_id,
393 						gfn, 0);
394 	}
395 
396 	return gnt_list_entry;
397 }
398 
399 static struct grant *get_indirect_grant(grant_ref_t *gref_head,
400 					struct blkfront_ring_info *rinfo)
401 {
402 	struct grant *gnt_list_entry = get_free_grant(rinfo);
403 	struct blkfront_info *info = rinfo->dev_info;
404 
405 	if (gnt_list_entry->gref != INVALID_GRANT_REF)
406 		return gnt_list_entry;
407 
408 	/* Assign a gref to this page */
409 	gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
410 	BUG_ON(gnt_list_entry->gref == -ENOSPC);
411 	if (!info->bounce) {
412 		struct page *indirect_page;
413 
414 		/* Fetch a pre-allocated page to use for indirect grefs */
415 		BUG_ON(list_empty(&rinfo->indirect_pages));
416 		indirect_page = list_first_entry(&rinfo->indirect_pages,
417 						 struct page, lru);
418 		list_del(&indirect_page->lru);
419 		gnt_list_entry->page = indirect_page;
420 	}
421 	grant_foreign_access(gnt_list_entry, info);
422 
423 	return gnt_list_entry;
424 }
425 
426 static const char *op_name(int op)
427 {
428 	static const char *const names[] = {
429 		[BLKIF_OP_READ] = "read",
430 		[BLKIF_OP_WRITE] = "write",
431 		[BLKIF_OP_WRITE_BARRIER] = "barrier",
432 		[BLKIF_OP_FLUSH_DISKCACHE] = "flush",
433 		[BLKIF_OP_DISCARD] = "discard" };
434 
435 	if (op < 0 || op >= ARRAY_SIZE(names))
436 		return "unknown";
437 
438 	if (!names[op])
439 		return "reserved";
440 
441 	return names[op];
442 }
443 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
444 {
445 	unsigned int end = minor + nr;
446 	int rc;
447 
448 	if (end > nr_minors) {
449 		unsigned long *bitmap, *old;
450 
451 		bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
452 				 GFP_KERNEL);
453 		if (bitmap == NULL)
454 			return -ENOMEM;
455 
456 		spin_lock(&minor_lock);
457 		if (end > nr_minors) {
458 			old = minors;
459 			memcpy(bitmap, minors,
460 			       BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
461 			minors = bitmap;
462 			nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
463 		} else
464 			old = bitmap;
465 		spin_unlock(&minor_lock);
466 		kfree(old);
467 	}
468 
469 	spin_lock(&minor_lock);
470 	if (find_next_bit(minors, end, minor) >= end) {
471 		bitmap_set(minors, minor, nr);
472 		rc = 0;
473 	} else
474 		rc = -EBUSY;
475 	spin_unlock(&minor_lock);
476 
477 	return rc;
478 }
479 
480 static void xlbd_release_minors(unsigned int minor, unsigned int nr)
481 {
482 	unsigned int end = minor + nr;
483 
484 	BUG_ON(end > nr_minors);
485 	spin_lock(&minor_lock);
486 	bitmap_clear(minors,  minor, nr);
487 	spin_unlock(&minor_lock);
488 }
489 
490 static void blkif_restart_queue_callback(void *arg)
491 {
492 	struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg;
493 	schedule_work(&rinfo->work);
494 }
495 
496 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
497 {
498 	/* We don't have real geometry info, but let's at least return
499 	   values consistent with the size of the device */
500 	sector_t nsect = get_capacity(bd->bd_disk);
501 	sector_t cylinders = nsect;
502 
503 	hg->heads = 0xff;
504 	hg->sectors = 0x3f;
505 	sector_div(cylinders, hg->heads * hg->sectors);
506 	hg->cylinders = cylinders;
507 	if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
508 		hg->cylinders = 0xffff;
509 	return 0;
510 }
511 
512 static int blkif_ioctl(struct block_device *bdev, blk_mode_t mode,
513 		       unsigned command, unsigned long argument)
514 {
515 	struct blkfront_info *info = bdev->bd_disk->private_data;
516 	int i;
517 
518 	switch (command) {
519 	case CDROMMULTISESSION:
520 		for (i = 0; i < sizeof(struct cdrom_multisession); i++)
521 			if (put_user(0, (char __user *)(argument + i)))
522 				return -EFAULT;
523 		return 0;
524 	case CDROM_GET_CAPABILITY:
525 		if (!(info->vdisk_info & VDISK_CDROM))
526 			return -EINVAL;
527 		return 0;
528 	default:
529 		return -EINVAL;
530 	}
531 }
532 
533 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo,
534 					    struct request *req,
535 					    struct blkif_request **ring_req)
536 {
537 	unsigned long id;
538 
539 	*ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt);
540 	rinfo->ring.req_prod_pvt++;
541 
542 	id = get_id_from_freelist(rinfo);
543 	rinfo->shadow[id].request = req;
544 	rinfo->shadow[id].status = REQ_PROCESSING;
545 	rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID;
546 
547 	rinfo->shadow[id].req.u.rw.id = id;
548 
549 	return id;
550 }
551 
552 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)
553 {
554 	struct blkfront_info *info = rinfo->dev_info;
555 	struct blkif_request *ring_req, *final_ring_req;
556 	unsigned long id;
557 
558 	/* Fill out a communications ring structure. */
559 	id = blkif_ring_get_request(rinfo, req, &final_ring_req);
560 	ring_req = &rinfo->shadow[id].req;
561 
562 	ring_req->operation = BLKIF_OP_DISCARD;
563 	ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
564 	ring_req->u.discard.id = id;
565 	ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
566 	if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard)
567 		ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
568 	else
569 		ring_req->u.discard.flag = 0;
570 
571 	/* Copy the request to the ring page. */
572 	*final_ring_req = *ring_req;
573 	rinfo->shadow[id].status = REQ_WAITING;
574 
575 	return 0;
576 }
577 
578 struct setup_rw_req {
579 	unsigned int grant_idx;
580 	struct blkif_request_segment *segments;
581 	struct blkfront_ring_info *rinfo;
582 	struct blkif_request *ring_req;
583 	grant_ref_t gref_head;
584 	unsigned int id;
585 	/* Only used when persistent grant is used and it's a write request */
586 	bool need_copy;
587 	unsigned int bvec_off;
588 	char *bvec_data;
589 
590 	bool require_extra_req;
591 	struct blkif_request *extra_ring_req;
592 };
593 
594 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset,
595 				     unsigned int len, void *data)
596 {
597 	struct setup_rw_req *setup = data;
598 	int n, ref;
599 	struct grant *gnt_list_entry;
600 	unsigned int fsect, lsect;
601 	/* Convenient aliases */
602 	unsigned int grant_idx = setup->grant_idx;
603 	struct blkif_request *ring_req = setup->ring_req;
604 	struct blkfront_ring_info *rinfo = setup->rinfo;
605 	/*
606 	 * We always use the shadow of the first request to store the list
607 	 * of grant associated to the block I/O request. This made the
608 	 * completion more easy to handle even if the block I/O request is
609 	 * split.
610 	 */
611 	struct blk_shadow *shadow = &rinfo->shadow[setup->id];
612 
613 	if (unlikely(setup->require_extra_req &&
614 		     grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
615 		/*
616 		 * We are using the second request, setup grant_idx
617 		 * to be the index of the segment array.
618 		 */
619 		grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST;
620 		ring_req = setup->extra_ring_req;
621 	}
622 
623 	if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
624 	    (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) {
625 		if (setup->segments)
626 			kunmap_atomic(setup->segments);
627 
628 		n = grant_idx / GRANTS_PER_INDIRECT_FRAME;
629 		gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo);
630 		shadow->indirect_grants[n] = gnt_list_entry;
631 		setup->segments = kmap_atomic(gnt_list_entry->page);
632 		ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
633 	}
634 
635 	gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo);
636 	ref = gnt_list_entry->gref;
637 	/*
638 	 * All the grants are stored in the shadow of the first
639 	 * request. Therefore we have to use the global index.
640 	 */
641 	shadow->grants_used[setup->grant_idx] = gnt_list_entry;
642 
643 	if (setup->need_copy) {
644 		void *shared_data;
645 
646 		shared_data = kmap_atomic(gnt_list_entry->page);
647 		/*
648 		 * this does not wipe data stored outside the
649 		 * range sg->offset..sg->offset+sg->length.
650 		 * Therefore, blkback *could* see data from
651 		 * previous requests. This is OK as long as
652 		 * persistent grants are shared with just one
653 		 * domain. It may need refactoring if this
654 		 * changes
655 		 */
656 		memcpy(shared_data + offset,
657 		       setup->bvec_data + setup->bvec_off,
658 		       len);
659 
660 		kunmap_atomic(shared_data);
661 		setup->bvec_off += len;
662 	}
663 
664 	fsect = offset >> 9;
665 	lsect = fsect + (len >> 9) - 1;
666 	if (ring_req->operation != BLKIF_OP_INDIRECT) {
667 		ring_req->u.rw.seg[grant_idx] =
668 			(struct blkif_request_segment) {
669 				.gref       = ref,
670 				.first_sect = fsect,
671 				.last_sect  = lsect };
672 	} else {
673 		setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] =
674 			(struct blkif_request_segment) {
675 				.gref       = ref,
676 				.first_sect = fsect,
677 				.last_sect  = lsect };
678 	}
679 
680 	(setup->grant_idx)++;
681 }
682 
683 static void blkif_setup_extra_req(struct blkif_request *first,
684 				  struct blkif_request *second)
685 {
686 	uint16_t nr_segments = first->u.rw.nr_segments;
687 
688 	/*
689 	 * The second request is only present when the first request uses
690 	 * all its segments. It's always the continuity of the first one.
