1 /* 2 * blkfront.c 3 * 4 * XenLinux virtual block device driver. 5 * 6 * Copyright (c) 2003-2004, Keir Fraser & Steve Hand 7 * Modifications by Mark A. Williamson are (c) Intel Research Cambridge 8 * Copyright (c) 2004, Christian Limpach 9 * Copyright (c) 2004, Andrew Warfield 10 * Copyright (c) 2005, Christopher Clark 11 * Copyright (c) 2005, XenSource Ltd 12 * 13 * This program is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU General Public License version 2 15 * as published by the Free Software Foundation; or, when distributed 16 * separately from the Linux kernel or incorporated into other 17 * software packages, subject to the following license: 18 * 19 * Permission is hereby granted, free of charge, to any person obtaining a copy 20 * of this source file (the "Software"), to deal in the Software without 21 * restriction, including without limitation the rights to use, copy, modify, 22 * merge, publish, distribute, sublicense, and/or sell copies of the Software, 23 * and to permit persons to whom the Software is furnished to do so, subject to 24 * the following conditions: 25 * 26 * The above copyright notice and this permission notice shall be included in 27 * all copies or substantial portions of the Software. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 30 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 32 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 33 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 34 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 35 * IN THE SOFTWARE. 36 */ 37 38 #include <linux/interrupt.h> 39 #include <linux/blkdev.h> 40 #include <linux/blk-mq.h> 41 #include <linux/hdreg.h> 42 #include <linux/cdrom.h> 43 #include <linux/module.h> 44 #include <linux/slab.h> 45 #include <linux/mutex.h> 46 #include <linux/scatterlist.h> 47 #include <linux/bitmap.h> 48 #include <linux/list.h> 49 #include <linux/workqueue.h> 50 #include <linux/sched/mm.h> 51 52 #include <xen/xen.h> 53 #include <xen/xenbus.h> 54 #include <xen/grant_table.h> 55 #include <xen/events.h> 56 #include <xen/page.h> 57 #include <xen/platform_pci.h> 58 59 #include <xen/interface/grant_table.h> 60 #include <xen/interface/io/blkif.h> 61 #include <xen/interface/io/protocols.h> 62 63 #include <asm/xen/hypervisor.h> 64 65 /* 66 * The minimal size of segment supported by the block framework is PAGE_SIZE. 67 * When Linux is using a different page size than Xen, it may not be possible 68 * to put all the data in a single segment. 69 * This can happen when the backend doesn't support indirect descriptor and 70 * therefore the maximum amount of data that a request can carry is 71 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB 72 * 73 * Note that we only support one extra request. So the Linux page size 74 * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) = 75 * 88KB. 76 */ 77 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE) 78 79 enum blkif_state { 80 BLKIF_STATE_DISCONNECTED, 81 BLKIF_STATE_CONNECTED, 82 BLKIF_STATE_SUSPENDED, 83 }; 84 85 struct grant { 86 grant_ref_t gref; 87 struct page *page; 88 struct list_head node; 89 }; 90 91 enum blk_req_status { 92 REQ_WAITING, 93 REQ_DONE, 94 REQ_ERROR, 95 REQ_EOPNOTSUPP, 96 }; 97 98 struct blk_shadow { 99 struct blkif_request req; 100 struct request *request; 101 struct grant **grants_used; 102 struct grant **indirect_grants; 103 struct scatterlist *sg; 104 unsigned int num_sg; 105 enum blk_req_status status; 106 107 #define NO_ASSOCIATED_ID ~0UL 108 /* 109 * Id of the sibling if we ever need 2 requests when handling a 110 * block I/O request 111 */ 112 unsigned long associated_id; 113 }; 114 115 struct blkif_req { 116 blk_status_t error; 117 }; 118 119 static inline struct blkif_req *blkif_req(struct request *rq) 120 { 121 return blk_mq_rq_to_pdu(rq); 122 } 123 124 static DEFINE_MUTEX(blkfront_mutex); 125 static const struct block_device_operations xlvbd_block_fops; 126 static struct delayed_work blkfront_work; 127 static LIST_HEAD(info_list); 128 129 /* 130 * Maximum number of segments in indirect requests, the actual value used by 131 * the frontend driver is the minimum of this value and the value provided 132 * by the backend driver. 133 */ 134 135 static unsigned int xen_blkif_max_segments = 32; 136 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 0444); 137 MODULE_PARM_DESC(max_indirect_segments, 138 "Maximum amount of segments in indirect requests (default is 32)"); 139 140 static unsigned int xen_blkif_max_queues = 4; 141 module_param_named(max_queues, xen_blkif_max_queues, uint, 0444); 142 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk"); 143 144 /* 145 * Maximum order of pages to be used for the shared ring between front and 146 * backend, 4KB page granularity is used. 147 */ 148 static unsigned int xen_blkif_max_ring_order; 149 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, 0444); 150 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring"); 151 152 #define BLK_RING_SIZE(info) \ 153 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages) 154 155 /* 156 * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19 157 * characters are enough. Define to 20 to keep consistent with backend. 158 */ 159 #define RINGREF_NAME_LEN (20) 160 /* 161 * queue-%u would take 7 + 10(UINT_MAX) = 17 characters. 162 */ 163 #define QUEUE_NAME_LEN (17) 164 165 /* 166 * Per-ring info. 167 * Every blkfront device can associate with one or more blkfront_ring_info, 168 * depending on how many hardware queues/rings to be used. 169 */ 170 struct blkfront_ring_info { 171 /* Lock to protect data in every ring buffer. */ 172 spinlock_t ring_lock; 173 struct blkif_front_ring ring; 174 unsigned int ring_ref[XENBUS_MAX_RING_GRANTS]; 175 unsigned int evtchn, irq; 176 struct work_struct work; 177 struct gnttab_free_callback callback; 178 struct list_head indirect_pages; 179 struct list_head grants; 180 unsigned int persistent_gnts_c; 181 unsigned long shadow_free; 182 struct blkfront_info *dev_info; 183 struct blk_shadow shadow[]; 184 }; 185 186 /* 187 * We have one of these per vbd, whether ide, scsi or 'other'. They 188 * hang in private_data off the gendisk structure. We may end up 189 * putting all kinds of interesting stuff here :-) 190 */ 191 struct blkfront_info 192 { 193 struct mutex mutex; 194 struct xenbus_device *xbdev; 195 struct gendisk *gd; 196 u16 sector_size; 197 unsigned int physical_sector_size; 198 int vdevice; 199 blkif_vdev_t handle; 200 enum blkif_state connected; 201 /* Number of pages per ring buffer. */ 202 unsigned int nr_ring_pages; 203 struct request_queue *rq; 204 unsigned int feature_flush:1; 205 unsigned int feature_fua:1; 206 unsigned int feature_discard:1; 207 unsigned int feature_secdiscard:1; 208 unsigned int feature_persistent:1; 209 unsigned int discard_granularity; 210 unsigned int discard_alignment; 211 /* Number of 4KB segments handled */ 212 unsigned int max_indirect_segments; 213 int is_ready; 214 struct blk_mq_tag_set tag_set; 215 struct blkfront_ring_info *rinfo; 216 unsigned int nr_rings; 217 unsigned int rinfo_size; 218 /* Save uncomplete reqs and bios for migration. */ 219 struct list_head requests; 220 struct bio_list bio_list; 221 struct list_head info_list; 222 }; 223 224 static unsigned int nr_minors; 225 static unsigned long *minors; 226 static DEFINE_SPINLOCK(minor_lock); 227 228 #define GRANT_INVALID_REF 0 229 230 #define PARTS_PER_DISK 16 231 #define PARTS_PER_EXT_DISK 256 232 233 #define BLKIF_MAJOR(dev) ((dev)>>8) 234 #define BLKIF_MINOR(dev) ((dev) & 0xff) 235 236 #define EXT_SHIFT 28 237 #define EXTENDED (1<<EXT_SHIFT) 238 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED)) 239 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED)) 240 #define EMULATED_HD_DISK_MINOR_OFFSET (0) 241 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256) 242 #define EMULATED_SD_DISK_MINOR_OFFSET (0) 243 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256) 244 245 #define DEV_NAME "xvd" /* name in /dev */ 246 247 /* 248 * Grants are always the same size as a Xen page (i.e 4KB). 249 * A physical segment is always the same size as a Linux page. 250 * Number of grants per physical segment 251 */ 252 #define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE) 253 254 #define GRANTS_PER_INDIRECT_FRAME \ 255 (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment)) 256 257 #define INDIRECT_GREFS(_grants) \ 258 DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME) 259 260 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo); 261 static void blkfront_gather_backend_features(struct blkfront_info *info); 262 static int negotiate_mq(struct blkfront_info *info); 263 264 #define for_each_rinfo(info, ptr, idx) \ 265 for ((ptr) = (info)->rinfo, (idx) = 0; \ 266 (idx) < (info)->nr_rings; \ 267 (idx)++, (ptr) = (void *)(ptr) + (info)->rinfo_size) 268 269 static inline struct blkfront_ring_info * 270 get_rinfo(const struct blkfront_info *info, unsigned int i) 271 { 272 BUG_ON(i >= info->nr_rings); 273 return (void *)info->rinfo + i * info->rinfo_size; 274 } 275 276 static int get_id_from_freelist(struct blkfront_ring_info *rinfo) 277 { 278 unsigned long free = rinfo->shadow_free; 279 280 BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info)); 281 rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id; 282 rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */ 283 return free; 284 } 285 286 static int add_id_to_freelist(struct blkfront_ring_info *rinfo, 287 unsigned long id) 288 { 289 if (rinfo->shadow[id].req.u.rw.id != id) 290 return -EINVAL; 291 if (rinfo->shadow[id].request == NULL) 292 return -EINVAL; 293 rinfo->shadow[id].req.u.rw.id = rinfo->shadow_free; 294 rinfo->shadow[id].request = NULL; 295 rinfo->shadow_free = id; 