1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * RDMA Network Block Driver 4 * 5 * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved. 6 * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved. 7 * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved. 8 */ 9 10 #undef pr_fmt 11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt 12 13 #include <linux/module.h> 14 #include <linux/blkdev.h> 15 #include <linux/hdreg.h> 16 #include <linux/scatterlist.h> 17 #include <linux/idr.h> 18 19 #include "rnbd-clt.h" 20 21 MODULE_DESCRIPTION("RDMA Network Block Device Client"); 22 MODULE_LICENSE("GPL"); 23 24 static int rnbd_client_major; 25 static DEFINE_IDA(index_ida); 26 static DEFINE_MUTEX(sess_lock); 27 static LIST_HEAD(sess_list); 28 static struct workqueue_struct *rnbd_clt_wq; 29 30 /* 31 * Maximum number of partitions an instance can have. 32 * 6 bits = 64 minors = 63 partitions (one minor is used for the device itself) 33 */ 34 #define RNBD_PART_BITS 6 35 36 static inline bool rnbd_clt_get_sess(struct rnbd_clt_session *sess) 37 { 38 return refcount_inc_not_zero(&sess->refcount); 39 } 40 41 static void free_sess(struct rnbd_clt_session *sess); 42 43 static void rnbd_clt_put_sess(struct rnbd_clt_session *sess) 44 { 45 might_sleep(); 46 47 if (refcount_dec_and_test(&sess->refcount)) 48 free_sess(sess); 49 } 50 51 static void rnbd_clt_put_dev(struct rnbd_clt_dev *dev) 52 { 53 might_sleep(); 54 55 if (!refcount_dec_and_test(&dev->refcount)) 56 return; 57 58 ida_free(&index_ida, dev->clt_device_id); 59 kfree(dev->hw_queues); 60 kfree(dev->pathname); 61 rnbd_clt_put_sess(dev->sess); 62 mutex_destroy(&dev->lock); 63 kfree(dev); 64 } 65 66 static inline bool rnbd_clt_get_dev(struct rnbd_clt_dev *dev) 67 { 68 return refcount_inc_not_zero(&dev->refcount); 69 } 70 71 static void rnbd_clt_change_capacity(struct rnbd_clt_dev *dev, 72 sector_t new_nsectors) 73 { 74 if (get_capacity(dev->gd) == new_nsectors) 75 return; 76 77 /* 78 * If the size changed, we need to revalidate it 79 */ 80 rnbd_clt_info(dev, "Device size changed from %llu to %llu sectors\n", 81 get_capacity(dev->gd), new_nsectors); 82 set_capacity_and_notify(dev->gd, new_nsectors); 83 } 84 85 static int process_msg_open_rsp(struct rnbd_clt_dev *dev, 86 struct rnbd_msg_open_rsp *rsp) 87 { 88 struct kobject *gd_kobj; 89 int err = 0; 90 91 mutex_lock(&dev->lock); 92 if (dev->dev_state == DEV_STATE_UNMAPPED) { 93 rnbd_clt_info(dev, 94 "Ignoring Open-Response message from server for unmapped device\n"); 95 err = -ENOENT; 96 goto out; 97 } 98 if (dev->dev_state == DEV_STATE_MAPPED_DISCONNECTED) { 99 u64 nsectors = le64_to_cpu(rsp->nsectors); 100 101 rnbd_clt_change_capacity(dev, nsectors); 102 gd_kobj = &disk_to_dev(dev->gd)->kobj; 103 kobject_uevent(gd_kobj, KOBJ_ONLINE); 104 rnbd_clt_info(dev, "Device online, device remapped successfully\n"); 105 } 106 if (!rsp->logical_block_size) { 107 err = -EINVAL; 108 goto out; 109 } 110 dev->device_id = le32_to_cpu(rsp->device_id); 111 dev->dev_state = DEV_STATE_MAPPED; 112 113 out: 114 mutex_unlock(&dev->lock); 115 116 return err; 117 } 118 119 int rnbd_clt_resize_disk(struct rnbd_clt_dev *dev, sector_t newsize) 120 { 121 int ret = 0; 122 123 mutex_lock(&dev->lock); 124 if (dev->dev_state != DEV_STATE_MAPPED) { 125 pr_err("Failed to set new size of the device, device is not opened\n"); 126 ret = -ENOENT; 127 goto out; 128 } 129 rnbd_clt_change_capacity(dev, newsize); 130 131 out: 132 mutex_unlock(&dev->lock); 133 134 return ret; 135 } 136 137 static inline void rnbd_clt_dev_requeue(struct rnbd_queue *q) 138 { 139 if (WARN_ON(!q->hctx)) 140 return; 141 142 /* We can come here from interrupt, thus async=true */ 143 blk_mq_run_hw_queue(q->hctx, true); 144 } 145 146 enum { 147 RNBD_DELAY_IFBUSY = -1, 148 }; 149 150 /** 151 * rnbd_get_cpu_qlist() - finds a list with HW queues to be rerun 152 * @sess: Session to find a queue for 153 * @cpu: Cpu to start the search from 154 * 155 * Description: 156 * Each CPU has a list of HW queues, which needs to be rerun. If a list 157 * is not empty - it is marked with a bit. This function finds first 158 * set bit in a bitmap and returns corresponding CPU list. 159 */ 160 static struct rnbd_cpu_qlist * 161 rnbd_get_cpu_qlist(struct rnbd_clt_session *sess, int cpu) 162 { 163 int bit; 164 165 /* Search from cpu to nr_cpu_ids */ 166 bit = find_next_bit(sess->cpu_queues_bm, nr_cpu_ids, cpu); 167 if (bit < nr_cpu_ids) { 168 return per_cpu_ptr(sess->cpu_queues, bit); 169 } else if (cpu != 0) { 170 /* Search from 0 to cpu */ 171 bit = find_first_bit(sess->cpu_queues_bm, cpu); 172 if (bit < cpu) 173 return per_cpu_ptr(sess->cpu_queues, bit); 174 } 175 176 return NULL; 177 } 178 179 static inline int nxt_cpu(int cpu) 180 { 181 return (cpu + 1) % nr_cpu_ids; 182 } 183 184 /** 185 * rnbd_rerun_if_needed() - rerun next queue marked as stopped 186 * @sess: Session to rerun a queue on 187 * 188 * Description: 189 * Each CPU has it's own list of HW queues, which should be rerun. 190 * Function finds such list with HW queues, takes a list lock, picks up 191 * the first HW queue out of the list and requeues it. 192 * 193 * Return: 194 * True if the queue was requeued, false otherwise. 195 * 196 * Context: 197 * Does not matter. 198 */ 199 static bool rnbd_rerun_if_needed(struct rnbd_clt_session *sess) 200 { 201 struct rnbd_queue *q = NULL; 202 struct rnbd_cpu_qlist *cpu_q; 203 unsigned long flags; 204 int *cpup; 205 206 /* 207 * To keep fairness and not to let other queues starve we always 208 * try to wake up someone else in round-robin manner. That of course 209 * increases latency but queues always have a chance to be executed. 210 */ 211 cpup = get_cpu_ptr(sess->cpu_rr); 212 for (cpu_q = rnbd_get_cpu_qlist(sess, nxt_cpu(*cpup)); cpu_q; 213 cpu_q = rnbd_get_cpu_qlist(sess, nxt_cpu(cpu_q->cpu))) { 214 if (!spin_trylock_irqsave(&cpu_q->requeue_lock, flags)) 215 continue; 216 if (!test_bit(cpu_q->cpu, sess->cpu_queues_bm)) 217 goto unlock; 218 q = list_first_entry_or_null(&cpu_q->requeue_list, 219 typeof(*q), requeue_list); 220 if (WARN_ON(!q)) 221 goto clear_bit; 222 list_del_init(&q->requeue_list); 223 clear_bit_unlock(0, &q->in_list); 224 225 if (list_empty(&cpu_q->requeue_list)) { 226 /* Clear bit if nothing is left */ 227 clear_bit: 228 clear_bit(cpu_q->cpu, sess->cpu_queues_bm); 229 } 230 unlock: 231 spin_unlock_irqrestore(&cpu_q->requeue_lock, flags); 232 233 if (q) 234 break; 235 } 236 237 /** 238 * Saves the CPU that is going to be requeued on the per-cpu var. Just 239 * incrementing it doesn't work because rnbd_get_cpu_qlist() will 240 * always return the first CPU with something on the queue list when the 241 * value stored on the var is greater than the last CPU with something 242 * on the list. 243 */ 244 if (cpu_q) 245 *cpup = cpu_q->cpu; 246 put_cpu_ptr(sess->cpu_rr); 247 248 if (q) 249 rnbd_clt_dev_requeue(q); 250 251 return q; 252 } 253 254 /** 255 * rnbd_rerun_all_if_idle() - rerun all queues left in the list if 256 * session is idling (there are no requests 257 * in-flight). 