1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/cls_lock_client.h> 35 #include <linux/ceph/decode.h> 36 #include <linux/parser.h> 37 #include <linux/bsearch.h> 38 39 #include <linux/kernel.h> 40 #include <linux/device.h> 41 #include <linux/module.h> 42 #include <linux/blk-mq.h> 43 #include <linux/fs.h> 44 #include <linux/blkdev.h> 45 #include <linux/slab.h> 46 #include <linux/idr.h> 47 #include <linux/workqueue.h> 48 49 #include "rbd_types.h" 50 51 #define RBD_DEBUG /* Activate rbd_assert() calls */ 52 53 /* 54 * The basic unit of block I/O is a sector. It is interpreted in a 55 * number of contexts in Linux (blk, bio, genhd), but the default is 56 * universally 512 bytes. These symbols are just slightly more 57 * meaningful than the bare numbers they represent. 58 */ 59 #define SECTOR_SHIFT 9 60 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT) 61 62 /* 63 * Increment the given counter and return its updated value. 64 * If the counter is already 0 it will not be incremented. 65 * If the counter is already at its maximum value returns 66 * -EINVAL without updating it. 67 */ 68 static int atomic_inc_return_safe(atomic_t *v) 69 { 70 unsigned int counter; 71 72 counter = (unsigned int)__atomic_add_unless(v, 1, 0); 73 if (counter <= (unsigned int)INT_MAX) 74 return (int)counter; 75 76 atomic_dec(v); 77 78 return -EINVAL; 79 } 80 81 /* Decrement the counter. Return the resulting value, or -EINVAL */ 82 static int atomic_dec_return_safe(atomic_t *v) 83 { 84 int counter; 85 86 counter = atomic_dec_return(v); 87 if (counter >= 0) 88 return counter; 89 90 atomic_inc(v); 91 92 return -EINVAL; 93 } 94 95 #define RBD_DRV_NAME "rbd" 96 97 #define RBD_MINORS_PER_MAJOR 256 98 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 99 100 #define RBD_MAX_PARENT_CHAIN_LEN 16 101 102 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 103 #define RBD_MAX_SNAP_NAME_LEN \ 104 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 105 106 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 107 108 #define RBD_SNAP_HEAD_NAME "-" 109 110 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 111 112 /* This allows a single page to hold an image name sent by OSD */ 113 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 114 #define RBD_IMAGE_ID_LEN_MAX 64 115 116 #define RBD_OBJ_PREFIX_LEN_MAX 64 117 118 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */ 119 #define RBD_RETRY_DELAY msecs_to_jiffies(1000) 120 121 /* Feature bits */ 122 123 #define RBD_FEATURE_LAYERING (1<<0) 124 #define RBD_FEATURE_STRIPINGV2 (1<<1) 125 #define RBD_FEATURE_EXCLUSIVE_LOCK (1<<2) 126 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \ 127 RBD_FEATURE_STRIPINGV2 | \ 128 RBD_FEATURE_EXCLUSIVE_LOCK) 129 130 /* Features supported by this (client software) implementation. */ 131 132 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 133 134 /* 135 * An RBD device name will be "rbd#", where the "rbd" comes from 136 * RBD_DRV_NAME above, and # is a unique integer identifier. 137 */ 138 #define DEV_NAME_LEN 32 139 140 /* 141 * block device image metadata (in-memory version) 142 */ 143 struct rbd_image_header { 144 /* These six fields never change for a given rbd image */ 145 char *object_prefix; 146 __u8 obj_order; 147 __u8 crypt_type; 148 __u8 comp_type; 149 u64 stripe_unit; 150 u64 stripe_count; 151 u64 features; /* Might be changeable someday? */ 152 153 /* The remaining fields need to be updated occasionally */ 154 u64 image_size; 155 struct ceph_snap_context *snapc; 156 char *snap_names; /* format 1 only */ 157 u64 *snap_sizes; /* format 1 only */ 158 }; 159 160 /* 161 * An rbd image specification. 162 * 163 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 164 * identify an image. Each rbd_dev structure includes a pointer to 165 * an rbd_spec structure that encapsulates this identity. 166 * 167 * Each of the id's in an rbd_spec has an associated name. For a 168 * user-mapped image, the names are supplied and the id's associated 169 * with them are looked up. For a layered image, a parent image is 170 * defined by the tuple, and the names are looked up. 171 * 172 * An rbd_dev structure contains a parent_spec pointer which is 173 * non-null if the image it represents is a child in a layered 174 * image. This pointer will refer to the rbd_spec structure used 175 * by the parent rbd_dev for its own identity (i.e., the structure 176 * is shared between the parent and child). 177 * 178 * Since these structures are populated once, during the discovery 179 * phase of image construction, they are effectively immutable so 180 * we make no effort to synchronize access to them. 181 * 182 * Note that code herein does not assume the image name is known (it 183 * could be a null pointer). 184 */ 185 struct rbd_spec { 186 u64 pool_id; 187 const char *pool_name; 188 189 const char *image_id; 190 const char *image_name; 191 192 u64 snap_id; 193 const char *snap_name; 194 195 struct kref kref; 196 }; 197 198 /* 199 * an instance of the client. multiple devices may share an rbd client. 200 */ 201 struct rbd_client { 202 struct ceph_client *client; 203 struct kref kref; 204 struct list_head node; 205 }; 206 207 struct rbd_img_request; 208 typedef void (*rbd_img_callback_t)(struct rbd_img_request *); 209 210 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */ 211 212 struct rbd_obj_request; 213 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *); 214 215 enum obj_request_type { 216 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES 217 }; 218 219 enum obj_operation_type { 220 OBJ_OP_WRITE, 221 OBJ_OP_READ, 222 OBJ_OP_DISCARD, 223 }; 224 225 enum obj_req_flags { 226 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */ 227 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */ 228 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */ 229 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */ 230 }; 231 232 struct rbd_obj_request { 233 const char *object_name; 234 u64 offset; /* object start byte */ 235 u64 length; /* bytes from offset */ 236 unsigned long flags; 237 238 /* 239 * An object request associated with an image will have its 240 * img_data flag set; a standalone object request will not. 241 * 242 * A standalone object request will have which == BAD_WHICH 243 * and a null obj_request pointer. 244 * 245 * An object request initiated in support of a layered image 246 * object (to check for its existence before a write) will 247 * have which == BAD_WHICH and a non-null obj_request pointer. 248 * 249 * Finally, an object request for rbd image data will have 250 * which != BAD_WHICH, and will have a non-null img_request 251 * pointer. The value of which will be in the range 252 * 0..(img_request->obj_request_count-1). 253 */ 254 union { 255 struct rbd_obj_request *obj_request; /* STAT op */ 256 struct { 257 struct rbd_img_request *img_request; 258 u64 img_offset; 259 /* links for img_request->obj_requests list */ 260 struct list_head links; 261 }; 262 }; 263 u32 which; /* posn image request list */ 264 265 enum obj_request_type type; 266 union { 267 struct bio *bio_list; 268 struct { 269 struct page **pages; 270 u32 page_count; 271 }; 272 }; 273 struct page **copyup_pages; 274 u32 copyup_page_count; 275 276 struct ceph_osd_request *osd_req; 277 278 u64 xferred; /* bytes transferred */ 279 int result; 280 281 rbd_obj_callback_t callback; 282 struct completion completion; 283 284 struct kref kref; 285 }; 286 287 enum img_req_flags { 288 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */ 289 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 290 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 291 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */ 292 }; 293 294 struct rbd_img_request { 295 struct rbd_device *rbd_dev; 296 u64 offset; /* starting image byte offset */ 297 u64 length; /* byte count from offset */ 298 unsigned long flags; 299 union { 300 u64 snap_id; /* for reads */ 301 struct ceph_snap_context *snapc; /* for writes */ 302 }; 303 union { 304 struct request *rq; /* block request */ 305 struct rbd_obj_request *obj_request; /* obj req initiator */ 306 }; 307 struct page **copyup_pages; 308 u32 copyup_page_count; 309 spinlock_t completion_lock;/* protects next_completion */ 310 u32 next_completion; 311 rbd_img_callback_t callback; 312 u64 xferred;/* aggregate bytes transferred */ 313 int result; /* first nonzero obj_request result */ 314 315 u32 obj_request_count; 316 struct list_head obj_requests; /* rbd_obj_request structs */ 317 318 struct kref kref; 319 }; 320 321 #define for_each_obj_request(ireq, oreq) \ 322 list_for_each_entry(oreq, &(ireq)->obj_requests, links) 323 #define for_each_obj_request_from(ireq, oreq) \ 324 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links) 325 #define for_each_obj_request_safe(ireq, oreq, n) \ 326 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links) 327 328 enum rbd_watch_state { 329 RBD_WATCH_STATE_UNREGISTERED, 330 RBD_WATCH_STATE_REGISTERED, 331 RBD_WATCH_STATE_ERROR, 332 }; 333 334 enum rbd_lock_state { 335 RBD_LOCK_STATE_UNLOCKED, 336 RBD_LOCK_STATE_LOCKED, 337 RBD_LOCK_STATE_RELEASING, 338 }; 339 340 /* WatchNotify::ClientId */ 341 struct rbd_client_id { 342 u64 gid; 343 u64 handle; 344 }; 345 346 struct rbd_mapping { 347 u64 size; 348 u64 features; 349 bool read_only; 350 }; 351 352 /* 353 * a single device 354 */ 355 struct rbd_device { 356 int dev_id; /* blkdev unique id */ 357 358 int major; /* blkdev assigned major */ 359 int minor; 360 struct gendisk *disk; /* blkdev's gendisk and rq */ 361 362 u32 image_format; /* Either 1 or 2 */ 363 struct rbd_client *rbd_client; 364 365 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 366 367 spinlock_t lock; /* queue, flags, open_count */ 368 369 struct rbd_image_header header; 370 unsigned long flags; /* possibly lock protected */ 371 struct rbd_spec *spec; 372 struct rbd_options *opts; 373 char *config_info; /* add{,_single_major} string */ 374 375 struct ceph_object_id header_oid; 376 struct ceph_object_locator header_oloc; 377 378 struct ceph_file_layout layout; /* used for all rbd requests */ 379 380 struct mutex watch_mutex; 381 enum rbd_watch_state watch_state; 382 struct ceph_osd_linger_request *watch_handle; 383 u64 watch_cookie; 384 struct delayed_work watch_dwork; 385 386 struct rw_semaphore lock_rwsem; 387 enum rbd_lock_state lock_state; 388 struct rbd_client_id owner_cid; 389 struct work_struct acquired_lock_work; 390 struct work_struct released_lock_work; 391 struct delayed_work lock_dwork; 392 struct work_struct unlock_work; 393 wait_queue_head_t lock_waitq; 394 395 struct workqueue_struct *task_wq; 396 397 struct rbd_spec *parent_spec; 398 u64 parent_overlap; 399 atomic_t parent_ref; 400 struct rbd_device *parent; 401 402 /* Block layer tags. */ 403 struct blk_mq_tag_set tag_set; 404 405 /* protects updating the header */ 406 struct rw_semaphore header_rwsem; 407 408 struct rbd_mapping mapping; 409 410 struct list_head node; 411 412 /* sysfs related */ 413 struct device dev; 414 unsigned long open_count; /* protected by lock */ 415 }; 416 417 /* 418 * Flag bits for rbd_dev->flags: 419 * - REMOVING (which is coupled with rbd_dev->open_count) is protected 420 * by rbd_dev->lock 421 * - BLACKLISTED is protected by rbd_dev->lock_rwsem 422 */ 423 enum rbd_dev_flags { 424 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */ 425 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 426 RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */ 427 }; 428 429 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 430 431 static LIST_HEAD(rbd_dev_list); /* devices */ 432 static DEFINE_SPINLOCK(rbd_dev_list_lock); 433 434 static LIST_HEAD(rbd_client_list); /* clients */ 435 static DEFINE_SPINLOCK(rbd_client_list_lock); 436 437 /* Slab caches for frequently-allocated structures */ 438 439 static struct kmem_cache *rbd_img_request_cache; 440 static struct kmem_cache *rbd_obj_request_cache; 441 static struct kmem_cache *rbd_segment_name_cache; 442 443 static int rbd_major; 444 static DEFINE_IDA(rbd_dev_id_ida); 445 446 static struct workqueue_struct *rbd_wq; 447 448 /* 449 * Default to false for now, as single-major requires >= 0.75 version of 450 * userspace rbd utility. 451 */ 452 static bool single_major = false; 453 module_param(single_major, bool, S_IRUGO); 454 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)"); 455 456 static int rbd_img_request_submit(struct rbd_img_request *img_request); 457 458 static ssize_t rbd_add(struct bus_type *bus, const char *buf, 459 size_t count); 460 static ssize_t rbd_remove(struct bus_type *bus, const char *buf, 461 size_t count); 462 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf, 463 size_t count); 464 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf, 465 size_t count); 466 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth); 467 static void rbd_spec_put(struct rbd_spec *spec); 468 469 static int rbd_dev_id_to_minor(int dev_id) 470 { 471 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 472 } 473 474 static int minor_to_rbd_dev_id(int minor) 475 { 476 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 477 } 478 479 static bool rbd_is_lock_supported(struct rbd_device *rbd_dev) 480 { 481 return (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) && 482 rbd_dev->spec->snap_id == CEPH_NOSNAP && 483 !rbd_dev->mapping.read_only; 484 } 485 486 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev) 487 { 488 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED || 489 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING; 490 } 491 492 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev) 493 { 494 bool is_lock_owner; 495 496 down_read(&rbd_dev->lock_rwsem); 497 is_lock_owner = __rbd_is_lock_owner(rbd_dev); 498 up_read(&rbd_dev->lock_rwsem); 499 return is_lock_owner; 500 } 501 502 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add); 503 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove); 504 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major); 505 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major); 506 507 static struct attribute *rbd_bus_attrs[] = { 508 &bus_attr_add.attr, 509 &bus_attr_remove.attr, 510 &bus_attr_add_single_major.attr, 511 &bus_attr_remove_single_major.attr, 512 NULL, 513 }; 514 515 static umode_t rbd_bus_is_visible(struct kobject *kobj, 516 struct attribute *attr, int index) 517 { 518 if (!single_major && 519 (attr == &bus_attr_add_single_major.attr || 520 attr == &bus_attr_remove_single_major.attr)) 521 return 0; 522 523 return attr->mode; 524 } 525 526 static const struct attribute_group rbd_bus_group = { 527 .attrs = rbd_bus_attrs, 528 .is_visible = rbd_bus_is_visible, 529 }; 530 __ATTRIBUTE_GROUPS(rbd_bus); 531 532 static struct bus_type rbd_bus_type = { 533 .name = "rbd", 534 .bus_groups = rbd_bus_groups, 535 }; 536 537 static void rbd_root_dev_release(struct device *dev) 538 { 539 } 540 541 static struct device rbd_root_dev = { 542 .init_name = "rbd", 543 .release = rbd_root_dev_release, 544 }; 545 546 static __printf(2, 3) 547 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 548 { 549 struct va_format vaf; 550 va_list args; 551 552 va_start(args, fmt); 553 vaf.fmt = fmt; 554 vaf.va = &args; 555 556 if (!rbd_dev) 557 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 558 else if (rbd_dev->disk) 559 printk(KERN_WARNING "%s: %s: %pV\n", 560 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 561 else if (rbd_dev->spec && rbd_dev->spec->image_name) 562 printk(KERN_WARNING "%s: image %s: %pV\n", 563 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 564 else if (rbd_dev->spec && rbd_dev->spec->image_id) 565 printk(KERN_WARNING "%s: id %s: %pV\n", 566 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 567 else /* punt */ 568 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 569 RBD_DRV_NAME, rbd_dev, &vaf); 570 va_end(args); 571 } 572 573 #ifdef RBD_DEBUG 574 #define rbd_assert(expr) \ 575 if (unlikely(!(expr))) { \ 576 printk(KERN_ERR "\nAssertion failure in %s() " \ 577 "at line %d:\n\n" \ 578 "\trbd_assert(%s);\n\n", \ 579 __func__, __LINE__, #expr); \ 580 BUG(); \ 581 } 582 #else /* !RBD_DEBUG */ 583 # define rbd_assert(expr) ((void) 0) 584 #endif /* !RBD_DEBUG */ 585 586 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request); 587 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request); 588 static void rbd_img_parent_read(struct rbd_obj_request *obj_request); 589 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 590 591 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 592 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 593 static int rbd_dev_header_info(struct rbd_device *rbd_dev); 594 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev); 595 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 596 u64 snap_id); 597 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 598 u8 *order, u64 *snap_size); 599 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 600 u64 *snap_features); 601 602 static int rbd_open(struct block_device *bdev, fmode_t mode) 603 { 604 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 605 bool removing = false; 606 607 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only) 608 return -EROFS; 609 610 spin_lock_irq(&rbd_dev->lock); 611 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 612 removing = true; 613 else 614 rbd_dev->open_count++; 615 spin_unlock_irq(&rbd_dev->lock); 616 if (removing) 617 return -ENOENT; 618 619 (void) get_device(&rbd_dev->dev); 620 621 return 0; 622 } 623 624 static void rbd_release(struct gendisk *disk, fmode_t mode) 625 { 626 struct rbd_device *rbd_dev = disk->private_data; 627 unsigned long open_count_before; 628 629 spin_lock_irq(&rbd_dev->lock); 630 open_count_before = rbd_dev->open_count--; 631 spin_unlock_irq(&rbd_dev->lock); 632 rbd_assert(open_count_before > 0); 633 634 put_device(&rbd_dev->dev); 635 } 636 637 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg) 638 { 639 int ret = 0; 640 int val; 641 bool ro; 642 bool ro_changed = false; 643 644 /* get_user() may sleep, so call it before taking rbd_dev->lock */ 645 if (get_user(val, (int __user *)(arg))) 646 return -EFAULT; 647 648 ro = val ? true : false; 649 /* Snapshot doesn't allow to write*/ 650 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro) 651 return -EROFS; 652 653 spin_lock_irq(&rbd_dev->lock); 654 /* prevent others open this device */ 655 if (rbd_dev->open_count > 1) { 656 ret = -EBUSY; 657 goto out; 658 } 659 660 if (rbd_dev->mapping.read_only != ro) { 661 rbd_dev->mapping.read_only = ro; 662 ro_changed = true; 663 } 664 665 out: 666 spin_unlock_irq(&rbd_dev->lock); 667 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */ 668 if (ret == 0 && ro_changed) 669 set_disk_ro(rbd_dev->disk, ro ? 