691 	 */
692 	first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
693 
694 	second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST;
695 	second->u.rw.sector_number = first->u.rw.sector_number +
696 		(BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512;
697 
698 	second->u.rw.handle = first->u.rw.handle;
699 	second->operation = first->operation;
700 }
701 
702 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)
703 {
704 	struct blkfront_info *info = rinfo->dev_info;
705 	struct blkif_request *ring_req, *extra_ring_req = NULL;
706 	struct blkif_request *final_ring_req, *final_extra_ring_req = NULL;
707 	unsigned long id, extra_id = NO_ASSOCIATED_ID;
708 	bool require_extra_req = false;
709 	int i;
710 	struct setup_rw_req setup = {
711 		.grant_idx = 0,
712 		.segments = NULL,
713 		.rinfo = rinfo,
714 		.need_copy = rq_data_dir(req) && info->bounce,
715 	};
716 
717 	/*
718 	 * Used to store if we are able to queue the request by just using
719 	 * existing persistent grants, or if we have to get new grants,
720 	 * as there are not sufficiently many free.
721 	 */
722 	bool new_persistent_gnts = false;
723 	struct scatterlist *sg;
724 	int num_sg, max_grefs, num_grant;
725 
726 	max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG;
727 	if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
728 		/*
729 		 * If we are using indirect segments we need to account
730 		 * for the indirect grefs used in the request.
731 		 */
732 		max_grefs += INDIRECT_GREFS(max_grefs);
733 
734 	/* Check if we have enough persistent grants to allocate a requests */
735 	if (rinfo->persistent_gnts_c < max_grefs) {
736 		new_persistent_gnts = true;
737 
738 		if (gnttab_alloc_grant_references(
739 		    max_grefs - rinfo->persistent_gnts_c,
740 		    &setup.gref_head) < 0) {
741 			gnttab_request_free_callback(
742 				&rinfo->callback,
743 				blkif_restart_queue_callback,
744 				rinfo,
745 				max_grefs - rinfo->persistent_gnts_c);
746 			return 1;
747 		}
748 	}
749 
750 	/* Fill out a communications ring structure. */
751 	id = blkif_ring_get_request(rinfo, req, &final_ring_req);
752 	ring_req = &rinfo->shadow[id].req;
753 
754 	num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg);
755 	num_grant = 0;
756 	/* Calculate the number of grant used */
757 	for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i)
758 	       num_grant += gnttab_count_grant(sg->offset, sg->length);
759 
760 	require_extra_req = info->max_indirect_segments == 0 &&
761 		num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST;
762 	BUG_ON(!HAS_EXTRA_REQ && require_extra_req);
763 
764 	rinfo->shadow[id].num_sg = num_sg;
765 	if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST &&
766 	    likely(!require_extra_req)) {
767 		/*
768 		 * The indirect operation can only be a BLKIF_OP_READ or
769 		 * BLKIF_OP_WRITE
770 		 */
771 		BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA);
772 		ring_req->operation = BLKIF_OP_INDIRECT;
773 		ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
774 			BLKIF_OP_WRITE : BLKIF_OP_READ;
775 		ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
776 		ring_req->u.indirect.handle = info->handle;
777 		ring_req->u.indirect.nr_segments = num_grant;
778 	} else {
779 		ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
780 		ring_req->u.rw.handle = info->handle;
781 		ring_req->operation = rq_data_dir(req) ?
782 			BLKIF_OP_WRITE : BLKIF_OP_READ;
783 		if (req_op(req) == REQ_OP_FLUSH ||
784 		    (req_op(req) == REQ_OP_WRITE && (req->cmd_flags & REQ_FUA))) {
785 			/*
786 			 * Ideally we can do an unordered flush-to-disk.
787 			 * In case the backend onlysupports barriers, use that.
788 			 * A barrier request a superset of FUA, so we can
789 			 * implement it the same way.  (It's also a FLUSH+FUA,
790 			 * since it is guaranteed ordered WRT previous writes.)
791 			 */
792 			if (info->feature_flush && info->feature_fua)
793 				ring_req->operation =
794 					BLKIF_OP_WRITE_BARRIER;
795 			else if (info->feature_flush)
796 				ring_req->operation =
797 					BLKIF_OP_FLUSH_DISKCACHE;
798 			else
799 				ring_req->operation = 0;
800 		}
801 		ring_req->u.rw.nr_segments = num_grant;
802 		if (unlikely(require_extra_req)) {
803 			extra_id = blkif_ring_get_request(rinfo, req,
804 							  &final_extra_ring_req);
805 			extra_ring_req = &rinfo->shadow[extra_id].req;
806 
807 			/*
808 			 * Only the first request contains the scatter-gather
809 			 * list.
810 			 */
811 			rinfo->shadow[extra_id].num_sg = 0;
812 
813 			blkif_setup_extra_req(ring_req, extra_ring_req);
814 
815 			/* Link the 2 requests together */
816 			rinfo->shadow[extra_id].associated_id = id;
817 			rinfo->shadow[id].associated_id = extra_id;
818 		}
819 	}
820 
821 	setup.ring_req = ring_req;
822 	setup.id = id;
823 
824 	setup.require_extra_req = require_extra_req;
825 	if (unlikely(require_extra_req))
826 		setup.extra_ring_req = extra_ring_req;
827 
828 	for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) {
829 		BUG_ON(sg->offset + sg->length > PAGE_SIZE);
830 
831 		if (setup.need_copy) {
832 			setup.bvec_off = sg->offset;
833 			setup.bvec_data = kmap_atomic(sg_page(sg));
834 		}
835 
836 		gnttab_foreach_grant_in_range(sg_page(sg),
837 					      sg->offset,
838 					      sg->length,
839 					      blkif_setup_rw_req_grant,
840 					      &setup);
841 
842 		if (setup.need_copy)
843 			kunmap_atomic(setup.bvec_data);
844 	}
845 	if (setup.segments)
846 		kunmap_atomic(setup.segments);
847 
848 	/* Copy request(s) to the ring page. */
849 	*final_ring_req = *ring_req;
850 	rinfo->shadow[id].status = REQ_WAITING;
851 	if (unlikely(require_extra_req)) {
852 		*final_extra_ring_req = *extra_ring_req;
853 		rinfo->shadow[extra_id].status = REQ_WAITING;
854 	}
855 
856 	if (new_persistent_gnts)
857 		gnttab_free_grant_references(setup.gref_head);
858 
859 	return 0;
860 }
861 
862 /*
863  * Generate a Xen blkfront IO request from a blk layer request.  Reads
864  * and writes are handled as expected.
865  *
866  * @req: a request struct
867  */
868 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)
869 {
870 	if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED))
871 		return 1;
872 
873 	if (unlikely(req_op(req) == REQ_OP_DISCARD ||
874 		     req_op(req) == REQ_OP_SECURE_ERASE))
875 		return blkif_queue_discard_req(req, rinfo);
876 	else
877 		return blkif_queue_rw_req(req, rinfo);
878 }
879 
880 static inline void flush_requests(struct blkfront_ring_info *rinfo)
881 {
882 	int notify;
883 
884 	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify);
885 
886 	if (notify)
887 		notify_remote_via_irq(rinfo->irq);
888 }
889 
890 static inline bool blkif_request_flush_invalid(struct request *req,
891 					       struct blkfront_info *info)
892 {
893 	return (blk_rq_is_passthrough(req) ||
894 		((req_op(req) == REQ_OP_FLUSH) &&
895 		 !info->feature_flush) ||
896 		((req->cmd_flags & REQ_FUA) &&
897 		 !info->feature_fua));
898 }
899 
900 static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx,
901 			  const struct blk_mq_queue_data *qd)
902 {
903 	unsigned long flags;
904 	int qid = hctx->queue_num;
905 	struct blkfront_info *info = hctx->queue->queuedata;
906 	struct blkfront_ring_info *rinfo = NULL;
907 
908 	rinfo = get_rinfo(info, qid);
909 	blk_mq_start_request(qd->rq);
910 	spin_lock_irqsave(&rinfo->ring_lock, flags);
911 	if (RING_FULL(&rinfo->ring))
912 		goto out_busy;
913 
914 	if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info))
915 		goto out_err;
916 
917 	if (blkif_queue_request(qd->rq, rinfo))
918 		goto out_busy;
919 
920 	flush_requests(rinfo);
921 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
922 	return BLK_STS_OK;
923 
924 out_err:
925 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
926 	return BLK_STS_IOERR;
927 
928 out_busy:
929 	blk_mq_stop_hw_queue(hctx);
930 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
931 	return BLK_STS_DEV_RESOURCE;
932 }
933 
934 static void blkif_complete_rq(struct request *rq)
935 {
936 	blk_mq_end_request(rq, blkif_req(rq)->error);
937 }
938 
939 static const struct blk_mq_ops blkfront_mq_ops = {
940 	.queue_rq = blkif_queue_rq,
941 	.complete = blkif_complete_rq,
942 };
943 
944 static void blkif_set_queue_limits(const struct blkfront_info *info,
945 		struct queue_limits *lim)
946 {
947 	unsigned int segments = info->max_indirect_segments ? :
948 				BLKIF_MAX_SEGMENTS_PER_REQUEST;
949 
950 	if (info->feature_discard) {
951 		lim->max_hw_discard_sectors = UINT_MAX;
952 		if (info->discard_granularity)
953 			lim->discard_granularity = info->discard_granularity;
954 		lim->discard_alignment = info->discard_alignment;
955 		if (info->feature_secdiscard)
956 			lim->max_secure_erase_sectors = UINT_MAX;
957 	}
958 
959 	/* Hard sector size and max sectors impersonate the equiv. hardware. */
960 	lim->logical_block_size = info->sector_size;
961 	lim->physical_block_size = info->physical_sector_size;
962 	lim->max_hw_sectors = (segments * XEN_PAGE_SIZE) / 512;
963 
964 	/* Each segment in a request is up to an aligned page in size. */
965 	lim->seg_boundary_mask = PAGE_SIZE - 1;
966 	lim->max_segment_size = PAGE_SIZE;
967 
968 	/* Ensure a merged request will fit in a single I/O ring slot. */
969 	lim->max_segments = segments / GRANTS_PER_PSEG;
970 
971 	/* Make sure buffer addresses are sector-aligned. */
972 	lim->dma_alignment = 511;
973 }
974 
975 static const char *flush_info(struct blkfront_info *info)
976 {
977 	if (info->feature_flush && info->feature_fua)
978 		return "barrier: enabled;";
979 	else if (info->feature_flush)
980 		return "flush diskcache: enabled;";
981 	else
982 		return "barrier or flush: disabled;";
983 }
984 
985 static void xlvbd_flush(struct blkfront_info *info)
986 {
987 	blk_queue_write_cache(info->rq, info->feature_flush ? true : false,
988 			      info->feature_fua ? true : false);
989 	pr_info("blkfront: %s: %s %s %s %s %s %s %s\n",
990 		info->gd->disk_name, flush_info(info),
991 		"persistent grants:", info->feature_persistent ?