258 * @sess: Session to rerun the queues on 259 * 260 * Description: 261 * This function tries to rerun all stopped queues if there are no 262 * requests in-flight anymore. This function tries to solve an obvious 263 * problem, when number of tags < than number of queues (hctx), which 264 * are stopped and put to sleep. If last permit, which has been just put, 265 * does not wake up all left queues (hctxs), IO requests hang forever. 266 * 267 * That can happen when all number of permits, say N, have been exhausted 268 * from one CPU, and we have many block devices per session, say M. 269 * Each block device has it's own queue (hctx) for each CPU, so eventually 270 * we can put that number of queues (hctxs) to sleep: M x nr_cpu_ids. 271 * If number of permits N < M x nr_cpu_ids finally we will get an IO hang. 272 * 273 * To avoid this hang last caller of rnbd_put_permit() (last caller is the 274 * one who observes sess->busy == 0) must wake up all remaining queues. 275 * 276 * Context: 277 * Does not matter. 278 */ 279 static void rnbd_rerun_all_if_idle(struct rnbd_clt_session *sess) 280 { 281 bool requeued; 282 283 do { 284 requeued = rnbd_rerun_if_needed(sess); 285 } while (atomic_read(&sess->busy) == 0 && requeued); 286 } 287 288 static struct rtrs_permit *rnbd_get_permit(struct rnbd_clt_session *sess, 289 enum rtrs_clt_con_type con_type, 290 enum wait_type wait) 291 { 292 struct rtrs_permit *permit; 293 294 permit = rtrs_clt_get_permit(sess->rtrs, con_type, wait); 295 if (permit) 296 /* We have a subtle rare case here, when all permits can be 297 * consumed before busy counter increased. This is safe, 298 * because loser will get NULL as a permit, observe 0 busy 299 * counter and immediately restart the queue himself. 300 */ 301 atomic_inc(&sess->busy); 302 303 return permit; 304 } 305 306 static void rnbd_put_permit(struct rnbd_clt_session *sess, 307 struct rtrs_permit *permit) 308 { 309 rtrs_clt_put_permit(sess->rtrs, permit); 310 atomic_dec(&sess->busy); 311 /* Paired with rnbd_clt_dev_add_to_requeue(). Decrement first 312 * and then check queue bits. 313 */ 314 smp_mb__after_atomic(); 315 rnbd_rerun_all_if_idle(sess); 316 } 317 318 static struct rnbd_iu *rnbd_get_iu(struct rnbd_clt_session *sess, 319 enum rtrs_clt_con_type con_type, 320 enum wait_type wait) 321 { 322 struct rnbd_iu *iu; 323 struct rtrs_permit *permit; 324 325 iu = kzalloc(sizeof(*iu), GFP_KERNEL); 326 if (!iu) 327 return NULL; 328 329 permit = rnbd_get_permit(sess, con_type, wait); 330 if (!permit) { 331 kfree(iu); 332 return NULL; 333 } 334 335 iu->permit = permit; 336 /* 337 * 1st reference is dropped after finishing sending a "user" message, 338 * 2nd reference is dropped after confirmation with the response is 339 * returned. 340 * 1st and 2nd can happen in any order, so the rnbd_iu should be 341 * released (rtrs_permit returned to rtrs) only after both 342 * are finished. 343 */ 344 atomic_set(&iu->refcount, 2); 345 init_waitqueue_head(&iu->comp.wait); 346 iu->comp.errno = INT_MAX; 347 348 if (sg_alloc_table(&iu->sgt, 1, GFP_KERNEL)) { 349 rnbd_put_permit(sess, permit); 350 kfree(iu); 351 return NULL; 352 } 353 354 return iu; 355 } 356 357 static void rnbd_put_iu(struct rnbd_clt_session *sess, struct rnbd_iu *iu) 358 { 359 if (atomic_dec_and_test(&iu->refcount)) { 360 sg_free_table(&iu->sgt); 361 rnbd_put_permit(sess, iu->permit); 362 kfree(iu); 363 } 364 } 365 366 static void rnbd_softirq_done_fn(struct request *rq) 367 { 368 struct rnbd_clt_dev *dev = rq->q->disk->private_data; 369 struct rnbd_clt_session *sess = dev->sess; 370 struct rnbd_iu *iu; 371 372 iu = blk_mq_rq_to_pdu(rq); 373 sg_free_table_chained(&iu->sgt, RNBD_INLINE_SG_CNT); 374 rnbd_put_permit(sess, iu->permit); 375 blk_mq_end_request(rq, errno_to_blk_status(iu->errno)); 376 } 377 378 static void msg_io_conf(void *priv, int errno) 379 { 380 struct rnbd_iu *iu = priv; 381 struct rnbd_clt_dev *dev = iu->dev; 382 struct request *rq = iu->rq; 383 int rw = rq_data_dir(rq); 384 385 iu->errno = errno; 386 387 blk_mq_complete_request(rq); 388 389 if (errno) 390 rnbd_clt_info_rl(dev, "%s I/O failed with err: %d\n", 391 rw == READ ? "read" : "write", errno); 392 } 393 394 static void wake_up_iu_comp(struct rnbd_iu *iu, int errno) 395 { 396 iu->comp.errno = errno; 397 wake_up(&iu->comp.wait); 398 } 399 400 static void msg_conf(void *priv, int errno) 401 { 402 struct rnbd_iu *iu = priv; 403 404 iu->errno = errno; 405 schedule_work(&iu->work); 406 } 407 408 static int send_usr_msg(struct rtrs_clt_sess *rtrs, int dir, 409 struct rnbd_iu *iu, struct kvec *vec, 410 size_t len, struct scatterlist *sg, unsigned int sg_len, 411 void (*conf)(struct work_struct *work), 412 int *errno, int wait) 413 { 414 int err; 415 struct rtrs_clt_req_ops req_ops; 416 417 INIT_WORK(&iu->work, conf); 418 req_ops = (struct rtrs_clt_req_ops) { 419 .priv = iu, 420 .conf_fn = msg_conf, 421 }; 422 err = rtrs_clt_request(dir, &req_ops, rtrs, iu->permit, 423 vec, 1, len, sg, sg_len); 424 if (!err && wait) { 425 wait_event(iu->comp.wait, iu->comp.errno != INT_MAX); 426 *errno = iu->comp.errno; 427 } else { 428 *errno = 0; 429 } 430 431 return err; 432 } 433 434 static void msg_close_conf(struct work_struct *work) 435 { 436 struct rnbd_iu *iu = container_of(work, struct rnbd_iu, work); 437 struct rnbd_clt_dev *dev = iu->dev; 438 439 wake_up_iu_comp(iu, iu->errno); 440 rnbd_put_iu(dev->sess, iu); 441 rnbd_clt_put_dev(dev); 442 } 443 444 static int send_msg_close(struct rnbd_clt_dev *dev, u32 device_id, 445 enum wait_type wait) 446 { 447 struct rnbd_clt_session *sess = dev->sess; 448 struct rnbd_msg_close msg; 449 struct rnbd_iu *iu; 450 struct kvec vec = { 451 .iov_base = &msg, 452 .iov_len = sizeof(msg) 453 }; 454 int err, errno; 455 456 iu = rnbd_get_iu(sess, RTRS_ADMIN_CON, RTRS_PERMIT_WAIT); 457 if (!iu) 458 return -ENOMEM; 459 460 iu->buf = NULL; 461 iu->dev = dev; 462 463 msg.hdr.type = cpu_to_le16(RNBD_MSG_CLOSE); 464 msg.device_id = cpu_to_le32(device_id); 465 466 WARN_ON(!rnbd_clt_get_dev(dev)); 467 err = send_usr_msg(sess->rtrs, WRITE, iu, &vec, 0, NULL, 0, 468 msg_close_conf, &errno, wait); 469 if (err) { 470 rnbd_clt_put_dev(dev); 471 rnbd_put_iu(sess, iu); 472 } else { 473 err = errno; 474 } 475 476 rnbd_put_iu(sess, iu); 477 return err; 478 } 479 480 static void msg_open_conf(struct work_struct *work) 481 { 482 struct rnbd_iu *iu = container_of(work, struct rnbd_iu, work); 483 struct rnbd_msg_open_rsp *rsp = iu->buf; 484 struct rnbd_clt_dev *dev = iu->dev; 485 int errno = iu->errno; 486 bool from_map = false; 487 488 /* INIT state is only triggered from rnbd_clt_map_device */ 489 if (dev->dev_state == DEV_STATE_INIT) 490 from_map = true; 491 492 if (errno) { 493 rnbd_clt_err(dev, 494 "Opening failed, server responded: %d\n", 495 errno); 496 } else { 497 errno = process_msg_open_rsp(dev, rsp); 498 if (errno) { 499 u32 device_id = le32_to_cpu(rsp->device_id); 500 /* 501 * If server thinks its fine, but we fail to process 502 * then be nice and send a close to server. 