296 return 0; 297 } 298 299 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num) 300 { 301 struct blkfront_info *info = rinfo->dev_info; 302 struct page *granted_page; 303 struct grant *gnt_list_entry, *n; 304 int i = 0; 305 306 while (i < num) { 307 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO); 308 if (!gnt_list_entry) 309 goto out_of_memory; 310 311 if (info->feature_persistent) { 312 granted_page = alloc_page(GFP_NOIO); 313 if (!granted_page) { 314 kfree(gnt_list_entry); 315 goto out_of_memory; 316 } 317 gnt_list_entry->page = granted_page; 318 } 319 320 gnt_list_entry->gref = GRANT_INVALID_REF; 321 list_add(&gnt_list_entry->node, &rinfo->grants); 322 i++; 323 } 324 325 return 0; 326 327 out_of_memory: 328 list_for_each_entry_safe(gnt_list_entry, n, 329 &rinfo->grants, node) { 330 list_del(&gnt_list_entry->node); 331 if (info->feature_persistent) 332 __free_page(gnt_list_entry->page); 333 kfree(gnt_list_entry); 334 i--; 335 } 336 BUG_ON(i != 0); 337 return -ENOMEM; 338 } 339 340 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo) 341 { 342 struct grant *gnt_list_entry; 343 344 BUG_ON(list_empty(&rinfo->grants)); 345 gnt_list_entry = list_first_entry(&rinfo->grants, struct grant, 346 node); 347 list_del(&gnt_list_entry->node); 348 349 if (gnt_list_entry->gref != GRANT_INVALID_REF) 350 rinfo->persistent_gnts_c--; 351 352 return gnt_list_entry; 353 } 354 355 static inline void grant_foreign_access(const struct grant *gnt_list_entry, 356 const struct blkfront_info *info) 357 { 358 gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref, 359 info->xbdev->otherend_id, 360 gnt_list_entry->page, 361 0); 362 } 363 364 static struct grant *get_grant(grant_ref_t *gref_head, 365 unsigned long gfn, 366 struct blkfront_ring_info *rinfo) 367 { 368 struct grant *gnt_list_entry = get_free_grant(rinfo); 369 struct blkfront_info *info = rinfo->dev_info; 370 371 if (gnt_list_entry->gref != GRANT_INVALID_REF) 372 return gnt_list_entry; 373 374 /* Assign a gref to this page */ 375 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head); 376 BUG_ON(gnt_list_entry->gref == -ENOSPC); 377 if (info->feature_persistent) 378 grant_foreign_access(gnt_list_entry, info); 379 else { 380 /* Grant access to the GFN passed by the caller */ 381 gnttab_grant_foreign_access_ref(gnt_list_entry->gref, 382 info->xbdev->otherend_id, 383 gfn, 0); 384 } 385 386 return gnt_list_entry; 387 } 388 389 static struct grant *get_indirect_grant(grant_ref_t *gref_head, 390 struct blkfront_ring_info *rinfo) 391 { 392 struct grant *gnt_list_entry = get_free_grant(rinfo); 393 struct blkfront_info *info = rinfo->dev_info; 394 395 if (gnt_list_entry->gref != GRANT_INVALID_REF) 396 return gnt_list_entry; 397 398 /* Assign a gref to this page */ 399 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head); 400 BUG_ON(gnt_list_entry->gref == -ENOSPC); 401 if (!info->feature_persistent) { 402 struct page *indirect_page; 403 404 /* Fetch a pre-allocated page to use for indirect grefs */ 405 BUG_ON(list_empty(&rinfo->indirect_pages)); 406 indirect_page = list_first_entry(&rinfo->indirect_pages, 407 struct page, lru); 408 list_del(&indirect_page->lru); 409 gnt_list_entry->page = indirect_page; 410 } 411 grant_foreign_access(gnt_list_entry, info); 412 413 return gnt_list_entry; 414 } 415 416 static const char *op_name(int op) 417 { 418 static const char *const names[] = { 419 [BLKIF_OP_READ] = "read", 420 [BLKIF_OP_WRITE] = "write", 421 [BLKIF_OP_WRITE_BARRIER] = "barrier", 422 [BLKIF_OP_FLUSH_DISKCACHE] = "flush", 423 [BLKIF_OP_DISCARD] = "discard" }; 424 425 if (op < 0 || op >= ARRAY_SIZE(names)) 426 return "unknown"; 427 428 if (!names[op]) 429 return "reserved"; 430 431 return names[op]; 432 } 433 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr) 434 { 435 unsigned int end = minor + nr; 436 int rc; 437 438 if (end > nr_minors) { 439 unsigned long *bitmap, *old; 440 441 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap), 442 GFP_KERNEL); 443 if (bitmap == NULL) 444 return -ENOMEM; 445 446 spin_lock(&minor_lock); 447 if (end > nr_minors) { 448 old = minors; 449 memcpy(bitmap, minors, 450 BITS_TO_LONGS(nr_minors) * sizeof(*bitmap)); 451 minors = bitmap; 452 nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG; 453 } else 454 old = bitmap; 455 spin_unlock(&minor_lock); 456 kfree(old); 457 } 458 459 spin_lock(&minor_lock); 460 if (find_next_bit(minors, end, minor) >= end) { 461 bitmap_set(minors, minor, nr); 462 rc = 0; 463 } else 464 rc = -EBUSY; 465 spin_unlock(&minor_lock); 466 467 return rc; 468 } 469 470 static void xlbd_release_minors(unsigned int minor, unsigned int nr) 471 { 472 unsigned int end = minor + nr; 473 474 BUG_ON(end > nr_minors); 475 spin_lock(&minor_lock); 476 bitmap_clear(minors, minor, nr); 477 spin_unlock(&minor_lock); 478 } 479 480 static void blkif_restart_queue_callback(void *arg) 481 { 482 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg; 483 schedule_work(&rinfo->work); 484 } 485 486 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg) 487 { 488 /* We don't have real geometry info, but let's at least return 489 values consistent with the size of the device */ 490 sector_t nsect = get_capacity(bd->bd_disk); 491 sector_t cylinders = nsect; 492 493 hg->heads = 0xff; 494 hg->sectors = 0x3f; 495 sector_div(cylinders, hg->heads * hg->sectors); 496 hg->cylinders = cylinders; 497 if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect) 498 hg->cylinders = 0xffff; 499 return 0; 500 } 501 502 static int blkif_ioctl(struct block_device *bdev, fmode_t mode, 503 unsigned command, unsigned long argument) 504 { 505 int i; 506 507 switch (command) { 508 case CDROMMULTISESSION: 509 for (i = 0; i < sizeof(struct cdrom_multisession); i++) 510 if (put_user(0, (char __user *)(argument + i))) 511 return -EFAULT; 512 return 0; 513 case CDROM_GET_CAPABILITY: 514 if (bdev->bd_disk->flags & GENHD_FL_CD) 515 return 0; 516 return -EINVAL; 517 default: 518 return -EINVAL; 519 } 520 } 521 522 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo, 523 struct request *req, 524 struct blkif_request **ring_req) 525 { 526 unsigned long id; 527 528 *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt); 529 rinfo->ring.req_prod_pvt++; 530 531 id = get_id_from_freelist(rinfo); 532 rinfo->shadow[id].request = req; 533 rinfo->shadow[id].status = REQ_WAITING; 534 rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID; 535 536 (*ring_req)->u.rw.id = id; 537 538 return id; 539 } 540 541 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo) 542 { 543 struct blkfront_info *info = rinfo->dev_info; 544 struct blkif_request *ring_req; 545 unsigned long id; 546 547 /* Fill out a communications ring structure. */ 548 id = blkif_ring_get_request(rinfo, req, &ring_req); 549 550 ring_req->operation = BLKIF_OP_DISCARD; 551 ring_req->u.discard.nr_sectors = blk_rq_sectors(req); 552 ring_req->u.discard.id = id; 553 ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req); 554 if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard) 555 ring_req->u.discard.flag = BLKIF_DISCARD_SECURE; 556 else 557 ring_req->u.discard.flag = 0; 558 559 /* Keep a private copy so we can reissue requests when recovering. */ 560 rinfo->shadow[id].req = *ring_req; 561 562 return 0; 563 } 564 565 struct setup_rw_req { 566 unsigned int grant_idx; 567 struct blkif_request_segment *segments; 568 struct blkfront_ring_info *rinfo; 569 struct blkif_request *ring_req; 570 grant_ref_t gref_head; 571 unsigned int id; 572 /* Only used when persistent grant is used and it's a read request */ 573 bool need_copy; 574 unsigned int bvec_off; 575 char *bvec_data; 576 577 bool require_extra_req; 578 struct blkif_request *extra_ring_req; 579 }; 580 581 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset, 582 unsigned int len, void *data) 583 { 584 struct setup_rw_req *setup = data; 585 int n, ref; 586 struct grant *gnt_list_entry; 587 unsigned int fsect, lsect; 588 /* Convenient aliases */ 589 unsigned int grant_idx = setup->grant_idx; 590 struct blkif_request *ring_req = setup->ring_req; 591 struct blkfront_ring_info *rinfo = setup->rinfo; 592 /* 593 * We always use the shadow of the first request to store the list 594 * of grant associated to the block I/O request. This made the 595 * completion more easy to handle even if the block I/O request is 596 * split. 597 */ 598 struct blk_shadow *shadow = &rinfo->shadow[setup->id]; 599 600 if (unlikely(setup->require_extra_req && 601 grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) { 602 /* 603 * We are using the second request, setup grant_idx 604 * to be the index of the segment array. 605 */ 606 grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST; 607 ring_req = setup->extra_ring_req; 608 } 609 610 if ((ring_req->operation == BLKIF_OP_INDIRECT) && 611 (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) { 612 if (setup->segments) 613 kunmap_atomic(setup->segments); 614 615 n = grant_idx / GRANTS_PER_INDIRECT_FRAME; 616 gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo); 617 shadow->indirect_grants[n] = gnt_list_entry; 618 setup->segments = kmap_atomic(gnt_list_entry->page); 619 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref; 620 } 621 622 gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo); 623 ref = gnt_list_entry->gref; 624 /* 625 * All the grants are stored in the shadow of the first 626 * request. Therefore we have to use the global index. 627 */ 628 shadow->grants_used[setup->grant_idx] = gnt_list_entry; 629 630 if (setup->need_copy) { 631 void *shared_data; 632 633 shared_data = kmap_atomic(gnt_list_entry->page); 634 /* 635 * this does not wipe data stored outside the 636 * range sg->offset..sg->offset+sg->length. 