xref: /linux/drivers/block/rbd.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/decode.h>
36 #include <linux/parser.h>
37 #include <linux/bsearch.h>
38 
39 #include <linux/kernel.h>
40 #include <linux/device.h>
41 #include <linux/module.h>
42 #include <linux/blk-mq.h>
43 #include <linux/fs.h>
44 #include <linux/blkdev.h>
45 #include <linux/slab.h>
46 #include <linux/idr.h>
47 #include <linux/workqueue.h>
48 
49 #include "rbd_types.h"
50 
51 #define RBD_DEBUG	/* Activate rbd_assert() calls */
52 
53 /*
54  * The basic unit of block I/O is a sector.  It is interpreted in a
55  * number of contexts in Linux (blk, bio, genhd), but the default is
56  * universally 512 bytes.  These symbols are just slightly more
57  * meaningful than the bare numbers they represent.
58  */
59 #define	SECTOR_SHIFT	9
60 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
61 
62 /*
63  * Increment the given counter and return its updated value.
64  * If the counter is already 0 it will not be incremented.
65  * If the counter is already at its maximum value returns
66  * -EINVAL without updating it.
67  */
68 static int atomic_inc_return_safe(atomic_t *v)
69 {
70 	unsigned int counter;
71 
72 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
73 	if (counter <= (unsigned int)INT_MAX)
74 		return (int)counter;
75 
76 	atomic_dec(v);
77 
78 	return -EINVAL;
79 }
80 
81 /* Decrement the counter.  Return the resulting value, or -EINVAL */
82 static int atomic_dec_return_safe(atomic_t *v)
83 {
84 	int counter;
85 
86 	counter = atomic_dec_return(v);
87 	if (counter >= 0)
88 		return counter;
89 
90 	atomic_inc(v);
91 
92 	return -EINVAL;
93 }
94 
95 #define RBD_DRV_NAME "rbd"
96 
97 #define RBD_MINORS_PER_MAJOR		256
98 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
99 
100 #define RBD_MAX_PARENT_CHAIN_LEN	16
101 
102 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
103 #define RBD_MAX_SNAP_NAME_LEN	\
104 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
105 
106 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
107 
108 #define RBD_SNAP_HEAD_NAME	"-"
109 
110 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
111 
112 /* This allows a single page to hold an image name sent by OSD */
113 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
114 #define RBD_IMAGE_ID_LEN_MAX	64
115 
116 #define RBD_OBJ_PREFIX_LEN_MAX	64
117 
118 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
119 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
120 
121 /* Feature bits */
122 
123 #define RBD_FEATURE_LAYERING	(1<<0)
124 #define RBD_FEATURE_STRIPINGV2	(1<<1)
125 #define RBD_FEATURE_EXCLUSIVE_LOCK (1<<2)
126 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
127 				 RBD_FEATURE_STRIPINGV2 |	\
128 				 RBD_FEATURE_EXCLUSIVE_LOCK)
129 
130 /* Features supported by this (client software) implementation. */
131 
132 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
133 
134 /*
135  * An RBD device name will be "rbd#", where the "rbd" comes from
136  * RBD_DRV_NAME above, and # is a unique integer identifier.
137  */
138 #define DEV_NAME_LEN		32
139 
140 /*
141  * block device image metadata (in-memory version)
142  */
143 struct rbd_image_header {
144 	/* These six fields never change for a given rbd image */
145 	char *object_prefix;
146 	__u8 obj_order;
147 	__u8 crypt_type;
148 	__u8 comp_type;
149 	u64 stripe_unit;
150 	u64 stripe_count;
151 	u64 features;		/* Might be changeable someday? */
152 
153 	/* The remaining fields need to be updated occasionally */
154 	u64 image_size;
155 	struct ceph_snap_context *snapc;
156 	char *snap_names;	/* format 1 only */
157 	u64 *snap_sizes;	/* format 1 only */
158 };
159 
160 /*
161  * An rbd image specification.
162  *
163  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
164  * identify an image.  Each rbd_dev structure includes a pointer to
165  * an rbd_spec structure that encapsulates this identity.
166  *
167  * Each of the id's in an rbd_spec has an associated name.  For a
168  * user-mapped image, the names are supplied and the id's associated
169  * with them are looked up.  For a layered image, a parent image is
170  * defined by the tuple, and the names are looked up.
171  *
172  * An rbd_dev structure contains a parent_spec pointer which is
173  * non-null if the image it represents is a child in a layered
174  * image.  This pointer will refer to the rbd_spec structure used
175  * by the parent rbd_dev for its own identity (i.e., the structure
176  * is shared between the parent and child).
177  *
178  * Since these structures are populated once, during the discovery
179  * phase of image construction, they are effectively immutable so
180  * we make no effort to synchronize access to them.
181  *
182  * Note that code herein does not assume the image name is known (it
183  * could be a null pointer).
184  */
185 struct rbd_spec {
186 	u64		pool_id;
187 	const char	*pool_name;
188 
189 	const char	*image_id;
190 	const char	*image_name;
191 
192 	u64		snap_id;
193 	const char	*snap_name;
194 
195 	struct kref	kref;
196 };
197 
198 /*
199  * an instance of the client.  multiple devices may share an rbd client.
200  */
201 struct rbd_client {
202 	struct ceph_client	*client;
203 	struct kref		kref;
204 	struct list_head	node;
205 };
206 
207 struct rbd_img_request;
208 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
209 
210 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
211 
212 struct rbd_obj_request;
213 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
214 
215 enum obj_request_type {
216 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
217 };
218 
219 enum obj_operation_type {
220 	OBJ_OP_WRITE,
221 	OBJ_OP_READ,
222 	OBJ_OP_DISCARD,
223 };
224 
225 enum obj_req_flags {
226 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
227 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
228 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
229 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
230 };
231 
232 struct rbd_obj_request {
233 	const char		*object_name;
234 	u64			offset;		/* object start byte */
235 	u64			length;		/* bytes from offset */
236 	unsigned long		flags;
237 
238 	/*
239 	 * An object request associated with an image will have its
240 	 * img_data flag set; a standalone object request will not.
241 	 *
242 	 * A standalone object request will have which == BAD_WHICH
243 	 * and a null obj_request pointer.
244 	 *
245 	 * An object request initiated in support of a layered image
246 	 * object (to check for its existence before a write) will
247 	 * have which == BAD_WHICH and a non-null obj_request pointer.
248 	 *
249 	 * Finally, an object request for rbd image data will have
250 	 * which != BAD_WHICH, and will have a non-null img_request
251 	 * pointer.  The value of which will be in the range
252 	 * 0..(img_request->obj_request_count-1).
253 	 */
254 	union {
255 		struct rbd_obj_request	*obj_request;	/* STAT op */
256 		struct {
257 			struct rbd_img_request	*img_request;
258 			u64			img_offset;
259 			/* links for img_request->obj_requests list */
260 			struct list_head	links;
261 		};
262 	};
263 	u32			which;		/* posn image request list */
264 
265 	enum obj_request_type	type;
266 	union {
267 		struct bio	*bio_list;
268 		struct {
269 			struct page	**pages;
270 			u32		page_count;
271 		};
272 	};
273 	struct page		**copyup_pages;
274 	u32			copyup_page_count;
275 
276 	struct ceph_osd_request	*osd_req;
277 
278 	u64			xferred;	/* bytes transferred */
279 	int			result;
280 
281 	rbd_obj_callback_t	callback;
282 	struct completion	completion;
283 
284 	struct kref		kref;
285 };
286 
287 enum img_req_flags {
288 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
289 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
290 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
291 	IMG_REQ_DISCARD,	/* discard: normal = 0, discard request = 1 */
292 };
293 
294 struct rbd_img_request {
295 	struct rbd_device	*rbd_dev;
296 	u64			offset;	/* starting image byte offset */
297 	u64			length;	/* byte count from offset */
298 	unsigned long		flags;
299 	union {
300 		u64			snap_id;	/* for reads */
301 		struct ceph_snap_context *snapc;	/* for writes */
302 	};
303 	union {
304 		struct request		*rq;		/* block request */
305 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
306 	};
307 	struct page		**copyup_pages;
308 	u32			copyup_page_count;
309 	spinlock_t		completion_lock;/* protects next_completion */
310 	u32			next_completion;
311 	rbd_img_callback_t	callback;
312 	u64			xferred;/* aggregate bytes transferred */
313 	int			result;	/* first nonzero obj_request result */
314 
315 	u32			obj_request_count;
316 	struct list_head	obj_requests;	/* rbd_obj_request structs */
317 
318 	struct kref		kref;
319 };
320 
321 #define for_each_obj_request(ireq, oreq) \
322 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
323 #define for_each_obj_request_from(ireq, oreq) \
324 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
325 #define for_each_obj_request_safe(ireq, oreq, n) \
326 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
327 
328 enum rbd_watch_state {
329 	RBD_WATCH_STATE_UNREGISTERED,
330 	RBD_WATCH_STATE_REGISTERED,
331 	RBD_WATCH_STATE_ERROR,
332 };
333 
334 enum rbd_lock_state {
335 	RBD_LOCK_STATE_UNLOCKED,
336 	RBD_LOCK_STATE_LOCKED,
337 	RBD_LOCK_STATE_RELEASING,
338 };
339 
340 /* WatchNotify::ClientId */
341 struct rbd_client_id {
342 	u64 gid;
343 	u64 handle;
344 };
345 
346 struct rbd_mapping {
347 	u64                     size;
348 	u64                     features;
349 	bool			read_only;
350 };
351 
352 /*
353  * a single device
354  */
355 struct rbd_device {
356 	int			dev_id;		/* blkdev unique id */
357 
358 	int			major;		/* blkdev assigned major */
359 	int			minor;
360 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
361 
362 	u32			image_format;	/* Either 1 or 2 */
363 	struct rbd_client	*rbd_client;
364 
365 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
366 
367 	spinlock_t		lock;		/* queue, flags, open_count */
368 
369 	struct rbd_image_header	header;
370 	unsigned long		flags;		/* possibly lock protected */
371 	struct rbd_spec		*spec;
372 	struct rbd_options	*opts;
373 	char			*config_info;	/* add{,_single_major} string */
374 
375 	struct ceph_object_id	header_oid;
376 	struct ceph_object_locator header_oloc;
377 
378 	struct ceph_file_layout	layout;		/* used for all rbd requests */
379 
380 	struct mutex		watch_mutex;
381 	enum rbd_watch_state	watch_state;
382 	struct ceph_osd_linger_request *watch_handle;
383 	u64			watch_cookie;
384 	struct delayed_work	watch_dwork;
385 
386 	struct rw_semaphore	lock_rwsem;
387 	enum rbd_lock_state	lock_state;
388 	struct rbd_client_id	owner_cid;
389 	struct work_struct	acquired_lock_work;
390 	struct work_struct	released_lock_work;
391 	struct delayed_work	lock_dwork;
392 	struct work_struct	unlock_work;
393 	wait_queue_head_t	lock_waitq;
394 
395 	struct workqueue_struct	*task_wq;
396 
397 	struct rbd_spec		*parent_spec;
398 	u64			parent_overlap;
399 	atomic_t		parent_ref;
400 	struct rbd_device	*parent;
401 
402 	/* Block layer tags. */
403 	struct blk_mq_tag_set	tag_set;
404 
405 	/* protects updating the header */
406 	struct rw_semaphore     header_rwsem;
407 
408 	struct rbd_mapping	mapping;
409 
410 	struct list_head	node;
411 
412 	/* sysfs related */
413 	struct device		dev;
414 	unsigned long		open_count;	/* protected by lock */
415 };
416 
417 /*
418  * Flag bits for rbd_dev->flags:
419  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
420  *   by rbd_dev->lock
421  * - BLACKLISTED is protected by rbd_dev->lock_rwsem
422  */
423 enum rbd_dev_flags {
424 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
425 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
426 	RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */
427 };
428 
429 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
430 
431 static LIST_HEAD(rbd_dev_list);    /* devices */
432 static DEFINE_SPINLOCK(rbd_dev_list_lock);
433 
434 static LIST_HEAD(rbd_client_list);		/* clients */
435 static DEFINE_SPINLOCK(rbd_client_list_lock);
436 
437 /* Slab caches for frequently-allocated structures */
438 
439 static struct kmem_cache	*rbd_img_request_cache;
440 static struct kmem_cache	*rbd_obj_request_cache;
441 static struct kmem_cache	*rbd_segment_name_cache;
442 
443 static int rbd_major;
444 static DEFINE_IDA(rbd_dev_id_ida);
445 
446 static struct workqueue_struct *rbd_wq;
447 
448 /*
449  * Default to false for now, as single-major requires >= 0.75 version of
450  * userspace rbd utility.
451  */
452 static bool single_major = false;
453 module_param(single_major, bool, S_IRUGO);
454 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
455 
456 static int rbd_img_request_submit(struct rbd_img_request *img_request);
457 
458 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
459 		       size_t count);
460 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
461 			  size_t count);
462 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
463 				    size_t count);
464 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
465 				       size_t count);
466 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
467 static void rbd_spec_put(struct rbd_spec *spec);
468 
469 static int rbd_dev_id_to_minor(int dev_id)
470 {
471 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
472 }
473 
474 static int minor_to_rbd_dev_id(int minor)
475 {
476 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
477 }
478 
479 static bool rbd_is_lock_supported(struct rbd_device *rbd_dev)
480 {
481 	return (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
482 	       rbd_dev->spec->snap_id == CEPH_NOSNAP &&
483 	       !rbd_dev->mapping.read_only;
484 }
485 
486 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
487 {
488 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
489 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
490 }
491 
492 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
493 {
494 	bool is_lock_owner;
495 
496 	down_read(&rbd_dev->lock_rwsem);
497 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
498 	up_read(&rbd_dev->lock_rwsem);
499 	return is_lock_owner;
500 }
501 
502 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
503 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
504 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
505 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
506 
507 static struct attribute *rbd_bus_attrs[] = {
508 	&bus_attr_add.attr,
509 	&bus_attr_remove.attr,
510 	&bus_attr_add_single_major.attr,
511 	&bus_attr_remove_single_major.attr,
512 	NULL,
513 };
514 
515 static umode_t rbd_bus_is_visible(struct kobject *kobj,
516 				  struct attribute *attr, int index)
517 {
518 	if (!single_major &&
519 	    (attr == &bus_attr_add_single_major.attr ||
520 	     attr == &bus_attr_remove_single_major.attr))
521 		return 0;
522 
523 	return attr->mode;
524 }
525 
526 static const struct attribute_group rbd_bus_group = {
527 	.attrs = rbd_bus_attrs,
528 	.is_visible = rbd_bus_is_visible,
529 };
530 __ATTRIBUTE_GROUPS(rbd_bus);
531 
532 static struct bus_type rbd_bus_type = {
533 	.name		= "rbd",
534 	.bus_groups	= rbd_bus_groups,
535 };
536 
537 static void rbd_root_dev_release(struct device *dev)
538 {
539 }
540 
541 static struct device rbd_root_dev = {
542 	.init_name =    "rbd",
543 	.release =      rbd_root_dev_release,
544 };
545 
546 static __printf(2, 3)
547 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
548 {
549 	struct va_format vaf;
550 	va_list args;
551 
552 	va_start(args, fmt);
553 	vaf.fmt = fmt;
554 	vaf.va = &args;
555 
556 	if (!rbd_dev)
557 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
558 	else if (rbd_dev->disk)
559 		printk(KERN_WARNING "%s: %s: %pV\n",
560 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
561 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
562 		printk(KERN_WARNING "%s: image %s: %pV\n",
563 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
564 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
565 		printk(KERN_WARNING "%s: id %s: %pV\n",
566 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
567 	else	/* punt */
568 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
569 			RBD_DRV_NAME, rbd_dev, &vaf);
570 	va_end(args);
571 }
572 
573 #ifdef RBD_DEBUG
574 #define rbd_assert(expr)						\
575 		if (unlikely(!(expr))) {				\
576 			printk(KERN_ERR "\nAssertion failure in %s() "	\
577 						"at line %d:\n\n"	\
578 					"\trbd_assert(%s);\n\n",	\
579 					__func__, __LINE__, #expr);	\
580 			BUG();						\
581 		}
582 #else /* !RBD_DEBUG */
583 #  define rbd_assert(expr)	((void) 0)
584 #endif /* !RBD_DEBUG */
585 
586 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
587 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
588 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
589 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
590 
591 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
592 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
593 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
594 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
595 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
596 					u64 snap_id);
597 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
598 				u8 *order, u64 *snap_size);
599 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
600 		u64 *snap_features);
601 
602 static int rbd_open(struct block_device *bdev, fmode_t mode)
603 {
604 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
605 	bool removing = false;
606 
607 	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
608 		return -EROFS;
609 
610 	spin_lock_irq(&rbd_dev->lock);
611 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
612 		removing = true;
613 	else
614 		rbd_dev->open_count++;
615 	spin_unlock_irq(&rbd_dev->lock);
616 	if (removing)
617 		return -ENOENT;
618 
619 	(void) get_device(&rbd_dev->dev);
620 
621 	return 0;
622 }
623 
624 static void rbd_release(struct gendisk *disk, fmode_t mode)
625 {
626 	struct rbd_device *rbd_dev = disk->private_data;
627 	unsigned long open_count_before;
628 
629 	spin_lock_irq(&rbd_dev->lock);
630 	open_count_before = rbd_dev->open_count--;
631 	spin_unlock_irq(&rbd_dev->lock);
632 	rbd_assert(open_count_before > 0);
633 
634 	put_device(&rbd_dev->dev);
635 }
636 
637 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
638 {
639 	int ret = 0;
640 	int val;
641 	bool ro;
642 	bool ro_changed = false;
643 
644 	/* get_user() may sleep, so call it before taking rbd_dev->lock */
645 	if (get_user(val, (int __user *)(arg)))
646 		return -EFAULT;
647 
648 	ro = val ? true : false;
649 	/* Snapshot doesn't allow to write*/
650 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
651 		return -EROFS;
652 
653 	spin_lock_irq(&rbd_dev->lock);
654 	/* prevent others open this device */
655 	if (rbd_dev->open_count > 1) {
656 		ret = -EBUSY;
657 		goto out;
658 	}
659 
660 	if (rbd_dev->mapping.read_only != ro) {
661 		rbd_dev->mapping.read_only = ro;
662 		ro_changed = true;
663 	}
664 
665 out:
666 	spin_unlock_irq(&rbd_dev->lock);
667 	/* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
668 	if (ret == 0 && ro_changed)
669 		set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
670 
671 	return ret;
672 }
673 
674 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
675 			unsigned int cmd, unsigned long arg)
676 {
677 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
678 	int ret = 0;
679 
680 	switch (cmd) {
681 	case BLKROSET:
682 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
683 		break;
684 	default:
685 		ret = -ENOTTY;
686 	}
687 
688 	return ret;
689 }
690 
691 #ifdef CONFIG_COMPAT
692 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
693 				unsigned int cmd, unsigned long arg)
694 {
695 	return rbd_ioctl(bdev, mode, cmd, arg);
696 }
697 #endif /* CONFIG_COMPAT */
698 
699 static const struct block_device_operations rbd_bd_ops = {
700 	.owner			= THIS_MODULE,
701 	.open			= rbd_open,
702 	.release		= rbd_release,
703 	.ioctl			= rbd_ioctl,
704 #ifdef CONFIG_COMPAT
705 	.compat_ioctl		= rbd_compat_ioctl,
706 #endif
707 };
708 
709 /*
710  * Initialize an rbd client instance.  Success or not, this function
711  * consumes ceph_opts.  Caller holds client_mutex.
712  */
713 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
714 {
715 	struct rbd_client *rbdc;
716 	int ret = -ENOMEM;
717 
718 	dout("%s:\n", __func__);
719 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
720 	if (!rbdc)
721 		goto out_opt;
722 
723 	kref_init(&rbdc->kref);
724 	INIT_LIST_HEAD(&rbdc->node);
725 
726 	rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
727 	if (IS_ERR(rbdc->client))
728 		goto out_rbdc;
729 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
730 
731 	ret = ceph_open_session(rbdc->client);
732 	if (ret < 0)
733 		goto out_client;
734 
735 	spin_lock(&rbd_client_list_lock);
736 	list_add_tail(&rbdc->node, &rbd_client_list);
737 	spin_unlock(&rbd_client_list_lock);
738 
739 	dout("%s: rbdc %p\n", __func__, rbdc);
740 
741 	return rbdc;
742 out_client:
743 	ceph_destroy_client(rbdc->client);
744 out_rbdc:
745 	kfree(rbdc);
746 out_opt:
747 	if (ceph_opts)
748 		ceph_destroy_options(ceph_opts);
749 	dout("%s: error %d\n", __func__, ret);
750 
751 	return ERR_PTR(ret);
752 }
753 
754 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
755 {
756 	kref_get(&rbdc->kref);
757 
758 	return rbdc;
759 }
760 
761 /*
762  * Find a ceph client with specific addr and configuration.  If
763  * found, bump its reference count.
764  */
765 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
766 {
767 	struct rbd_client *client_node;
768 	bool found = false;
769 
770 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
771 		return NULL;
772 
773 	spin_lock(&rbd_client_list_lock);
774 	list_for_each_entry(client_node, &rbd_client_list, node) {
775 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
776 			__rbd_get_client(client_node);
777 
778 			found = true;
779 			break;
780 		}
781 	}
782 	spin_unlock(&rbd_client_list_lock);
783 
784 	return found ? client_node : NULL;
785 }
786 
787 /*
788  * (Per device) rbd map options
789  */
790 enum {
791 	Opt_queue_depth,
792 	Opt_last_int,
793 	/* int args above */
794 	Opt_last_string,
795 	/* string args above */
796 	Opt_read_only,
797 	Opt_read_write,
798 	Opt_lock_on_read,
799 	Opt_err
800 };
801 
802 static match_table_t rbd_opts_tokens = {
803 	{Opt_queue_depth, "queue_depth=%d"},
804 	/* int args above */
805 	/* string args above */
806 	{Opt_read_only, "read_only"},
807 	{Opt_read_only, "ro"},		/* Alternate spelling */
808 	{Opt_read_write, "read_write"},
809 	{Opt_read_write, "rw"},		/* Alternate spelling */
810 	{Opt_lock_on_read, "lock_on_read"},
811 	{Opt_err, NULL}
812 };
813 
814 struct rbd_options {
815 	int	queue_depth;
816 	bool	read_only;
817 	bool	lock_on_read;
818 };
819 
820 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
821 #define RBD_READ_ONLY_DEFAULT	false
822 #define RBD_LOCK_ON_READ_DEFAULT false
823 
824 static int parse_rbd_opts_token(char *c, void *private)
825 {
826 	struct rbd_options *rbd_opts = private;
827 	substring_t argstr[MAX_OPT_ARGS];
828 	int token, intval, ret;
829 
830 	token = match_token(c, rbd_opts_tokens, argstr);
831 	if (token < Opt_last_int) {
832 		ret = match_int(&argstr[0], &intval);
833 		if (ret < 0) {
834 			pr_err("bad mount option arg (not int) at '%s'\n", c);
835 			return ret;
836 		}
837 		dout("got int token %d val %d\n", token, intval);
838 	} else if (token > Opt_last_int && token < Opt_last_string) {
839 		dout("got string token %d val %s\n", token, argstr[0].from);
840 	} else {
841 		dout("got token %d\n", token);
842 	}
843 
844 	switch (token) {
845 	case Opt_queue_depth:
846 		if (intval < 1) {
847 			pr_err("queue_depth out of range\n");
848 			return -EINVAL;
849 		}
850 		rbd_opts->queue_depth = intval;
851 		break;
852 	case Opt_read_only:
853 		rbd_opts->read_only = true;
854 		break;
855 	case Opt_read_write:
856 		rbd_opts->read_only = false;
857 		break;
858 	case Opt_lock_on_read:
859 		rbd_opts->lock_on_read = true;
860 		break;
861 	default:
862 		/* libceph prints "bad option" msg */
863 		return -EINVAL;
864 	}
865 
866 	return 0;
867 }
868 
869 static char* obj_op_name(enum obj_operation_type op_type)
870 {
871 	switch (op_type) {
872 	case OBJ_OP_READ:
873 		return "read";
874 	case OBJ_OP_WRITE:
875 		return "write";
876 	case OBJ_OP_DISCARD:
877 		return "discard";
878 	default:
879 		return "???";
880 	}
881 }
882 
883 /*
884  * Get a ceph client with specific addr and configuration, if one does
885  * not exist create it.  Either way, ceph_opts is consumed by this
886  * function.
887  */
888 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
889 {
890 	struct rbd_client *rbdc;
891 
892 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
893 	rbdc = rbd_client_find(ceph_opts);
894 	if (rbdc)	/* using an existing client */
895 		ceph_destroy_options(ceph_opts);
896 	else
897 		rbdc = rbd_client_create(ceph_opts);
898 	mutex_unlock(&client_mutex);
899 
900 	return rbdc;
901 }
902 
903 /*
904  * Destroy ceph client
905  *
906  * Caller must hold rbd_client_list_lock.