992 		"enabled;" : "disabled;", "indirect descriptors:",
993 		info->max_indirect_segments ? "enabled;" : "disabled;",
994 		"bounce buffer:", info->bounce ? "enabled" : "disabled;");
995 }
996 
997 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
998 {
999 	int major;
1000 	major = BLKIF_MAJOR(vdevice);
1001 	*minor = BLKIF_MINOR(vdevice);
1002 	switch (major) {
1003 		case XEN_IDE0_MAJOR:
1004 			*offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
1005 			*minor = ((*minor / 64) * PARTS_PER_DISK) +
1006 				EMULATED_HD_DISK_MINOR_OFFSET;
1007 			break;
1008 		case XEN_IDE1_MAJOR:
1009 			*offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
1010 			*minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
1011 				EMULATED_HD_DISK_MINOR_OFFSET;
1012 			break;
1013 		case XEN_SCSI_DISK0_MAJOR:
1014 			*offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
1015 			*minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
1016 			break;
1017 		case XEN_SCSI_DISK1_MAJOR:
1018 		case XEN_SCSI_DISK2_MAJOR:
1019 		case XEN_SCSI_DISK3_MAJOR:
1020 		case XEN_SCSI_DISK4_MAJOR:
1021 		case XEN_SCSI_DISK5_MAJOR:
1022 		case XEN_SCSI_DISK6_MAJOR:
1023 		case XEN_SCSI_DISK7_MAJOR:
1024 			*offset = (*minor / PARTS_PER_DISK) +
1025 				((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
1026 				EMULATED_SD_DISK_NAME_OFFSET;
1027 			*minor = *minor +
1028 				((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
1029 				EMULATED_SD_DISK_MINOR_OFFSET;
1030 			break;
1031 		case XEN_SCSI_DISK8_MAJOR:
1032 		case XEN_SCSI_DISK9_MAJOR:
1033 		case XEN_SCSI_DISK10_MAJOR:
1034 		case XEN_SCSI_DISK11_MAJOR:
1035 		case XEN_SCSI_DISK12_MAJOR:
1036 		case XEN_SCSI_DISK13_MAJOR:
1037 		case XEN_SCSI_DISK14_MAJOR:
1038 		case XEN_SCSI_DISK15_MAJOR:
1039 			*offset = (*minor / PARTS_PER_DISK) +
1040 				((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
1041 				EMULATED_SD_DISK_NAME_OFFSET;
1042 			*minor = *minor +
1043 				((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
1044 				EMULATED_SD_DISK_MINOR_OFFSET;
1045 			break;
1046 		case XENVBD_MAJOR:
1047 			*offset = *minor / PARTS_PER_DISK;
1048 			break;
1049 		default:
1050 			printk(KERN_WARNING "blkfront: your disk configuration is "
1051 					"incorrect, please use an xvd device instead\n");
1052 			return -ENODEV;
1053 	}
1054 	return 0;
1055 }
1056 
1057 static char *encode_disk_name(char *ptr, unsigned int n)
1058 {
1059 	if (n >= 26)
1060 		ptr = encode_disk_name(ptr, n / 26 - 1);
1061 	*ptr = 'a' + n % 26;
1062 	return ptr + 1;
1063 }
1064 
1065 static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
1066 		struct blkfront_info *info, u16 sector_size,
1067 		unsigned int physical_sector_size)
1068 {
1069 	struct queue_limits lim = {};
1070 	struct gendisk *gd;
1071 	int nr_minors = 1;
1072 	int err;
1073 	unsigned int offset;
1074 	int minor;
1075 	int nr_parts;
1076 	char *ptr;
1077 
1078 	BUG_ON(info->gd != NULL);
1079 	BUG_ON(info->rq != NULL);
1080 
1081 	if ((info->vdevice>>EXT_SHIFT) > 1) {
1082 		/* this is above the extended range; something is wrong */
1083 		printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
1084 		return -ENODEV;
1085 	}
1086 
1087 	if (!VDEV_IS_EXTENDED(info->vdevice)) {
1088 		err = xen_translate_vdev(info->vdevice, &minor, &offset);
1089 		if (err)
1090 			return err;
1091 		nr_parts = PARTS_PER_DISK;
1092 	} else {
1093 		minor = BLKIF_MINOR_EXT(info->vdevice);
1094 		nr_parts = PARTS_PER_EXT_DISK;
1095 		offset = minor / nr_parts;
1096 		if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
1097 			printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
1098 					"emulated IDE disks,\n\t choose an xvd device name"
1099 					"from xvde on\n", info->vdevice);
1100 	}
1101 	if (minor >> MINORBITS) {
1102 		pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
1103 			info->vdevice, minor);
1104 		return -ENODEV;
1105 	}
1106 
1107 	if ((minor % nr_parts) == 0)
1108 		nr_minors = nr_parts;
1109 
1110 	err = xlbd_reserve_minors(minor, nr_minors);
1111 	if (err)
1112 		return err;
1113 
1114 	memset(&info->tag_set, 0, sizeof(info->tag_set));
1115 	info->tag_set.ops = &blkfront_mq_ops;
1116 	info->tag_set.nr_hw_queues = info->nr_rings;
1117 	if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) {
1118 		/*
1119 		 * When indirect descriptior is not supported, the I/O request
1120 		 * will be split between multiple request in the ring.
1121 		 * To avoid problems when sending the request, divide by
1122 		 * 2 the depth of the queue.
1123 		 */
1124 		info->tag_set.queue_depth =  BLK_RING_SIZE(info) / 2;
1125 	} else
1126 		info->tag_set.queue_depth = BLK_RING_SIZE(info);
1127 	info->tag_set.numa_node = NUMA_NO_NODE;
1128 	info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1129 	info->tag_set.cmd_size = sizeof(struct blkif_req);
1130 	info->tag_set.driver_data = info;
1131 
1132 	err = blk_mq_alloc_tag_set(&info->tag_set);
1133 	if (err)
1134 		goto out_release_minors;
1135 
1136 	blkif_set_queue_limits(info, &lim);
1137 	gd = blk_mq_alloc_disk(&info->tag_set, &lim, info);
1138 	if (IS_ERR(gd)) {
1139 		err = PTR_ERR(gd);
1140 		goto out_free_tag_set;
1141 	}
1142 	blk_queue_flag_set(QUEUE_FLAG_VIRT, gd->queue);
1143 
1144 	strcpy(gd->disk_name, DEV_NAME);
1145 	ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
1146 	BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
1147 	if (nr_minors > 1)
1148 		*ptr = 0;
1149 	else
1150 		snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
1151 			 "%d", minor & (nr_parts - 1));
1152 
1153 	gd->major = XENVBD_MAJOR;
1154 	gd->first_minor = minor;
1155 	gd->minors = nr_minors;
1156 	gd->fops = &xlvbd_block_fops;
1157 	gd->private_data = info;
1158 	set_capacity(gd, capacity);
1159 
1160 	info->rq = gd->queue;
1161 	info->gd = gd;
1162 	info->sector_size = sector_size;
1163 	info->physical_sector_size = physical_sector_size;
1164 
1165 	xlvbd_flush(info);
1166 
1167 	if (info->vdisk_info & VDISK_READONLY)
1168 		set_disk_ro(gd, 1);
1169 	if (info->vdisk_info & VDISK_REMOVABLE)
1170 		gd->flags |= GENHD_FL_REMOVABLE;
1171 
1172 	return 0;
1173 
1174 out_free_tag_set:
1175 	blk_mq_free_tag_set(&info->tag_set);
1176 out_release_minors:
1177 	xlbd_release_minors(minor, nr_minors);
1178 	return err;
1179 }
1180 
1181 /* Already hold rinfo->ring_lock. */
1182 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)
1183 {
1184 	if (!RING_FULL(&rinfo->ring))
1185 		blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true);
1186 }
1187 
1188 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo)
1189 {
1190 	unsigned long flags;
1191 
1192 	spin_lock_irqsave(&rinfo->ring_lock, flags);
1193 	kick_pending_request_queues_locked(rinfo);
1194 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1195 }
1196 
1197 static void blkif_restart_queue(struct work_struct *work)
1198 {
1199 	struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work);
1200 
1201 	if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED)
1202 		kick_pending_request_queues(rinfo);
1203 }
1204 
1205 static void blkif_free_ring(struct blkfront_ring_info *rinfo)
1206 {
1207 	struct grant *persistent_gnt, *n;
1208 	struct blkfront_info *info = rinfo->dev_info;
1209 	int i, j, segs;
1210 
1211 	/*
1212 	 * Remove indirect pages, this only happens when using indirect
1213 	 * descriptors but not persistent grants
1214 	 */
1215 	if (!list_empty(&rinfo->indirect_pages)) {
1216 		struct page *indirect_page, *n;
1217 
1218 		BUG_ON(info->bounce);
1219 		list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
1220 			list_del(&indirect_page->lru);
1221 			__free_page(indirect_page);
1222 		}
1223 	}
1224 
1225 	/* Remove all persistent grants. */
1226 	if (!list_empty(&rinfo->grants)) {
1227 		list_for_each_entry_safe(persistent_gnt, n,
1228 					 &rinfo->grants, node) {
1229 			list_del(&persistent_gnt->node);
1230 			if (persistent_gnt->gref != INVALID_GRANT_REF) {
1231 				gnttab_end_foreign_access(persistent_gnt->gref,
1232 							  NULL);
1233 				rinfo->persistent_gnts_c--;
1234 			}
1235 			if (info->bounce)
1236 				__free_page(persistent_gnt->page);
1237 			kfree(persistent_gnt);
1238 		}
1239 	}
1240 	BUG_ON(rinfo->persistent_gnts_c != 0);
1241 
1242 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
1243 		/*
1244 		 * Clear persistent grants present in requests already
1245 		 * on the shared ring
1246 		 */
1247 		if (!rinfo->shadow[i].request)
1248 			goto free_shadow;
1249 
1250 		segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1251 		       rinfo->shadow[i].req.u.indirect.nr_segments :
1252 		       rinfo->shadow[i].req.u.rw.nr_segments;
1253 		for (j = 0; j < segs; j++) {
1254 			persistent_gnt = rinfo->shadow[i].grants_used[j];
1255 			gnttab_end_foreign_access(persistent_gnt->gref, NULL);
1256 			if (info->bounce)
1257 				__free_page(persistent_gnt->page);
1258 			kfree(persistent_gnt);
1259 		}
1260 
1261 		if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1262 			/*
1263 			 * If this is not an indirect operation don't try to
1264 			 * free indirect segments
1265 			 */
1266 			goto free_shadow;
1267 
1268 		for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1269 			persistent_gnt = rinfo->shadow[i].indirect_grants[j];
1270 			gnttab_end_foreign_access(persistent_gnt->gref, NULL);
1271 			__free_page(persistent_gnt->page);
1272 			kfree(persistent_gnt);
1273 		}
1274 
1275 free_shadow:
1276 		kvfree(rinfo->shadow[i].grants_used);
1277 		rinfo->shadow[i].grants_used = NULL;
1278 		kvfree(rinfo->shadow[i].indirect_grants);
1279 		rinfo->shadow[i].indirect_grants = NULL;
1280 		kvfree(rinfo->shadow[i].sg);
1281 		rinfo->shadow[i].sg = NULL;
1282 	}
1283 
1284 	/* No more gnttab callback work. */
1285 	gnttab_cancel_free_callback(&rinfo->callback);
1286 
1287 	/* Flush gnttab callback work. Must be done with no locks held. */
1288 	flush_work(&rinfo->work);
1289 
1290 	/* Free resources associated with old device channel. */
1291 	xenbus_teardown_ring((void **)&rinfo->ring.sring, info->nr_ring_pages,
1292 			     rinfo->ring_ref);
1293 
1294 	if (rinfo->irq)
1295 		unbind_from_irqhandler(rinfo->irq, rinfo);
1296 	rinfo->evtchn = rinfo->irq = 0;
1297 }
1298 
1299 static void blkif_free(struct blkfront_info *info, int suspend)
1300 {
1301 	unsigned int i;
1302 	struct blkfront_ring_info *rinfo;
1303 
1304 	/* Prevent new requests being issued until we fix things up. */
1305 	info->connected = suspend ?