1 : 0); 670 671 return ret; 672 } 673 674 static int rbd_ioctl(struct block_device *bdev, fmode_t mode, 675 unsigned int cmd, unsigned long arg) 676 { 677 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 678 int ret = 0; 679 680 switch (cmd) { 681 case BLKROSET: 682 ret = rbd_ioctl_set_ro(rbd_dev, arg); 683 break; 684 default: 685 ret = -ENOTTY; 686 } 687 688 return ret; 689 } 690 691 #ifdef CONFIG_COMPAT 692 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode, 693 unsigned int cmd, unsigned long arg) 694 { 695 return rbd_ioctl(bdev, mode, cmd, arg); 696 } 697 #endif /* CONFIG_COMPAT */ 698 699 static const struct block_device_operations rbd_bd_ops = { 700 .owner = THIS_MODULE, 701 .open = rbd_open, 702 .release = rbd_release, 703 .ioctl = rbd_ioctl, 704 #ifdef CONFIG_COMPAT 705 .compat_ioctl = rbd_compat_ioctl, 706 #endif 707 }; 708 709 /* 710 * Initialize an rbd client instance. Success or not, this function 711 * consumes ceph_opts. Caller holds client_mutex. 712 */ 713 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 714 { 715 struct rbd_client *rbdc; 716 int ret = -ENOMEM; 717 718 dout("%s:\n", __func__); 719 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 720 if (!rbdc) 721 goto out_opt; 722 723 kref_init(&rbdc->kref); 724 INIT_LIST_HEAD(&rbdc->node); 725 726 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0); 727 if (IS_ERR(rbdc->client)) 728 goto out_rbdc; 729 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 730 731 ret = ceph_open_session(rbdc->client); 732 if (ret < 0) 733 goto out_client; 734 735 spin_lock(&rbd_client_list_lock); 736 list_add_tail(&rbdc->node, &rbd_client_list); 737 spin_unlock(&rbd_client_list_lock); 738 739 dout("%s: rbdc %p\n", __func__, rbdc); 740 741 return rbdc; 742 out_client: 743 ceph_destroy_client(rbdc->client); 744 out_rbdc: 745 kfree(rbdc); 746 out_opt: 747 if (ceph_opts) 748 ceph_destroy_options(ceph_opts); 749 dout("%s: error %d\n", __func__, ret); 750 751 return ERR_PTR(ret); 752 } 753 754 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 755 { 756 kref_get(&rbdc->kref); 757 758 return rbdc; 759 } 760 761 /* 762 * Find a ceph client with specific addr and configuration. If 763 * found, bump its reference count. 764 */ 765 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 766 { 767 struct rbd_client *client_node; 768 bool found = false; 769 770 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 771 return NULL; 772 773 spin_lock(&rbd_client_list_lock); 774 list_for_each_entry(client_node, &rbd_client_list, node) { 775 if (!ceph_compare_options(ceph_opts, client_node->client)) { 776 __rbd_get_client(client_node); 777 778 found = true; 779 break; 780 } 781 } 782 spin_unlock(&rbd_client_list_lock); 783 784 return found ? client_node : NULL; 785 } 786 787 /* 788 * (Per device) rbd map options 789 */ 790 enum { 791 Opt_queue_depth, 792 Opt_last_int, 793 /* int args above */ 794 Opt_last_string, 795 /* string args above */ 796 Opt_read_only, 797 Opt_read_write, 798 Opt_lock_on_read, 799 Opt_err 800 }; 801 802 static match_table_t rbd_opts_tokens = { 803 {Opt_queue_depth, "queue_depth=%d"}, 804 /* int args above */ 805 /* string args above */ 806 {Opt_read_only, "read_only"}, 807 {Opt_read_only, "ro"}, /* Alternate spelling */ 808 {Opt_read_write, "read_write"}, 809 {Opt_read_write, "rw"}, /* Alternate spelling */ 810 {Opt_lock_on_read, "lock_on_read"}, 811 {Opt_err, NULL} 812 }; 813 814 struct rbd_options { 815 int queue_depth; 816 bool read_only; 817 bool lock_on_read; 818 }; 819 820 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ 821 #define RBD_READ_ONLY_DEFAULT false 822 #define RBD_LOCK_ON_READ_DEFAULT false 823 824 static int parse_rbd_opts_token(char *c, void *private) 825 { 826 struct rbd_options *rbd_opts = private; 827 substring_t argstr[MAX_OPT_ARGS]; 828 int token, intval, ret; 829 830 token = match_token(c, rbd_opts_tokens, argstr); 831 if (token < Opt_last_int) { 832 ret = match_int(&argstr[0], &intval); 833 if (ret < 0) { 834 pr_err("bad mount option arg (not int) at '%s'\n", c); 835 return ret; 836 } 837 dout("got int token %d val %d\n", token, intval); 838 } else if (token > Opt_last_int && token < Opt_last_string) { 839 dout("got string token %d val %s\n", token, argstr[0].from); 840 } else { 841 dout("got token %d\n", token); 842 } 843 844 switch (token) { 845 case Opt_queue_depth: 846 if (intval < 1) { 847 pr_err("queue_depth out of range\n"); 848 return -EINVAL; 849 } 850 rbd_opts->queue_depth = intval; 851 break; 852 case Opt_read_only: 853 rbd_opts->read_only = true; 854 break; 855 case Opt_read_write: 856 rbd_opts->read_only = false; 857 break; 858 case Opt_lock_on_read: 859 rbd_opts->lock_on_read = true; 860 break; 861 default: 862 /* libceph prints "bad option" msg */ 863 return -EINVAL; 864 } 865 866 return 0; 867 } 868 869 static char* obj_op_name(enum obj_operation_type op_type) 870 { 871 switch (op_type) { 872 case OBJ_OP_READ: 873 return "read"; 874 case OBJ_OP_WRITE: 875 return "write"; 876 case OBJ_OP_DISCARD: 877 return "discard"; 878 default: 879 return "???"; 880 } 881 } 882 883 /* 884 * Get a ceph client with specific addr and configuration, if one does 885 * not exist create it. Either way, ceph_opts is consumed by this 886 * function. 887 */ 888 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 889 { 890 struct rbd_client *rbdc; 891 892 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING); 893 rbdc = rbd_client_find(ceph_opts); 894 if (rbdc) /* using an existing client */ 895 ceph_destroy_options(ceph_opts); 896 else 897 rbdc = rbd_client_create(ceph_opts); 898 mutex_unlock(&client_mutex); 899 900 return rbdc; 901 } 902 903 /* 904 * Destroy ceph client 905 * 906 * Caller must hold rbd_client_list_lock. 907 */ 908 static void rbd_client_release(struct kref *kref) 909 { 910 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 911 912 dout("%s: rbdc %p\n", __func__, rbdc); 913 spin_lock(&rbd_client_list_lock); 914 list_del(&rbdc->node); 915 spin_unlock(&rbd_client_list_lock); 916 917 ceph_destroy_client(rbdc->client); 918 kfree(rbdc); 919 } 920 921 /* 922 * Drop reference to ceph client node. If it's not referenced anymore, release 923 * it. 924 */ 925 static void rbd_put_client(struct rbd_client *rbdc) 926 { 927 if (rbdc) 928 kref_put(&rbdc->kref, rbd_client_release); 929 } 930 931 static bool rbd_image_format_valid(u32 image_format) 932 { 933 return image_format == 1 || image_format == 2; 934 } 935 936 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 937 { 938 size_t size; 939 u32 snap_count; 940 941 /* The header has to start with the magic rbd header text */ 942 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 943 return false; 944 945 /* The bio layer requires at least sector-sized I/O */ 946 947 if (ondisk->options.order < SECTOR_SHIFT) 948 return false; 949 950 /* If we use u64 in a few spots we may be able to loosen this */ 951 952 if (ondisk->options.order > 8 * sizeof (int) - 1) 953 return false; 954 955 /* 956 * The size of a snapshot header has to fit in a size_t, and 957 * that limits the number of snapshots. 958 */ 959 snap_count = le32_to_cpu(ondisk->snap_count); 960 size = SIZE_MAX - sizeof (struct ceph_snap_context); 961 if (snap_count > size / sizeof (__le64)) 962 return false; 963 964 /* 965 * Not only that, but the size of the entire the snapshot 966 * header must also be representable in a size_t. 967 */ 968 size -= snap_count * sizeof (__le64); 969 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 970 return false; 971 972 return true; 973 } 974 975 /* 976 * Fill an rbd image header with information from the given format 1 977 * on-disk header. 978 */ 979 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 980 struct rbd_image_header_ondisk *ondisk) 981 { 982 struct rbd_image_header *header = &rbd_dev->header; 983 bool first_time = header->object_prefix == NULL; 984 struct ceph_snap_context *snapc; 985 char *object_prefix = NULL; 986 char *snap_names = NULL; 987 u64 *snap_sizes = NULL; 988 u32 snap_count; 989 int ret = -ENOMEM; 990 u32 i; 991 992 /* Allocate this now to avoid having to handle failure below */ 993 994 if (first_time) { 995 size_t len; 996 997 len = strnlen(ondisk->object_prefix, 998 sizeof (ondisk->object_prefix)); 999 object_prefix = kmalloc(len + 1, GFP_KERNEL); 1000 if (!object_prefix) 1001 return -ENOMEM; 1002 memcpy(object_prefix, ondisk->object_prefix, len); 1003 object_prefix[len] = '\0'; 1004 } 1005 1006 /* Allocate the snapshot context and fill it in */ 1007 1008 snap_count = le32_to_cpu(ondisk->snap_count); 1009 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 1010 if (!snapc) 1011 goto out_err; 1012 snapc->seq = le64_to_cpu(ondisk->snap_seq); 1013 if (snap_count) { 1014 struct rbd_image_snap_ondisk *snaps; 1015 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 1016 1017 /* We'll keep a copy of the snapshot names... */ 1018 1019 if (snap_names_len > (u64)SIZE_MAX) 1020 goto out_2big; 1021 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 1022 if (!snap_names) 1023 goto out_err; 1024 1025 /* ...as well as the array of their sizes. */ 1026 snap_sizes = kmalloc_array(snap_count, 1027 sizeof(*header->snap_sizes), 1028 GFP_KERNEL); 1029 if (!snap_sizes) 1030 goto out_err; 1031 1032 /* 1033 * Copy the names, and fill in each snapshot's id 1034 * and size. 1035 * 1036 * Note that rbd_dev_v1_header_info() guarantees the 1037 * ondisk buffer we're working with has 1038 * snap_names_len bytes beyond the end of the 1039 * snapshot id array, this memcpy() is safe. 1040 */ 1041 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 1042 snaps = ondisk->snaps; 1043 for (i = 0; i < snap_count; i++) { 1044 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 1045 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 1046 } 1047 } 1048 1049 /* We won't fail any more, fill in the header */ 1050 1051 if (first_time) { 1052 header->object_prefix = object_prefix; 1053 header->obj_order = ondisk->options.order; 1054 header->crypt_type = ondisk->options.crypt_type; 1055 header->comp_type = ondisk->options.comp_type; 1056 /* The rest aren't used for format 1 images */ 1057 header->stripe_unit = 0; 1058 header->stripe_count = 0; 1059 header->features = 0; 1060 } else { 1061 ceph_put_snap_context(header->snapc); 1062 kfree(header->snap_names); 1063 kfree(header->snap_sizes); 1064 } 1065 1066 /* The remaining fields always get updated (when we refresh) */ 1067 1068 header->image_size = le64_to_cpu(ondisk->image_size); 1069 header->snapc = snapc; 1070 header->snap_names = snap_names; 1071 header->snap_sizes = snap_sizes; 1072 1073 return 0; 1074 out_2big: 1075 ret = -EIO; 1076 out_err: 1077 kfree(snap_sizes); 1078 kfree(snap_names); 1079 ceph_put_snap_context(snapc); 1080 kfree(object_prefix); 1081 1082 return ret; 1083 } 1084 1085 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 1086 { 1087 const char *snap_name; 1088 1089 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 1090 1091 /* Skip over names until we find the one we are looking for */ 1092 1093 snap_name = rbd_dev->header.snap_names; 1094 while (which--) 1095 snap_name += strlen(snap_name) + 1; 1096 1097 return kstrdup(snap_name, GFP_KERNEL); 1098 } 1099 1100 /* 1101 * Snapshot id comparison function for use with qsort()/bsearch(). 1102 * Note that result is for snapshots in *descending* order. 1103 */ 1104 static int snapid_compare_reverse(const void *s1, const void *s2) 1105 { 1106 u64 snap_id1 = *(u64 *)s1; 1107 u64 snap_id2 = *(u64 *)s2; 1108 1109 if (snap_id1 < snap_id2) 1110 return 1; 1111 return snap_id1 == snap_id2 ? 0 : -1; 1112 } 1113 1114 /* 1115 * Search a snapshot context to see if the given snapshot id is 1116 * present. 1117 * 1118 * Returns the position of the snapshot id in the array if it's found, 1119 * or BAD_SNAP_INDEX otherwise. 1120 * 1121 * Note: The snapshot array is in kept sorted (by the osd) in 1122 * reverse order, highest snapshot id first. 1123 */ 1124 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1125 { 1126 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1127 u64 *found; 1128 1129 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1130 sizeof (snap_id), snapid_compare_reverse); 1131 1132 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1133 } 1134 1135 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1136 u64 snap_id) 1137 { 1138 u32 which; 1139 const char *snap_name; 1140 1141 which = rbd_dev_snap_index(rbd_dev, snap_id); 1142 if (which == BAD_SNAP_INDEX) 1143 return ERR_PTR(-ENOENT); 1144 1145 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1146 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1147 } 1148 1149 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1150 { 1151 if (snap_id == CEPH_NOSNAP) 1152 return RBD_SNAP_HEAD_NAME; 1153 1154 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1155 if (rbd_dev->image_format == 1) 1156 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1157 1158 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1159 } 1160 1161 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1162 u64 *snap_size) 1163 { 1164 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1165 if (snap_id == CEPH_NOSNAP) { 1166 *snap_size = rbd_dev->header.image_size; 1167 } else if (rbd_dev->image_format == 1) { 1168 u32 which; 1169 1170 which = rbd_dev_snap_index(rbd_dev, snap_id); 1171 if (which == BAD_SNAP_INDEX) 1172 return -ENOENT; 1173 1174 *snap_size = rbd_dev->header.snap_sizes[which]; 1175 } else { 1176 u64 size = 0; 1177 int ret; 1178 1179 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1180 if (ret) 1181 return ret; 1182 1183 *snap_size = size; 1184 } 1185 return 0; 1186 } 1187 1188 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 1189 u64 *snap_features) 1190 { 1191 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1192 if (snap_id == CEPH_NOSNAP) { 1193 *snap_features = rbd_dev->header.features; 1194 } else if (rbd_dev->image_format == 1) { 1195 *snap_features = 0; /* No features for format 1 */ 1196 } else { 1197 u64 features = 0; 1198 int ret; 1199 1200 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features); 1201 if (ret) 1202 return ret; 1203 1204 *snap_features = features; 1205 } 1206 return 0; 1207 } 1208 1209 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1210 { 1211 u64 snap_id = rbd_dev->spec->snap_id; 1212 u64 size = 0; 1213 u64 features = 0; 1214 int ret; 1215 1216 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1217 if (ret) 1218 return ret; 1219 ret = rbd_snap_features(rbd_dev, snap_id, &features); 1220 if (ret) 1221 return ret; 1222 1223 rbd_dev->mapping.size = size; 1224 rbd_dev->mapping.features = features; 1225 1226 return 0; 1227 } 1228 1229 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1230 { 1231 rbd_dev->mapping.size = 0; 1232 rbd_dev->mapping.features = 0; 1233 } 1234 1235 static void rbd_segment_name_free(const char *name) 1236 { 1237 /* The explicit cast here is needed to drop the const qualifier */ 1238 1239 kmem_cache_free(rbd_segment_name_cache, (void *)name); 1240 } 1241 1242 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset) 1243 { 1244 char *name; 1245 u64 segment; 1246 int ret; 1247 char *name_format; 1248 1249 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO); 1250 if (!name) 1251 return NULL; 1252 segment = offset >> rbd_dev->header.obj_order; 1253 name_format = "%s.%012llx"; 1254 if (rbd_dev->image_format == 2) 1255 name_format = "%s.%016llx"; 1256 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format, 1257 rbd_dev->header.object_prefix, segment); 1258 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) { 1259 pr_err("error formatting segment name for #%llu (%d)\n", 1260 segment, ret); 1261 rbd_segment_name_free(name); 1262 name = NULL; 1263 } 1264 1265 return name; 1266 } 1267 1268 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset) 1269 { 1270 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1271 1272 return offset & (segment_size - 1); 1273 } 1274 1275 static u64 rbd_segment_length(struct rbd_device *rbd_dev, 1276 u64 offset, u64 length) 1277 { 1278 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1279 1280 offset &= segment_size - 1; 1281 1282 rbd_assert(length <= U64_MAX - offset); 1283 if (offset + length > segment_size) 1284 length = segment_size - offset; 1285 1286 return length; 1287 } 1288 1289 /* 1290 * returns the size of an object in the image 1291 */ 1292 static u64 rbd_obj_bytes(struct rbd_image_header *header) 1293 { 1294 return 1 << header->obj_order; 1295 } 1296 1297 /* 1298 * bio helpers 1299 */ 1300 1301 static void bio_chain_put(struct bio *chain) 1302 { 1303 struct bio *tmp; 1304 1305 while (chain) { 1306 tmp = chain; 1307 chain = chain->bi_next; 1308 bio_put(tmp); 1309 } 1310 } 1311 1312 /* 1313 * zeros a bio chain, starting at specific offset 1314 */ 1315 static void zero_bio_chain(struct bio *chain, int start_ofs) 1316 { 1317 struct bio_vec bv; 1318 struct bvec_iter iter; 1319 unsigned long flags; 1320 void *buf; 1321 int pos = 0; 1322 1323 while (chain) { 1324 bio_for_each_segment(bv, chain, iter) { 1325 if (pos + bv.bv_len > start_ofs) { 1326 int remainder = max(start_ofs - pos, 0); 1327 buf = bvec_kmap_irq(&bv, &flags); 1328 memset(buf + remainder, 0, 1329 bv.bv_len - remainder); 1330 flush_dcache_page(bv.bv_page); 1331 bvec_kunmap_irq(buf, &flags); 1332 } 1333 pos += bv.bv_len; 1334 } 1335 1336 chain = chain->bi_next; 1337 } 1338 } 1339 1340 /* 1341 * similar to zero_bio_chain(), zeros data defined by a page array, 1342 * starting at the given byte offset from the start of the array and 1343 * continuing up to the given end offset. The pages array is 1344 * assumed to be big enough to hold all bytes up to the end. 1345 */ 1346 static void zero_pages(struct page **pages, u64 offset, u64 end) 1347 { 1348 struct page **page = &pages[offset >> PAGE_SHIFT]; 1349 1350 rbd_assert(end > offset); 1351 rbd_assert(end - offset <= (u64)SIZE_MAX); 1352 while (offset < end) { 1353 size_t page_offset; 1354 size_t length; 1355 unsigned long flags; 1356 void *kaddr; 1357 1358 page_offset = offset & ~PAGE_MASK; 1359 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset); 1360 local_irq_save(flags); 1361 kaddr = kmap_atomic(*page); 1362 memset(kaddr + page_offset, 0, length); 1363 flush_dcache_page(*page); 1364 kunmap_atomic(kaddr); 1365 local_irq_restore(flags); 1366 1367 offset += length; 1368 page++; 1369 } 1370 } 1371 1372 /* 1373 * Clone a portion of a bio, starting at the given byte offset 1374 * and continuing for the number of bytes indicated. 1375 */ 1376 static struct bio *bio_clone_range(struct bio *bio_src, 1377 unsigned int offset, 1378 unsigned int len, 1379 gfp_t gfpmask) 1380 { 1381 struct bio *bio; 1382 1383 bio = bio_clone(bio_src, gfpmask); 1384 if (!bio) 1385 return NULL; /* ENOMEM */ 1386 1387 bio_advance(bio, offset); 1388 bio->bi_iter.bi_size = len; 1389 1390 return bio; 1391 } 1392 1393 /* 1394 * Clone a portion of a bio chain, starting at the given byte offset 1395 * into the first bio in the source chain and continuing for the 1396 * number of bytes indicated. The result is another bio chain of 1397 * exactly the given length, or a null pointer on error. 