907  */
908 static void rbd_client_release(struct kref *kref)
909 {
910 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
911 
912 	dout("%s: rbdc %p\n", __func__, rbdc);
913 	spin_lock(&rbd_client_list_lock);
914 	list_del(&rbdc->node);
915 	spin_unlock(&rbd_client_list_lock);
916 
917 	ceph_destroy_client(rbdc->client);
918 	kfree(rbdc);
919 }
920 
921 /*
922  * Drop reference to ceph client node. If it's not referenced anymore, release
923  * it.
924  */
925 static void rbd_put_client(struct rbd_client *rbdc)
926 {
927 	if (rbdc)
928 		kref_put(&rbdc->kref, rbd_client_release);
929 }
930 
931 static bool rbd_image_format_valid(u32 image_format)
932 {
933 	return image_format == 1 || image_format == 2;
934 }
935 
936 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
937 {
938 	size_t size;
939 	u32 snap_count;
940 
941 	/* The header has to start with the magic rbd header text */
942 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
943 		return false;
944 
945 	/* The bio layer requires at least sector-sized I/O */
946 
947 	if (ondisk->options.order < SECTOR_SHIFT)
948 		return false;
949 
950 	/* If we use u64 in a few spots we may be able to loosen this */
951 
952 	if (ondisk->options.order > 8 * sizeof (int) - 1)
953 		return false;
954 
955 	/*
956 	 * The size of a snapshot header has to fit in a size_t, and
957 	 * that limits the number of snapshots.
958 	 */
959 	snap_count = le32_to_cpu(ondisk->snap_count);
960 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
961 	if (snap_count > size / sizeof (__le64))
962 		return false;
963 
964 	/*
965 	 * Not only that, but the size of the entire the snapshot
966 	 * header must also be representable in a size_t.
967 	 */
968 	size -= snap_count * sizeof (__le64);
969 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
970 		return false;
971 
972 	return true;
973 }
974 
975 /*
976  * Fill an rbd image header with information from the given format 1
977  * on-disk header.
978  */
979 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
980 				 struct rbd_image_header_ondisk *ondisk)
981 {
982 	struct rbd_image_header *header = &rbd_dev->header;
983 	bool first_time = header->object_prefix == NULL;
984 	struct ceph_snap_context *snapc;
985 	char *object_prefix = NULL;
986 	char *snap_names = NULL;
987 	u64 *snap_sizes = NULL;
988 	u32 snap_count;
989 	int ret = -ENOMEM;
990 	u32 i;
991 
992 	/* Allocate this now to avoid having to handle failure below */
993 
994 	if (first_time) {
995 		size_t len;
996 
997 		len = strnlen(ondisk->object_prefix,
998 				sizeof (ondisk->object_prefix));
999 		object_prefix = kmalloc(len + 1, GFP_KERNEL);
1000 		if (!object_prefix)
1001 			return -ENOMEM;
1002 		memcpy(object_prefix, ondisk->object_prefix, len);
1003 		object_prefix[len] = '\0';
1004 	}
1005 
1006 	/* Allocate the snapshot context and fill it in */
1007 
1008 	snap_count = le32_to_cpu(ondisk->snap_count);
1009 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1010 	if (!snapc)
1011 		goto out_err;
1012 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1013 	if (snap_count) {
1014 		struct rbd_image_snap_ondisk *snaps;
1015 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1016 
1017 		/* We'll keep a copy of the snapshot names... */
1018 
1019 		if (snap_names_len > (u64)SIZE_MAX)
1020 			goto out_2big;
1021 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1022 		if (!snap_names)
1023 			goto out_err;
1024 
1025 		/* ...as well as the array of their sizes. */
1026 		snap_sizes = kmalloc_array(snap_count,
1027 					   sizeof(*header->snap_sizes),
1028 					   GFP_KERNEL);
1029 		if (!snap_sizes)
1030 			goto out_err;
1031 
1032 		/*
1033 		 * Copy the names, and fill in each snapshot's id
1034 		 * and size.
1035 		 *
1036 		 * Note that rbd_dev_v1_header_info() guarantees the
1037 		 * ondisk buffer we're working with has
1038 		 * snap_names_len bytes beyond the end of the
1039 		 * snapshot id array, this memcpy() is safe.
1040 		 */
1041 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1042 		snaps = ondisk->snaps;
1043 		for (i = 0; i < snap_count; i++) {
1044 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1045 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1046 		}
1047 	}
1048 
1049 	/* We won't fail any more, fill in the header */
1050 
1051 	if (first_time) {
1052 		header->object_prefix = object_prefix;
1053 		header->obj_order = ondisk->options.order;
1054 		header->crypt_type = ondisk->options.crypt_type;
1055 		header->comp_type = ondisk->options.comp_type;
1056 		/* The rest aren't used for format 1 images */
1057 		header->stripe_unit = 0;
1058 		header->stripe_count = 0;
1059 		header->features = 0;
1060 	} else {
1061 		ceph_put_snap_context(header->snapc);
1062 		kfree(header->snap_names);
1063 		kfree(header->snap_sizes);
1064 	}
1065 
1066 	/* The remaining fields always get updated (when we refresh) */
1067 
1068 	header->image_size = le64_to_cpu(ondisk->image_size);
1069 	header->snapc = snapc;
1070 	header->snap_names = snap_names;
1071 	header->snap_sizes = snap_sizes;
1072 
1073 	return 0;
1074 out_2big:
1075 	ret = -EIO;
1076 out_err:
1077 	kfree(snap_sizes);
1078 	kfree(snap_names);
1079 	ceph_put_snap_context(snapc);
1080 	kfree(object_prefix);
1081 
1082 	return ret;
1083 }
1084 
1085 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1086 {
1087 	const char *snap_name;
1088 
1089 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1090 
1091 	/* Skip over names until we find the one we are looking for */
1092 
1093 	snap_name = rbd_dev->header.snap_names;
1094 	while (which--)
1095 		snap_name += strlen(snap_name) + 1;
1096 
1097 	return kstrdup(snap_name, GFP_KERNEL);
1098 }
1099 
1100 /*
1101  * Snapshot id comparison function for use with qsort()/bsearch().
1102  * Note that result is for snapshots in *descending* order.
1103  */
1104 static int snapid_compare_reverse(const void *s1, const void *s2)
1105 {
1106 	u64 snap_id1 = *(u64 *)s1;
1107 	u64 snap_id2 = *(u64 *)s2;
1108 
1109 	if (snap_id1 < snap_id2)
1110 		return 1;
1111 	return snap_id1 == snap_id2 ? 0 : -1;
1112 }
1113 
1114 /*
1115  * Search a snapshot context to see if the given snapshot id is
1116  * present.
1117  *
1118  * Returns the position of the snapshot id in the array if it's found,
1119  * or BAD_SNAP_INDEX otherwise.
1120  *
1121  * Note: The snapshot array is in kept sorted (by the osd) in
1122  * reverse order, highest snapshot id first.
1123  */
1124 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1125 {
1126 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1127 	u64 *found;
1128 
1129 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1130 				sizeof (snap_id), snapid_compare_reverse);
1131 
1132 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1133 }
1134 
1135 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1136 					u64 snap_id)
1137 {
1138 	u32 which;
1139 	const char *snap_name;
1140 
1141 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1142 	if (which == BAD_SNAP_INDEX)
1143 		return ERR_PTR(-ENOENT);
1144 
1145 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1146 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1147 }
1148 
1149 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1150 {
1151 	if (snap_id == CEPH_NOSNAP)
1152 		return RBD_SNAP_HEAD_NAME;
1153 
1154 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1155 	if (rbd_dev->image_format == 1)
1156 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1157 
1158 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1159 }
1160 
1161 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1162 				u64 *snap_size)
1163 {
1164 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1165 	if (snap_id == CEPH_NOSNAP) {
1166 		*snap_size = rbd_dev->header.image_size;
1167 	} else if (rbd_dev->image_format == 1) {
1168 		u32 which;
1169 
1170 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1171 		if (which == BAD_SNAP_INDEX)
1172 			return -ENOENT;
1173 
1174 		*snap_size = rbd_dev->header.snap_sizes[which];
1175 	} else {
1176 		u64 size = 0;
1177 		int ret;
1178 
1179 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1180 		if (ret)
1181 			return ret;
1182 
1183 		*snap_size = size;
1184 	}
1185 	return 0;
1186 }
1187 
1188 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1189 			u64 *snap_features)
1190 {
1191 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1192 	if (snap_id == CEPH_NOSNAP) {
1193 		*snap_features = rbd_dev->header.features;
1194 	} else if (rbd_dev->image_format == 1) {
1195 		*snap_features = 0;	/* No features for format 1 */
1196 	} else {
1197 		u64 features = 0;
1198 		int ret;
1199 
1200 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1201 		if (ret)
1202 			return ret;
1203 
1204 		*snap_features = features;
1205 	}
1206 	return 0;
1207 }
1208 
1209 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1210 {
1211 	u64 snap_id = rbd_dev->spec->snap_id;
1212 	u64 size = 0;
1213 	u64 features = 0;
1214 	int ret;
1215 
1216 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1217 	if (ret)
1218 		return ret;
1219 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1220 	if (ret)
1221 		return ret;
1222 
1223 	rbd_dev->mapping.size = size;
1224 	rbd_dev->mapping.features = features;
1225 
1226 	return 0;
1227 }
1228 
1229 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1230 {
1231 	rbd_dev->mapping.size = 0;
1232 	rbd_dev->mapping.features = 0;
1233 }
1234 
1235 static void rbd_segment_name_free(const char *name)
1236 {
1237 	/* The explicit cast here is needed to drop the const qualifier */
1238 
1239 	kmem_cache_free(rbd_segment_name_cache, (void *)name);
1240 }
1241 
1242 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1243 {
1244 	char *name;
1245 	u64 segment;
1246 	int ret;
1247 	char *name_format;
1248 
1249 	name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1250 	if (!name)
1251 		return NULL;
1252 	segment = offset >> rbd_dev->header.obj_order;
1253 	name_format = "%s.%012llx";
1254 	if (rbd_dev->image_format == 2)
1255 		name_format = "%s.%016llx";
1256 	ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1257 			rbd_dev->header.object_prefix, segment);
1258 	if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1259 		pr_err("error formatting segment name for #%llu (%d)\n",
1260 			segment, ret);
1261 		rbd_segment_name_free(name);
1262 		name = NULL;
1263 	}
1264 
1265 	return name;
1266 }
1267 
1268 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1269 {
1270 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1271 
1272 	return offset & (segment_size - 1);
1273 }
1274 
1275 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1276 				u64 offset, u64 length)
1277 {
1278 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1279 
1280 	offset &= segment_size - 1;
1281 
1282 	rbd_assert(length <= U64_MAX - offset);
1283 	if (offset + length > segment_size)
1284 		length = segment_size - offset;
1285 
1286 	return length;
1287 }
1288 
1289 /*
1290  * returns the size of an object in the image
1291  */
1292 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1293 {
1294 	return 1 << header->obj_order;
1295 }
1296 
1297 /*
1298  * bio helpers
1299  */
1300 
1301 static void bio_chain_put(struct bio *chain)
1302 {
1303 	struct bio *tmp;
1304 
1305 	while (chain) {
1306 		tmp = chain;
1307 		chain = chain->bi_next;
1308 		bio_put(tmp);
1309 	}
1310 }
1311 
1312 /*
1313  * zeros a bio chain, starting at specific offset
1314  */
1315 static void zero_bio_chain(struct bio *chain, int start_ofs)
1316 {
1317 	struct bio_vec bv;
1318 	struct bvec_iter iter;
1319 	unsigned long flags;
1320 	void *buf;
1321 	int pos = 0;
1322 
1323 	while (chain) {
1324 		bio_for_each_segment(bv, chain, iter) {
1325 			if (pos + bv.bv_len > start_ofs) {
1326 				int remainder = max(start_ofs - pos, 0);
1327 				buf = bvec_kmap_irq(&bv, &flags);
1328 				memset(buf + remainder, 0,
1329 				       bv.bv_len - remainder);
1330 				flush_dcache_page(bv.bv_page);
1331 				bvec_kunmap_irq(buf, &flags);
1332 			}
1333 			pos += bv.bv_len;
1334 		}
1335 
1336 		chain = chain->bi_next;
1337 	}
1338 }
1339 
1340 /*
1341  * similar to zero_bio_chain(), zeros data defined by a page array,
1342  * starting at the given byte offset from the start of the array and
1343  * continuing up to the given end offset.  The pages array is
1344  * assumed to be big enough to hold all bytes up to the end.
1345  */
1346 static void zero_pages(struct page **pages, u64 offset, u64 end)
1347 {
1348 	struct page **page = &pages[offset >> PAGE_SHIFT];
1349 
1350 	rbd_assert(end > offset);
1351 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1352 	while (offset < end) {
1353 		size_t page_offset;
1354 		size_t length;
1355 		unsigned long flags;
1356 		void *kaddr;
1357 
1358 		page_offset = offset & ~PAGE_MASK;
1359 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1360 		local_irq_save(flags);
1361 		kaddr = kmap_atomic(*page);
1362 		memset(kaddr + page_offset, 0, length);
1363 		flush_dcache_page(*page);
1364 		kunmap_atomic(kaddr);
1365 		local_irq_restore(flags);
1366 
1367 		offset += length;
1368 		page++;
1369 	}
1370 }
1371 
1372 /*
1373  * Clone a portion of a bio, starting at the given byte offset
1374  * and continuing for the number of bytes indicated.
1375  */
1376 static struct bio *bio_clone_range(struct bio *bio_src,
1377 					unsigned int offset,
1378 					unsigned int len,
1379 					gfp_t gfpmask)
1380 {
1381 	struct bio *bio;
1382 
1383 	bio = bio_clone(bio_src, gfpmask);
1384 	if (!bio)
1385 		return NULL;	/* ENOMEM */
1386 
1387 	bio_advance(bio, offset);
1388 	bio->bi_iter.bi_size = len;
1389 
1390 	return bio;
1391 }
1392 
1393 /*
1394  * Clone a portion of a bio chain, starting at the given byte offset
1395  * into the first bio in the source chain and continuing for the
1396  * number of bytes indicated.  The result is another bio chain of
1397  * exactly the given length, or a null pointer on error.
1398  *
1399  * The bio_src and offset parameters are both in-out.  On entry they
1400  * refer to the first source bio and the offset into that bio where
1401  * the start of data to be cloned is located.
1402  *
1403  * On return, bio_src is updated to refer to the bio in the source
1404  * chain that contains first un-cloned byte, and *offset will
1405  * contain the offset of that byte within that bio.
1406  */
1407 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1408 					unsigned int *offset,
1409 					unsigned int len,
1410 					gfp_t gfpmask)
1411 {
1412 	struct bio *bi = *bio_src;
1413 	unsigned int off = *offset;
1414 	struct bio *chain = NULL;
1415 	struct bio **end;
1416 
1417 	/* Build up a chain of clone bios up to the limit */
1418 
1419 	if (!bi || off >= bi->bi_iter.bi_size || !len)
1420 		return NULL;		/* Nothing to clone */
1421 
1422 	end = &chain;
1423 	while (len) {
1424 		unsigned int bi_size;
1425 		struct bio *bio;
1426 
1427 		if (!bi) {
1428 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1429 			goto out_err;	/* EINVAL; ran out of bio's */
1430 		}
1431 		bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1432 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1433 		if (!bio)
1434 			goto out_err;	/* ENOMEM */
1435 
1436 		*end = bio;
1437 		end = &bio->bi_next;
1438 
1439 		off += bi_size;
1440 		if (off == bi->bi_iter.bi_size) {
1441 			bi = bi->bi_next;
1442 			off = 0;
1443 		}
1444 		len -= bi_size;
1445 	}
1446 	*bio_src = bi;
1447 	*offset = off;
1448 
1449 	return chain;
1450 out_err:
1451 	bio_chain_put(chain);
1452 
1453 	return NULL;
1454 }
1455 
1456 /*
1457  * The default/initial value for all object request flags is 0.  For
1458  * each flag, once its value is set to 1 it is never reset to 0
1459  * again.
1460  */
1461 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1462 {
1463 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1464 		struct rbd_device *rbd_dev;
1465 
1466 		rbd_dev = obj_request->img_request->rbd_dev;
1467 		rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1468 			obj_request);
1469 	}
1470 }
1471 
1472 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1473 {
1474 	smp_mb();
1475 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1476 }
1477 
1478 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1479 {
1480 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1481 		struct rbd_device *rbd_dev = NULL;
1482 
1483 		if (obj_request_img_data_test(obj_request))
1484 			rbd_dev = obj_request->img_request->rbd_dev;
1485 		rbd_warn(rbd_dev, "obj_request %p already marked done",
1486 			obj_request);
1487 	}
1488 }
1489 
1490 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1491 {
1492 	smp_mb();
1493 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1494 }
1495 
1496 /*
1497  * This sets the KNOWN flag after (possibly) setting the EXISTS
1498  * flag.  The latter is set based on the "exists" value provided.
1499  *
1500  * Note that for our purposes once an object exists it never goes
1501  * away again.  It's possible that the response from two existence
1502  * checks are separated by the creation of the target object, and
1503  * the first ("doesn't exist") response arrives *after* the second
1504  * ("does exist").  In that case we ignore the second one.
1505  */
1506 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1507 				bool exists)
1508 {
1509 	if (exists)
1510 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1511 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1512 	smp_mb();
1513 }
1514 
1515 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1516 {
1517 	smp_mb();
1518 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1519 }
1520 
1521 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1522 {
1523 	smp_mb();
1524 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1525 }
1526 
1527 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1528 {
1529 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1530 
1531 	return obj_request->img_offset <
1532 	    round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1533 }
1534 
1535 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1536 {
1537 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1538 		atomic_read(&obj_request->kref.refcount));
1539 	kref_get(&obj_request->kref);
1540 }
1541 
1542 static void rbd_obj_request_destroy(struct kref *kref);
1543 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1544 {
1545 	rbd_assert(obj_request != NULL);
1546 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1547 		atomic_read(&obj_request->kref.refcount));
1548 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1549 }
1550 
1551 static void rbd_img_request_get(struct rbd_img_request *img_request)
1552 {
1553 	dout("%s: img %p (was %d)\n", __func__, img_request,
1554 	     atomic_read(&img_request->kref.refcount));
1555 	kref_get(&img_request->kref);
1556 }
1557 
1558 static bool img_request_child_test(struct rbd_img_request *img_request);
1559 static void rbd_parent_request_destroy(struct kref *kref);
1560 static void rbd_img_request_destroy(struct kref *kref);
1561 static void rbd_img_request_put(struct rbd_img_request *img_request)
1562 {
1563 	rbd_assert(img_request != NULL);
1564 	dout("%s: img %p (was %d)\n", __func__, img_request,
1565 		atomic_read(&img_request->kref.refcount));
1566 	if (img_request_child_test(img_request))
1567 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1568 	else
1569 		kref_put(&img_request->kref, rbd_img_request_destroy);
1570 }
1571 
1572 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1573 					struct rbd_obj_request *obj_request)
1574 {
1575 	rbd_assert(obj_request->img_request == NULL);
1576 
1577 	/* Image request now owns object's original reference */
1578 	obj_request->img_request = img_request;
1579 	obj_request->which = img_request->obj_request_count;
1580 	rbd_assert(!obj_request_img_data_test(obj_request));
1581 	obj_request_img_data_set(obj_request);
1582 	rbd_assert(obj_request->which != BAD_WHICH);
1583 	img_request->obj_request_count++;
1584 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1585 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1586 		obj_request->which);
1587 }
1588 
1589 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1590 					struct rbd_obj_request *obj_request)
1591 {
1592 	rbd_assert(obj_request->which != BAD_WHICH);
1593 
1594 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1595 		obj_request->which);
1596 	list_del(&obj_request->links);
1597 	rbd_assert(img_request->obj_request_count > 0);
1598 	img_request->obj_request_count--;
1599 	rbd_assert(obj_request->which == img_request->obj_request_count);
1600 	obj_request->which = BAD_WHICH;
1601 	rbd_assert(obj_request_img_data_test(obj_request));
1602 	rbd_assert(obj_request->img_request == img_request);
1603 	obj_request->img_request = NULL;
1604 	obj_request->callback = NULL;
1605 	rbd_obj_request_put(obj_request);
1606 }
1607 
1608 static bool obj_request_type_valid(enum obj_request_type type)
1609 {
1610 	switch (type) {
1611 	case OBJ_REQUEST_NODATA:
1612 	case OBJ_REQUEST_BIO:
1613 	case OBJ_REQUEST_PAGES:
1614 		return true;
1615 	default:
1616 		return false;
1617 	}
1618 }
1619 
1620 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request);
1621 
1622 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request)
1623 {
1624 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1625 
1626 	dout("%s %p osd_req %p\n", __func__, obj_request, osd_req);
1627 	if (obj_request_img_data_test(obj_request)) {
1628 		WARN_ON(obj_request->callback != rbd_img_obj_callback);
1629 		rbd_img_request_get(obj_request->img_request);
1630 	}
1631 	ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1632 }
1633 
1634 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1635 {
1636 	dout("%s %p\n", __func__, obj_request);
1637 	ceph_osdc_cancel_request(obj_request->osd_req);
1638 }
1639 
1640 /*
1641  * Wait for an object request to complete.  If interrupted, cancel the
1642  * underlying osd request.
1643  *
1644  * @timeout: in jiffies, 0 means "wait forever"
1645  */
1646 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1647 				  unsigned long timeout)
1648 {
1649 	long ret;
1650 
1651 	dout("%s %p\n", __func__, obj_request);
1652 	ret = wait_for_completion_interruptible_timeout(
1653 					&obj_request->completion,
1654 					ceph_timeout_jiffies(timeout));
1655 	if (ret <= 0) {
1656 		if (ret == 0)
1657 			ret = -ETIMEDOUT;
1658 		rbd_obj_request_end(obj_request);
1659 	} else {
1660 		ret = 0;
1661 	}
1662 
1663 	dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1664 	return ret;
1665 }
1666 
1667 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1668 {
1669 	return __rbd_obj_request_wait(obj_request, 0);
1670 }
1671 
1672 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1673 {
1674 
1675 	dout("%s: img %p\n", __func__, img_request);
1676 
1677 	/*
1678 	 * If no error occurred, compute the aggregate transfer
1679 	 * count for the image request.  We could instead use
1680 	 * atomic64_cmpxchg() to update it as each object request
1681 	 * completes; not clear which way is better off hand.
1682 	 */
1683 	if (!img_request->result) {
1684 		struct rbd_obj_request *obj_request;
1685 		u64 xferred = 0;
1686 
1687 		for_each_obj_request(img_request, obj_request)
1688 			xferred += obj_request->xferred;
1689 		img_request->xferred = xferred;
1690 	}
1691 
1692 	if (img_request->callback)
1693 		img_request->callback(img_request);
1694 	else
1695 		rbd_img_request_put(img_request);
1696 }
1697 
1698 /*
1699  * The default/initial value for all image request flags is 0.  Each
1700  * is conditionally set to 1 at image request initialization time
1701  * and currently never change thereafter.
1702  */
1703 static void img_request_write_set(struct rbd_img_request *img_request)
1704 {
1705 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1706 	smp_mb();
1707 }
1708 
1709 static bool img_request_write_test(struct rbd_img_request *img_request)
1710 {
1711 	smp_mb();
1712 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1713 }
1714 
1715 /*
1716  * Set the discard flag when the img_request is an discard request
1717  */
1718 static void img_request_discard_set(struct rbd_img_request *img_request)
1719 {
1720 	set_bit(IMG_REQ_DISCARD, &img_request->flags);
1721 	smp_mb();
1722 }
1723 
1724 static bool img_request_discard_test(struct rbd_img_request *img_request)
1725 {
1726 	smp_mb();
1727 	return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1728 }
1729 
1730 static void img_request_child_set(struct rbd_img_request *img_request)
1731 {
1732 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1733 	smp_mb();
1734 }
1735 
1736 static void img_request_child_clear(struct rbd_img_request *img_request)
1737 {
1738 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1739 	smp_mb();
1740 }
1741 
1742 static bool img_request_child_test(struct rbd_img_request *img_request)
1743 {
1744 	smp_mb();
1745 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1746 }
1747 
1748 static void img_request_layered_set(struct rbd_img_request *img_request)
1749 {
1750 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1751 	smp_mb();
1752 }
1753 
1754 static void img_request_layered_clear(struct rbd_img_request *img_request)
1755 {
1756 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1757 	smp_mb();
1758 }
1759 
1760 static bool img_request_layered_test(struct rbd_img_request *img_request)
1761 {
1762 	smp_mb();
1763 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1764 }
1765 
1766 static enum obj_operation_type
1767 rbd_img_request_op_type(struct rbd_img_request *img_request)
1768 {
1769 	if (img_request_write_test(img_request))
1770 		return OBJ_OP_WRITE;
1771 	else if (img_request_discard_test(img_request))
1772 		return OBJ_OP_DISCARD;
1773 	else
1774 		return OBJ_OP_READ;
1775 }
1776 
1777 static void
1778 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1779 {
1780 	u64 xferred = obj_request->xferred;
1781 	u64 length = obj_request->length;
1782 
1783 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1784 		obj_request, obj_request->img_request, obj_request->result,
1785 		xferred, length);
1786 	/*
1787 	 * ENOENT means a hole in the image.  We zero-fill the entire
1788 	 * length of the request.  A short read also implies zero-fill
1789 	 * to the end of the request.  An error requires the whole
1790 	 * length of the request to be reported finished with an error
1791 	 * to the block layer.  In each case we update the xferred
1792 	 * count to indicate the whole request was satisfied.