637 * Therefore, blkback *could* see data from 638 * previous requests. This is OK as long as 639 * persistent grants are shared with just one 640 * domain. It may need refactoring if this 641 * changes 642 */ 643 memcpy(shared_data + offset, 644 setup->bvec_data + setup->bvec_off, 645 len); 646 647 kunmap_atomic(shared_data); 648 setup->bvec_off += len; 649 } 650 651 fsect = offset >> 9; 652 lsect = fsect + (len >> 9) - 1; 653 if (ring_req->operation != BLKIF_OP_INDIRECT) { 654 ring_req->u.rw.seg[grant_idx] = 655 (struct blkif_request_segment) { 656 .gref = ref, 657 .first_sect = fsect, 658 .last_sect = lsect }; 659 } else { 660 setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] = 661 (struct blkif_request_segment) { 662 .gref = ref, 663 .first_sect = fsect, 664 .last_sect = lsect }; 665 } 666 667 (setup->grant_idx)++; 668 } 669 670 static void blkif_setup_extra_req(struct blkif_request *first, 671 struct blkif_request *second) 672 { 673 uint16_t nr_segments = first->u.rw.nr_segments; 674 675 /* 676 * The second request is only present when the first request uses 677 * all its segments. It's always the continuity of the first one. 678 */ 679 first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST; 680 681 second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST; 682 second->u.rw.sector_number = first->u.rw.sector_number + 683 (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512; 684 685 second->u.rw.handle = first->u.rw.handle; 686 second->operation = first->operation; 687 } 688 689 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo) 690 { 691 struct blkfront_info *info = rinfo->dev_info; 692 struct blkif_request *ring_req, *extra_ring_req = NULL; 693 unsigned long id, extra_id = NO_ASSOCIATED_ID; 694 bool require_extra_req = false; 695 int i; 696 struct setup_rw_req setup = { 697 .grant_idx = 0, 698 .segments = NULL, 699 .rinfo = rinfo, 700 .need_copy = rq_data_dir(req) && info->feature_persistent, 701 }; 702 703 /* 704 * Used to store if we are able to queue the request by just using 705 * existing persistent grants, or if we have to get new grants, 706 * as there are not sufficiently many free. 707 */ 708 bool new_persistent_gnts = false; 709 struct scatterlist *sg; 710 int num_sg, max_grefs, num_grant; 711 712 max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG; 713 if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST) 714 /* 715 * If we are using indirect segments we need to account 716 * for the indirect grefs used in the request. 717 */ 718 max_grefs += INDIRECT_GREFS(max_grefs); 719 720 /* Check if we have enough persistent grants to allocate a requests */ 721 if (rinfo->persistent_gnts_c < max_grefs) { 722 new_persistent_gnts = true; 723 724 if (gnttab_alloc_grant_references( 725 max_grefs - rinfo->persistent_gnts_c, 726 &setup.gref_head) < 0) { 727 gnttab_request_free_callback( 728 &rinfo->callback, 729 blkif_restart_queue_callback, 730 rinfo, 731 max_grefs - rinfo->persistent_gnts_c); 732 return 1; 733 } 734 } 735 736 /* Fill out a communications ring structure. */ 737 id = blkif_ring_get_request(rinfo, req, &ring_req); 738 739 num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg); 740 num_grant = 0; 741 /* Calculate the number of grant used */ 742 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) 743 num_grant += gnttab_count_grant(sg->offset, sg->length); 744 745 require_extra_req = info->max_indirect_segments == 0 && 746 num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST; 747 BUG_ON(!HAS_EXTRA_REQ && require_extra_req); 748 749 rinfo->shadow[id].num_sg = num_sg; 750 if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST && 751 likely(!require_extra_req)) { 752 /* 753 * The indirect operation can only be a BLKIF_OP_READ or 754 * BLKIF_OP_WRITE 755 */ 756 BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA); 757 ring_req->operation = BLKIF_OP_INDIRECT; 758 ring_req->u.indirect.indirect_op = rq_data_dir(req) ? 759 BLKIF_OP_WRITE : BLKIF_OP_READ; 760 ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req); 761 ring_req->u.indirect.handle = info->handle; 762 ring_req->u.indirect.nr_segments = num_grant; 763 } else { 764 ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req); 765 ring_req->u.rw.handle = info->handle; 766 ring_req->operation = rq_data_dir(req) ? 767 BLKIF_OP_WRITE : BLKIF_OP_READ; 768 if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) { 769 /* 770 * Ideally we can do an unordered flush-to-disk. 771 * In case the backend onlysupports barriers, use that. 772 * A barrier request a superset of FUA, so we can 773 * implement it the same way. (It's also a FLUSH+FUA, 774 * since it is guaranteed ordered WRT previous writes.) 775 */ 776 if (info->feature_flush && info->feature_fua) 777 ring_req->operation = 778 BLKIF_OP_WRITE_BARRIER; 779 else if (info->feature_flush) 780 ring_req->operation = 781 BLKIF_OP_FLUSH_DISKCACHE; 782 else 783 ring_req->operation = 0; 784 } 785 ring_req->u.rw.nr_segments = num_grant; 786 if (unlikely(require_extra_req)) { 787 extra_id = blkif_ring_get_request(rinfo, req, 788 &extra_ring_req); 789 /* 790 * Only the first request contains the scatter-gather 791 * list. 792 */ 793 rinfo->shadow[extra_id].num_sg = 0; 794 795 blkif_setup_extra_req(ring_req, extra_ring_req); 796 797 /* Link the 2 requests together */ 798 rinfo->shadow[extra_id].associated_id = id; 799 rinfo->shadow[id].associated_id = extra_id; 800 } 801 } 802 803 setup.ring_req = ring_req; 804 setup.id = id; 805 806 setup.require_extra_req = require_extra_req; 807 if (unlikely(require_extra_req)) 808 setup.extra_ring_req = extra_ring_req; 809 810 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) { 811 BUG_ON(sg->offset + sg->length > PAGE_SIZE); 812 813 if (setup.need_copy) { 814 setup.bvec_off = sg->offset; 815 setup.bvec_data = kmap_atomic(sg_page(sg)); 816 } 817 818 gnttab_foreach_grant_in_range(sg_page(sg), 819 sg->offset, 820 sg->length, 821 blkif_setup_rw_req_grant, 822 &setup); 823 824 if (setup.need_copy) 825 kunmap_atomic(setup.bvec_data); 826 } 827 if (setup.segments) 828 kunmap_atomic(setup.segments); 829 830 /* Keep a private copy so we can reissue requests when recovering. */ 831 rinfo->shadow[id].req = *ring_req; 832 if (unlikely(require_extra_req)) 833 rinfo->shadow[extra_id].req = *extra_ring_req; 834 835 if (new_persistent_gnts) 836 gnttab_free_grant_references(setup.gref_head); 837 838 return 0; 839 } 840 841 /* 842 * Generate a Xen blkfront IO request from a blk layer request. Reads 843 * and writes are handled as expected. 844 * 845 * @req: a request struct 846 */ 847 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo) 848 { 849 if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED)) 850 return 1; 851 852 if (unlikely(req_op(req) == REQ_OP_DISCARD || 853 req_op(req) == REQ_OP_SECURE_ERASE)) 854 return blkif_queue_discard_req(req, rinfo); 855 else 856 return blkif_queue_rw_req(req, rinfo); 857 } 858 859 static inline void flush_requests(struct blkfront_ring_info *rinfo) 860 { 861 int notify; 862 863 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify); 864 865 if (notify) 866 notify_remote_via_irq(rinfo->irq); 867 } 868 869 static inline bool blkif_request_flush_invalid(struct request *req, 870 struct blkfront_info *info) 871 { 872 return (blk_rq_is_passthrough(req) || 873 ((req_op(req) == REQ_OP_FLUSH) && 874 !info->feature_flush) || 875 ((req->cmd_flags & REQ_FUA) && 876 !info->feature_fua)); 877 } 878 879 static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx, 880 const struct blk_mq_queue_data *qd) 881 { 882 unsigned long flags; 883 int qid = hctx->queue_num; 884 struct blkfront_info *info = hctx->queue->queuedata; 885 struct blkfront_ring_info *rinfo = NULL; 886 887 rinfo = get_rinfo(info, qid); 888 blk_mq_start_request(qd->rq); 889 spin_lock_irqsave(&rinfo->ring_lock, flags); 890 if (RING_FULL(&rinfo->ring)) 891 goto out_busy; 892 893 if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info)) 894 goto out_err; 895 896 if (blkif_queue_request(qd->rq, rinfo)) 897 goto out_busy; 898 899 flush_requests(rinfo); 900 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 901 return BLK_STS_OK; 902 903 out_err: 904 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 905 return BLK_STS_IOERR; 906 907 out_busy: 908 blk_mq_stop_hw_queue(hctx); 909 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 910 return BLK_STS_DEV_RESOURCE; 911 } 912 913 static void blkif_complete_rq(struct request *rq) 914 { 915 blk_mq_end_request(rq, blkif_req(rq)->error); 916 } 917 918 static const struct blk_mq_ops blkfront_mq_ops = { 919 .queue_rq = blkif_queue_rq, 920 .complete = blkif_complete_rq, 921 }; 922 923 static void blkif_set_queue_limits(struct blkfront_info *info) 924 { 925 struct request_queue *rq = info->rq; 926 struct gendisk *gd = info->gd; 927 unsigned int segments = info->max_indirect_segments ? : 928 BLKIF_MAX_SEGMENTS_PER_REQUEST; 929 930 blk_queue_flag_set(QUEUE_FLAG_VIRT, rq); 931 932 if (info->feature_discard) { 933 blk_queue_flag_set(QUEUE_FLAG_DISCARD, rq); 934 blk_queue_max_discard_sectors(rq, get_capacity(gd)); 935 rq->limits.discard_granularity = info->discard_granularity ?: 936 info->physical_sector_size; 937 rq->limits.discard_alignment = info->discard_alignment; 938 if (info->feature_secdiscard) 939 blk_queue_flag_set(QUEUE_FLAG_SECERASE, rq); 940 } 941 942 /* Hard sector size and max sectors impersonate the equiv. hardware. */ 943 blk_queue_logical_block_size(rq, info->sector_size); 944 blk_queue_physical_block_size(rq, info->physical_sector_size); 945 blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512); 946 947 /* Each segment in a request is up to an aligned page in size. */ 948 blk_queue_segment_boundary(rq, PAGE_SIZE - 1); 949 blk_queue_max_segment_size(rq, PAGE_SIZE); 950 951 /* Ensure a merged request will fit in a single I/O ring slot. */ 952 blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG); 953 954 /* Make sure buffer addresses are sector-aligned. */ 955 blk_queue_dma_alignment(rq, 511); 956 } 957 958 static const char *flush_info(struct blkfront_info *info) 959 { 960 if (info->feature_flush && info->feature_fua) 961 return "barrier: enabled;"; 962 else if (info->feature_flush) 963 return "flush diskcache: enabled;"; 964 else 965 return "barrier or flush: disabled;"; 966 } 967 968 static void xlvbd_flush(struct blkfront_info *info) 969 { 970 blk_queue_write_cache(info->rq, info->feature_flush ? true : false, 971 info->feature_fua ? true : false); 972 pr_info("blkfront: %s: %s %s %s %s %s\n", 973 info->gd->disk_name, flush_info(info), 974 "persistent grants:", info->feature_persistent ? 