1398 * 1399 * The bio_src and offset parameters are both in-out. On entry they 1400 * refer to the first source bio and the offset into that bio where 1401 * the start of data to be cloned is located. 1402 * 1403 * On return, bio_src is updated to refer to the bio in the source 1404 * chain that contains first un-cloned byte, and *offset will 1405 * contain the offset of that byte within that bio. 1406 */ 1407 static struct bio *bio_chain_clone_range(struct bio **bio_src, 1408 unsigned int *offset, 1409 unsigned int len, 1410 gfp_t gfpmask) 1411 { 1412 struct bio *bi = *bio_src; 1413 unsigned int off = *offset; 1414 struct bio *chain = NULL; 1415 struct bio **end; 1416 1417 /* Build up a chain of clone bios up to the limit */ 1418 1419 if (!bi || off >= bi->bi_iter.bi_size || !len) 1420 return NULL; /* Nothing to clone */ 1421 1422 end = &chain; 1423 while (len) { 1424 unsigned int bi_size; 1425 struct bio *bio; 1426 1427 if (!bi) { 1428 rbd_warn(NULL, "bio_chain exhausted with %u left", len); 1429 goto out_err; /* EINVAL; ran out of bio's */ 1430 } 1431 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len); 1432 bio = bio_clone_range(bi, off, bi_size, gfpmask); 1433 if (!bio) 1434 goto out_err; /* ENOMEM */ 1435 1436 *end = bio; 1437 end = &bio->bi_next; 1438 1439 off += bi_size; 1440 if (off == bi->bi_iter.bi_size) { 1441 bi = bi->bi_next; 1442 off = 0; 1443 } 1444 len -= bi_size; 1445 } 1446 *bio_src = bi; 1447 *offset = off; 1448 1449 return chain; 1450 out_err: 1451 bio_chain_put(chain); 1452 1453 return NULL; 1454 } 1455 1456 /* 1457 * The default/initial value for all object request flags is 0. For 1458 * each flag, once its value is set to 1 it is never reset to 0 1459 * again. 1460 */ 1461 static void obj_request_img_data_set(struct rbd_obj_request *obj_request) 1462 { 1463 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) { 1464 struct rbd_device *rbd_dev; 1465 1466 rbd_dev = obj_request->img_request->rbd_dev; 1467 rbd_warn(rbd_dev, "obj_request %p already marked img_data", 1468 obj_request); 1469 } 1470 } 1471 1472 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request) 1473 { 1474 smp_mb(); 1475 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0; 1476 } 1477 1478 static void obj_request_done_set(struct rbd_obj_request *obj_request) 1479 { 1480 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) { 1481 struct rbd_device *rbd_dev = NULL; 1482 1483 if (obj_request_img_data_test(obj_request)) 1484 rbd_dev = obj_request->img_request->rbd_dev; 1485 rbd_warn(rbd_dev, "obj_request %p already marked done", 1486 obj_request); 1487 } 1488 } 1489 1490 static bool obj_request_done_test(struct rbd_obj_request *obj_request) 1491 { 1492 smp_mb(); 1493 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0; 1494 } 1495 1496 /* 1497 * This sets the KNOWN flag after (possibly) setting the EXISTS 1498 * flag. The latter is set based on the "exists" value provided. 1499 * 1500 * Note that for our purposes once an object exists it never goes 1501 * away again. It's possible that the response from two existence 1502 * checks are separated by the creation of the target object, and 1503 * the first ("doesn't exist") response arrives *after* the second 1504 * ("does exist"). In that case we ignore the second one. 1505 */ 1506 static void obj_request_existence_set(struct rbd_obj_request *obj_request, 1507 bool exists) 1508 { 1509 if (exists) 1510 set_bit(OBJ_REQ_EXISTS, &obj_request->flags); 1511 set_bit(OBJ_REQ_KNOWN, &obj_request->flags); 1512 smp_mb(); 1513 } 1514 1515 static bool obj_request_known_test(struct rbd_obj_request *obj_request) 1516 { 1517 smp_mb(); 1518 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0; 1519 } 1520 1521 static bool obj_request_exists_test(struct rbd_obj_request *obj_request) 1522 { 1523 smp_mb(); 1524 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0; 1525 } 1526 1527 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request) 1528 { 1529 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 1530 1531 return obj_request->img_offset < 1532 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header)); 1533 } 1534 1535 static void rbd_obj_request_get(struct rbd_obj_request *obj_request) 1536 { 1537 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1538 atomic_read(&obj_request->kref.refcount)); 1539 kref_get(&obj_request->kref); 1540 } 1541 1542 static void rbd_obj_request_destroy(struct kref *kref); 1543 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1544 { 1545 rbd_assert(obj_request != NULL); 1546 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1547 atomic_read(&obj_request->kref.refcount)); 1548 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1549 } 1550 1551 static void rbd_img_request_get(struct rbd_img_request *img_request) 1552 { 1553 dout("%s: img %p (was %d)\n", __func__, img_request, 1554 atomic_read(&img_request->kref.refcount)); 1555 kref_get(&img_request->kref); 1556 } 1557 1558 static bool img_request_child_test(struct rbd_img_request *img_request); 1559 static void rbd_parent_request_destroy(struct kref *kref); 1560 static void rbd_img_request_destroy(struct kref *kref); 1561 static void rbd_img_request_put(struct rbd_img_request *img_request) 1562 { 1563 rbd_assert(img_request != NULL); 1564 dout("%s: img %p (was %d)\n", __func__, img_request, 1565 atomic_read(&img_request->kref.refcount)); 1566 if (img_request_child_test(img_request)) 1567 kref_put(&img_request->kref, rbd_parent_request_destroy); 1568 else 1569 kref_put(&img_request->kref, rbd_img_request_destroy); 1570 } 1571 1572 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1573 struct rbd_obj_request *obj_request) 1574 { 1575 rbd_assert(obj_request->img_request == NULL); 1576 1577 /* Image request now owns object's original reference */ 1578 obj_request->img_request = img_request; 1579 obj_request->which = img_request->obj_request_count; 1580 rbd_assert(!obj_request_img_data_test(obj_request)); 1581 obj_request_img_data_set(obj_request); 1582 rbd_assert(obj_request->which != BAD_WHICH); 1583 img_request->obj_request_count++; 1584 list_add_tail(&obj_request->links, &img_request->obj_requests); 1585 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1586 obj_request->which); 1587 } 1588 1589 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1590 struct rbd_obj_request *obj_request) 1591 { 1592 rbd_assert(obj_request->which != BAD_WHICH); 1593 1594 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1595 obj_request->which); 1596 list_del(&obj_request->links); 1597 rbd_assert(img_request->obj_request_count > 0); 1598 img_request->obj_request_count--; 1599 rbd_assert(obj_request->which == img_request->obj_request_count); 1600 obj_request->which = BAD_WHICH; 1601 rbd_assert(obj_request_img_data_test(obj_request)); 1602 rbd_assert(obj_request->img_request == img_request); 1603 obj_request->img_request = NULL; 1604 obj_request->callback = NULL; 1605 rbd_obj_request_put(obj_request); 1606 } 1607 1608 static bool obj_request_type_valid(enum obj_request_type type) 1609 { 1610 switch (type) { 1611 case OBJ_REQUEST_NODATA: 1612 case OBJ_REQUEST_BIO: 1613 case OBJ_REQUEST_PAGES: 1614 return true; 1615 default: 1616 return false; 1617 } 1618 } 1619 1620 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request); 1621 1622 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request) 1623 { 1624 struct ceph_osd_request *osd_req = obj_request->osd_req; 1625 1626 dout("%s %p osd_req %p\n", __func__, obj_request, osd_req); 1627 if (obj_request_img_data_test(obj_request)) { 1628 WARN_ON(obj_request->callback != rbd_img_obj_callback); 1629 rbd_img_request_get(obj_request->img_request); 1630 } 1631 ceph_osdc_start_request(osd_req->r_osdc, osd_req, false); 1632 } 1633 1634 static void rbd_obj_request_end(struct rbd_obj_request *obj_request) 1635 { 1636 dout("%s %p\n", __func__, obj_request); 1637 ceph_osdc_cancel_request(obj_request->osd_req); 1638 } 1639 1640 /* 1641 * Wait for an object request to complete. If interrupted, cancel the 1642 * underlying osd request. 1643 * 1644 * @timeout: in jiffies, 0 means "wait forever" 1645 */ 1646 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request, 1647 unsigned long timeout) 1648 { 1649 long ret; 1650 1651 dout("%s %p\n", __func__, obj_request); 1652 ret = wait_for_completion_interruptible_timeout( 1653 &obj_request->completion, 1654 ceph_timeout_jiffies(timeout)); 1655 if (ret <= 0) { 1656 if (ret == 0) 1657 ret = -ETIMEDOUT; 1658 rbd_obj_request_end(obj_request); 1659 } else { 1660 ret = 0; 1661 } 1662 1663 dout("%s %p ret %d\n", __func__, obj_request, (int)ret); 1664 return ret; 1665 } 1666 1667 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request) 1668 { 1669 return __rbd_obj_request_wait(obj_request, 0); 1670 } 1671 1672 static void rbd_img_request_complete(struct rbd_img_request *img_request) 1673 { 1674 1675 dout("%s: img %p\n", __func__, img_request); 1676 1677 /* 1678 * If no error occurred, compute the aggregate transfer 1679 * count for the image request. We could instead use 1680 * atomic64_cmpxchg() to update it as each object request 1681 * completes; not clear which way is better off hand. 1682 */ 1683 if (!img_request->result) { 1684 struct rbd_obj_request *obj_request; 1685 u64 xferred = 0; 1686 1687 for_each_obj_request(img_request, obj_request) 1688 xferred += obj_request->xferred; 1689 img_request->xferred = xferred; 1690 } 1691 1692 if (img_request->callback) 1693 img_request->callback(img_request); 1694 else 1695 rbd_img_request_put(img_request); 1696 } 1697 1698 /* 1699 * The default/initial value for all image request flags is 0. Each 1700 * is conditionally set to 1 at image request initialization time 1701 * and currently never change thereafter. 1702 */ 1703 static void img_request_write_set(struct rbd_img_request *img_request) 1704 { 1705 set_bit(IMG_REQ_WRITE, &img_request->flags); 1706 smp_mb(); 1707 } 1708 1709 static bool img_request_write_test(struct rbd_img_request *img_request) 1710 { 1711 smp_mb(); 1712 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0; 1713 } 1714 1715 /* 1716 * Set the discard flag when the img_request is an discard request 1717 */ 1718 static void img_request_discard_set(struct rbd_img_request *img_request) 1719 { 1720 set_bit(IMG_REQ_DISCARD, &img_request->flags); 1721 smp_mb(); 1722 } 1723 1724 static bool img_request_discard_test(struct rbd_img_request *img_request) 1725 { 1726 smp_mb(); 1727 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0; 1728 } 1729 1730 static void img_request_child_set(struct rbd_img_request *img_request) 1731 { 1732 set_bit(IMG_REQ_CHILD, &img_request->flags); 1733 smp_mb(); 1734 } 1735 1736 static void img_request_child_clear(struct rbd_img_request *img_request) 1737 { 1738 clear_bit(IMG_REQ_CHILD, &img_request->flags); 1739 smp_mb(); 1740 } 1741 1742 static bool img_request_child_test(struct rbd_img_request *img_request) 1743 { 1744 smp_mb(); 1745 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0; 1746 } 1747 1748 static void img_request_layered_set(struct rbd_img_request *img_request) 1749 { 1750 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1751 smp_mb(); 1752 } 1753 1754 static void img_request_layered_clear(struct rbd_img_request *img_request) 1755 { 1756 clear_bit(IMG_REQ_LAYERED, &img_request->flags); 1757 smp_mb(); 1758 } 1759 1760 static bool img_request_layered_test(struct rbd_img_request *img_request) 1761 { 1762 smp_mb(); 1763 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1764 } 1765 1766 static enum obj_operation_type 1767 rbd_img_request_op_type(struct rbd_img_request *img_request) 1768 { 1769 if (img_request_write_test(img_request)) 1770 return OBJ_OP_WRITE; 1771 else if (img_request_discard_test(img_request)) 1772 return OBJ_OP_DISCARD; 1773 else 1774 return OBJ_OP_READ; 1775 } 1776 1777 static void 1778 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request) 1779 { 1780 u64 xferred = obj_request->xferred; 1781 u64 length = obj_request->length; 1782 1783 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1784 obj_request, obj_request->img_request, obj_request->result, 1785 xferred, length); 1786 /* 1787 * ENOENT means a hole in the image. We zero-fill the entire 1788 * length of the request. A short read also implies zero-fill 1789 * to the end of the request. An error requires the whole 1790 * length of the request to be reported finished with an error 1791 * to the block layer. In each case we update the xferred 1792 * count to indicate the whole request was satisfied. 1793 */ 1794 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA); 1795 if (obj_request->result == -ENOENT) { 1796 if (obj_request->type == OBJ_REQUEST_BIO) 1797 zero_bio_chain(obj_request->bio_list, 0); 1798 else 1799 zero_pages(obj_request->pages, 0, length); 1800 obj_request->result = 0; 1801 } else if (xferred < length && !obj_request->result) { 1802 if (obj_request->type == OBJ_REQUEST_BIO) 1803 zero_bio_chain(obj_request->bio_list, xferred); 1804 else 1805 zero_pages(obj_request->pages, xferred, length); 1806 } 1807 obj_request->xferred = length; 1808 obj_request_done_set(obj_request); 1809 } 1810 1811 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request) 1812 { 1813 dout("%s: obj %p cb %p\n", __func__, obj_request, 1814 obj_request->callback); 1815 if (obj_request->callback) 1816 obj_request->callback(obj_request); 1817 else 1818 complete_all(&obj_request->completion); 1819 } 1820 1821 static void rbd_obj_request_error(struct rbd_obj_request *obj_request, int err) 1822 { 1823 obj_request->result = err; 1824 obj_request->xferred = 0; 1825 /* 1826 * kludge - mirror rbd_obj_request_submit() to match a put in 1827 * rbd_img_obj_callback() 1828 */ 1829 if (obj_request_img_data_test(obj_request)) { 1830 WARN_ON(obj_request->callback != rbd_img_obj_callback); 1831 rbd_img_request_get(obj_request->img_request); 1832 } 1833 obj_request_done_set(obj_request); 1834 rbd_obj_request_complete(obj_request); 1835 } 1836 1837 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request) 1838 { 1839 struct rbd_img_request *img_request = NULL; 1840 struct rbd_device *rbd_dev = NULL; 1841 bool layered = false; 1842 1843 if (obj_request_img_data_test(obj_request)) { 1844 img_request = obj_request->img_request; 1845 layered = img_request && img_request_layered_test(img_request); 1846 rbd_dev = img_request->rbd_dev; 1847 } 1848 1849 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1850 obj_request, img_request, obj_request->result, 1851 obj_request->xferred, obj_request->length); 1852 if (layered && obj_request->result == -ENOENT && 1853 obj_request->img_offset < rbd_dev->parent_overlap) 1854 rbd_img_parent_read(obj_request); 1855 else if (img_request) 1856 rbd_img_obj_request_read_callback(obj_request); 1857 else 1858 obj_request_done_set(obj_request); 1859 } 1860 1861 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request) 1862 { 1863 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1864 obj_request->result, obj_request->length); 1865 /* 1866 * There is no such thing as a successful short write. Set 1867 * it to our originally-requested length. 1868 */ 1869 obj_request->xferred = obj_request->length; 1870 obj_request_done_set(obj_request); 1871 } 1872 1873 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request) 1874 { 1875 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1876 obj_request->result, obj_request->length); 1877 /* 1878 * There is no such thing as a successful short discard. Set 1879 * it to our originally-requested length. 1880 */ 1881 obj_request->xferred = obj_request->length; 1882 /* discarding a non-existent object is not a problem */ 1883 if (obj_request->result == -ENOENT) 1884 obj_request->result = 0; 1885 obj_request_done_set(obj_request); 1886 } 1887 1888 /* 1889 * For a simple stat call there's nothing to do. We'll do more if 1890 * this is part of a write sequence for a layered image. 1891 */ 1892 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request) 1893 { 1894 dout("%s: obj %p\n", __func__, obj_request); 1895 obj_request_done_set(obj_request); 1896 } 1897 1898 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request) 1899 { 1900 dout("%s: obj %p\n", __func__, obj_request); 1901 1902 if (obj_request_img_data_test(obj_request)) 1903 rbd_osd_copyup_callback(obj_request); 1904 else 1905 obj_request_done_set(obj_request); 1906 } 1907 1908 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req) 1909 { 1910 struct rbd_obj_request *obj_request = osd_req->r_priv; 1911 u16 opcode; 1912 1913 dout("%s: osd_req %p\n", __func__, osd_req); 1914 rbd_assert(osd_req == obj_request->osd_req); 1915 if (obj_request_img_data_test(obj_request)) { 1916 rbd_assert(obj_request->img_request); 1917 rbd_assert(obj_request->which != BAD_WHICH); 1918 } else { 1919 rbd_assert(obj_request->which == BAD_WHICH); 1920 } 1921 1922 if (osd_req->r_result < 0) 1923 obj_request->result = osd_req->r_result; 1924 1925 /* 1926 * We support a 64-bit length, but ultimately it has to be 1927 * passed to the block layer, which just supports a 32-bit 1928 * length field. 1929 */ 1930 obj_request->xferred = osd_req->r_ops[0].outdata_len; 1931 rbd_assert(obj_request->xferred < (u64)UINT_MAX); 1932 1933 opcode = osd_req->r_ops[0].op; 1934 switch (opcode) { 1935 case CEPH_OSD_OP_READ: 1936 rbd_osd_read_callback(obj_request); 1937 break; 1938 case CEPH_OSD_OP_SETALLOCHINT: 1939 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE || 1940 osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL); 1941 /* fall through */ 1942 case CEPH_OSD_OP_WRITE: 1943 case CEPH_OSD_OP_WRITEFULL: 1944 rbd_osd_write_callback(obj_request); 1945 break; 1946 case CEPH_OSD_OP_STAT: 1947 rbd_osd_stat_callback(obj_request); 1948 break; 1949 case CEPH_OSD_OP_DELETE: 1950 case CEPH_OSD_OP_TRUNCATE: 1951 case CEPH_OSD_OP_ZERO: 1952 rbd_osd_discard_callback(obj_request); 1953 break; 1954 case CEPH_OSD_OP_CALL: 1955 rbd_osd_call_callback(obj_request); 1956 break; 1957 default: 1958 rbd_warn(NULL, "%s: unsupported op %hu", 1959 obj_request->object_name, (unsigned short) opcode); 1960 break; 1961 } 1962 1963 if (obj_request_done_test(obj_request)) 1964 rbd_obj_request_complete(obj_request); 1965 } 1966 1967 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request) 1968 { 1969 struct ceph_osd_request *osd_req = obj_request->osd_req; 1970 1971 rbd_assert(obj_request_img_data_test(obj_request)); 1972 osd_req->r_snapid = obj_request->img_request->snap_id; 1973 } 1974 1975 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request) 1976 { 1977 struct ceph_osd_request *osd_req = obj_request->osd_req; 1978 1979 osd_req->r_mtime = CURRENT_TIME; 1980 osd_req->r_data_offset = obj_request->offset; 1981 } 1982 1983 /* 1984 * Create an osd request. A read request has one osd op (read). 