1306 		BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
1307 	/* No more blkif_request(). */
1308 	if (info->rq)
1309 		blk_mq_stop_hw_queues(info->rq);
1310 
1311 	for_each_rinfo(info, rinfo, i)
1312 		blkif_free_ring(rinfo);
1313 
1314 	kvfree(info->rinfo);
1315 	info->rinfo = NULL;
1316 	info->nr_rings = 0;
1317 }
1318 
1319 struct copy_from_grant {
1320 	const struct blk_shadow *s;
1321 	unsigned int grant_idx;
1322 	unsigned int bvec_offset;
1323 	char *bvec_data;
1324 };
1325 
1326 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset,
1327 				  unsigned int len, void *data)
1328 {
1329 	struct copy_from_grant *info = data;
1330 	char *shared_data;
1331 	/* Convenient aliases */
1332 	const struct blk_shadow *s = info->s;
1333 
1334 	shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page);
1335 
1336 	memcpy(info->bvec_data + info->bvec_offset,
1337 	       shared_data + offset, len);
1338 
1339 	info->bvec_offset += len;
1340 	info->grant_idx++;
1341 
1342 	kunmap_atomic(shared_data);
1343 }
1344 
1345 static enum blk_req_status blkif_rsp_to_req_status(int rsp)
1346 {
1347 	switch (rsp)
1348 	{
1349 	case BLKIF_RSP_OKAY:
1350 		return REQ_DONE;
1351 	case BLKIF_RSP_EOPNOTSUPP:
1352 		return REQ_EOPNOTSUPP;
1353 	case BLKIF_RSP_ERROR:
1354 	default:
1355 		return REQ_ERROR;
1356 	}
1357 }
1358 
1359 /*
1360  * Get the final status of the block request based on two ring response
1361  */
1362 static int blkif_get_final_status(enum blk_req_status s1,
1363 				  enum blk_req_status s2)
1364 {
1365 	BUG_ON(s1 < REQ_DONE);
1366 	BUG_ON(s2 < REQ_DONE);
1367 
1368 	if (s1 == REQ_ERROR || s2 == REQ_ERROR)
1369 		return BLKIF_RSP_ERROR;
1370 	else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP)
1371 		return BLKIF_RSP_EOPNOTSUPP;
1372 	return BLKIF_RSP_OKAY;
1373 }
1374 
1375 /*
1376  * Return values:
1377  *  1 response processed.
1378  *  0 missing further responses.
1379  * -1 error while processing.
1380  */
1381 static int blkif_completion(unsigned long *id,
1382 			    struct blkfront_ring_info *rinfo,
1383 			    struct blkif_response *bret)
1384 {
1385 	int i = 0;
1386 	struct scatterlist *sg;
1387 	int num_sg, num_grant;
1388 	struct blkfront_info *info = rinfo->dev_info;
1389 	struct blk_shadow *s = &rinfo->shadow[*id];
1390 	struct copy_from_grant data = {
1391 		.grant_idx = 0,
1392 	};
1393 
1394 	num_grant = s->req.operation == BLKIF_OP_INDIRECT ?
1395 		s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1396 
1397 	/* The I/O request may be split in two. */
1398 	if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) {
1399 		struct blk_shadow *s2 = &rinfo->shadow[s->associated_id];
1400 
1401 		/* Keep the status of the current response in shadow. */
1402 		s->status = blkif_rsp_to_req_status(bret->status);
1403 
1404 		/* Wait the second response if not yet here. */
1405 		if (s2->status < REQ_DONE)
1406 			return 0;
1407 
1408 		bret->status = blkif_get_final_status(s->status,
1409 						      s2->status);
1410 
1411 		/*
1412 		 * All the grants is stored in the first shadow in order
1413 		 * to make the completion code simpler.
1414 		 */
1415 		num_grant += s2->req.u.rw.nr_segments;
1416 
1417 		/*
1418 		 * The two responses may not come in order. Only the
1419 		 * first request will store the scatter-gather list.
1420 		 */
1421 		if (s2->num_sg != 0) {
1422 			/* Update "id" with the ID of the first response. */
1423 			*id = s->associated_id;
1424 			s = s2;
1425 		}
1426 
1427 		/*
1428 		 * We don't need anymore the second request, so recycling
1429 		 * it now.
1430 		 */
1431 		if (add_id_to_freelist(rinfo, s->associated_id))
1432 			WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n",
1433 			     info->gd->disk_name, s->associated_id);
1434 	}
1435 
1436 	data.s = s;
1437 	num_sg = s->num_sg;
1438 
1439 	if (bret->operation == BLKIF_OP_READ && info->bounce) {
1440 		for_each_sg(s->sg, sg, num_sg, i) {
1441 			BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1442 
1443 			data.bvec_offset = sg->offset;
1444 			data.bvec_data = kmap_atomic(sg_page(sg));
1445 
1446 			gnttab_foreach_grant_in_range(sg_page(sg),
1447 						      sg->offset,
1448 						      sg->length,
1449 						      blkif_copy_from_grant,
1450 						      &data);
1451 
1452 			kunmap_atomic(data.bvec_data);
1453 		}
1454 	}
1455 	/* Add the persistent grant into the list of free grants */
1456 	for (i = 0; i < num_grant; i++) {
1457 		if (!gnttab_try_end_foreign_access(s->grants_used[i]->gref)) {
1458 			/*
1459 			 * If the grant is still mapped by the backend (the
1460 			 * backend has chosen to make this grant persistent)
1461 			 * we add it at the head of the list, so it will be
1462 			 * reused first.
1463 			 */
1464 			if (!info->feature_persistent) {
1465 				pr_alert("backed has not unmapped grant: %u\n",
1466 					 s->grants_used[i]->gref);
1467 				return -1;
1468 			}
1469 			list_add(&s->grants_used[i]->node, &rinfo->grants);
1470 			rinfo->persistent_gnts_c++;
1471 		} else {
1472 			/*
1473 			 * If the grant is not mapped by the backend we add it
1474 			 * to the tail of the list, so it will not be picked
1475 			 * again unless we run out of persistent grants.
1476 			 */
1477 			s->grants_used[i]->gref = INVALID_GRANT_REF;
1478 			list_add_tail(&s->grants_used[i]->node, &rinfo->grants);
1479 		}
1480 	}
1481 	if (s->req.operation == BLKIF_OP_INDIRECT) {
1482 		for (i = 0; i < INDIRECT_GREFS(num_grant); i++) {
1483 			if (!gnttab_try_end_foreign_access(s->indirect_grants[i]->gref)) {
1484 				if (!info->feature_persistent) {
1485 					pr_alert("backed has not unmapped grant: %u\n",
1486 						 s->indirect_grants[i]->gref);
1487 					return -1;
1488 				}
1489 				list_add(&s->indirect_grants[i]->node, &rinfo->grants);
1490 				rinfo->persistent_gnts_c++;
1491 			} else {
1492 				struct page *indirect_page;
1493 
1494 				/*
1495 				 * Add the used indirect page back to the list of
1496 				 * available pages for indirect grefs.