1793 	 */
1794 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1795 	if (obj_request->result == -ENOENT) {
1796 		if (obj_request->type == OBJ_REQUEST_BIO)
1797 			zero_bio_chain(obj_request->bio_list, 0);
1798 		else
1799 			zero_pages(obj_request->pages, 0, length);
1800 		obj_request->result = 0;
1801 	} else if (xferred < length && !obj_request->result) {
1802 		if (obj_request->type == OBJ_REQUEST_BIO)
1803 			zero_bio_chain(obj_request->bio_list, xferred);
1804 		else
1805 			zero_pages(obj_request->pages, xferred, length);
1806 	}
1807 	obj_request->xferred = length;
1808 	obj_request_done_set(obj_request);
1809 }
1810 
1811 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1812 {
1813 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1814 		obj_request->callback);
1815 	if (obj_request->callback)
1816 		obj_request->callback(obj_request);
1817 	else
1818 		complete_all(&obj_request->completion);
1819 }
1820 
1821 static void rbd_obj_request_error(struct rbd_obj_request *obj_request, int err)
1822 {
1823 	obj_request->result = err;
1824 	obj_request->xferred = 0;
1825 	/*
1826 	 * kludge - mirror rbd_obj_request_submit() to match a put in
1827 	 * rbd_img_obj_callback()
1828 	 */
1829 	if (obj_request_img_data_test(obj_request)) {
1830 		WARN_ON(obj_request->callback != rbd_img_obj_callback);
1831 		rbd_img_request_get(obj_request->img_request);
1832 	}
1833 	obj_request_done_set(obj_request);
1834 	rbd_obj_request_complete(obj_request);
1835 }
1836 
1837 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1838 {
1839 	struct rbd_img_request *img_request = NULL;
1840 	struct rbd_device *rbd_dev = NULL;
1841 	bool layered = false;
1842 
1843 	if (obj_request_img_data_test(obj_request)) {
1844 		img_request = obj_request->img_request;
1845 		layered = img_request && img_request_layered_test(img_request);
1846 		rbd_dev = img_request->rbd_dev;
1847 	}
1848 
1849 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1850 		obj_request, img_request, obj_request->result,
1851 		obj_request->xferred, obj_request->length);
1852 	if (layered && obj_request->result == -ENOENT &&
1853 			obj_request->img_offset < rbd_dev->parent_overlap)
1854 		rbd_img_parent_read(obj_request);
1855 	else if (img_request)
1856 		rbd_img_obj_request_read_callback(obj_request);
1857 	else
1858 		obj_request_done_set(obj_request);
1859 }
1860 
1861 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1862 {
1863 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1864 		obj_request->result, obj_request->length);
1865 	/*
1866 	 * There is no such thing as a successful short write.  Set
1867 	 * it to our originally-requested length.
1868 	 */
1869 	obj_request->xferred = obj_request->length;
1870 	obj_request_done_set(obj_request);
1871 }
1872 
1873 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1874 {
1875 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1876 		obj_request->result, obj_request->length);
1877 	/*
1878 	 * There is no such thing as a successful short discard.  Set
1879 	 * it to our originally-requested length.
1880 	 */
1881 	obj_request->xferred = obj_request->length;
1882 	/* discarding a non-existent object is not a problem */
1883 	if (obj_request->result == -ENOENT)
1884 		obj_request->result = 0;
1885 	obj_request_done_set(obj_request);
1886 }
1887 
1888 /*
1889  * For a simple stat call there's nothing to do.  We'll do more if
1890  * this is part of a write sequence for a layered image.
1891  */
1892 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1893 {
1894 	dout("%s: obj %p\n", __func__, obj_request);
1895 	obj_request_done_set(obj_request);
1896 }
1897 
1898 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1899 {
1900 	dout("%s: obj %p\n", __func__, obj_request);
1901 
1902 	if (obj_request_img_data_test(obj_request))
1903 		rbd_osd_copyup_callback(obj_request);
1904 	else
1905 		obj_request_done_set(obj_request);
1906 }
1907 
1908 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1909 {
1910 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1911 	u16 opcode;
1912 
1913 	dout("%s: osd_req %p\n", __func__, osd_req);
1914 	rbd_assert(osd_req == obj_request->osd_req);
1915 	if (obj_request_img_data_test(obj_request)) {
1916 		rbd_assert(obj_request->img_request);
1917 		rbd_assert(obj_request->which != BAD_WHICH);
1918 	} else {
1919 		rbd_assert(obj_request->which == BAD_WHICH);
1920 	}
1921 
1922 	if (osd_req->r_result < 0)
1923 		obj_request->result = osd_req->r_result;
1924 
1925 	/*
1926 	 * We support a 64-bit length, but ultimately it has to be
1927 	 * passed to the block layer, which just supports a 32-bit
1928 	 * length field.
1929 	 */
1930 	obj_request->xferred = osd_req->r_ops[0].outdata_len;
1931 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1932 
1933 	opcode = osd_req->r_ops[0].op;
1934 	switch (opcode) {
1935 	case CEPH_OSD_OP_READ:
1936 		rbd_osd_read_callback(obj_request);
1937 		break;
1938 	case CEPH_OSD_OP_SETALLOCHINT:
1939 		rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1940 			   osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1941 		/* fall through */
1942 	case CEPH_OSD_OP_WRITE:
1943 	case CEPH_OSD_OP_WRITEFULL:
1944 		rbd_osd_write_callback(obj_request);
1945 		break;
1946 	case CEPH_OSD_OP_STAT:
1947 		rbd_osd_stat_callback(obj_request);
1948 		break;
1949 	case CEPH_OSD_OP_DELETE:
1950 	case CEPH_OSD_OP_TRUNCATE:
1951 	case CEPH_OSD_OP_ZERO:
1952 		rbd_osd_discard_callback(obj_request);
1953 		break;
1954 	case CEPH_OSD_OP_CALL:
1955 		rbd_osd_call_callback(obj_request);
1956 		break;
1957 	default:
1958 		rbd_warn(NULL, "%s: unsupported op %hu",
1959 			obj_request->object_name, (unsigned short) opcode);
1960 		break;
1961 	}
1962 
1963 	if (obj_request_done_test(obj_request))
1964 		rbd_obj_request_complete(obj_request);
1965 }
1966 
1967 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1968 {
1969 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1970 
1971 	rbd_assert(obj_request_img_data_test(obj_request));
1972 	osd_req->r_snapid = obj_request->img_request->snap_id;
1973 }
1974 
1975 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1976 {
1977 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1978 
1979 	osd_req->r_mtime = CURRENT_TIME;
1980 	osd_req->r_data_offset = obj_request->offset;
1981 }
1982 
1983 /*
1984  * Create an osd request.  A read request has one osd op (read).
1985  * A write request has either one (watch) or two (hint+write) osd ops.
1986  * (All rbd data writes are prefixed with an allocation hint op, but
1987  * technically osd watch is a write request, hence this distinction.)
1988  */
1989 static struct ceph_osd_request *rbd_osd_req_create(
1990 					struct rbd_device *rbd_dev,
1991 					enum obj_operation_type op_type,
1992 					unsigned int num_ops,
1993 					struct rbd_obj_request *obj_request)
1994 {
1995 	struct ceph_snap_context *snapc = NULL;
1996 	struct ceph_osd_client *osdc;
1997 	struct ceph_osd_request *osd_req;
1998 
1999 	if (obj_request_img_data_test(obj_request) &&
2000 		(op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
2001 		struct rbd_img_request *img_request = obj_request->img_request;
2002 		if (op_type == OBJ_OP_WRITE) {
2003 			rbd_assert(img_request_write_test(img_request));
2004 		} else {
2005 			rbd_assert(img_request_discard_test(img_request));
2006 		}
2007 		snapc = img_request->snapc;
2008 	}
2009 
2010 	rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
2011 
2012 	/* Allocate and initialize the request, for the num_ops ops */
2013 
2014 	osdc = &rbd_dev->rbd_client->client->osdc;
2015 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
2016 					  GFP_NOIO);
2017 	if (!osd_req)
2018 		goto fail;
2019 
2020 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2021 		osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2022 	else
2023 		osd_req->r_flags = CEPH_OSD_FLAG_READ;
2024 
2025 	osd_req->r_callback = rbd_osd_req_callback;
2026 	osd_req->r_priv = obj_request;
2027 
2028 	osd_req->r_base_oloc.pool = rbd_dev->layout.pool_id;
2029 	if (ceph_oid_aprintf(&osd_req->r_base_oid, GFP_NOIO, "%s",
2030 			     obj_request->object_name))
2031 		goto fail;
2032 
2033 	if (ceph_osdc_alloc_messages(osd_req, GFP_NOIO))
2034 		goto fail;
2035 
2036 	return osd_req;
2037 
2038 fail:
2039 	ceph_osdc_put_request(osd_req);
2040 	return NULL;
2041 }
2042 
2043 /*
2044  * Create a copyup osd request based on the information in the object
2045  * request supplied.  A copyup request has two or three osd ops, a
2046  * copyup method call, potentially a hint op, and a write or truncate
2047  * or zero op.
2048  */
2049 static struct ceph_osd_request *
2050 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
2051 {
2052 	struct rbd_img_request *img_request;
2053 	struct ceph_snap_context *snapc;
2054 	struct rbd_device *rbd_dev;
2055 	struct ceph_osd_client *osdc;
2056 	struct ceph_osd_request *osd_req;
2057 	int num_osd_ops = 3;
2058 
2059 	rbd_assert(obj_request_img_data_test(obj_request));
2060 	img_request = obj_request->img_request;
2061 	rbd_assert(img_request);
2062 	rbd_assert(img_request_write_test(img_request) ||
2063 			img_request_discard_test(img_request));
2064 
2065 	if (img_request_discard_test(img_request))
2066 		num_osd_ops = 2;
2067 
2068 	/* Allocate and initialize the request, for all the ops */
2069 
2070 	snapc = img_request->snapc;
2071 	rbd_dev = img_request->rbd_dev;
2072 	osdc = &rbd_dev->rbd_client->client->osdc;
2073 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
2074 						false, GFP_NOIO);
2075 	if (!osd_req)
2076 		goto fail;
2077 
2078 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2079 	osd_req->r_callback = rbd_osd_req_callback;
2080 	osd_req->r_priv = obj_request;
2081 
2082 	osd_req->r_base_oloc.pool = rbd_dev->layout.pool_id;
2083 	if (ceph_oid_aprintf(&osd_req->r_base_oid, GFP_NOIO, "%s",
2084 			     obj_request->object_name))
2085 		goto fail;
2086 
2087 	if (ceph_osdc_alloc_messages(osd_req, GFP_NOIO))
2088 		goto fail;
2089 
2090 	return osd_req;
2091 
2092 fail:
2093 	ceph_osdc_put_request(osd_req);
2094 	return NULL;
2095 }
2096 
2097 
2098 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2099 {
2100 	ceph_osdc_put_request(osd_req);
2101 }
2102 
2103 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2104 
2105 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2106 						u64 offset, u64 length,
2107 						enum obj_request_type type)
2108 {
2109 	struct rbd_obj_request *obj_request;
2110 	size_t size;
2111 	char *name;
2112 
2113 	rbd_assert(obj_request_type_valid(type));
2114 
2115 	size = strlen(object_name) + 1;
2116 	name = kmalloc(size, GFP_NOIO);
2117 	if (!name)
2118 		return NULL;
2119 
2120 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2121 	if (!obj_request) {
2122 		kfree(name);
2123 		return NULL;
2124 	}
2125 
2126 	obj_request->object_name = memcpy(name, object_name, size);
2127 	obj_request->offset = offset;
2128 	obj_request->length = length;
2129 	obj_request->flags = 0;
2130 	obj_request->which = BAD_WHICH;
2131 	obj_request->type = type;
2132 	INIT_LIST_HEAD(&obj_request->links);
2133 	init_completion(&obj_request->completion);
2134 	kref_init(&obj_request->kref);
2135 
2136 	dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2137 		offset, length, (int)type, obj_request);
2138 
2139 	return obj_request;
2140 }
2141 
2142 static void rbd_obj_request_destroy(struct kref *kref)
2143 {
2144 	struct rbd_obj_request *obj_request;
2145 
2146 	obj_request = container_of(kref, struct rbd_obj_request, kref);
2147 
2148 	dout("%s: obj %p\n", __func__, obj_request);
2149 
2150 	rbd_assert(obj_request->img_request == NULL);
2151 	rbd_assert(obj_request->which == BAD_WHICH);
2152 
2153 	if (obj_request->osd_req)
2154 		rbd_osd_req_destroy(obj_request->osd_req);
2155 
2156 	rbd_assert(obj_request_type_valid(obj_request->type));
2157 	switch (obj_request->type) {
2158 	case OBJ_REQUEST_NODATA:
2159 		break;		/* Nothing to do */
2160 	case OBJ_REQUEST_BIO:
2161 		if (obj_request->bio_list)
2162 			bio_chain_put(obj_request->bio_list);
2163 		break;
2164 	case OBJ_REQUEST_PAGES:
2165 		/* img_data requests don't own their page array */
2166 		if (obj_request->pages &&
2167 		    !obj_request_img_data_test(obj_request))
2168 			ceph_release_page_vector(obj_request->pages,
2169 						obj_request->page_count);
2170 		break;
2171 	}
2172 
2173 	kfree(obj_request->object_name);
2174 	obj_request->object_name = NULL;
2175 	kmem_cache_free(rbd_obj_request_cache, obj_request);
2176 }
2177 
2178 /* It's OK to call this for a device with no parent */
2179 
2180 static void rbd_spec_put(struct rbd_spec *spec);
2181 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2182 {
2183 	rbd_dev_remove_parent(rbd_dev);
2184 	rbd_spec_put(rbd_dev->parent_spec);
2185 	rbd_dev->parent_spec = NULL;
2186 	rbd_dev->parent_overlap = 0;
2187 }
2188 
2189 /*
2190  * Parent image reference counting is used to determine when an
2191  * image's parent fields can be safely torn down--after there are no
2192  * more in-flight requests to the parent image.  When the last
2193  * reference is dropped, cleaning them up is safe.
2194  */
2195 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2196 {
2197 	int counter;
2198 
2199 	if (!rbd_dev->parent_spec)
2200 		return;
2201 
2202 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2203 	if (counter > 0)
2204 		return;
2205 
2206 	/* Last reference; clean up parent data structures */
2207 
2208 	if (!counter)
2209 		rbd_dev_unparent(rbd_dev);
2210 	else
2211 		rbd_warn(rbd_dev, "parent reference underflow");
2212 }
2213 
2214 /*
2215  * If an image has a non-zero parent overlap, get a reference to its
2216  * parent.
2217  *
2218  * Returns true if the rbd device has a parent with a non-zero
2219  * overlap and a reference for it was successfully taken, or
2220  * false otherwise.
2221  */
2222 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2223 {
2224 	int counter = 0;
2225 
2226 	if (!rbd_dev->parent_spec)
2227 		return false;
2228 
2229 	down_read(&rbd_dev->header_rwsem);
2230 	if (rbd_dev->parent_overlap)
2231 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2232 	up_read(&rbd_dev->header_rwsem);
2233 
2234 	if (counter < 0)
2235 		rbd_warn(rbd_dev, "parent reference overflow");
2236 
2237 	return counter > 0;
2238 }
2239 
2240 /*
2241  * Caller is responsible for filling in the list of object requests
2242  * that comprises the image request, and the Linux request pointer
2243  * (if there is one).
2244  */
2245 static struct rbd_img_request *rbd_img_request_create(
2246 					struct rbd_device *rbd_dev,
2247 					u64 offset, u64 length,
2248 					enum obj_operation_type op_type,
2249 					struct ceph_snap_context *snapc)
2250 {
2251 	struct rbd_img_request *img_request;
2252 
2253 	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2254 	if (!img_request)
2255 		return NULL;
2256 
2257 	img_request->rq = NULL;
2258 	img_request->rbd_dev = rbd_dev;
2259 	img_request->offset = offset;
2260 	img_request->length = length;
2261 	img_request->flags = 0;
2262 	if (op_type == OBJ_OP_DISCARD) {
2263 		img_request_discard_set(img_request);
2264 		img_request->snapc = snapc;
2265 	} else if (op_type == OBJ_OP_WRITE) {
2266 		img_request_write_set(img_request);
2267 		img_request->snapc = snapc;
2268 	} else {
2269 		img_request->snap_id = rbd_dev->spec->snap_id;
2270 	}
2271 	if (rbd_dev_parent_get(rbd_dev))
2272 		img_request_layered_set(img_request);
2273 	spin_lock_init(&img_request->completion_lock);
2274 	img_request->next_completion = 0;
2275 	img_request->callback = NULL;
2276 	img_request->result = 0;
2277 	img_request->obj_request_count = 0;
2278 	INIT_LIST_HEAD(&img_request->obj_requests);
2279 	kref_init(&img_request->kref);
2280 
2281 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2282 		obj_op_name(op_type), offset, length, img_request);
2283 
2284 	return img_request;
2285 }
2286 
2287 static void rbd_img_request_destroy(struct kref *kref)
2288 {
2289 	struct rbd_img_request *img_request;
2290 	struct rbd_obj_request *obj_request;
2291 	struct rbd_obj_request *next_obj_request;
2292 
2293 	img_request = container_of(kref, struct rbd_img_request, kref);
2294 
2295 	dout("%s: img %p\n", __func__, img_request);
2296 
2297 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2298 		rbd_img_obj_request_del(img_request, obj_request);
2299 	rbd_assert(img_request->obj_request_count == 0);
2300 
2301 	if (img_request_layered_test(img_request)) {
2302 		img_request_layered_clear(img_request);
2303 		rbd_dev_parent_put(img_request->rbd_dev);
2304 	}
2305 
2306 	if (img_request_write_test(img_request) ||
2307 		img_request_discard_test(img_request))
2308 		ceph_put_snap_context(img_request->snapc);
2309 
2310 	kmem_cache_free(rbd_img_request_cache, img_request);
2311 }
2312 
2313 static struct rbd_img_request *rbd_parent_request_create(
2314 					struct rbd_obj_request *obj_request,
2315 					u64 img_offset, u64 length)
2316 {
2317 	struct rbd_img_request *parent_request;
2318 	struct rbd_device *rbd_dev;
2319 
2320 	rbd_assert(obj_request->img_request);
2321 	rbd_dev = obj_request->img_request->rbd_dev;
2322 
2323 	parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2324 						length, OBJ_OP_READ, NULL);
2325 	if (!parent_request)
2326 		return NULL;
2327 
2328 	img_request_child_set(parent_request);
2329 	rbd_obj_request_get(obj_request);
2330 	parent_request->obj_request = obj_request;
2331 
2332 	return parent_request;
2333 }
2334 
2335 static void rbd_parent_request_destroy(struct kref *kref)
2336 {
2337 	struct rbd_img_request *parent_request;
2338 	struct rbd_obj_request *orig_request;
2339 
2340 	parent_request = container_of(kref, struct rbd_img_request, kref);
2341 	orig_request = parent_request->obj_request;
2342 
2343 	parent_request->obj_request = NULL;
2344 	rbd_obj_request_put(orig_request);
2345 	img_request_child_clear(parent_request);
2346 
2347 	rbd_img_request_destroy(kref);
2348 }
2349 
2350 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2351 {
2352 	struct rbd_img_request *img_request;
2353 	unsigned int xferred;
2354 	int result;
2355 	bool more;
2356 
2357 	rbd_assert(obj_request_img_data_test(obj_request));
2358 	img_request = obj_request->img_request;
2359 
2360 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2361 	xferred = (unsigned int)obj_request->xferred;
2362 	result = obj_request->result;
2363 	if (result) {
2364 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2365 		enum obj_operation_type op_type;
2366 
2367 		if (img_request_discard_test(img_request))
2368 			op_type = OBJ_OP_DISCARD;
2369 		else if (img_request_write_test(img_request))
2370 			op_type = OBJ_OP_WRITE;
2371 		else
2372 			op_type = OBJ_OP_READ;
2373 
2374 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2375 			obj_op_name(op_type), obj_request->length,
2376 			obj_request->img_offset, obj_request->offset);
2377 		rbd_warn(rbd_dev, "  result %d xferred %x",
2378 			result, xferred);
2379 		if (!img_request->result)
2380 			img_request->result = result;
2381 		/*
2382 		 * Need to end I/O on the entire obj_request worth of
2383 		 * bytes in case of error.
2384 		 */
2385 		xferred = obj_request->length;
2386 	}
2387 
2388 	if (img_request_child_test(img_request)) {
2389 		rbd_assert(img_request->obj_request != NULL);
2390 		more = obj_request->which < img_request->obj_request_count - 1;
2391 	} else {
2392 		rbd_assert(img_request->rq != NULL);
2393 
2394 		more = blk_update_request(img_request->rq, result, xferred);
2395 		if (!more)
2396 			__blk_mq_end_request(img_request->rq, result);
2397 	}
2398 
2399 	return more;
2400 }
2401 
2402 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2403 {
2404 	struct rbd_img_request *img_request;
2405 	u32 which = obj_request->which;
2406 	bool more = true;
2407 
2408 	rbd_assert(obj_request_img_data_test(obj_request));
2409 	img_request = obj_request->img_request;
2410 
2411 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2412 	rbd_assert(img_request != NULL);
2413 	rbd_assert(img_request->obj_request_count > 0);
2414 	rbd_assert(which != BAD_WHICH);
2415 	rbd_assert(which < img_request->obj_request_count);
2416 
2417 	spin_lock_irq(&img_request->completion_lock);
2418 	if (which != img_request->next_completion)
2419 		goto out;
2420 
2421 	for_each_obj_request_from(img_request, obj_request) {
2422 		rbd_assert(more);
2423 		rbd_assert(which < img_request->obj_request_count);
2424 
2425 		if (!obj_request_done_test(obj_request))
2426 			break;
2427 		more = rbd_img_obj_end_request(obj_request);
2428 		which++;
2429 	}
2430 
2431 	rbd_assert(more ^ (which == img_request->obj_request_count));
2432 	img_request->next_completion = which;
2433 out:
2434 	spin_unlock_irq(&img_request->completion_lock);
2435 	rbd_img_request_put(img_request);
2436 
2437 	if (!more)
2438 		rbd_img_request_complete(img_request);
2439 }
2440 
2441 /*
2442  * Add individual osd ops to the given ceph_osd_request and prepare
2443  * them for submission. num_ops is the current number of
2444  * osd operations already to the object request.
2445  */
2446 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2447 				struct ceph_osd_request *osd_request,
2448 				enum obj_operation_type op_type,
2449 				unsigned int num_ops)
2450 {
2451 	struct rbd_img_request *img_request = obj_request->img_request;
2452 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2453 	u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2454 	u64 offset = obj_request->offset;
2455 	u64 length = obj_request->length;
2456 	u64 img_end;
2457 	u16 opcode;
2458 
2459 	if (op_type == OBJ_OP_DISCARD) {
2460 		if (!offset && length == object_size &&
2461 		    (!img_request_layered_test(img_request) ||
2462 		     !obj_request_overlaps_parent(obj_request))) {
2463 			opcode = CEPH_OSD_OP_DELETE;
2464 		} else if ((offset + length == object_size)) {
2465 			opcode = CEPH_OSD_OP_TRUNCATE;
2466 		} else {
2467 			down_read(&rbd_dev->header_rwsem);
2468 			img_end = rbd_dev->header.image_size;
2469 			up_read(&rbd_dev->header_rwsem);
2470 
2471 			if (obj_request->img_offset + length == img_end)
2472 				opcode = CEPH_OSD_OP_TRUNCATE;
2473 			else
2474 				opcode = CEPH_OSD_OP_ZERO;
2475 		}
2476 	} else if (op_type == OBJ_OP_WRITE) {
2477 		if (!offset && length == object_size)
2478 			opcode = CEPH_OSD_OP_WRITEFULL;
2479 		else
2480 			opcode = CEPH_OSD_OP_WRITE;
2481 		osd_req_op_alloc_hint_init(osd_request, num_ops,
2482 					object_size, object_size);
2483 		num_ops++;
2484 	} else {
2485 		opcode = CEPH_OSD_OP_READ;
2486 	}
2487 
2488 	if (opcode == CEPH_OSD_OP_DELETE)
2489 		osd_req_op_init(osd_request, num_ops, opcode, 0);
2490 	else
2491 		osd_req_op_extent_init(osd_request, num_ops, opcode,
2492 				       offset, length, 0, 0);
2493 
2494 	if (obj_request->type == OBJ_REQUEST_BIO)
2495 		osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2496 					obj_request->bio_list, length);
2497 	else if (obj_request->type == OBJ_REQUEST_PAGES)
2498 		osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2499 					obj_request->pages, length,
2500 					offset & ~PAGE_MASK, false, false);
2501 
2502 	/* Discards are also writes */
2503 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2504 		rbd_osd_req_format_write(obj_request);
2505 	else
2506 		rbd_osd_req_format_read(obj_request);
2507 }
2508 
2509 /*
2510  * Split up an image request into one or more object requests, each
2511  * to a different object.  The "type" parameter indicates whether
2512  * "data_desc" is the pointer to the head of a list of bio
2513  * structures, or the base of a page array.  In either case this
2514  * function assumes data_desc describes memory sufficient to hold
2515  * all data described by the image request.