1985 * A write request has either one (watch) or two (hint+write) osd ops. 1986 * (All rbd data writes are prefixed with an allocation hint op, but 1987 * technically osd watch is a write request, hence this distinction.) 1988 */ 1989 static struct ceph_osd_request *rbd_osd_req_create( 1990 struct rbd_device *rbd_dev, 1991 enum obj_operation_type op_type, 1992 unsigned int num_ops, 1993 struct rbd_obj_request *obj_request) 1994 { 1995 struct ceph_snap_context *snapc = NULL; 1996 struct ceph_osd_client *osdc; 1997 struct ceph_osd_request *osd_req; 1998 1999 if (obj_request_img_data_test(obj_request) && 2000 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) { 2001 struct rbd_img_request *img_request = obj_request->img_request; 2002 if (op_type == OBJ_OP_WRITE) { 2003 rbd_assert(img_request_write_test(img_request)); 2004 } else { 2005 rbd_assert(img_request_discard_test(img_request)); 2006 } 2007 snapc = img_request->snapc; 2008 } 2009 2010 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2)); 2011 2012 /* Allocate and initialize the request, for the num_ops ops */ 2013 2014 osdc = &rbd_dev->rbd_client->client->osdc; 2015 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, 2016 GFP_NOIO); 2017 if (!osd_req) 2018 goto fail; 2019 2020 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) 2021 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 2022 else 2023 osd_req->r_flags = CEPH_OSD_FLAG_READ; 2024 2025 osd_req->r_callback = rbd_osd_req_callback; 2026 osd_req->r_priv = obj_request; 2027 2028 osd_req->r_base_oloc.pool = rbd_dev->layout.pool_id; 2029 if (ceph_oid_aprintf(&osd_req->r_base_oid, GFP_NOIO, "%s", 2030 obj_request->object_name)) 2031 goto fail; 2032 2033 if (ceph_osdc_alloc_messages(osd_req, GFP_NOIO)) 2034 goto fail; 2035 2036 return osd_req; 2037 2038 fail: 2039 ceph_osdc_put_request(osd_req); 2040 return NULL; 2041 } 2042 2043 /* 2044 * Create a copyup osd request based on the information in the object 2045 * request supplied. A copyup request has two or three osd ops, a 2046 * copyup method call, potentially a hint op, and a write or truncate 2047 * or zero op. 2048 */ 2049 static struct ceph_osd_request * 2050 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request) 2051 { 2052 struct rbd_img_request *img_request; 2053 struct ceph_snap_context *snapc; 2054 struct rbd_device *rbd_dev; 2055 struct ceph_osd_client *osdc; 2056 struct ceph_osd_request *osd_req; 2057 int num_osd_ops = 3; 2058 2059 rbd_assert(obj_request_img_data_test(obj_request)); 2060 img_request = obj_request->img_request; 2061 rbd_assert(img_request); 2062 rbd_assert(img_request_write_test(img_request) || 2063 img_request_discard_test(img_request)); 2064 2065 if (img_request_discard_test(img_request)) 2066 num_osd_ops = 2; 2067 2068 /* Allocate and initialize the request, for all the ops */ 2069 2070 snapc = img_request->snapc; 2071 rbd_dev = img_request->rbd_dev; 2072 osdc = &rbd_dev->rbd_client->client->osdc; 2073 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops, 2074 false, GFP_NOIO); 2075 if (!osd_req) 2076 goto fail; 2077 2078 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 2079 osd_req->r_callback = rbd_osd_req_callback; 2080 osd_req->r_priv = obj_request; 2081 2082 osd_req->r_base_oloc.pool = rbd_dev->layout.pool_id; 2083 if (ceph_oid_aprintf(&osd_req->r_base_oid, GFP_NOIO, "%s", 2084 obj_request->object_name)) 2085 goto fail; 2086 2087 if (ceph_osdc_alloc_messages(osd_req, GFP_NOIO)) 2088 goto fail; 2089 2090 return osd_req; 2091 2092 fail: 2093 ceph_osdc_put_request(osd_req); 2094 return NULL; 2095 } 2096 2097 2098 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req) 2099 { 2100 ceph_osdc_put_request(osd_req); 2101 } 2102 2103 /* object_name is assumed to be a non-null pointer and NUL-terminated */ 2104 2105 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name, 2106 u64 offset, u64 length, 2107 enum obj_request_type type) 2108 { 2109 struct rbd_obj_request *obj_request; 2110 size_t size; 2111 char *name; 2112 2113 rbd_assert(obj_request_type_valid(type)); 2114 2115 size = strlen(object_name) + 1; 2116 name = kmalloc(size, GFP_NOIO); 2117 if (!name) 2118 return NULL; 2119 2120 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO); 2121 if (!obj_request) { 2122 kfree(name); 2123 return NULL; 2124 } 2125 2126 obj_request->object_name = memcpy(name, object_name, size); 2127 obj_request->offset = offset; 2128 obj_request->length = length; 2129 obj_request->flags = 0; 2130 obj_request->which = BAD_WHICH; 2131 obj_request->type = type; 2132 INIT_LIST_HEAD(&obj_request->links); 2133 init_completion(&obj_request->completion); 2134 kref_init(&obj_request->kref); 2135 2136 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name, 2137 offset, length, (int)type, obj_request); 2138 2139 return obj_request; 2140 } 2141 2142 static void rbd_obj_request_destroy(struct kref *kref) 2143 { 2144 struct rbd_obj_request *obj_request; 2145 2146 obj_request = container_of(kref, struct rbd_obj_request, kref); 2147 2148 dout("%s: obj %p\n", __func__, obj_request); 2149 2150 rbd_assert(obj_request->img_request == NULL); 2151 rbd_assert(obj_request->which == BAD_WHICH); 2152 2153 if (obj_request->osd_req) 2154 rbd_osd_req_destroy(obj_request->osd_req); 2155 2156 rbd_assert(obj_request_type_valid(obj_request->type)); 2157 switch (obj_request->type) { 2158 case OBJ_REQUEST_NODATA: 2159 break; /* Nothing to do */ 2160 case OBJ_REQUEST_BIO: 2161 if (obj_request->bio_list) 2162 bio_chain_put(obj_request->bio_list); 2163 break; 2164 case OBJ_REQUEST_PAGES: 2165 /* img_data requests don't own their page array */ 2166 if (obj_request->pages && 2167 !obj_request_img_data_test(obj_request)) 2168 ceph_release_page_vector(obj_request->pages, 2169 obj_request->page_count); 2170 break; 2171 } 2172 2173 kfree(obj_request->object_name); 2174 obj_request->object_name = NULL; 2175 kmem_cache_free(rbd_obj_request_cache, obj_request); 2176 } 2177 2178 /* It's OK to call this for a device with no parent */ 2179 2180 static void rbd_spec_put(struct rbd_spec *spec); 2181 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 2182 { 2183 rbd_dev_remove_parent(rbd_dev); 2184 rbd_spec_put(rbd_dev->parent_spec); 2185 rbd_dev->parent_spec = NULL; 2186 rbd_dev->parent_overlap = 0; 2187 } 2188 2189 /* 2190 * Parent image reference counting is used to determine when an 2191 * image's parent fields can be safely torn down--after there are no 2192 * more in-flight requests to the parent image. When the last 2193 * reference is dropped, cleaning them up is safe. 2194 */ 2195 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 2196 { 2197 int counter; 2198 2199 if (!rbd_dev->parent_spec) 2200 return; 2201 2202 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 2203 if (counter > 0) 2204 return; 2205 2206 /* Last reference; clean up parent data structures */ 2207 2208 if (!counter) 2209 rbd_dev_unparent(rbd_dev); 2210 else 2211 rbd_warn(rbd_dev, "parent reference underflow"); 2212 } 2213 2214 /* 2215 * If an image has a non-zero parent overlap, get a reference to its 2216 * parent. 2217 * 2218 * Returns true if the rbd device has a parent with a non-zero 2219 * overlap and a reference for it was successfully taken, or 2220 * false otherwise. 2221 */ 2222 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 2223 { 2224 int counter = 0; 2225 2226 if (!rbd_dev->parent_spec) 2227 return false; 2228 2229 down_read(&rbd_dev->header_rwsem); 2230 if (rbd_dev->parent_overlap) 2231 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 2232 up_read(&rbd_dev->header_rwsem); 2233 2234 if (counter < 0) 2235 rbd_warn(rbd_dev, "parent reference overflow"); 2236 2237 return counter > 0; 2238 } 2239 2240 /* 2241 * Caller is responsible for filling in the list of object requests 2242 * that comprises the image request, and the Linux request pointer 2243 * (if there is one). 2244 */ 2245 static struct rbd_img_request *rbd_img_request_create( 2246 struct rbd_device *rbd_dev, 2247 u64 offset, u64 length, 2248 enum obj_operation_type op_type, 2249 struct ceph_snap_context *snapc) 2250 { 2251 struct rbd_img_request *img_request; 2252 2253 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO); 2254 if (!img_request) 2255 return NULL; 2256 2257 img_request->rq = NULL; 2258 img_request->rbd_dev = rbd_dev; 2259 img_request->offset = offset; 2260 img_request->length = length; 2261 img_request->flags = 0; 2262 if (op_type == OBJ_OP_DISCARD) { 2263 img_request_discard_set(img_request); 2264 img_request->snapc = snapc; 2265 } else if (op_type == OBJ_OP_WRITE) { 2266 img_request_write_set(img_request); 2267 img_request->snapc = snapc; 2268 } else { 2269 img_request->snap_id = rbd_dev->spec->snap_id; 2270 } 2271 if (rbd_dev_parent_get(rbd_dev)) 2272 img_request_layered_set(img_request); 2273 spin_lock_init(&img_request->completion_lock); 2274 img_request->next_completion = 0; 2275 img_request->callback = NULL; 2276 img_request->result = 0; 2277 img_request->obj_request_count = 0; 2278 INIT_LIST_HEAD(&img_request->obj_requests); 2279 kref_init(&img_request->kref); 2280 2281 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev, 2282 obj_op_name(op_type), offset, length, img_request); 2283 2284 return img_request; 2285 } 2286 2287 static void rbd_img_request_destroy(struct kref *kref) 2288 { 2289 struct rbd_img_request *img_request; 2290 struct rbd_obj_request *obj_request; 2291 struct rbd_obj_request *next_obj_request; 2292 2293 img_request = container_of(kref, struct rbd_img_request, kref); 2294 2295 dout("%s: img %p\n", __func__, img_request); 2296 2297 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2298 rbd_img_obj_request_del(img_request, obj_request); 2299 rbd_assert(img_request->obj_request_count == 0); 2300 2301 if (img_request_layered_test(img_request)) { 2302 img_request_layered_clear(img_request); 2303 rbd_dev_parent_put(img_request->rbd_dev); 2304 } 2305 2306 if (img_request_write_test(img_request) || 2307 img_request_discard_test(img_request)) 2308 ceph_put_snap_context(img_request->snapc); 2309 2310 kmem_cache_free(rbd_img_request_cache, img_request); 2311 } 2312 2313 static struct rbd_img_request *rbd_parent_request_create( 2314 struct rbd_obj_request *obj_request, 2315 u64 img_offset, u64 length) 2316 { 2317 struct rbd_img_request *parent_request; 2318 struct rbd_device *rbd_dev; 2319 2320 rbd_assert(obj_request->img_request); 2321 rbd_dev = obj_request->img_request->rbd_dev; 2322 2323 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset, 2324 length, OBJ_OP_READ, NULL); 2325 if (!parent_request) 2326 return NULL; 2327 2328 img_request_child_set(parent_request); 2329 rbd_obj_request_get(obj_request); 2330 parent_request->obj_request = obj_request; 2331 2332 return parent_request; 2333 } 2334 2335 static void rbd_parent_request_destroy(struct kref *kref) 2336 { 2337 struct rbd_img_request *parent_request; 2338 struct rbd_obj_request *orig_request; 2339 2340 parent_request = container_of(kref, struct rbd_img_request, kref); 2341 orig_request = parent_request->obj_request; 2342 2343 parent_request->obj_request = NULL; 2344 rbd_obj_request_put(orig_request); 2345 img_request_child_clear(parent_request); 2346 2347 rbd_img_request_destroy(kref); 2348 } 2349 2350 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request) 2351 { 2352 struct rbd_img_request *img_request; 2353 unsigned int xferred; 2354 int result; 2355 bool more; 2356 2357 rbd_assert(obj_request_img_data_test(obj_request)); 2358 img_request = obj_request->img_request; 2359 2360 rbd_assert(obj_request->xferred <= (u64)UINT_MAX); 2361 xferred = (unsigned int)obj_request->xferred; 2362 result = obj_request->result; 2363 if (result) { 2364 struct rbd_device *rbd_dev = img_request->rbd_dev; 2365 enum obj_operation_type op_type; 2366 2367 if (img_request_discard_test(img_request)) 2368 op_type = OBJ_OP_DISCARD; 2369 else if (img_request_write_test(img_request)) 2370 op_type = OBJ_OP_WRITE; 2371 else 2372 op_type = OBJ_OP_READ; 2373 2374 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)", 2375 obj_op_name(op_type), obj_request->length, 2376 obj_request->img_offset, obj_request->offset); 2377 rbd_warn(rbd_dev, " result %d xferred %x", 2378 result, xferred); 2379 if (!img_request->result) 2380 img_request->result = result; 2381 /* 2382 * Need to end I/O on the entire obj_request worth of 2383 * bytes in case of error. 2384 */ 2385 xferred = obj_request->length; 2386 } 2387 2388 if (img_request_child_test(img_request)) { 2389 rbd_assert(img_request->obj_request != NULL); 2390 more = obj_request->which < img_request->obj_request_count - 1; 2391 } else { 2392 rbd_assert(img_request->rq != NULL); 2393 2394 more = blk_update_request(img_request->rq, result, xferred); 2395 if (!more) 2396 __blk_mq_end_request(img_request->rq, result); 2397 } 2398 2399 return more; 2400 } 2401 2402 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request) 2403 { 2404 struct rbd_img_request *img_request; 2405 u32 which = obj_request->which; 2406 bool more = true; 2407 2408 rbd_assert(obj_request_img_data_test(obj_request)); 2409 img_request = obj_request->img_request; 2410 2411 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 2412 rbd_assert(img_request != NULL); 2413 rbd_assert(img_request->obj_request_count > 0); 2414 rbd_assert(which != BAD_WHICH); 2415 rbd_assert(which < img_request->obj_request_count); 2416 2417 spin_lock_irq(&img_request->completion_lock); 2418 if (which != img_request->next_completion) 2419 goto out; 2420 2421 for_each_obj_request_from(img_request, obj_request) { 2422 rbd_assert(more); 2423 rbd_assert(which < img_request->obj_request_count); 2424 2425 if (!obj_request_done_test(obj_request)) 2426 break; 2427 more = rbd_img_obj_end_request(obj_request); 2428 which++; 2429 } 2430 2431 rbd_assert(more ^ (which == img_request->obj_request_count)); 2432 img_request->next_completion = which; 2433 out: 2434 spin_unlock_irq(&img_request->completion_lock); 2435 rbd_img_request_put(img_request); 2436 2437 if (!more) 2438 rbd_img_request_complete(img_request); 2439 } 2440 2441 /* 2442 * Add individual osd ops to the given ceph_osd_request and prepare 2443 * them for submission. num_ops is the current number of 2444 * osd operations already to the object request. 2445 */ 2446 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request, 2447 struct ceph_osd_request *osd_request, 2448 enum obj_operation_type op_type, 2449 unsigned int num_ops) 2450 { 2451 struct rbd_img_request *img_request = obj_request->img_request; 2452 struct rbd_device *rbd_dev = img_request->rbd_dev; 2453 u64 object_size = rbd_obj_bytes(&rbd_dev->header); 2454 u64 offset = obj_request->offset; 2455 u64 length = obj_request->length; 2456 u64 img_end; 2457 u16 opcode; 2458 2459 if (op_type == OBJ_OP_DISCARD) { 2460 if (!offset && length == object_size && 2461 (!img_request_layered_test(img_request) || 2462 !obj_request_overlaps_parent(obj_request))) { 2463 opcode = CEPH_OSD_OP_DELETE; 2464 } else if ((offset + length == object_size)) { 2465 opcode = CEPH_OSD_OP_TRUNCATE; 2466 } else { 2467 down_read(&rbd_dev->header_rwsem); 2468 img_end = rbd_dev->header.image_size; 2469 up_read(&rbd_dev->header_rwsem); 2470 2471 if (obj_request->img_offset + length == img_end) 2472 opcode = CEPH_OSD_OP_TRUNCATE; 2473 else 2474 opcode = CEPH_OSD_OP_ZERO; 2475 } 2476 } else if (op_type == OBJ_OP_WRITE) { 2477 if (!offset && length == object_size) 2478 opcode = CEPH_OSD_OP_WRITEFULL; 2479 else 2480 opcode = CEPH_OSD_OP_WRITE; 2481 osd_req_op_alloc_hint_init(osd_request, num_ops, 2482 object_size, object_size); 2483 num_ops++; 2484 } else { 2485 opcode = CEPH_OSD_OP_READ; 2486 } 2487 2488 if (opcode == CEPH_OSD_OP_DELETE) 2489 osd_req_op_init(osd_request, num_ops, opcode, 0); 2490 else 2491 osd_req_op_extent_init(osd_request, num_ops, opcode, 2492 offset, length, 0, 0); 2493 2494 if (obj_request->type == OBJ_REQUEST_BIO) 2495 osd_req_op_extent_osd_data_bio(osd_request, num_ops, 2496 obj_request->bio_list, length); 2497 else if (obj_request->type == OBJ_REQUEST_PAGES) 2498 osd_req_op_extent_osd_data_pages(osd_request, num_ops, 2499 obj_request->pages, length, 2500 offset & ~PAGE_MASK, false, false); 2501 2502 /* Discards are also writes */ 2503 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) 2504 rbd_osd_req_format_write(obj_request); 2505 else 2506 rbd_osd_req_format_read(obj_request); 2507 } 2508 2509 /* 2510 * Split up an image request into one or more object requests, each 2511 * to a different object. The "type" parameter indicates whether 2512 * "data_desc" is the pointer to the head of a list of bio 2513 * structures, or the base of a page array. In either case this 2514 * function assumes data_desc describes memory sufficient to hold 2515 * all data described by the image request. 2516 */ 2517 static int rbd_img_request_fill(struct rbd_img_request *img_request, 2518 enum obj_request_type type, 2519 void *data_desc) 2520 { 2521 struct rbd_device *rbd_dev = img_request->rbd_dev; 2522 struct rbd_obj_request *obj_request = NULL; 2523 struct rbd_obj_request *next_obj_request; 2524 struct bio *bio_list = NULL; 2525 unsigned int bio_offset = 0; 2526 struct page **pages = NULL; 2527 enum obj_operation_type op_type; 2528 u64 img_offset; 2529 u64 resid; 2530 2531 dout("%s: img %p type %d data_desc %p\n", __func__, img_request, 2532 (int)type, data_desc); 2533 2534 img_offset = img_request->offset; 2535 resid = img_request->length; 2536 rbd_assert(resid > 0); 2537 op_type = rbd_img_request_op_type(img_request); 2538 2539 if (type == OBJ_REQUEST_BIO) { 2540 bio_list = data_desc; 2541 rbd_assert(img_offset == 2542 bio_list->bi_iter.bi_sector << SECTOR_SHIFT); 2543 } else if (type == OBJ_REQUEST_PAGES) { 2544 pages = data_desc; 2545 } 2546 2547 while (resid) { 2548 struct ceph_osd_request *osd_req; 2549 const char *object_name; 2550 u64 offset; 2551 u64 length; 2552 2553 object_name = rbd_segment_name(rbd_dev, img_offset); 2554 if (!object_name) 2555 goto out_unwind; 2556 offset = rbd_segment_offset(rbd_dev, img_offset); 2557 length = rbd_segment_length(rbd_dev, img_offset, resid); 2558 obj_request = rbd_obj_request_create(object_name, 2559 offset, length, type); 2560 /* object request has its own copy of the object name */ 2561 rbd_segment_name_free(object_name); 2562 if (!obj_request) 2563 goto out_unwind; 2564 2565 /* 2566 * set obj_request->img_request before creating the 2567 * osd_request so that it gets the right snapc 2568 */ 2569 rbd_img_obj_request_add(img_request, obj_request); 2570 2571 if (type == OBJ_REQUEST_BIO) { 2572 unsigned int clone_size; 2573 2574 rbd_assert(length <= (u64)UINT_MAX); 2575 clone_size = (unsigned int)length; 2576 obj_request->bio_list = 2577 bio_chain_clone_range(&bio_list, 2578 &bio_offset, 2579 clone_size, 2580 GFP_NOIO); 2581 if (!obj_request->bio_list) 2582 goto out_unwind; 2583 } else if (type == OBJ_REQUEST_PAGES) { 2584 unsigned int page_count; 2585 2586 obj_request->pages = pages; 2587 page_count = (u32)calc_pages_for(offset, length); 2588 obj_request->page_count = page_count; 2589 if ((offset + length) & ~PAGE_MASK) 2590 page_count--; /* more on last page */ 2591 pages += page_count; 2592 } 2593 2594 osd_req = rbd_osd_req_create(rbd_dev, op_type, 2595 (op_type == OBJ_OP_WRITE) ? 