503 */ 504 send_msg_close(dev, device_id, RTRS_PERMIT_NOWAIT); 505 } 506 } 507 /* We free rsp in rnbd_clt_map_device for map scenario */ 508 if (!from_map) 509 kfree(rsp); 510 wake_up_iu_comp(iu, errno); 511 rnbd_put_iu(dev->sess, iu); 512 rnbd_clt_put_dev(dev); 513 } 514 515 static void msg_sess_info_conf(struct work_struct *work) 516 { 517 struct rnbd_iu *iu = container_of(work, struct rnbd_iu, work); 518 struct rnbd_msg_sess_info_rsp *rsp = iu->buf; 519 struct rnbd_clt_session *sess = iu->sess; 520 521 if (!iu->errno) 522 sess->ver = min_t(u8, rsp->ver, RNBD_PROTO_VER_MAJOR); 523 524 kfree(rsp); 525 wake_up_iu_comp(iu, iu->errno); 526 rnbd_put_iu(sess, iu); 527 rnbd_clt_put_sess(sess); 528 } 529 530 static int send_msg_open(struct rnbd_clt_dev *dev, enum wait_type wait) 531 { 532 struct rnbd_clt_session *sess = dev->sess; 533 struct rnbd_msg_open_rsp *rsp; 534 struct rnbd_msg_open msg; 535 struct rnbd_iu *iu; 536 struct kvec vec = { 537 .iov_base = &msg, 538 .iov_len = sizeof(msg) 539 }; 540 int err, errno; 541 542 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); 543 if (!rsp) 544 return -ENOMEM; 545 546 iu = rnbd_get_iu(sess, RTRS_ADMIN_CON, RTRS_PERMIT_WAIT); 547 if (!iu) { 548 kfree(rsp); 549 return -ENOMEM; 550 } 551 552 iu->buf = rsp; 553 iu->dev = dev; 554 555 sg_init_one(iu->sgt.sgl, rsp, sizeof(*rsp)); 556 557 msg.hdr.type = cpu_to_le16(RNBD_MSG_OPEN); 558 msg.access_mode = dev->access_mode; 559 strscpy(msg.dev_name, dev->pathname, sizeof(msg.dev_name)); 560 561 WARN_ON(!rnbd_clt_get_dev(dev)); 562 err = send_usr_msg(sess->rtrs, READ, iu, 563 &vec, sizeof(*rsp), iu->sgt.sgl, 1, 564 msg_open_conf, &errno, wait); 565 if (err) { 566 rnbd_clt_put_dev(dev); 567 rnbd_put_iu(sess, iu); 568 kfree(rsp); 569 } else { 570 err = errno; 571 } 572 573 rnbd_put_iu(sess, iu); 574 return err; 575 } 576 577 static int send_msg_sess_info(struct rnbd_clt_session *sess, enum wait_type wait) 578 { 579 struct rnbd_msg_sess_info_rsp *rsp; 580 struct rnbd_msg_sess_info msg; 581 struct rnbd_iu *iu; 582 struct kvec vec = { 583 .iov_base = &msg, 584 .iov_len = sizeof(msg) 585 }; 586 int err, errno; 587 588 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); 589 if (!rsp) 590 return -ENOMEM; 591 592 iu = rnbd_get_iu(sess, RTRS_ADMIN_CON, RTRS_PERMIT_WAIT); 593 if (!iu) { 594 kfree(rsp); 595 return -ENOMEM; 596 } 597 598 iu->buf = rsp; 599 iu->sess = sess; 600 sg_init_one(iu->sgt.sgl, rsp, sizeof(*rsp)); 601 602 msg.hdr.type = cpu_to_le16(RNBD_MSG_SESS_INFO); 603 msg.ver = RNBD_PROTO_VER_MAJOR; 604 605 if (!rnbd_clt_get_sess(sess)) { 606 /* 607 * That can happen only in one case, when RTRS has restablished 608 * the connection and link_ev() is called, but session is almost 609 * dead, last reference on session is put and caller is waiting 610 * for RTRS to close everything. 611 */ 612 err = -ENODEV; 613 goto put_iu; 614 } 615 err = send_usr_msg(sess->rtrs, READ, iu, 616 &vec, sizeof(*rsp), iu->sgt.sgl, 1, 617 msg_sess_info_conf, &errno, wait); 618 if (err) { 619 rnbd_clt_put_sess(sess); 620 put_iu: 621 rnbd_put_iu(sess, iu); 622 kfree(rsp); 623 } else { 624 err = errno; 625 } 626 rnbd_put_iu(sess, iu); 627 return err; 628 } 629 630 static void set_dev_states_to_disconnected(struct rnbd_clt_session *sess) 631 { 632 struct rnbd_clt_dev *dev; 633 struct kobject *gd_kobj; 634 635 mutex_lock(&sess->lock); 636 list_for_each_entry(dev, &sess->devs_list, list) { 637 rnbd_clt_err(dev, "Device disconnected.\n"); 638 639 mutex_lock(&dev->lock); 640 if (dev->dev_state == DEV_STATE_MAPPED) { 641 dev->dev_state = DEV_STATE_MAPPED_DISCONNECTED; 642 gd_kobj = &disk_to_dev(dev->gd)->kobj; 643 kobject_uevent(gd_kobj, KOBJ_OFFLINE); 644 } 645 mutex_unlock(&dev->lock); 646 } 647 mutex_unlock(&sess->lock); 648 } 649 650 static void remap_devs(struct rnbd_clt_session *sess) 651 { 652 struct rnbd_clt_dev *dev; 653 struct rtrs_attrs attrs; 654 int err; 655 656 /* 657 * Careful here: we are called from RTRS link event directly, 658 * thus we can't send any RTRS request and wait for response 659 * or RTRS will not be able to complete request with failure 660 * if something goes wrong (failing of outstanding requests 661 * happens exactly from the context where we are blocking now). 662 * 663 * So to avoid deadlocks each usr message sent from here must 664 * be asynchronous. 665 */ 666 667 err = send_msg_sess_info(sess, RTRS_PERMIT_NOWAIT); 668 if (err) { 669 pr_err("send_msg_sess_info(\"%s\"): %d\n", sess->sessname, err); 670 return; 671 } 672 673 err = rtrs_clt_query(sess->rtrs, &attrs); 674 if (err) { 675 pr_err("rtrs_clt_query(\"%s\"): %d\n", sess->sessname, err); 676 return; 677 } 678 mutex_lock(&sess->lock); 679 sess->max_io_size = attrs.max_io_size; 680 681 list_for_each_entry(dev, &sess->devs_list, list) { 682 bool skip; 683 684 mutex_lock(&dev->lock); 685 skip = (dev->dev_state == DEV_STATE_INIT); 686 mutex_unlock(&dev->lock); 687 if (skip) 688 /* 689 * When device is establishing connection for the first 690 * time - do not remap, it will be closed soon. 691 */ 692 continue; 693 694 rnbd_clt_info(dev, "session reconnected, remapping device\n"); 695 err = send_msg_open(dev, RTRS_PERMIT_NOWAIT); 696 if (err) { 697 rnbd_clt_err(dev, "send_msg_open(): %d\n", err); 698 break; 699 } 700 } 701 mutex_unlock(&sess->lock); 702 } 703 704 static void rnbd_clt_link_ev(void *priv, enum rtrs_clt_link_ev ev) 705 { 706 struct rnbd_clt_session *sess = priv; 707 708 switch (ev) { 709 case RTRS_CLT_LINK_EV_DISCONNECTED: 710 set_dev_states_to_disconnected(sess); 711 break; 712 case RTRS_CLT_LINK_EV_RECONNECTED: 713 remap_devs(sess); 714 break; 715 default: 716 pr_err("Unknown session event received (%d), session: %s\n", 717 