975 "enabled;" : "disabled;", "indirect descriptors:", 976 info->max_indirect_segments ? "enabled;" : "disabled;"); 977 } 978 979 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset) 980 { 981 int major; 982 major = BLKIF_MAJOR(vdevice); 983 *minor = BLKIF_MINOR(vdevice); 984 switch (major) { 985 case XEN_IDE0_MAJOR: 986 *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET; 987 *minor = ((*minor / 64) * PARTS_PER_DISK) + 988 EMULATED_HD_DISK_MINOR_OFFSET; 989 break; 990 case XEN_IDE1_MAJOR: 991 *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET; 992 *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) + 993 EMULATED_HD_DISK_MINOR_OFFSET; 994 break; 995 case XEN_SCSI_DISK0_MAJOR: 996 *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET; 997 *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET; 998 break; 999 case XEN_SCSI_DISK1_MAJOR: 1000 case XEN_SCSI_DISK2_MAJOR: 1001 case XEN_SCSI_DISK3_MAJOR: 1002 case XEN_SCSI_DISK4_MAJOR: 1003 case XEN_SCSI_DISK5_MAJOR: 1004 case XEN_SCSI_DISK6_MAJOR: 1005 case XEN_SCSI_DISK7_MAJOR: 1006 *offset = (*minor / PARTS_PER_DISK) + 1007 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) + 1008 EMULATED_SD_DISK_NAME_OFFSET; 1009 *minor = *minor + 1010 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) + 1011 EMULATED_SD_DISK_MINOR_OFFSET; 1012 break; 1013 case XEN_SCSI_DISK8_MAJOR: 1014 case XEN_SCSI_DISK9_MAJOR: 1015 case XEN_SCSI_DISK10_MAJOR: 1016 case XEN_SCSI_DISK11_MAJOR: 1017 case XEN_SCSI_DISK12_MAJOR: 1018 case XEN_SCSI_DISK13_MAJOR: 1019 case XEN_SCSI_DISK14_MAJOR: 1020 case XEN_SCSI_DISK15_MAJOR: 1021 *offset = (*minor / PARTS_PER_DISK) + 1022 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) + 1023 EMULATED_SD_DISK_NAME_OFFSET; 1024 *minor = *minor + 1025 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) + 1026 EMULATED_SD_DISK_MINOR_OFFSET; 1027 break; 1028 case XENVBD_MAJOR: 1029 *offset = *minor / PARTS_PER_DISK; 1030 break; 1031 default: 1032 printk(KERN_WARNING "blkfront: your disk configuration is " 1033 "incorrect, please use an xvd device instead\n"); 1034 return -ENODEV; 1035 } 1036 return 0; 1037 } 1038 1039 static char *encode_disk_name(char *ptr, unsigned int n) 1040 { 1041 if (n >= 26) 1042 ptr = encode_disk_name(ptr, n / 26 - 1); 1043 *ptr = 'a' + n % 26; 1044 return ptr + 1; 1045 } 1046 1047 static int xlvbd_alloc_gendisk(blkif_sector_t capacity, 1048 struct blkfront_info *info, 1049 u16 vdisk_info, u16 sector_size, 1050 unsigned int physical_sector_size) 1051 { 1052 struct gendisk *gd; 1053 int nr_minors = 1; 1054 int err; 1055 unsigned int offset; 1056 int minor; 1057 int nr_parts; 1058 char *ptr; 1059 1060 BUG_ON(info->gd != NULL); 1061 BUG_ON(info->rq != NULL); 1062 1063 if ((info->vdevice>>EXT_SHIFT) > 1) { 1064 /* this is above the extended range; something is wrong */ 1065 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice); 1066 return -ENODEV; 1067 } 1068 1069 if (!VDEV_IS_EXTENDED(info->vdevice)) { 1070 err = xen_translate_vdev(info->vdevice, &minor, &offset); 1071 if (err) 1072 return err; 1073 nr_parts = PARTS_PER_DISK; 1074 } else { 1075 minor = BLKIF_MINOR_EXT(info->vdevice); 1076 nr_parts = PARTS_PER_EXT_DISK; 1077 offset = minor / nr_parts; 1078 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4) 1079 printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with " 1080 "emulated IDE disks,\n\t choose an xvd device name" 1081 "from xvde on\n", info->vdevice); 1082 } 1083 if (minor >> MINORBITS) { 1084 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n", 1085 info->vdevice, minor); 1086 return -ENODEV; 1087 } 1088 1089 if ((minor % nr_parts) == 0) 1090 nr_minors = nr_parts; 1091 1092 err = xlbd_reserve_minors(minor, nr_minors); 1093 if (err) 1094 return err; 1095 1096 memset(&info->tag_set, 0, sizeof(info->tag_set)); 1097 info->tag_set.ops = &blkfront_mq_ops; 1098 info->tag_set.nr_hw_queues = info->nr_rings; 1099 if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) { 1100 /* 1101 * When indirect descriptior is not supported, the I/O request 1102 * will be split between multiple request in the ring. 1103 * To avoid problems when sending the request, divide by 1104 * 2 the depth of the queue. 1105 */ 1106 info->tag_set.queue_depth = BLK_RING_SIZE(info) / 2; 1107 } else 1108 info->tag_set.queue_depth = BLK_RING_SIZE(info); 1109 info->tag_set.numa_node = NUMA_NO_NODE; 1110 info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1111 info->tag_set.cmd_size = sizeof(struct blkif_req); 1112 info->tag_set.driver_data = info; 1113 1114 err = blk_mq_alloc_tag_set(&info->tag_set); 1115 if (err) 1116 goto out_release_minors; 1117 1118 gd = blk_mq_alloc_disk(&info->tag_set, info); 1119 if (IS_ERR(gd)) { 1120 err = PTR_ERR(gd); 1121 goto out_free_tag_set; 1122 } 1123 1124 strcpy(gd->disk_name, DEV_NAME); 1125 ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset); 1126 BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN); 1127 if (nr_minors > 1) 1128 *ptr = 0; 1129 else 1130 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr, 1131 "%d", minor & (nr_parts - 1)); 1132 1133 gd->major = XENVBD_MAJOR; 1134 gd->first_minor = minor; 1135 gd->minors = nr_minors; 1136 gd->fops = &xlvbd_block_fops; 1137 gd->private_data = info; 1138 set_capacity(gd, capacity); 1139 1140 info->rq = gd->queue; 1141 info->gd = gd; 1142 info->sector_size = sector_size; 1143 info->physical_sector_size = physical_sector_size; 1144 blkif_set_queue_limits(info); 1145 1146 xlvbd_flush(info); 1147 1148 if (vdisk_info & VDISK_READONLY) 1149 set_disk_ro(gd, 1); 1150 1151 if (vdisk_info & VDISK_REMOVABLE) 1152 gd->flags |= GENHD_FL_REMOVABLE; 1153 1154 if (vdisk_info & VDISK_CDROM) 1155 gd->flags |= GENHD_FL_CD; 1156 1157 return 0; 1158 1159 out_free_tag_set: 1160 blk_mq_free_tag_set(&info->tag_set); 1161 out_release_minors: 1162 xlbd_release_minors(minor, nr_minors); 1163 return err; 1164 } 1165 1166 /* Already hold rinfo->ring_lock. */ 1167 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo) 1168 { 1169 if (!RING_FULL(&rinfo->ring)) 1170 blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true); 1171 } 1172 1173 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo) 1174 { 1175 unsigned long flags; 1176 1177 spin_lock_irqsave(&rinfo->ring_lock, flags); 1178 kick_pending_request_queues_locked(rinfo); 1179 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1180 } 1181 1182 static void blkif_restart_queue(struct work_struct *work) 1183 { 1184 struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work); 1185 1186 if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED) 1187 kick_pending_request_queues(rinfo); 1188 } 1189 1190 static void blkif_free_ring(struct blkfront_ring_info *rinfo) 1191 { 1192 struct grant *persistent_gnt, *n; 1193 struct blkfront_info *info = rinfo->dev_info; 1194 int i, j, segs; 1195 1196 /* 1197 * Remove indirect pages, this only happens when using indirect 1198 * descriptors but not persistent grants 1199 */ 1200 if (!list_empty(&rinfo->indirect_pages)) { 1201 struct page *indirect_page, *n; 1202 1203 BUG_ON(info->feature_persistent); 1204 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) { 1205 list_del(&indirect_page->lru); 1206 __free_page(indirect_page); 1207 } 1208 } 1209 1210 /* Remove all persistent grants. */ 1211 if (!list_empty(&rinfo->grants)) { 1212 list_for_each_entry_safe(persistent_gnt, n, 1213 &rinfo->grants, node) { 1214 list_del(&persistent_gnt->node); 1215 if (persistent_gnt->gref != GRANT_INVALID_REF) { 1216 gnttab_end_foreign_access(persistent_gnt->gref, 1217 0, 0UL); 1218 rinfo->persistent_gnts_c--; 1219 } 1220 if (info->feature_persistent) 1221 __free_page(persistent_gnt->page); 1222 kfree(persistent_gnt); 1223 } 1224 } 1225 BUG_ON(rinfo->persistent_gnts_c != 0); 1226 1227 for (i = 0; i < BLK_RING_SIZE(info); i++) { 1228 /* 1229 * Clear persistent grants present in requests already 1230 * on the shared ring 1231 */ 1232 if (!rinfo->shadow[i].request) 1233 goto free_shadow; 1234 1235 segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ? 