2516  */
2517 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2518 					enum obj_request_type type,
2519 					void *data_desc)
2520 {
2521 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2522 	struct rbd_obj_request *obj_request = NULL;
2523 	struct rbd_obj_request *next_obj_request;
2524 	struct bio *bio_list = NULL;
2525 	unsigned int bio_offset = 0;
2526 	struct page **pages = NULL;
2527 	enum obj_operation_type op_type;
2528 	u64 img_offset;
2529 	u64 resid;
2530 
2531 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2532 		(int)type, data_desc);
2533 
2534 	img_offset = img_request->offset;
2535 	resid = img_request->length;
2536 	rbd_assert(resid > 0);
2537 	op_type = rbd_img_request_op_type(img_request);
2538 
2539 	if (type == OBJ_REQUEST_BIO) {
2540 		bio_list = data_desc;
2541 		rbd_assert(img_offset ==
2542 			   bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2543 	} else if (type == OBJ_REQUEST_PAGES) {
2544 		pages = data_desc;
2545 	}
2546 
2547 	while (resid) {
2548 		struct ceph_osd_request *osd_req;
2549 		const char *object_name;
2550 		u64 offset;
2551 		u64 length;
2552 
2553 		object_name = rbd_segment_name(rbd_dev, img_offset);
2554 		if (!object_name)
2555 			goto out_unwind;
2556 		offset = rbd_segment_offset(rbd_dev, img_offset);
2557 		length = rbd_segment_length(rbd_dev, img_offset, resid);
2558 		obj_request = rbd_obj_request_create(object_name,
2559 						offset, length, type);
2560 		/* object request has its own copy of the object name */
2561 		rbd_segment_name_free(object_name);
2562 		if (!obj_request)
2563 			goto out_unwind;
2564 
2565 		/*
2566 		 * set obj_request->img_request before creating the
2567 		 * osd_request so that it gets the right snapc
2568 		 */
2569 		rbd_img_obj_request_add(img_request, obj_request);
2570 
2571 		if (type == OBJ_REQUEST_BIO) {
2572 			unsigned int clone_size;
2573 
2574 			rbd_assert(length <= (u64)UINT_MAX);
2575 			clone_size = (unsigned int)length;
2576 			obj_request->bio_list =
2577 					bio_chain_clone_range(&bio_list,
2578 								&bio_offset,
2579 								clone_size,
2580 								GFP_NOIO);
2581 			if (!obj_request->bio_list)
2582 				goto out_unwind;
2583 		} else if (type == OBJ_REQUEST_PAGES) {
2584 			unsigned int page_count;
2585 
2586 			obj_request->pages = pages;
2587 			page_count = (u32)calc_pages_for(offset, length);
2588 			obj_request->page_count = page_count;
2589 			if ((offset + length) & ~PAGE_MASK)
2590 				page_count--;	/* more on last page */
2591 			pages += page_count;
2592 		}
2593 
2594 		osd_req = rbd_osd_req_create(rbd_dev, op_type,
2595 					(op_type == OBJ_OP_WRITE) ? 2 : 1,
2596 					obj_request);
2597 		if (!osd_req)
2598 			goto out_unwind;
2599 
2600 		obj_request->osd_req = osd_req;
2601 		obj_request->callback = rbd_img_obj_callback;
2602 		obj_request->img_offset = img_offset;
2603 
2604 		rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2605 
2606 		img_offset += length;
2607 		resid -= length;
2608 	}
2609 
2610 	return 0;
2611 
2612 out_unwind:
2613 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2614 		rbd_img_obj_request_del(img_request, obj_request);
2615 
2616 	return -ENOMEM;
2617 }
2618 
2619 static void
2620 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2621 {
2622 	struct rbd_img_request *img_request;
2623 	struct rbd_device *rbd_dev;
2624 	struct page **pages;
2625 	u32 page_count;
2626 
2627 	dout("%s: obj %p\n", __func__, obj_request);
2628 
2629 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2630 		obj_request->type == OBJ_REQUEST_NODATA);
2631 	rbd_assert(obj_request_img_data_test(obj_request));
2632 	img_request = obj_request->img_request;
2633 	rbd_assert(img_request);
2634 
2635 	rbd_dev = img_request->rbd_dev;
2636 	rbd_assert(rbd_dev);
2637 
2638 	pages = obj_request->copyup_pages;
2639 	rbd_assert(pages != NULL);
2640 	obj_request->copyup_pages = NULL;
2641 	page_count = obj_request->copyup_page_count;
2642 	rbd_assert(page_count);
2643 	obj_request->copyup_page_count = 0;
2644 	ceph_release_page_vector(pages, page_count);
2645 
2646 	/*
2647 	 * We want the transfer count to reflect the size of the
2648 	 * original write request.  There is no such thing as a
2649 	 * successful short write, so if the request was successful
2650 	 * we can just set it to the originally-requested length.
2651 	 */
2652 	if (!obj_request->result)
2653 		obj_request->xferred = obj_request->length;
2654 
2655 	obj_request_done_set(obj_request);
2656 }
2657 
2658 static void
2659 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2660 {
2661 	struct rbd_obj_request *orig_request;
2662 	struct ceph_osd_request *osd_req;
2663 	struct rbd_device *rbd_dev;
2664 	struct page **pages;
2665 	enum obj_operation_type op_type;
2666 	u32 page_count;
2667 	int img_result;
2668 	u64 parent_length;
2669 
2670 	rbd_assert(img_request_child_test(img_request));
2671 
2672 	/* First get what we need from the image request */
2673 
2674 	pages = img_request->copyup_pages;
2675 	rbd_assert(pages != NULL);
2676 	img_request->copyup_pages = NULL;
2677 	page_count = img_request->copyup_page_count;
2678 	rbd_assert(page_count);
2679 	img_request->copyup_page_count = 0;
2680 
2681 	orig_request = img_request->obj_request;
2682 	rbd_assert(orig_request != NULL);
2683 	rbd_assert(obj_request_type_valid(orig_request->type));
2684 	img_result = img_request->result;
2685 	parent_length = img_request->length;
2686 	rbd_assert(img_result || parent_length == img_request->xferred);
2687 	rbd_img_request_put(img_request);
2688 
2689 	rbd_assert(orig_request->img_request);
2690 	rbd_dev = orig_request->img_request->rbd_dev;
2691 	rbd_assert(rbd_dev);
2692 
2693 	/*
2694 	 * If the overlap has become 0 (most likely because the
2695 	 * image has been flattened) we need to free the pages
2696 	 * and re-submit the original write request.
2697 	 */
2698 	if (!rbd_dev->parent_overlap) {
2699 		ceph_release_page_vector(pages, page_count);
2700 		rbd_obj_request_submit(orig_request);
2701 		return;
2702 	}
2703 
2704 	if (img_result)
2705 		goto out_err;
2706 
2707 	/*
2708 	 * The original osd request is of no use to use any more.
2709 	 * We need a new one that can hold the three ops in a copyup
2710 	 * request.  Allocate the new copyup osd request for the
2711 	 * original request, and release the old one.
2712 	 */
2713 	img_result = -ENOMEM;
2714 	osd_req = rbd_osd_req_create_copyup(orig_request);
2715 	if (!osd_req)
2716 		goto out_err;
2717 	rbd_osd_req_destroy(orig_request->osd_req);
2718 	orig_request->osd_req = osd_req;
2719 	orig_request->copyup_pages = pages;
2720 	orig_request->copyup_page_count = page_count;
2721 
2722 	/* Initialize the copyup op */
2723 
2724 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2725 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2726 						false, false);
2727 
2728 	/* Add the other op(s) */
2729 
2730 	op_type = rbd_img_request_op_type(orig_request->img_request);
2731 	rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2732 
2733 	/* All set, send it off. */
2734 
2735 	rbd_obj_request_submit(orig_request);
2736 	return;
2737 
2738 out_err:
2739 	ceph_release_page_vector(pages, page_count);
2740 	rbd_obj_request_error(orig_request, img_result);
2741 }
2742 
2743 /*
2744  * Read from the parent image the range of data that covers the
2745  * entire target of the given object request.  This is used for
2746  * satisfying a layered image write request when the target of an
2747  * object request from the image request does not exist.
2748  *
2749  * A page array big enough to hold the returned data is allocated
2750  * and supplied to rbd_img_request_fill() as the "data descriptor."
2751  * When the read completes, this page array will be transferred to
2752  * the original object request for the copyup operation.
2753  *
2754  * If an error occurs, it is recorded as the result of the original
2755  * object request in rbd_img_obj_exists_callback().
2756  */
2757 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2758 {
2759 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
2760 	struct rbd_img_request *parent_request = NULL;
2761 	u64 img_offset;
2762 	u64 length;
2763 	struct page **pages = NULL;
2764 	u32 page_count;
2765 	int result;
2766 
2767 	rbd_assert(rbd_dev->parent != NULL);
2768 
2769 	/*
2770 	 * Determine the byte range covered by the object in the
2771 	 * child image to which the original request was to be sent.
2772 	 */
2773 	img_offset = obj_request->img_offset - obj_request->offset;
2774 	length = (u64)1 << rbd_dev->header.obj_order;
2775 
2776 	/*
2777 	 * There is no defined parent data beyond the parent
2778 	 * overlap, so limit what we read at that boundary if
2779 	 * necessary.
2780 	 */
2781 	if (img_offset + length > rbd_dev->parent_overlap) {
2782 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2783 		length = rbd_dev->parent_overlap - img_offset;
2784 	}
2785 
2786 	/*
2787 	 * Allocate a page array big enough to receive the data read
2788 	 * from the parent.
2789 	 */
2790 	page_count = (u32)calc_pages_for(0, length);
2791 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2792 	if (IS_ERR(pages)) {
2793 		result = PTR_ERR(pages);
2794 		pages = NULL;
2795 		goto out_err;
2796 	}
2797 
2798 	result = -ENOMEM;
2799 	parent_request = rbd_parent_request_create(obj_request,
2800 						img_offset, length);
2801 	if (!parent_request)
2802 		goto out_err;
2803 
2804 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2805 	if (result)
2806 		goto out_err;
2807 
2808 	parent_request->copyup_pages = pages;
2809 	parent_request->copyup_page_count = page_count;
2810 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2811 
2812 	result = rbd_img_request_submit(parent_request);
2813 	if (!result)
2814 		return 0;
2815 
2816 	parent_request->copyup_pages = NULL;
2817 	parent_request->copyup_page_count = 0;
2818 	parent_request->obj_request = NULL;
2819 	rbd_obj_request_put(obj_request);
2820 out_err:
2821 	if (pages)
2822 		ceph_release_page_vector(pages, page_count);
2823 	if (parent_request)
2824 		rbd_img_request_put(parent_request);
2825 	return result;
2826 }
2827 
2828 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2829 {
2830 	struct rbd_obj_request *orig_request;
2831 	struct rbd_device *rbd_dev;
2832 	int result;
2833 
2834 	rbd_assert(!obj_request_img_data_test(obj_request));
2835 
2836 	/*
2837 	 * All we need from the object request is the original
2838 	 * request and the result of the STAT op.  Grab those, then
2839 	 * we're done with the request.
2840 	 */
2841 	orig_request = obj_request->obj_request;
2842 	obj_request->obj_request = NULL;
2843 	rbd_obj_request_put(orig_request);
2844 	rbd_assert(orig_request);
2845 	rbd_assert(orig_request->img_request);
2846 
2847 	result = obj_request->result;
2848 	obj_request->result = 0;
2849 
2850 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2851 		obj_request, orig_request, result,
2852 		obj_request->xferred, obj_request->length);
2853 	rbd_obj_request_put(obj_request);
2854 
2855 	/*
2856 	 * If the overlap has become 0 (most likely because the
2857 	 * image has been flattened) we need to re-submit the
2858 	 * original request.
2859 	 */
2860 	rbd_dev = orig_request->img_request->rbd_dev;
2861 	if (!rbd_dev->parent_overlap) {
2862 		rbd_obj_request_submit(orig_request);
2863 		return;
2864 	}
2865 
2866 	/*
2867 	 * Our only purpose here is to determine whether the object
2868 	 * exists, and we don't want to treat the non-existence as
2869 	 * an error.  If something else comes back, transfer the
2870 	 * error to the original request and complete it now.
2871 	 */
2872 	if (!result) {
2873 		obj_request_existence_set(orig_request, true);
2874 	} else if (result == -ENOENT) {
2875 		obj_request_existence_set(orig_request, false);
2876 	} else {
2877 		goto fail_orig_request;
2878 	}
2879 
2880 	/*
2881 	 * Resubmit the original request now that we have recorded
2882 	 * whether the target object exists.
2883 	 */
2884 	result = rbd_img_obj_request_submit(orig_request);
2885 	if (result)
2886 		goto fail_orig_request;
2887 
2888 	return;
2889 
2890 fail_orig_request:
2891 	rbd_obj_request_error(orig_request, result);
2892 }
2893 
2894 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2895 {
2896 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
2897 	struct rbd_obj_request *stat_request;
2898 	struct page **pages;
2899 	u32 page_count;
2900 	size_t size;
2901 	int ret;
2902 
2903 	stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2904 					      OBJ_REQUEST_PAGES);
2905 	if (!stat_request)
2906 		return -ENOMEM;
2907 
2908 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2909 						   stat_request);
2910 	if (!stat_request->osd_req) {
2911 		ret = -ENOMEM;
2912 		goto fail_stat_request;
2913 	}
2914 
2915 	/*
2916 	 * The response data for a STAT call consists of:
2917 	 *     le64 length;
2918 	 *     struct {
2919 	 *         le32 tv_sec;
2920 	 *         le32 tv_nsec;
2921 	 *     } mtime;
2922 	 */
2923 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2924 	page_count = (u32)calc_pages_for(0, size);
2925 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2926 	if (IS_ERR(pages)) {
2927 		ret = PTR_ERR(pages);
2928 		goto fail_stat_request;
2929 	}
2930 
2931 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2932 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2933 				     false, false);
2934 
2935 	rbd_obj_request_get(obj_request);
2936 	stat_request->obj_request = obj_request;
2937 	stat_request->pages = pages;
2938 	stat_request->page_count = page_count;
2939 	stat_request->callback = rbd_img_obj_exists_callback;
2940 
2941 	rbd_obj_request_submit(stat_request);
2942 	return 0;
2943 
2944 fail_stat_request:
2945 	rbd_obj_request_put(stat_request);
2946 	return ret;
2947 }
2948 
2949 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2950 {
2951 	struct rbd_img_request *img_request = obj_request->img_request;
2952 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2953 
2954 	/* Reads */
2955 	if (!img_request_write_test(img_request) &&
2956 	    !img_request_discard_test(img_request))
2957 		return true;
2958 
2959 	/* Non-layered writes */
2960 	if (!img_request_layered_test(img_request))
2961 		return true;
2962 
2963 	/*
2964 	 * Layered writes outside of the parent overlap range don't
2965 	 * share any data with the parent.
2966 	 */
2967 	if (!obj_request_overlaps_parent(obj_request))
2968 		return true;
2969 
2970 	/*
2971 	 * Entire-object layered writes - we will overwrite whatever
2972 	 * parent data there is anyway.
2973 	 */
2974 	if (!obj_request->offset &&
2975 	    obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2976 		return true;
2977 
2978 	/*
2979 	 * If the object is known to already exist, its parent data has
2980 	 * already been copied.
2981 	 */
2982 	if (obj_request_known_test(obj_request) &&
2983 	    obj_request_exists_test(obj_request))
2984 		return true;
2985 
2986 	return false;
2987 }
2988 
2989 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2990 {
2991 	rbd_assert(obj_request_img_data_test(obj_request));
2992 	rbd_assert(obj_request_type_valid(obj_request->type));
2993 	rbd_assert(obj_request->img_request);
2994 
2995 	if (img_obj_request_simple(obj_request)) {
2996 		rbd_obj_request_submit(obj_request);
2997 		return 0;
2998 	}
2999 
3000 	/*
3001 	 * It's a layered write.  The target object might exist but
3002 	 * we may not know that yet.  If we know it doesn't exist,
3003 	 * start by reading the data for the full target object from
3004 	 * the parent so we can use it for a copyup to the target.
3005 	 */
3006 	if (obj_request_known_test(obj_request))
3007 		return rbd_img_obj_parent_read_full(obj_request);
3008 
3009 	/* We don't know whether the target exists.  Go find out. */
3010 
3011 	return rbd_img_obj_exists_submit(obj_request);
3012 }
3013 
3014 static int rbd_img_request_submit(struct rbd_img_request *img_request)
3015 {
3016 	struct rbd_obj_request *obj_request;
3017 	struct rbd_obj_request *next_obj_request;
3018 	int ret = 0;
3019 
3020 	dout("%s: img %p\n", __func__, img_request);
3021 
3022 	rbd_img_request_get(img_request);
3023 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
3024 		ret = rbd_img_obj_request_submit(obj_request);
3025 		if (ret)
3026 			goto out_put_ireq;
3027 	}
3028 
3029 out_put_ireq:
3030 	rbd_img_request_put(img_request);
3031 	return ret;
3032 }
3033 
3034 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
3035 {
3036 	struct rbd_obj_request *obj_request;
3037 	struct rbd_device *rbd_dev;
3038 	u64 obj_end;
3039 	u64 img_xferred;
3040 	int img_result;
3041 
3042 	rbd_assert(img_request_child_test(img_request));
3043 
3044 	/* First get what we need from the image request and release it */
3045 
3046 	obj_request = img_request->obj_request;
3047 	img_xferred = img_request->xferred;
3048 	img_result = img_request->result;
3049 	rbd_img_request_put(img_request);
3050 
3051 	/*
3052 	 * If the overlap has become 0 (most likely because the
3053 	 * image has been flattened) we need to re-submit the
3054 	 * original request.
3055 	 */
3056 	rbd_assert(obj_request);
3057 	rbd_assert(obj_request->img_request);
3058 	rbd_dev = obj_request->img_request->rbd_dev;
3059 	if (!rbd_dev->parent_overlap) {
3060 		rbd_obj_request_submit(obj_request);
3061 		return;
3062 	}
3063 
3064 	obj_request->result = img_result;
3065 	if (obj_request->result)
3066 		goto out;
3067 
3068 	/*
3069 	 * We need to zero anything beyond the parent overlap
3070 	 * boundary.  Since rbd_img_obj_request_read_callback()
3071 	 * will zero anything beyond the end of a short read, an
3072 	 * easy way to do this is to pretend the data from the
3073 	 * parent came up short--ending at the overlap boundary.