ev, sess->sessname); 718 } 719 } 720 721 static void rnbd_init_cpu_qlists(struct rnbd_cpu_qlist __percpu *cpu_queues) 722 { 723 unsigned int cpu; 724 struct rnbd_cpu_qlist *cpu_q; 725 726 for_each_possible_cpu(cpu) { 727 cpu_q = per_cpu_ptr(cpu_queues, cpu); 728 729 cpu_q->cpu = cpu; 730 INIT_LIST_HEAD(&cpu_q->requeue_list); 731 spin_lock_init(&cpu_q->requeue_lock); 732 } 733 } 734 735 static void destroy_mq_tags(struct rnbd_clt_session *sess) 736 { 737 if (sess->tag_set.tags) 738 blk_mq_free_tag_set(&sess->tag_set); 739 } 740 741 static inline void wake_up_rtrs_waiters(struct rnbd_clt_session *sess) 742 { 743 sess->rtrs_ready = true; 744 wake_up_all(&sess->rtrs_waitq); 745 } 746 747 static void close_rtrs(struct rnbd_clt_session *sess) 748 { 749 might_sleep(); 750 751 if (!IS_ERR_OR_NULL(sess->rtrs)) { 752 rtrs_clt_close(sess->rtrs); 753 sess->rtrs = NULL; 754 wake_up_rtrs_waiters(sess); 755 } 756 } 757 758 static void free_sess(struct rnbd_clt_session *sess) 759 { 760 WARN_ON(!list_empty(&sess->devs_list)); 761 762 might_sleep(); 763 764 close_rtrs(sess); 765 destroy_mq_tags(sess); 766 if (!list_empty(&sess->list)) { 767 mutex_lock(&sess_lock); 768 list_del(&sess->list); 769 mutex_unlock(&sess_lock); 770 } 771 free_percpu(sess->cpu_queues); 772 free_percpu(sess->cpu_rr); 773 mutex_destroy(&sess->lock); 774 kfree(sess); 775 } 776 777 static struct rnbd_clt_session *alloc_sess(const char *sessname) 778 { 779 struct rnbd_clt_session *sess; 780 int err, cpu; 781 782 sess = kzalloc_node(sizeof(*sess), GFP_KERNEL, NUMA_NO_NODE); 783 if (!sess) 784 return ERR_PTR(-ENOMEM); 785 strscpy(sess->sessname, sessname, sizeof(sess->sessname)); 786 atomic_set(&sess->busy, 0); 787 mutex_init(&sess->lock); 788 INIT_LIST_HEAD(&sess->devs_list); 789 INIT_LIST_HEAD(&sess->list); 790 bitmap_zero(sess->cpu_queues_bm, num_possible_cpus()); 791 init_waitqueue_head(&sess->rtrs_waitq); 792 refcount_set(&sess->refcount, 1); 793 794 sess->cpu_queues = alloc_percpu(struct rnbd_cpu_qlist); 795 if (!sess->cpu_queues) { 796 err = -ENOMEM; 797 goto err; 798 } 799 rnbd_init_cpu_qlists(sess->cpu_queues); 800 801 /* 802 * That is simple percpu variable which stores cpu indices, which are 803 * incremented on each access. We need that for the sake of fairness 804 * to wake up queues in a round-robin manner. 805 */ 806 sess->cpu_rr = alloc_percpu(int); 807 if (!sess->cpu_rr) { 808 err = -ENOMEM; 809 goto err; 810 } 811 for_each_possible_cpu(cpu) 812 * per_cpu_ptr(sess->cpu_rr, cpu) = cpu; 813 814 return sess; 815 816 err: 817 free_sess(sess); 818 819 return ERR_PTR(err); 820 } 821 822 static int wait_for_rtrs_connection(struct rnbd_clt_session *sess) 823 { 824 wait_event(sess->rtrs_waitq, sess->rtrs_ready); 825 if (IS_ERR_OR_NULL(sess->rtrs)) 826 return -ECONNRESET; 827 828 return 0; 829 } 830 831 static void wait_for_rtrs_disconnection(struct rnbd_clt_session *sess) 832 __releases(&sess_lock) 833 __acquires(&sess_lock) 834 { 835 DEFINE_WAIT(wait); 836 837 prepare_to_wait(&sess->rtrs_waitq, &wait, TASK_UNINTERRUPTIBLE); 838 if (IS_ERR_OR_NULL(sess->rtrs)) { 839 finish_wait(&sess->rtrs_waitq, &wait); 840 return; 841 } 842 mutex_unlock(&sess_lock); 843 /* loop in caller, see __find_and_get_sess(). 844 * You can't leave mutex locked and call schedule(), you will catch a 845 * deadlock with a caller of free_sess(), which has just put the last 846 * reference and is about to take the sess_lock in order to delete 847 * the session from the list. 848 */ 849 schedule(); 850 mutex_lock(&sess_lock); 851 } 852 853 static struct rnbd_clt_session *__find_and_get_sess(const char *sessname) 854 __releases(&sess_lock) 855 __acquires(&sess_lock) 856 { 857 struct rnbd_clt_session *sess, *sn; 858 int err; 859 860 again: 861 list_for_each_entry_safe(sess, sn, &sess_list, list) { 862 if (strcmp(sessname, sess->sessname)) 863 continue; 864 865 if (sess->rtrs_ready && IS_ERR_OR_NULL(sess->rtrs)) 866 /* 867 * No RTRS connection, session is dying. 868 */ 869 continue; 870 871 if (rnbd_clt_get_sess(sess)) { 872 /* 873 * Alive session is found, wait for RTRS connection. 874 */ 875 mutex_unlock(&sess_lock); 876 err = wait_for_rtrs_connection(sess); 877 if (err) 878 rnbd_clt_put_sess(sess); 879 mutex_lock(&sess_lock); 880 881 if (err) 882 /* Session is dying, repeat the loop */ 883 goto again; 884 885 return sess; 886 } 887 /* 888 * Ref is 0, session is dying, wait for RTRS disconnect 889 * in order to avoid session names clashes. 890 */ 891 wait_for_rtrs_disconnection(sess); 892 /* 893 * RTRS is disconnected and soon session will be freed, 894 * so repeat a loop. 895 */ 896 goto again; 897 } 898 899 return NULL; 900 } 901 902 /* caller is responsible for initializing 'first' to false */ 903 static struct 904 rnbd_clt_session *find_or_create_sess(const char *sessname, bool *first) 905 { 906 struct rnbd_clt_session *sess = NULL; 907 908 mutex_lock(&sess_lock); 909 sess = __find_and_get_sess(sessname); 910 if (!sess) { 911 sess = alloc_sess(sessname); 912 if (IS_ERR(sess)) { 913 mutex_unlock(&sess_lock); 914 return sess; 915 } 916 list_add(&sess->list, &sess_list); 917 *first = true; 918 } 919 mutex_unlock(&sess_lock); 920 921 return sess; 922 } 923 924 static int rnbd_client_open(struct gendisk *disk, blk_mode_t mode) 925 { 926 struct rnbd_clt_dev *dev = disk->private_data; 927 928 if (get_disk_ro(dev->gd) && (mode & BLK_OPEN_WRITE)) 929 return -EPERM; 930 931 if (dev->dev_state == DEV_STATE_UNMAPPED || 932 !rnbd_clt_get_dev(dev)) 933 return -EIO; 934 935 return 0; 936 } 937 938 static void rnbd_client_release(struct gendisk *gen) 939 { 940 struct rnbd_clt_dev *dev = gen->private_data; 941 942 rnbd_clt_put_dev(dev); 943 } 944 945 static int rnbd_client_getgeo(struct block_device *block_device, 946 struct hd_geometry *geo) 947 { 948 u64 size; 949 struct rnbd_clt_dev *dev = block_device->bd_disk->private_data; 950 struct queue_limits *limit = &dev->queue->limits; 951 952 size = dev->size * (limit->logical_block_size / SECTOR_SIZE); 953 geo->cylinders = size >> 6; /* size/64 */ 954 geo->heads = 4; 955 geo->sectors = 16; 956 geo->start = 0; 957 958 return 0; 959 } 960 961 static const struct block_device_operations rnbd_client_ops = { 962 .owner = THIS_MODULE, 963 .open = rnbd_client_open, 964 .release = rnbd_client_release, 965 .getgeo = rnbd_client_getgeo 966 }; 967 968 /* The amount of data that belongs to an I/O and the amount of data that 969 * should be read or written to the disk (bi_size) can differ. 970 * 971 * E.g. When WRITE_SAME is used, only a small amount of data is 972 * transferred that is then written repeatedly over a lot of sectors. 