xref: /linux/drivers/block/xen-blkfront.c (revision 5ddb88f22eb97218d9295e69c39e0ff7cc64e09c)
1 /*
2  * blkfront.c
3  *
4  * XenLinux virtual block device driver.
5  *
6  * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
7  * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
8  * Copyright (c) 2004, Christian Limpach
9  * Copyright (c) 2004, Andrew Warfield
10  * Copyright (c) 2005, Christopher Clark
11  * Copyright (c) 2005, XenSource Ltd
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License version 2
15  * as published by the Free Software Foundation; or, when distributed
16  * separately from the Linux kernel or incorporated into other
17  * software packages, subject to the following license:
18  *
19  * Permission is hereby granted, free of charge, to any person obtaining a copy
20  * of this source file (the "Software"), to deal in the Software without
21  * restriction, including without limitation the rights to use, copy, modify,
22  * merge, publish, distribute, sublicense, and/or sell copies of the Software,
23  * and to permit persons to whom the Software is furnished to do so, subject to
24  * the following conditions:
25  *
26  * The above copyright notice and this permission notice shall be included in
27  * all copies or substantial portions of the Software.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
30  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
31  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
32  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
33  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
34  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
35  * IN THE SOFTWARE.
36  */
37 
38 #include <linux/interrupt.h>
39 #include <linux/blkdev.h>
40 #include <linux/blk-mq.h>
41 #include <linux/hdreg.h>
42 #include <linux/cdrom.h>
43 #include <linux/module.h>
44 #include <linux/slab.h>
45 #include <linux/major.h>
46 #include <linux/mutex.h>
47 #include <linux/scatterlist.h>
48 #include <linux/bitmap.h>
49 #include <linux/list.h>
50 #include <linux/workqueue.h>
51 #include <linux/sched/mm.h>
52 
53 #include <xen/xen.h>
54 #include <xen/xenbus.h>
55 #include <xen/grant_table.h>
56 #include <xen/events.h>
57 #include <xen/page.h>
58 #include <xen/platform_pci.h>
59 
60 #include <xen/interface/grant_table.h>
61 #include <xen/interface/io/blkif.h>
62 #include <xen/interface/io/protocols.h>
63 
64 #include <asm/xen/hypervisor.h>
65 
66 /*
67  * The minimal size of segment supported by the block framework is PAGE_SIZE.
68  * When Linux is using a different page size than Xen, it may not be possible
69  * to put all the data in a single segment.
70  * This can happen when the backend doesn't support indirect descriptor and
71  * therefore the maximum amount of data that a request can carry is
72  * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB
73  *
74  * Note that we only support one extra request. So the Linux page size
75  * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) =
76  * 88KB.
77  */
78 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE)
79 
80 enum blkif_state {
81 	BLKIF_STATE_DISCONNECTED,
82 	BLKIF_STATE_CONNECTED,
83 	BLKIF_STATE_SUSPENDED,
84 	BLKIF_STATE_ERROR,
85 };
86 
87 struct grant {
88 	grant_ref_t gref;
89 	struct page *page;
90 	struct list_head node;
91 };
92 
93 enum blk_req_status {
94 	REQ_PROCESSING,
95 	REQ_WAITING,
96 	REQ_DONE,
97 	REQ_ERROR,
98 	REQ_EOPNOTSUPP,
99 };
100 
101 struct blk_shadow {
102 	struct blkif_request req;
103 	struct request *request;
104 	struct grant **grants_used;
105 	struct grant **indirect_grants;
106 	struct scatterlist *sg;
107 	unsigned int num_sg;
108 	enum blk_req_status status;
109 
110 	#define NO_ASSOCIATED_ID ~0UL
111 	/*
112 	 * Id of the sibling if we ever need 2 requests when handling a
113 	 * block I/O request
114 	 */
115 	unsigned long associated_id;
116 };
117 
118 struct blkif_req {
119 	blk_status_t	error;
120 };
121 
122 static inline struct blkif_req *blkif_req(struct request *rq)
123 {
124 	return blk_mq_rq_to_pdu(rq);
125 }
126 
127 static DEFINE_MUTEX(blkfront_mutex);
128 static const struct block_device_operations xlvbd_block_fops;
129 static struct delayed_work blkfront_work;
130 static LIST_HEAD(info_list);
131 
132 /*
133  * Maximum number of segments in indirect requests, the actual value used by
134  * the frontend driver is the minimum of this value and the value provided
135  * by the backend driver.
136  */
137 
138 static unsigned int xen_blkif_max_segments = 32;
139 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 0444);
140 MODULE_PARM_DESC(max_indirect_segments,
141 		 "Maximum amount of segments in indirect requests (default is 32)");
142 
143 static unsigned int xen_blkif_max_queues = 4;
144 module_param_named(max_queues, xen_blkif_max_queues, uint, 0444);
145 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk");
146 
147 /*
148  * Maximum order of pages to be used for the shared ring between front and
149  * backend, 4KB page granularity is used.
150  */
151 static unsigned int xen_blkif_max_ring_order;
152 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, 0444);
153 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
154 
155 static bool __read_mostly xen_blkif_trusted = true;
156 module_param_named(trusted, xen_blkif_trusted, bool, 0644);
157 MODULE_PARM_DESC(trusted, "Is the backend trusted");
158 
159 #define BLK_RING_SIZE(info)	\
160 	__CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages)
161 
162 /*
163  * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
164  * characters are enough. Define to 20 to keep consistent with backend.
165  */
166 #define RINGREF_NAME_LEN (20)
167 /*
168  * queue-%u would take 7 + 10(UINT_MAX) = 17 characters.
169  */
170 #define QUEUE_NAME_LEN (17)
171 
172 /*
173  *  Per-ring info.
174  *  Every blkfront device can associate with one or more blkfront_ring_info,
175  *  depending on how many hardware queues/rings to be used.
176  */
177 struct blkfront_ring_info {
178 	/* Lock to protect data in every ring buffer. */
179 	spinlock_t ring_lock;
180 	struct blkif_front_ring ring;
181 	unsigned int ring_ref[XENBUS_MAX_RING_GRANTS];
182 	unsigned int evtchn, irq;
183 	struct work_struct work;
184 	struct gnttab_free_callback callback;
185 	struct list_head indirect_pages;
186 	struct list_head grants;
187 	unsigned int persistent_gnts_c;
188 	unsigned long shadow_free;
189 	struct blkfront_info *dev_info;
190 	struct blk_shadow shadow[];
191 };
192 
193 /*
194  * We have one of these per vbd, whether ide, scsi or 'other'.  They
195  * hang in private_data off the gendisk structure. We may end up
196  * putting all kinds of interesting stuff here :-)
197  */
198 struct blkfront_info
199 {
200 	struct mutex mutex;
201 	struct xenbus_device *xbdev;
202 	struct gendisk *gd;
203 	u16 sector_size;
204 	unsigned int physical_sector_size;
205 	unsigned long vdisk_info;
206 	int vdevice;
207 	blkif_vdev_t handle;
208 	enum blkif_state connected;
209 	/* Number of pages per ring buffer. */
210 	unsigned int nr_ring_pages;
211 	struct request_queue *rq;
212 	unsigned int feature_flush:1;
213 	unsigned int feature_fua:1;
214 	unsigned int feature_discard:1;
215 	unsigned int feature_secdiscard:1;
216 	/* Connect-time cached feature_persistent parameter */
217 	unsigned int feature_persistent_parm:1;
218 	/* Persistent grants feature negotiation result */
219 	unsigned int feature_persistent:1;
220 	unsigned int bounce:1;
221 	unsigned int discard_granularity;
222 	unsigned int discard_alignment;
223 	/* Number of 4KB segments handled */
224 	unsigned int max_indirect_segments;
225 	int is_ready;
226 	struct blk_mq_tag_set tag_set;
227 	struct blkfront_ring_info *rinfo;
228 	unsigned int nr_rings;
229 	unsigned int rinfo_size;
230 	/* Save uncomplete reqs and bios for migration. */
231 	struct list_head requests;
232 	struct bio_list bio_list;
233 	struct list_head info_list;
234 };
235 
236 static unsigned int nr_minors;
237 static unsigned long *minors;
238 static DEFINE_SPINLOCK(minor_lock);
239 
240 #define PARTS_PER_DISK		16
241 #define PARTS_PER_EXT_DISK      256
242 
243 #define BLKIF_MAJOR(dev) ((dev)>>8)
244 #define BLKIF_MINOR(dev) ((dev) & 0xff)
245 
246 #define EXT_SHIFT 28
247 #define EXTENDED (1<<EXT_SHIFT)
248 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
249 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
250 #define EMULATED_HD_DISK_MINOR_OFFSET (0)
251 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
252 #define EMULATED_SD_DISK_MINOR_OFFSET (0)
253 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
254 
255 #define DEV_NAME	"xvd"	/* name in /dev */
256 
257 /*
258  * Grants are always the same size as a Xen page (i.e 4KB).
259  * A physical segment is always the same size as a Linux page.