1497 				 */
1498 				if (!info->bounce) {
1499 					indirect_page = s->indirect_grants[i]->page;
1500 					list_add(&indirect_page->lru, &rinfo->indirect_pages);
1501 				}
1502 				s->indirect_grants[i]->gref = INVALID_GRANT_REF;
1503 				list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants);
1504 			}
1505 		}
1506 	}
1507 
1508 	return 1;
1509 }
1510 
1511 static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1512 {
1513 	struct request *req;
1514 	struct blkif_response bret;
1515 	RING_IDX i, rp;
1516 	unsigned long flags;
1517 	struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id;
1518 	struct blkfront_info *info = rinfo->dev_info;
1519 	unsigned int eoiflag = XEN_EOI_FLAG_SPURIOUS;
1520 
1521 	if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) {
1522 		xen_irq_lateeoi(irq, XEN_EOI_FLAG_SPURIOUS);
1523 		return IRQ_HANDLED;
1524 	}
1525 
1526 	spin_lock_irqsave(&rinfo->ring_lock, flags);
1527  again:
1528 	rp = READ_ONCE(rinfo->ring.sring->rsp_prod);
1529 	virt_rmb(); /* Ensure we see queued responses up to 'rp'. */
1530 	if (RING_RESPONSE_PROD_OVERFLOW(&rinfo->ring, rp)) {
1531 		pr_alert("%s: illegal number of responses %u\n",
1532 			 info->gd->disk_name, rp - rinfo->ring.rsp_cons);
1533 		goto err;
1534 	}
1535 
1536 	for (i = rinfo->ring.rsp_cons; i != rp; i++) {
1537 		unsigned long id;
1538 		unsigned int op;
1539 
1540 		eoiflag = 0;
1541 
1542 		RING_COPY_RESPONSE(&rinfo->ring, i, &bret);
1543 		id = bret.id;
1544 
1545 		/*
1546 		 * The backend has messed up and given us an id that we would
1547 		 * never have given to it (we stamp it up to BLK_RING_SIZE -
1548 		 * look in get_id_from_freelist.
1549 		 */
1550 		if (id >= BLK_RING_SIZE(info)) {
1551 			pr_alert("%s: response has incorrect id (%ld)\n",
1552 				 info->gd->disk_name, id);
1553 			goto err;
1554 		}
1555 		if (rinfo->shadow[id].status != REQ_WAITING) {
1556 			pr_alert("%s: response references no pending request\n",
1557 				 info->gd->disk_name);
1558 			goto err;
1559 		}
1560 
1561 		rinfo->shadow[id].status = REQ_PROCESSING;
1562 		req  = rinfo->shadow[id].request;
1563 
1564 		op = rinfo->shadow[id].req.operation;
1565 		if (op == BLKIF_OP_INDIRECT)
1566 			op = rinfo->shadow[id].req.u.indirect.indirect_op;
1567 		if (bret.operation != op) {
1568 			pr_alert("%s: response has wrong operation (%u instead of %u)\n",
1569 				 info->gd->disk_name, bret.operation, op);
1570 			goto err;
1571 		}
1572 
1573 		if (bret.operation != BLKIF_OP_DISCARD) {
1574 			int ret;
1575 
1576 			/*
1577 			 * We may need to wait for an extra response if the
1578 			 * I/O request is split in 2
1579 			 */
1580 			ret = blkif_completion(&id, rinfo, &bret);
1581 			if (!ret)
1582 				continue;
1583 			if (unlikely(ret < 0))
1584 				goto err;
1585 		}
1586 
1587 		if (add_id_to_freelist(rinfo, id)) {
1588 			WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1589 			     info->gd->disk_name, op_name(bret.operation), id);
1590 			continue;
1591 		}
1592 
1593 		if (bret.status == BLKIF_RSP_OKAY)
1594 			blkif_req(req)->error = BLK_STS_OK;
1595 		else
1596 			blkif_req(req)->error = BLK_STS_IOERR;
1597 
1598 		switch (bret.operation) {
1599 		case BLKIF_OP_DISCARD:
1600 			if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) {
1601 				struct request_queue *rq = info->rq;
1602 
1603 				pr_warn_ratelimited("blkfront: %s: %s op failed\n",
1604 					   info->gd->disk_name, op_name(bret.operation));
1605 				blkif_req(req)->error = BLK_STS_NOTSUPP;
1606 				info->feature_discard = 0;
1607 				info->feature_secdiscard = 0;
1608 				blk_queue_max_discard_sectors(rq, 0);
1609 				blk_queue_max_secure_erase_sectors(rq, 0);
1610 			}
1611 			break;
1612 		case BLKIF_OP_FLUSH_DISKCACHE:
1613 		case BLKIF_OP_WRITE_BARRIER:
1614 			if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) {
1615 				pr_warn_ratelimited("blkfront: %s: %s op failed\n",
1616 				       info->gd->disk_name, op_name(bret.operation));
1617 				blkif_req(req)->error = BLK_STS_NOTSUPP;
1618 			}
1619 			if (unlikely(bret.status == BLKIF_RSP_ERROR &&
1620 				     rinfo->shadow[id].req.u.rw.nr_segments == 0)) {
1621 				pr_warn_ratelimited("blkfront: %s: empty %s op failed\n",
1622 				       info->gd->disk_name, op_name(bret.operation));
1623 				blkif_req(req)->error = BLK_STS_NOTSUPP;
1624 			}
1625 			if (unlikely(blkif_req(req)->error)) {
1626 				if (blkif_req(req)->error == BLK_STS_NOTSUPP)
1627 					blkif_req(req)->error = BLK_STS_OK;
1628 				info->feature_fua = 0;
1629 				info->feature_flush = 0;
1630 				xlvbd_flush(info);
1631 			}
1632 			fallthrough;
1633 		case BLKIF_OP_READ:
1634 		case BLKIF_OP_WRITE:
1635 			if (unlikely(bret.status != BLKIF_RSP_OKAY))
1636 				dev_dbg_ratelimited(&info->xbdev->dev,
1637 					"Bad return from blkdev data request: %#x\n",
1638 					bret.status);
1639 
1640 			break;
1641 		default:
1642 			BUG();
1643 		}
1644 
1645 		if (likely(!blk_should_fake_timeout(req->q)))
1646 			blk_mq_complete_request(req);
1647 	}
1648 
1649 	rinfo->ring.rsp_cons = i;
1650 
1651 	if (i != rinfo->ring.req_prod_pvt) {
1652 		int more_to_do;
1653 		RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do);
1654 		if (more_to_do)
1655 			goto again;
1656 	} else
1657 		rinfo->ring.sring->rsp_event = i + 1;
1658 
1659 	kick_pending_request_queues_locked(rinfo);
1660 
1661 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1662 
1663 	xen_irq_lateeoi(irq, eoiflag);
1664 
1665 	return IRQ_HANDLED;
1666 
1667  err:
1668 	info->connected = BLKIF_STATE_ERROR;
1669 
1670 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1671 
1672 	/* No EOI in order to avoid further interrupts. */
1673 
1674 	pr_alert("%s disabled for further use\n", info->gd->disk_name);
1675 	return IRQ_HANDLED;
1676 }
1677 
1678 
1679 static int setup_blkring(struct xenbus_device *dev,
1680 			 struct blkfront_ring_info *rinfo)
1681 {
1682 	struct blkif_sring *sring;
1683 	int err;
1684 	struct blkfront_info *info = rinfo->dev_info;
1685 	unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE;
1686 
1687 	err = xenbus_setup_ring(dev, GFP_NOIO, (void **)&sring,
1688 				info->nr_ring_pages, rinfo->ring_ref);
1689 	if (err)
1690 		goto fail;
1691 
1692 	XEN_FRONT_RING_INIT(&rinfo->ring, sring, ring_size);
1693 
1694 	err = xenbus_alloc_evtchn(dev, &rinfo->evtchn);
1695 	if (err)
1696 		goto fail;
1697 
1698 	err = bind_evtchn_to_irqhandler_lateeoi(rinfo->evtchn, blkif_interrupt,
1699 						0, "blkif", rinfo);
1700 	if (err <= 0) {
1701 		xenbus_dev_fatal(dev, err,
1702 				 "bind_evtchn_to_irqhandler failed");
1703 		goto fail;
1704 	}
1705 	rinfo->irq = err;
1706 
1707 	return 0;
1708 fail:
1709 	blkif_free(info, 0);
1710 	return err;
1711 }
1712 
1713 /*
1714  * Write out per-ring/queue nodes including ring-ref and event-channel, and each
1715  * ring buffer may have multi pages depending on ->nr_ring_pages.