1236 rinfo->shadow[i].req.u.indirect.nr_segments : 1237 rinfo->shadow[i].req.u.rw.nr_segments; 1238 for (j = 0; j < segs; j++) { 1239 persistent_gnt = rinfo->shadow[i].grants_used[j]; 1240 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL); 1241 if (info->feature_persistent) 1242 __free_page(persistent_gnt->page); 1243 kfree(persistent_gnt); 1244 } 1245 1246 if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT) 1247 /* 1248 * If this is not an indirect operation don't try to 1249 * free indirect segments 1250 */ 1251 goto free_shadow; 1252 1253 for (j = 0; j < INDIRECT_GREFS(segs); j++) { 1254 persistent_gnt = rinfo->shadow[i].indirect_grants[j]; 1255 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL); 1256 __free_page(persistent_gnt->page); 1257 kfree(persistent_gnt); 1258 } 1259 1260 free_shadow: 1261 kvfree(rinfo->shadow[i].grants_used); 1262 rinfo->shadow[i].grants_used = NULL; 1263 kvfree(rinfo->shadow[i].indirect_grants); 1264 rinfo->shadow[i].indirect_grants = NULL; 1265 kvfree(rinfo->shadow[i].sg); 1266 rinfo->shadow[i].sg = NULL; 1267 } 1268 1269 /* No more gnttab callback work. */ 1270 gnttab_cancel_free_callback(&rinfo->callback); 1271 1272 /* Flush gnttab callback work. Must be done with no locks held. */ 1273 flush_work(&rinfo->work); 1274 1275 /* Free resources associated with old device channel. */ 1276 for (i = 0; i < info->nr_ring_pages; i++) { 1277 if (rinfo->ring_ref[i] != GRANT_INVALID_REF) { 1278 gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0); 1279 rinfo->ring_ref[i] = GRANT_INVALID_REF; 1280 } 1281 } 1282 free_pages((unsigned long)rinfo->ring.sring, get_order(info->nr_ring_pages * XEN_PAGE_SIZE)); 1283 rinfo->ring.sring = NULL; 1284 1285 if (rinfo->irq) 1286 unbind_from_irqhandler(rinfo->irq, rinfo); 1287 rinfo->evtchn = rinfo->irq = 0; 1288 } 1289 1290 static void blkif_free(struct blkfront_info *info, int suspend) 1291 { 1292 unsigned int i; 1293 struct blkfront_ring_info *rinfo; 1294 1295 /* Prevent new requests being issued until we fix things up. */ 1296 info->connected = suspend ? 1297 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED; 1298 /* No more blkif_request(). */ 1299 if (info->rq) 1300 blk_mq_stop_hw_queues(info->rq); 1301 1302 for_each_rinfo(info, rinfo, i) 1303 blkif_free_ring(rinfo); 1304 1305 kvfree(info->rinfo); 1306 info->rinfo = NULL; 1307 info->nr_rings = 0; 1308 } 1309 1310 struct copy_from_grant { 1311 const struct blk_shadow *s; 1312 unsigned int grant_idx; 1313 unsigned int bvec_offset; 1314 char *bvec_data; 1315 }; 1316 1317 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset, 1318 unsigned int len, void *data) 1319 { 1320 struct copy_from_grant *info = data; 1321 char *shared_data; 1322 /* Convenient aliases */ 1323 const struct blk_shadow *s = info->s; 1324 1325 shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page); 1326 1327 memcpy(info->bvec_data + info->bvec_offset, 1328 shared_data + offset, len); 1329 1330 info->bvec_offset += len; 1331 info->grant_idx++; 1332 1333 kunmap_atomic(shared_data); 1334 } 1335 1336 static enum blk_req_status blkif_rsp_to_req_status(int rsp) 1337 { 1338 switch (rsp) 1339 { 1340 case BLKIF_RSP_OKAY: 1341 return REQ_DONE; 1342 case BLKIF_RSP_EOPNOTSUPP: 1343 return REQ_EOPNOTSUPP; 1344 case BLKIF_RSP_ERROR: 1345 default: 1346 return REQ_ERROR; 1347 } 1348 } 1349 1350 /* 1351 * Get the final status of the block request based on two ring response 1352 */ 1353 static int blkif_get_final_status(enum blk_req_status s1, 1354 enum blk_req_status s2) 1355 { 1356 BUG_ON(s1 == REQ_WAITING); 1357 BUG_ON(s2 == REQ_WAITING); 1358 1359 if (s1 == REQ_ERROR || s2 == REQ_ERROR) 1360 return BLKIF_RSP_ERROR; 1361 else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP) 1362 return BLKIF_RSP_EOPNOTSUPP; 1363 return BLKIF_RSP_OKAY; 1364 } 1365 1366 static bool blkif_completion(unsigned long *id, 1367 struct blkfront_ring_info *rinfo, 1368 struct blkif_response *bret) 1369 { 1370 int i = 0; 1371 struct scatterlist *sg; 1372 int num_sg, num_grant; 1373 struct blkfront_info *info = rinfo->dev_info; 1374 struct blk_shadow *s = &rinfo->shadow[*id]; 1375 struct copy_from_grant data = { 1376 .grant_idx = 0, 1377 }; 1378 1379 num_grant = s->req.operation == BLKIF_OP_INDIRECT ? 1380 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments; 1381 1382 /* The I/O request may be split in two. */ 1383 if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) { 1384 struct blk_shadow *s2 = &rinfo->shadow[s->associated_id]; 1385 1386 /* Keep the status of the current response in shadow. */ 1387 s->status = blkif_rsp_to_req_status(bret->status); 1388 1389 /* Wait the second response if not yet here. */ 1390 if (s2->status == REQ_WAITING) 1391 return false; 1392 1393 bret->status = blkif_get_final_status(s->status, 1394 s2->status); 1395 1396 /* 1397 * All the grants is stored in the first shadow in order 1398 * to make the completion code simpler. 1399 */ 1400 num_grant += s2->req.u.rw.nr_segments; 1401 1402 /* 1403 * The two responses may not come in order. Only the 1404 * first request will store the scatter-gather list. 1405 */ 1406 if (s2->num_sg != 0) { 1407 /* Update "id" with the ID of the first response. */ 1408 *id = s->associated_id; 1409 s = s2; 1410 } 1411 1412 /* 1413 * We don't need anymore the second request, so recycling 1414 * it now. 1415 */ 1416 if (add_id_to_freelist(rinfo, s->associated_id)) 1417 WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n", 1418 info->gd->disk_name, s->associated_id); 1419 } 1420 1421 data.s = s; 1422 num_sg = s->num_sg; 1423 1424 if (bret->operation == BLKIF_OP_READ && info->feature_persistent) { 1425 for_each_sg(s->sg, sg, num_sg, i) { 1426 BUG_ON(sg->offset + sg->length > PAGE_SIZE); 1427 1428 data.bvec_offset = sg->offset; 1429 data.bvec_data = kmap_atomic(sg_page(sg)); 1430 1431 gnttab_foreach_grant_in_range(sg_page(sg), 1432 sg->offset, 1433 sg->length, 1434 blkif_copy_from_grant, 1435 &data); 1436 1437 kunmap_atomic(data.bvec_data); 1438 } 1439 } 1440 /* Add the persistent grant into the list of free grants */ 1441 for (i = 0; i < num_grant; i++) { 1442 if (gnttab_query_foreign_access(s->grants_used[i]->gref)) { 1443 /* 1444 * If the grant is still mapped by the backend (the 1445 * backend has chosen to make this grant persistent) 1446 * we add it at the head of the list, so it will be 1447 * reused first. 1448 */ 1449 if (!info->feature_persistent) 1450 pr_alert_ratelimited("backed has not unmapped grant: %u\n", 1451 s->grants_used[i]->gref); 1452 list_add(&s->grants_used[i]->node, &rinfo->grants); 1453 rinfo->persistent_gnts_c++; 1454 } else { 1455 /* 1456 * If the grant is not mapped by the backend we end the 1457 * foreign access and add it to the tail of the list, 1458 * so it will not be picked again unless we run out of 1459 * persistent grants. 1460 */ 1461 gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL); 1462 s->grants_used[i]->gref = GRANT_INVALID_REF; 1463 list_add_tail(&s->grants_used[i]->node, &rinfo->grants); 1464 } 1465 } 1466 if (s->req.operation == BLKIF_OP_INDIRECT) { 1467 for (i = 0; i < INDIRECT_GREFS(num_grant); i++) { 1468 if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) { 1469 if (!info->feature_persistent) 1470 pr_alert_ratelimited("backed has not unmapped grant: %u\n", 1471 s->indirect_grants[i]->gref); 1472 list_add(&s->indirect_grants[i]->node, &rinfo->grants); 1473 rinfo->persistent_gnts_c++; 1474 } else { 1475 struct page *indirect_page; 1476 1477 gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL); 1478 /* 1479 * Add the used indirect page back to the list of 1480 * available pages for indirect grefs. 1481 */ 1482 if (!info->feature_persistent) { 1483 indirect_page = s->indirect_grants[i]->page; 1484 list_add(&indirect_page->lru, &rinfo->indirect_pages); 1485 } 1486 s->indirect_grants[i]->gref = GRANT_INVALID_REF; 1487 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants); 1488 } 1489 } 1490 } 1491 1492 return true; 1493 } 1494 1495 static irqreturn_t blkif_interrupt(int irq, void *dev_id) 1496 { 1497 struct request *req; 1498 struct blkif_response *bret; 1499 RING_IDX i, rp; 1500 unsigned long flags; 1501 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id; 1502 struct blkfront_info *info = rinfo->dev_info; 1503 1504 if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) 1505 return IRQ_HANDLED; 1506 1507 spin_lock_irqsave(&rinfo->ring_lock, flags); 1508 again: 1509 rp = rinfo->ring.sring->rsp_prod; 1510 rmb(); /* Ensure we see queued responses up to 'rp'. */ 1511 1512 for (i = rinfo->ring.rsp_cons; i != rp; i++) { 1513 unsigned long id; 1514 1515 bret = RING_GET_RESPONSE(&rinfo->ring, i); 1516 id = bret->id; 1517 /* 1518 * The backend has messed up and given us an id that we would 1519 * never have given to it (we stamp it up to BLK_RING_SIZE - 1520 * look in get_id_from_freelist. 1521 */ 1522 if (id >= BLK_RING_SIZE(info)) { 1523 WARN(1, "%s: response to %s has incorrect id (%ld)\n", 1524 info->gd->disk_name, op_name(bret->operation), id); 1525 /* We can't safely get the 'struct request' as 1526 * the id is busted. */ 1527 continue; 1528 } 1529 req = rinfo->shadow[id].request; 1530 1531 if (bret->operation != BLKIF_OP_DISCARD) { 1532 /* 1533 * We may need to wait for an extra response if the 1534 * I/O request is split in 2 1535 */ 1536 if (!blkif_completion(&id, rinfo, bret)) 1537 continue; 1538 } 1539 1540 if (add_id_to_freelist(rinfo, id)) { 1541 WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n", 1542 info->gd->disk_name, op_name(bret->operation), id); 1543 continue; 1544 } 1545 1546 if (bret->status == BLKIF_RSP_OKAY) 1547 blkif_req(req)->error = BLK_STS_OK; 1548 else 1549 blkif_req(req)->error = BLK_STS_IOERR; 1550 1551 switch (bret->operation) { 1552 case BLKIF_OP_DISCARD: 1553 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) { 1554 struct request_queue *rq = info->rq; 1555 printk(KERN_WARNING "blkfront: %s: %s op failed\n", 1556 info->gd->disk_name, op_name(bret->operation)); 1557 blkif_req(req)->error = BLK_STS_NOTSUPP; 1558 info->feature_discard = 0; 1559 info->feature_secdiscard = 0; 1560 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, rq); 1561 blk_queue_flag_clear(QUEUE_FLAG_SECERASE, rq); 1562 } 1563 break; 1564 case BLKIF_OP_FLUSH_DISKCACHE: 1565 case BLKIF_OP_WRITE_BARRIER: 1566 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) { 1567 printk(KERN_WARNING "blkfront: %s: %s op failed\n", 1568 info->gd->disk_name, op_name(bret->operation)); 1569 blkif_req(req)->error = BLK_STS_NOTSUPP; 1570 } 1571 if (unlikely(bret->status == BLKIF_RSP_ERROR && 1572 rinfo->shadow[id].req.u.rw.nr_segments == 0)) { 1573 printk(KERN_WARNING "blkfront: %s: empty %s op failed\n", 1574 info->gd->disk_name, op_name(bret->operation)); 1575 blkif_req(req)->error = BLK_STS_NOTSUPP; 1576 } 1577 if (unlikely(blkif_req(req)->error)) { 1578 if (blkif_req(req)->error == BLK_STS_NOTSUPP) 1579 blkif_req(req)->error = BLK_STS_OK; 1580 info->feature_fua = 0; 1581 info->feature_flush = 0; 1582 xlvbd_flush(info); 1583 } 1584 fallthrough; 1585 case BLKIF_OP_READ: 1586 case BLKIF_OP_WRITE: 1587 if (unlikely(bret->status != BLKIF_RSP_OKAY)) 1588 dev_dbg(&info->xbdev->dev, "Bad return from blkdev data " 1589 "request: %x\n", bret->status); 1590 1591 break; 1592 default: 1593 BUG(); 1594 } 1595 1596 if (likely(!blk_should_fake_timeout(req->q))) 1597 blk_mq_complete_request(req); 1598 } 1599 1600 rinfo->ring.rsp_cons = i; 1601 1602 if (i != rinfo->ring.req_prod_pvt) { 1603 int more_to_do; 1604 RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do); 1605 if (more_to_do) 1606 goto again; 1607 } else 1608 rinfo->ring.sring->rsp_event = i + 1; 1609 1610 kick_pending_request_queues_locked(rinfo); 1611 1612 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1613 1614 return IRQ_HANDLED; 1615 } 1616 1617 1618 static int setup_blkring(struct xenbus_device *dev, 1619 struct blkfront_ring_info *rinfo) 1620 { 1621 struct blkif_sring *sring; 1622 int err, i; 1623 struct blkfront_info *info = rinfo->dev_info; 1624 unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE; 1625 grant_ref_t gref[XENBUS_MAX_RING_GRANTS]; 1626 1627 for (i = 0; i < info->nr_ring_pages; i++) 1628 rinfo->ring_ref[i] = GRANT_INVALID_REF; 1629 1630 sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH, 1631 get_order(ring_size)); 1632 if (!sring) { 1633 xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring"); 1634 return -ENOMEM; 1635 } 1636 SHARED_RING_INIT(sring); 1637 FRONT_RING_INIT(&rinfo->ring, sring, ring_size); 1638 1639 err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref); 1640 if (err < 0) { 1641 free_pages((unsigned long)sring, get_order(ring_size)); 1642 rinfo->ring.sring = NULL; 1643 goto fail; 1644 } 1645 for (i = 0; i < info->nr_ring_pages; i++) 1646 rinfo->ring_ref[i] = gref[i]; 1647 1648 err = xenbus_alloc_evtchn(dev, &rinfo->evtchn); 1649 if (err) 1650 goto fail; 1651 1652 err = bind_evtchn_to_irqhandler(rinfo->evtchn, blkif_interrupt, 0, 1653 "blkif", rinfo); 1654 if (err <= 0) { 1655 xenbus_dev_fatal(dev, err, 1656 "bind_evtchn_to_irqhandler failed"); 1657 goto fail; 1658 } 1659 rinfo->irq = err; 1660 1661 return 0; 1662 fail: 1663 blkif_free(info, 0); 1664 return err; 1665 } 1666 1667 /* 1668 * Write out per-ring/queue nodes including ring-ref and event-channel, and each 1669 * ring buffer may have multi pages depending on ->nr_ring_pages. 1670 */ 1671 static int write_per_ring_nodes(struct xenbus_transaction xbt, 1672 struct blkfront_ring_info *rinfo, const char *dir) 1673 { 1674 int err; 1675 unsigned int i; 1676 const char *message = NULL; 1677 struct blkfront_info *info = rinfo->dev_info; 1678 1679 if (info->nr_ring_pages == 1) { 1680 err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]); 1681 if (err) { 1682 message = "writing ring-ref"; 1683 goto abort_transaction; 1684 } 1685 } else { 1686 for (i = 0; i < info->nr_ring_pages; i++) { 1687 char ring_ref_name[RINGREF_NAME_LEN]; 1688 1689 snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i); 1690 err = xenbus_printf(xbt, dir, ring_ref_name, 1691 "%u", rinfo->ring_ref[i]); 1692 if (err) { 1693 message = "writing ring-ref"; 1694 goto abort_transaction; 1695 } 1696 } 1697 } 1698 1699 err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn); 1700 if (err) { 1701 message = "writing event-channel"; 1702 goto abort_transaction; 1703 } 1704 1705 return 0; 1706 1707 abort_transaction: 1708 xenbus_transaction_end(xbt, 1); 1709 if (message) 1710 xenbus_dev_fatal(info->xbdev, err, "%s", message); 1711 1712 return err; 1713 } 1714 1715 /* Common code used when first setting up, and when resuming. */ 1716 static int talk_to_blkback(struct xenbus_device *dev, 1717 struct blkfront_info *info) 1718 { 1719 const char *message = NULL; 1720 struct xenbus_transaction xbt; 1721 int err; 1722 unsigned int i, max_page_order; 1723 unsigned int ring_page_order; 1724 struct blkfront_ring_info *rinfo; 1725 1726 if (!info) 1727 return -ENODEV; 1728 1729 max_page_order = xenbus_read_unsigned(info->xbdev->otherend, 1730 "max-ring-page-order", 0); 1731 ring_page_order = min(xen_blkif_max_ring_order, max_page_order); 1732 info->nr_ring_pages = 1 << ring_page_order; 1733 1734 err = negotiate_mq(info); 1735 if (err) 1736 goto destroy_blkring; 1737 1738 for_each_rinfo(info, rinfo, i) { 1739 /* Create shared ring, alloc event channel. */ 1740 err = setup_blkring(dev, rinfo); 1741 if (err) 1742 goto destroy_blkring; 1743 } 1744 1745 again: 1746 err = xenbus_transaction_start(&xbt); 1747 if (err) { 1748 xenbus_dev_fatal(dev, err, "starting transaction"); 1749 goto destroy_blkring; 1750 } 1751 1752 if (info->nr_ring_pages > 1) { 1753 err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u", 1754 ring_page_order); 1755 if (err) { 1756 message = "writing ring-page-order"; 1757 goto abort_transaction; 1758 } 1759 } 1760 1761 /* We already got the number of queues/rings in _probe */ 1762 if (info->nr_rings == 1) { 1763 err = write_per_ring_nodes(xbt, info->rinfo, dev->nodename); 1764 if (err) 1765 goto destroy_blkring; 1766 } else { 1767 char *path; 1768 size_t pathsize; 1769 1770 err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u", 1771 info->nr_rings); 1772 if (err) { 1773 message = "writing multi-queue-num-queues"; 1774 goto abort_transaction; 1775 } 1776 1777 pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN; 1778 path = kmalloc(pathsize, GFP_KERNEL); 1779 if (!path) { 1780 err = -ENOMEM; 1781 message = "ENOMEM while writing ring references"; 1782 goto abort_transaction; 1783 } 1784 1785 for_each_rinfo(info, rinfo, i) { 1786 memset(path, 0, pathsize); 1787 snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i); 1788 err = write_per_ring_nodes(xbt, rinfo, path); 1789 if (err) { 1790 kfree(path); 1791 goto destroy_blkring; 1792 } 1793 } 1794 kfree(path); 1795 } 1796 err = xenbus_printf(xbt, dev->nodename, "protocol", "%s", 1797 XEN_IO_PROTO_ABI_NATIVE); 1798 if (err) { 1799 message = "writing protocol"; 1800 goto abort_transaction; 1801 } 1802 err = xenbus_printf(xbt, dev->nodename, "feature-persistent", "%u", 1803 info->feature_persistent); 1804 if (err) 1805 dev_warn(&dev->dev, 1806 "writing persistent grants feature to xenbus"); 1807 1808 err = xenbus_transaction_end(xbt, 0); 1809 if (err) { 1810 if (err == -EAGAIN) 1811 goto again; 1812 xenbus_dev_fatal(dev, err, "completing transaction"); 1813 goto destroy_blkring; 1814 } 1815 1816 for_each_rinfo(info, rinfo, i) { 1817 unsigned int j; 1818 1819 for (j = 0; j < BLK_RING_SIZE(info); j++) 1820 rinfo->shadow[j].req.u.rw.id = j + 1; 1821 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff; 1822 } 1823 xenbus_switch_state(dev, XenbusStateInitialised); 1824 1825 return 0; 1826 1827 abort_transaction: 1828 xenbus_transaction_end(xbt, 1); 1829 if (message) 1830 xenbus_dev_fatal(dev, err, "%s", message); 1831 destroy_blkring: 1832 blkif_free(info, 0); 1833 return err; 1834 } 1835 1836 static int negotiate_mq(struct blkfront_info *info) 1837 { 1838 unsigned int backend_max_queues; 1839 unsigned int i; 1840 struct blkfront_ring_info *rinfo; 1841 1842 BUG_ON(info->nr_rings); 1843 1844 /* Check if backend supports multiple queues. */ 1845 backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend, 1846 "multi-queue-max-queues", 1); 1847 info->nr_rings = min(backend_max_queues, xen_blkif_max_queues); 1848 /* We need at least one ring. */ 1849 if (!info->nr_rings) 1850 info->nr_rings = 1; 1851 1852 info->rinfo_size = struct_size(info->rinfo, shadow, 1853 BLK_RING_SIZE(info)); 1854 info->rinfo = kvcalloc(info->nr_rings, info->rinfo_size, GFP_KERNEL); 1855 if (!info->rinfo) { 1856 xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure"); 1857 info->nr_rings = 0; 1858 return -ENOMEM; 1859 } 1860 1861 for_each_rinfo(info, rinfo, i) { 1862 INIT_LIST_HEAD(&rinfo->indirect_pages); 1863 INIT_LIST_HEAD(&rinfo->grants); 1864 rinfo->dev_info = info; 1865 INIT_WORK(&rinfo->work, blkif_restart_queue); 1866 spin_lock_init(&rinfo->ring_lock); 1867 } 1868 return 0; 1869 } 1870 1871 /* Enable the persistent grants feature. */ 1872 static bool feature_persistent = true; 1873 module_param(feature_persistent, bool, 0644); 1874 MODULE_PARM_DESC(feature_persistent, 1875 "Enables the persistent grants feature"); 1876 1877 /* 1878 * Entry point to this code when a new device is created. Allocate the basic 1879 * structures and the ring buffer for communication with the backend, and 1880 * inform the backend of the appropriate details for those. Switch to 1881 * Initialised state. 