973 * 974 * Get the size of data to be transferred via RTRS by summing up the size 975 * of the scather-gather list entries. 976 */ 977 static size_t rnbd_clt_get_sg_size(struct scatterlist *sglist, u32 len) 978 { 979 struct scatterlist *sg; 980 size_t tsize = 0; 981 int i; 982 983 for_each_sg(sglist, sg, len, i) 984 tsize += sg->length; 985 return tsize; 986 } 987 988 static int rnbd_client_xfer_request(struct rnbd_clt_dev *dev, 989 struct request *rq, 990 struct rnbd_iu *iu) 991 { 992 struct rtrs_clt_sess *rtrs = dev->sess->rtrs; 993 struct rtrs_permit *permit = iu->permit; 994 struct rnbd_msg_io msg; 995 struct rtrs_clt_req_ops req_ops; 996 unsigned int sg_cnt = 0; 997 struct kvec vec; 998 size_t size; 999 int err; 1000 1001 iu->rq = rq; 1002 iu->dev = dev; 1003 msg.sector = cpu_to_le64(blk_rq_pos(rq)); 1004 msg.bi_size = cpu_to_le32(blk_rq_bytes(rq)); 1005 msg.rw = cpu_to_le32(rq_to_rnbd_flags(rq)); 1006 msg.prio = cpu_to_le16(req_get_ioprio(rq)); 1007 1008 /* 1009 * We only support discards/WRITE_ZEROES with single segment for now. 1010 * See queue limits. 1011 */ 1012 if ((req_op(rq) != REQ_OP_DISCARD) && (req_op(rq) != REQ_OP_WRITE_ZEROES)) 1013 sg_cnt = blk_rq_map_sg(dev->queue, rq, iu->sgt.sgl); 1014 1015 if (sg_cnt == 0) 1016 sg_mark_end(&iu->sgt.sgl[0]); 1017 1018 msg.hdr.type = cpu_to_le16(RNBD_MSG_IO); 1019 msg.device_id = cpu_to_le32(dev->device_id); 1020 1021 vec = (struct kvec) { 1022 .iov_base = &msg, 1023 .iov_len = sizeof(msg) 1024 }; 1025 size = rnbd_clt_get_sg_size(iu->sgt.sgl, sg_cnt); 1026 req_ops = (struct rtrs_clt_req_ops) { 1027 .priv = iu, 1028 .conf_fn = msg_io_conf, 1029 }; 1030 err = rtrs_clt_request(rq_data_dir(rq), &req_ops, rtrs, permit, 1031 &vec, 1, size, iu->sgt.sgl, sg_cnt); 1032 if (err) { 1033 rnbd_clt_err_rl(dev, "RTRS failed to transfer IO, err: %d\n", 1034 err); 1035 return err; 1036 } 1037 1038 return 0; 1039 } 1040 1041 /** 1042 * rnbd_clt_dev_add_to_requeue() - add device to requeue if session is busy 1043 * @dev: Device to be checked 1044 * @q: Queue to be added to the requeue list if required 1045 * 1046 * Description: 1047 * If session is busy, that means someone will requeue us when resources 1048 * are freed. If session is not doing anything - device is not added to 1049 * the list and @false is returned. 1050 */ 1051 static bool rnbd_clt_dev_add_to_requeue(struct rnbd_clt_dev *dev, 1052 struct rnbd_queue *q) 1053 { 1054 struct rnbd_clt_session *sess = dev->sess; 1055 struct rnbd_cpu_qlist *cpu_q; 1056 unsigned long flags; 1057 bool added = true; 1058 bool need_set; 1059 1060 cpu_q = get_cpu_ptr(sess->cpu_queues); 1061 spin_lock_irqsave(&cpu_q->requeue_lock, flags); 1062 1063 if (!test_and_set_bit_lock(0, &q->in_list)) { 1064 if (WARN_ON(!list_empty(&q->requeue_list))) 1065 goto unlock; 1066 1067 need_set = !test_bit(cpu_q->cpu, sess->cpu_queues_bm); 1068 if (need_set) { 1069 set_bit(cpu_q->cpu, sess->cpu_queues_bm); 1070 /* Paired with rnbd_put_permit(). Set a bit first 1071 * and then observe the busy counter. 1072 */ 1073 smp_mb__before_atomic(); 1074 } 1075 if (atomic_read(&sess->busy)) { 1076 list_add_tail(&q->requeue_list, &cpu_q->requeue_list); 1077 } else { 1078 /* Very unlikely, but possible: busy counter was 1079 * observed as zero. Drop all bits and return 1080 * false to restart the queue by ourselves. 1081 */ 1082 if (need_set) 1083 clear_bit(cpu_q->cpu, sess->cpu_queues_bm); 1084 clear_bit_unlock(0, &q->in_list); 1085 added = false; 1086 } 1087 } 1088 unlock: 1089 spin_unlock_irqrestore(&cpu_q->requeue_lock, flags); 1090 put_cpu_ptr(sess->cpu_queues); 1091 1092 return added; 1093 } 1094 1095 static void rnbd_clt_dev_kick_mq_queue(struct rnbd_clt_dev *dev, 1096 struct blk_mq_hw_ctx *hctx, 1097 int delay) 1098 { 1099 struct rnbd_queue *q = hctx->driver_data; 1100 1101 if (delay != RNBD_DELAY_IFBUSY) 1102 blk_mq_delay_run_hw_queue(hctx, delay); 1103 else if (!rnbd_clt_dev_add_to_requeue(dev, q)) 1104 /* 1105 * If session is not busy we have to restart 1106 * the queue ourselves. 1107 */ 1108 blk_mq_delay_run_hw_queue(hctx, 10/*ms*/); 1109 } 1110 1111 static blk_status_t rnbd_queue_rq(struct blk_mq_hw_ctx *hctx, 1112 const struct blk_mq_queue_data *bd) 1113 { 1114 struct request *rq = bd->rq; 1115 struct rnbd_clt_dev *dev = rq->q->disk->private_data; 1116 struct rnbd_iu *iu = blk_mq_rq_to_pdu(rq); 1117 int err; 1118 blk_status_t ret = BLK_STS_IOERR; 1119 1120 if (dev->dev_state != DEV_STATE_MAPPED) 1121 return BLK_STS_IOERR; 1122 1123 iu->permit = rnbd_get_permit(dev->sess, RTRS_IO_CON, 1124 RTRS_PERMIT_NOWAIT); 1125 if (!iu->permit) { 1126 rnbd_clt_dev_kick_mq_queue(dev, hctx, RNBD_DELAY_IFBUSY); 1127 return BLK_STS_RESOURCE; 1128 } 1129 1130 iu->sgt.sgl = iu->first_sgl; 1131 err = sg_alloc_table_chained(&iu->sgt, 1132 /* Even-if the request has no segment, 1133 * sglist must have one entry at least. 1134 */ 1135 blk_rq_nr_phys_segments(rq) ? : 1, 1136 iu->sgt.sgl, 1137 RNBD_INLINE_SG_CNT); 1138 if (err) { 1139 rnbd_clt_err_rl(dev, "sg_alloc_table_chained ret=%d\n", err); 1140 rnbd_clt_dev_kick_mq_queue(dev, hctx, 10/*ms*/); 1141 rnbd_put_permit(dev->sess, iu->permit); 1142 return BLK_STS_RESOURCE; 1143 } 1144 1145 blk_mq_start_request(rq); 1146 err = rnbd_client_xfer_request(dev, rq, iu); 1147 if (err == 0) 1148 return BLK_STS_OK; 1149 if (err == -EAGAIN || err == -ENOMEM) { 1150 rnbd_clt_dev_kick_mq_queue(dev, hctx, 10/*ms*/); 1151 ret = BLK_STS_RESOURCE; 1152 } 1153 sg_free_table_chained(&iu->sgt, RNBD_INLINE_SG_CNT); 1154 rnbd_put_permit(dev->sess, iu->permit); 1155 return ret; 1156 } 1157 1158 static int rnbd_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1159 { 1160 struct rnbd_queue *q = hctx->driver_data; 1161 struct rnbd_clt_dev *dev = q->dev; 1162 1163 return rtrs_clt_rdma_cq_direct(dev->sess->rtrs, hctx->queue_num); 1164 } 1165 1166 static void rnbd_rdma_map_queues(struct blk_mq_tag_set *set) 1167 { 1168 struct rnbd_clt_session *sess = set->driver_data; 1169 1170 /* shared read/write queues */ 1171 set->map[HCTX_TYPE_DEFAULT].nr_queues = num_online_cpus(); 1172 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 1173 set->map[HCTX_TYPE_READ].nr_queues = num_online_cpus(); 1174 set->map[HCTX_TYPE_READ].queue_offset = 0; 1175 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1176 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 1177 1178 if (sess->nr_poll_queues) { 1179 /* dedicated queue for poll */ 1180 set->map[HCTX_TYPE_POLL].nr_queues = sess->nr_poll_queues; 1181 set->map[HCTX_TYPE_POLL].queue_offset = set->map[HCTX_TYPE_READ].queue_offset + 1182 set->map[HCTX_TYPE_READ].nr_queues; 1183 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 1184 pr_info("[session=%s] mapped %d/%d/%d default/read/poll queues.