260  * Number of grants per physical segment
261  */
262 #define GRANTS_PER_PSEG	(PAGE_SIZE / XEN_PAGE_SIZE)
263 
264 #define GRANTS_PER_INDIRECT_FRAME \
265 	(XEN_PAGE_SIZE / sizeof(struct blkif_request_segment))
266 
267 #define INDIRECT_GREFS(_grants)		\
268 	DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME)
269 
270 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo);
271 static void blkfront_gather_backend_features(struct blkfront_info *info);
272 static int negotiate_mq(struct blkfront_info *info);
273 
274 #define for_each_rinfo(info, ptr, idx)				\
275 	for ((ptr) = (info)->rinfo, (idx) = 0;			\
276 	     (idx) < (info)->nr_rings;				\
277 	     (idx)++, (ptr) = (void *)(ptr) + (info)->rinfo_size)
278 
279 static inline struct blkfront_ring_info *
280 get_rinfo(const struct blkfront_info *info, unsigned int i)
281 {
282 	BUG_ON(i >= info->nr_rings);
283 	return (void *)info->rinfo + i * info->rinfo_size;
284 }
285 
286 static int get_id_from_freelist(struct blkfront_ring_info *rinfo)
287 {
288 	unsigned long free = rinfo->shadow_free;
289 
290 	BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info));
291 	rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id;
292 	rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
293 	return free;
294 }
295 
296 static int add_id_to_freelist(struct blkfront_ring_info *rinfo,
297 			      unsigned long id)
298 {
299 	if (rinfo->shadow[id].req.u.rw.id != id)
300 		return -EINVAL;
301 	if (rinfo->shadow[id].request == NULL)
302 		return -EINVAL;
303 	rinfo->shadow[id].req.u.rw.id  = rinfo->shadow_free;
304 	rinfo->shadow[id].request = NULL;
305 	rinfo->shadow_free = id;
306 	return 0;
307 }
308 
309 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)
310 {
311 	struct blkfront_info *info = rinfo->dev_info;
312 	struct page *granted_page;
313 	struct grant *gnt_list_entry, *n;
314 	int i = 0;
315 
316 	while (i < num) {
317 		gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
318 		if (!gnt_list_entry)
319 			goto out_of_memory;
320 
321 		if (info->bounce) {
322 			granted_page = alloc_page(GFP_NOIO | __GFP_ZERO);
323 			if (!granted_page) {
324 				kfree(gnt_list_entry);
325 				goto out_of_memory;
326 			}
327 			gnt_list_entry->page = granted_page;
328 		}
329 
330 		gnt_list_entry->gref = INVALID_GRANT_REF;
331 		list_add(&gnt_list_entry->node, &rinfo->grants);
332 		i++;
333 	}
334 
335 	return 0;
336 
337 out_of_memory:
338 	list_for_each_entry_safe(gnt_list_entry, n,
339 	                         &rinfo->grants, node) {
340 		list_del(&gnt_list_entry->node);
341 		if (info->bounce)
342 			__free_page(gnt_list_entry->page);
343 		kfree(gnt_list_entry);
344 		i--;
345 	}
346 	BUG_ON(i != 0);
347 	return -ENOMEM;
348 }
349 
350 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo)
351 {
352 	struct grant *gnt_list_entry;
353 
354 	BUG_ON(list_empty(&rinfo->grants));
355 	gnt_list_entry = list_first_entry(&rinfo->grants, struct grant,
356 					  node);
357 	list_del(&gnt_list_entry->node);
358 
359 	if (gnt_list_entry->gref != INVALID_GRANT_REF)
360 		rinfo->persistent_gnts_c--;
361 
362 	return gnt_list_entry;
363 }
364 
365 static inline void grant_foreign_access(const struct grant *gnt_list_entry,
366 					const struct blkfront_info *info)
367 {
368 	gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref,
369 						 info->xbdev->otherend_id,
370 						 gnt_list_entry->page,
371 						 0);
372 }
373 
374 static struct grant *get_grant(grant_ref_t *gref_head,
375 			       unsigned long gfn,
376 			       struct blkfront_ring_info *rinfo)
377 {
378 	struct grant *gnt_list_entry = get_free_grant(rinfo);
379 	struct blkfront_info *info = rinfo->dev_info;
380 
381 	if (gnt_list_entry->gref != INVALID_GRANT_REF)
382 		return gnt_list_entry;
383 
384 	/* Assign a gref to this page */
385 	gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
386 	BUG_ON(gnt_list_entry->gref == -ENOSPC);
387 	if (info->bounce)
388 		grant_foreign_access(gnt_list_entry, info);
389 	else {
390 		/* Grant access to the GFN passed by the caller */
391 		gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
392 						info->xbdev->otherend_id,
393 						gfn, 0);
394 	}
395 
396 	return gnt_list_entry;
397 }
398 
399 static struct grant *get_indirect_grant(grant_ref_t *gref_head,
400 					struct blkfront_ring_info *rinfo)
401 {
402 	struct grant *gnt_list_entry = get_free_grant(rinfo);
403 	struct blkfront_info *info = rinfo->dev_info;
404 
405 	if (gnt_list_entry->gref != INVALID_GRANT_REF)
406 		return gnt_list_entry;
407 
408 	/* Assign a gref to this page */
409 	gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
410 	BUG_ON(gnt_list_entry->gref == -ENOSPC);
411 	if (!info->bounce) {
412 		struct page *indirect_page;
413 
414 		/* Fetch a pre-allocated page to use for indirect grefs */
415 		BUG_ON(list_empty(&rinfo->indirect_pages));
416 		indirect_page = list_first_entry(&rinfo->indirect_pages,
417 						 struct page, lru);
418 		list_del(&indirect_page->lru);
419 		gnt_list_entry->page = indirect_page;
420 	}
421 	grant_foreign_access(gnt_list_entry, info);
422 
423 	return gnt_list_entry;
424 }
425 
426 static const char *op_name(int op)
427 {
428 	static const char *const names[] = {
429 		[BLKIF_OP_READ] = "read",
430 		[BLKIF_OP_WRITE] = "write",
431 		[BLKIF_OP_WRITE_BARRIER] = "barrier",
432 		[BLKIF_OP_FLUSH_DISKCACHE] = "flush",
433 		[BLKIF_OP_DISCARD] = "discard" };
434 
435 	if (op < 0 || op >= ARRAY_SIZE(names))
436 		return "unknown";
437 
438 	if (!names[op])
439 		return "reserved";
440 
441 	return names[op];
442 }
443 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
444 {
445 	unsigned int end = minor + nr;
446 	int rc;
447 
448 	if (end > nr_minors) {
449 		unsigned long *bitmap, *old;
450 
451 		bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
452 				 GFP_KERNEL);
453 		if (bitmap == NULL)
454 			return -ENOMEM;
455 
456 		spin_lock(&minor_lock);
457 		if (end > nr_minors) {
458 			old = minors;
459 			memcpy(bitmap, minors,
460 			       BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
461 			minors = bitmap;
462 			nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
463 		} else
464 			old = bitmap;
465 		spin_unlock(&minor_lock);
466 		kfree(old);
467 	}
468 
469 	spin_lock(&minor_lock);
470 	if (find_next_bit(minors, end, minor) >= end) {
471 		bitmap_set(minors, minor, nr);
472 		rc = 0;
473 	} else
474 		rc = -EBUSY;
475 	spin_unlock(&minor_lock);
476 
477 	return rc;
478 }
479 
480 static void xlbd_release_minors(unsigned int minor, unsigned int nr)
481 {
482 	unsigned int end = minor + nr;
483 
484 	BUG_ON(end > nr_minors);
485 	spin_lock(&minor_lock);
486 	bitmap_clear(minors,  minor, nr);
487 	spin_unlock(&minor_lock);
488 }
489 
490 static void blkif_restart_queue_callback(void *arg)
491 {
492 	struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg;
493 	schedule_work(&rinfo->work);
494 }
495 
496 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
497 {
498 	/* We don't have real geometry info, but let's at least return
499 	   values consistent with the size of the device */
500 	sector_t nsect = get_capacity(bd->bd_disk);
501 	sector_t cylinders = nsect;
502 
503 	hg->heads = 0xff;
504 	hg->sectors = 0x3f;
505 	sector_div(cylinders, hg->heads * hg->sectors);
506 	hg->cylinders = cylinders;
507 	if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
508 		hg->cylinders = 0xffff;
509 	return 0;
510 }
511 
512 static int blkif_ioctl(struct block_device *bdev, blk_mode_t mode,
513 		       unsigned command, unsigned long argument)
514 {
515 	struct blkfront_info *info = bdev->bd_disk->private_data;
516 	int i;
517 
518 	switch (command) {
519 	case CDROMMULTISESSION:
520 		for (i = 0; i < sizeof(struct cdrom_multisession); i++)
521 			if (put_user(0, (char __user *)(argument + i)))
522 				return -EFAULT;
523 		return 0;
524 	case CDROM_GET_CAPABILITY:
525 		if (!(info->vdisk_info & VDISK_CDROM))
526 			return -EINVAL;
527 		return 0;
528 	default:
529 		return -EINVAL;
530 	}
531 }
532 
533 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo,
534 					    struct request *req,
535 					    struct blkif_request **ring_req)
536 {
537 	unsigned long id;
538 
539 	*ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt);
540 	rinfo->ring.req_prod_pvt++;
541 
542 	id = get_id_from_freelist(rinfo);
543 	rinfo->shadow[id].request = req;
544 	rinfo->shadow[id].status = REQ_PROCESSING;
545 	rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID;
546 
547 	rinfo->shadow[id].req.u.rw.id = id;
548 
549 	return id;
550 }
551 
552 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)
553 {
554 	struct blkfront_info *info = rinfo->dev_info;
555 	struct blkif_request *ring_req, *final_ring_req;
556 	unsigned long id;
557 
558 	/* Fill out a communications ring structure. */
559 	id = blkif_ring_get_request(rinfo, req, &final_ring_req);
560 	ring_req = &rinfo->shadow[id].req;
561 
562 	ring_req->operation = BLKIF_OP_DISCARD;
563 	ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
564 	ring_req->u.discard.id = id;
565 	ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
566 	if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard)
567 		ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
568 	else
569 		ring_req->u.discard.flag = 0;
570 
571 	/* Copy the request to the ring page. */
572 	*final_ring_req = *ring_req;
573 	rinfo->shadow[id].status = REQ_WAITING;
574 
575 	return 0;
576 }
577 
578 struct setup_rw_req {
579 	unsigned int grant_idx;
580 	struct blkif_request_segment *segments;
581 	struct blkfront_ring_info *rinfo;
582 	struct blkif_request *ring_req;
583 	grant_ref_t gref_head;
584 	unsigned int id;
585 	/* Only used when persistent grant is used and it's a write request */
586 	bool need_copy;
587 	unsigned int bvec_off;
588 	char *bvec_data;
589 
590 	bool require_extra_req;
591 	struct blkif_request *extra_ring_req;
592 };
593 
594 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset,
595 				     unsigned int len, void *data)
596 {
597 	struct setup_rw_req *setup = data;
598 	int n, ref;
599 	struct grant *gnt_list_entry;
600 	unsigned int fsect, lsect;
601 	/* Convenient aliases */
602 	unsigned int grant_idx = setup->grant_idx;
603 	struct blkif_request *ring_req = setup->ring_req;
604 	struct blkfront_ring_info *rinfo = setup->rinfo;
605 	/*
606 	 * We always use the shadow of the first request to store the list
607 	 * of grant associated to the block I/O request. This made the
608 	 * completion more easy to handle even if the block I/O request is
609 	 * split.
610 	 */
611 	struct blk_shadow *shadow = &rinfo->shadow[setup->id];
612 
613 	if (unlikely(setup->require_extra_req &&
614 		     grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
615 		/*
616 		 * We are using the second request, setup grant_idx
617 		 * to be the index of the segment array.
618 		 */
619 		grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST;
620 		ring_req = setup->extra_ring_req;
621 	}
622 
623 	if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
624 	    (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) {
625 		if (setup->segments)
626 			kunmap_atomic(setup->segments);
627 
628 		n = grant_idx / GRANTS_PER_INDIRECT_FRAME;
629 		gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo);
630 		shadow->indirect_grants[n] = gnt_list_entry;
631 		setup->segments = kmap_atomic(gnt_list_entry->page);
632 		ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
633 	}
634 
635 	gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo);
636 	ref = gnt_list_entry->gref;
637 	/*
638 	 * All the grants are stored in the shadow of the first
639 	 * request. Therefore we have to use the global index.
640 	 */
641 	shadow->grants_used[setup->grant_idx] = gnt_list_entry;
642 
643 	if (setup->need_copy) {
644 		void *shared_data;
645 
646 		shared_data = kmap_atomic(gnt_list_entry->page);
647 		/*
648 		 * this does not wipe data stored outside the
649 		 * range sg->offset..sg->offset+sg->length.
650 		 * Therefore, blkback *could* see data from
651 		 * previous requests. This is OK as long as
652 		 * persistent grants are shared with just one
653 		 * domain. It may need refactoring if this
654 		 * changes
655 		 */
656 		memcpy(shared_data + offset,
657 		       setup->bvec_data + setup->bvec_off,
658 		       len);
659 
660 		kunmap_atomic(shared_data);
661 		setup->bvec_off += len;
662 	}
663 
664 	fsect = offset >> 9;
665 	lsect = fsect + (len >> 9) - 1;
666 	if (ring_req->operation != BLKIF_OP_INDIRECT) {
667 		ring_req->u.rw.seg[grant_idx] =
668 			(struct blkif_request_segment) {
669 				.gref       = ref,
670 				.first_sect = fsect,
671 				.last_sect  = lsect };
672 	} else {
673 		setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] =
674 			(struct blkif_request_segment) {
675 				.gref       = ref,
676 				.first_sect = fsect,
677 				.last_sect  = lsect };
678 	}
679 
680 	(setup->grant_idx)++;
681 }
682 
683 static void blkif_setup_extra_req(struct blkif_request *first,
684 				  struct blkif_request *second)
685 {
686 	uint16_t nr_segments = first->u.rw.nr_segments;
687 
688 	/*
689 	 * The second request is only present when the first request uses
690 	 * all its segments. It's always the continuity of the first one.
691 	 */
692 	first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
693 
694 	second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST;
695 	second->u.rw.sector_number = first->u.rw.sector_number +
696 		(BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512;
697 
698 	second->u.rw.handle = first->u.rw.handle;
699 	second->operation = first->operation;
700 }
701 
702 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)
703 {
704 	struct blkfront_info *info = rinfo->dev_info;
705 	struct blkif_request *ring_req, *extra_ring_req = NULL;
706 	struct blkif_request *final_ring_req, *final_extra_ring_req = NULL;
707 	unsigned long id, extra_id = NO_ASSOCIATED_ID;
708 	bool require_extra_req = false;
709 	int i;
710 	struct setup_rw_req setup = {
711 		.grant_idx = 0,
712 		.segments = NULL,
713 		.rinfo = rinfo,
714 		.need_copy = rq_data_dir(req) && info->bounce,
715 	};
716 
717 	/*
718 	 * Used to store if we are able to queue the request by just using
719 	 * existing persistent grants, or if we have to get new grants,
720 	 * as there are not sufficiently many free.