1716  */
1717 static int write_per_ring_nodes(struct xenbus_transaction xbt,
1718 				struct blkfront_ring_info *rinfo, const char *dir)
1719 {
1720 	int err;
1721 	unsigned int i;
1722 	const char *message = NULL;
1723 	struct blkfront_info *info = rinfo->dev_info;
1724 
1725 	if (info->nr_ring_pages == 1) {
1726 		err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]);
1727 		if (err) {
1728 			message = "writing ring-ref";
1729 			goto abort_transaction;
1730 		}
1731 	} else {
1732 		for (i = 0; i < info->nr_ring_pages; i++) {
1733 			char ring_ref_name[RINGREF_NAME_LEN];
1734 
1735 			snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1736 			err = xenbus_printf(xbt, dir, ring_ref_name,
1737 					    "%u", rinfo->ring_ref[i]);
1738 			if (err) {
1739 				message = "writing ring-ref";
1740 				goto abort_transaction;
1741 			}
1742 		}
1743 	}
1744 
1745 	err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn);
1746 	if (err) {
1747 		message = "writing event-channel";
1748 		goto abort_transaction;
1749 	}
1750 
1751 	return 0;
1752 
1753 abort_transaction:
1754 	xenbus_transaction_end(xbt, 1);
1755 	if (message)
1756 		xenbus_dev_fatal(info->xbdev, err, "%s", message);
1757 
1758 	return err;
1759 }
1760 
1761 /* Enable the persistent grants feature. */
1762 static bool feature_persistent = true;
1763 module_param(feature_persistent, bool, 0644);
1764 MODULE_PARM_DESC(feature_persistent,
1765 		"Enables the persistent grants feature");
1766 
1767 /* Common code used when first setting up, and when resuming. */
1768 static int talk_to_blkback(struct xenbus_device *dev,
1769 			   struct blkfront_info *info)
1770 {
1771 	const char *message = NULL;
1772 	struct xenbus_transaction xbt;
1773 	int err;
1774 	unsigned int i, max_page_order;
1775 	unsigned int ring_page_order;
1776 	struct blkfront_ring_info *rinfo;
1777 
1778 	if (!info)
1779 		return -ENODEV;
1780 
1781 	/* Check if backend is trusted. */
1782 	info->bounce = !xen_blkif_trusted ||
1783 		       !xenbus_read_unsigned(dev->nodename, "trusted", 1);
1784 
1785 	max_page_order = xenbus_read_unsigned(info->xbdev->otherend,
1786 					      "max-ring-page-order", 0);
1787 	ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1788 	info->nr_ring_pages = 1 << ring_page_order;
1789 
1790 	err = negotiate_mq(info);
1791 	if (err)
1792 		goto destroy_blkring;
1793 
1794 	for_each_rinfo(info, rinfo, i) {
1795 		/* Create shared ring, alloc event channel. */
1796 		err = setup_blkring(dev, rinfo);
1797 		if (err)
1798 			goto destroy_blkring;
1799 	}
1800 
1801 again:
1802 	err = xenbus_transaction_start(&xbt);
1803 	if (err) {
1804 		xenbus_dev_fatal(dev, err, "starting transaction");
1805 		goto destroy_blkring;
1806 	}
1807 
1808 	if (info->nr_ring_pages > 1) {
1809 		err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u",
1810 				    ring_page_order);
1811 		if (err) {
1812 			message = "writing ring-page-order";
1813 			goto abort_transaction;
1814 		}
1815 	}
1816 
1817 	/* We already got the number of queues/rings in _probe */
1818 	if (info->nr_rings == 1) {
1819 		err = write_per_ring_nodes(xbt, info->rinfo, dev->nodename);
1820 		if (err)
1821 			goto destroy_blkring;
1822 	} else {
1823 		char *path;
1824 		size_t pathsize;
1825 
1826 		err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u",
1827 				    info->nr_rings);
1828 		if (err) {
1829 			message = "writing multi-queue-num-queues";
1830 			goto abort_transaction;
1831 		}
1832 
1833 		pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN;
1834 		path = kmalloc(pathsize, GFP_KERNEL);
1835 		if (!path) {
1836 			err = -ENOMEM;
1837 			message = "ENOMEM while writing ring references";
1838 			goto abort_transaction;
1839 		}
1840 
1841 		for_each_rinfo(info, rinfo, i) {
1842 			memset(path, 0, pathsize);
1843 			snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i);
1844 			err = write_per_ring_nodes(xbt, rinfo, path);
1845 			if (err) {
1846 				kfree(path);
1847 				goto destroy_blkring;
1848 			}
1849 		}
1850 		kfree(path);
1851 	}
1852 	err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1853 			    XEN_IO_PROTO_ABI_NATIVE);
1854 	if (err) {
1855 		message = "writing protocol";
1856 		goto abort_transaction;
1857 	}
1858 	info->feature_persistent_parm = feature_persistent;
1859 	err = xenbus_printf(xbt, dev->nodename, "feature-persistent", "%u",
1860 			info->feature_persistent_parm);
1861 	if (err)
1862 		dev_warn(&dev->dev,
1863 			 "writing persistent grants feature to xenbus");
1864 
1865 	err = xenbus_transaction_end(xbt, 0);
1866 	if (err) {
1867 		if (err == -EAGAIN)
1868 			goto again;
1869 		xenbus_dev_fatal(dev, err, "completing transaction");
1870 		goto destroy_blkring;
1871 	}
1872 
1873 	for_each_rinfo(info, rinfo, i) {
1874 		unsigned int j;
1875 
1876 		for (j = 0; j < BLK_RING_SIZE(info); j++)
1877 			rinfo->shadow[j].req.u.rw.id = j + 1;
1878 		rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1879 	}
1880 	xenbus_switch_state(dev, XenbusStateInitialised);
1881 
1882 	return 0;
1883 
1884  abort_transaction:
1885 	xenbus_transaction_end(xbt, 1);
1886 	if (message)
1887 		xenbus_dev_fatal(dev, err, "%s", message);
1888  destroy_blkring:
1889 	blkif_free(info, 0);
1890 	return err;
1891 }
1892 
1893 static int negotiate_mq(struct blkfront_info *info)
1894 {
1895 	unsigned int backend_max_queues;
1896 	unsigned int i;
1897 	struct blkfront_ring_info *rinfo;
1898 
1899 	BUG_ON(info->nr_rings);
1900 
1901 	/* Check if backend supports multiple queues. */
1902 	backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend,
1903 						  "multi-queue-max-queues", 1);
1904 	info->nr_rings = min(backend_max_queues, xen_blkif_max_queues);
1905 	/* We need at least one ring. */
1906 	if (!info->nr_rings)
1907 		info->nr_rings = 1;
1908 
1909 	info->rinfo_size = struct_size(info->rinfo, shadow,
1910 				       BLK_RING_SIZE(info));
1911 	info->rinfo = kvcalloc(info->nr_rings, info->rinfo_size, GFP_KERNEL);
1912 	if (!info->rinfo) {
1913 		xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure");
1914 		info->nr_rings = 0;
1915 		return -ENOMEM;
1916 	}
1917 
1918 	for_each_rinfo(info, rinfo, i) {
1919 		INIT_LIST_HEAD(&rinfo->indirect_pages);
1920 		INIT_LIST_HEAD(&rinfo->grants);
1921 		rinfo->dev_info = info;
1922 		INIT_WORK(&rinfo->work, blkif_restart_queue);
1923 		spin_lock_init(&rinfo->ring_lock);
1924 	}
1925 	return 0;
1926 }
1927 
1928 /*
1929  * Entry point to this code when a new device is created.  Allocate the basic
1930  * structures and the ring buffer for communication with the backend, and
1931  * inform the backend of the appropriate details for those.  Switch to
1932  * Initialised state.
1933  */
1934 static int blkfront_probe(struct xenbus_device *dev,
1935 			  const struct xenbus_device_id *id)
1936 {
1937 	int err, vdevice;
1938 	struct blkfront_info *info;
1939 
1940 	/* FIXME: Use dynamic device id if this is not set. */
1941 	err = xenbus_scanf(XBT_NIL, dev->nodename,
1942 			   "virtual-device", "%i", &vdevice);
1943 	if (err != 1) {
1944 		/* go looking in the extended area instead */
1945 		err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
1946 				   "%i", &vdevice);
1947 		if (err != 1) {
1948 			xenbus_dev_fatal(dev, err, "reading virtual-device");
1949 			return err;
1950 		}
1951 	}
1952 
1953 	if (xen_hvm_domain()) {
1954 		char *type;
1955 		int len;
1956 		/* no unplug has been done: do not hook devices != xen vbds */
1957 		if (xen_has_pv_and_legacy_disk_devices()) {
1958 			int major;
1959 
1960 			if (!VDEV_IS_EXTENDED(vdevice))
1961 				major = BLKIF_MAJOR(vdevice);
1962 			else
1963 				major = XENVBD_MAJOR;
1964 
1965 			if (major != XENVBD_MAJOR) {
1966 				printk(KERN_INFO
1967 						"%s: HVM does not support vbd %d as xen block device\n",
1968 						__func__, vdevice);
1969 				return -ENODEV;
1970 			}
1971 		}
1972 		/* do not create a PV cdrom device if we are an HVM guest */
1973 		type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
1974 		if (IS_ERR(type))
1975 			return -ENODEV;
1976 		if (strncmp(type, "cdrom", 5) == 0) {
1977 			kfree(type);
1978 			return -ENODEV;
1979 		}
1980 		kfree(type);
1981 	}
1982 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1983 	if (!info) {
1984 		xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
1985 		return -ENOMEM;
1986 	}
1987 
1988 	info->xbdev = dev;
1989 
1990 	mutex_init(&info->mutex);
1991 	info->vdevice = vdevice;
1992 	info->connected = BLKIF_STATE_DISCONNECTED;
1993 
1994 	/* Front end dir is a number, which is used as the id. */
1995 	info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
1996 	dev_set_drvdata(&dev->dev, info);
1997 
1998 	mutex_lock(&blkfront_mutex);
1999 	list_add(&info->info_list, &info_list);
2000 	mutex_unlock(&blkfront_mutex);
2001 
2002 	return 0;
2003 }
2004 
2005 static int blkif_recover(struct blkfront_info *info)
2006 {
2007 	struct queue_limits lim;
2008 	unsigned int r_index;
2009 	struct request *req, *n;
2010 	int rc;
2011 	struct bio *bio;
2012 	struct blkfront_ring_info *rinfo;
2013 
2014 	lim = queue_limits_start_update(info->rq);
2015 	blkfront_gather_backend_features(info);
2016 	blkif_set_queue_limits(info, &lim);
2017 	rc = queue_limits_commit_update(info->rq, &lim);
2018 	if (rc)
2019 		return rc;
2020 
2021 	for_each_rinfo(info, rinfo, r_index) {
2022 		rc = blkfront_setup_indirect(rinfo);
2023 		if (rc)
2024 			return rc;
2025 	}
2026 	xenbus_switch_state(info->xbdev, XenbusStateConnected);
2027 
2028 	/* Now safe for us to use the shared ring */
2029 	info->connected = BLKIF_STATE_CONNECTED;
2030 
2031 	for_each_rinfo(info, rinfo, r_index) {
2032 		/* Kick any other new requests queued since we resumed */
2033 		kick_pending_request_queues(rinfo);
2034 	}
2035 
2036 	list_for_each_entry_safe(req, n, &info->requests, queuelist) {
2037 		/* Requeue pending requests (flush or discard) */
2038 		list_del_init(&req->queuelist);
2039 		BUG_ON(req->nr_phys_segments >
2040 		       (info->max_indirect_segments ? :
2041 			BLKIF_MAX_SEGMENTS_PER_REQUEST));
2042 		blk_mq_requeue_request(req, false);
2043 	}
2044 	blk_mq_start_stopped_hw_queues(info->rq, true);
2045 	blk_mq_kick_requeue_list(info->rq);
2046 
2047 	while ((bio = bio_list_pop(&info->bio_list)) != NULL) {
2048 		/* Traverse the list of pending bios and re-queue them */
2049 		submit_bio(bio);
2050 	}
2051 
2052 	return 0;
2053 }
2054 
2055 /*
2056  * We are reconnecting to the backend, due to a suspend/resume, or a backend
2057  * driver restart.  We tear down our blkif structure and recreate it, but
2058  * leave the device-layer structures intact so that this is transparent to the
2059  * rest of the kernel.