\n", 1185 sess->sessname, 1186 set->map[HCTX_TYPE_DEFAULT].nr_queues, 1187 set->map[HCTX_TYPE_READ].nr_queues, 1188 set->map[HCTX_TYPE_POLL].nr_queues); 1189 } else { 1190 pr_info("[session=%s] mapped %d/%d default/read queues.\n", 1191 sess->sessname, 1192 set->map[HCTX_TYPE_DEFAULT].nr_queues, 1193 set->map[HCTX_TYPE_READ].nr_queues); 1194 } 1195 } 1196 1197 static struct blk_mq_ops rnbd_mq_ops = { 1198 .queue_rq = rnbd_queue_rq, 1199 .complete = rnbd_softirq_done_fn, 1200 .map_queues = rnbd_rdma_map_queues, 1201 .poll = rnbd_rdma_poll, 1202 }; 1203 1204 static int setup_mq_tags(struct rnbd_clt_session *sess) 1205 { 1206 struct blk_mq_tag_set *tag_set = &sess->tag_set; 1207 1208 memset(tag_set, 0, sizeof(*tag_set)); 1209 tag_set->ops = &rnbd_mq_ops; 1210 tag_set->queue_depth = sess->queue_depth; 1211 tag_set->numa_node = NUMA_NO_NODE; 1212 tag_set->flags = BLK_MQ_F_SHOULD_MERGE | 1213 BLK_MQ_F_TAG_QUEUE_SHARED; 1214 tag_set->cmd_size = sizeof(struct rnbd_iu) + RNBD_RDMA_SGL_SIZE; 1215 1216 /* for HCTX_TYPE_DEFAULT, HCTX_TYPE_READ, HCTX_TYPE_POLL */ 1217 tag_set->nr_maps = sess->nr_poll_queues ? HCTX_MAX_TYPES : 2; 1218 /* 1219 * HCTX_TYPE_DEFAULT and HCTX_TYPE_READ share one set of queues 1220 * others are for HCTX_TYPE_POLL 1221 */ 1222 tag_set->nr_hw_queues = num_online_cpus() + sess->nr_poll_queues; 1223 tag_set->driver_data = sess; 1224 1225 return blk_mq_alloc_tag_set(tag_set); 1226 } 1227 1228 static struct rnbd_clt_session * 1229 find_and_get_or_create_sess(const char *sessname, 1230 const struct rtrs_addr *paths, 1231 size_t path_cnt, u16 port_nr, u32 nr_poll_queues) 1232 { 1233 struct rnbd_clt_session *sess; 1234 struct rtrs_attrs attrs; 1235 int err; 1236 bool first = false; 1237 struct rtrs_clt_ops rtrs_ops; 1238 1239 sess = find_or_create_sess(sessname, &first); 1240 if (sess == ERR_PTR(-ENOMEM)) { 1241 return ERR_PTR(-ENOMEM); 1242 } else if ((nr_poll_queues && !first) || (!nr_poll_queues && sess->nr_poll_queues)) { 1243 /* 1244 * A device MUST have its own session to use the polling-mode. 1245 * It must fail to map new device with the same session. 1246 */ 1247 err = -EINVAL; 1248 goto put_sess; 1249 } 1250 1251 if (!first) 1252 return sess; 1253 1254 if (!path_cnt) { 1255 pr_err("Session %s not found, and path parameter not given", sessname); 1256 err = -ENXIO; 1257 goto put_sess; 1258 } 1259 1260 rtrs_ops = (struct rtrs_clt_ops) { 1261 .priv = sess, 1262 .link_ev = rnbd_clt_link_ev, 1263 }; 1264 /* 1265 * Nothing was found, establish rtrs connection and proceed further. 1266 */ 1267 sess->rtrs = rtrs_clt_open(&rtrs_ops, sessname, 1268 paths, path_cnt, port_nr, 1269 0, /* Do not use pdu of rtrs */ 1270 RECONNECT_DELAY, 1271 MAX_RECONNECTS, nr_poll_queues); 1272 if (IS_ERR(sess->rtrs)) { 1273 err = PTR_ERR(sess->rtrs); 1274 goto wake_up_and_put; 1275 } 1276 1277 err = rtrs_clt_query(sess->rtrs, &attrs); 1278 if (err) 1279 goto close_rtrs; 1280 1281 sess->max_io_size = attrs.max_io_size; 1282 sess->queue_depth = attrs.queue_depth; 1283 sess->nr_poll_queues = nr_poll_queues; 1284 sess->max_segments = attrs.max_segments; 1285 1286 err = setup_mq_tags(sess); 1287 if (err) 1288 goto close_rtrs; 1289 1290 err = send_msg_sess_info(sess, RTRS_PERMIT_WAIT); 1291 if (err) 1292 goto close_rtrs; 1293 1294 wake_up_rtrs_waiters(sess); 1295 1296 return sess; 1297 1298 close_rtrs: 1299 close_rtrs(sess); 1300 put_sess: 1301 rnbd_clt_put_sess(sess); 1302 1303 return ERR_PTR(err); 1304 1305 wake_up_and_put: 1306 wake_up_rtrs_waiters(sess); 1307 goto put_sess; 1308 } 1309 1310 static inline void rnbd_init_hw_queue(struct rnbd_clt_dev *dev, 1311 struct rnbd_queue *q, 1312 struct blk_mq_hw_ctx *hctx) 1313 { 1314 INIT_LIST_HEAD(&q->requeue_list); 1315 q->dev = dev; 1316 q->hctx = hctx; 1317 } 1318 1319 static void rnbd_init_mq_hw_queues(struct rnbd_clt_dev *dev) 1320 { 1321 unsigned long i; 1322 struct blk_mq_hw_ctx *hctx; 1323 struct rnbd_queue *q; 1324 1325 queue_for_each_hw_ctx(dev->queue, hctx, i) { 1326 q = &dev->hw_queues[i]; 1327 rnbd_init_hw_queue(dev, q, hctx); 1328 hctx->driver_data = q; 1329 } 1330 } 1331 1332 static void setup_request_queue(struct rnbd_clt_dev *dev, 1333 struct rnbd_msg_open_rsp *rsp) 1334 { 1335 blk_queue_logical_block_size(dev->queue, 1336 le16_to_cpu(rsp->logical_block_size)); 1337 blk_queue_physical_block_size(dev->queue, 1338 le16_to_cpu(rsp->physical_block_size)); 1339 blk_queue_max_hw_sectors(dev->queue, 1340 dev->sess->max_io_size / SECTOR_SIZE); 1341 1342 /* 1343 * we don't support discards to "discontiguous" segments 1344 * in on request 1345 */ 1346 blk_queue_max_discard_segments(dev->queue, 1); 1347 1348 blk_queue_max_discard_sectors(dev->queue, 1349 le32_to_cpu(rsp->max_discard_sectors)); 1350 dev->queue->limits.discard_granularity = 1351 le32_to_cpu(rsp->discard_granularity); 1352 dev->queue->limits.discard_alignment = 1353 le32_to_cpu(rsp->discard_alignment); 1354 if (le16_to_cpu(rsp->secure_discard)) 1355 blk_queue_max_secure_erase_sectors(dev->queue, 1356 le32_to_cpu(rsp->max_discard_sectors)); 1357 blk_queue_flag_set(QUEUE_FLAG_SAME_COMP, dev->queue); 1358 blk_queue_flag_set(QUEUE_FLAG_SAME_FORCE, dev->queue); 1359 blk_queue_max_segments(dev->queue, dev->sess->max_segments); 1360 blk_queue_io_opt(dev->queue, dev->sess->max_io_size); 1361 blk_queue_virt_boundary(dev->queue, SZ_4K - 1); 1362 blk_queue_write_cache(dev->queue, 1363 !!(rsp->cache_policy & RNBD_WRITEBACK), 1364 !!(rsp->cache_policy & RNBD_FUA)); 1365 blk_queue_max_write_zeroes_sectors(dev->queue, 1366 le32_to_cpu(rsp->max_write_zeroes_sectors)); 1367 } 1368 1369 static int rnbd_clt_setup_gen_disk(struct rnbd_clt_dev *dev, 1370 struct rnbd_msg_open_rsp *rsp, int idx) 1371 { 1372 int err; 1373 1374 dev->gd->major = rnbd_client_major; 1375 dev->gd->first_minor = idx << RNBD_PART_BITS; 1376 dev->gd->minors = 1 << RNBD_PART_BITS; 1377 dev->gd->fops = &rnbd_client_ops; 1378 dev->gd->queue = dev->queue; 1379 dev->gd->private_data = dev; 1380 snprintf(dev->gd->disk_name, sizeof(dev->gd->disk_name), "rnbd%d", 1381 idx); 1382 pr_debug("disk_name=%s, capacity=%llu\n", 1383 dev->gd->disk_name, 1384 le64_to_cpu(rsp->nsectors) * 1385 (le16_to_cpu(rsp->logical_block_size) / SECTOR_SIZE)); 1386 1387 set_capacity(dev->gd, le64_to_cpu(rsp->nsectors)); 1388 1389 if (dev->access_mode == RNBD_ACCESS_RO) 1390 set_disk_ro(dev->gd, true); 1391 1392 /* 1393 * Network device does not need rotational 1394 */ 1395 