721 	 */
722 	bool new_persistent_gnts = false;
723 	struct scatterlist *sg;
724 	int num_sg, max_grefs, num_grant;
725 
726 	max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG;
727 	if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
728 		/*
729 		 * If we are using indirect segments we need to account
730 		 * for the indirect grefs used in the request.
731 		 */
732 		max_grefs += INDIRECT_GREFS(max_grefs);
733 
734 	/* Check if we have enough persistent grants to allocate a requests */
735 	if (rinfo->persistent_gnts_c < max_grefs) {
736 		new_persistent_gnts = true;
737 
738 		if (gnttab_alloc_grant_references(
739 		    max_grefs - rinfo->persistent_gnts_c,
740 		    &setup.gref_head) < 0) {
741 			gnttab_request_free_callback(
742 				&rinfo->callback,
743 				blkif_restart_queue_callback,
744 				rinfo,
745 				max_grefs - rinfo->persistent_gnts_c);
746 			return 1;
747 		}
748 	}
749 
750 	/* Fill out a communications ring structure. */
751 	id = blkif_ring_get_request(rinfo, req, &final_ring_req);
752 	ring_req = &rinfo->shadow[id].req;
753 
754 	num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg);
755 	num_grant = 0;
756 	/* Calculate the number of grant used */
757 	for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i)
758 	       num_grant += gnttab_count_grant(sg->offset, sg->length);
759 
760 	require_extra_req = info->max_indirect_segments == 0 &&
761 		num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST;
762 	BUG_ON(!HAS_EXTRA_REQ && require_extra_req);
763 
764 	rinfo->shadow[id].num_sg = num_sg;
765 	if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST &&
766 	    likely(!require_extra_req)) {
767 		/*
768 		 * The indirect operation can only be a BLKIF_OP_READ or
769 		 * BLKIF_OP_WRITE
770 		 */
771 		BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA);
772 		ring_req->operation = BLKIF_OP_INDIRECT;
773 		ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
774 			BLKIF_OP_WRITE : BLKIF_OP_READ;
775 		ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
776 		ring_req->u.indirect.handle = info->handle;
777 		ring_req->u.indirect.nr_segments = num_grant;
778 	} else {
779 		ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
780 		ring_req->u.rw.handle = info->handle;
781 		ring_req->operation = rq_data_dir(req) ?
782 			BLKIF_OP_WRITE : BLKIF_OP_READ;
783 		if (req_op(req) == REQ_OP_FLUSH ||
784 		    (req_op(req) == REQ_OP_WRITE && (req->cmd_flags & REQ_FUA))) {
785 			/*
786 			 * Ideally we can do an unordered flush-to-disk.
787 			 * In case the backend onlysupports barriers, use that.
788 			 * A barrier request a superset of FUA, so we can
789 			 * implement it the same way.  (It's also a FLUSH+FUA,
790 			 * since it is guaranteed ordered WRT previous writes.)
791 			 *
792 			 * Note that can end up here with a FUA write and the
793 			 * flags cleared.  This happens when the flag was
794 			 * run-time disabled after a failing I/O, and we'll
795 			 * simplify submit it as a normal write.
796 			 */
797 			if (info->feature_flush && info->feature_fua)
798 				ring_req->operation =
799 					BLKIF_OP_WRITE_BARRIER;
800 			else if (info->feature_flush)
801 				ring_req->operation =
802 					BLKIF_OP_FLUSH_DISKCACHE;
803 		}
804 		ring_req->u.rw.nr_segments = num_grant;
805 		if (unlikely(require_extra_req)) {
806 			extra_id = blkif_ring_get_request(rinfo, req,
807 							  &final_extra_ring_req);
808 			extra_ring_req = &rinfo->shadow[extra_id].req;
809 
810 			/*
811 			 * Only the first request contains the scatter-gather
812 			 * list.
813 			 */
814 			rinfo->shadow[extra_id].num_sg = 0;
815 
816 			blkif_setup_extra_req(ring_req, extra_ring_req);
817 
818 			/* Link the 2 requests together */
819 			rinfo->shadow[extra_id].associated_id = id;
820 			rinfo->shadow[id].associated_id = extra_id;
821 		}
822 	}
823 
824 	setup.ring_req = ring_req;
825 	setup.id = id;
826 
827 	setup.require_extra_req = require_extra_req;
828 	if (unlikely(require_extra_req))
829 		setup.extra_ring_req = extra_ring_req;
830 
831 	for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) {
832 		BUG_ON(sg->offset + sg->length > PAGE_SIZE);
833 
834 		if (setup.need_copy) {
835 			setup.bvec_off = sg->offset;
836 			setup.bvec_data = kmap_atomic(sg_page(sg));
837 		}
838 
839 		gnttab_foreach_grant_in_range(sg_page(sg),
840 					      sg->offset,
841 					      sg->length,
842 					      blkif_setup_rw_req_grant,
843 					      &setup);
844 
845 		if (setup.need_copy)
846 			kunmap_atomic(setup.bvec_data);
847 	}
848 	if (setup.segments)
849 		kunmap_atomic(setup.segments);
850 
851 	/* Copy request(s) to the ring page. */
852 	*final_ring_req = *ring_req;
853 	rinfo->shadow[id].status = REQ_WAITING;
854 	if (unlikely(require_extra_req)) {
855 		*final_extra_ring_req = *extra_ring_req;
856 		rinfo->shadow[extra_id].status = REQ_WAITING;
857 	}
858 
859 	if (new_persistent_gnts)
860 		gnttab_free_grant_references(setup.gref_head);
861 
862 	return 0;
863 }
864 
865 /*
866  * Generate a Xen blkfront IO request from a blk layer request.  Reads
867  * and writes are handled as expected.
868  *
869  * @req: a request struct
870  */
871 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)
872 {
873 	if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED))
874 		return 1;
875 
876 	if (unlikely(req_op(req) == REQ_OP_DISCARD ||
877 		     req_op(req) == REQ_OP_SECURE_ERASE))
878 		return blkif_queue_discard_req(req, rinfo);
879 	else
880 		return blkif_queue_rw_req(req, rinfo);
881 }
882 
883 static inline void flush_requests(struct blkfront_ring_info *rinfo)
884 {
885 	int notify;
886 
887 	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify);
888 
889 	if (notify)
890 		notify_remote_via_irq(rinfo->irq);
891 }
892 
893 static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx,
894 			  const struct blk_mq_queue_data *qd)
895 {
896 	unsigned long flags;
897 	int qid = hctx->queue_num;
898 	struct blkfront_info *info = hctx->queue->queuedata;
899 	struct blkfront_ring_info *rinfo = NULL;
900 
901 	rinfo = get_rinfo(info, qid);
902 	blk_mq_start_request(qd->rq);
903 	spin_lock_irqsave(&rinfo->ring_lock, flags);
904 
905 	/*
906 	 * Check if the backend actually supports flushes.
907 	 *
908 	 * While the block layer won't send us flushes if we don't claim to
909 	 * support them, the Xen protocol allows the backend to revoke support
910 	 * at any time.  That is of course a really bad idea and dangerous, but
911 	 * has been allowed for 10+ years.  In that case we simply clear the
912 	 * flags, and directly return here for an empty flush and ignore the
913 	 * FUA flag later on.
914 	 */
915 	if (unlikely(req_op(qd->rq) == REQ_OP_FLUSH && !info->feature_flush))
916 		goto complete;
917 
918 	if (RING_FULL(&rinfo->ring))
919 		goto out_busy;
920 	if (blkif_queue_request(qd->rq, rinfo))
921 		goto out_busy;
922 
923 	flush_requests(rinfo);
924 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
925 	return BLK_STS_OK;
926 
927 out_busy:
928 	blk_mq_stop_hw_queue(hctx);
929 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
930 	return BLK_STS_DEV_RESOURCE;
931 complete:
932 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
933 	blk_mq_end_request(qd->rq, BLK_STS_OK);
934 	return BLK_STS_OK;
935 }
936 
937 static void blkif_complete_rq(struct request *rq)
938 {
939 	blk_mq_end_request(rq, blkif_req(rq)->error);
940 }
941 
942 static const struct blk_mq_ops blkfront_mq_ops = {
943 	.queue_rq = blkif_queue_rq,
944 	.complete = blkif_complete_rq,
945 };
946 
947 static void blkif_set_queue_limits(const struct blkfront_info *info,
948 		struct queue_limits *lim)
949 {
950 	unsigned int segments = info->max_indirect_segments ? :
951 				BLKIF_MAX_SEGMENTS_PER_REQUEST;
952 
953 	if (info->feature_discard) {
954 		lim->max_hw_discard_sectors = UINT_MAX;
955 		if (info->discard_granularity)
956 			lim->discard_granularity = info->discard_granularity;
957 		lim->discard_alignment = info->discard_alignment;
958 		if (info->feature_secdiscard)
959 			lim->max_secure_erase_sectors = UINT_MAX;
960 	}
961 
962 	if (info->feature_flush) {
963 		lim->features |= BLK_FEAT_WRITE_CACHE;
964 		if (info->feature_fua)
965 			lim->features |= BLK_FEAT_FUA;
966 	}
967 
968 	/* Hard sector size and max sectors impersonate the equiv. hardware. */
969 	lim->logical_block_size = info->sector_size;
970 	lim->physical_block_size = info->physical_sector_size;
971 	lim->max_hw_sectors = (segments * XEN_PAGE_SIZE) / 512;
972 
973 	/* Each segment in a request is up to an aligned page in size. */
974 	lim->seg_boundary_mask = PAGE_SIZE - 1;
975 	lim->max_segment_size = PAGE_SIZE;
976 
977 	/* Ensure a merged request will fit in a single I/O ring slot. */
978 	lim->max_segments = segments / GRANTS_PER_PSEG;
979 
980 	/* Make sure buffer addresses are sector-aligned. */
981 	lim->dma_alignment = 511;
982 }
983 
984 static const char *flush_info(struct blkfront_info *info)
985 {
986 	if (info->feature_flush && info->feature_fua)
987 		return "barrier: enabled;";
988 	else if (info->feature_flush)
989 		return "flush diskcache: enabled;";
990 	else
991 		return "barrier or flush: disabled;";
992 }
993 
994 static void xlvbd_flush(struct blkfront_info *info)
995 {
996 	pr_info("blkfront: %s: %s %s %s %s %s %s %s\n",
997 		info->gd->disk_name, flush_info(info),
998 		"persistent grants:", info->feature_persistent ?