2 : 1, 2596 obj_request); 2597 if (!osd_req) 2598 goto out_unwind; 2599 2600 obj_request->osd_req = osd_req; 2601 obj_request->callback = rbd_img_obj_callback; 2602 obj_request->img_offset = img_offset; 2603 2604 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0); 2605 2606 img_offset += length; 2607 resid -= length; 2608 } 2609 2610 return 0; 2611 2612 out_unwind: 2613 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2614 rbd_img_obj_request_del(img_request, obj_request); 2615 2616 return -ENOMEM; 2617 } 2618 2619 static void 2620 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request) 2621 { 2622 struct rbd_img_request *img_request; 2623 struct rbd_device *rbd_dev; 2624 struct page **pages; 2625 u32 page_count; 2626 2627 dout("%s: obj %p\n", __func__, obj_request); 2628 2629 rbd_assert(obj_request->type == OBJ_REQUEST_BIO || 2630 obj_request->type == OBJ_REQUEST_NODATA); 2631 rbd_assert(obj_request_img_data_test(obj_request)); 2632 img_request = obj_request->img_request; 2633 rbd_assert(img_request); 2634 2635 rbd_dev = img_request->rbd_dev; 2636 rbd_assert(rbd_dev); 2637 2638 pages = obj_request->copyup_pages; 2639 rbd_assert(pages != NULL); 2640 obj_request->copyup_pages = NULL; 2641 page_count = obj_request->copyup_page_count; 2642 rbd_assert(page_count); 2643 obj_request->copyup_page_count = 0; 2644 ceph_release_page_vector(pages, page_count); 2645 2646 /* 2647 * We want the transfer count to reflect the size of the 2648 * original write request. There is no such thing as a 2649 * successful short write, so if the request was successful 2650 * we can just set it to the originally-requested length. 2651 */ 2652 if (!obj_request->result) 2653 obj_request->xferred = obj_request->length; 2654 2655 obj_request_done_set(obj_request); 2656 } 2657 2658 static void 2659 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request) 2660 { 2661 struct rbd_obj_request *orig_request; 2662 struct ceph_osd_request *osd_req; 2663 struct rbd_device *rbd_dev; 2664 struct page **pages; 2665 enum obj_operation_type op_type; 2666 u32 page_count; 2667 int img_result; 2668 u64 parent_length; 2669 2670 rbd_assert(img_request_child_test(img_request)); 2671 2672 /* First get what we need from the image request */ 2673 2674 pages = img_request->copyup_pages; 2675 rbd_assert(pages != NULL); 2676 img_request->copyup_pages = NULL; 2677 page_count = img_request->copyup_page_count; 2678 rbd_assert(page_count); 2679 img_request->copyup_page_count = 0; 2680 2681 orig_request = img_request->obj_request; 2682 rbd_assert(orig_request != NULL); 2683 rbd_assert(obj_request_type_valid(orig_request->type)); 2684 img_result = img_request->result; 2685 parent_length = img_request->length; 2686 rbd_assert(img_result || parent_length == img_request->xferred); 2687 rbd_img_request_put(img_request); 2688 2689 rbd_assert(orig_request->img_request); 2690 rbd_dev = orig_request->img_request->rbd_dev; 2691 rbd_assert(rbd_dev); 2692 2693 /* 2694 * If the overlap has become 0 (most likely because the 2695 * image has been flattened) we need to free the pages 2696 * and re-submit the original write request. 2697 */ 2698 if (!rbd_dev->parent_overlap) { 2699 ceph_release_page_vector(pages, page_count); 2700 rbd_obj_request_submit(orig_request); 2701 return; 2702 } 2703 2704 if (img_result) 2705 goto out_err; 2706 2707 /* 2708 * The original osd request is of no use to use any more. 2709 * We need a new one that can hold the three ops in a copyup 2710 * request. Allocate the new copyup osd request for the 2711 * original request, and release the old one. 2712 */ 2713 img_result = -ENOMEM; 2714 osd_req = rbd_osd_req_create_copyup(orig_request); 2715 if (!osd_req) 2716 goto out_err; 2717 rbd_osd_req_destroy(orig_request->osd_req); 2718 orig_request->osd_req = osd_req; 2719 orig_request->copyup_pages = pages; 2720 orig_request->copyup_page_count = page_count; 2721 2722 /* Initialize the copyup op */ 2723 2724 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup"); 2725 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0, 2726 false, false); 2727 2728 /* Add the other op(s) */ 2729 2730 op_type = rbd_img_request_op_type(orig_request->img_request); 2731 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1); 2732 2733 /* All set, send it off. */ 2734 2735 rbd_obj_request_submit(orig_request); 2736 return; 2737 2738 out_err: 2739 ceph_release_page_vector(pages, page_count); 2740 rbd_obj_request_error(orig_request, img_result); 2741 } 2742 2743 /* 2744 * Read from the parent image the range of data that covers the 2745 * entire target of the given object request. This is used for 2746 * satisfying a layered image write request when the target of an 2747 * object request from the image request does not exist. 2748 * 2749 * A page array big enough to hold the returned data is allocated 2750 * and supplied to rbd_img_request_fill() as the "data descriptor." 2751 * When the read completes, this page array will be transferred to 2752 * the original object request for the copyup operation. 2753 * 2754 * If an error occurs, it is recorded as the result of the original 2755 * object request in rbd_img_obj_exists_callback(). 2756 */ 2757 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request) 2758 { 2759 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 2760 struct rbd_img_request *parent_request = NULL; 2761 u64 img_offset; 2762 u64 length; 2763 struct page **pages = NULL; 2764 u32 page_count; 2765 int result; 2766 2767 rbd_assert(rbd_dev->parent != NULL); 2768 2769 /* 2770 * Determine the byte range covered by the object in the 2771 * child image to which the original request was to be sent. 2772 */ 2773 img_offset = obj_request->img_offset - obj_request->offset; 2774 length = (u64)1 << rbd_dev->header.obj_order; 2775 2776 /* 2777 * There is no defined parent data beyond the parent 2778 * overlap, so limit what we read at that boundary if 2779 * necessary. 2780 */ 2781 if (img_offset + length > rbd_dev->parent_overlap) { 2782 rbd_assert(img_offset < rbd_dev->parent_overlap); 2783 length = rbd_dev->parent_overlap - img_offset; 2784 } 2785 2786 /* 2787 * Allocate a page array big enough to receive the data read 2788 * from the parent. 2789 */ 2790 page_count = (u32)calc_pages_for(0, length); 2791 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2792 if (IS_ERR(pages)) { 2793 result = PTR_ERR(pages); 2794 pages = NULL; 2795 goto out_err; 2796 } 2797 2798 result = -ENOMEM; 2799 parent_request = rbd_parent_request_create(obj_request, 2800 img_offset, length); 2801 if (!parent_request) 2802 goto out_err; 2803 2804 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages); 2805 if (result) 2806 goto out_err; 2807 2808 parent_request->copyup_pages = pages; 2809 parent_request->copyup_page_count = page_count; 2810 parent_request->callback = rbd_img_obj_parent_read_full_callback; 2811 2812 result = rbd_img_request_submit(parent_request); 2813 if (!result) 2814 return 0; 2815 2816 parent_request->copyup_pages = NULL; 2817 parent_request->copyup_page_count = 0; 2818 parent_request->obj_request = NULL; 2819 rbd_obj_request_put(obj_request); 2820 out_err: 2821 if (pages) 2822 ceph_release_page_vector(pages, page_count); 2823 if (parent_request) 2824 rbd_img_request_put(parent_request); 2825 return result; 2826 } 2827 2828 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request) 2829 { 2830 struct rbd_obj_request *orig_request; 2831 struct rbd_device *rbd_dev; 2832 int result; 2833 2834 rbd_assert(!obj_request_img_data_test(obj_request)); 2835 2836 /* 2837 * All we need from the object request is the original 2838 * request and the result of the STAT op. Grab those, then 2839 * we're done with the request. 2840 */ 2841 orig_request = obj_request->obj_request; 2842 obj_request->obj_request = NULL; 2843 rbd_obj_request_put(orig_request); 2844 rbd_assert(orig_request); 2845 rbd_assert(orig_request->img_request); 2846 2847 result = obj_request->result; 2848 obj_request->result = 0; 2849 2850 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__, 2851 obj_request, orig_request, result, 2852 obj_request->xferred, obj_request->length); 2853 rbd_obj_request_put(obj_request); 2854 2855 /* 2856 * If the overlap has become 0 (most likely because the 2857 * image has been flattened) we need to re-submit the 2858 * original request. 2859 */ 2860 rbd_dev = orig_request->img_request->rbd_dev; 2861 if (!rbd_dev->parent_overlap) { 2862 rbd_obj_request_submit(orig_request); 2863 return; 2864 } 2865 2866 /* 2867 * Our only purpose here is to determine whether the object 2868 * exists, and we don't want to treat the non-existence as 2869 * an error. If something else comes back, transfer the 2870 * error to the original request and complete it now. 2871 */ 2872 if (!result) { 2873 obj_request_existence_set(orig_request, true); 2874 } else if (result == -ENOENT) { 2875 obj_request_existence_set(orig_request, false); 2876 } else { 2877 goto fail_orig_request; 2878 } 2879 2880 /* 2881 * Resubmit the original request now that we have recorded 2882 * whether the target object exists. 2883 */ 2884 result = rbd_img_obj_request_submit(orig_request); 2885 if (result) 2886 goto fail_orig_request; 2887 2888 return; 2889 2890 fail_orig_request: 2891 rbd_obj_request_error(orig_request, result); 2892 } 2893 2894 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request) 2895 { 2896 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 2897 struct rbd_obj_request *stat_request; 2898 struct page **pages; 2899 u32 page_count; 2900 size_t size; 2901 int ret; 2902 2903 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0, 2904 OBJ_REQUEST_PAGES); 2905 if (!stat_request) 2906 return -ENOMEM; 2907 2908 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 2909 stat_request); 2910 if (!stat_request->osd_req) { 2911 ret = -ENOMEM; 2912 goto fail_stat_request; 2913 } 2914 2915 /* 2916 * The response data for a STAT call consists of: 2917 * le64 length; 2918 * struct { 2919 * le32 tv_sec; 2920 * le32 tv_nsec; 2921 * } mtime; 2922 */ 2923 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32); 2924 page_count = (u32)calc_pages_for(0, size); 2925 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2926 if (IS_ERR(pages)) { 2927 ret = PTR_ERR(pages); 2928 goto fail_stat_request; 2929 } 2930 2931 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0); 2932 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0, 2933 false, false); 2934 2935 rbd_obj_request_get(obj_request); 2936 stat_request->obj_request = obj_request; 2937 stat_request->pages = pages; 2938 stat_request->page_count = page_count; 2939 stat_request->callback = rbd_img_obj_exists_callback; 2940 2941 rbd_obj_request_submit(stat_request); 2942 return 0; 2943 2944 fail_stat_request: 2945 rbd_obj_request_put(stat_request); 2946 return ret; 2947 } 2948 2949 static bool img_obj_request_simple(struct rbd_obj_request *obj_request) 2950 { 2951 struct rbd_img_request *img_request = obj_request->img_request; 2952 struct rbd_device *rbd_dev = img_request->rbd_dev; 2953 2954 /* Reads */ 2955 if (!img_request_write_test(img_request) && 2956 !img_request_discard_test(img_request)) 2957 return true; 2958 2959 /* Non-layered writes */ 2960 if (!img_request_layered_test(img_request)) 2961 return true; 2962 2963 /* 2964 * Layered writes outside of the parent overlap range don't 2965 * share any data with the parent. 2966 */ 2967 if (!obj_request_overlaps_parent(obj_request)) 2968 return true; 2969 2970 /* 2971 * Entire-object layered writes - we will overwrite whatever 2972 * parent data there is anyway. 2973 */ 2974 if (!obj_request->offset && 2975 obj_request->length == rbd_obj_bytes(&rbd_dev->header)) 2976 return true; 2977 2978 /* 2979 * If the object is known to already exist, its parent data has 2980 * already been copied. 2981 */ 2982 if (obj_request_known_test(obj_request) && 2983 obj_request_exists_test(obj_request)) 2984 return true; 2985 2986 return false; 2987 } 2988 2989 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request) 2990 { 2991 rbd_assert(obj_request_img_data_test(obj_request)); 2992 rbd_assert(obj_request_type_valid(obj_request->type)); 2993 rbd_assert(obj_request->img_request); 2994 2995 if (img_obj_request_simple(obj_request)) { 2996 rbd_obj_request_submit(obj_request); 2997 return 0; 2998 } 2999 3000 /* 3001 * It's a layered write. The target object might exist but 3002 * we may not know that yet. If we know it doesn't exist, 3003 * start by reading the data for the full target object from 3004 * the parent so we can use it for a copyup to the target. 3005 */ 3006 if (obj_request_known_test(obj_request)) 3007 return rbd_img_obj_parent_read_full(obj_request); 3008 3009 /* We don't know whether the target exists. Go find out. */ 3010 3011 return rbd_img_obj_exists_submit(obj_request); 3012 } 3013 3014 static int rbd_img_request_submit(struct rbd_img_request *img_request) 3015 { 3016 struct rbd_obj_request *obj_request; 3017 struct rbd_obj_request *next_obj_request; 3018 int ret = 0; 3019 3020 dout("%s: img %p\n", __func__, img_request); 3021 3022 rbd_img_request_get(img_request); 3023 for_each_obj_request_safe(img_request, obj_request, next_obj_request) { 3024 ret = rbd_img_obj_request_submit(obj_request); 3025 if (ret) 3026 goto out_put_ireq; 3027 } 3028 3029 out_put_ireq: 3030 rbd_img_request_put(img_request); 3031 return ret; 3032 } 3033 3034 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request) 3035 { 3036 struct rbd_obj_request *obj_request; 3037 struct rbd_device *rbd_dev; 3038 u64 obj_end; 3039 u64 img_xferred; 3040 int img_result; 3041 3042 rbd_assert(img_request_child_test(img_request)); 3043 3044 /* First get what we need from the image request and release it */ 3045 3046 obj_request = img_request->obj_request; 3047 img_xferred = img_request->xferred; 3048 img_result = img_request->result; 3049 rbd_img_request_put(img_request); 3050 3051 /* 3052 * If the overlap has become 0 (most likely because the 3053 * image has been flattened) we need to re-submit the 3054 * original request. 3055 */ 3056 rbd_assert(obj_request); 3057 rbd_assert(obj_request->img_request); 3058 rbd_dev = obj_request->img_request->rbd_dev; 3059 if (!rbd_dev->parent_overlap) { 3060 rbd_obj_request_submit(obj_request); 3061 return; 3062 } 3063 3064 obj_request->result = img_result; 3065 if (obj_request->result) 3066 goto out; 3067 3068 /* 3069 * We need to zero anything beyond the parent overlap 3070 * boundary. Since rbd_img_obj_request_read_callback() 3071 * will zero anything beyond the end of a short read, an 3072 * easy way to do this is to pretend the data from the 3073 * parent came up short--ending at the overlap boundary. 3074 */ 3075 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length); 3076 obj_end = obj_request->img_offset + obj_request->length; 3077 if (obj_end > rbd_dev->parent_overlap) { 3078 u64 xferred = 0; 3079 3080 if (obj_request->img_offset < rbd_dev->parent_overlap) 3081 xferred = rbd_dev->parent_overlap - 3082 obj_request->img_offset; 3083 3084 obj_request->xferred = min(img_xferred, xferred); 3085 } else { 3086 obj_request->xferred = img_xferred; 3087 } 3088 out: 3089 rbd_img_obj_request_read_callback(obj_request); 3090 rbd_obj_request_complete(obj_request); 3091 } 3092 3093 static void rbd_img_parent_read(struct rbd_obj_request *obj_request) 3094 { 3095 struct rbd_img_request *img_request; 3096 int result; 3097 3098 rbd_assert(obj_request_img_data_test(obj_request)); 3099 rbd_assert(obj_request->img_request != NULL); 3100 rbd_assert(obj_request->result == (s32) -ENOENT); 3101 rbd_assert(obj_request_type_valid(obj_request->type)); 3102 3103 /* rbd_read_finish(obj_request, obj_request->length); */ 3104 img_request = rbd_parent_request_create(obj_request, 3105 obj_request->img_offset, 3106 obj_request->length); 3107 result = -ENOMEM; 3108 if (!img_request) 3109 goto out_err; 3110 3111 if (obj_request->type == OBJ_REQUEST_BIO) 3112 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 3113 obj_request->bio_list); 3114 else 3115 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES, 3116 obj_request->pages); 3117 if (result) 3118 goto out_err; 3119 3120 img_request->callback = rbd_img_parent_read_callback; 3121 result = rbd_img_request_submit(img_request); 3122 if (result) 3123 goto out_err; 3124 3125 return; 3126 out_err: 3127 if (img_request) 3128 rbd_img_request_put(img_request); 3129 obj_request->result = result; 3130 obj_request->xferred = 0; 3131 obj_request_done_set(obj_request); 3132 } 3133 3134 static const struct rbd_client_id rbd_empty_cid; 3135 3136 static bool rbd_cid_equal(const struct rbd_client_id *lhs, 3137 const struct rbd_client_id *rhs) 3138 { 3139 return lhs->gid == rhs->gid && lhs->handle == rhs->handle; 3140 } 3141 3142 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev) 3143 { 3144 struct rbd_client_id cid; 3145 3146 mutex_lock(&rbd_dev->watch_mutex); 3147 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client); 3148 cid.handle = rbd_dev->watch_cookie; 3149 mutex_unlock(&rbd_dev->watch_mutex); 3150 return cid; 3151 } 3152 3153 /* 3154 * lock_rwsem must be held for write 3155 */ 3156 static void rbd_set_owner_cid(struct rbd_device *rbd_dev, 3157 const struct rbd_client_id *cid) 3158 { 3159 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev, 3160 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle, 3161 cid->gid, cid->handle); 3162 rbd_dev->owner_cid = *cid; /* struct */ 3163 } 3164 3165 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf) 3166 { 3167 mutex_lock(&rbd_dev->watch_mutex); 3168 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie); 3169 mutex_unlock(&rbd_dev->watch_mutex); 3170 } 3171 3172 /* 3173 * lock_rwsem must be held for write 3174 */ 3175 static int rbd_lock(struct rbd_device *rbd_dev) 3176 { 3177 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3178 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3179 char cookie[32]; 3180 int ret; 3181 3182 WARN_ON(__rbd_is_lock_owner(rbd_dev)); 3183 3184 format_lock_cookie(rbd_dev, cookie); 3185 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3186 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie, 3187 RBD_LOCK_TAG, "", 0); 3188 if (ret) 3189 return ret; 3190 3191 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED; 3192 rbd_set_owner_cid(rbd_dev, &cid); 3193 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work); 3194 return 0; 3195 } 3196 3197 /* 3198 * lock_rwsem must be held for write 3199 */ 3200 static int rbd_unlock(struct rbd_device *rbd_dev) 3201 { 3202 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3203 char cookie[32]; 3204 int ret; 3205 3206 WARN_ON(!