blk_queue_flag_set(QUEUE_FLAG_NONROT, dev->queue); 1396 err = add_disk(dev->gd); 1397 if (err) 1398 put_disk(dev->gd); 1399 1400 return err; 1401 } 1402 1403 static int rnbd_client_setup_device(struct rnbd_clt_dev *dev, 1404 struct rnbd_msg_open_rsp *rsp) 1405 { 1406 int idx = dev->clt_device_id; 1407 1408 dev->size = le64_to_cpu(rsp->nsectors) * 1409 le16_to_cpu(rsp->logical_block_size); 1410 1411 dev->gd = blk_mq_alloc_disk(&dev->sess->tag_set, dev); 1412 if (IS_ERR(dev->gd)) 1413 return PTR_ERR(dev->gd); 1414 dev->queue = dev->gd->queue; 1415 rnbd_init_mq_hw_queues(dev); 1416 1417 setup_request_queue(dev, rsp); 1418 return rnbd_clt_setup_gen_disk(dev, rsp, idx); 1419 } 1420 1421 static struct rnbd_clt_dev *init_dev(struct rnbd_clt_session *sess, 1422 enum rnbd_access_mode access_mode, 1423 const char *pathname, 1424 u32 nr_poll_queues) 1425 { 1426 struct rnbd_clt_dev *dev; 1427 int ret; 1428 1429 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, NUMA_NO_NODE); 1430 if (!dev) 1431 return ERR_PTR(-ENOMEM); 1432 1433 /* 1434 * nr_cpu_ids: the number of softirq queues 1435 * nr_poll_queues: the number of polling queues 1436 */ 1437 dev->hw_queues = kcalloc(nr_cpu_ids + nr_poll_queues, 1438 sizeof(*dev->hw_queues), 1439 GFP_KERNEL); 1440 if (!dev->hw_queues) { 1441 ret = -ENOMEM; 1442 goto out_alloc; 1443 } 1444 1445 ret = ida_alloc_max(&index_ida, (1 << (MINORBITS - RNBD_PART_BITS)) - 1, 1446 GFP_KERNEL); 1447 if (ret < 0) { 1448 pr_err("Failed to initialize device '%s' from session %s, allocating idr failed, err: %d\n", 1449 pathname, sess->sessname, ret); 1450 goto out_queues; 1451 } 1452 1453 dev->pathname = kstrdup(pathname, GFP_KERNEL); 1454 if (!dev->pathname) { 1455 ret = -ENOMEM; 1456 goto out_queues; 1457 } 1458 1459 dev->clt_device_id = ret; 1460 dev->sess = sess; 1461 dev->access_mode = access_mode; 1462 dev->nr_poll_queues = nr_poll_queues; 1463 mutex_init(&dev->lock); 1464 refcount_set(&dev->refcount, 1); 1465 dev->dev_state = DEV_STATE_INIT; 1466 1467 /* 1468 * Here we called from sysfs entry, thus clt-sysfs is 1469 * responsible that session will not disappear. 1470 */ 1471 WARN_ON(!rnbd_clt_get_sess(sess)); 1472 1473 return dev; 1474 1475 out_queues: 1476 kfree(dev->hw_queues); 1477 out_alloc: 1478 kfree(dev); 1479 return ERR_PTR(ret); 1480 } 1481 1482 static bool __exists_dev(const char *pathname, const char *sessname) 1483 { 1484 struct rnbd_clt_session *sess; 1485 struct rnbd_clt_dev *dev; 1486 bool found = false; 1487 1488 list_for_each_entry(sess, &sess_list, list) { 1489 if (sessname && strncmp(sess->sessname, sessname, 1490 sizeof(sess->sessname))) 1491 continue; 1492 mutex_lock(&sess->lock); 1493 list_for_each_entry(dev, &sess->devs_list, list) { 1494 if (strlen(dev->pathname) == strlen(pathname) && 1495 !strcmp(dev->pathname, pathname)) { 1496 found = true; 1497 break; 1498 } 1499 } 1500 mutex_unlock(&sess->lock); 1501 if (found) 1502 break; 1503 } 1504 1505 return found; 1506 } 1507 1508 static bool exists_devpath(const char *pathname, const char *sessname) 1509 { 1510 bool found; 1511 1512 mutex_lock(&sess_lock); 1513 found = __exists_dev(pathname, sessname); 1514 mutex_unlock(&sess_lock); 1515 1516 return found; 1517 } 1518 1519 static bool insert_dev_if_not_exists_devpath(struct rnbd_clt_dev *dev) 1520 { 1521 bool found; 1522 struct rnbd_clt_session *sess = dev->sess; 1523 1524 mutex_lock(&sess_lock); 1525 found = __exists_dev(dev->pathname, sess->sessname); 1526 if (!found) { 1527 mutex_lock(&sess->lock); 1528 list_add_tail(&dev->list, &sess->devs_list); 1529 mutex_unlock(&sess->lock); 1530 } 1531 mutex_unlock(&sess_lock); 1532 1533 return found; 1534 } 1535 1536 static void delete_dev(struct rnbd_clt_dev *dev) 1537 { 1538 struct rnbd_clt_session *sess = dev->sess; 1539 1540 mutex_lock(&sess->lock); 1541 list_del(&dev->list); 1542 mutex_unlock(&sess->lock); 1543 } 1544 1545 struct rnbd_clt_dev *rnbd_clt_map_device(const char *sessname, 1546 struct rtrs_addr *paths, 1547 size_t path_cnt, u16 port_nr, 1548 const char *pathname, 1549 enum rnbd_access_mode access_mode, 1550 u32 nr_poll_queues) 1551 { 1552 struct rnbd_clt_session *sess; 1553 struct rnbd_clt_dev *dev; 1554 int ret, errno; 1555 struct rnbd_msg_open_rsp *rsp; 1556 struct rnbd_msg_open msg; 1557 struct rnbd_iu *iu; 1558 struct kvec vec = { 1559 .iov_base = &msg, 1560 .iov_len = sizeof(msg) 1561 }; 1562 1563 if (exists_devpath(pathname, sessname)) 1564 return ERR_PTR(-EEXIST); 1565 1566 sess = find_and_get_or_create_sess(sessname, paths, path_cnt, port_nr, nr_poll_queues); 1567 if (IS_ERR(sess)) 1568 return ERR_CAST(sess); 1569 1570 dev = init_dev(sess, access_mode, pathname, nr_poll_queues); 1571 if (IS_ERR(dev)) { 1572 pr_err("map_device: failed to map device '%s' from session %s, can't initialize device, err: %pe\n", 1573 pathname, sess->sessname, dev); 1574 ret = PTR_ERR(dev); 1575 goto put_sess; 1576 } 1577 if (insert_dev_if_not_exists_devpath(dev)) { 1578 ret = -EEXIST; 1579 goto put_dev; 1580 } 1581 1582 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); 1583 if (!rsp) { 1584 ret = -ENOMEM; 1585 goto del_dev; 1586 } 1587 1588 iu = rnbd_get_iu(sess, RTRS_ADMIN_CON, RTRS_PERMIT_WAIT); 1589 if (!iu) { 1590 ret = -ENOMEM; 1591 kfree(rsp); 1592 goto del_dev; 1593 } 1594 iu->buf = rsp; 1595 iu->dev = dev; 1596 sg_init_one(iu->sgt.sgl, rsp, sizeof(*rsp)); 1597 1598 msg.hdr.type = cpu_to_le16(RNBD_MSG_OPEN); 1599 msg.access_mode = dev->access_mode; 1600 strscpy(msg.dev_name, dev->pathname, sizeof(msg.dev_name)); 1601 1602 WARN_ON(!rnbd_clt_get_dev(dev)); 1603 ret = send_usr_msg(sess->rtrs, READ, iu, 1604 &vec, sizeof(*rsp), iu->sgt.sgl, 1, 1605 msg_open_conf, &errno, RTRS_PERMIT_WAIT); 1606 if (ret) { 1607 rnbd_clt_put_dev(dev); 1608 rnbd_put_iu(sess, iu); 1609 } else { 1610 ret = errno; 1611 } 1612 if (ret) { 1613 rnbd_clt_err(dev, 1614 "map_device: failed, can't open remote device, err: %d\n", 1615 ret); 1616 goto put_iu; 1617 } 1618 mutex_lock(&dev->lock); 1619 pr_debug("Opened remote device: session=%s, path='%s'\n", 1620 sess->sessname, pathname); 1621 ret = rnbd_client_setup_device(dev, rsp); 1622 if (ret) { 1623 rnbd_clt_err(dev, 1624 "map_device: Failed to configure device, err: %d\n", 1625 ret); 1626 mutex_unlock(&dev->lock); 1627 goto send_close; 1628 } 1629 1630 rnbd_clt_info(dev, 1631 "map_device: Device mapped as %s (nsectors: %llu, logical_block_size: %d, physical_block_size: %d, max_write_zeroes_sectors: %d, max_discard_sectors: %d, discard_granularity: %d, discard_alignment: %d, secure_discard: %d, max_segments: %d, max_hw_sectors: %d, wc: %d, fua: %d)\n", 1632 dev->gd->disk_name, le64_to_cpu(rsp->nsectors), 1633 le16_to_cpu(rsp->logical_block_size), 1634 le16_to_cpu(rsp->physical_block_size), 1635 le32_to_cpu(rsp->max_write_zeroes_sectors), 1636 le32_to_cpu(rsp->max_discard_sectors), 1637 le32_to_cpu(rsp->discard_granularity), 1638 le32_to_cpu(rsp->discard_alignment), 1639 le16_to_cpu(rsp->secure_discard), 1640 sess->max_segments, sess->max_io_size / SECTOR_SIZE, 1641 !!