999 		"enabled;" : "disabled;", "indirect descriptors:",
1000 		info->max_indirect_segments ? "enabled;" : "disabled;",
1001 		"bounce buffer:", info->bounce ? "enabled" : "disabled;");
1002 }
1003 
1004 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
1005 {
1006 	int major;
1007 	major = BLKIF_MAJOR(vdevice);
1008 	*minor = BLKIF_MINOR(vdevice);
1009 	switch (major) {
1010 		case XEN_IDE0_MAJOR:
1011 			*offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
1012 			*minor = ((*minor / 64) * PARTS_PER_DISK) +
1013 				EMULATED_HD_DISK_MINOR_OFFSET;
1014 			break;
1015 		case XEN_IDE1_MAJOR:
1016 			*offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
1017 			*minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
1018 				EMULATED_HD_DISK_MINOR_OFFSET;
1019 			break;
1020 		case XEN_SCSI_DISK0_MAJOR:
1021 			*offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
1022 			*minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
1023 			break;
1024 		case XEN_SCSI_DISK1_MAJOR:
1025 		case XEN_SCSI_DISK2_MAJOR:
1026 		case XEN_SCSI_DISK3_MAJOR:
1027 		case XEN_SCSI_DISK4_MAJOR:
1028 		case XEN_SCSI_DISK5_MAJOR:
1029 		case XEN_SCSI_DISK6_MAJOR:
1030 		case XEN_SCSI_DISK7_MAJOR:
1031 			*offset = (*minor / PARTS_PER_DISK) +
1032 				((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
1033 				EMULATED_SD_DISK_NAME_OFFSET;
1034 			*minor = *minor +
1035 				((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
1036 				EMULATED_SD_DISK_MINOR_OFFSET;
1037 			break;
1038 		case XEN_SCSI_DISK8_MAJOR:
1039 		case XEN_SCSI_DISK9_MAJOR:
1040 		case XEN_SCSI_DISK10_MAJOR:
1041 		case XEN_SCSI_DISK11_MAJOR:
1042 		case XEN_SCSI_DISK12_MAJOR:
1043 		case XEN_SCSI_DISK13_MAJOR:
1044 		case XEN_SCSI_DISK14_MAJOR:
1045 		case XEN_SCSI_DISK15_MAJOR:
1046 			*offset = (*minor / PARTS_PER_DISK) +
1047 				((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
1048 				EMULATED_SD_DISK_NAME_OFFSET;
1049 			*minor = *minor +
1050 				((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
1051 				EMULATED_SD_DISK_MINOR_OFFSET;
1052 			break;
1053 		case XENVBD_MAJOR:
1054 			*offset = *minor / PARTS_PER_DISK;
1055 			break;
1056 		default:
1057 			printk(KERN_WARNING "blkfront: your disk configuration is "
1058 					"incorrect, please use an xvd device instead\n");
1059 			return -ENODEV;
1060 	}
1061 	return 0;
1062 }
1063 
1064 static char *encode_disk_name(char *ptr, unsigned int n)
1065 {
1066 	if (n >= 26)
1067 		ptr = encode_disk_name(ptr, n / 26 - 1);
1068 	*ptr = 'a' + n % 26;
1069 	return ptr + 1;
1070 }
1071 
1072 static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
1073 		struct blkfront_info *info, u16 sector_size,
1074 		unsigned int physical_sector_size)
1075 {
1076 	struct queue_limits lim = {};
1077 	struct gendisk *gd;
1078 	int nr_minors = 1;
1079 	int err;
1080 	unsigned int offset;
1081 	int minor;
1082 	int nr_parts;
1083 	char *ptr;
1084 
1085 	BUG_ON(info->gd != NULL);
1086 	BUG_ON(info->rq != NULL);
1087 
1088 	if ((info->vdevice>>EXT_SHIFT) > 1) {
1089 		/* this is above the extended range; something is wrong */
1090 		printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
1091 		return -ENODEV;
1092 	}
1093 
1094 	if (!VDEV_IS_EXTENDED(info->vdevice)) {
1095 		err = xen_translate_vdev(info->vdevice, &minor, &offset);
1096 		if (err)
1097 			return err;
1098 		nr_parts = PARTS_PER_DISK;
1099 	} else {
1100 		minor = BLKIF_MINOR_EXT(info->vdevice);
1101 		nr_parts = PARTS_PER_EXT_DISK;
1102 		offset = minor / nr_parts;
1103 		if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
1104 			printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
1105 					"emulated IDE disks,\n\t choose an xvd device name"
1106 					"from xvde on\n", info->vdevice);
1107 	}
1108 	if (minor >> MINORBITS) {
1109 		pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
1110 			info->vdevice, minor);
1111 		return -ENODEV;
1112 	}
1113 
1114 	if ((minor % nr_parts) == 0)
1115 		nr_minors = nr_parts;
1116 
1117 	err = xlbd_reserve_minors(minor, nr_minors);
1118 	if (err)
1119 		return err;
1120 
1121 	memset(&info->tag_set, 0, sizeof(info->tag_set));
1122 	info->tag_set.ops = &blkfront_mq_ops;
1123 	info->tag_set.nr_hw_queues = info->nr_rings;
1124 	if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) {
1125 		/*
1126 		 * When indirect descriptior is not supported, the I/O request
1127 		 * will be split between multiple request in the ring.
1128 		 * To avoid problems when sending the request, divide by
1129 		 * 2 the depth of the queue.
1130 		 */
1131 		info->tag_set.queue_depth =  BLK_RING_SIZE(info) / 2;
1132 	} else
1133 		info->tag_set.queue_depth = BLK_RING_SIZE(info);
1134 	info->tag_set.numa_node = NUMA_NO_NODE;
1135 	info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1136 	info->tag_set.cmd_size = sizeof(struct blkif_req);
1137 	info->tag_set.driver_data = info;
1138 
1139 	err = blk_mq_alloc_tag_set(&info->tag_set);
1140 	if (err)
1141 		goto out_release_minors;
1142 
1143 	blkif_set_queue_limits(info, &lim);
1144 	gd = blk_mq_alloc_disk(&info->tag_set, &lim, info);
1145 	if (IS_ERR(gd)) {
1146 		err = PTR_ERR(gd);
1147 		goto out_free_tag_set;
1148 	}
1149 
1150 	strcpy(gd->disk_name, DEV_NAME);
1151 	ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
1152 	BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
1153 	if (nr_minors > 1)
1154 		*ptr = 0;
1155 	else
1156 		snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
1157 			 "%d", minor & (nr_parts - 1));
1158 
1159 	gd->major = XENVBD_MAJOR;
1160 	gd->first_minor = minor;
1161 	gd->minors = nr_minors;
1162 	gd->fops = &xlvbd_block_fops;
1163 	gd->private_data = info;
1164 	set_capacity(gd, capacity);
1165 
1166 	info->rq = gd->queue;
1167 	info->gd = gd;
1168 	info->sector_size = sector_size;
1169 	info->physical_sector_size = physical_sector_size;
1170 
1171 	xlvbd_flush(info);
1172 
1173 	if (info->vdisk_info & VDISK_READONLY)
1174 		set_disk_ro(gd, 1);
1175 	if (info->vdisk_info & VDISK_REMOVABLE)
1176 		gd->flags |= GENHD_FL_REMOVABLE;
1177 
1178 	return 0;
1179 
1180 out_free_tag_set:
1181 	blk_mq_free_tag_set(&info->tag_set);
1182 out_release_minors:
1183 	xlbd_release_minors(minor, nr_minors);
1184 	return err;
1185 }
1186 
1187 /* Already hold rinfo->ring_lock. */
1188 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)
1189 {
1190 	if (!RING_FULL(&rinfo->ring))
1191 		blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true);
1192 }
1193 
1194 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo)
1195 {
1196 	unsigned long flags;
1197 
1198 	spin_lock_irqsave(&rinfo->ring_lock, flags);
1199 	kick_pending_request_queues_locked(rinfo);
1200 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1201 }
1202 
1203 static void blkif_restart_queue(struct work_struct *work)
1204 {
1205 	struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work);
1206 
1207 	if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED)
1208 		kick_pending_request_queues(rinfo);
1209 }
1210 
1211 static void blkif_free_ring(struct blkfront_ring_info *rinfo)
1212 {
1213 	struct grant *persistent_gnt, *n;
1214 	struct blkfront_info *info = rinfo->dev_info;
1215 	int i, j, segs;
1216 
1217 	/*
1218 	 * Remove indirect pages, this only happens when using indirect
1219 	 * descriptors but not persistent grants
1220 	 */
1221 	if (!list_empty(&rinfo->indirect_pages)) {
1222 		struct page *indirect_page, *n;
1223 
1224 		BUG_ON(info->bounce);
1225 		list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
1226 			list_del(&indirect_page->lru);
1227 			__free_page(indirect_page);
1228 		}
1229 	}
1230 
1231 	/* Remove all persistent grants. */
1232 	if (!list_empty(&rinfo->grants)) {
1233 		list_for_each_entry_safe(persistent_gnt, n,
1234 					 &rinfo->grants, node) {
1235 			list_del(&persistent_gnt->node);
1236 			if (persistent_gnt->gref != INVALID_GRANT_REF) {
1237 				gnttab_end_foreign_access(persistent_gnt->gref,
1238 							  NULL);
1239 				rinfo->persistent_gnts_c--;
1240 			}
1241 			if (info->bounce)
1242 				__free_page(persistent_gnt->page);
1243 			kfree(persistent_gnt);
1244 		}
1245 	}
1246 	BUG_ON(rinfo->persistent_gnts_c != 0);
1247 
1248 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
1249 		/*
1250 		 * Clear persistent grants present in requests already
1251 		 * on the shared ring
1252 		 */
1253 		if (!rinfo->shadow[i].request)
1254 			goto free_shadow;
1255 
1256 		segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1257 		       rinfo->shadow[i].req.u.indirect.nr_segments :
1258 		       rinfo->shadow[i].req.u.rw.nr_segments;
1259 		for (j = 0; j < segs; j++) {
1260 			persistent_gnt = rinfo->shadow[i].grants_used[j];
1261 			gnttab_end_foreign_access(persistent_gnt->gref, NULL);
1262 			if (info->bounce)
1263 				__free_page(persistent_gnt->page);
1264 			kfree(persistent_gnt);
1265 		}
1266 
1267 		if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1268 			/*
1269 			 * If this is not an indirect operation don't try to
1270 			 * free indirect segments
1271 			 */
1272 			goto free_shadow;
1273 
1274 		for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1275 			persistent_gnt = rinfo->shadow[i].indirect_grants[j];
1276 			gnttab_end_foreign_access(persistent_gnt->gref, NULL);
1277 			__free_page(persistent_gnt->page);
1278 			kfree(persistent_gnt);
1279 		}
1280 
1281 free_shadow:
1282 		kvfree(rinfo->shadow[i].grants_used);
1283 		rinfo->shadow[i].grants_used = NULL;
1284 		kvfree(rinfo->shadow[i].indirect_grants);
1285 		rinfo->shadow[i].indirect_grants = NULL;
1286 		kvfree(rinfo->shadow[i].sg);
1287 		rinfo->shadow[i].sg = NULL;
1288 	}
1289 
1290 	/* No more gnttab callback work. */
1291 	gnttab_cancel_free_callback(&rinfo->callback);
1292 
1293 	/* Flush gnttab callback work. Must be done with no locks held. */
1294 	flush_work(&rinfo->work);
1295 
1296 	/* Free resources associated with old device channel. */
1297 	xenbus_teardown_ring((void **)&rinfo->ring.sring, info->nr_ring_pages,
1298 			     rinfo->ring_ref);
1299 
1300 	if (rinfo->irq)
1301 		unbind_from_irqhandler(rinfo->irq, rinfo);
1302 	rinfo->evtchn = rinfo->irq = 0;
1303 }
1304 
1305 static void blkif_free(struct blkfront_info *info, int suspend)
1306 {
1307 	unsigned int i;
1308 	struct blkfront_ring_info *rinfo;
1309 
1310 	/* Prevent new requests being issued until we fix things up. */
1311 	info->connected = suspend ?