3074 	 */
3075 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3076 	obj_end = obj_request->img_offset + obj_request->length;
3077 	if (obj_end > rbd_dev->parent_overlap) {
3078 		u64 xferred = 0;
3079 
3080 		if (obj_request->img_offset < rbd_dev->parent_overlap)
3081 			xferred = rbd_dev->parent_overlap -
3082 					obj_request->img_offset;
3083 
3084 		obj_request->xferred = min(img_xferred, xferred);
3085 	} else {
3086 		obj_request->xferred = img_xferred;
3087 	}
3088 out:
3089 	rbd_img_obj_request_read_callback(obj_request);
3090 	rbd_obj_request_complete(obj_request);
3091 }
3092 
3093 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3094 {
3095 	struct rbd_img_request *img_request;
3096 	int result;
3097 
3098 	rbd_assert(obj_request_img_data_test(obj_request));
3099 	rbd_assert(obj_request->img_request != NULL);
3100 	rbd_assert(obj_request->result == (s32) -ENOENT);
3101 	rbd_assert(obj_request_type_valid(obj_request->type));
3102 
3103 	/* rbd_read_finish(obj_request, obj_request->length); */
3104 	img_request = rbd_parent_request_create(obj_request,
3105 						obj_request->img_offset,
3106 						obj_request->length);
3107 	result = -ENOMEM;
3108 	if (!img_request)
3109 		goto out_err;
3110 
3111 	if (obj_request->type == OBJ_REQUEST_BIO)
3112 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3113 						obj_request->bio_list);
3114 	else
3115 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3116 						obj_request->pages);
3117 	if (result)
3118 		goto out_err;
3119 
3120 	img_request->callback = rbd_img_parent_read_callback;
3121 	result = rbd_img_request_submit(img_request);
3122 	if (result)
3123 		goto out_err;
3124 
3125 	return;
3126 out_err:
3127 	if (img_request)
3128 		rbd_img_request_put(img_request);
3129 	obj_request->result = result;
3130 	obj_request->xferred = 0;
3131 	obj_request_done_set(obj_request);
3132 }
3133 
3134 static const struct rbd_client_id rbd_empty_cid;
3135 
3136 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3137 			  const struct rbd_client_id *rhs)
3138 {
3139 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3140 }
3141 
3142 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3143 {
3144 	struct rbd_client_id cid;
3145 
3146 	mutex_lock(&rbd_dev->watch_mutex);
3147 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3148 	cid.handle = rbd_dev->watch_cookie;
3149 	mutex_unlock(&rbd_dev->watch_mutex);
3150 	return cid;
3151 }
3152 
3153 /*
3154  * lock_rwsem must be held for write
3155  */
3156 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3157 			      const struct rbd_client_id *cid)
3158 {
3159 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3160 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3161 	     cid->gid, cid->handle);
3162 	rbd_dev->owner_cid = *cid; /* struct */
3163 }
3164 
3165 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3166 {
3167 	mutex_lock(&rbd_dev->watch_mutex);
3168 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3169 	mutex_unlock(&rbd_dev->watch_mutex);
3170 }
3171 
3172 /*
3173  * lock_rwsem must be held for write
3174  */
3175 static int rbd_lock(struct rbd_device *rbd_dev)
3176 {
3177 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3178 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3179 	char cookie[32];
3180 	int ret;
3181 
3182 	WARN_ON(__rbd_is_lock_owner(rbd_dev));
3183 
3184 	format_lock_cookie(rbd_dev, cookie);
3185 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3186 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3187 			    RBD_LOCK_TAG, "", 0);
3188 	if (ret)
3189 		return ret;
3190 
3191 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3192 	rbd_set_owner_cid(rbd_dev, &cid);
3193 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3194 	return 0;
3195 }
3196 
3197 /*
3198  * lock_rwsem must be held for write
3199  */
3200 static int rbd_unlock(struct rbd_device *rbd_dev)
3201 {
3202 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3203 	char cookie[32];
3204 	int ret;
3205 
3206 	WARN_ON(!__rbd_is_lock_owner(rbd_dev));
3207 
3208 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3209 
3210 	format_lock_cookie(rbd_dev, cookie);
3211 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3212 			      RBD_LOCK_NAME, cookie);
3213 	if (ret && ret != -ENOENT) {
3214 		rbd_warn(rbd_dev, "cls_unlock failed: %d", ret);
3215 		return ret;
3216 	}
3217 
3218 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3219 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3220 	return 0;
3221 }
3222 
3223 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3224 				enum rbd_notify_op notify_op,
3225 				struct page ***preply_pages,
3226 				size_t *preply_len)
3227 {
3228 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3229 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3230 	int buf_size = 4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN;
3231 	char buf[buf_size];
3232 	void *p = buf;
3233 
3234 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3235 
3236 	/* encode *LockPayload NotifyMessage (op + ClientId) */
3237 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3238 	ceph_encode_32(&p, notify_op);
3239 	ceph_encode_64(&p, cid.gid);
3240 	ceph_encode_64(&p, cid.handle);
3241 
3242 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3243 				&rbd_dev->header_oloc, buf, buf_size,
3244 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3245 }
3246 
3247 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3248 			       enum rbd_notify_op notify_op)
3249 {
3250 	struct page **reply_pages;
3251 	size_t reply_len;
3252 
3253 	__rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
3254 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3255 }
3256 
3257 static void rbd_notify_acquired_lock(struct work_struct *work)
3258 {
3259 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3260 						  acquired_lock_work);
3261 
3262 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3263 }
3264 
3265 static void rbd_notify_released_lock(struct work_struct *work)
3266 {
3267 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3268 						  released_lock_work);
3269 
3270 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3271 }
3272 
3273 static int rbd_request_lock(struct rbd_device *rbd_dev)
3274 {
3275 	struct page **reply_pages;
3276 	size_t reply_len;
3277 	bool lock_owner_responded = false;
3278 	int ret;
3279 
3280 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3281 
3282 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3283 				   &reply_pages, &reply_len);
3284 	if (ret && ret != -ETIMEDOUT) {
3285 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3286 		goto out;
3287 	}
3288 
3289 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3290 		void *p = page_address(reply_pages[0]);
3291 		void *const end = p + reply_len;
3292 		u32 n;
3293 
3294 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3295 		while (n--) {
3296 			u8 struct_v;
3297 			u32 len;
3298 
3299 			ceph_decode_need(&p, end, 8 + 8, e_inval);
3300 			p += 8 + 8; /* skip gid and cookie */
3301 
3302 			ceph_decode_32_safe(&p, end, len, e_inval);
3303 			if (!len)
3304 				continue;
3305 
3306 			if (lock_owner_responded) {
3307 				rbd_warn(rbd_dev,
3308 					 "duplicate lock owners detected");
3309 				ret = -EIO;
3310 				goto out;
3311 			}
3312 
3313 			lock_owner_responded = true;
3314 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3315 						  &struct_v, &len);
3316 			if (ret) {
3317 				rbd_warn(rbd_dev,
3318 					 "failed to decode ResponseMessage: %d",
3319 					 ret);
3320 				goto e_inval;
3321 			}
3322 
3323 			ret = ceph_decode_32(&p);
3324 		}
3325 	}
3326 
3327 	if (!lock_owner_responded) {
3328 		rbd_warn(rbd_dev, "no lock owners detected");
3329 		ret = -ETIMEDOUT;
3330 	}
3331 
3332 out:
3333 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3334 	return ret;
3335 
3336 e_inval:
3337 	ret = -EINVAL;
3338 	goto out;
3339 }
3340 
3341 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
3342 {
3343 	dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
3344 
3345 	cancel_delayed_work(&rbd_dev->lock_dwork);
3346 	if (wake_all)
3347 		wake_up_all(&rbd_dev->lock_waitq);
3348 	else
3349 		wake_up(&rbd_dev->lock_waitq);
3350 }
3351 
3352 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3353 			       struct ceph_locker **lockers, u32 *num_lockers)
3354 {
3355 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3356 	u8 lock_type;
3357 	char *lock_tag;
3358 	int ret;
3359 
3360 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3361 
3362 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3363 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3364 				 &lock_type, &lock_tag, lockers, num_lockers);
3365 	if (ret)
3366 		return ret;
3367 
3368 	if (*num_lockers == 0) {
3369 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3370 		goto out;
3371 	}
3372 
3373 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3374 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3375 			 lock_tag);
3376 		ret = -EBUSY;
3377 		goto out;
3378 	}
3379 
3380 	if (lock_type == CEPH_CLS_LOCK_SHARED) {
3381 		rbd_warn(rbd_dev, "shared lock type detected");
3382 		ret = -EBUSY;
3383 		goto out;
3384 	}
3385 
3386 	if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3387 		    strlen(RBD_LOCK_COOKIE_PREFIX))) {
3388 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3389 			 (*lockers)[0].id.cookie);
3390 		ret = -EBUSY;
3391 		goto out;
3392 	}
3393 
3394 out:
3395 	kfree(lock_tag);
3396 	return ret;
3397 }
3398 
3399 static int find_watcher(struct rbd_device *rbd_dev,
3400 			const struct ceph_locker *locker)
3401 {
3402 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3403 	struct ceph_watch_item *watchers;
3404 	u32 num_watchers;
3405 	u64 cookie;
3406 	int i;
3407 	int ret;
3408 
3409 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3410 				      &rbd_dev->header_oloc, &watchers,
3411 				      &num_watchers);
3412 	if (ret)
3413 		return ret;
3414 
3415 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3416 	for (i = 0; i < num_watchers; i++) {
3417 		if (!memcmp(&watchers[i].addr, &locker->info.addr,
3418 			    sizeof(locker->info.addr)) &&
3419 		    watchers[i].cookie == cookie) {
3420 			struct rbd_client_id cid = {
3421 				.gid = le64_to_cpu(watchers[i].name.num),
3422 				.handle = cookie,
3423 			};
3424 
3425 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3426 			     rbd_dev, cid.gid, cid.handle);
3427 			rbd_set_owner_cid(rbd_dev, &cid);
3428 			ret = 1;
3429 			goto out;
3430 		}
3431 	}
3432 
3433 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3434 	ret = 0;
3435 out:
3436 	kfree(watchers);
3437 	return ret;
3438 }
3439 
3440 /*
3441  * lock_rwsem must be held for write
3442  */
3443 static int rbd_try_lock(struct rbd_device *rbd_dev)
3444 {
3445 	struct ceph_client *client = rbd_dev->rbd_client->client;
3446 	struct ceph_locker *lockers;
3447 	u32 num_lockers;
3448 	int ret;
3449 
3450 	for (;;) {
3451 		ret = rbd_lock(rbd_dev);
3452 		if (ret != -EBUSY)
3453 			return ret;
3454 
3455 		/* determine if the current lock holder is still alive */
3456 		ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3457 		if (ret)
3458 			return ret;
3459 
3460 		if (num_lockers == 0)
3461 			goto again;
3462 
3463 		ret = find_watcher(rbd_dev, lockers);
3464 		if (ret) {
3465 			if (ret > 0)
3466 				ret = 0; /* have to request lock */
3467 			goto out;
3468 		}
3469 
3470 		rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
3471 			 ENTITY_NAME(lockers[0].id.name));
3472 
3473 		ret = ceph_monc_blacklist_add(&client->monc,
3474 					      &lockers[0].info.addr);
3475 		if (ret) {
3476 			rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
3477 				 ENTITY_NAME(lockers[0].id.name), ret);
3478 			goto out;
3479 		}
3480 
3481 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3482 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3483 					  lockers[0].id.cookie,
3484 					  &lockers[0].id.name);
3485 		if (ret && ret != -ENOENT)
3486 			goto out;
3487 
3488 again:
3489 		ceph_free_lockers(lockers, num_lockers);
3490 	}
3491 
3492 out:
3493 	ceph_free_lockers(lockers, num_lockers);
3494 	return ret;
3495 }
3496 
3497 /*
3498  * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
3499  */
3500 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
3501 						int *pret)
3502 {
3503 	enum rbd_lock_state lock_state;
3504 
3505 	down_read(&rbd_dev->lock_rwsem);
3506 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3507 	     rbd_dev->lock_state);
3508 	if (__rbd_is_lock_owner(rbd_dev)) {
3509 		lock_state = rbd_dev->lock_state;
3510 		up_read(&rbd_dev->lock_rwsem);
3511 		return lock_state;
3512 	}
3513 
3514 	up_read(&rbd_dev->lock_rwsem);
3515 	down_write(&rbd_dev->lock_rwsem);
3516 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3517 	     rbd_dev->lock_state);
3518 	if (!__rbd_is_lock_owner(rbd_dev)) {
3519 		*pret = rbd_try_lock(rbd_dev);
3520 		if (*pret)
3521 			rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
3522 	}
3523 
3524 	lock_state = rbd_dev->lock_state;
3525 	up_write(&rbd_dev->lock_rwsem);
3526 	return lock_state;
3527 }
3528 
3529 static void rbd_acquire_lock(struct work_struct *work)
3530 {
3531 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3532 					    struct rbd_device, lock_dwork);
3533 	enum rbd_lock_state lock_state;
3534 	int ret;
3535 
3536 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3537 again:
3538 	lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
3539 	if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
3540 		if (lock_state == RBD_LOCK_STATE_LOCKED)
3541 			wake_requests(rbd_dev, true);
3542 		dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
3543 		     rbd_dev, lock_state, ret);
3544 		return;
3545 	}
3546 
3547 	ret = rbd_request_lock(rbd_dev);
3548 	if (ret == -ETIMEDOUT) {
3549 		goto again; /* treat this as a dead client */
3550 	} else if (ret < 0) {
3551 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3552 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3553 				 RBD_RETRY_DELAY);
3554 	} else {
3555 		/*
3556 		 * lock owner acked, but resend if we don't see them
3557 		 * release the lock
3558 		 */
3559 		dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3560 		     rbd_dev);
3561 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3562 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3563 	}
3564 }
3565 
3566 /*
3567  * lock_rwsem must be held for write
3568  */
3569 static bool rbd_release_lock(struct rbd_device *rbd_dev)
3570 {
3571 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3572 	     rbd_dev->lock_state);
3573 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3574 		return false;
3575 
3576 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3577 	downgrade_write(&rbd_dev->lock_rwsem);
3578 	/*
3579 	 * Ensure that all in-flight IO is flushed.
3580 	 *
3581 	 * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3582 	 * may be shared with other devices.
3583 	 */
3584 	ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3585 	up_read(&rbd_dev->lock_rwsem);
3586 
3587 	down_write(&rbd_dev->lock_rwsem);
3588 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3589 	     rbd_dev->lock_state);
3590 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3591 		return false;
3592 
3593 	if (!rbd_unlock(rbd_dev))
3594 		/*
3595 		 * Give others a chance to grab the lock - we would re-acquire
3596 		 * almost immediately if we got new IO during ceph_osdc_sync()
3597 		 * otherwise.  We need to ack our own notifications, so this
3598 		 * lock_dwork will be requeued from rbd_wait_state_locked()
3599 		 * after wake_requests() in rbd_handle_released_lock().
3600 		 */
3601 		cancel_delayed_work(&rbd_dev->lock_dwork);
3602 
3603 	return true;
3604 }
3605 
3606 static void rbd_release_lock_work(struct work_struct *work)
3607 {
3608 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3609 						  unlock_work);
3610 
3611 	down_write(&rbd_dev->lock_rwsem);
3612 	rbd_release_lock(rbd_dev);
3613 	up_write(&rbd_dev->lock_rwsem);
3614 }
3615 
3616 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3617 				     void **p)
3618 {
3619 	struct rbd_client_id cid = { 0 };
3620 
3621 	if (struct_v >= 2) {
3622 		cid.gid = ceph_decode_64(p);
3623 		cid.handle = ceph_decode_64(p);
3624 	}
3625 
3626 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3627 	     cid.handle);
3628 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3629 		down_write(&rbd_dev->lock_rwsem);
3630 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3631 			/*
3632 			 * we already know that the remote client is
3633 			 * the owner
3634 			 */
3635 			up_write(&rbd_dev->lock_rwsem);
3636 			return;
3637 		}
3638 
3639 		rbd_set_owner_cid(rbd_dev, &cid);
3640 		downgrade_write(&rbd_dev->lock_rwsem);
3641 	} else {
3642 		down_read(&rbd_dev->lock_rwsem);
3643 	}
3644 
3645 	if (!__rbd_is_lock_owner(rbd_dev))
3646 		wake_requests(rbd_dev, false);
3647 	up_read(&rbd_dev->lock_rwsem);
3648 }
3649 
3650 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3651 				     void **p)
3652 {
3653 	struct rbd_client_id cid = { 0 };
3654 
3655 	if (struct_v >= 2) {
3656 		cid.gid = ceph_decode_64(p);
3657 		cid.handle = ceph_decode_64(p);
3658 	}
3659 
3660 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3661 	     cid.handle);
3662 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3663 		down_write(&rbd_dev->lock_rwsem);
3664 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3665 			dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3666 			     __func__, rbd_dev, cid.gid, cid.handle,
3667 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3668 			up_write(&rbd_dev->lock_rwsem);
3669 			return;
3670 		}
3671 
3672 		rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3673 		downgrade_write(&rbd_dev->lock_rwsem);
3674 	} else {
3675 		down_read(&rbd_dev->lock_rwsem);
3676 	}
3677 
3678 	if (!__rbd_is_lock_owner(rbd_dev))
3679 		wake_requests(rbd_dev, false);
3680 	up_read(&rbd_dev->lock_rwsem);
3681 }
3682 
3683 static bool rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3684 				    void **p)
3685 {
3686 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3687 	struct rbd_client_id cid = { 0 };
3688 	bool need_to_send;
3689 
3690 	if (struct_v >= 2) {
3691 		cid.gid = ceph_decode_64(p);
3692 		cid.handle = ceph_decode_64(p);
3693 	}
3694 
3695 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3696 	     cid.handle);
3697 	if (rbd_cid_equal(&cid, &my_cid))
3698 		return false;
3699 
3700 	down_read(&rbd_dev->lock_rwsem);
3701 	need_to_send = __rbd_is_lock_owner(rbd_dev);
3702 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3703 		if (!rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) {
3704 			dout("%s rbd_dev %p queueing unlock_work\n", __func__,
3705 			     rbd_dev);
3706 			queue_work(rbd_dev->task_wq, &rbd_dev->unlock_work);
3707 		}
3708 	}
3709 	up_read(&rbd_dev->lock_rwsem);
3710 	return need_to_send;
3711 }
3712 
3713 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3714 				     u64 notify_id, u64 cookie, s32 *result)
3715 {
3716 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3717 	int buf_size = 4 + CEPH_ENCODING_START_BLK_LEN;
3718 	char buf[buf_size];
3719 	int ret;
3720 
3721 	if (result) {
3722 		void *p = buf;
3723 
3724 		/* encode ResponseMessage */
3725 		ceph_start_encoding(&p, 1, 1,
3726 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
3727 		ceph_encode_32(&p, *result);
3728 	} else {
3729 		buf_size = 0;
3730 	}
3731 
3732 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3733 				   &rbd_dev->header_oloc, notify_id, cookie,
3734 				   buf, buf_size);
3735 	if (ret)
3736 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3737 }
3738 
3739 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3740 				   u64 cookie)
3741 {
3742 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3743 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3744 }
3745 
3746 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3747 					  u64 notify_id, u64 cookie, s32 result)
3748 {
3749 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3750 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3751 }
3752 
3753 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3754 			 u64 notifier_id, void *data, size_t data_len)
3755 {
3756 	struct rbd_device *rbd_dev = arg;
3757 	void *p = data;
3758 	void *const end = p + data_len;
3759 	u8 struct_v;
3760 	u32 len;
3761 	u32 notify_op;
3762 	int ret;
3763 
3764 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3765 	     __func__, rbd_dev, cookie, notify_id, data_len);
3766 	if (data_len) {
3767 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3768 					  &struct_v, &len);
3769 		if (ret) {
3770 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3771 				 ret);
3772 			return;
3773 		}
3774 
3775 		notify_op = ceph_decode_32(&p);
3776 	} else {
3777 		/* legacy notification for header updates */
3778 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3779 		len = 0;
3780 	}
3781 
3782 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3783 	switch (notify_op) {
3784 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3785 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3786 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3787 		break;
3788 	case RBD_NOTIFY_OP_RELEASED_LOCK:
3789 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
3790 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3791 		break;
3792 	case RBD_NOTIFY_OP_REQUEST_LOCK:
3793 		if (rbd_handle_request_lock(rbd_dev, struct_v, &p))
3794 			/*
3795 			 * send ResponseMessage(0) back so the client
3796 			 * can detect a missing owner
3797 			 */
3798 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
3799 						      cookie, 0);
3800 		else
3801 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3802 		break;
3803 	case RBD_NOTIFY_OP_HEADER_UPDATE:
3804 		ret = rbd_dev_refresh(rbd_dev);
3805 		if (ret)
3806 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
3807 
3808 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3809 		break;
3810 	default:
3811 		if (rbd_is_lock_owner(rbd_dev))
3812 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
3813 						      cookie, -EOPNOTSUPP);
3814 		else
3815 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3816 		break;
3817 	}
3818 }
3819 
3820 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3821 
3822 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3823 {
3824 	struct rbd_device *rbd_dev = arg;
3825 
3826 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
3827 
3828 	down_write(&rbd_dev->lock_rwsem);
3829 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3830 	up_write(&rbd_dev->lock_rwsem);
3831 
3832 	mutex_lock(&rbd_dev->watch_mutex);
3833 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3834 		__rbd_unregister_watch(rbd_dev);
3835 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3836 
3837 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3838 	}
3839 	mutex_unlock(&rbd_dev->watch_mutex);
3840 }
3841 
3842 /*
3843  * watch_mutex must be locked
3844  */
3845 static int __rbd_register_watch(struct rbd_device *rbd_dev)
3846 {
3847 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3848 	struct ceph_osd_linger_request *handle;
3849 
3850 	rbd_assert(!rbd_dev->watch_handle);
3851 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3852 
3853 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3854 				 &rbd_dev->header_oloc, rbd_watch_cb,
3855 				 rbd_watch_errcb, rbd_dev);
3856 	if (IS_ERR(handle))
3857 		return PTR_ERR(handle);
3858 
3859 	rbd_dev->watch_handle = handle;
3860 	return 0;
3861 }
3862 
3863 /*
3864  * watch_mutex must be locked
3865  */
3866 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3867 {
3868 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3869 	int ret;
3870 
3871 	rbd_assert(rbd_dev->watch_handle);
3872 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3873 
3874 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3875 	if (ret)
3876 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3877 
3878 	rbd_dev->watch_handle = NULL;
3879 }
3880 
3881 static int rbd_register_watch(struct rbd_device *rbd_dev)
3882 {
3883 	int ret;
3884 
3885 	mutex_lock(&rbd_dev->watch_mutex);
3886 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3887 	ret = __rbd_register_watch(rbd_dev);
3888 	if (ret)
3889 		goto out;
3890 
3891 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3892 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3893 
3894 out:
3895 	mutex_unlock(&rbd_dev->watch_mutex);
3896 	return ret;
3897 }
3898 
3899 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3900 {
3901 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3902 
3903 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3904 	cancel_work_sync(&rbd_dev->acquired_lock_work);
3905 	cancel_work_sync(&rbd_dev->released_lock_work);
3906 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3907 	cancel_work_sync(&rbd_dev->unlock_work);
3908 }
3909 
3910 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3911 {
3912 	WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3913 	cancel_tasks_sync(rbd_dev);
3914 
3915 	mutex_lock(&rbd_dev->watch_mutex);
3916 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3917 		__rbd_unregister_watch(rbd_dev);
3918 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3919 	mutex_unlock(&rbd_dev->watch_mutex);
3920 
3921 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3922 }
3923 
3924 static void rbd_reregister_watch(struct work_struct *work)
3925 {
3926 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3927 					    struct rbd_device, watch_dwork);
3928 	bool was_lock_owner = false;
3929 	bool need_to_wake = false;
3930 	int ret;
3931 
3932 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3933 
3934 	down_write(&rbd_dev->lock_rwsem);
3935 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3936 		was_lock_owner = rbd_release_lock(rbd_dev);
3937 
3938 	mutex_lock(&rbd_dev->watch_mutex);
3939 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
3940 		mutex_unlock(&rbd_dev->watch_mutex);
3941 		goto out;
3942 	}
3943 
3944 	ret = __rbd_register_watch(rbd_dev);
3945 	if (ret) {
3946 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3947 		if (ret == -EBLACKLISTED || ret == -ENOENT) {
3948 			set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3949 			need_to_wake = true;
3950 		} else {
3951 			queue_delayed_work(rbd_dev->task_wq,
3952 					   &rbd_dev->watch_dwork,
3953 					   RBD_RETRY_DELAY);
3954 		}
3955 		mutex_unlock(&rbd_dev->watch_mutex);
3956 		goto out;
3957 	}
3958 
3959 	need_to_wake = true;
3960 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3961 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3962 	mutex_unlock(&rbd_dev->watch_mutex);
3963 
3964 	ret = rbd_dev_refresh(rbd_dev);
3965 	if (ret)
3966 		rbd_warn(rbd_dev, "reregisteration refresh failed: %d", ret);
3967 
3968 	if (was_lock_owner) {
3969 		ret = rbd_try_lock(rbd_dev);
3970 		if (ret)
3971 			rbd_warn(rbd_dev, "reregisteration lock failed: %d",
3972 				 ret);
3973 	}
3974 
3975 out:
3976 	up_write(&rbd_dev->lock_rwsem);
3977 	if (need_to_wake)
3978 		wake_requests(rbd_dev, true);
3979 }
3980 
3981 /*
3982  * Synchronous osd object method call.  Returns the number of bytes
3983  * returned in the outbound buffer, or a negative error code.
3984  */
3985 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3986 			     const char *object_name,
3987 			     const char *class_name,
3988 			     const char *method_name,
3989 			     const void *outbound,
3990 			     size_t outbound_size,
3991 			     void *inbound,
3992 			     size_t inbound_size)
3993 {
3994 	struct rbd_obj_request *obj_request;
3995 	struct page **pages;
3996 	u32 page_count;
3997 	int ret;
3998 
3999 	/*
4000 	 * Method calls are ultimately read operations.  The result
4001 	 * should placed into the inbound buffer provided.  They
4002 	 * also supply outbound data--parameters for the object
4003 	 * method.  Currently if this is present it will be a
4004 	 * snapshot id.
4005 	 */
4006 	page_count = (u32)calc_pages_for(0, inbound_size);
4007 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
4008 	if (IS_ERR(pages))
4009 		return PTR_ERR(pages);
4010 
4011 	ret = -ENOMEM;
4012 	obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
4013 							OBJ_REQUEST_PAGES);
4014 	if (!obj_request)
4015 		goto out;
4016 
4017 	obj_request->pages = pages;
4018 	obj_request->page_count = page_count;
4019 
4020 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
4021 						  obj_request);
4022 	if (!obj_request->osd_req)
4023 		goto out;
4024 
4025 	osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
4026 					class_name, method_name);
4027 	if (outbound_size) {
4028 		struct ceph_pagelist *pagelist;
4029 
4030 		pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
4031 		if (!pagelist)
4032 			goto out;
4033 
4034 		ceph_pagelist_init(pagelist);
4035 		ceph_pagelist_append(pagelist, outbound, outbound_size);
4036 		osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
4037 						pagelist);
4038 	}
4039 	osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
4040 					obj_request->pages, inbound_size,
4041 					0, false, false);
4042 
4043 	rbd_obj_request_submit(obj_request);
4044 	ret = rbd_obj_request_wait(obj_request);
4045 	if (ret)
4046 		goto out;
4047 
4048 	ret = obj_request->result;
4049 	if (ret < 0)
4050 		goto out;
4051 
4052 	rbd_assert(obj_request->xferred < (u64)INT_MAX);
4053 	ret = (int)obj_request->xferred;
4054 	ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
4055 out:
4056 	if (obj_request)
4057 		rbd_obj_request_put(obj_request);
4058 	else
4059 		ceph_release_page_vector(pages, page_count);
4060 
4061 	return ret;
4062 }
4063 
4064 /*
4065  * lock_rwsem must be held for read
4066  */
4067 static void rbd_wait_state_locked(struct rbd_device *rbd_dev)
4068 {
4069 	DEFINE_WAIT(wait);
4070 
4071 	do {
4072 		/*
4073 		 * Note the use of mod_delayed_work() in rbd_acquire_lock()
4074 		 * and cancel_delayed_work() in wake_requests().
4075 		 */
4076 		dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
4077 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4078 		prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
4079 					  TASK_UNINTERRUPTIBLE);
4080 		up_read(&rbd_dev->lock_rwsem);
4081 		schedule();
4082 		down_read(&rbd_dev->lock_rwsem);
4083 	} while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED &&
4084 		 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags));
4085 
4086 	finish_wait(&rbd_dev->lock_waitq, &wait);
4087 }
4088 
4089 static void rbd_queue_workfn(struct work_struct *work)
4090 {
4091 	struct request *rq = blk_mq_rq_from_pdu(work);
4092 	struct rbd_device *rbd_dev = rq->q->queuedata;
4093 	struct rbd_img_request *img_request;
4094 	struct ceph_snap_context *snapc = NULL;
4095 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4096 	u64 length = blk_rq_bytes(rq);
4097 	enum obj_operation_type op_type;
4098 	u64 mapping_size;
4099 	bool must_be_locked;
4100 	int result;
4101 
4102 	if (rq->cmd_type != REQ_TYPE_FS) {
4103 		dout("%s: non-fs request type %d\n", __func__,
4104 			(int) rq->cmd_type);
4105 		result = -EIO;
4106 		goto err;
4107 	}
4108 
4109 	if (req_op(rq) == REQ_OP_DISCARD)
4110 		op_type = OBJ_OP_DISCARD;
4111 	else if (req_op(rq) == REQ_OP_WRITE)
4112 		op_type = OBJ_OP_WRITE;
4113 	else
4114 		op_type = OBJ_OP_READ;
4115 
4116 	/* Ignore/skip any zero-length requests */
4117 
4118 	if (!length) {
4119 		dout("%s: zero-length request\n", __func__);
4120 		result = 0;
4121 		goto err_rq;
4122 	}
4123 
4124 	/* Only reads are allowed to a read-only device */
4125 
4126 	if (op_type != OBJ_OP_READ) {
4127 		if (rbd_dev->mapping.read_only) {
4128 			result = -EROFS;
4129 			goto err_rq;
4130 		}
4131 		rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
4132 	}
4133 
4134 	/*
4135 	 * Quit early if the mapped snapshot no longer exists.  It's
4136 	 * still possible the snapshot will have disappeared by the
4137 	 * time our request arrives at the osd, but there's no sense in
4138 	 * sending it if we already know.