(rsp->cache_policy & RNBD_WRITEBACK), 1642 !!(rsp->cache_policy & RNBD_FUA)); 1643 1644 mutex_unlock(&dev->lock); 1645 kfree(rsp); 1646 rnbd_put_iu(sess, iu); 1647 rnbd_clt_put_sess(sess); 1648 1649 return dev; 1650 1651 send_close: 1652 send_msg_close(dev, dev->device_id, RTRS_PERMIT_WAIT); 1653 put_iu: 1654 kfree(rsp); 1655 rnbd_put_iu(sess, iu); 1656 del_dev: 1657 delete_dev(dev); 1658 put_dev: 1659 rnbd_clt_put_dev(dev); 1660 put_sess: 1661 rnbd_clt_put_sess(sess); 1662 1663 return ERR_PTR(ret); 1664 } 1665 1666 static void destroy_gen_disk(struct rnbd_clt_dev *dev) 1667 { 1668 del_gendisk(dev->gd); 1669 put_disk(dev->gd); 1670 } 1671 1672 static void destroy_sysfs(struct rnbd_clt_dev *dev, 1673 const struct attribute *sysfs_self) 1674 { 1675 rnbd_clt_remove_dev_symlink(dev); 1676 if (dev->kobj.state_initialized) { 1677 if (sysfs_self) 1678 /* To avoid deadlock firstly remove itself */ 1679 sysfs_remove_file_self(&dev->kobj, sysfs_self); 1680 kobject_del(&dev->kobj); 1681 kobject_put(&dev->kobj); 1682 } 1683 } 1684 1685 int rnbd_clt_unmap_device(struct rnbd_clt_dev *dev, bool force, 1686 const struct attribute *sysfs_self) 1687 { 1688 struct rnbd_clt_session *sess = dev->sess; 1689 int refcount, ret = 0; 1690 bool was_mapped; 1691 1692 mutex_lock(&dev->lock); 1693 if (dev->dev_state == DEV_STATE_UNMAPPED) { 1694 rnbd_clt_info(dev, "Device is already being unmapped\n"); 1695 ret = -EALREADY; 1696 goto err; 1697 } 1698 refcount = refcount_read(&dev->refcount); 1699 if (!force && refcount > 1) { 1700 rnbd_clt_err(dev, 1701 "Closing device failed, device is in use, (%d device users)\n", 1702 refcount - 1); 1703 ret = -EBUSY; 1704 goto err; 1705 } 1706 was_mapped = (dev->dev_state == DEV_STATE_MAPPED); 1707 dev->dev_state = DEV_STATE_UNMAPPED; 1708 mutex_unlock(&dev->lock); 1709 1710 delete_dev(dev); 1711 destroy_sysfs(dev, sysfs_self); 1712 destroy_gen_disk(dev); 1713 if (was_mapped && sess->rtrs) 1714 send_msg_close(dev, dev->device_id, RTRS_PERMIT_WAIT); 1715 1716 rnbd_clt_info(dev, "Device is unmapped\n"); 1717 1718 /* Likely last reference put */ 1719 rnbd_clt_put_dev(dev); 1720 1721 /* 1722 * Here device and session can be vanished! 1723 */ 1724 1725 return 0; 1726 err: 1727 mutex_unlock(&dev->lock); 1728 1729 return ret; 1730 } 1731 1732 int rnbd_clt_remap_device(struct rnbd_clt_dev *dev) 1733 { 1734 int err; 1735 1736 mutex_lock(&dev->lock); 1737 if (dev->dev_state == DEV_STATE_MAPPED_DISCONNECTED) 1738 err = 0; 1739 else if (dev->dev_state == DEV_STATE_UNMAPPED) 1740 err = -ENODEV; 1741 else if (dev->dev_state == DEV_STATE_MAPPED) 1742 err = -EALREADY; 1743 else 1744 err = -EBUSY; 1745 mutex_unlock(&dev->lock); 1746 if (!err) { 1747 rnbd_clt_info(dev, "Remapping device.\n"); 1748 err = send_msg_open(dev, RTRS_PERMIT_WAIT); 1749 if (err) 1750 rnbd_clt_err(dev, "remap_device: %d\n", err); 1751 } 1752 1753 return err; 1754 } 1755 1756 static void unmap_device_work(struct work_struct *work) 1757 { 1758 struct rnbd_clt_dev *dev; 1759 1760 dev = container_of(work, typeof(*dev), unmap_on_rmmod_work); 1761 rnbd_clt_unmap_device(dev, true, NULL); 1762 } 1763 1764 static void rnbd_destroy_sessions(void) 1765 { 1766 struct rnbd_clt_session *sess, *sn; 1767 struct rnbd_clt_dev *dev, *tn; 1768 1769 /* Firstly forbid access through sysfs interface */ 1770 rnbd_clt_destroy_sysfs_files(); 1771 1772 /* 1773 * Here at this point there is no any concurrent access to sessions 1774 * list and devices list: 1775 * 1. New session or device can't be created - session sysfs files 1776 * are removed. 1777 * 2. Device or session can't be removed - module reference is taken 1778 * into account in unmap device sysfs callback. 1779 * 3. No IO requests inflight - each file open of block_dev increases 1780 * module reference in get_disk(). 1781 * 1782 * But still there can be user requests inflights, which are sent by 1783 * asynchronous send_msg_*() functions, thus before unmapping devices 1784 * RTRS session must be explicitly closed. 1785 */ 1786 1787 list_for_each_entry_safe(sess, sn, &sess_list, list) { 1788 if (!rnbd_clt_get_sess(sess)) 1789 continue; 1790 close_rtrs(sess); 1791 list_for_each_entry_safe(dev, tn, &sess->devs_list, list) { 1792 /* 1793 * Here unmap happens in parallel for only one reason: 1794 * del_gendisk() takes around half a second, so 1795 * on huge amount of devices the whole module unload 1796 * procedure takes minutes. 1797 */ 1798 INIT_WORK(&dev->unmap_on_rmmod_work, unmap_device_work); 1799 queue_work(rnbd_clt_wq, &dev->unmap_on_rmmod_work); 1800 } 1801 rnbd_clt_put_sess(sess); 1802 } 1803 /* Wait for all scheduled unmap works */ 1804 flush_workqueue(rnbd_clt_wq); 1805 WARN_ON(!list_empty(&sess_list)); 1806 } 1807 1808 static int __init rnbd_client_init(void) 1809 { 1810 int err = 0; 1811 1812 BUILD_BUG_ON(sizeof(struct rnbd_msg_hdr) != 4); 1813 BUILD_BUG_ON(sizeof(struct rnbd_msg_sess_info) != 36); 1814 BUILD_BUG_ON(sizeof(struct rnbd_msg_sess_info_rsp) != 36); 1815 BUILD_BUG_ON(sizeof(struct rnbd_msg_open) != 264); 1816 BUILD_BUG_ON(sizeof(struct rnbd_msg_close) != 8); 1817 BUILD_BUG_ON(sizeof(struct rnbd_msg_open_rsp) != 56); 1818 rnbd_client_major = register_blkdev(rnbd_client_major, "rnbd"); 1819 if (rnbd_client_major <= 0) { 1820 pr_err("Failed to load module, block device registration failed\n"); 1821 return -EBUSY; 1822 } 1823 1824 err = rnbd_clt_create_sysfs_files(); 1825 if (err) { 1826 pr_err("Failed to load module, creating sysfs device files failed, err: %d\n", 1827 err); 1828 unregister_blkdev(rnbd_client_major, "rnbd"); 1829 return err; 1830 } 1831 rnbd_clt_wq = alloc_workqueue("rnbd_clt_wq", 0, 0); 1832 if (!rnbd_clt_wq) { 1833 pr_err("Failed to load module, alloc_workqueue failed.\n"); 1834 rnbd_clt_destroy_sysfs_files(); 1835 unregister_blkdev(rnbd_client_major, "rnbd"); 1836 err = -ENOMEM; 1837 } 1838 1839 return err; 1840 } 1841 1842 static void __exit rnbd_client_exit(void) 1843 { 1844 rnbd_destroy_sessions(); 1845 unregister_blkdev(rnbd_client_major, "rnbd"); 1846 ida_destroy(&index_ida); 1847 destroy_workqueue(rnbd_clt_wq); 1848 } 1849 1850 module_init(rnbd_client_init); 1851 module_exit(rnbd_client_exit); 1852