1312 		BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
1313 	/* No more blkif_request(). */
1314 	if (info->rq)
1315 		blk_mq_stop_hw_queues(info->rq);
1316 
1317 	for_each_rinfo(info, rinfo, i)
1318 		blkif_free_ring(rinfo);
1319 
1320 	kvfree(info->rinfo);
1321 	info->rinfo = NULL;
1322 	info->nr_rings = 0;
1323 }
1324 
1325 struct copy_from_grant {
1326 	const struct blk_shadow *s;
1327 	unsigned int grant_idx;
1328 	unsigned int bvec_offset;
1329 	char *bvec_data;
1330 };
1331 
1332 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset,
1333 				  unsigned int len, void *data)
1334 {
1335 	struct copy_from_grant *info = data;
1336 	char *shared_data;
1337 	/* Convenient aliases */
1338 	const struct blk_shadow *s = info->s;
1339 
1340 	shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page);
1341 
1342 	memcpy(info->bvec_data + info->bvec_offset,
1343 	       shared_data + offset, len);
1344 
1345 	info->bvec_offset += len;
1346 	info->grant_idx++;
1347 
1348 	kunmap_atomic(shared_data);
1349 }
1350 
1351 static enum blk_req_status blkif_rsp_to_req_status(int rsp)
1352 {
1353 	switch (rsp)
1354 	{
1355 	case BLKIF_RSP_OKAY:
1356 		return REQ_DONE;
1357 	case BLKIF_RSP_EOPNOTSUPP:
1358 		return REQ_EOPNOTSUPP;
1359 	case BLKIF_RSP_ERROR:
1360 	default:
1361 		return REQ_ERROR;
1362 	}
1363 }
1364 
1365 /*
1366  * Get the final status of the block request based on two ring response
1367  */
1368 static int blkif_get_final_status(enum blk_req_status s1,
1369 				  enum blk_req_status s2)
1370 {
1371 	BUG_ON(s1 < REQ_DONE);
1372 	BUG_ON(s2 < REQ_DONE);
1373 
1374 	if (s1 == REQ_ERROR || s2 == REQ_ERROR)
1375 		return BLKIF_RSP_ERROR;
1376 	else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP)
1377 		return BLKIF_RSP_EOPNOTSUPP;
1378 	return BLKIF_RSP_OKAY;
1379 }
1380 
1381 /*
1382  * Return values:
1383  *  1 response processed.
1384  *  0 missing further responses.
1385  * -1 error while processing.
1386  */
1387 static int blkif_completion(unsigned long *id,
1388 			    struct blkfront_ring_info *rinfo,
1389 			    struct blkif_response *bret)
1390 {
1391 	int i = 0;
1392 	struct scatterlist *sg;
1393 	int num_sg, num_grant;
1394 	struct blkfront_info *info = rinfo->dev_info;
1395 	struct blk_shadow *s = &rinfo->shadow[*id];
1396 	struct copy_from_grant data = {
1397 		.grant_idx = 0,
1398 	};
1399 
1400 	num_grant = s->req.operation == BLKIF_OP_INDIRECT ?
1401 		s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1402 
1403 	/* The I/O request may be split in two. */
1404 	if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) {
1405 		struct blk_shadow *s2 = &rinfo->shadow[s->associated_id];
1406 
1407 		/* Keep the status of the current response in shadow. */
1408 		s->status = blkif_rsp_to_req_status(bret->status);
1409 
1410 		/* Wait the second response if not yet here. */
1411 		if (s2->status < REQ_DONE)
1412 			return 0;
1413 
1414 		bret->status = blkif_get_final_status(s->status,
1415 						      s2->status);
1416 
1417 		/*
1418 		 * All the grants is stored in the first shadow in order
1419 		 * to make the completion code simpler.
1420 		 */
1421 		num_grant += s2->req.u.rw.nr_segments;
1422 
1423 		/*
1424 		 * The two responses may not come in order. Only the
1425 		 * first request will store the scatter-gather list.
1426 		 */
1427 		if (s2->num_sg != 0) {
1428 			/* Update "id" with the ID of the first response. */
1429 			*id = s->associated_id;
1430 			s = s2;
1431 		}
1432 
1433 		/*
1434 		 * We don't need anymore the second request, so recycling
1435 		 * it now.
1436 		 */
1437 		if (add_id_to_freelist(rinfo, s->associated_id))
1438 			WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n",
1439 			     info->gd->disk_name, s->associated_id);
1440 	}
1441 
1442 	data.s = s;
1443 	num_sg = s->num_sg;
1444 
1445 	if (bret->operation == BLKIF_OP_READ && info->bounce) {
1446 		for_each_sg(s->sg, sg, num_sg, i) {
1447 			BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1448 
1449 			data.bvec_offset = sg->offset;
1450 			data.bvec_data = kmap_atomic(sg_page(sg));
1451 
1452 			gnttab_foreach_grant_in_range(sg_page(sg),
1453 						      sg->offset,
1454 						      sg->length,
1455 						      blkif_copy_from_grant,
1456 						      &data);
1457 
1458 			kunmap_atomic(data.bvec_data);
1459 		}
1460 	}
1461 	/* Add the persistent grant into the list of free grants */
1462 	for (i = 0; i < num_grant; i++) {
1463 		if (!gnttab_try_end_foreign_access(s->grants_used[i]->gref)) {
1464 			/*
1465 			 * If the grant is still mapped by the backend (the
1466 			 * backend has chosen to make this grant persistent)
1467 			 * we add it at the head of the list, so it will be
1468 			 * reused first.
1469 			 */
1470 			if (!info->feature_persistent) {
1471 				pr_alert("backed has not unmapped grant: %u\n",
1472 					 s->grants_used[i]->gref);
1473 				return -1;
1474 			}
1475 			list_add(&s->grants_used[i]->node, &rinfo->grants);
1476 			rinfo->persistent_gnts_c++;
1477 		} else {
1478 			/*
1479 			 * If the grant is not mapped by the backend we add it
1480 			 * to the tail of the list, so it will not be picked
1481 			 * again unless we run out of persistent grants.
1482 			 */
1483 			s->grants_used[i]->gref = INVALID_GRANT_REF;
1484 			list_add_tail(&s->grants_used[i]->node, &rinfo->grants);
1485 		}
1486 	}
1487 	if (s->req.operation == BLKIF_OP_INDIRECT) {
1488 		for (i = 0; i < INDIRECT_GREFS(num_grant); i++) {
1489 			if (!gnttab_try_end_foreign_access(s->indirect_grants[i]->gref)) {
1490 				if (!info->feature_persistent) {
1491 					pr_alert("backed has not unmapped grant: %u\n",
1492 						 s->indirect_grants[i]->gref);
1493 					return -1;
1494 				}
1495 				list_add(&s->indirect_grants[i]->node, &rinfo->grants);
1496 				rinfo->persistent_gnts_c++;
1497 			} else {
1498 				struct page *indirect_page;
1499 
1500 				/*
1501 				 * Add the used indirect page back to the list of
1502 				 * available pages for indirect grefs.
1503 				 */
1504 				if (!info->bounce) {
1505 					indirect_page = s->indirect_grants[i]->page;
1506 					list_add(&indirect_page->lru, &rinfo->indirect_pages);
1507 				}
1508 				s->indirect_grants[i]->gref = INVALID_GRANT_REF;
1509 				list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants);
1510 			}
1511 		}
1512 	}
1513 
1514 	return 1;
1515 }
1516 
1517 static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1518 {
1519 	struct request *req;
1520 	struct blkif_response bret;
1521 	RING_IDX i, rp;
1522 	unsigned long flags;
1523 	struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id;
1524 	struct blkfront_info *info = rinfo->dev_info;
1525 	unsigned int eoiflag = XEN_EOI_FLAG_SPURIOUS;
1526 
1527 	if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) {
1528 		xen_irq_lateeoi(irq, XEN_EOI_FLAG_SPURIOUS);
1529 		return IRQ_HANDLED;
1530 	}
1531 
1532 	spin_lock_irqsave(&rinfo->ring_lock, flags);
1533  again:
1534 	rp = READ_ONCE(rinfo->ring.sring->rsp_prod);
1535 	virt_rmb(); /* Ensure we see queued responses up to 'rp'. */
1536 	if (RING_RESPONSE_PROD_OVERFLOW(&rinfo->ring, rp)) {
1537 		pr_alert("%s: illegal number of responses %u\n",
1538 			 info->gd->disk_name, rp - rinfo->ring.rsp_cons);
1539 		goto err;
1540 	}
1541 
1542 	for (i = rinfo->ring.rsp_cons; i != rp; i++) {
1543 		unsigned long id;
1544 		unsigned int op;
1545 
1546 		eoiflag = 0;
1547 
1548 		RING_COPY_RESPONSE(&rinfo->ring, i, &bret);
1549 		id = bret.id;
1550 
1551 		/*
1552 		 * The backend has messed up and given us an id that we would
1553 		 * never have given to it (we stamp it up to BLK_RING_SIZE -
1554 		 * look in get_id_from_freelist.
1555 		 */
1556 		if (id >= BLK_RING_SIZE(info)) {
1557 			pr_alert("%s: response has incorrect id (%ld)\n",
1558 				 info->gd->disk_name, id);
1559 			goto err;
1560 		}
1561 		if (rinfo->shadow[id].status != REQ_WAITING) {
1562 			pr_alert("%s: response references no pending request\n",
1563 				 info->gd->disk_name);
1564 			goto err;
1565 		}
1566 
1567 		rinfo->shadow[id].status = REQ_PROCESSING;
1568 		req  = rinfo->shadow[id].request;
1569 
1570 		op = rinfo->shadow[id].req.operation;
1571 		if (op == BLKIF_OP_INDIRECT)
1572 			op = rinfo->shadow[id].req.u.indirect.indirect_op;
1573 		if (bret.operation != op) {
1574 			pr_alert("%s: response has wrong operation (%u instead of %u)\n",
1575 				 info->gd->disk_name, bret.operation, op);
1576 			goto err;
1577 		}
1578 
1579 		if (bret.operation != BLKIF_OP_DISCARD) {
1580 			int ret;
1581 
1582 			/*
1583 			 * We may need to wait for an extra response if the
1584 			 * I/O request is split in 2
1585 			 */
1586 			ret = blkif_completion(&id, rinfo, &bret);
1587 			if (!ret)
1588 				continue;
1589 			if (unlikely(ret < 0))
1590 				goto err;
1591 		}
1592 
1593 		if (add_id_to_freelist(rinfo, id)) {
1594 			WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1595 			     info->gd->disk_name, op_name(bret.operation), id);
1596 			continue;
1597 		}
1598 
1599 		if (bret.status == BLKIF_RSP_OKAY)
1600 			blkif_req(req)->error = BLK_STS_OK;
1601 		else
1602 			blkif_req(req)->error = BLK_STS_IOERR;
1603 
1604 		switch (bret.operation) {
1605 		case BLKIF_OP_DISCARD:
1606 			if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) {
1607 				struct request_queue *rq = info->rq;
1608 
1609 				pr_warn_ratelimited("blkfront: %s: %s op failed\n",
1610 					   info->gd->disk_name, op_name(bret.operation));
1611 				blkif_req(req)->error = BLK_STS_NOTSUPP;
1612 				info->feature_discard = 0;
1613 				info->feature_secdiscard = 0;
1614 				blk_queue_disable_discard(rq);
1615 				blk_queue_disable_secure_erase(rq);
1616 			}
1617 			break;
1618 		case BLKIF_OP_FLUSH_DISKCACHE:
1619 		case BLKIF_OP_WRITE_BARRIER:
1620 			if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) {
1621 				pr_warn_ratelimited("blkfront: %s: %s op failed\n",
1622 				       info->gd->disk_name, op_name(bret.operation));
1623 				blkif_req(req)->error = BLK_STS_NOTSUPP;
1624 			}
1625 			if (unlikely(bret.status == BLKIF_RSP_ERROR &&
1626 				     rinfo->shadow[id].req.u.rw.nr_segments == 0)) {
1627 				pr_warn_ratelimited("blkfront: %s: empty %s op failed\n",
1628 				       info->gd->disk_name, op_name(bret.operation));
1629 				blkif_req(req)->error = BLK_STS_NOTSUPP;
1630 			}
1631 			if (unlikely(blkif_req(req)->error)) {
1632 				if (blkif_req(req)->error == BLK_STS_NOTSUPP)
1633 					blkif_req(req)->error = BLK_STS_OK;
1634 				info->feature_fua = 0;
1635 				info->feature_flush = 0;
1636 			}
1637 			fallthrough;
1638 		case BLKIF_OP_READ:
1639 		case BLKIF_OP_WRITE:
1640 			if (unlikely(bret.status != BLKIF_RSP_OKAY))
1641 				dev_dbg_ratelimited(&info->xbdev->dev,
1642 					"Bad return from blkdev data request: %#x\n",
1643 					bret.status);
1644 
1645 			break;
1646 		default:
1647 			BUG();
1648 		}
1649 
1650 		if (likely(!blk_should_fake_timeout(req->q)))
1651 			blk_mq_complete_request(req);
1652 	}
1653 
1654 	rinfo->ring.rsp_cons = i;
1655 
1656 	if (i != rinfo->ring.req_prod_pvt) {
1657 		int more_to_do;
1658 		RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do);
1659 		if (more_to_do)
1660 			goto again;
1661 	} else
1662 		rinfo->ring.sring->rsp_event = i + 1;
1663 
1664 	kick_pending_request_queues_locked(rinfo);
1665 
1666 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1667 
1668 	xen_irq_lateeoi(irq, eoiflag);
1669 
1670 	return IRQ_HANDLED;
1671 
1672  err:
1673 	info->connected = BLKIF_STATE_ERROR;
1674 
1675 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1676 
1677 	/* No EOI in order to avoid further interrupts. */
1678 
1679 	pr_alert("%s disabled for further use\n", info->gd->disk_name);
1680 	return IRQ_HANDLED;
1681 }
1682 
1683 
1684 static int setup_blkring(struct xenbus_device *dev,
1685 			 struct blkfront_ring_info *rinfo)
1686 {
1687 	struct blkif_sring *sring;
1688 	int err;
1689 	struct blkfront_info *info = rinfo->dev_info;
1690 	unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE;
1691 
1692 	err = xenbus_setup_ring(dev, GFP_NOIO, (void **)&sring,
1693 				info->nr_ring_pages, rinfo->ring_ref);
1694 	if (err)
1695 		goto fail;
1696 
1697 	XEN_FRONT_RING_INIT(&rinfo->ring, sring, ring_size);
1698 
1699 	err = xenbus_alloc_evtchn(dev, &rinfo->evtchn);
1700 	if (err)
1701 		goto fail;
1702 
1703 	err = bind_evtchn_to_irqhandler_lateeoi(rinfo->evtchn, blkif_interrupt,
1704 						0, "blkif", rinfo);
1705 	if (err <= 0) {
1706 		xenbus_dev_fatal(dev, err,
1707 				 "bind_evtchn_to_irqhandler failed");
1708 		goto fail;
1709 	}
1710 	rinfo->irq = err;
1711 
1712 	return 0;
1713 fail:
1714 	blkif_free(info, 0);
1715 	return err;
1716 }
1717 
1718 /*
1719  * Write out per-ring/queue nodes including ring-ref and event-channel, and each
1720  * ring buffer may have multi pages depending on ->nr_ring_pages.