__rbd_is_lock_owner(rbd_dev)); 3207 3208 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 3209 3210 format_lock_cookie(rbd_dev, cookie); 3211 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3212 RBD_LOCK_NAME, cookie); 3213 if (ret && ret != -ENOENT) { 3214 rbd_warn(rbd_dev, "cls_unlock failed: %d", ret); 3215 return ret; 3216 } 3217 3218 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3219 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work); 3220 return 0; 3221 } 3222 3223 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev, 3224 enum rbd_notify_op notify_op, 3225 struct page ***preply_pages, 3226 size_t *preply_len) 3227 { 3228 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3229 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3230 int buf_size = 4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN; 3231 char buf[buf_size]; 3232 void *p = buf; 3233 3234 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op); 3235 3236 /* encode *LockPayload NotifyMessage (op + ClientId) */ 3237 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN); 3238 ceph_encode_32(&p, notify_op); 3239 ceph_encode_64(&p, cid.gid); 3240 ceph_encode_64(&p, cid.handle); 3241 3242 return ceph_osdc_notify(osdc, &rbd_dev->header_oid, 3243 &rbd_dev->header_oloc, buf, buf_size, 3244 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len); 3245 } 3246 3247 static void rbd_notify_op_lock(struct rbd_device *rbd_dev, 3248 enum rbd_notify_op notify_op) 3249 { 3250 struct page **reply_pages; 3251 size_t reply_len; 3252 3253 __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len); 3254 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 3255 } 3256 3257 static void rbd_notify_acquired_lock(struct work_struct *work) 3258 { 3259 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3260 acquired_lock_work); 3261 3262 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK); 3263 } 3264 3265 static void rbd_notify_released_lock(struct work_struct *work) 3266 { 3267 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3268 released_lock_work); 3269 3270 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK); 3271 } 3272 3273 static int rbd_request_lock(struct rbd_device *rbd_dev) 3274 { 3275 struct page **reply_pages; 3276 size_t reply_len; 3277 bool lock_owner_responded = false; 3278 int ret; 3279 3280 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3281 3282 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK, 3283 &reply_pages, &reply_len); 3284 if (ret && ret != -ETIMEDOUT) { 3285 rbd_warn(rbd_dev, "failed to request lock: %d", ret); 3286 goto out; 3287 } 3288 3289 if (reply_len > 0 && reply_len <= PAGE_SIZE) { 3290 void *p = page_address(reply_pages[0]); 3291 void *const end = p + reply_len; 3292 u32 n; 3293 3294 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */ 3295 while (n--) { 3296 u8 struct_v; 3297 u32 len; 3298 3299 ceph_decode_need(&p, end, 8 + 8, e_inval); 3300 p += 8 + 8; /* skip gid and cookie */ 3301 3302 ceph_decode_32_safe(&p, end, len, e_inval); 3303 if (!len) 3304 continue; 3305 3306 if (lock_owner_responded) { 3307 rbd_warn(rbd_dev, 3308 "duplicate lock owners detected"); 3309 ret = -EIO; 3310 goto out; 3311 } 3312 3313 lock_owner_responded = true; 3314 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage", 3315 &struct_v, &len); 3316 if (ret) { 3317 rbd_warn(rbd_dev, 3318 "failed to decode ResponseMessage: %d", 3319 ret); 3320 goto e_inval; 3321 } 3322 3323 ret = ceph_decode_32(&p); 3324 } 3325 } 3326 3327 if (!lock_owner_responded) { 3328 rbd_warn(rbd_dev, "no lock owners detected"); 3329 ret = -ETIMEDOUT; 3330 } 3331 3332 out: 3333 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 3334 return ret; 3335 3336 e_inval: 3337 ret = -EINVAL; 3338 goto out; 3339 } 3340 3341 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all) 3342 { 3343 dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all); 3344 3345 cancel_delayed_work(&rbd_dev->lock_dwork); 3346 if (wake_all) 3347 wake_up_all(&rbd_dev->lock_waitq); 3348 else 3349 wake_up(&rbd_dev->lock_waitq); 3350 } 3351 3352 static int get_lock_owner_info(struct rbd_device *rbd_dev, 3353 struct ceph_locker **lockers, u32 *num_lockers) 3354 { 3355 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3356 u8 lock_type; 3357 char *lock_tag; 3358 int ret; 3359 3360 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3361 3362 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid, 3363 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3364 &lock_type, &lock_tag, lockers, num_lockers); 3365 if (ret) 3366 return ret; 3367 3368 if (*num_lockers == 0) { 3369 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev); 3370 goto out; 3371 } 3372 3373 if (strcmp(lock_tag, RBD_LOCK_TAG)) { 3374 rbd_warn(rbd_dev, "locked by external mechanism, tag %s", 3375 lock_tag); 3376 ret = -EBUSY; 3377 goto out; 3378 } 3379 3380 if (lock_type == CEPH_CLS_LOCK_SHARED) { 3381 rbd_warn(rbd_dev, "shared lock type detected"); 3382 ret = -EBUSY; 3383 goto out; 3384 } 3385 3386 if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX, 3387 strlen(RBD_LOCK_COOKIE_PREFIX))) { 3388 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s", 3389 (*lockers)[0].id.cookie); 3390 ret = -EBUSY; 3391 goto out; 3392 } 3393 3394 out: 3395 kfree(lock_tag); 3396 return ret; 3397 } 3398 3399 static int find_watcher(struct rbd_device *rbd_dev, 3400 const struct ceph_locker *locker) 3401 { 3402 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3403 struct ceph_watch_item *watchers; 3404 u32 num_watchers; 3405 u64 cookie; 3406 int i; 3407 int ret; 3408 3409 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid, 3410 &rbd_dev->header_oloc, &watchers, 3411 &num_watchers); 3412 if (ret) 3413 return ret; 3414 3415 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie); 3416 for (i = 0; i < num_watchers; i++) { 3417 if (!memcmp(&watchers[i].addr, &locker->info.addr, 3418 sizeof(locker->info.addr)) && 3419 watchers[i].cookie == cookie) { 3420 struct rbd_client_id cid = { 3421 .gid = le64_to_cpu(watchers[i].name.num), 3422 .handle = cookie, 3423 }; 3424 3425 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__, 3426 rbd_dev, cid.gid, cid.handle); 3427 rbd_set_owner_cid(rbd_dev, &cid); 3428 ret = 1; 3429 goto out; 3430 } 3431 } 3432 3433 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev); 3434 ret = 0; 3435 out: 3436 kfree(watchers); 3437 return ret; 3438 } 3439 3440 /* 3441 * lock_rwsem must be held for write 3442 */ 3443 static int rbd_try_lock(struct rbd_device *rbd_dev) 3444 { 3445 struct ceph_client *client = rbd_dev->rbd_client->client; 3446 struct ceph_locker *lockers; 3447 u32 num_lockers; 3448 int ret; 3449 3450 for (;;) { 3451 ret = rbd_lock(rbd_dev); 3452 if (ret != -EBUSY) 3453 return ret; 3454 3455 /* determine if the current lock holder is still alive */ 3456 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers); 3457 if (ret) 3458 return ret; 3459 3460 if (num_lockers == 0) 3461 goto again; 3462 3463 ret = find_watcher(rbd_dev, lockers); 3464 if (ret) { 3465 if (ret > 0) 3466 ret = 0; /* have to request lock */ 3467 goto out; 3468 } 3469 3470 rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock", 3471 ENTITY_NAME(lockers[0].id.name)); 3472 3473 ret = ceph_monc_blacklist_add(&client->monc, 3474 &lockers[0].info.addr); 3475 if (ret) { 3476 rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d", 3477 ENTITY_NAME(lockers[0].id.name), ret); 3478 goto out; 3479 } 3480 3481 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid, 3482 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3483 lockers[0].id.cookie, 3484 &lockers[0].id.name); 3485 if (ret && ret != -ENOENT) 3486 goto out; 3487 3488 again: 3489 ceph_free_lockers(lockers, num_lockers); 3490 } 3491 3492 out: 3493 ceph_free_lockers(lockers, num_lockers); 3494 return ret; 3495 } 3496 3497 /* 3498 * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED 3499 */ 3500 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev, 3501 int *pret) 3502 { 3503 enum rbd_lock_state lock_state; 3504 3505 down_read(&rbd_dev->lock_rwsem); 3506 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 3507 rbd_dev->lock_state); 3508 if (__rbd_is_lock_owner(rbd_dev)) { 3509 lock_state = rbd_dev->lock_state; 3510 up_read(&rbd_dev->lock_rwsem); 3511 return lock_state; 3512 } 3513 3514 up_read(&rbd_dev->lock_rwsem); 3515 down_write(&rbd_dev->lock_rwsem); 3516 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 3517 rbd_dev->lock_state); 3518 if (!__rbd_is_lock_owner(rbd_dev)) { 3519 *pret = rbd_try_lock(rbd_dev); 3520 if (*pret) 3521 rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret); 3522 } 3523 3524 lock_state = rbd_dev->lock_state; 3525 up_write(&rbd_dev->lock_rwsem); 3526 return lock_state; 3527 } 3528 3529 static void rbd_acquire_lock(struct work_struct *work) 3530 { 3531 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 3532 struct rbd_device, lock_dwork); 3533 enum rbd_lock_state lock_state; 3534 int ret; 3535 3536 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3537 again: 3538 lock_state = rbd_try_acquire_lock(rbd_dev, &ret); 3539 if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) { 3540 if (lock_state == RBD_LOCK_STATE_LOCKED) 3541 wake_requests(rbd_dev, true); 3542 dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__, 3543 rbd_dev, lock_state, ret); 3544 return; 3545 } 3546 3547 ret = rbd_request_lock(rbd_dev); 3548 if (ret == -ETIMEDOUT) { 3549 goto again; /* treat this as a dead client */ 3550 } else if (ret < 0) { 3551 rbd_warn(rbd_dev, "error requesting lock: %d", ret); 3552 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 3553 RBD_RETRY_DELAY); 3554 } else { 3555 /* 3556 * lock owner acked, but resend if we don't see them 3557 * release the lock 3558 */ 3559 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__, 3560 rbd_dev); 3561 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 3562 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC)); 3563 } 3564 } 3565 3566 /* 3567 * lock_rwsem must be held for write 3568 */ 3569 static bool rbd_release_lock(struct rbd_device *rbd_dev) 3570 { 3571 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 3572 rbd_dev->lock_state); 3573 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED) 3574 return false; 3575 3576 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING; 3577 downgrade_write(&rbd_dev->lock_rwsem); 3578 /* 3579 * Ensure that all in-flight IO is flushed. 3580 * 3581 * FIXME: ceph_osdc_sync() flushes the entire OSD client, which 3582 * may be shared with other devices. 3583 */ 3584 ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc); 3585 up_read(&rbd_dev->lock_rwsem); 3586 3587 down_write(&rbd_dev->lock_rwsem); 3588 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 3589 rbd_dev->lock_state); 3590 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING) 3591 return false; 3592 3593 if (!rbd_unlock(rbd_dev)) 3594 /* 3595 * Give others a chance to grab the lock - we would re-acquire 3596 * almost immediately if we got new IO during ceph_osdc_sync() 3597 * otherwise. We need to ack our own notifications, so this 3598 * lock_dwork will be requeued from rbd_wait_state_locked() 3599 * after wake_requests() in rbd_handle_released_lock(). 3600 */ 3601 cancel_delayed_work(&rbd_dev->lock_dwork); 3602 3603 return true; 3604 } 3605 3606 static void rbd_release_lock_work(struct work_struct *work) 3607 { 3608 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3609 unlock_work); 3610 3611 down_write(&rbd_dev->lock_rwsem); 3612 rbd_release_lock(rbd_dev); 3613 up_write(&rbd_dev->lock_rwsem); 3614 } 3615 3616 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v, 3617 void **p) 3618 { 3619 struct rbd_client_id cid = { 0 }; 3620 3621 if (struct_v >= 2) { 3622 cid.gid = ceph_decode_64(p); 3623 cid.handle = ceph_decode_64(p); 3624 } 3625 3626 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3627 cid.handle); 3628 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 3629 down_write(&rbd_dev->lock_rwsem); 3630 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 3631 /* 3632 * we already know that the remote client is 3633 * the owner 3634 */ 3635 up_write(&rbd_dev->lock_rwsem); 3636 return; 3637 } 3638 3639 rbd_set_owner_cid(rbd_dev, &cid); 3640 downgrade_write(&rbd_dev->lock_rwsem); 3641 } else { 3642 down_read(&rbd_dev->lock_rwsem); 3643 } 3644 3645 if (!__rbd_is_lock_owner(rbd_dev)) 3646 wake_requests(rbd_dev, false); 3647 up_read(&rbd_dev->lock_rwsem); 3648 } 3649 3650 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v, 3651 void **p) 3652 { 3653 struct rbd_client_id cid = { 0 }; 3654 3655 if (struct_v >= 2) { 3656 cid.gid = ceph_decode_64(p); 3657 cid.handle = ceph_decode_64(p); 3658 } 3659 3660 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3661 cid.handle); 3662 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 3663 down_write(&rbd_dev->lock_rwsem); 3664 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 3665 dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n", 3666 __func__, rbd_dev, cid.gid, cid.handle, 3667 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle); 3668 up_write(&rbd_dev->lock_rwsem); 3669 return; 3670 } 3671 3672 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3673 downgrade_write(&rbd_dev->lock_rwsem); 3674 } else { 3675 down_read(&rbd_dev->lock_rwsem); 3676 } 3677 3678 if (!__rbd_is_lock_owner(rbd_dev)) 3679 wake_requests(rbd_dev, false); 3680 up_read(&rbd_dev->lock_rwsem); 3681 } 3682 3683 static bool rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v, 3684 void **p) 3685 { 3686 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev); 3687 struct rbd_client_id cid = { 0 }; 3688 bool need_to_send; 3689 3690 if (struct_v >= 2) { 3691 cid.gid = ceph_decode_64(p); 3692 cid.handle = ceph_decode_64(p); 3693 } 3694 3695 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3696 cid.handle); 3697 if (rbd_cid_equal(&cid, &my_cid)) 3698 return false; 3699 3700 down_read(&rbd_dev->lock_rwsem); 3701 need_to_send = __rbd_is_lock_owner(rbd_dev); 3702 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) { 3703 if (!rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) { 3704 dout("%s rbd_dev %p queueing unlock_work\n", __func__, 3705 rbd_dev); 3706 queue_work(rbd_dev->task_wq, &rbd_dev->unlock_work); 3707 } 3708 } 3709 up_read(&rbd_dev->lock_rwsem); 3710 return need_to_send; 3711 } 3712 3713 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev, 3714 u64 notify_id, u64 cookie, s32 *result) 3715 { 3716 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3717 int buf_size = 4 + CEPH_ENCODING_START_BLK_LEN; 3718 char buf[buf_size]; 3719 int ret; 3720 3721 if (result) { 3722 void *p = buf; 3723 3724 /* encode ResponseMessage */ 3725 ceph_start_encoding(&p, 1, 1, 3726 buf_size - CEPH_ENCODING_START_BLK_LEN); 3727 ceph_encode_32(&p, *result); 3728 } else { 3729 buf_size = 0; 3730 } 3731 3732 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid, 3733 &rbd_dev->header_oloc, notify_id, cookie, 3734 buf, buf_size); 3735 if (ret) 3736 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret); 3737 } 3738 3739 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id, 3740 u64 cookie) 3741 { 3742 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3743 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL); 3744 } 3745 3746 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev, 3747 u64 notify_id, u64 cookie, s32 result) 3748 { 3749 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 3750 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result); 3751 } 3752 3753 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie, 3754 u64 notifier_id, void *data, size_t data_len) 3755 { 3756 struct rbd_device *rbd_dev = arg; 3757 void *p = data; 3758 void *const end = p + data_len; 3759 u8 struct_v; 3760 u32 len; 3761 u32 notify_op; 3762 int ret; 3763 3764 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n", 3765 __func__, rbd_dev, cookie, notify_id, data_len); 3766 if (data_len) { 3767 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage", 3768 &struct_v, &len); 3769 if (ret) { 3770 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d", 3771 ret); 3772 return; 3773 } 3774 3775 notify_op = ceph_decode_32(&p); 3776 } else { 3777 /* legacy notification for header updates */ 3778 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE; 3779 len = 0; 3780 } 3781 3782 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op); 3783 switch (notify_op) { 3784 case RBD_NOTIFY_OP_ACQUIRED_LOCK: 3785 rbd_handle_acquired_lock(rbd_dev, struct_v, &p); 3786 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3787 break; 3788 case RBD_NOTIFY_OP_RELEASED_LOCK: 3789 rbd_handle_released_lock(rbd_dev, struct_v, &p); 3790 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3791 break; 3792 case RBD_NOTIFY_OP_REQUEST_LOCK: 3793 if (rbd_handle_request_lock(rbd_dev, struct_v, &p)) 3794 /* 3795 * send ResponseMessage(0) back so the client 3796 * can detect a missing owner 3797 */ 3798 rbd_acknowledge_notify_result(rbd_dev, notify_id, 3799 cookie, 0); 3800 else 3801 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3802 break; 3803 case RBD_NOTIFY_OP_HEADER_UPDATE: 3804 ret = rbd_dev_refresh(rbd_dev); 3805 if (ret) 3806 rbd_warn(rbd_dev, "refresh failed: %d", ret); 3807 3808 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3809 break; 3810 default: 3811 if (rbd_is_lock_owner(rbd_dev)) 3812 rbd_acknowledge_notify_result(rbd_dev, notify_id, 3813 cookie, -EOPNOTSUPP); 3814 else 3815 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3816 break; 3817 } 3818 } 3819 3820 static void __rbd_unregister_watch(struct rbd_device *rbd_dev); 3821 3822 static void rbd_watch_errcb(void *arg, u64 cookie, int err) 3823 { 3824 struct rbd_device *rbd_dev = arg; 3825 3826 rbd_warn(rbd_dev, "encountered watch error: %d", err); 3827 3828 down_write(&rbd_dev->lock_rwsem); 3829 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3830 up_write(&rbd_dev->lock_rwsem); 3831 3832 mutex_lock(&rbd_dev->watch_mutex); 3833 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) { 3834 __rbd_unregister_watch(rbd_dev); 3835 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR; 3836 3837 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0); 3838 } 3839 mutex_unlock(&rbd_dev->watch_mutex); 3840 } 3841 3842 /* 3843 * watch_mutex must be locked 3844 */ 3845 static int __rbd_register_watch(struct