1882 */ 1883 static int blkfront_probe(struct xenbus_device *dev, 1884 const struct xenbus_device_id *id) 1885 { 1886 int err, vdevice; 1887 struct blkfront_info *info; 1888 1889 /* FIXME: Use dynamic device id if this is not set. */ 1890 err = xenbus_scanf(XBT_NIL, dev->nodename, 1891 "virtual-device", "%i", &vdevice); 1892 if (err != 1) { 1893 /* go looking in the extended area instead */ 1894 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext", 1895 "%i", &vdevice); 1896 if (err != 1) { 1897 xenbus_dev_fatal(dev, err, "reading virtual-device"); 1898 return err; 1899 } 1900 } 1901 1902 if (xen_hvm_domain()) { 1903 char *type; 1904 int len; 1905 /* no unplug has been done: do not hook devices != xen vbds */ 1906 if (xen_has_pv_and_legacy_disk_devices()) { 1907 int major; 1908 1909 if (!VDEV_IS_EXTENDED(vdevice)) 1910 major = BLKIF_MAJOR(vdevice); 1911 else 1912 major = XENVBD_MAJOR; 1913 1914 if (major != XENVBD_MAJOR) { 1915 printk(KERN_INFO 1916 "%s: HVM does not support vbd %d as xen block device\n", 1917 __func__, vdevice); 1918 return -ENODEV; 1919 } 1920 } 1921 /* do not create a PV cdrom device if we are an HVM guest */ 1922 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len); 1923 if (IS_ERR(type)) 1924 return -ENODEV; 1925 if (strncmp(type, "cdrom", 5) == 0) { 1926 kfree(type); 1927 return -ENODEV; 1928 } 1929 kfree(type); 1930 } 1931 info = kzalloc(sizeof(*info), GFP_KERNEL); 1932 if (!info) { 1933 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure"); 1934 return -ENOMEM; 1935 } 1936 1937 info->xbdev = dev; 1938 1939 mutex_init(&info->mutex); 1940 info->vdevice = vdevice; 1941 info->connected = BLKIF_STATE_DISCONNECTED; 1942 1943 info->feature_persistent = feature_persistent; 1944 1945 /* Front end dir is a number, which is used as the id. */ 1946 info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0); 1947 dev_set_drvdata(&dev->dev, info); 1948 1949 mutex_lock(&blkfront_mutex); 1950 list_add(&info->info_list, &info_list); 1951 mutex_unlock(&blkfront_mutex); 1952 1953 return 0; 1954 } 1955 1956 static int blkif_recover(struct blkfront_info *info) 1957 { 1958 unsigned int r_index; 1959 struct request *req, *n; 1960 int rc; 1961 struct bio *bio; 1962 unsigned int segs; 1963 struct blkfront_ring_info *rinfo; 1964 1965 blkfront_gather_backend_features(info); 1966 /* Reset limits changed by blk_mq_update_nr_hw_queues(). */ 1967 blkif_set_queue_limits(info); 1968 segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST; 1969 blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG); 1970 1971 for_each_rinfo(info, rinfo, r_index) { 1972 rc = blkfront_setup_indirect(rinfo); 1973 if (rc) 1974 return rc; 1975 } 1976 xenbus_switch_state(info->xbdev, XenbusStateConnected); 1977 1978 /* Now safe for us to use the shared ring */ 1979 info->connected = BLKIF_STATE_CONNECTED; 1980 1981 for_each_rinfo(info, rinfo, r_index) { 1982 /* Kick any other new requests queued since we resumed */ 1983 kick_pending_request_queues(rinfo); 1984 } 1985 1986 list_for_each_entry_safe(req, n, &info->requests, queuelist) { 1987 /* Requeue pending requests (flush or discard) */ 1988 list_del_init(&req->queuelist); 1989 BUG_ON(req->nr_phys_segments > segs); 1990 blk_mq_requeue_request(req, false); 1991 } 1992 blk_mq_start_stopped_hw_queues(info->rq, true); 1993 blk_mq_kick_requeue_list(info->rq); 1994 1995 while ((bio = bio_list_pop(&info->bio_list)) != NULL) { 1996 /* Traverse the list of pending bios and re-queue them */ 1997 submit_bio(bio); 1998 } 1999 2000 return 0; 2001 } 2002 2003 /* 2004 * We are reconnecting to the backend, due to a suspend/resume, or a backend 2005 * driver restart. We tear down our blkif structure and recreate it, but 2006 * leave the device-layer structures intact so that this is transparent to the 2007 * rest of the kernel. 2008 */ 2009 static int blkfront_resume(struct xenbus_device *dev) 2010 { 2011 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2012 int err = 0; 2013 unsigned int i, j; 2014 struct blkfront_ring_info *rinfo; 2015 2016 dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename); 2017 2018 bio_list_init(&info->bio_list); 2019 INIT_LIST_HEAD(&info->requests); 2020 for_each_rinfo(info, rinfo, i) { 2021 struct bio_list merge_bio; 2022 struct blk_shadow *shadow = rinfo->shadow; 2023 2024 for (j = 0; j < BLK_RING_SIZE(info); j++) { 2025 /* Not in use? */ 2026 if (!shadow[j].request) 2027 continue; 2028 2029 /* 2030 * Get the bios in the request so we can re-queue them. 2031 */ 2032 if (req_op(shadow[j].request) == REQ_OP_FLUSH || 2033 req_op(shadow[j].request) == REQ_OP_DISCARD || 2034 req_op(shadow[j].request) == REQ_OP_SECURE_ERASE || 2035 shadow[j].request->cmd_flags & REQ_FUA) { 2036 /* 2037 * Flush operations don't contain bios, so 2038 * we need to requeue the whole request 2039 * 2040 * XXX: but this doesn't make any sense for a 2041 * write with the FUA flag set.. 2042 */ 2043 list_add(&shadow[j].request->queuelist, &info->requests); 2044 continue; 2045 } 2046 merge_bio.head = shadow[j].request->bio; 2047 merge_bio.tail = shadow[j].request->biotail; 2048 bio_list_merge(&info->bio_list, &merge_bio); 2049 shadow[j].request->bio = NULL; 2050 blk_mq_end_request(shadow[j].request, BLK_STS_OK); 2051 } 2052 } 2053 2054 blkif_free(info, info->connected == BLKIF_STATE_CONNECTED); 2055 2056 err = talk_to_blkback(dev, info); 2057 if (!err) 2058 blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings); 2059 2060 /* 2061 * We have to wait for the backend to switch to 2062 * connected state, since we want to read which 2063 * features it supports. 2064 */ 2065 2066 return err; 2067 } 2068 2069 static void blkfront_closing(struct blkfront_info *info) 2070 { 2071 struct xenbus_device *xbdev = info->xbdev; 2072 struct blkfront_ring_info *rinfo; 2073 unsigned int i; 2074 2075 if (xbdev->state == XenbusStateClosing) 2076 return; 2077 2078 /* No more blkif_request(). */ 2079 blk_mq_stop_hw_queues(info->rq); 2080 blk_set_queue_dying(info->rq); 2081 set_capacity(info->gd, 0); 2082 2083 for_each_rinfo(info, rinfo, i) { 2084 /* No more gnttab callback work. */ 2085 gnttab_cancel_free_callback(&rinfo->callback); 2086 2087 /* Flush gnttab callback work. Must be done with no locks held. */ 2088 flush_work(&rinfo->work); 2089 } 2090 2091 xenbus_frontend_closed(xbdev); 2092 } 2093 2094 static void blkfront_setup_discard(struct blkfront_info *info) 2095 { 2096 info->feature_discard = 1; 2097 info->discard_granularity = xenbus_read_unsigned(info->xbdev->otherend, 2098 "discard-granularity", 2099 0); 2100 info->discard_alignment = xenbus_read_unsigned(info->xbdev->otherend, 2101 "discard-alignment", 0); 2102 info->feature_secdiscard = 2103 !!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure", 2104 0); 2105 } 2106 2107 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo) 2108 { 2109 unsigned int psegs, grants, memflags; 2110 int err, i; 2111 struct blkfront_info *info = rinfo->dev_info; 2112 2113 memflags = memalloc_noio_save(); 2114 2115 if (info->max_indirect_segments == 0) { 2116 if (!HAS_EXTRA_REQ) 2117 grants = BLKIF_MAX_SEGMENTS_PER_REQUEST; 2118 else { 2119 /* 2120 * When an extra req is required, the maximum 2121 * grants supported is related to the size of the 2122 * Linux block segment. 2123 */ 2124 grants = GRANTS_PER_PSEG; 2125 } 2126 } 2127 else 2128 grants = info->max_indirect_segments; 2129 psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG); 2130 2131 err = fill_grant_buffer(rinfo, 2132 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info)); 2133 if (err) 2134 goto out_of_memory; 2135 2136 if (!info->feature_persistent && info->max_indirect_segments) { 2137 /* 2138 * We are using indirect descriptors but not persistent 2139 * grants, we need to allocate a set of pages that can be 2140 * used for mapping indirect grefs 2141 */ 2142 int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info); 2143 2144 BUG_ON(!list_empty(&rinfo->indirect_pages)); 2145 for (i = 0; i < num; i++) { 2146 struct page *indirect_page = alloc_page(GFP_KERNEL); 2147 if (!indirect_page) 2148 goto out_of_memory; 2149 list_add(&indirect_page->lru, &rinfo->indirect_pages); 2150 } 2151 } 2152 2153 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2154 rinfo->shadow[i].grants_used = 2155 kvcalloc(grants, 2156 sizeof(rinfo->shadow[i].grants_used[0]), 2157 GFP_KERNEL); 2158 rinfo->shadow[i].sg = kvcalloc(psegs, 2159 sizeof(rinfo->shadow[i].sg[0]), 2160 GFP_KERNEL); 2161 if (info->max_indirect_segments) 2162 rinfo->shadow[i].indirect_grants = 2163 kvcalloc(INDIRECT_GREFS(grants), 2164 sizeof(rinfo->shadow[i].indirect_grants[0]), 2165 GFP_KERNEL); 2166 if ((rinfo->shadow[i].grants_used == NULL) || 2167 (rinfo->shadow[i].sg == NULL) || 2168 (info->max_indirect_segments && 2169 (rinfo->shadow[i].indirect_grants == NULL))) 2170 goto out_of_memory; 2171 sg_init_table(rinfo->shadow[i].sg, psegs); 2172 } 2173 2174 memalloc_noio_restore(memflags); 2175 2176 return 0; 2177 2178 out_of_memory: 2179 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2180 kvfree(rinfo->shadow[i].grants_used); 2181 rinfo->shadow[i].grants_used = NULL; 2182 kvfree(rinfo->shadow[i].sg); 2183 rinfo->shadow[i].sg = NULL; 2184 kvfree(rinfo->shadow[i].indirect_grants); 2185 rinfo->shadow[i].indirect_grants = NULL; 2186 } 2187 if (!list_empty(&rinfo->indirect_pages)) { 2188 struct page *indirect_page, *n; 2189 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) { 2190 list_del(&indirect_page->lru); 2191 __free_page(indirect_page); 2192 } 2193 } 2194 2195 memalloc_noio_restore(memflags); 2196 2197 return -ENOMEM; 2198 } 2199 2200 /* 2201 * Gather all backend feature-* 2202 */ 2203 static void blkfront_gather_backend_features(struct blkfront_info *info) 2204 { 2205 unsigned int indirect_segments; 2206 2207 info->feature_flush = 0; 2208 info->feature_fua = 0; 2209 2210 /* 2211 * If there's no "feature-barrier" defined, then it means 2212 * we're dealing with a very old backend which writes 2213 * synchronously; nothing to do. 2214 * 2215 * If there are barriers, then we use flush. 2216 */ 2217 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) { 2218 info->feature_flush = 1; 2219 info->feature_fua = 1; 2220 } 2221 2222 /* 2223 * And if there is "feature-flush-cache" use that above 2224 * barriers. 