1721  */
1722 static int write_per_ring_nodes(struct xenbus_transaction xbt,
1723 				struct blkfront_ring_info *rinfo, const char *dir)
1724 {
1725 	int err;
1726 	unsigned int i;
1727 	const char *message = NULL;
1728 	struct blkfront_info *info = rinfo->dev_info;
1729 
1730 	if (info->nr_ring_pages == 1) {
1731 		err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]);
1732 		if (err) {
1733 			message = "writing ring-ref";
1734 			goto abort_transaction;
1735 		}
1736 	} else {
1737 		for (i = 0; i < info->nr_ring_pages; i++) {
1738 			char ring_ref_name[RINGREF_NAME_LEN];
1739 
1740 			snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1741 			err = xenbus_printf(xbt, dir, ring_ref_name,
1742 					    "%u", rinfo->ring_ref[i]);
1743 			if (err) {
1744 				message = "writing ring-ref";
1745 				goto abort_transaction;
1746 			}
1747 		}
1748 	}
1749 
1750 	err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn);
1751 	if (err) {
1752 		message = "writing event-channel";
1753 		goto abort_transaction;
1754 	}
1755 
1756 	return 0;
1757 
1758 abort_transaction:
1759 	xenbus_transaction_end(xbt, 1);
1760 	if (message)
1761 		xenbus_dev_fatal(info->xbdev, err, "%s", message);
1762 
1763 	return err;
1764 }
1765 
1766 /* Enable the persistent grants feature. */
1767 static bool feature_persistent = true;
1768 module_param(feature_persistent, bool, 0644);
1769 MODULE_PARM_DESC(feature_persistent,
1770 		"Enables the persistent grants feature");
1771 
1772 /* Common code used when first setting up, and when resuming. */
1773 static int talk_to_blkback(struct xenbus_device *dev,
1774 			   struct blkfront_info *info)
1775 {
1776 	const char *message = NULL;
1777 	struct xenbus_transaction xbt;
1778 	int err;
1779 	unsigned int i, max_page_order;
1780 	unsigned int ring_page_order;
1781 	struct blkfront_ring_info *rinfo;
1782 
1783 	if (!info)
1784 		return -ENODEV;
1785 
1786 	/* Check if backend is trusted. */
1787 	info->bounce = !xen_blkif_trusted ||
1788 		       !xenbus_read_unsigned(dev->nodename, "trusted", 1);
1789 
1790 	max_page_order = xenbus_read_unsigned(info->xbdev->otherend,
1791 					      "max-ring-page-order", 0);
1792 	ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1793 	info->nr_ring_pages = 1 << ring_page_order;
1794 
1795 	err = negotiate_mq(info);
1796 	if (err)
1797 		goto destroy_blkring;
1798 
1799 	for_each_rinfo(info, rinfo, i) {
1800 		/* Create shared ring, alloc event channel. */
1801 		err = setup_blkring(dev, rinfo);
1802 		if (err)
1803 			goto destroy_blkring;
1804 	}
1805 
1806 again:
1807 	err = xenbus_transaction_start(&xbt);
1808 	if (err) {
1809 		xenbus_dev_fatal(dev, err, "starting transaction");
1810 		goto destroy_blkring;
1811 	}
1812 
1813 	if (info->nr_ring_pages > 1) {
1814 		err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u",
1815 				    ring_page_order);
1816 		if (err) {
1817 			message = "writing ring-page-order";
1818 			goto abort_transaction;
1819 		}
1820 	}
1821 
1822 	/* We already got the number of queues/rings in _probe */
1823 	if (info->nr_rings == 1) {
1824 		err = write_per_ring_nodes(xbt, info->rinfo, dev->nodename);
1825 		if (err)
1826 			goto destroy_blkring;
1827 	} else {
1828 		char *path;
1829 		size_t pathsize;
1830 
1831 		err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u",
1832 				    info->nr_rings);
1833 		if (err) {
1834 			message = "writing multi-queue-num-queues";
1835 			goto abort_transaction;
1836 		}
1837 
1838 		pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN;
1839 		path = kmalloc(pathsize, GFP_KERNEL);
1840 		if (!path) {
1841 			err = -ENOMEM;
1842 			message = "ENOMEM while writing ring references";
1843 			goto abort_transaction;
1844 		}
1845 
1846 		for_each_rinfo(info, rinfo, i) {
1847 			memset(path, 0, pathsize);
1848 			snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i);
1849 			err = write_per_ring_nodes(xbt, rinfo, path);
1850 			if (err) {
1851 				kfree(path);
1852 				goto destroy_blkring;
1853 			}
1854 		}
1855 		kfree(path);
1856 	}
1857 	err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1858 			    XEN_IO_PROTO_ABI_NATIVE);
1859 	if (err) {
1860 		message = "writing protocol";
1861 		goto abort_transaction;
1862 	}
1863 	info->feature_persistent_parm = feature_persistent;
1864 	err = xenbus_printf(xbt, dev->nodename, "feature-persistent", "%u",
1865 			info->feature_persistent_parm);
1866 	if (err)
1867 		dev_warn(&dev->dev,
1868 			 "writing persistent grants feature to xenbus");
1869 
1870 	err = xenbus_transaction_end(xbt, 0);
1871 	if (err) {
1872 		if (err == -EAGAIN)
1873 			goto again;
1874 		xenbus_dev_fatal(dev, err, "completing transaction");
1875 		goto destroy_blkring;
1876 	}
1877 
1878 	for_each_rinfo(info, rinfo, i) {
1879 		unsigned int j;
1880 
1881 		for (j = 0; j < BLK_RING_SIZE(info); j++)
1882 			rinfo->shadow[j].req.u.rw.id = j + 1;
1883 		rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1884 	}
1885 	xenbus_switch_state(dev, XenbusStateInitialised);
1886 
1887 	return 0;
1888 
1889  abort_transaction:
1890 	xenbus_transaction_end(xbt, 1);
1891 	if (message)
1892 		xenbus_dev_fatal(dev, err, "%s", message);
1893  destroy_blkring:
1894 	blkif_free(info, 0);
1895 	return err;
1896 }
1897 
1898 static int negotiate_mq(struct blkfront_info *info)
1899 {
1900 	unsigned int backend_max_queues;
1901 	unsigned int i;
1902 	struct blkfront_ring_info *rinfo;
1903 
1904 	BUG_ON(info->nr_rings);
1905 
1906 	/* Check if backend supports multiple queues. */
1907 	backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend,
1908 						  "multi-queue-max-queues", 1);
1909 	info->nr_rings = min(backend_max_queues, xen_blkif_max_queues);
1910 	/* We need at least one ring. */
1911 	if (!info->nr_rings)
1912 		info->nr_rings = 1;
1913 
1914 	info->rinfo_size = struct_size(info->rinfo, shadow,
1915 				       BLK_RING_SIZE(info));
1916 	info->rinfo = kvcalloc(info->nr_rings, info->rinfo_size, GFP_KERNEL);
1917 	if (!info->rinfo) {
1918 		xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure");
1919 		info->nr_rings = 0;
1920 		return -ENOMEM;
1921 	}
1922 
1923 	for_each_rinfo(info, rinfo, i) {
1924 		INIT_LIST_HEAD(&rinfo->indirect_pages);
1925 		INIT_LIST_HEAD(&rinfo->grants);
1926 		rinfo->dev_info = info;
1927 		INIT_WORK(&rinfo->work, blkif_restart_queue);
1928 		spin_lock_init(&rinfo->ring_lock);
1929 	}
1930 	return 0;
1931 }
1932 
1933 /*
1934  * Entry point to this code when a new device is created.  Allocate the basic
1935  * structures and the ring buffer for communication with the backend, and
1936  * inform the backend of the appropriate details for those.  Switch to
1937  * Initialised state.