rbd_device *rbd_dev) 3846 { 3847 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3848 struct ceph_osd_linger_request *handle; 3849 3850 rbd_assert(!rbd_dev->watch_handle); 3851 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3852 3853 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid, 3854 &rbd_dev->header_oloc, rbd_watch_cb, 3855 rbd_watch_errcb, rbd_dev); 3856 if (IS_ERR(handle)) 3857 return PTR_ERR(handle); 3858 3859 rbd_dev->watch_handle = handle; 3860 return 0; 3861 } 3862 3863 /* 3864 * watch_mutex must be locked 3865 */ 3866 static void __rbd_unregister_watch(struct rbd_device *rbd_dev) 3867 { 3868 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3869 int ret; 3870 3871 rbd_assert(rbd_dev->watch_handle); 3872 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3873 3874 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle); 3875 if (ret) 3876 rbd_warn(rbd_dev, "failed to unwatch: %d", ret); 3877 3878 rbd_dev->watch_handle = NULL; 3879 } 3880 3881 static int rbd_register_watch(struct rbd_device *rbd_dev) 3882 { 3883 int ret; 3884 3885 mutex_lock(&rbd_dev->watch_mutex); 3886 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED); 3887 ret = __rbd_register_watch(rbd_dev); 3888 if (ret) 3889 goto out; 3890 3891 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 3892 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 3893 3894 out: 3895 mutex_unlock(&rbd_dev->watch_mutex); 3896 return ret; 3897 } 3898 3899 static void cancel_tasks_sync(struct rbd_device *rbd_dev) 3900 { 3901 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3902 3903 cancel_delayed_work_sync(&rbd_dev->watch_dwork); 3904 cancel_work_sync(&rbd_dev->acquired_lock_work); 3905 cancel_work_sync(&rbd_dev->released_lock_work); 3906 cancel_delayed_work_sync(&rbd_dev->lock_dwork); 3907 cancel_work_sync(&rbd_dev->unlock_work); 3908 } 3909 3910 static void rbd_unregister_watch(struct rbd_device *rbd_dev) 3911 { 3912 WARN_ON(waitqueue_active(&rbd_dev->lock_waitq)); 3913 cancel_tasks_sync(rbd_dev); 3914 3915 mutex_lock(&rbd_dev->watch_mutex); 3916 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) 3917 __rbd_unregister_watch(rbd_dev); 3918 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 3919 mutex_unlock(&rbd_dev->watch_mutex); 3920 3921 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 3922 } 3923 3924 static void rbd_reregister_watch(struct work_struct *work) 3925 { 3926 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 3927 struct rbd_device, watch_dwork); 3928 bool was_lock_owner = false; 3929 bool need_to_wake = false; 3930 int ret; 3931 3932 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3933 3934 down_write(&rbd_dev->lock_rwsem); 3935 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) 3936 was_lock_owner = rbd_release_lock(rbd_dev); 3937 3938 mutex_lock(&rbd_dev->watch_mutex); 3939 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) { 3940 mutex_unlock(&rbd_dev->watch_mutex); 3941 goto out; 3942 } 3943 3944 ret = __rbd_register_watch(rbd_dev); 3945 if (ret) { 3946 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret); 3947 if (ret == -EBLACKLISTED || ret == -ENOENT) { 3948 set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags); 3949 need_to_wake = true; 3950 } else { 3951 queue_delayed_work(rbd_dev->task_wq, 3952 &rbd_dev->watch_dwork, 3953 RBD_RETRY_DELAY); 3954 } 3955 mutex_unlock(&rbd_dev->watch_mutex); 3956 goto out; 3957 } 3958 3959 need_to_wake = true; 3960 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 3961 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 3962 mutex_unlock(&rbd_dev->watch_mutex); 3963 3964 ret = rbd_dev_refresh(rbd_dev); 3965 if (ret) 3966 rbd_warn(rbd_dev, "reregisteration refresh failed: %d", ret); 3967 3968 if (was_lock_owner) { 3969 ret = rbd_try_lock(rbd_dev); 3970 if (ret) 3971 rbd_warn(rbd_dev, "reregisteration lock failed: %d", 3972 ret); 3973 } 3974 3975 out: 3976 up_write(&rbd_dev->lock_rwsem); 3977 if (need_to_wake) 3978 wake_requests(rbd_dev, true); 3979 } 3980 3981 /* 3982 * Synchronous osd object method call. Returns the number of bytes 3983 * returned in the outbound buffer, or a negative error code. 3984 */ 3985 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 3986 const char *object_name, 3987 const char *class_name, 3988 const char *method_name, 3989 const void *outbound, 3990 size_t outbound_size, 3991 void *inbound, 3992 size_t inbound_size) 3993 { 3994 struct rbd_obj_request *obj_request; 3995 struct page **pages; 3996 u32 page_count; 3997 int ret; 3998 3999 /* 4000 * Method calls are ultimately read operations. The result 4001 * should placed into the inbound buffer provided. They 4002 * also supply outbound data--parameters for the object 4003 * method. Currently if this is present it will be a 4004 * snapshot id. 4005 */ 4006 page_count = (u32)calc_pages_for(0, inbound_size); 4007 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 4008 if (IS_ERR(pages)) 4009 return PTR_ERR(pages); 4010 4011 ret = -ENOMEM; 4012 obj_request = rbd_obj_request_create(object_name, 0, inbound_size, 4013 OBJ_REQUEST_PAGES); 4014 if (!obj_request) 4015 goto out; 4016 4017 obj_request->pages = pages; 4018 obj_request->page_count = page_count; 4019 4020 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 4021 obj_request); 4022 if (!obj_request->osd_req) 4023 goto out; 4024 4025 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL, 4026 class_name, method_name); 4027 if (outbound_size) { 4028 struct ceph_pagelist *pagelist; 4029 4030 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS); 4031 if (!pagelist) 4032 goto out; 4033 4034 ceph_pagelist_init(pagelist); 4035 ceph_pagelist_append(pagelist, outbound, outbound_size); 4036 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0, 4037 pagelist); 4038 } 4039 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0, 4040 obj_request->pages, inbound_size, 4041 0, false, false); 4042 4043 rbd_obj_request_submit(obj_request); 4044 ret = rbd_obj_request_wait(obj_request); 4045 if (ret) 4046 goto out; 4047 4048 ret = obj_request->result; 4049 if (ret < 0) 4050 goto out; 4051 4052 rbd_assert(obj_request->xferred < (u64)INT_MAX); 4053 ret = (int)obj_request->xferred; 4054 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred); 4055 out: 4056 if (obj_request) 4057 rbd_obj_request_put(obj_request); 4058 else 4059 ceph_release_page_vector(pages, page_count); 4060 4061 return ret; 4062 } 4063 4064 /* 4065 * lock_rwsem must be held for read 4066 */ 4067 static void rbd_wait_state_locked(struct rbd_device *rbd_dev) 4068 { 4069 DEFINE_WAIT(wait); 4070 4071 do { 4072 /* 4073 * Note the use of mod_delayed_work() in rbd_acquire_lock() 4074 * and cancel_delayed_work() in wake_requests(). 4075 */ 4076 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev); 4077 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 4078 prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait, 4079 TASK_UNINTERRUPTIBLE); 4080 up_read(&rbd_dev->lock_rwsem); 4081 schedule(); 4082 down_read(&rbd_dev->lock_rwsem); 4083 } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED && 4084 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)); 4085 4086 finish_wait(&rbd_dev->lock_waitq, &wait); 4087 } 4088 4089 static void rbd_queue_workfn(struct work_struct *work) 4090 { 4091 struct request *rq = blk_mq_rq_from_pdu(work); 4092 struct rbd_device *rbd_dev = rq->q->queuedata; 4093 struct rbd_img_request *img_request; 4094 struct ceph_snap_context *snapc = NULL; 4095 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 4096 u64 length = blk_rq_bytes(rq); 4097 enum obj_operation_type op_type; 4098 u64 mapping_size; 4099 bool must_be_locked; 4100 int result; 4101 4102 if (rq->cmd_type != REQ_TYPE_FS) { 4103 dout("%s: non-fs request type %d\n", __func__, 4104 (int) rq->cmd_type); 4105 result = -EIO; 4106 goto err; 4107 } 4108 4109 if (req_op(rq) == REQ_OP_DISCARD) 4110 op_type = OBJ_OP_DISCARD; 4111 else if (req_op(rq) == REQ_OP_WRITE) 4112 op_type = OBJ_OP_WRITE; 4113 else 4114 op_type = OBJ_OP_READ; 4115 4116 /* Ignore/skip any zero-length requests */ 4117 4118 if (!length) { 4119 dout("%s: zero-length request\n", __func__); 4120 result = 0; 4121 goto err_rq; 4122 } 4123 4124 /* Only reads are allowed to a read-only device */ 4125 4126 if (op_type != OBJ_OP_READ) { 4127 if (rbd_dev->mapping.read_only) { 4128 result = -EROFS; 4129 goto err_rq; 4130 } 4131 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP); 4132 } 4133 4134 /* 4135 * Quit early if the mapped snapshot no longer exists. It's 4136 * still possible the snapshot will have disappeared by the 4137 * time our request arrives at the osd, but there's no sense in 4138 * sending it if we already know. 4139 */ 4140 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) { 4141 dout("request for non-existent snapshot"); 4142 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP); 4143 result = -ENXIO; 4144 goto err_rq; 4145 } 4146 4147 if (offset && length > U64_MAX - offset + 1) { 4148 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset, 4149 length); 4150 result = -EINVAL; 4151 goto err_rq; /* Shouldn't happen */ 4152 } 4153 4154 blk_mq_start_request(rq); 4155 4156 down_read(&rbd_dev->header_rwsem); 4157 mapping_size = rbd_dev->mapping.size; 4158 if (op_type != OBJ_OP_READ) { 4159 snapc = rbd_dev->header.snapc; 4160 ceph_get_snap_context(snapc); 4161 must_be_locked = rbd_is_lock_supported(rbd_dev); 4162 } else { 4163 must_be_locked = rbd_dev->opts->lock_on_read && 4164 rbd_is_lock_supported(rbd_dev); 4165 } 4166 up_read(&rbd_dev->header_rwsem); 4167 4168 if (offset + length > mapping_size) { 4169 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset, 4170 length, mapping_size); 4171 result = -EIO; 4172 goto err_rq; 4173 } 4174 4175 if (must_be_locked) { 4176 down_read(&rbd_dev->lock_rwsem); 4177 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED && 4178 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) 4179 rbd_wait_state_locked(rbd_dev); 4180 4181 WARN_ON((rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) ^ 4182 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)); 4183 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) { 4184 result = -EBLACKLISTED; 4185 goto err_unlock; 4186 } 4187 } 4188 4189 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type, 4190 snapc); 4191 if (!img_request) { 4192 result = -ENOMEM; 4193 goto err_unlock; 4194 } 4195 img_request->rq = rq; 4196 snapc = NULL; /* img_request consumes a ref */ 4197 4198 if (op_type == OBJ_OP_DISCARD) 4199 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA, 4200 NULL); 4201 else 4202 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 4203 rq->bio); 4204 if (result) 4205 goto err_img_request; 4206 4207 result = rbd_img_request_submit(img_request); 4208 if (result) 4209 goto err_img_request; 4210 4211 if (must_be_locked) 4212 up_read(&rbd_dev->lock_rwsem); 4213 return; 4214 4215 err_img_request: 4216 rbd_img_request_put(img_request); 4217 err_unlock: 4218 if (must_be_locked) 4219 up_read(&rbd_dev->lock_rwsem); 4220 err_rq: 4221 if (result) 4222 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 4223 obj_op_name(op_type), length, offset, result); 4224 ceph_put_snap_context(snapc); 4225 err: 4226 blk_mq_end_request(rq, result); 4227 } 4228 4229 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx, 4230 const struct blk_mq_queue_data *bd) 4231 { 4232 struct request *rq = bd->rq; 4233 struct work_struct *work = blk_mq_rq_to_pdu(rq); 4234 4235 queue_work(rbd_wq, work); 4236 return BLK_MQ_RQ_QUEUE_OK; 4237 } 4238 4239 static void rbd_free_disk(struct rbd_device *rbd_dev) 4240 { 4241 struct gendisk *disk = rbd_dev->disk; 4242 4243 if (!disk) 4244 return; 4245 4246 rbd_dev->disk = NULL; 4247 if (disk->flags & GENHD_FL_UP) { 4248 del_gendisk(disk); 4249 if (disk->queue) 4250 blk_cleanup_queue(disk->queue); 4251 blk_mq_free_tag_set(&rbd_dev->tag_set); 4252 } 4253 put_disk(disk); 4254 } 4255 4256 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 4257 const char *object_name, 4258 u64 offset, u64 length, void *buf) 4259 4260 { 4261 struct rbd_obj_request *obj_request; 4262 struct page **pages = NULL; 4263 u32 page_count; 4264 size_t size; 4265 int ret; 4266 4267 page_count = (u32) calc_pages_for(offset, length); 4268 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 4269 if (IS_ERR(pages)) 4270 return PTR_ERR(pages); 4271 4272 ret = -ENOMEM; 4273 obj_request = rbd_obj_request_create(object_name, offset, length, 4274 OBJ_REQUEST_PAGES); 4275 if (!obj_request) 4276 goto out; 4277 4278 obj_request->pages = pages; 4279 obj_request->page_count = page_count; 4280 4281 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 4282 obj_request); 4283 if (!obj_request->osd_req) 4284 goto out; 4285 4286 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ, 4287 offset, length, 0, 0); 4288 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0, 4289 obj_request->pages, 4290 obj_request->length, 4291 obj_request->offset & ~PAGE_MASK, 4292 false, false); 4293 4294 rbd_obj_request_submit(obj_request); 4295 ret = rbd_obj_request_wait(obj_request); 4296 if (ret) 4297 goto out; 4298 4299 ret = obj_request->result; 4300 if (ret < 0) 4301 goto out; 4302 4303 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX); 4304 size = (size_t) obj_request->xferred; 4305 ceph_copy_from_page_vector(pages, buf, 0, size); 4306 rbd_assert(size <= (size_t)INT_MAX); 4307 ret = (int)size; 4308 out: 4309 if (obj_request) 4310 rbd_obj_request_put(obj_request); 4311 else 4312 ceph_release_page_vector(pages, page_count); 4313 4314 return ret; 4315 } 4316 4317 /* 4318 * Read the complete header for the given rbd device. On successful 4319 * return, the rbd_dev->header field will contain up-to-date 4320 * information about the image. 4321 */ 4322 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 4323 { 4324 struct rbd_image_header_ondisk *ondisk = NULL; 4325 u32 snap_count = 0; 4326 u64 names_size = 0; 4327 u32 want_count; 4328 int ret; 4329 4330 /* 4331 * The complete header will include an array of its 64-bit 4332 * snapshot ids, followed by the names of those snapshots as 4333 * a contiguous block of NUL-terminated strings. Note that 4334 * the number of snapshots could change by the time we read 4335 * it in, in which case we re-read it. 4336 */ 4337 do { 4338 size_t size; 4339 4340 kfree(ondisk); 4341 4342 size = sizeof (*ondisk); 4343 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 4344 size += names_size; 4345 ondisk = kmalloc(size, GFP_KERNEL); 4346 if (!ondisk) 4347 return -ENOMEM; 4348 4349 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_oid.name, 4350 0, size, ondisk); 4351 if (ret < 0) 4352 goto out; 4353 if ((size_t)ret < size) { 4354 ret = -ENXIO; 4355 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 4356 size, ret); 4357 goto out; 4358 } 4359 if (!rbd_dev_ondisk_valid(ondisk)) { 4360 ret = -ENXIO; 4361 rbd_warn(rbd_dev, "invalid header"); 4362 goto out; 4363 } 4364 4365 names_size = le64_to_cpu(ondisk->snap_names_len); 4366 want_count = snap_count; 4367 snap_count = le32_to_cpu(ondisk->snap_count); 4368 } while (snap_count != want_count); 4369 4370 ret = rbd_header_from_disk(rbd_dev, ondisk); 4371 out: 4372 kfree(ondisk); 4373 4374 return ret; 4375 } 4376 4377 /* 4378 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to 4379 * has disappeared from the (just updated) snapshot context. 4380 */ 4381 static void rbd_exists_validate(struct rbd_device *rbd_dev) 4382 { 4383 u64 snap_id; 4384 4385 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) 4386 return; 4387 4388 snap_id = rbd_dev->spec->snap_id; 4389 if (snap_id == CEPH_NOSNAP) 4390 return; 4391 4392 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX) 4393 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 4394 } 4395 4396 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 4397 { 4398 sector_t size; 4399 4400 /* 4401 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't 4402 * try to update its size. If REMOVING is set, updating size 4403 * is just useless work since the device can't be opened. 4404 */ 4405 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) && 4406 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) { 4407 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 4408 dout("setting size to %llu sectors", (unsigned long long)size); 4409 set_capacity(rbd_dev->disk, size); 4410 revalidate_disk(rbd_dev->disk); 4411 } 4412 } 4413 4414 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 4415 { 4416 u64 mapping_size; 4417 int ret; 4418 4419 down_write(&rbd_dev->header_rwsem); 4420 mapping_size = rbd_dev->mapping.size; 4421 4422 ret = rbd_dev_header_info(rbd_dev); 4423 if (ret) 4424 goto out; 4425 4426 /* 4427 * If there is a parent, see if it has disappeared due to the 4428 * mapped image getting flattened. 4429 */ 4430 if (rbd_dev->parent) { 4431 ret = rbd_dev_v2_parent_info(rbd_dev); 4432 if (ret) 4433 goto out; 4434 } 4435 4436 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) { 4437 rbd_dev->mapping.size = rbd_dev->header.image_size; 4438 } else { 4439 /* validate mapped snapshot's EXISTS flag */ 4440 rbd_exists_validate(rbd_dev); 4441 } 4442 4443 out: 4444 up_write(&rbd_dev->header_rwsem); 4445 if (!ret && mapping_size != rbd_dev->mapping.size) 4446 rbd_dev_update_size(rbd_dev); 4447 4448 return ret; 4449 } 4450 4451 static int rbd_init_request(void *data, struct request *rq, 4452 unsigned int hctx_idx, unsigned int request_idx, 4453 unsigned int numa_node) 4454 { 4455 struct work_struct *work = blk_mq_rq_to_pdu(rq); 4456 4457 INIT_WORK(work, rbd_queue_workfn); 4458 return 0; 4459 } 4460 4461 static struct blk_mq_ops rbd_mq_ops = { 4462 .queue_rq = rbd_queue_rq, 4463 .init_request = rbd_init_request, 4464 }; 4465 4466 static int rbd_init_disk(struct rbd_device *rbd_dev) 4467 { 4468 struct gendisk *disk; 4469 struct request_queue *q; 4470 u64 segment_size; 4471 int err; 4472 4473 /* create gendisk info */ 4474 disk = alloc_disk(single_major ? 