2225 */ 2226 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache", 2227 0)) { 2228 info->feature_flush = 1; 2229 info->feature_fua = 0; 2230 } 2231 2232 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0)) 2233 blkfront_setup_discard(info); 2234 2235 if (info->feature_persistent) 2236 info->feature_persistent = 2237 !!xenbus_read_unsigned(info->xbdev->otherend, 2238 "feature-persistent", 0); 2239 2240 indirect_segments = xenbus_read_unsigned(info->xbdev->otherend, 2241 "feature-max-indirect-segments", 0); 2242 if (indirect_segments > xen_blkif_max_segments) 2243 indirect_segments = xen_blkif_max_segments; 2244 if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST) 2245 indirect_segments = 0; 2246 info->max_indirect_segments = indirect_segments; 2247 2248 if (info->feature_persistent) { 2249 mutex_lock(&blkfront_mutex); 2250 schedule_delayed_work(&blkfront_work, HZ * 10); 2251 mutex_unlock(&blkfront_mutex); 2252 } 2253 } 2254 2255 /* 2256 * Invoked when the backend is finally 'ready' (and has told produced 2257 * the details about the physical device - #sectors, size, etc). 2258 */ 2259 static void blkfront_connect(struct blkfront_info *info) 2260 { 2261 unsigned long long sectors; 2262 unsigned long sector_size; 2263 unsigned int physical_sector_size; 2264 unsigned int binfo; 2265 int err, i; 2266 struct blkfront_ring_info *rinfo; 2267 2268 switch (info->connected) { 2269 case BLKIF_STATE_CONNECTED: 2270 /* 2271 * Potentially, the back-end may be signalling 2272 * a capacity change; update the capacity. 2273 */ 2274 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 2275 "sectors", "%Lu", §ors); 2276 if (XENBUS_EXIST_ERR(err)) 2277 return; 2278 printk(KERN_INFO "Setting capacity to %Lu\n", 2279 sectors); 2280 set_capacity_and_notify(info->gd, sectors); 2281 2282 return; 2283 case BLKIF_STATE_SUSPENDED: 2284 /* 2285 * If we are recovering from suspension, we need to wait 2286 * for the backend to announce it's features before 2287 * reconnecting, at least we need to know if the backend 2288 * supports indirect descriptors, and how many. 2289 */ 2290 blkif_recover(info); 2291 return; 2292 2293 default: 2294 break; 2295 } 2296 2297 dev_dbg(&info->xbdev->dev, "%s:%s.\n", 2298 __func__, info->xbdev->otherend); 2299 2300 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2301 "sectors", "%llu", §ors, 2302 "info", "%u", &binfo, 2303 "sector-size", "%lu", §or_size, 2304 NULL); 2305 if (err) { 2306 xenbus_dev_fatal(info->xbdev, err, 2307 "reading backend fields at %s", 2308 info->xbdev->otherend); 2309 return; 2310 } 2311 2312 /* 2313 * physical-sector-size is a newer field, so old backends may not 2314 * provide this. Assume physical sector size to be the same as 2315 * sector_size in that case. 2316 */ 2317 physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend, 2318 "physical-sector-size", 2319 sector_size); 2320 blkfront_gather_backend_features(info); 2321 for_each_rinfo(info, rinfo, i) { 2322 err = blkfront_setup_indirect(rinfo); 2323 if (err) { 2324 xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s", 2325 info->xbdev->otherend); 2326 blkif_free(info, 0); 2327 break; 2328 } 2329 } 2330 2331 err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size, 2332 physical_sector_size); 2333 if (err) { 2334 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s", 2335 info->xbdev->otherend); 2336 goto fail; 2337 } 2338 2339 xenbus_switch_state(info->xbdev, XenbusStateConnected); 2340 2341 /* Kick pending requests. */ 2342 info->connected = BLKIF_STATE_CONNECTED; 2343 for_each_rinfo(info, rinfo, i) 2344 kick_pending_request_queues(rinfo); 2345 2346 device_add_disk(&info->xbdev->dev, info->gd, NULL); 2347 2348 info->is_ready = 1; 2349 return; 2350 2351 fail: 2352 blkif_free(info, 0); 2353 return; 2354 } 2355 2356 /* 2357 * Callback received when the backend's state changes. 2358 */ 2359 static void blkback_changed(struct xenbus_device *dev, 2360 enum xenbus_state backend_state) 2361 { 2362 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2363 2364 dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state); 2365 2366 switch (backend_state) { 2367 case XenbusStateInitWait: 2368 if (dev->state != XenbusStateInitialising) 2369 break; 2370 if (talk_to_blkback(dev, info)) 2371 break; 2372 break; 2373 case XenbusStateInitialising: 2374 case XenbusStateInitialised: 2375 case XenbusStateReconfiguring: 2376 case XenbusStateReconfigured: 2377 case XenbusStateUnknown: 2378 break; 2379 2380 case XenbusStateConnected: 2381 /* 2382 * talk_to_blkback sets state to XenbusStateInitialised 2383 * and blkfront_connect sets it to XenbusStateConnected 2384 * (if connection went OK). 2385 * 2386 * If the backend (or toolstack) decides to poke at backend 2387 * state (and re-trigger the watch by setting the state repeatedly 2388 * to XenbusStateConnected (4)) we need to deal with this. 2389 * This is allowed as this is used to communicate to the guest 2390 * that the size of disk has changed! 2391 */ 2392 if ((dev->state != XenbusStateInitialised) && 2393 (dev->state != XenbusStateConnected)) { 2394 if (talk_to_blkback(dev, info)) 2395 break; 2396 } 2397 2398 blkfront_connect(info); 2399 break; 2400 2401 case XenbusStateClosed: 2402 if (dev->state == XenbusStateClosed) 2403 break; 2404 fallthrough; 2405 case XenbusStateClosing: 2406 blkfront_closing(info); 2407 break; 2408 } 2409 } 2410 2411 static int blkfront_remove(struct xenbus_device *xbdev) 2412 { 2413 struct blkfront_info *info = dev_get_drvdata(&xbdev->dev); 2414 2415 dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename); 2416 2417 del_gendisk(info->gd); 2418 2419 mutex_lock(&blkfront_mutex); 2420 list_del(&info->info_list); 2421 mutex_unlock(&blkfront_mutex); 2422 2423 blkif_free(info, 0); 2424 xlbd_release_minors(info->gd->first_minor, info->gd->minors); 2425 blk_cleanup_disk(info->gd); 2426 blk_mq_free_tag_set(&info->tag_set); 2427 2428 kfree(info); 2429 return 0; 2430 } 2431 2432 static int blkfront_is_ready(struct xenbus_device *dev) 2433 { 2434 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2435 2436 return info->is_ready && info->xbdev; 2437 } 2438 2439 static const struct block_device_operations xlvbd_block_fops = 2440 { 2441 .owner = THIS_MODULE, 2442 .getgeo = blkif_getgeo, 2443 .ioctl = blkif_ioctl, 2444 .compat_ioctl = blkdev_compat_ptr_ioctl, 2445 }; 2446 2447 2448 static const struct xenbus_device_id blkfront_ids[] = { 2449 { "vbd" }, 2450 { "" } 2451 }; 2452 2453 static struct xenbus_driver blkfront_driver = { 2454 .ids = blkfront_ids, 2455 .probe = blkfront_probe, 2456 .remove = blkfront_remove, 2457 .resume = blkfront_resume, 2458 .otherend_changed = blkback_changed, 2459 .is_ready = blkfront_is_ready, 2460 }; 2461 2462 static void purge_persistent_grants(struct blkfront_info *info) 2463 { 2464 unsigned int i; 2465 unsigned long flags; 2466 struct blkfront_ring_info *rinfo; 2467 2468 for_each_rinfo(info, rinfo, i) { 2469 struct grant *gnt_list_entry, *tmp; 2470 2471 spin_lock_irqsave(&rinfo->ring_lock, flags); 2472 2473 if (rinfo->persistent_gnts_c == 0) { 2474 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 2475 continue; 2476 } 2477 2478 list_for_each_entry_safe(gnt_list_entry, tmp, &rinfo->grants, 2479 node) { 2480 if (gnt_list_entry->gref == GRANT_INVALID_REF || 2481 gnttab_query_foreign_access(gnt_list_entry->gref)) 2482 continue; 2483 2484 list_del(&gnt_list_entry->node); 2485 gnttab_end_foreign_access(gnt_list_entry->gref, 0, 0UL); 2486 rinfo->persistent_gnts_c--; 2487 gnt_list_entry->gref = GRANT_INVALID_REF; 2488 list_add_tail(&gnt_list_entry->node, &rinfo->grants); 2489 } 2490 2491 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 2492 } 2493 } 2494 2495 static void blkfront_delay_work(struct work_struct *work) 2496 { 2497 struct blkfront_info *info; 2498 bool need_schedule_work = false; 2499 2500 mutex_lock(&blkfront_mutex); 2501 2502 list_for_each_entry(info, &info_list, info_list) { 2503 if (info->feature_persistent) { 2504 need_schedule_work = true; 2505 mutex_lock(&info->mutex); 2506 purge_persistent_grants(info); 2507 mutex_unlock(&info->mutex); 2508 } 2509 } 2510 2511 if (need_schedule_work) 2512 schedule_delayed_work(&blkfront_work, HZ * 10); 2513 2514 mutex_unlock(&blkfront_mutex); 2515 } 2516 2517 static int __init xlblk_init(void) 2518 { 2519 int ret; 2520 int nr_cpus = num_online_cpus(); 2521 2522 if (!xen_domain()) 2523 return -ENODEV; 2524 2525 if (!xen_has_pv_disk_devices()) 2526 return -ENODEV; 2527 2528 if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) { 2529 pr_warn("xen_blk: can't get major %d with name %s\n", 2530 XENVBD_MAJOR, DEV_NAME); 2531 return -ENODEV; 2532 } 2533 2534 if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST) 2535 xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST; 2536 2537 if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) { 2538 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n", 2539 xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER); 2540 xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER; 2541 } 2542 2543 if (xen_blkif_max_queues > nr_cpus) { 2544 pr_info("Invalid max_queues (%d), will use default max: %d.\n", 2545 xen_blkif_max_queues, nr_cpus); 2546 xen_blkif_max_queues = nr_cpus; 2547 } 2548 2549 INIT_DELAYED_WORK(&blkfront_work, blkfront_delay_work); 2550 2551 ret = xenbus_register_frontend(&blkfront_driver); 2552 if (ret) { 2553 unregister_blkdev(XENVBD_MAJOR, DEV_NAME); 2554 return ret; 2555 } 2556 2557 return 0; 2558 } 2559 module_init(xlblk_init); 2560 2561 2562 static void __exit xlblk_exit(void) 2563 { 2564 cancel_delayed_work_sync(&blkfront_work); 2565 2566 xenbus_unregister_driver(&blkfront_driver); 2567 unregister_blkdev(XENVBD_MAJOR, DEV_NAME); 2568 kfree(minors); 2569 } 2570 module_exit(xlblk_exit); 2571 2572 MODULE_DESCRIPTION("Xen virtual block device frontend"); 2573 MODULE_LICENSE("GPL"); 2574 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR); 2575 MODULE_ALIAS("xen:vbd"); 2576 MODULE_ALIAS("xenblk"); 2577