1938  */
1939 static int blkfront_probe(struct xenbus_device *dev,
1940 			  const struct xenbus_device_id *id)
1941 {
1942 	int err, vdevice;
1943 	struct blkfront_info *info;
1944 
1945 	/* FIXME: Use dynamic device id if this is not set. */
1946 	err = xenbus_scanf(XBT_NIL, dev->nodename,
1947 			   "virtual-device", "%i", &vdevice);
1948 	if (err != 1) {
1949 		/* go looking in the extended area instead */
1950 		err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
1951 				   "%i", &vdevice);
1952 		if (err != 1) {
1953 			xenbus_dev_fatal(dev, err, "reading virtual-device");
1954 			return err;
1955 		}
1956 	}
1957 
1958 	if (xen_hvm_domain()) {
1959 		char *type;
1960 		int len;
1961 		/* no unplug has been done: do not hook devices != xen vbds */
1962 		if (xen_has_pv_and_legacy_disk_devices()) {
1963 			int major;
1964 
1965 			if (!VDEV_IS_EXTENDED(vdevice))
1966 				major = BLKIF_MAJOR(vdevice);
1967 			else
1968 				major = XENVBD_MAJOR;
1969 
1970 			if (major != XENVBD_MAJOR) {
1971 				printk(KERN_INFO
1972 						"%s: HVM does not support vbd %d as xen block device\n",
1973 						__func__, vdevice);
1974 				return -ENODEV;
1975 			}
1976 		}
1977 		/* do not create a PV cdrom device if we are an HVM guest */
1978 		type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
1979 		if (IS_ERR(type))
1980 			return -ENODEV;
1981 		if (strncmp(type, "cdrom", 5) == 0) {
1982 			kfree(type);
1983 			return -ENODEV;
1984 		}
1985 		kfree(type);
1986 	}
1987 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1988 	if (!info) {
1989 		xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
1990 		return -ENOMEM;
1991 	}
1992 
1993 	info->xbdev = dev;
1994 
1995 	mutex_init(&info->mutex);
1996 	info->vdevice = vdevice;
1997 	info->connected = BLKIF_STATE_DISCONNECTED;
1998 
1999 	/* Front end dir is a number, which is used as the id. */
2000 	info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
2001 	dev_set_drvdata(&dev->dev, info);
2002 
2003 	mutex_lock(&blkfront_mutex);
2004 	list_add(&info->info_list, &info_list);
2005 	mutex_unlock(&blkfront_mutex);
2006 
2007 	return 0;
2008 }
2009 
2010 static int blkif_recover(struct blkfront_info *info)
2011 {
2012 	struct queue_limits lim;
2013 	unsigned int r_index;
2014 	struct request *req, *n;
2015 	int rc;
2016 	struct bio *bio;
2017 	struct blkfront_ring_info *rinfo;
2018 
2019 	lim = queue_limits_start_update(info->rq);
2020 	blkfront_gather_backend_features(info);
2021 	blkif_set_queue_limits(info, &lim);
2022 	rc = queue_limits_commit_update(info->rq, &lim);
2023 	if (rc)
2024 		return rc;
2025 
2026 	for_each_rinfo(info, rinfo, r_index) {
2027 		rc = blkfront_setup_indirect(rinfo);
2028 		if (rc)
2029 			return rc;
2030 	}
2031 	xenbus_switch_state(info->xbdev, XenbusStateConnected);
2032 
2033 	/* Now safe for us to use the shared ring */
2034 	info->connected = BLKIF_STATE_CONNECTED;
2035 
2036 	for_each_rinfo(info, rinfo, r_index) {
2037 		/* Kick any other new requests queued since we resumed */
2038 		kick_pending_request_queues(rinfo);
2039 	}
2040 
2041 	list_for_each_entry_safe(req, n, &info->requests, queuelist) {
2042 		/* Requeue pending requests (flush or discard) */
2043 		list_del_init(&req->queuelist);
2044 		BUG_ON(req->nr_phys_segments >
2045 		       (info->max_indirect_segments ? :
2046 			BLKIF_MAX_SEGMENTS_PER_REQUEST));
2047 		blk_mq_requeue_request(req, false);
2048 	}
2049 	blk_mq_start_stopped_hw_queues(info->rq, true);
2050 	blk_mq_kick_requeue_list(info->rq);
2051 
2052 	while ((bio = bio_list_pop(&info->bio_list)) != NULL) {
2053 		/* Traverse the list of pending bios and re-queue them */
2054 		submit_bio(bio);
2055 	}
2056 
2057 	return 0;
2058 }
2059 
2060 /*
2061  * We are reconnecting to the backend, due to a suspend/resume, or a backend
2062  * driver restart.  We tear down our blkif structure and recreate it, but
2063  * leave the device-layer structures intact so that this is transparent to the
2064  * rest of the kernel.
2065  */
2066 static int blkfront_resume(struct xenbus_device *dev)
2067 {
2068 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2069 	int err = 0;
2070 	unsigned int i, j;
2071 	struct blkfront_ring_info *rinfo;
2072 
2073 	dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
2074 
2075 	bio_list_init(&info->bio_list);
2076 	INIT_LIST_HEAD(&info->requests);
2077 	for_each_rinfo(info, rinfo, i) {
2078 		struct bio_list merge_bio;
2079 		struct blk_shadow *shadow = rinfo->shadow;
2080 
2081 		for (j = 0; j < BLK_RING_SIZE(info); j++) {
2082 			/* Not in use? */
2083 			if (!shadow[j].request)
2084 				continue;
2085 
2086 			/*
2087 			 * Get the bios in the request so we can re-queue them.
2088 			 */
2089 			if (req_op(shadow[j].request) == REQ_OP_FLUSH ||
2090 			    req_op(shadow[j].request) == REQ_OP_DISCARD ||
2091 			    req_op(shadow[j].request) == REQ_OP_SECURE_ERASE ||
2092 			    shadow[j].request->cmd_flags & REQ_FUA) {
2093 				/*
2094 				 * Flush operations don't contain bios, so
2095 				 * we need to requeue the whole request
2096 				 *
2097 				 * XXX: but this doesn't make any sense for a
2098 				 * write with the FUA flag set..
2099 				 */
2100 				list_add(&shadow[j].request->queuelist, &info->requests);
2101 				continue;
2102 			}
2103 			merge_bio.head = shadow[j].request->bio;
2104 			merge_bio.tail = shadow[j].request->biotail;
2105 			bio_list_merge(&info->bio_list, &merge_bio);
2106 			shadow[j].request->bio = NULL;
2107 			blk_mq_end_request(shadow[j].request, BLK_STS_OK);
2108 		}
2109 	}
2110 
2111 	blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
2112 
2113 	err = talk_to_blkback(dev, info);
2114 	if (!err)
2115 		blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings);
2116 
2117 	/*
2118 	 * We have to wait for the backend to switch to
2119 	 * connected state, since we want to read which
2120 	 * features it supports.
2121 	 */
2122 
2123 	return err;
2124 }
2125 
2126 static void blkfront_closing(struct blkfront_info *info)
2127 {
2128 	struct xenbus_device *xbdev = info->xbdev;
2129 	struct blkfront_ring_info *rinfo;
2130 	unsigned int i;
2131 
2132 	if (xbdev->state == XenbusStateClosing)
2133 		return;
2134 
2135 	/* No more blkif_request(). */
2136 	if (info->rq && info->gd) {
2137 		blk_mq_stop_hw_queues(info->rq);
2138 		blk_mark_disk_dead(info->gd);
2139 	}
2140 
2141 	for_each_rinfo(info, rinfo, i) {
2142 		/* No more gnttab callback work. */
2143 		gnttab_cancel_free_callback(&rinfo->callback);
2144 
2145 		/* Flush gnttab callback work. Must be done with no locks held. */
2146 		flush_work(&rinfo->work);
2147 	}
2148 
2149 	xenbus_frontend_closed(xbdev);
2150 }
2151 
2152 static void blkfront_setup_discard(struct blkfront_info *info)
2153 {
2154 	info->feature_discard = 1;
2155 	info->discard_granularity = xenbus_read_unsigned(info->xbdev->otherend,
2156 							 "discard-granularity",
2157 							 0);
2158 	info->discard_alignment = xenbus_read_unsigned(info->xbdev->otherend,
2159 						       "discard-alignment", 0);
2160 	info->feature_secdiscard =
2161 		!!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure",
2162 				       0);
2163 }
2164 
2165 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo)
2166 {
2167 	unsigned int psegs, grants, memflags;
2168 	int err, i;
2169 	struct blkfront_info *info = rinfo->dev_info;
2170 
2171 	memflags = memalloc_noio_save();
2172 
2173 	if (info->max_indirect_segments == 0) {
2174 		if (!HAS_EXTRA_REQ)
2175 			grants = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2176 		else {
2177 			/*
2178 			 * When an extra req is required, the maximum
2179 			 * grants supported is related to the size of the
2180 			 * Linux block segment.
2181 			 */
2182 			grants = GRANTS_PER_PSEG;
2183 		}
2184 	}
2185 	else
2186 		grants = info->max_indirect_segments;
2187 	psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG);
2188 
2189 	err = fill_grant_buffer(rinfo,
2190 				(grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info));
2191 	if (err)
2192 		goto out_of_memory;
2193 
2194 	if (!info->bounce && info->max_indirect_segments) {
2195 		/*
2196 		 * We are using indirect descriptors but don't have a bounce
2197 		 * buffer, we need to allocate a set of pages that can be
2198 		 * used for mapping indirect grefs
2199 		 */
2200 		int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info);
2201 
2202 		BUG_ON(!list_empty(&rinfo->indirect_pages));
2203 		for (i = 0; i < num; i++) {
2204 			struct page *indirect_page = alloc_page(GFP_KERNEL |
2205 								__GFP_ZERO);
2206 			if (!indirect_page)
2207 				goto out_of_memory;
2208 			list_add(&indirect_page->lru, &rinfo->indirect_pages);
2209 		}
2210 	}
2211 
2212 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
2213 		rinfo->shadow[i].grants_used =
2214 			kvcalloc(grants,
2215 				 sizeof(rinfo->shadow[i].grants_used[0]),
2216 				 GFP_KERNEL);
2217 		rinfo->shadow[i].sg = kvcalloc(psegs,
2218 					       sizeof(rinfo->shadow[i].sg[0]),
2219 					       GFP_KERNEL);
2220 		if (info->max_indirect_segments)
2221 			rinfo->shadow[i].indirect_grants =
2222 				kvcalloc(INDIRECT_GREFS(grants),
2223 					 sizeof(rinfo->shadow[i].indirect_grants[0]),
2224 					 GFP_KERNEL);
2225 		if ((rinfo->shadow[i].grants_used == NULL) ||
2226 			(rinfo->shadow[i].sg == NULL) ||
2227 		     (info->max_indirect_segments &&
2228 		     (rinfo->shadow[i].indirect_grants == NULL)))
2229 			goto out_of_memory;
2230 		sg_init_table(rinfo->shadow[i].sg, psegs);
2231 	}
2232 
2233 	memalloc_noio_restore(memflags);
2234 
2235 	return 0;
2236 
2237 out_of_memory:
2238 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
2239 		kvfree(rinfo->shadow[i].grants_used);
2240 		rinfo->shadow[i].grants_used = NULL;
2241 		kvfree(rinfo->shadow[i].sg);
2242 		rinfo->shadow[i].sg = NULL;
2243 		kvfree(rinfo->shadow[i].indirect_grants);
2244 		rinfo->shadow[i].indirect_grants = NULL;
2245 	}
2246 	if (!list_empty(&rinfo->indirect_pages)) {
2247 		struct page *indirect_page, *n;
2248 		list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
2249 			list_del(&indirect_page->lru);
2250 			__free_page(indirect_page);
2251 		}
2252 	}
2253 
2254 	memalloc_noio_restore(memflags);
2255 
2256 	return -ENOMEM;
2257 }
2258 
2259 /*
2260  * Gather all backend feature-*
2261  */
2262 static void blkfront_gather_backend_features(struct blkfront_info *info)
2263 {
2264 	unsigned int indirect_segments;
2265 
2266 	info->feature_flush = 0;
2267 	info->feature_fua = 0;
2268 
2269 	/*
2270 	 * If there's no "feature-barrier" defined, then it means
2271 	 * we're dealing with a very old backend which writes
2272 	 * synchronously; nothing to do.
2273 	 *
2274 	 * If there are barriers, then we use flush.
2275 	 */
2276 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) {
2277 		info->feature_flush = 1;
2278 		info->feature_fua = 1;
2279 	}
2280 
2281 	/*
2282 	 * And if there is "feature-flush-cache" use that above
2283 	 * barriers.