4139 	 */
4140 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
4141 		dout("request for non-existent snapshot");
4142 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
4143 		result = -ENXIO;
4144 		goto err_rq;
4145 	}
4146 
4147 	if (offset && length > U64_MAX - offset + 1) {
4148 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
4149 			 length);
4150 		result = -EINVAL;
4151 		goto err_rq;	/* Shouldn't happen */
4152 	}
4153 
4154 	blk_mq_start_request(rq);
4155 
4156 	down_read(&rbd_dev->header_rwsem);
4157 	mapping_size = rbd_dev->mapping.size;
4158 	if (op_type != OBJ_OP_READ) {
4159 		snapc = rbd_dev->header.snapc;
4160 		ceph_get_snap_context(snapc);
4161 		must_be_locked = rbd_is_lock_supported(rbd_dev);
4162 	} else {
4163 		must_be_locked = rbd_dev->opts->lock_on_read &&
4164 					rbd_is_lock_supported(rbd_dev);
4165 	}
4166 	up_read(&rbd_dev->header_rwsem);
4167 
4168 	if (offset + length > mapping_size) {
4169 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4170 			 length, mapping_size);
4171 		result = -EIO;
4172 		goto err_rq;
4173 	}
4174 
4175 	if (must_be_locked) {
4176 		down_read(&rbd_dev->lock_rwsem);
4177 		if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED &&
4178 		    !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags))
4179 			rbd_wait_state_locked(rbd_dev);
4180 
4181 		WARN_ON((rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) ^
4182 			!test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags));
4183 		if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
4184 			result = -EBLACKLISTED;
4185 			goto err_unlock;
4186 		}
4187 	}
4188 
4189 	img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
4190 					     snapc);
4191 	if (!img_request) {
4192 		result = -ENOMEM;
4193 		goto err_unlock;
4194 	}
4195 	img_request->rq = rq;
4196 	snapc = NULL; /* img_request consumes a ref */
4197 
4198 	if (op_type == OBJ_OP_DISCARD)
4199 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
4200 					      NULL);
4201 	else
4202 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
4203 					      rq->bio);
4204 	if (result)
4205 		goto err_img_request;
4206 
4207 	result = rbd_img_request_submit(img_request);
4208 	if (result)
4209 		goto err_img_request;
4210 
4211 	if (must_be_locked)
4212 		up_read(&rbd_dev->lock_rwsem);
4213 	return;
4214 
4215 err_img_request:
4216 	rbd_img_request_put(img_request);
4217 err_unlock:
4218 	if (must_be_locked)
4219 		up_read(&rbd_dev->lock_rwsem);
4220 err_rq:
4221 	if (result)
4222 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4223 			 obj_op_name(op_type), length, offset, result);
4224 	ceph_put_snap_context(snapc);
4225 err:
4226 	blk_mq_end_request(rq, result);
4227 }
4228 
4229 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4230 		const struct blk_mq_queue_data *bd)
4231 {
4232 	struct request *rq = bd->rq;
4233 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
4234 
4235 	queue_work(rbd_wq, work);
4236 	return BLK_MQ_RQ_QUEUE_OK;
4237 }
4238 
4239 static void rbd_free_disk(struct rbd_device *rbd_dev)
4240 {
4241 	struct gendisk *disk = rbd_dev->disk;
4242 
4243 	if (!disk)
4244 		return;
4245 
4246 	rbd_dev->disk = NULL;
4247 	if (disk->flags & GENHD_FL_UP) {
4248 		del_gendisk(disk);
4249 		if (disk->queue)
4250 			blk_cleanup_queue(disk->queue);
4251 		blk_mq_free_tag_set(&rbd_dev->tag_set);
4252 	}
4253 	put_disk(disk);
4254 }
4255 
4256 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4257 				const char *object_name,
4258 				u64 offset, u64 length, void *buf)
4259 
4260 {
4261 	struct rbd_obj_request *obj_request;
4262 	struct page **pages = NULL;
4263 	u32 page_count;
4264 	size_t size;
4265 	int ret;
4266 
4267 	page_count = (u32) calc_pages_for(offset, length);
4268 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
4269 	if (IS_ERR(pages))
4270 		return PTR_ERR(pages);
4271 
4272 	ret = -ENOMEM;
4273 	obj_request = rbd_obj_request_create(object_name, offset, length,
4274 							OBJ_REQUEST_PAGES);
4275 	if (!obj_request)
4276 		goto out;
4277 
4278 	obj_request->pages = pages;
4279 	obj_request->page_count = page_count;
4280 
4281 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
4282 						  obj_request);
4283 	if (!obj_request->osd_req)
4284 		goto out;
4285 
4286 	osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
4287 					offset, length, 0, 0);
4288 	osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
4289 					obj_request->pages,
4290 					obj_request->length,
4291 					obj_request->offset & ~PAGE_MASK,
4292 					false, false);
4293 
4294 	rbd_obj_request_submit(obj_request);
4295 	ret = rbd_obj_request_wait(obj_request);
4296 	if (ret)
4297 		goto out;
4298 
4299 	ret = obj_request->result;
4300 	if (ret < 0)
4301 		goto out;
4302 
4303 	rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
4304 	size = (size_t) obj_request->xferred;
4305 	ceph_copy_from_page_vector(pages, buf, 0, size);
4306 	rbd_assert(size <= (size_t)INT_MAX);
4307 	ret = (int)size;
4308 out:
4309 	if (obj_request)
4310 		rbd_obj_request_put(obj_request);
4311 	else
4312 		ceph_release_page_vector(pages, page_count);
4313 
4314 	return ret;
4315 }
4316 
4317 /*
4318  * Read the complete header for the given rbd device.  On successful
4319  * return, the rbd_dev->header field will contain up-to-date
4320  * information about the image.
4321  */
4322 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4323 {
4324 	struct rbd_image_header_ondisk *ondisk = NULL;
4325 	u32 snap_count = 0;
4326 	u64 names_size = 0;
4327 	u32 want_count;
4328 	int ret;
4329 
4330 	/*
4331 	 * The complete header will include an array of its 64-bit
4332 	 * snapshot ids, followed by the names of those snapshots as
4333 	 * a contiguous block of NUL-terminated strings.  Note that
4334 	 * the number of snapshots could change by the time we read
4335 	 * it in, in which case we re-read it.
4336 	 */
4337 	do {
4338 		size_t size;
4339 
4340 		kfree(ondisk);
4341 
4342 		size = sizeof (*ondisk);
4343 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4344 		size += names_size;
4345 		ondisk = kmalloc(size, GFP_KERNEL);
4346 		if (!ondisk)
4347 			return -ENOMEM;
4348 
4349 		ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_oid.name,
4350 				       0, size, ondisk);
4351 		if (ret < 0)
4352 			goto out;
4353 		if ((size_t)ret < size) {
4354 			ret = -ENXIO;
4355 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4356 				size, ret);
4357 			goto out;
4358 		}
4359 		if (!rbd_dev_ondisk_valid(ondisk)) {
4360 			ret = -ENXIO;
4361 			rbd_warn(rbd_dev, "invalid header");
4362 			goto out;
4363 		}
4364 
4365 		names_size = le64_to_cpu(ondisk->snap_names_len);
4366 		want_count = snap_count;
4367 		snap_count = le32_to_cpu(ondisk->snap_count);
4368 	} while (snap_count != want_count);
4369 
4370 	ret = rbd_header_from_disk(rbd_dev, ondisk);
4371 out:
4372 	kfree(ondisk);
4373 
4374 	return ret;
4375 }
4376 
4377 /*
4378  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
4379  * has disappeared from the (just updated) snapshot context.
4380  */
4381 static void rbd_exists_validate(struct rbd_device *rbd_dev)
4382 {
4383 	u64 snap_id;
4384 
4385 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
4386 		return;
4387 
4388 	snap_id = rbd_dev->spec->snap_id;
4389 	if (snap_id == CEPH_NOSNAP)
4390 		return;
4391 
4392 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
4393 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4394 }
4395 
4396 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4397 {
4398 	sector_t size;
4399 
4400 	/*
4401 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4402 	 * try to update its size.  If REMOVING is set, updating size
4403 	 * is just useless work since the device can't be opened.
4404 	 */
4405 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4406 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4407 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4408 		dout("setting size to %llu sectors", (unsigned long long)size);
4409 		set_capacity(rbd_dev->disk, size);
4410 		revalidate_disk(rbd_dev->disk);
4411 	}
4412 }
4413 
4414 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4415 {
4416 	u64 mapping_size;
4417 	int ret;
4418 
4419 	down_write(&rbd_dev->header_rwsem);
4420 	mapping_size = rbd_dev->mapping.size;
4421 
4422 	ret = rbd_dev_header_info(rbd_dev);
4423 	if (ret)
4424 		goto out;
4425 
4426 	/*
4427 	 * If there is a parent, see if it has disappeared due to the
4428 	 * mapped image getting flattened.
4429 	 */
4430 	if (rbd_dev->parent) {
4431 		ret = rbd_dev_v2_parent_info(rbd_dev);
4432 		if (ret)
4433 			goto out;
4434 	}
4435 
4436 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
4437 		rbd_dev->mapping.size = rbd_dev->header.image_size;
4438 	} else {
4439 		/* validate mapped snapshot's EXISTS flag */
4440 		rbd_exists_validate(rbd_dev);
4441 	}
4442 
4443 out:
4444 	up_write(&rbd_dev->header_rwsem);
4445 	if (!ret && mapping_size != rbd_dev->mapping.size)
4446 		rbd_dev_update_size(rbd_dev);
4447 
4448 	return ret;
4449 }
4450 
4451 static int rbd_init_request(void *data, struct request *rq,
4452 		unsigned int hctx_idx, unsigned int request_idx,
4453 		unsigned int numa_node)
4454 {
4455 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
4456 
4457 	INIT_WORK(work, rbd_queue_workfn);
4458 	return 0;
4459 }
4460 
4461 static struct blk_mq_ops rbd_mq_ops = {
4462 	.queue_rq	= rbd_queue_rq,
4463 	.init_request	= rbd_init_request,
4464 };
4465 
4466 static int rbd_init_disk(struct rbd_device *rbd_dev)
4467 {
4468 	struct gendisk *disk;
4469 	struct request_queue *q;
4470 	u64 segment_size;
4471 	int err;
4472 
4473 	/* create gendisk info */
4474 	disk = alloc_disk(single_major ?
4475 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4476 			  RBD_MINORS_PER_MAJOR);
4477 	if (!disk)
4478 		return -ENOMEM;
4479 
4480 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4481 		 rbd_dev->dev_id);
4482 	disk->major = rbd_dev->major;
4483 	disk->first_minor = rbd_dev->minor;
4484 	if (single_major)
4485 		disk->flags |= GENHD_FL_EXT_DEVT;
4486 	disk->fops = &rbd_bd_ops;
4487 	disk->private_data = rbd_dev;
4488 
4489 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4490 	rbd_dev->tag_set.ops = &rbd_mq_ops;
4491 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4492 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4493 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
4494 	rbd_dev->tag_set.nr_hw_queues = 1;
4495 	rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
4496 
4497 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4498 	if (err)
4499 		goto out_disk;
4500 
4501 	q = blk_mq_init_queue(&rbd_dev->tag_set);
4502 	if (IS_ERR(q)) {
4503 		err = PTR_ERR(q);
4504 		goto out_tag_set;
4505 	}
4506 
4507 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
4508 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4509 
4510 	/* set io sizes to object size */
4511 	segment_size = rbd_obj_bytes(&rbd_dev->header);
4512 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
4513 	q->limits.max_sectors = queue_max_hw_sectors(q);
4514 	blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
4515 	blk_queue_max_segment_size(q, segment_size);
4516 	blk_queue_io_min(q, segment_size);
4517 	blk_queue_io_opt(q, segment_size);
4518 
4519 	/* enable the discard support */
4520 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
4521 	q->limits.discard_granularity = segment_size;
4522 	q->limits.discard_alignment = segment_size;
4523 	blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
4524 	q->limits.discard_zeroes_data = 1;
4525 
4526 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4527 		q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES;
4528 
4529 	disk->queue = q;
4530 
4531 	q->queuedata = rbd_dev;
4532 
4533 	rbd_dev->disk = disk;
4534 
4535 	return 0;
4536 out_tag_set:
4537 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4538 out_disk:
4539 	put_disk(disk);
4540 	return err;
4541 }
4542 
4543 /*
4544   sysfs
4545 */
4546 
4547 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4548 {
4549 	return container_of(dev, struct rbd_device, dev);
4550 }
4551 
4552 static ssize_t rbd_size_show(struct device *dev,
4553 			     struct device_attribute *attr, char *buf)
4554 {
4555 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4556 
4557 	return sprintf(buf, "%llu\n",
4558 		(unsigned long long)rbd_dev->mapping.size);
4559 }
4560 
4561 /*
4562  * Note this shows the features for whatever's mapped, which is not
4563  * necessarily the base image.
4564  */
4565 static ssize_t rbd_features_show(struct device *dev,
4566 			     struct device_attribute *attr, char *buf)
4567 {
4568 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4569 
4570 	return sprintf(buf, "0x%016llx\n",
4571 			(unsigned long long)rbd_dev->mapping.features);
4572 }
4573 
4574 static ssize_t rbd_major_show(struct device *dev,
4575 			      struct device_attribute *attr, char *buf)
4576 {
4577 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4578 
4579 	if (rbd_dev->major)
4580 		return sprintf(buf, "%d\n", rbd_dev->major);
4581 
4582 	return sprintf(buf, "(none)\n");
4583 }
4584 
4585 static ssize_t rbd_minor_show(struct device *dev,
4586 			      struct device_attribute *attr, char *buf)
4587 {
4588 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4589 
4590 	return sprintf(buf, "%d\n", rbd_dev->minor);
4591 }
4592 
4593 static ssize_t rbd_client_addr_show(struct device *dev,
4594 				    struct device_attribute *attr, char *buf)
4595 {
4596 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4597 	struct ceph_entity_addr *client_addr =
4598 	    ceph_client_addr(rbd_dev->rbd_client->client);
4599 
4600 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4601 		       le32_to_cpu(client_addr->nonce));
4602 }
4603 
4604 static ssize_t rbd_client_id_show(struct device *dev,
4605 				  struct device_attribute *attr, char *buf)
4606 {
4607 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4608 
4609 	return sprintf(buf, "client%lld\n",
4610 		       ceph_client_gid(rbd_dev->rbd_client->client));
4611 }
4612 
4613 static ssize_t rbd_cluster_fsid_show(struct device *dev,
4614 				     struct device_attribute *attr, char *buf)
4615 {
4616 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4617 
4618 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4619 }
4620 
4621 static ssize_t rbd_config_info_show(struct device *dev,
4622 				    struct device_attribute *attr, char *buf)
4623 {
4624 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4625 
4626 	return sprintf(buf, "%s\n", rbd_dev->config_info);
4627 }
4628 
4629 static ssize_t rbd_pool_show(struct device *dev,
4630 			     struct device_attribute *attr, char *buf)
4631 {
4632 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4633 
4634 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4635 }
4636 
4637 static ssize_t rbd_pool_id_show(struct device *dev,
4638 			     struct device_attribute *attr, char *buf)
4639 {
4640 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4641 
4642 	return sprintf(buf, "%llu\n",
4643 			(unsigned long long) rbd_dev->spec->pool_id);
4644 }
4645 
4646 static ssize_t rbd_name_show(struct device *dev,
4647 			     struct device_attribute *attr, char *buf)
4648 {
4649 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4650 
4651 	if (rbd_dev->spec->image_name)
4652 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4653 
4654 	return sprintf(buf, "(unknown)\n");
4655 }
4656 
4657 static ssize_t rbd_image_id_show(struct device *dev,
4658 			     struct device_attribute *attr, char *buf)
4659 {
4660 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4661 
4662 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4663 }
4664 
4665 /*
4666  * Shows the name of the currently-mapped snapshot (or
4667  * RBD_SNAP_HEAD_NAME for the base image).
4668  */
4669 static ssize_t rbd_snap_show(struct device *dev,
4670 			     struct device_attribute *attr,
4671 			     char *buf)
4672 {
4673 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4674 
4675 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4676 }
4677 
4678 static ssize_t rbd_snap_id_show(struct device *dev,
4679 				struct device_attribute *attr, char *buf)
4680 {
4681 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4682 
4683 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4684 }
4685 
4686 /*
4687  * For a v2 image, shows the chain of parent images, separated by empty
4688  * lines.  For v1 images or if there is no parent, shows "(no parent
4689  * image)".
4690  */
4691 static ssize_t rbd_parent_show(struct device *dev,
4692 			       struct device_attribute *attr,
4693 			       char *buf)
4694 {
4695 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4696 	ssize_t count = 0;
4697 
4698 	if (!rbd_dev->parent)
4699 		return sprintf(buf, "(no parent image)\n");
4700 
4701 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4702 		struct rbd_spec *spec = rbd_dev->parent_spec;
4703 
4704 		count += sprintf(&buf[count], "%s"
4705 			    "pool_id %llu\npool_name %s\n"
4706 			    "image_id %s\nimage_name %s\n"
4707 			    "snap_id %llu\nsnap_name %s\n"
4708 			    "overlap %llu\n",
4709 			    !count ? "" : "\n", /* first? */
4710 			    spec->pool_id, spec->pool_name,
4711 			    spec->image_id, spec->image_name ?: "(unknown)",
4712 			    spec->snap_id, spec->snap_name,
4713 			    rbd_dev->parent_overlap);
4714 	}
4715 
4716 	return count;
4717 }
4718 
4719 static ssize_t rbd_image_refresh(struct device *dev,
4720 				 struct device_attribute *attr,
4721 				 const char *buf,
4722 				 size_t size)
4723 {
4724 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4725 	int ret;
4726 
4727 	ret = rbd_dev_refresh(rbd_dev);
4728 	if (ret)
4729 		return ret;
4730 
4731 	return size;
4732 }
4733 
4734 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
4735 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
4736 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
4737 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
4738 static DEVICE_ATTR(client_addr, S_IRUGO, rbd_client_addr_show, NULL);
4739 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
4740 static DEVICE_ATTR(cluster_fsid, S_IRUGO, rbd_cluster_fsid_show, NULL);
4741 static DEVICE_ATTR(config_info, S_IRUSR, rbd_config_info_show, NULL);
4742 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
4743 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
4744 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
4745 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
4746 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
4747 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
4748 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
4749 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
4750 
4751 static struct attribute *rbd_attrs[] = {
4752 	&dev_attr_size.attr,
4753 	&dev_attr_features.attr,
4754 	&dev_attr_major.attr,
4755 	&dev_attr_minor.attr,
4756 	&dev_attr_client_addr.attr,
4757 	&dev_attr_client_id.attr,
4758 	&dev_attr_cluster_fsid.attr,
4759 	&dev_attr_config_info.attr,
4760 	&dev_attr_pool.attr,
4761 	&dev_attr_pool_id.attr,
4762 	&dev_attr_name.attr,
4763 	&dev_attr_image_id.attr,
4764 	&dev_attr_current_snap.attr,
4765 	&dev_attr_snap_id.attr,
4766 	&dev_attr_parent.attr,
4767 	&dev_attr_refresh.attr,
4768 	NULL
4769 };
4770 
4771 static struct attribute_group rbd_attr_group = {
4772 	.attrs = rbd_attrs,
4773 };
4774 
4775 static const struct attribute_group *rbd_attr_groups[] = {
4776 	&rbd_attr_group,
4777 	NULL
4778 };
4779 
4780 static void rbd_dev_release(struct device *dev);
4781 
4782 static struct device_type rbd_device_type = {
4783 	.name		= "rbd",
4784 	.groups		= rbd_attr_groups,
4785 	.release	= rbd_dev_release,
4786 };
4787 
4788 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4789 {
4790 	kref_get(&spec->kref);
4791 
4792 	return spec;
4793 }
4794 
4795 static void rbd_spec_free(struct kref *kref);
4796 static void rbd_spec_put(struct rbd_spec *spec)
4797 {
4798 	if (spec)
4799 		kref_put(&spec->kref, rbd_spec_free);
4800 }
4801 
4802 static struct rbd_spec *rbd_spec_alloc(void)
4803 {
4804 	struct rbd_spec *spec;
4805 
4806 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4807 	if (!spec)
4808 		return NULL;
4809 
4810 	spec->pool_id = CEPH_NOPOOL;
4811 	spec->snap_id = CEPH_NOSNAP;
4812 	kref_init(&spec->kref);
4813 
4814 	return spec;
4815 }
4816 
4817 static void rbd_spec_free(struct kref *kref)
4818 {
4819 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4820 
4821 	kfree(spec->pool_name);
4822 	kfree(spec->image_id);
4823 	kfree(spec->image_name);
4824 	kfree(spec->snap_name);
4825 	kfree(spec);
4826 }
4827 
4828 static void rbd_dev_free(struct rbd_device *rbd_dev)
4829 {
4830 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4831 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4832 
4833 	ceph_oid_destroy(&rbd_dev->header_oid);
4834 	ceph_oloc_destroy(&rbd_dev->header_oloc);
4835 	kfree(rbd_dev->config_info);
4836 
4837 	rbd_put_client(rbd_dev->rbd_client);
4838 	rbd_spec_put(rbd_dev->spec);
4839 	kfree(rbd_dev->opts);
4840 	kfree(rbd_dev);
4841 }
4842 
4843 static void rbd_dev_release(struct device *dev)
4844 {
4845 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4846 	bool need_put = !!rbd_dev->opts;
4847 
4848 	if (need_put) {
4849 		destroy_workqueue(rbd_dev->task_wq);
4850 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4851 	}
4852 
4853 	rbd_dev_free(rbd_dev);
4854 
4855 	/*
4856 	 * This is racy, but way better than putting module outside of
4857 	 * the release callback.  The race window is pretty small, so
4858 	 * doing something similar to dm (dm-builtin.c) is overkill.
4859 	 */
4860 	if (need_put)
4861 		module_put(THIS_MODULE);
4862 }
4863 
4864 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4865 					   struct rbd_spec *spec)
4866 {
4867 	struct rbd_device *rbd_dev;
4868 
4869 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4870 	if (!rbd_dev)
4871 		return NULL;
4872 
4873 	spin_lock_init(&rbd_dev->lock);
4874 	INIT_LIST_HEAD(&rbd_dev->node);
4875 	init_rwsem(&rbd_dev->header_rwsem);
4876 
4877 	ceph_oid_init(&rbd_dev->header_oid);
4878 	ceph_oloc_init(&rbd_dev->header_oloc);
4879 
4880 	mutex_init(&rbd_dev->watch_mutex);
4881 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4882 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4883 
4884 	init_rwsem(&rbd_dev->lock_rwsem);
4885 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4886 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4887 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4888 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4889 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4890 	init_waitqueue_head(&rbd_dev->lock_waitq);
4891 
4892 	rbd_dev->dev.bus = &rbd_bus_type;
4893 	rbd_dev->dev.type = &rbd_device_type;
4894 	rbd_dev->dev.parent = &rbd_root_dev;
4895 	device_initialize(&rbd_dev->dev);
4896 
4897 	rbd_dev->rbd_client = rbdc;
4898 	rbd_dev->spec = spec;
4899 
4900 	rbd_dev->layout.stripe_unit = 1 << RBD_MAX_OBJ_ORDER;
4901 	rbd_dev->layout.stripe_count = 1;
4902 	rbd_dev->layout.object_size = 1 << RBD_MAX_OBJ_ORDER;
4903 	rbd_dev->layout.pool_id = spec->pool_id;
4904 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
4905 
4906 	return rbd_dev;
4907 }
4908 
4909 /*
4910  * Create a mapping rbd_dev.
4911  */
4912 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4913 					 struct rbd_spec *spec,
4914 					 struct rbd_options *opts)
4915 {
4916 	struct rbd_device *rbd_dev;
4917 
4918 	rbd_dev = __rbd_dev_create(rbdc, spec);
4919 	if (!rbd_dev)
4920 		return NULL;
4921 
4922 	rbd_dev->opts = opts;
4923 
4924 	/* get an id and fill in device name */
4925 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4926 					 minor_to_rbd_dev_id(1 << MINORBITS),
4927 					 GFP_KERNEL);
4928 	if (rbd_dev->dev_id < 0)
4929 		goto fail_rbd_dev;
4930 
4931 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4932 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4933 						   rbd_dev->name);
4934 	if (!rbd_dev->task_wq)
4935 		goto fail_dev_id;
4936 
4937 	/* we have a ref from do_rbd_add() */
4938 	__module_get(THIS_MODULE);
4939 
4940 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4941 	return rbd_dev;
4942 
4943 fail_dev_id:
4944 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4945 fail_rbd_dev:
4946 	rbd_dev_free(rbd_dev);
4947 	return NULL;
4948 }
4949 
4950 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4951 {
4952 	if (rbd_dev)
4953 		put_device(&rbd_dev->dev);
4954 }
4955 
4956 /*
4957  * Get the size and object order for an image snapshot, or if
4958  * snap_id is CEPH_NOSNAP, gets this information for the base
4959  * image.