2060  */
2061 static int blkfront_resume(struct xenbus_device *dev)
2062 {
2063 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2064 	int err = 0;
2065 	unsigned int i, j;
2066 	struct blkfront_ring_info *rinfo;
2067 
2068 	dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
2069 
2070 	bio_list_init(&info->bio_list);
2071 	INIT_LIST_HEAD(&info->requests);
2072 	for_each_rinfo(info, rinfo, i) {
2073 		struct bio_list merge_bio;
2074 		struct blk_shadow *shadow = rinfo->shadow;
2075 
2076 		for (j = 0; j < BLK_RING_SIZE(info); j++) {
2077 			/* Not in use? */
2078 			if (!shadow[j].request)
2079 				continue;
2080 
2081 			/*
2082 			 * Get the bios in the request so we can re-queue them.
2083 			 */
2084 			if (req_op(shadow[j].request) == REQ_OP_FLUSH ||
2085 			    req_op(shadow[j].request) == REQ_OP_DISCARD ||
2086 			    req_op(shadow[j].request) == REQ_OP_SECURE_ERASE ||
2087 			    shadow[j].request->cmd_flags & REQ_FUA) {
2088 				/*
2089 				 * Flush operations don't contain bios, so
2090 				 * we need to requeue the whole request
2091 				 *
2092 				 * XXX: but this doesn't make any sense for a
2093 				 * write with the FUA flag set..
2094 				 */
2095 				list_add(&shadow[j].request->queuelist, &info->requests);
2096 				continue;
2097 			}
2098 			merge_bio.head = shadow[j].request->bio;
2099 			merge_bio.tail = shadow[j].request->biotail;
2100 			bio_list_merge(&info->bio_list, &merge_bio);
2101 			shadow[j].request->bio = NULL;
2102 			blk_mq_end_request(shadow[j].request, BLK_STS_OK);
2103 		}
2104 	}
2105 
2106 	blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
2107 
2108 	err = talk_to_blkback(dev, info);
2109 	if (!err)
2110 		blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings);
2111 
2112 	/*
2113 	 * We have to wait for the backend to switch to
2114 	 * connected state, since we want to read which
2115 	 * features it supports.
2116 	 */
2117 
2118 	return err;
2119 }
2120 
2121 static void blkfront_closing(struct blkfront_info *info)
2122 {
2123 	struct xenbus_device *xbdev = info->xbdev;
2124 	struct blkfront_ring_info *rinfo;
2125 	unsigned int i;
2126 
2127 	if (xbdev->state == XenbusStateClosing)
2128 		return;
2129 
2130 	/* No more blkif_request(). */
2131 	if (info->rq && info->gd) {
2132 		blk_mq_stop_hw_queues(info->rq);
2133 		blk_mark_disk_dead(info->gd);
2134 	}
2135 
2136 	for_each_rinfo(info, rinfo, i) {
2137 		/* No more gnttab callback work. */
2138 		gnttab_cancel_free_callback(&rinfo->callback);
2139 
2140 		/* Flush gnttab callback work. Must be done with no locks held. */
2141 		flush_work(&rinfo->work);
2142 	}
2143 
2144 	xenbus_frontend_closed(xbdev);
2145 }
2146 
2147 static void blkfront_setup_discard(struct blkfront_info *info)
2148 {
2149 	info->feature_discard = 1;
2150 	info->discard_granularity = xenbus_read_unsigned(info->xbdev->otherend,
2151 							 "discard-granularity",
2152 							 0);
2153 	info->discard_alignment = xenbus_read_unsigned(info->xbdev->otherend,
2154 						       "discard-alignment", 0);
2155 	info->feature_secdiscard =
2156 		!!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure",
2157 				       0);
2158 }
2159 
2160 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo)
2161 {
2162 	unsigned int psegs, grants, memflags;
2163 	int err, i;
2164 	struct blkfront_info *info = rinfo->dev_info;
2165 
2166 	memflags = memalloc_noio_save();
2167 
2168 	if (info->max_indirect_segments == 0) {
2169 		if (!HAS_EXTRA_REQ)
2170 			grants = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2171 		else {
2172 			/*
2173 			 * When an extra req is required, the maximum
2174 			 * grants supported is related to the size of the
2175 			 * Linux block segment.
2176 			 */
2177 			grants = GRANTS_PER_PSEG;
2178 		}
2179 	}
2180 	else
2181 		grants = info->max_indirect_segments;
2182 	psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG);
2183 
2184 	err = fill_grant_buffer(rinfo,
2185 				(grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info));
2186 	if (err)
2187 		goto out_of_memory;
2188 
2189 	if (!info->bounce && info->max_indirect_segments) {
2190 		/*
2191 		 * We are using indirect descriptors but don't have a bounce
2192 		 * buffer, we need to allocate a set of pages that can be
2193 		 * used for mapping indirect grefs
2194 		 */
2195 		int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info);
2196 
2197 		BUG_ON(!list_empty(&rinfo->indirect_pages));
2198 		for (i = 0; i < num; i++) {
2199 			struct page *indirect_page = alloc_page(GFP_KERNEL |
2200 								__GFP_ZERO);
2201 			if (!indirect_page)
2202 				goto out_of_memory;
2203 			list_add(&indirect_page->lru, &rinfo->indirect_pages);
2204 		}
2205 	}
2206 
2207 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
2208 		rinfo->shadow[i].grants_used =
2209 			kvcalloc(grants,
2210 				 sizeof(rinfo->shadow[i].grants_used[0]),
2211 				 GFP_KERNEL);
2212 		rinfo->shadow[i].sg = kvcalloc(psegs,
2213 					       sizeof(rinfo->shadow[i].sg[0]),
2214 					       GFP_KERNEL);
2215 		if (info->max_indirect_segments)
2216 			rinfo->shadow[i].indirect_grants =
2217 				kvcalloc(INDIRECT_GREFS(grants),
2218 					 sizeof(rinfo->shadow[i].indirect_grants[0]),
2219 					 GFP_KERNEL);
2220 		if ((rinfo->shadow[i].grants_used == NULL) ||
2221 			(rinfo->shadow[i].sg == NULL) ||
2222 		     (info->max_indirect_segments &&
2223 		     (rinfo->shadow[i].indirect_grants == NULL)))
2224 			goto out_of_memory;
2225 		sg_init_table(rinfo->shadow[i].sg, psegs);
2226 	}
2227 
2228 	memalloc_noio_restore(memflags);
2229 
2230 	return 0;
2231 
2232 out_of_memory:
2233 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
2234 		kvfree(rinfo->shadow[i].grants_used);
2235 		rinfo->shadow[i].grants_used = NULL;
2236 		kvfree(rinfo->shadow[i].sg);
2237 		rinfo->shadow[i].sg = NULL;
2238 		kvfree(rinfo->shadow[i].indirect_grants);
2239 		rinfo->shadow[i].indirect_grants = NULL;
2240 	}
2241 	if (!list_empty(&rinfo->indirect_pages)) {
2242 		struct page *indirect_page, *n;
2243 		list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
2244 			list_del(&indirect_page->lru);
2245 			__free_page(indirect_page);
2246 		}
2247 	}
2248 
2249 	memalloc_noio_restore(memflags);
2250 
2251 	return -ENOMEM;
2252 }
2253 
2254 /*
2255  * Gather all backend feature-*
2256  */
2257 static void blkfront_gather_backend_features(struct blkfront_info *info)
2258 {
2259 	unsigned int indirect_segments;
2260 
2261 	info->feature_flush = 0;
2262 	info->feature_fua = 0;
2263 
2264 	/*
2265 	 * If there's no "feature-barrier" defined, then it means
2266 	 * we're dealing with a very old backend which writes
2267 	 * synchronously; nothing to do.
2268 	 *
2269 	 * If there are barriers, then we use flush.
2270 	 */
2271 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) {
2272 		info->feature_flush = 1;
2273 		info->feature_fua = 1;
2274 	}
2275 
2276 	/*
2277 	 * And if there is "feature-flush-cache" use that above
2278 	 * barriers.
2279 	 */
2280 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache",
2281 				 0)) {
2282 		info->feature_flush = 1;
2283 		info->feature_fua = 0;
2284 	}
2285 
2286 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0))
2287 		blkfront_setup_discard(info);
2288 
2289 	if (info->feature_persistent_parm)
2290 		info->feature_persistent =
2291 			!!xenbus_read_unsigned(info->xbdev->otherend,
2292 					       "feature-persistent", 0);
2293 	if (info->feature_persistent)
2294 		info->bounce = true;
2295 
2296 	indirect_segments = xenbus_read_unsigned(info->xbdev->otherend,
2297 					"feature-max-indirect-segments", 0);
2298 	if (indirect_segments > xen_blkif_max_segments)
2299 		indirect_segments = xen_blkif_max_segments;
2300 	if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST)
2301 		indirect_segments = 0;
2302 	info->max_indirect_segments = indirect_segments;
2303 
2304 	if (info->feature_persistent) {
2305 		mutex_lock(&blkfront_mutex);
2306 		schedule_delayed_work(&blkfront_work, HZ * 10);
2307 		mutex_unlock(&blkfront_mutex);
2308 	}
2309 }
2310 
2311 /*
2312  * Invoked when the backend is finally 'ready' (and has told produced
2313  * the details about the physical device - #sectors, size, etc).
2314  */
2315 static void blkfront_connect(struct blkfront_info *info)
2316 {
2317 	unsigned long long sectors;
2318 	unsigned long sector_size;
2319 	unsigned int physical_sector_size;
2320 	int err, i;
2321 	struct blkfront_ring_info *rinfo;
2322 
2323 	switch (info->connected) {
2324 	case BLKIF_STATE_CONNECTED:
2325 		/*
2326 		 * Potentially, the back-end may be signalling
2327 		 * a capacity change; update the capacity.
2328 		 */
2329 		err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2330 				   "sectors", "%Lu", &sectors);
2331 		if (XENBUS_EXIST_ERR(err))
2332 			return;
2333 		printk(KERN_INFO "Setting capacity to %Lu\n",
2334 		       sectors);
2335 		set_capacity_and_notify(info->gd, sectors);
2336 
2337 		return;
2338 	case BLKIF_STATE_SUSPENDED:
2339 		/*
2340 		 * If we are recovering from suspension, we need to wait
2341 		 * for the backend to announce it's features before
2342 		 * reconnecting, at least we need to know if the backend
2343 		 * supports indirect descriptors, and how many.