2284 	 */
2285 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache",
2286 				 0)) {
2287 		info->feature_flush = 1;
2288 		info->feature_fua = 0;
2289 	}
2290 
2291 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0))
2292 		blkfront_setup_discard(info);
2293 
2294 	if (info->feature_persistent_parm)
2295 		info->feature_persistent =
2296 			!!xenbus_read_unsigned(info->xbdev->otherend,
2297 					       "feature-persistent", 0);
2298 	if (info->feature_persistent)
2299 		info->bounce = true;
2300 
2301 	indirect_segments = xenbus_read_unsigned(info->xbdev->otherend,
2302 					"feature-max-indirect-segments", 0);
2303 	if (indirect_segments > xen_blkif_max_segments)
2304 		indirect_segments = xen_blkif_max_segments;
2305 	if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST)
2306 		indirect_segments = 0;
2307 	info->max_indirect_segments = indirect_segments;
2308 
2309 	if (info->feature_persistent) {
2310 		mutex_lock(&blkfront_mutex);
2311 		schedule_delayed_work(&blkfront_work, HZ * 10);
2312 		mutex_unlock(&blkfront_mutex);
2313 	}
2314 }
2315 
2316 /*
2317  * Invoked when the backend is finally 'ready' (and has told produced
2318  * the details about the physical device - #sectors, size, etc).
2319  */
2320 static void blkfront_connect(struct blkfront_info *info)
2321 {
2322 	unsigned long long sectors;
2323 	unsigned long sector_size;
2324 	unsigned int physical_sector_size;
2325 	int err, i;
2326 	struct blkfront_ring_info *rinfo;
2327 
2328 	switch (info->connected) {
2329 	case BLKIF_STATE_CONNECTED:
2330 		/*
2331 		 * Potentially, the back-end may be signalling
2332 		 * a capacity change; update the capacity.
2333 		 */
2334 		err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2335 				   "sectors", "%Lu", &sectors);
2336 		if (XENBUS_EXIST_ERR(err))
2337 			return;
2338 		printk(KERN_INFO "Setting capacity to %Lu\n",
2339 		       sectors);
2340 		set_capacity_and_notify(info->gd, sectors);
2341 
2342 		return;
2343 	case BLKIF_STATE_SUSPENDED:
2344 		/*
2345 		 * If we are recovering from suspension, we need to wait
2346 		 * for the backend to announce it's features before
2347 		 * reconnecting, at least we need to know if the backend
2348 		 * supports indirect descriptors, and how many.
2349 		 */
2350 		blkif_recover(info);
2351 		return;
2352 
2353 	default:
2354 		break;
2355 	}
2356 
2357 	dev_dbg(&info->xbdev->dev, "%s:%s.\n",
2358 		__func__, info->xbdev->otherend);
2359 
2360 	err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2361 			    "sectors", "%llu", &sectors,
2362 			    "info", "%u", &info->vdisk_info,
2363 			    "sector-size", "%lu", &sector_size,
2364 			    NULL);
2365 	if (err) {
2366 		xenbus_dev_fatal(info->xbdev, err,
2367 				 "reading backend fields at %s",
2368 				 info->xbdev->otherend);
2369 		return;
2370 	}
2371 
2372 	/*
2373 	 * physical-sector-size is a newer field, so old backends may not
2374 	 * provide this. Assume physical sector size to be the same as
2375 	 * sector_size in that case.
2376 	 */
2377 	physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend,
2378 						    "physical-sector-size",
2379 						    sector_size);
2380 	blkfront_gather_backend_features(info);
2381 	for_each_rinfo(info, rinfo, i) {
2382 		err = blkfront_setup_indirect(rinfo);
2383 		if (err) {
2384 			xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
2385 					 info->xbdev->otherend);
2386 			blkif_free(info, 0);
2387 			break;
2388 		}
2389 	}
2390 
2391 	err = xlvbd_alloc_gendisk(sectors, info, sector_size,
2392 				  physical_sector_size);
2393 	if (err) {
2394 		xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
2395 				 info->xbdev->otherend);
2396 		goto fail;
2397 	}
2398 
2399 	xenbus_switch_state(info->xbdev, XenbusStateConnected);
2400 
2401 	/* Kick pending requests. */
2402 	info->connected = BLKIF_STATE_CONNECTED;
2403 	for_each_rinfo(info, rinfo, i)
2404 		kick_pending_request_queues(rinfo);
2405 
2406 	err = device_add_disk(&info->xbdev->dev, info->gd, NULL);
2407 	if (err) {
2408 		put_disk(info->gd);
2409 		blk_mq_free_tag_set(&info->tag_set);
2410 		info->rq = NULL;
2411 		goto fail;
2412 	}
2413 
2414 	info->is_ready = 1;
2415 	return;
2416 
2417 fail:
2418 	blkif_free(info, 0);
2419 	return;
2420 }
2421 
2422 /*
2423  * Callback received when the backend's state changes.
2424  */
2425 static void blkback_changed(struct xenbus_device *dev,
2426 			    enum xenbus_state backend_state)
2427 {
2428 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2429 
2430 	dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
2431 
2432 	switch (backend_state) {
2433 	case XenbusStateInitWait:
2434 		if (dev->state != XenbusStateInitialising)
2435 			break;
2436 		if (talk_to_blkback(dev, info))
2437 			break;
2438 		break;
2439 	case XenbusStateInitialising:
2440 	case XenbusStateInitialised:
2441 	case XenbusStateReconfiguring:
2442 	case XenbusStateReconfigured:
2443 	case XenbusStateUnknown:
2444 		break;
2445 
2446 	case XenbusStateConnected:
2447 		/*
2448 		 * talk_to_blkback sets state to XenbusStateInitialised
2449 		 * and blkfront_connect sets it to XenbusStateConnected
2450 		 * (if connection went OK).
2451 		 *
2452 		 * If the backend (or toolstack) decides to poke at backend
2453 		 * state (and re-trigger the watch by setting the state repeatedly
2454 		 * to XenbusStateConnected (4)) we need to deal with this.
2455 		 * This is allowed as this is used to communicate to the guest
2456 		 * that the size of disk has changed!
2457 		 */
2458 		if ((dev->state != XenbusStateInitialised) &&
2459 		    (dev->state != XenbusStateConnected)) {
2460 			if (talk_to_blkback(dev, info))
2461 				break;
2462 		}
2463 
2464 		blkfront_connect(info);
2465 		break;
2466 
2467 	case XenbusStateClosed:
2468 		if (dev->state == XenbusStateClosed)
2469 			break;
2470 		fallthrough;
2471 	case XenbusStateClosing:
2472 		blkfront_closing(info);
2473 		break;
2474 	}
2475 }
2476 
2477 static void blkfront_remove(struct xenbus_device *xbdev)
2478 {
2479 	struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
2480 
2481 	dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
2482 
2483 	if (info->gd)
2484 		del_gendisk(info->gd);
2485 
2486 	mutex_lock(&blkfront_mutex);
2487 	list_del(&info->info_list);
2488 	mutex_unlock(&blkfront_mutex);
2489 
2490 	blkif_free(info, 0);
2491 	if (info->gd) {
2492 		xlbd_release_minors(info->gd->first_minor, info->gd->minors);
2493 		put_disk(info->gd);
2494 		blk_mq_free_tag_set(&info->tag_set);
2495 	}
2496 
2497 	kfree(info);
2498 }
2499 
2500 static int blkfront_is_ready(struct xenbus_device *dev)
2501 {
2502 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2503 
2504 	return info->is_ready && info->xbdev;
2505 }
2506 
2507 static const struct block_device_operations xlvbd_block_fops =
2508 {
2509 	.owner = THIS_MODULE,
2510 	.getgeo = blkif_getgeo,
2511 	.ioctl = blkif_ioctl,
2512 	.compat_ioctl = blkdev_compat_ptr_ioctl,
2513 };
2514 
2515 
2516 static const struct xenbus_device_id blkfront_ids[] = {
2517 	{ "vbd" },
2518 	{ "" }
2519 };
2520 
2521 static struct xenbus_driver blkfront_driver = {
2522 	.ids  = blkfront_ids,
2523 	.probe = blkfront_probe,
2524 	.remove = blkfront_remove,
2525 	.resume = blkfront_resume,
2526 	.otherend_changed = blkback_changed,
2527 	.is_ready = blkfront_is_ready,
2528 };
2529 
2530 static void purge_persistent_grants(struct blkfront_info *info)
2531 {
2532 	unsigned int i;
2533 	unsigned long flags;
2534 	struct blkfront_ring_info *rinfo;
2535 
2536 	for_each_rinfo(info, rinfo, i) {
2537 		struct grant *gnt_list_entry, *tmp;
2538 		LIST_HEAD(grants);
2539 
2540 		spin_lock_irqsave(&rinfo->ring_lock, flags);
2541 
2542 		if (rinfo->persistent_gnts_c == 0) {
2543 			spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2544 			continue;
2545 		}
2546 
2547 		list_for_each_entry_safe(gnt_list_entry, tmp, &rinfo->grants,
2548 					 node) {
2549 			if (gnt_list_entry->gref == INVALID_GRANT_REF ||
2550 			    !gnttab_try_end_foreign_access(gnt_list_entry->gref))
2551 				continue;
2552 
2553 			list_del(&gnt_list_entry->node);
2554 			rinfo->persistent_gnts_c--;
2555 			gnt_list_entry->gref = INVALID_GRANT_REF;
2556 			list_add_tail(&gnt_list_entry->node, &grants);
2557 		}
2558 
2559 		list_splice_tail(&grants, &rinfo->grants);
2560 
2561 		spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2562 	}
2563 }
2564 
2565 static void blkfront_delay_work(struct work_struct *work)
2566 {
2567 	struct blkfront_info *info;
2568 	bool need_schedule_work = false;
2569 
2570 	/*
2571 	 * Note that when using bounce buffers but not persistent grants
2572 	 * there's no need to run blkfront_delay_work because grants are
2573 	 * revoked in blkif_completion or else an error is reported and the
2574 	 * connection is closed.
2575 	 */
2576 
2577 	mutex_lock(&blkfront_mutex);
2578 
2579 	list_for_each_entry(info, &info_list, info_list) {
2580 		if (info->feature_persistent) {
2581 			need_schedule_work = true;
2582 			mutex_lock(&info->mutex);
2583 			purge_persistent_grants(info);
2584 			mutex_unlock(&info->mutex);
2585 		}
2586 	}
2587 
2588 	if (need_schedule_work)
2589 		schedule_delayed_work(&blkfront_work, HZ * 10);
2590 
2591 	mutex_unlock(&blkfront_mutex);
2592 }
2593 
2594 static int __init xlblk_init(void)
2595 {
2596 	int ret;
2597 	int nr_cpus = num_online_cpus();
2598 
2599 	if (!xen_domain())
2600 		return -ENODEV;
2601 
2602 	if (!xen_has_pv_disk_devices())
2603 		return -ENODEV;
2604 
2605 	if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2606 		pr_warn("xen_blk: can't get major %d with name %s\n",
2607 			XENVBD_MAJOR, DEV_NAME);
2608 		return -ENODEV;
2609 	}
2610 
2611 	if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST)
2612 		xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2613 
2614 	if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) {
2615 		pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2616 			xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER);
2617 		xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER;
2618 	}
2619 
2620 	if (xen_blkif_max_queues > nr_cpus) {
2621 		pr_info("Invalid max_queues (%d), will use default max: %d.\n",
2622 			xen_blkif_max_queues, nr_cpus);
2623 		xen_blkif_max_queues = nr_cpus;
2624 	}
2625 
2626 	INIT_DELAYED_WORK(&blkfront_work, blkfront_delay_work);
2627 
2628 	ret = xenbus_register_frontend(&blkfront_driver);
2629 	if (ret) {
2630 		unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2631 		return ret;
2632 	}
2633 
2634 	return 0;
2635 }
2636 module_init(xlblk_init);
2637 
2638 
2639 static void __exit xlblk_exit(void)
2640 {
2641 	cancel_delayed_work_sync(&blkfront_work);
2642 
2643 	xenbus_unregister_driver(&blkfront_driver);
2644 	unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2645 	kfree(minors);
2646 }
2647 module_exit(xlblk_exit);
2648 
2649 MODULE_DESCRIPTION("Xen virtual block device frontend");
2650 MODULE_LICENSE("GPL");
2651 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2652 MODULE_ALIAS("xen:vbd");
2653 MODULE_ALIAS("xenblk");
2654