4960  */
4961 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4962 				u8 *order, u64 *snap_size)
4963 {
4964 	__le64 snapid = cpu_to_le64(snap_id);
4965 	int ret;
4966 	struct {
4967 		u8 order;
4968 		__le64 size;
4969 	} __attribute__ ((packed)) size_buf = { 0 };
4970 
4971 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4972 				"rbd", "get_size",
4973 				&snapid, sizeof (snapid),
4974 				&size_buf, sizeof (size_buf));
4975 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4976 	if (ret < 0)
4977 		return ret;
4978 	if (ret < sizeof (size_buf))
4979 		return -ERANGE;
4980 
4981 	if (order) {
4982 		*order = size_buf.order;
4983 		dout("  order %u", (unsigned int)*order);
4984 	}
4985 	*snap_size = le64_to_cpu(size_buf.size);
4986 
4987 	dout("  snap_id 0x%016llx snap_size = %llu\n",
4988 		(unsigned long long)snap_id,
4989 		(unsigned long long)*snap_size);
4990 
4991 	return 0;
4992 }
4993 
4994 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4995 {
4996 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4997 					&rbd_dev->header.obj_order,
4998 					&rbd_dev->header.image_size);
4999 }
5000 
5001 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5002 {
5003 	void *reply_buf;
5004 	int ret;
5005 	void *p;
5006 
5007 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
5008 	if (!reply_buf)
5009 		return -ENOMEM;
5010 
5011 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5012 				"rbd", "get_object_prefix", NULL, 0,
5013 				reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
5014 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5015 	if (ret < 0)
5016 		goto out;
5017 
5018 	p = reply_buf;
5019 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5020 						p + ret, NULL, GFP_NOIO);
5021 	ret = 0;
5022 
5023 	if (IS_ERR(rbd_dev->header.object_prefix)) {
5024 		ret = PTR_ERR(rbd_dev->header.object_prefix);
5025 		rbd_dev->header.object_prefix = NULL;
5026 	} else {
5027 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
5028 	}
5029 out:
5030 	kfree(reply_buf);
5031 
5032 	return ret;
5033 }
5034 
5035 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5036 		u64 *snap_features)
5037 {
5038 	__le64 snapid = cpu_to_le64(snap_id);
5039 	struct {
5040 		__le64 features;
5041 		__le64 incompat;
5042 	} __attribute__ ((packed)) features_buf = { 0 };
5043 	u64 unsup;
5044 	int ret;
5045 
5046 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5047 				"rbd", "get_features",
5048 				&snapid, sizeof (snapid),
5049 				&features_buf, sizeof (features_buf));
5050 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5051 	if (ret < 0)
5052 		return ret;
5053 	if (ret < sizeof (features_buf))
5054 		return -ERANGE;
5055 
5056 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5057 	if (unsup) {
5058 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5059 			 unsup);
5060 		return -ENXIO;
5061 	}
5062 
5063 	*snap_features = le64_to_cpu(features_buf.features);
5064 
5065 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5066 		(unsigned long long)snap_id,
5067 		(unsigned long long)*snap_features,
5068 		(unsigned long long)le64_to_cpu(features_buf.incompat));
5069 
5070 	return 0;
5071 }
5072 
5073 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5074 {
5075 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5076 						&rbd_dev->header.features);
5077 }
5078 
5079 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5080 {
5081 	struct rbd_spec *parent_spec;
5082 	size_t size;
5083 	void *reply_buf = NULL;
5084 	__le64 snapid;
5085 	void *p;
5086 	void *end;
5087 	u64 pool_id;
5088 	char *image_id;
5089 	u64 snap_id;
5090 	u64 overlap;
5091 	int ret;
5092 
5093 	parent_spec = rbd_spec_alloc();
5094 	if (!parent_spec)
5095 		return -ENOMEM;
5096 
5097 	size = sizeof (__le64) +				/* pool_id */
5098 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
5099 		sizeof (__le64) +				/* snap_id */
5100 		sizeof (__le64);				/* overlap */
5101 	reply_buf = kmalloc(size, GFP_KERNEL);
5102 	if (!reply_buf) {
5103 		ret = -ENOMEM;
5104 		goto out_err;
5105 	}
5106 
5107 	snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5108 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5109 				"rbd", "get_parent",
5110 				&snapid, sizeof (snapid),
5111 				reply_buf, size);
5112 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5113 	if (ret < 0)
5114 		goto out_err;
5115 
5116 	p = reply_buf;
5117 	end = reply_buf + ret;
5118 	ret = -ERANGE;
5119 	ceph_decode_64_safe(&p, end, pool_id, out_err);
5120 	if (pool_id == CEPH_NOPOOL) {
5121 		/*
5122 		 * Either the parent never existed, or we have
5123 		 * record of it but the image got flattened so it no
5124 		 * longer has a parent.  When the parent of a
5125 		 * layered image disappears we immediately set the
5126 		 * overlap to 0.  The effect of this is that all new
5127 		 * requests will be treated as if the image had no
5128 		 * parent.
5129 		 */
5130 		if (rbd_dev->parent_overlap) {
5131 			rbd_dev->parent_overlap = 0;
5132 			rbd_dev_parent_put(rbd_dev);
5133 			pr_info("%s: clone image has been flattened\n",
5134 				rbd_dev->disk->disk_name);
5135 		}
5136 
5137 		goto out;	/* No parent?  No problem. */
5138 	}
5139 
5140 	/* The ceph file layout needs to fit pool id in 32 bits */
5141 
5142 	ret = -EIO;
5143 	if (pool_id > (u64)U32_MAX) {
5144 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5145 			(unsigned long long)pool_id, U32_MAX);
5146 		goto out_err;
5147 	}
5148 
5149 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5150 	if (IS_ERR(image_id)) {
5151 		ret = PTR_ERR(image_id);
5152 		goto out_err;
5153 	}
5154 	ceph_decode_64_safe(&p, end, snap_id, out_err);
5155 	ceph_decode_64_safe(&p, end, overlap, out_err);
5156 
5157 	/*
5158 	 * The parent won't change (except when the clone is
5159 	 * flattened, already handled that).  So we only need to
5160 	 * record the parent spec we have not already done so.
5161 	 */
5162 	if (!rbd_dev->parent_spec) {
5163 		parent_spec->pool_id = pool_id;
5164 		parent_spec->image_id = image_id;
5165 		parent_spec->snap_id = snap_id;
5166 		rbd_dev->parent_spec = parent_spec;
5167 		parent_spec = NULL;	/* rbd_dev now owns this */
5168 	} else {
5169 		kfree(image_id);
5170 	}
5171 
5172 	/*
5173 	 * We always update the parent overlap.  If it's zero we issue
5174 	 * a warning, as we will proceed as if there was no parent.
5175 	 */
5176 	if (!overlap) {
5177 		if (parent_spec) {
5178 			/* refresh, careful to warn just once */
5179 			if (rbd_dev->parent_overlap)
5180 				rbd_warn(rbd_dev,
5181 				    "clone now standalone (overlap became 0)");
5182 		} else {
5183 			/* initial probe */
5184 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5185 		}
5186 	}
5187 	rbd_dev->parent_overlap = overlap;
5188 
5189 out:
5190 	ret = 0;
5191 out_err:
5192 	kfree(reply_buf);
5193 	rbd_spec_put(parent_spec);
5194 
5195 	return ret;
5196 }
5197 
5198 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5199 {
5200 	struct {
5201 		__le64 stripe_unit;
5202 		__le64 stripe_count;
5203 	} __attribute__ ((packed)) striping_info_buf = { 0 };
5204 	size_t size = sizeof (striping_info_buf);
5205 	void *p;
5206 	u64 obj_size;
5207 	u64 stripe_unit;
5208 	u64 stripe_count;
5209 	int ret;
5210 
5211 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5212 				"rbd", "get_stripe_unit_count", NULL, 0,
5213 				(char *)&striping_info_buf, size);
5214 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5215 	if (ret < 0)
5216 		return ret;
5217 	if (ret < size)
5218 		return -ERANGE;
5219 
5220 	/*
5221 	 * We don't actually support the "fancy striping" feature
5222 	 * (STRIPINGV2) yet, but if the striping sizes are the
5223 	 * defaults the behavior is the same as before.  So find
5224 	 * out, and only fail if the image has non-default values.
5225 	 */
5226 	ret = -EINVAL;
5227 	obj_size = (u64)1 << rbd_dev->header.obj_order;
5228 	p = &striping_info_buf;
5229 	stripe_unit = ceph_decode_64(&p);
5230 	if (stripe_unit != obj_size) {
5231 		rbd_warn(rbd_dev, "unsupported stripe unit "
5232 				"(got %llu want %llu)",
5233 				stripe_unit, obj_size);
5234 		return -EINVAL;
5235 	}
5236 	stripe_count = ceph_decode_64(&p);
5237 	if (stripe_count != 1) {
5238 		rbd_warn(rbd_dev, "unsupported stripe count "
5239 				"(got %llu want 1)", stripe_count);
5240 		return -EINVAL;
5241 	}
5242 	rbd_dev->header.stripe_unit = stripe_unit;
5243 	rbd_dev->header.stripe_count = stripe_count;
5244 
5245 	return 0;
5246 }
5247 
5248 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5249 {
5250 	size_t image_id_size;
5251 	char *image_id;
5252 	void *p;
5253 	void *end;
5254 	size_t size;
5255 	void *reply_buf = NULL;
5256 	size_t len = 0;
5257 	char *image_name = NULL;
5258 	int ret;
5259 
5260 	rbd_assert(!rbd_dev->spec->image_name);
5261 
5262 	len = strlen(rbd_dev->spec->image_id);
5263 	image_id_size = sizeof (__le32) + len;
5264 	image_id = kmalloc(image_id_size, GFP_KERNEL);
5265 	if (!image_id)
5266 		return NULL;
5267 
5268 	p = image_id;
5269 	end = image_id + image_id_size;
5270 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5271 
5272 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5273 	reply_buf = kmalloc(size, GFP_KERNEL);
5274 	if (!reply_buf)
5275 		goto out;
5276 
5277 	ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
5278 				"rbd", "dir_get_name",
5279 				image_id, image_id_size,
5280 				reply_buf, size);
5281 	if (ret < 0)
5282 		goto out;
5283 	p = reply_buf;
5284 	end = reply_buf + ret;
5285 
5286 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5287 	if (IS_ERR(image_name))
5288 		image_name = NULL;
5289 	else
5290 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5291 out:
5292 	kfree(reply_buf);
5293 	kfree(image_id);
5294 
5295 	return image_name;
5296 }
5297 
5298 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5299 {
5300 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5301 	const char *snap_name;
5302 	u32 which = 0;
5303 
5304 	/* Skip over names until we find the one we are looking for */
5305 
5306 	snap_name = rbd_dev->header.snap_names;
5307 	while (which < snapc->num_snaps) {
5308 		if (!strcmp(name, snap_name))
5309 			return snapc->snaps[which];
5310 		snap_name += strlen(snap_name) + 1;
5311 		which++;
5312 	}
5313 	return CEPH_NOSNAP;
5314 }
5315 
5316 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5317 {
5318 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5319 	u32 which;
5320 	bool found = false;
5321 	u64 snap_id;
5322 
5323 	for (which = 0; !found && which < snapc->num_snaps; which++) {
5324 		const char *snap_name;
5325 
5326 		snap_id = snapc->snaps[which];
5327 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5328 		if (IS_ERR(snap_name)) {
5329 			/* ignore no-longer existing snapshots */
5330 			if (PTR_ERR(snap_name) == -ENOENT)
5331 				continue;
5332 			else
5333 				break;
5334 		}
5335 		found = !strcmp(name, snap_name);
5336 		kfree(snap_name);
5337 	}
5338 	return found ? snap_id : CEPH_NOSNAP;
5339 }
5340 
5341 /*
5342  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5343  * no snapshot by that name is found, or if an error occurs.
5344  */
5345 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5346 {
5347 	if (rbd_dev->image_format == 1)
5348 		return rbd_v1_snap_id_by_name(rbd_dev, name);
5349 
5350 	return rbd_v2_snap_id_by_name(rbd_dev, name);
5351 }
5352 
5353 /*
5354  * An image being mapped will have everything but the snap id.
5355  */
5356 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5357 {
5358 	struct rbd_spec *spec = rbd_dev->spec;
5359 
5360 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5361 	rbd_assert(spec->image_id && spec->image_name);
5362 	rbd_assert(spec->snap_name);
5363 
5364 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5365 		u64 snap_id;
5366 
5367 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5368 		if (snap_id == CEPH_NOSNAP)
5369 			return -ENOENT;
5370 
5371 		spec->snap_id = snap_id;
5372 	} else {
5373 		spec->snap_id = CEPH_NOSNAP;
5374 	}
5375 
5376 	return 0;
5377 }
5378 
5379 /*
5380  * A parent image will have all ids but none of the names.
5381  *
5382  * All names in an rbd spec are dynamically allocated.  It's OK if we
5383  * can't figure out the name for an image id.
5384  */
5385 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5386 {
5387 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5388 	struct rbd_spec *spec = rbd_dev->spec;
5389 	const char *pool_name;
5390 	const char *image_name;
5391 	const char *snap_name;
5392 	int ret;
5393 
5394 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
5395 	rbd_assert(spec->image_id);
5396 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
5397 
5398 	/* Get the pool name; we have to make our own copy of this */
5399 
5400 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
5401 	if (!pool_name) {
5402 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
5403 		return -EIO;
5404 	}
5405 	pool_name = kstrdup(pool_name, GFP_KERNEL);
5406 	if (!pool_name)
5407 		return -ENOMEM;
5408 
5409 	/* Fetch the image name; tolerate failure here */
5410 
5411 	image_name = rbd_dev_image_name(rbd_dev);
5412 	if (!image_name)
5413 		rbd_warn(rbd_dev, "unable to get image name");
5414 
5415 	/* Fetch the snapshot name */
5416 
5417 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
5418 	if (IS_ERR(snap_name)) {
5419 		ret = PTR_ERR(snap_name);
5420 		goto out_err;
5421 	}
5422 
5423 	spec->pool_name = pool_name;
5424 	spec->image_name = image_name;
5425 	spec->snap_name = snap_name;
5426 
5427 	return 0;
5428 
5429 out_err:
5430 	kfree(image_name);
5431 	kfree(pool_name);
5432 	return ret;
5433 }
5434 
5435 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
5436 {
5437 	size_t size;
5438 	int ret;
5439 	void *reply_buf;
5440 	void *p;
5441 	void *end;
5442 	u64 seq;
5443 	u32 snap_count;
5444 	struct ceph_snap_context *snapc;
5445 	u32 i;
5446 
5447 	/*
5448 	 * We'll need room for the seq value (maximum snapshot id),
5449 	 * snapshot count, and array of that many snapshot ids.
5450 	 * For now we have a fixed upper limit on the number we're
5451 	 * prepared to receive.
5452 	 */
5453 	size = sizeof (__le64) + sizeof (__le32) +
5454 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
5455 	reply_buf = kzalloc(size, GFP_KERNEL);
5456 	if (!reply_buf)
5457 		return -ENOMEM;
5458 
5459 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5460 				"rbd", "get_snapcontext", NULL, 0,
5461 				reply_buf, size);
5462 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5463 	if (ret < 0)
5464 		goto out;
5465 
5466 	p = reply_buf;
5467 	end = reply_buf + ret;
5468 	ret = -ERANGE;
5469 	ceph_decode_64_safe(&p, end, seq, out);
5470 	ceph_decode_32_safe(&p, end, snap_count, out);
5471 
5472 	/*
5473 	 * Make sure the reported number of snapshot ids wouldn't go
5474 	 * beyond the end of our buffer.  But before checking that,
5475 	 * make sure the computed size of the snapshot context we
5476 	 * allocate is representable in a size_t.
5477 	 */
5478 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
5479 				 / sizeof (u64)) {
5480 		ret = -EINVAL;
5481 		goto out;
5482 	}
5483 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
5484 		goto out;
5485 	ret = 0;
5486 
5487 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
5488 	if (!snapc) {
5489 		ret = -ENOMEM;
5490 		goto out;
5491 	}
5492 	snapc->seq = seq;
5493 	for (i = 0; i < snap_count; i++)
5494 		snapc->snaps[i] = ceph_decode_64(&p);
5495 
5496 	ceph_put_snap_context(rbd_dev->header.snapc);
5497 	rbd_dev->header.snapc = snapc;
5498 
5499 	dout("  snap context seq = %llu, snap_count = %u\n",
5500 		(unsigned long long)seq, (unsigned int)snap_count);
5501 out:
5502 	kfree(reply_buf);
5503 
5504 	return ret;
5505 }
5506 
5507 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
5508 					u64 snap_id)
5509 {
5510 	size_t size;
5511 	void *reply_buf;
5512 	__le64 snapid;
5513 	int ret;
5514 	void *p;
5515 	void *end;
5516 	char *snap_name;
5517 
5518 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
5519 	reply_buf = kmalloc(size, GFP_KERNEL);
5520 	if (!reply_buf)
5521 		return ERR_PTR(-ENOMEM);
5522 
5523 	snapid = cpu_to_le64(snap_id);
5524 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5525 				"rbd", "get_snapshot_name",
5526 				&snapid, sizeof (snapid),
5527 				reply_buf, size);
5528 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5529 	if (ret < 0) {
5530 		snap_name = ERR_PTR(ret);
5531 		goto out;
5532 	}
5533 
5534 	p = reply_buf;
5535 	end = reply_buf + ret;
5536 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5537 	if (IS_ERR(snap_name))
5538 		goto out;
5539 
5540 	dout("  snap_id 0x%016llx snap_name = %s\n",
5541 		(unsigned long long)snap_id, snap_name);
5542 out:
5543 	kfree(reply_buf);
5544 
5545 	return snap_name;
5546 }
5547 
5548 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
5549 {
5550 	bool first_time = rbd_dev->header.object_prefix == NULL;
5551 	int ret;
5552 
5553 	ret = rbd_dev_v2_image_size(rbd_dev);
5554 	if (ret)
5555 		return ret;
5556 
5557 	if (first_time) {
5558 		ret = rbd_dev_v2_header_onetime(rbd_dev);
5559 		if (ret)
5560 			return ret;
5561 	}
5562 
5563 	ret = rbd_dev_v2_snap_context(rbd_dev);
5564 	if (ret && first_time) {
5565 		kfree(rbd_dev->header.object_prefix);
5566 		rbd_dev->header.object_prefix = NULL;
5567 	}
5568 
5569 	return ret;
5570 }
5571 
5572 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
5573 {
5574 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5575 
5576 	if (rbd_dev->image_format == 1)
5577 		return rbd_dev_v1_header_info(rbd_dev);
5578 
5579 	return rbd_dev_v2_header_info(rbd_dev);
5580 }
5581 
5582 /*
5583  * Skips over white space at *buf, and updates *buf to point to the
5584  * first found non-space character (if any). Returns the length of
5585  * the token (string of non-white space characters) found.  Note
5586  * that *buf must be terminated with '\0'.
5587  */
5588 static inline size_t next_token(const char **buf)
5589 {
5590         /*
5591         * These are the characters that produce nonzero for
5592         * isspace() in the "C" and "POSIX" locales.
5593         */
5594         const char *spaces = " \f\n\r\t\v";
5595 
5596         *buf += strspn(*buf, spaces);	/* Find start of token */
5597 
5598 	return strcspn(*buf, spaces);   /* Return token length */
5599 }
5600 
5601 /*
5602  * Finds the next token in *buf, dynamically allocates a buffer big
5603  * enough to hold a copy of it, and copies the token into the new
5604  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
5605  * that a duplicate buffer is created even for a zero-length token.
5606  *
5607  * Returns a pointer to the newly-allocated duplicate, or a null
5608  * pointer if memory for the duplicate was not available.  If
5609  * the lenp argument is a non-null pointer, the length of the token
5610  * (not including the '\0') is returned in *lenp.
5611  *
5612  * If successful, the *buf pointer will be updated to point beyond
5613  * the end of the found token.
5614  *
5615  * Note: uses GFP_KERNEL for allocation.
5616  */
5617 static inline char *dup_token(const char **buf, size_t *lenp)
5618 {
5619 	char *dup;
5620 	size_t len;
5621 
5622 	len = next_token(buf);
5623 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5624 	if (!dup)
5625 		return NULL;
5626 	*(dup + len) = '\0';
5627 	*buf += len;
5628 
5629 	if (lenp)
5630 		*lenp = len;
5631 
5632 	return dup;
5633 }
5634 
5635 /*
5636  * Parse the options provided for an "rbd add" (i.e., rbd image
5637  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
5638  * and the data written is passed here via a NUL-terminated buffer.
5639  * Returns 0 if successful or an error code otherwise.
5640  *
5641  * The information extracted from these options is recorded in
5642  * the other parameters which return dynamically-allocated
5643  * structures:
5644  *  ceph_opts
5645  *      The address of a pointer that will refer to a ceph options
5646  *      structure.  Caller must release the returned pointer using
5647  *      ceph_destroy_options() when it is no longer needed.
5648  *  rbd_opts
5649  *	Address of an rbd options pointer.  Fully initialized by
5650  *	this function; caller must release with kfree().
5651  *  spec
5652  *	Address of an rbd image specification pointer.  Fully
5653  *	initialized by this function based on parsed options.
5654  *	Caller must release with rbd_spec_put().
5655  *
5656  * The options passed take this form:
5657  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5658  * where:
5659  *  <mon_addrs>
5660  *      A comma-separated list of one or more monitor addresses.
5661  *      A monitor address is an ip address, optionally followed
5662  *      by a port number (separated by a colon).
5663  *        I.e.:  ip1[:port1][,ip2[:port2]...]
5664  *  <options>
5665  *      A comma-separated list of ceph and/or rbd options.
5666  *  <pool_name>
5667  *      The name of the rados pool containing the rbd image.
5668  *  <image_name>
5669  *      The name of the image in that pool to map.
5670  *  <snap_id>
5671  *      An optional snapshot id.  If provided, the mapping will
5672  *      present data from the image at the time that snapshot was
5673  *      created.  The image head is used if no snapshot id is
5674  *      provided.  Snapshot mappings are always read-only.
5675  */
5676 static int rbd_add_parse_args(const char *buf,
5677 				struct ceph_options **ceph_opts,
5678 				struct rbd_options **opts,
5679 				struct rbd_spec **rbd_spec)
5680 {
5681 	size_t len;
5682 	char *options;
5683 	const char *mon_addrs;
5684 	char *snap_name;
5685 	size_t mon_addrs_size;
5686 	struct rbd_spec *spec = NULL;
5687 	struct rbd_options *rbd_opts = NULL;
5688 	struct ceph_options *copts;
5689 	int ret;
5690 
5691 	/* The first four tokens are required */
5692 
5693 	len = next_token(&buf);
5694 	if (!len) {
5695 		rbd_warn(NULL, "no monitor address(es) provided");
5696 		return -EINVAL;
5697 	}
5698 	mon_addrs = buf;
5699 	mon_addrs_size = len + 1;
5700 	buf += len;
5701 
5702 	ret = -EINVAL;
5703 	options = dup_token(&buf, NULL);
5704 	if (!options)
5705 		return -ENOMEM;
5706 	if (!*options) {
5707 		rbd_warn(NULL, "no options provided");
5708 		goto out_err;
5709 	}
5710 
5711 	spec = rbd_spec_alloc();
5712 	if (!spec)
5713 		goto out_mem;
5714 
5715 	spec->pool_name = dup_token(&buf, NULL);
5716 	if (!spec->pool_name)
5717 		goto out_mem;
5718 	if (!*spec->pool_name) {
5719 		rbd_warn(NULL, "no pool name provided");
5720 		goto out_err;
5721 	}
5722 
5723 	spec->image_name = dup_token(&buf, NULL);
5724 	if (!spec->image_name)
5725 		goto out_mem;
5726 	if (!*spec->image_name) {
5727 		rbd_warn(NULL, "no image name provided");
5728 		goto out_err;
5729 	}
5730 
5731 	/*
5732 	 * Snapshot name is optional; default is to use "-"
5733 	 * (indicating the head/no snapshot).
5734 	 */
5735 	len = next_token(&buf);
5736 	if (!len) {
5737 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5738 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5739 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
5740 		ret = -ENAMETOOLONG;
5741 		goto out_err;
5742 	}
5743 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5744 	if (!snap_name)
5745 		goto out_mem;
5746 	*(snap_name + len) = '\0';
5747 	spec->snap_name = snap_name;
5748 
5749 	/* Initialize all rbd options to the defaults */
5750 
5751 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
5752 	if (!rbd_opts)
5753 		goto out_mem;
5754 
5755 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
5756 	rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5757 	rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
5758 
5759 	copts = ceph_parse_options(options, mon_addrs,
5760 					mon_addrs + mon_addrs_size - 1,
5761 					parse_rbd_opts_token, rbd_opts);
5762 	if (IS_ERR(copts)) {
5763 		ret = PTR_ERR(copts);
5764 		goto out_err;
5765 	}
5766 	kfree(options);
5767 
5768 	*ceph_opts = copts;
5769 	*opts = rbd_opts;
5770 	*rbd_spec = spec;
5771 
5772 	return 0;
5773 out_mem:
5774 	ret = -ENOMEM;
5775 out_err:
5776 	kfree(rbd_opts);
5777 	rbd_spec_put(spec);
5778 	kfree(options);
5779 
5780 	return ret;
5781 }
5782 
5783 /*
5784  * Return pool id (>= 0) or a negative error code.