2344 		 */
2345 		blkif_recover(info);
2346 		return;
2347 
2348 	default:
2349 		break;
2350 	}
2351 
2352 	dev_dbg(&info->xbdev->dev, "%s:%s.\n",
2353 		__func__, info->xbdev->otherend);
2354 
2355 	err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2356 			    "sectors", "%llu", &sectors,
2357 			    "info", "%u", &info->vdisk_info,
2358 			    "sector-size", "%lu", &sector_size,
2359 			    NULL);
2360 	if (err) {
2361 		xenbus_dev_fatal(info->xbdev, err,
2362 				 "reading backend fields at %s",
2363 				 info->xbdev->otherend);
2364 		return;
2365 	}
2366 
2367 	/*
2368 	 * physical-sector-size is a newer field, so old backends may not
2369 	 * provide this. Assume physical sector size to be the same as
2370 	 * sector_size in that case.
2371 	 */
2372 	physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend,
2373 						    "physical-sector-size",
2374 						    sector_size);
2375 	blkfront_gather_backend_features(info);
2376 	for_each_rinfo(info, rinfo, i) {
2377 		err = blkfront_setup_indirect(rinfo);
2378 		if (err) {
2379 			xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
2380 					 info->xbdev->otherend);
2381 			blkif_free(info, 0);
2382 			break;
2383 		}
2384 	}
2385 
2386 	err = xlvbd_alloc_gendisk(sectors, info, sector_size,
2387 				  physical_sector_size);
2388 	if (err) {
2389 		xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
2390 				 info->xbdev->otherend);
2391 		goto fail;
2392 	}
2393 
2394 	xenbus_switch_state(info->xbdev, XenbusStateConnected);
2395 
2396 	/* Kick pending requests. */
2397 	info->connected = BLKIF_STATE_CONNECTED;
2398 	for_each_rinfo(info, rinfo, i)
2399 		kick_pending_request_queues(rinfo);
2400 
2401 	err = device_add_disk(&info->xbdev->dev, info->gd, NULL);
2402 	if (err) {
2403 		put_disk(info->gd);
2404 		blk_mq_free_tag_set(&info->tag_set);
2405 		info->rq = NULL;
2406 		goto fail;
2407 	}
2408 
2409 	info->is_ready = 1;
2410 	return;
2411 
2412 fail:
2413 	blkif_free(info, 0);
2414 	return;
2415 }
2416 
2417 /*
2418  * Callback received when the backend's state changes.
2419  */
2420 static void blkback_changed(struct xenbus_device *dev,
2421 			    enum xenbus_state backend_state)
2422 {
2423 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2424 
2425 	dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
2426 
2427 	switch (backend_state) {
2428 	case XenbusStateInitWait:
2429 		if (dev->state != XenbusStateInitialising)
2430 			break;
2431 		if (talk_to_blkback(dev, info))
2432 			break;
2433 		break;
2434 	case XenbusStateInitialising:
2435 	case XenbusStateInitialised:
2436 	case XenbusStateReconfiguring:
2437 	case XenbusStateReconfigured:
2438 	case XenbusStateUnknown:
2439 		break;
2440 
2441 	case XenbusStateConnected:
2442 		/*
2443 		 * talk_to_blkback sets state to XenbusStateInitialised
2444 		 * and blkfront_connect sets it to XenbusStateConnected
2445 		 * (if connection went OK).
2446 		 *
2447 		 * If the backend (or toolstack) decides to poke at backend
2448 		 * state (and re-trigger the watch by setting the state repeatedly
2449 		 * to XenbusStateConnected (4)) we need to deal with this.
2450 		 * This is allowed as this is used to communicate to the guest
2451 		 * that the size of disk has changed!
2452 		 */
2453 		if ((dev->state != XenbusStateInitialised) &&
2454 		    (dev->state != XenbusStateConnected)) {
2455 			if (talk_to_blkback(dev, info))
2456 				break;
2457 		}
2458 
2459 		blkfront_connect(info);
2460 		break;
2461 
2462 	case XenbusStateClosed:
2463 		if (dev->state == XenbusStateClosed)
2464 			break;
2465 		fallthrough;
2466 	case XenbusStateClosing:
2467 		blkfront_closing(info);
2468 		break;
2469 	}
2470 }
2471 
2472 static void blkfront_remove(struct xenbus_device *xbdev)
2473 {
2474 	struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
2475 
2476 	dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
2477 
2478 	if (info->gd)
2479 		del_gendisk(info->gd);
2480 
2481 	mutex_lock(&blkfront_mutex);
2482 	list_del(&info->info_list);
2483 	mutex_unlock(&blkfront_mutex);
2484 
2485 	blkif_free(info, 0);
2486 	if (info->gd) {
2487 		xlbd_release_minors(info->gd->first_minor, info->gd->minors);
2488 		put_disk(info->gd);
2489 		blk_mq_free_tag_set(&info->tag_set);
2490 	}
2491 
2492 	kfree(info);
2493 }
2494 
2495 static int blkfront_is_ready(struct xenbus_device *dev)
2496 {
2497 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2498 
2499 	return info->is_ready && info->xbdev;
2500 }
2501 
2502 static const struct block_device_operations xlvbd_block_fops =
2503 {
2504 	.owner = THIS_MODULE,
2505 	.getgeo = blkif_getgeo,
2506 	.ioctl = blkif_ioctl,
2507 	.compat_ioctl = blkdev_compat_ptr_ioctl,
2508 };
2509 
2510 
2511 static const struct xenbus_device_id blkfront_ids[] = {
2512 	{ "vbd" },
2513 	{ "" }
2514 };
2515 
2516 static struct xenbus_driver blkfront_driver = {
2517 	.ids  = blkfront_ids,
2518 	.probe = blkfront_probe,
2519 	.remove = blkfront_remove,
2520 	.resume = blkfront_resume,
2521 	.otherend_changed = blkback_changed,
2522 	.is_ready = blkfront_is_ready,
2523 };
2524 
2525 static void purge_persistent_grants(struct blkfront_info *info)
2526 {
2527 	unsigned int i;
2528 	unsigned long flags;
2529 	struct blkfront_ring_info *rinfo;
2530 
2531 	for_each_rinfo(info, rinfo, i) {
2532 		struct grant *gnt_list_entry, *tmp;
2533 		LIST_HEAD(grants);
2534 
2535 		spin_lock_irqsave(&rinfo->ring_lock, flags);
2536 
2537 		if (rinfo->persistent_gnts_c == 0) {
2538 			spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2539 			continue;
2540 		}
2541 
2542 		list_for_each_entry_safe(gnt_list_entry, tmp, &rinfo->grants,
2543 					 node) {
2544 			if (gnt_list_entry->gref == INVALID_GRANT_REF ||
2545 			    !gnttab_try_end_foreign_access(gnt_list_entry->gref))
2546 				continue;
2547 
2548 			list_del(&gnt_list_entry->node);
2549 			rinfo->persistent_gnts_c--;
2550 			gnt_list_entry->gref = INVALID_GRANT_REF;
2551 			list_add_tail(&gnt_list_entry->node, &grants);
2552 		}
2553 
2554 		list_splice_tail(&grants, &rinfo->grants);
2555 
2556 		spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2557 	}
2558 }
2559 
2560 static void blkfront_delay_work(struct work_struct *work)
2561 {
2562 	struct blkfront_info *info;
2563 	bool need_schedule_work = false;
2564 
2565 	/*
2566 	 * Note that when using bounce buffers but not persistent grants
2567 	 * there's no need to run blkfront_delay_work because grants are
2568 	 * revoked in blkif_completion or else an error is reported and the
2569 	 * connection is closed.
2570 	 */
2571 
2572 	mutex_lock(&blkfront_mutex);
2573 
2574 	list_for_each_entry(info, &info_list, info_list) {
2575 		if (info->feature_persistent) {
2576 			need_schedule_work = true;
2577 			mutex_lock(&info->mutex);
2578 			purge_persistent_grants(info);
2579 			mutex_unlock(&info->mutex);
2580 		}
2581 	}
2582 
2583 	if (need_schedule_work)
2584 		schedule_delayed_work(&blkfront_work, HZ * 10);
2585 
2586 	mutex_unlock(&blkfront_mutex);
2587 }
2588 
2589 static int __init xlblk_init(void)
2590 {
2591 	int ret;
2592 	int nr_cpus = num_online_cpus();
2593 
2594 	if (!xen_domain())
2595 		return -ENODEV;
2596 
2597 	if (!xen_has_pv_disk_devices())
2598 		return -ENODEV;
2599 
2600 	if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2601 		pr_warn("xen_blk: can't get major %d with name %s\n",
2602 			XENVBD_MAJOR, DEV_NAME);
2603 		return -ENODEV;
2604 	}
2605 
2606 	if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST)
2607 		xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2608 
2609 	if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) {
2610 		pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2611 			xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER);
2612 		xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER;
2613 	}
2614 
2615 	if (xen_blkif_max_queues > nr_cpus) {
2616 		pr_info("Invalid max_queues (%d), will use default max: %d.\n",
2617 			xen_blkif_max_queues, nr_cpus);
2618 		xen_blkif_max_queues = nr_cpus;
2619 	}
2620 
2621 	INIT_DELAYED_WORK(&blkfront_work, blkfront_delay_work);
2622 
2623 	ret = xenbus_register_frontend(&blkfront_driver);
2624 	if (ret) {
2625 		unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2626 		return ret;
2627 	}
2628 
2629 	return 0;
2630 }
2631 module_init(xlblk_init);
2632 
2633 
2634 static void __exit xlblk_exit(void)
2635 {
2636 	cancel_delayed_work_sync(&blkfront_work);
2637 
2638 	xenbus_unregister_driver(&blkfront_driver);
2639 	unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2640 	kfree(minors);
2641 }
2642 module_exit(xlblk_exit);
2643 
2644 MODULE_DESCRIPTION("Xen virtual block device frontend");
2645 MODULE_LICENSE("GPL");
2646 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2647 MODULE_ALIAS("xen:vbd");
2648 MODULE_ALIAS("xenblk");
2649