5785  */
5786 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
5787 {
5788 	struct ceph_options *opts = rbdc->client->options;
5789 	u64 newest_epoch;
5790 	int tries = 0;
5791 	int ret;
5792 
5793 again:
5794 	ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
5795 	if (ret == -ENOENT && tries++ < 1) {
5796 		ret = ceph_monc_get_version(&rbdc->client->monc, "osdmap",
5797 					    &newest_epoch);
5798 		if (ret < 0)
5799 			return ret;
5800 
5801 		if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5802 			ceph_osdc_maybe_request_map(&rbdc->client->osdc);
5803 			(void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5804 						     newest_epoch,
5805 						     opts->mount_timeout);
5806 			goto again;
5807 		} else {
5808 			/* the osdmap we have is new enough */
5809 			return -ENOENT;
5810 		}
5811 	}
5812 
5813 	return ret;
5814 }
5815 
5816 /*
5817  * An rbd format 2 image has a unique identifier, distinct from the
5818  * name given to it by the user.  Internally, that identifier is
5819  * what's used to specify the names of objects related to the image.
5820  *
5821  * A special "rbd id" object is used to map an rbd image name to its
5822  * id.  If that object doesn't exist, then there is no v2 rbd image
5823  * with the supplied name.
5824  *
5825  * This function will record the given rbd_dev's image_id field if
5826  * it can be determined, and in that case will return 0.  If any
5827  * errors occur a negative errno will be returned and the rbd_dev's
5828  * image_id field will be unchanged (and should be NULL).
5829  */
5830 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5831 {
5832 	int ret;
5833 	size_t size;
5834 	char *object_name;
5835 	void *response;
5836 	char *image_id;
5837 
5838 	/*
5839 	 * When probing a parent image, the image id is already
5840 	 * known (and the image name likely is not).  There's no
5841 	 * need to fetch the image id again in this case.  We
5842 	 * do still need to set the image format though.
5843 	 */
5844 	if (rbd_dev->spec->image_id) {
5845 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5846 
5847 		return 0;
5848 	}
5849 
5850 	/*
5851 	 * First, see if the format 2 image id file exists, and if
5852 	 * so, get the image's persistent id from it.
5853 	 */
5854 	size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5855 	object_name = kmalloc(size, GFP_NOIO);
5856 	if (!object_name)
5857 		return -ENOMEM;
5858 	sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5859 	dout("rbd id object name is %s\n", object_name);
5860 
5861 	/* Response will be an encoded string, which includes a length */
5862 
5863 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5864 	response = kzalloc(size, GFP_NOIO);
5865 	if (!response) {
5866 		ret = -ENOMEM;
5867 		goto out;
5868 	}
5869 
5870 	/* If it doesn't exist we'll assume it's a format 1 image */
5871 
5872 	ret = rbd_obj_method_sync(rbd_dev, object_name,
5873 				"rbd", "get_id", NULL, 0,
5874 				response, RBD_IMAGE_ID_LEN_MAX);
5875 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5876 	if (ret == -ENOENT) {
5877 		image_id = kstrdup("", GFP_KERNEL);
5878 		ret = image_id ? 0 : -ENOMEM;
5879 		if (!ret)
5880 			rbd_dev->image_format = 1;
5881 	} else if (ret >= 0) {
5882 		void *p = response;
5883 
5884 		image_id = ceph_extract_encoded_string(&p, p + ret,
5885 						NULL, GFP_NOIO);
5886 		ret = PTR_ERR_OR_ZERO(image_id);
5887 		if (!ret)
5888 			rbd_dev->image_format = 2;
5889 	}
5890 
5891 	if (!ret) {
5892 		rbd_dev->spec->image_id = image_id;
5893 		dout("image_id is %s\n", image_id);
5894 	}
5895 out:
5896 	kfree(response);
5897 	kfree(object_name);
5898 
5899 	return ret;
5900 }
5901 
5902 /*
5903  * Undo whatever state changes are made by v1 or v2 header info
5904  * call.
5905  */
5906 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5907 {
5908 	struct rbd_image_header	*header;
5909 
5910 	rbd_dev_parent_put(rbd_dev);
5911 
5912 	/* Free dynamic fields from the header, then zero it out */
5913 
5914 	header = &rbd_dev->header;
5915 	ceph_put_snap_context(header->snapc);
5916 	kfree(header->snap_sizes);
5917 	kfree(header->snap_names);
5918 	kfree(header->object_prefix);
5919 	memset(header, 0, sizeof (*header));
5920 }
5921 
5922 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5923 {
5924 	int ret;
5925 
5926 	ret = rbd_dev_v2_object_prefix(rbd_dev);
5927 	if (ret)
5928 		goto out_err;
5929 
5930 	/*
5931 	 * Get the and check features for the image.  Currently the
5932 	 * features are assumed to never change.
5933 	 */
5934 	ret = rbd_dev_v2_features(rbd_dev);
5935 	if (ret)
5936 		goto out_err;
5937 
5938 	/* If the image supports fancy striping, get its parameters */
5939 
5940 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5941 		ret = rbd_dev_v2_striping_info(rbd_dev);
5942 		if (ret < 0)
5943 			goto out_err;
5944 	}
5945 	/* No support for crypto and compression type format 2 images */
5946 
5947 	return 0;
5948 out_err:
5949 	rbd_dev->header.features = 0;
5950 	kfree(rbd_dev->header.object_prefix);
5951 	rbd_dev->header.object_prefix = NULL;
5952 
5953 	return ret;
5954 }
5955 
5956 /*
5957  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5958  * rbd_dev_image_probe() recursion depth, which means it's also the
5959  * length of the already discovered part of the parent chain.
5960  */
5961 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5962 {
5963 	struct rbd_device *parent = NULL;
5964 	int ret;
5965 
5966 	if (!rbd_dev->parent_spec)
5967 		return 0;
5968 
5969 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5970 		pr_info("parent chain is too long (%d)\n", depth);
5971 		ret = -EINVAL;
5972 		goto out_err;
5973 	}
5974 
5975 	parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5976 	if (!parent) {
5977 		ret = -ENOMEM;
5978 		goto out_err;
5979 	}
5980 
5981 	/*
5982 	 * Images related by parent/child relationships always share
5983 	 * rbd_client and spec/parent_spec, so bump their refcounts.
5984 	 */
5985 	__rbd_get_client(rbd_dev->rbd_client);
5986 	rbd_spec_get(rbd_dev->parent_spec);
5987 
5988 	ret = rbd_dev_image_probe(parent, depth);
5989 	if (ret < 0)
5990 		goto out_err;
5991 
5992 	rbd_dev->parent = parent;
5993 	atomic_set(&rbd_dev->parent_ref, 1);
5994 	return 0;
5995 
5996 out_err:
5997 	rbd_dev_unparent(rbd_dev);
5998 	rbd_dev_destroy(parent);
5999 	return ret;
6000 }
6001 
6002 /*
6003  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6004  * upon return.
6005  */
6006 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6007 {
6008 	int ret;
6009 
6010 	/* Record our major and minor device numbers. */
6011 
6012 	if (!single_major) {
6013 		ret = register_blkdev(0, rbd_dev->name);
6014 		if (ret < 0)
6015 			goto err_out_unlock;
6016 
6017 		rbd_dev->major = ret;
6018 		rbd_dev->minor = 0;
6019 	} else {
6020 		rbd_dev->major = rbd_major;
6021 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6022 	}
6023 
6024 	/* Set up the blkdev mapping. */
6025 
6026 	ret = rbd_init_disk(rbd_dev);
6027 	if (ret)
6028 		goto err_out_blkdev;
6029 
6030 	ret = rbd_dev_mapping_set(rbd_dev);
6031 	if (ret)
6032 		goto err_out_disk;
6033 
6034 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6035 	set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
6036 
6037 	dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6038 	ret = device_add(&rbd_dev->dev);
6039 	if (ret)
6040 		goto err_out_mapping;
6041 
6042 	/* Everything's ready.  Announce the disk to the world. */
6043 
6044 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6045 	up_write(&rbd_dev->header_rwsem);
6046 
6047 	spin_lock(&rbd_dev_list_lock);
6048 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
6049 	spin_unlock(&rbd_dev_list_lock);
6050 
6051 	add_disk(rbd_dev->disk);
6052 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
6053 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
6054 		rbd_dev->header.features);
6055 
6056 	return ret;
6057 
6058 err_out_mapping:
6059 	rbd_dev_mapping_clear(rbd_dev);
6060 err_out_disk:
6061 	rbd_free_disk(rbd_dev);
6062 err_out_blkdev:
6063 	if (!single_major)
6064 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6065 err_out_unlock:
6066 	up_write(&rbd_dev->header_rwsem);
6067 	return ret;
6068 }
6069 
6070 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6071 {
6072 	struct rbd_spec *spec = rbd_dev->spec;
6073 	int ret;
6074 
6075 	/* Record the header object name for this rbd image. */
6076 
6077 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6078 
6079 	rbd_dev->header_oloc.pool = rbd_dev->layout.pool_id;
6080 	if (rbd_dev->image_format == 1)
6081 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6082 				       spec->image_name, RBD_SUFFIX);
6083 	else
6084 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6085 				       RBD_HEADER_PREFIX, spec->image_id);
6086 
6087 	return ret;
6088 }
6089 
6090 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6091 {
6092 	rbd_dev_unprobe(rbd_dev);
6093 	rbd_dev->image_format = 0;
6094 	kfree(rbd_dev->spec->image_id);
6095 	rbd_dev->spec->image_id = NULL;
6096 
6097 	rbd_dev_destroy(rbd_dev);
6098 }
6099 
6100 /*
6101  * Probe for the existence of the header object for the given rbd
6102  * device.  If this image is the one being mapped (i.e., not a
6103  * parent), initiate a watch on its header object before using that
6104  * object to get detailed information about the rbd image.
6105  */
6106 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6107 {
6108 	int ret;
6109 
6110 	/*
6111 	 * Get the id from the image id object.  Unless there's an
6112 	 * error, rbd_dev->spec->image_id will be filled in with
6113 	 * a dynamically-allocated string, and rbd_dev->image_format
6114 	 * will be set to either 1 or 2.
6115 	 */
6116 	ret = rbd_dev_image_id(rbd_dev);
6117 	if (ret)
6118 		return ret;
6119 
6120 	ret = rbd_dev_header_name(rbd_dev);
6121 	if (ret)
6122 		goto err_out_format;
6123 
6124 	if (!depth) {
6125 		ret = rbd_register_watch(rbd_dev);
6126 		if (ret) {
6127 			if (ret == -ENOENT)
6128 				pr_info("image %s/%s does not exist\n",
6129 					rbd_dev->spec->pool_name,
6130 					rbd_dev->spec->image_name);
6131 			goto err_out_format;
6132 		}
6133 	}
6134 
6135 	ret = rbd_dev_header_info(rbd_dev);
6136 	if (ret)
6137 		goto err_out_watch;
6138 
6139 	/*
6140 	 * If this image is the one being mapped, we have pool name and
6141 	 * id, image name and id, and snap name - need to fill snap id.
6142 	 * Otherwise this is a parent image, identified by pool, image
6143 	 * and snap ids - need to fill in names for those ids.
6144 	 */
6145 	if (!depth)
6146 		ret = rbd_spec_fill_snap_id(rbd_dev);
6147 	else
6148 		ret = rbd_spec_fill_names(rbd_dev);
6149 	if (ret) {
6150 		if (ret == -ENOENT)
6151 			pr_info("snap %s/%s@%s does not exist\n",
6152 				rbd_dev->spec->pool_name,
6153 				rbd_dev->spec->image_name,
6154 				rbd_dev->spec->snap_name);
6155 		goto err_out_probe;
6156 	}
6157 
6158 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6159 		ret = rbd_dev_v2_parent_info(rbd_dev);
6160 		if (ret)
6161 			goto err_out_probe;
6162 
6163 		/*
6164 		 * Need to warn users if this image is the one being
6165 		 * mapped and has a parent.
6166 		 */
6167 		if (!depth && rbd_dev->parent_spec)
6168 			rbd_warn(rbd_dev,
6169 				 "WARNING: kernel layering is EXPERIMENTAL!");
6170 	}
6171 
6172 	ret = rbd_dev_probe_parent(rbd_dev, depth);
6173 	if (ret)
6174 		goto err_out_probe;
6175 
6176 	dout("discovered format %u image, header name is %s\n",
6177 		rbd_dev->image_format, rbd_dev->header_oid.name);
6178 	return 0;
6179 
6180 err_out_probe:
6181 	rbd_dev_unprobe(rbd_dev);
6182 err_out_watch:
6183 	if (!depth)
6184 		rbd_unregister_watch(rbd_dev);
6185 err_out_format:
6186 	rbd_dev->image_format = 0;
6187 	kfree(rbd_dev->spec->image_id);
6188 	rbd_dev->spec->image_id = NULL;
6189 	return ret;
6190 }
6191 
6192 static ssize_t do_rbd_add(struct bus_type *bus,
6193 			  const char *buf,
6194 			  size_t count)
6195 {
6196 	struct rbd_device *rbd_dev = NULL;
6197 	struct ceph_options *ceph_opts = NULL;
6198 	struct rbd_options *rbd_opts = NULL;
6199 	struct rbd_spec *spec = NULL;
6200 	struct rbd_client *rbdc;
6201 	bool read_only;
6202 	int rc;
6203 
6204 	if (!try_module_get(THIS_MODULE))
6205 		return -ENODEV;
6206 
6207 	/* parse add command */
6208 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
6209 	if (rc < 0)
6210 		goto out;
6211 
6212 	rbdc = rbd_get_client(ceph_opts);
6213 	if (IS_ERR(rbdc)) {
6214 		rc = PTR_ERR(rbdc);
6215 		goto err_out_args;
6216 	}
6217 
6218 	/* pick the pool */
6219 	rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
6220 	if (rc < 0) {
6221 		if (rc == -ENOENT)
6222 			pr_info("pool %s does not exist\n", spec->pool_name);
6223 		goto err_out_client;
6224 	}
6225 	spec->pool_id = (u64)rc;
6226 
6227 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
6228 	if (!rbd_dev) {
6229 		rc = -ENOMEM;
6230 		goto err_out_client;
6231 	}
6232 	rbdc = NULL;		/* rbd_dev now owns this */
6233 	spec = NULL;		/* rbd_dev now owns this */
6234 	rbd_opts = NULL;	/* rbd_dev now owns this */
6235 
6236 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
6237 	if (!rbd_dev->config_info) {
6238 		rc = -ENOMEM;
6239 		goto err_out_rbd_dev;
6240 	}
6241 
6242 	down_write(&rbd_dev->header_rwsem);
6243 	rc = rbd_dev_image_probe(rbd_dev, 0);
6244 	if (rc < 0) {
6245 		up_write(&rbd_dev->header_rwsem);
6246 		goto err_out_rbd_dev;
6247 	}
6248 
6249 	/* If we are mapping a snapshot it must be marked read-only */
6250 
6251 	read_only = rbd_dev->opts->read_only;
6252 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
6253 		read_only = true;
6254 	rbd_dev->mapping.read_only = read_only;
6255 
6256 	rc = rbd_dev_device_setup(rbd_dev);
6257 	if (rc) {
6258 		/*
6259 		 * rbd_unregister_watch() can't be moved into
6260 		 * rbd_dev_image_release() without refactoring, see
6261 		 * commit 1f3ef78861ac.
6262 		 */
6263 		rbd_unregister_watch(rbd_dev);
6264 		rbd_dev_image_release(rbd_dev);
6265 		goto out;
6266 	}
6267 
6268 	rc = count;
6269 out:
6270 	module_put(THIS_MODULE);
6271 	return rc;
6272 
6273 err_out_rbd_dev:
6274 	rbd_dev_destroy(rbd_dev);
6275 err_out_client:
6276 	rbd_put_client(rbdc);
6277 err_out_args:
6278 	rbd_spec_put(spec);
6279 	kfree(rbd_opts);
6280 	goto out;
6281 }
6282 
6283 static ssize_t rbd_add(struct bus_type *bus,
6284 		       const char *buf,
6285 		       size_t count)
6286 {
6287 	if (single_major)
6288 		return -EINVAL;
6289 
6290 	return do_rbd_add(bus, buf, count);
6291 }
6292 
6293 static ssize_t rbd_add_single_major(struct bus_type *bus,
6294 				    const char *buf,
6295 				    size_t count)
6296 {
6297 	return do_rbd_add(bus, buf, count);
6298 }
6299 
6300 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6301 {
6302 	rbd_free_disk(rbd_dev);
6303 
6304 	spin_lock(&rbd_dev_list_lock);
6305 	list_del_init(&rbd_dev->node);
6306 	spin_unlock(&rbd_dev_list_lock);
6307 
6308 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6309 	device_del(&rbd_dev->dev);
6310 	rbd_dev_mapping_clear(rbd_dev);
6311 	if (!single_major)
6312 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6313 }
6314 
6315 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
6316 {
6317 	while (rbd_dev->parent) {
6318 		struct rbd_device *first = rbd_dev;
6319 		struct rbd_device *second = first->parent;
6320 		struct rbd_device *third;
6321 
6322 		/*
6323 		 * Follow to the parent with no grandparent and
6324 		 * remove it.
6325 		 */
6326 		while (second && (third = second->parent)) {
6327 			first = second;
6328 			second = third;
6329 		}
6330 		rbd_assert(second);
6331 		rbd_dev_image_release(second);
6332 		first->parent = NULL;
6333 		first->parent_overlap = 0;
6334 
6335 		rbd_assert(first->parent_spec);
6336 		rbd_spec_put(first->parent_spec);
6337 		first->parent_spec = NULL;
6338 	}
6339 }
6340 
6341 static ssize_t do_rbd_remove(struct bus_type *bus,
6342 			     const char *buf,
6343 			     size_t count)
6344 {
6345 	struct rbd_device *rbd_dev = NULL;
6346 	struct list_head *tmp;
6347 	int dev_id;
6348 	char opt_buf[6];
6349 	bool already = false;
6350 	bool force = false;
6351 	int ret;
6352 
6353 	dev_id = -1;
6354 	opt_buf[0] = '\0';
6355 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
6356 	if (dev_id < 0) {
6357 		pr_err("dev_id out of range\n");
6358 		return -EINVAL;
6359 	}
6360 	if (opt_buf[0] != '\0') {
6361 		if (!strcmp(opt_buf, "force")) {
6362 			force = true;
6363 		} else {
6364 			pr_err("bad remove option at '%s'\n", opt_buf);
6365 			return -EINVAL;
6366 		}
6367 	}
6368 
6369 	ret = -ENOENT;
6370 	spin_lock(&rbd_dev_list_lock);
6371 	list_for_each(tmp, &rbd_dev_list) {
6372 		rbd_dev = list_entry(tmp, struct rbd_device, node);
6373 		if (rbd_dev->dev_id == dev_id) {
6374 			ret = 0;
6375 			break;
6376 		}
6377 	}
6378 	if (!ret) {
6379 		spin_lock_irq(&rbd_dev->lock);
6380 		if (rbd_dev->open_count && !force)
6381 			ret = -EBUSY;
6382 		else
6383 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
6384 							&rbd_dev->flags);
6385 		spin_unlock_irq(&rbd_dev->lock);
6386 	}
6387 	spin_unlock(&rbd_dev_list_lock);
6388 	if (ret < 0 || already)
6389 		return ret;
6390 
6391 	if (force) {
6392 		/*
6393 		 * Prevent new IO from being queued and wait for existing
6394 		 * IO to complete/fail.
6395 		 */
6396 		blk_mq_freeze_queue(rbd_dev->disk->queue);
6397 		blk_set_queue_dying(rbd_dev->disk->queue);
6398 	}
6399 
6400 	down_write(&rbd_dev->lock_rwsem);
6401 	if (__rbd_is_lock_owner(rbd_dev))
6402 		rbd_unlock(rbd_dev);
6403 	up_write(&rbd_dev->lock_rwsem);
6404 	rbd_unregister_watch(rbd_dev);
6405 
6406 	/*
6407 	 * Don't free anything from rbd_dev->disk until after all
6408 	 * notifies are completely processed. Otherwise
6409 	 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
6410 	 * in a potential use after free of rbd_dev->disk or rbd_dev.
6411 	 */
6412 	rbd_dev_device_release(rbd_dev);
6413 	rbd_dev_image_release(rbd_dev);
6414 
6415 	return count;
6416 }
6417 
6418 static ssize_t rbd_remove(struct bus_type *bus,
6419 			  const char *buf,
6420 			  size_t count)
6421 {
6422 	if (single_major)
6423 		return -EINVAL;
6424 
6425 	return do_rbd_remove(bus, buf, count);
6426 }
6427 
6428 static ssize_t rbd_remove_single_major(struct bus_type *bus,
6429 				       const char *buf,
6430 				       size_t count)
6431 {
6432 	return do_rbd_remove(bus, buf, count);
6433 }
6434 
6435 /*
6436  * create control files in sysfs
6437  * /sys/bus/rbd/...
6438  */
6439 static int rbd_sysfs_init(void)
6440 {
6441 	int ret;
6442 
6443 	ret = device_register(&rbd_root_dev);
6444 	if (ret < 0)
6445 		return ret;
6446 
6447 	ret = bus_register(&rbd_bus_type);
6448 	if (ret < 0)
6449 		device_unregister(&rbd_root_dev);
6450 
6451 	return ret;
6452 }
6453 
6454 static void rbd_sysfs_cleanup(void)
6455 {
6456 	bus_unregister(&rbd_bus_type);
6457 	device_unregister(&rbd_root_dev);
6458 }
6459 
6460 static int rbd_slab_init(void)
6461 {
6462 	rbd_assert(!rbd_img_request_cache);
6463 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
6464 	if (!rbd_img_request_cache)
6465 		return -ENOMEM;
6466 
6467 	rbd_assert(!rbd_obj_request_cache);
6468 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
6469 	if (!rbd_obj_request_cache)
6470 		goto out_err;
6471 
6472 	rbd_assert(!rbd_segment_name_cache);
6473 	rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
6474 					CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
6475 	if (rbd_segment_name_cache)
6476 		return 0;
6477 out_err:
6478 	kmem_cache_destroy(rbd_obj_request_cache);
6479 	rbd_obj_request_cache = NULL;
6480 
6481 	kmem_cache_destroy(rbd_img_request_cache);
6482 	rbd_img_request_cache = NULL;
6483 
6484 	return -ENOMEM;
6485 }
6486 
6487 static void rbd_slab_exit(void)
6488 {
6489 	rbd_assert(rbd_segment_name_cache);
6490 	kmem_cache_destroy(rbd_segment_name_cache);
6491 	rbd_segment_name_cache = NULL;
6492 
6493 	rbd_assert(rbd_obj_request_cache);
6494 	kmem_cache_destroy(rbd_obj_request_cache);
6495 	rbd_obj_request_cache = NULL;
6496 
6497 	rbd_assert(rbd_img_request_cache);
6498 	kmem_cache_destroy(rbd_img_request_cache);
6499 	rbd_img_request_cache = NULL;
6500 }
6501 
6502 static int __init rbd_init(void)
6503 {
6504 	int rc;
6505 
6506 	if (!libceph_compatible(NULL)) {
6507 		rbd_warn(NULL, "libceph incompatibility (quitting)");
6508 		return -EINVAL;
6509 	}
6510 
6511 	rc = rbd_slab_init();
6512 	if (rc)
6513 		return rc;
6514 
6515 	/*
6516 	 * The number of active work items is limited by the number of
6517 	 * rbd devices * queue depth, so leave @max_active at default.
6518 	 */
6519 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
6520 	if (!rbd_wq) {
6521 		rc = -ENOMEM;
6522 		goto err_out_slab;
6523 	}
6524 
6525 	if (single_major) {
6526 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
6527 		if (rbd_major < 0) {
6528 			rc = rbd_major;
6529 			goto err_out_wq;
6530 		}
6531 	}
6532 
6533 	rc = rbd_sysfs_init();
6534 	if (rc)
6535 		goto err_out_blkdev;
6536 
6537 	if (single_major)
6538 		pr_info("loaded (major %d)\n", rbd_major);
6539 	else
6540 		pr_info("loaded\n");
6541 
6542 	return 0;
6543 
6544 err_out_blkdev:
6545 	if (single_major)
6546 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
6547 err_out_wq:
6548 	destroy_workqueue(rbd_wq);
6549 err_out_slab:
6550 	rbd_slab_exit();
6551 	return rc;
6552 }
6553 
6554 static void __exit rbd_exit(void)
6555 {
6556 	ida_destroy(&rbd_dev_id_ida);
6557 	rbd_sysfs_cleanup();
6558 	if (single_major)
6559 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
6560 	destroy_workqueue(rbd_wq);
6561 	rbd_slab_exit();
6562 }
6563 
6564 module_init(rbd_init);
6565 module_exit(rbd_exit);
6566 
6567 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
6568 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
6569 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
6570 /* following authorship retained from original osdblk.c */
6571 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
6572 
6573 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
6574 MODULE_LICENSE("GPL");
6575