4475 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) : 4476 RBD_MINORS_PER_MAJOR); 4477 if (!disk) 4478 return -ENOMEM; 4479 4480 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 4481 rbd_dev->dev_id); 4482 disk->major = rbd_dev->major; 4483 disk->first_minor = rbd_dev->minor; 4484 if (single_major) 4485 disk->flags |= GENHD_FL_EXT_DEVT; 4486 disk->fops = &rbd_bd_ops; 4487 disk->private_data = rbd_dev; 4488 4489 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set)); 4490 rbd_dev->tag_set.ops = &rbd_mq_ops; 4491 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth; 4492 rbd_dev->tag_set.numa_node = NUMA_NO_NODE; 4493 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 4494 rbd_dev->tag_set.nr_hw_queues = 1; 4495 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct); 4496 4497 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set); 4498 if (err) 4499 goto out_disk; 4500 4501 q = blk_mq_init_queue(&rbd_dev->tag_set); 4502 if (IS_ERR(q)) { 4503 err = PTR_ERR(q); 4504 goto out_tag_set; 4505 } 4506 4507 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 4508 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */ 4509 4510 /* set io sizes to object size */ 4511 segment_size = rbd_obj_bytes(&rbd_dev->header); 4512 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE); 4513 q->limits.max_sectors = queue_max_hw_sectors(q); 4514 blk_queue_max_segments(q, segment_size / SECTOR_SIZE); 4515 blk_queue_max_segment_size(q, segment_size); 4516 blk_queue_io_min(q, segment_size); 4517 blk_queue_io_opt(q, segment_size); 4518 4519 /* enable the discard support */ 4520 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 4521 q->limits.discard_granularity = segment_size; 4522 q->limits.discard_alignment = segment_size; 4523 blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE); 4524 q->limits.discard_zeroes_data = 1; 4525 4526 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC)) 4527 q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES; 4528 4529 disk->queue = q; 4530 4531 q->queuedata = rbd_dev; 4532 4533 rbd_dev->disk = disk; 4534 4535 return 0; 4536 out_tag_set: 4537 blk_mq_free_tag_set(&rbd_dev->tag_set); 4538 out_disk: 4539 put_disk(disk); 4540 return err; 4541 } 4542 4543 /* 4544 sysfs 4545 */ 4546 4547 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 4548 { 4549 return container_of(dev, struct rbd_device, dev); 4550 } 4551 4552 static ssize_t rbd_size_show(struct device *dev, 4553 struct device_attribute *attr, char *buf) 4554 { 4555 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4556 4557 return sprintf(buf, "%llu\n", 4558 (unsigned long long)rbd_dev->mapping.size); 4559 } 4560 4561 /* 4562 * Note this shows the features for whatever's mapped, which is not 4563 * necessarily the base image. 4564 */ 4565 static ssize_t rbd_features_show(struct device *dev, 4566 struct device_attribute *attr, char *buf) 4567 { 4568 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4569 4570 return sprintf(buf, "0x%016llx\n", 4571 (unsigned long long)rbd_dev->mapping.features); 4572 } 4573 4574 static ssize_t rbd_major_show(struct device *dev, 4575 struct device_attribute *attr, char *buf) 4576 { 4577 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4578 4579 if (rbd_dev->major) 4580 return sprintf(buf, "%d\n", rbd_dev->major); 4581 4582 return sprintf(buf, "(none)\n"); 4583 } 4584 4585 static ssize_t rbd_minor_show(struct device *dev, 4586 struct device_attribute *attr, char *buf) 4587 { 4588 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4589 4590 return sprintf(buf, "%d\n", rbd_dev->minor); 4591 } 4592 4593 static ssize_t rbd_client_addr_show(struct device *dev, 4594 struct device_attribute *attr, char *buf) 4595 { 4596 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4597 struct ceph_entity_addr *client_addr = 4598 ceph_client_addr(rbd_dev->rbd_client->client); 4599 4600 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr, 4601 le32_to_cpu(client_addr->nonce)); 4602 } 4603 4604 static ssize_t rbd_client_id_show(struct device *dev, 4605 struct device_attribute *attr, char *buf) 4606 { 4607 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4608 4609 return sprintf(buf, "client%lld\n", 4610 ceph_client_gid(rbd_dev->rbd_client->client)); 4611 } 4612 4613 static ssize_t rbd_cluster_fsid_show(struct device *dev, 4614 struct device_attribute *attr, char *buf) 4615 { 4616 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4617 4618 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid); 4619 } 4620 4621 static ssize_t rbd_config_info_show(struct device *dev, 4622 struct device_attribute *attr, char *buf) 4623 { 4624 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4625 4626 return sprintf(buf, "%s\n", rbd_dev->config_info); 4627 } 4628 4629 static ssize_t rbd_pool_show(struct device *dev, 4630 struct device_attribute *attr, char *buf) 4631 { 4632 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4633 4634 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 4635 } 4636 4637 static ssize_t rbd_pool_id_show(struct device *dev, 4638 struct device_attribute *attr, char *buf) 4639 { 4640 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4641 4642 return sprintf(buf, "%llu\n", 4643 (unsigned long long) rbd_dev->spec->pool_id); 4644 } 4645 4646 static ssize_t rbd_name_show(struct device *dev, 4647 struct device_attribute *attr, char *buf) 4648 { 4649 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4650 4651 if (rbd_dev->spec->image_name) 4652 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 4653 4654 return sprintf(buf, "(unknown)\n"); 4655 } 4656 4657 static ssize_t rbd_image_id_show(struct device *dev, 4658 struct device_attribute *attr, char *buf) 4659 { 4660 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4661 4662 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 4663 } 4664 4665 /* 4666 * Shows the name of the currently-mapped snapshot (or 4667 * RBD_SNAP_HEAD_NAME for the base image). 4668 */ 4669 static ssize_t rbd_snap_show(struct device *dev, 4670 struct device_attribute *attr, 4671 char *buf) 4672 { 4673 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4674 4675 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 4676 } 4677 4678 static ssize_t rbd_snap_id_show(struct device *dev, 4679 struct device_attribute *attr, char *buf) 4680 { 4681 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4682 4683 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id); 4684 } 4685 4686 /* 4687 * For a v2 image, shows the chain of parent images, separated by empty 4688 * lines. For v1 images or if there is no parent, shows "(no parent 4689 * image)". 4690 */ 4691 static ssize_t rbd_parent_show(struct device *dev, 4692 struct device_attribute *attr, 4693 char *buf) 4694 { 4695 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4696 ssize_t count = 0; 4697 4698 if (!rbd_dev->parent) 4699 return sprintf(buf, "(no parent image)\n"); 4700 4701 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 4702 struct rbd_spec *spec = rbd_dev->parent_spec; 4703 4704 count += sprintf(&buf[count], "%s" 4705 "pool_id %llu\npool_name %s\n" 4706 "image_id %s\nimage_name %s\n" 4707 "snap_id %llu\nsnap_name %s\n" 4708 "overlap %llu\n", 4709 !count ? "" : "\n", /* first? */ 4710 spec->pool_id, spec->pool_name, 4711 spec->image_id, spec->image_name ?: "(unknown)", 4712 spec->snap_id, spec->snap_name, 4713 rbd_dev->parent_overlap); 4714 } 4715 4716 return count; 4717 } 4718 4719 static ssize_t rbd_image_refresh(struct device *dev, 4720 struct device_attribute *attr, 4721 const char *buf, 4722 size_t size) 4723 { 4724 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4725 int ret; 4726 4727 ret = rbd_dev_refresh(rbd_dev); 4728 if (ret) 4729 return ret; 4730 4731 return size; 4732 } 4733 4734 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL); 4735 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL); 4736 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL); 4737 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL); 4738 static DEVICE_ATTR(client_addr, S_IRUGO, rbd_client_addr_show, NULL); 4739 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL); 4740 static DEVICE_ATTR(cluster_fsid, S_IRUGO, rbd_cluster_fsid_show, NULL); 4741 static DEVICE_ATTR(config_info, S_IRUSR, rbd_config_info_show, NULL); 4742 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL); 4743 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL); 4744 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL); 4745 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL); 4746 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh); 4747 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL); 4748 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL); 4749 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL); 4750 4751 static struct attribute *rbd_attrs[] = { 4752 &dev_attr_size.attr, 4753 &dev_attr_features.attr, 4754 &dev_attr_major.attr, 4755 &dev_attr_minor.attr, 4756 &dev_attr_client_addr.attr, 4757 &dev_attr_client_id.attr, 4758 &dev_attr_cluster_fsid.attr, 4759 &dev_attr_config_info.attr, 4760 &dev_attr_pool.attr, 4761 &dev_attr_pool_id.attr, 4762 &dev_attr_name.attr, 4763 &dev_attr_image_id.attr, 4764 &dev_attr_current_snap.attr, 4765 &dev_attr_snap_id.attr, 4766 &dev_attr_parent.attr, 4767 &dev_attr_refresh.attr, 4768 NULL 4769 }; 4770 4771 static struct attribute_group rbd_attr_group = { 4772 .attrs = rbd_attrs, 4773 }; 4774 4775 static const struct attribute_group *rbd_attr_groups[] = { 4776 &rbd_attr_group, 4777 NULL 4778 }; 4779 4780 static void rbd_dev_release(struct device *dev); 4781 4782 static struct device_type rbd_device_type = { 4783 .name = "rbd", 4784 .groups = rbd_attr_groups, 4785 .release = rbd_dev_release, 4786 }; 4787 4788 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 4789 { 4790 kref_get(&spec->kref); 4791 4792 return spec; 4793 } 4794 4795 static void rbd_spec_free(struct kref *kref); 4796 static void rbd_spec_put(struct rbd_spec *spec) 4797 { 4798 if (spec) 4799 kref_put(&spec->kref, rbd_spec_free); 4800 } 4801 4802 static struct rbd_spec *rbd_spec_alloc(void) 4803 { 4804 struct rbd_spec *spec; 4805 4806 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 4807 if (!spec) 4808 return NULL; 4809 4810 spec->pool_id = CEPH_NOPOOL; 4811 spec->snap_id = CEPH_NOSNAP; 4812 kref_init(&spec->kref); 4813 4814 return spec; 4815 } 4816 4817 static void rbd_spec_free(struct kref *kref) 4818 { 4819 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 4820 4821 kfree(spec->pool_name); 4822 kfree(spec->image_id); 4823 kfree(spec->image_name); 4824 kfree(spec->snap_name); 4825 kfree(spec); 4826 } 4827 4828 static void rbd_dev_free(struct rbd_device *rbd_dev) 4829 { 4830 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED); 4831 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED); 4832 4833 ceph_oid_destroy(&rbd_dev->header_oid); 4834 ceph_oloc_destroy(&rbd_dev->header_oloc); 4835 kfree(rbd_dev->config_info); 4836 4837 rbd_put_client(rbd_dev->rbd_client); 4838 rbd_spec_put(rbd_dev->spec); 4839 kfree(rbd_dev->opts); 4840 kfree(rbd_dev); 4841 } 4842 4843 static void rbd_dev_release(struct device *dev) 4844 { 4845 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4846 bool need_put = !!rbd_dev->opts; 4847 4848 if (need_put) { 4849 destroy_workqueue(rbd_dev->task_wq); 4850 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4851 } 4852 4853 rbd_dev_free(rbd_dev); 4854 4855 /* 4856 * This is racy, but way better than putting module outside of 4857 * the release callback. The race window is pretty small, so 4858 * doing something similar to dm (dm-builtin.c) is overkill. 4859 */ 4860 if (need_put) 4861 module_put(THIS_MODULE); 4862 } 4863 4864 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc, 4865 struct rbd_spec *spec) 4866 { 4867 struct rbd_device *rbd_dev; 4868 4869 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL); 4870 if (!rbd_dev) 4871 return NULL; 4872 4873 spin_lock_init(&rbd_dev->lock); 4874 INIT_LIST_HEAD(&rbd_dev->node); 4875 init_rwsem(&rbd_dev->header_rwsem); 4876 4877 ceph_oid_init(&rbd_dev->header_oid); 4878 ceph_oloc_init(&rbd_dev->header_oloc); 4879 4880 mutex_init(&rbd_dev->watch_mutex); 4881 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 4882 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch); 4883 4884 init_rwsem(&rbd_dev->lock_rwsem); 4885 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 4886 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock); 4887 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock); 4888 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock); 4889 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work); 4890 init_waitqueue_head(&rbd_dev->lock_waitq); 4891 4892 rbd_dev->dev.bus = &rbd_bus_type; 4893 rbd_dev->dev.type = &rbd_device_type; 4894 rbd_dev->dev.parent = &rbd_root_dev; 4895 device_initialize(&rbd_dev->dev); 4896 4897 rbd_dev->rbd_client = rbdc; 4898 rbd_dev->spec = spec; 4899 4900 rbd_dev->layout.stripe_unit = 1 << RBD_MAX_OBJ_ORDER; 4901 rbd_dev->layout.stripe_count = 1; 4902 rbd_dev->layout.object_size = 1 << RBD_MAX_OBJ_ORDER; 4903 rbd_dev->layout.pool_id = spec->pool_id; 4904 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL); 4905 4906 return rbd_dev; 4907 } 4908 4909 /* 4910 * Create a mapping rbd_dev. 4911 */ 4912 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 4913 struct rbd_spec *spec, 4914 struct rbd_options *opts) 4915 { 4916 struct rbd_device *rbd_dev; 4917 4918 rbd_dev = __rbd_dev_create(rbdc, spec); 4919 if (!rbd_dev) 4920 return NULL; 4921 4922 rbd_dev->opts = opts; 4923 4924 /* get an id and fill in device name */ 4925 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0, 4926 minor_to_rbd_dev_id(1 << MINORBITS), 4927 GFP_KERNEL); 4928 if (rbd_dev->dev_id < 0) 4929 goto fail_rbd_dev; 4930 4931 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id); 4932 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM, 4933 rbd_dev->name); 4934 if (!rbd_dev->task_wq) 4935 goto fail_dev_id; 4936 4937 /* we have a ref from do_rbd_add() */ 4938 __module_get(THIS_MODULE); 4939 4940 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id); 4941 return rbd_dev; 4942 4943 fail_dev_id: 4944 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4945 fail_rbd_dev: 4946 rbd_dev_free(rbd_dev); 4947 return NULL; 4948 } 4949 4950 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 4951 { 4952 if (rbd_dev) 4953 put_device(&rbd_dev->dev); 4954 } 4955 4956 /* 4957 * Get the size and object order for an image snapshot, or if 4958 * snap_id is CEPH_NOSNAP, gets this information for the base 4959 * image. 4960 */ 4961 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 4962 u8 *order, u64 *snap_size) 4963 { 4964 __le64 snapid = cpu_to_le64(snap_id); 4965 int ret; 4966 struct { 4967 u8 order; 4968 __le64 size; 4969 } __attribute__ ((packed)) size_buf = { 0 }; 4970 4971 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name, 4972 "rbd", "get_size", 4973 &snapid, sizeof (snapid), 4974 &size_buf, sizeof (size_buf)); 4975 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4976 if (ret < 0) 4977 return ret; 4978 if (ret < sizeof (size_buf)) 4979 return -ERANGE; 4980 4981 if (order) { 4982 *order = size_buf.order; 4983 dout(" order %u", (unsigned int)*order); 4984 } 4985 *snap_size = le64_to_cpu(size_buf.size); 4986 4987 dout(" snap_id 0x%016llx snap_size = %llu\n", 4988 (unsigned long long)snap_id, 4989 (unsigned long long)*snap_size); 4990 4991 return 0; 4992 } 4993 4994 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 4995 { 4996 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 4997 &rbd_dev->header.obj_order, 4998 &rbd_dev->header.image_size); 4999 } 5000 5001 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 5002 { 5003 void *reply_buf; 5004 int ret; 5005 void *p; 5006 5007 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL); 5008 if (!reply_buf) 5009 return -ENOMEM; 5010 5011 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name, 5012 "rbd", "get_object_prefix", NULL, 0, 5013 reply_buf, RBD_OBJ_PREFIX_LEN_MAX); 5014 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5015 if (ret < 0) 5016 goto out; 5017 5018 p = reply_buf; 5019 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 5020 p + ret, NULL, GFP_NOIO); 5021 ret = 0; 5022 5023 if (IS_ERR(rbd_dev->header.object_prefix)) { 5024 ret = PTR_ERR(rbd_dev->header.object_prefix); 5025 rbd_dev->header.object_prefix = NULL; 5026 } else { 5027 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 5028 } 5029 out: 5030 kfree(reply_buf); 5031 5032 return ret; 5033 } 5034 5035 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 5036 u64 *snap_features) 5037 { 5038 __le64 snapid = cpu_to_le64(snap_id); 5039 struct { 5040 __le64 features; 5041 __le64 incompat; 5042 } __attribute__ ((packed)) features_buf = { 0 }; 5043 u64 unsup; 5044 int ret; 5045 5046 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name, 5047 "rbd", "get_features", 5048 &snapid, sizeof (snapid), 5049 &features_buf, sizeof (features_buf)); 5050 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5051 if (ret < 0) 5052 return ret; 5053 if (ret < sizeof (features_buf)) 5054 return -ERANGE; 5055 5056 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED; 5057 if (unsup) { 5058 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx", 5059 unsup); 5060 return -ENXIO; 5061 } 5062 5063 *snap_features = le64_to_cpu(features_buf.features); 5064 5065 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 5066 (unsigned long long)snap_id, 5067 (unsigned long long)*snap_features, 5068 (unsigned long long)le64_to_cpu(features_buf.incompat)); 5069 5070 return 0; 5071 } 5072 5073 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 5074 { 5075 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 5076 &rbd_dev->header.features); 5077 } 5078 5079 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 5080 { 5081 struct rbd_spec *parent_spec; 5082 size_t size; 5083 void *reply_buf = NULL; 5084 __le64 snapid; 5085 void *p; 5086 void *end; 5087 u64 pool_id; 5088 char *image_id; 5089 u64 snap_id; 5090 u64 overlap; 5091 int ret; 5092 5093 parent_spec = rbd_spec_alloc(); 5094 if (!parent_spec) 5095 return -ENOMEM; 5096 5097 size = sizeof (__le64) + /* pool_id */ 5098 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */ 5099 sizeof (__le64) + /* snap_id */ 5100 sizeof (__le64); /* overlap */ 5101 reply_buf = kmalloc(size, GFP_KERNEL); 5102 if (!reply_buf) { 5103 ret = -ENOMEM; 5104 goto out_err; 5105 } 5106 5107 snapid = cpu_to_le64(rbd_dev->spec->snap_id); 5108 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name, 5109 "rbd", "get_parent", 5110 &snapid, sizeof (snapid), 5111 reply_buf, size); 5112 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5113 if (ret < 0) 5114 goto out_err; 5115 5116 p = reply_buf; 5117 end = reply_buf + ret; 5118 ret = -ERANGE; 5119 ceph_decode_64_safe(&p, end, pool_id, out_err); 5120 if (pool_id == CEPH_NOPOOL) { 5121 /* 5122 * Either the parent never existed, or we have 5123 * record of it but the image got flattened so it no 5124 * longer has a parent. When the parent of a 5125 * layered image disappears we immediately set the 5126 * overlap to 0. The effect of this is that all new 5127 * requests will be treated as if the image had no 5128 * parent. 5129 */ 5130 if (rbd_dev->parent_overlap) { 5131 rbd_dev->parent_overlap = 0; 5132 rbd_dev_parent_put(rbd_dev); 5133 pr_info("%s: clone image has been flattened\n", 5134 rbd_dev->disk->disk_name); 5135 } 5136 5137 goto out; /* No parent? No problem. */ 5138 } 5139 5140 /* The ceph file layout needs to fit pool id in 32 bits */ 5141 5142 ret = -EIO; 5143 if (pool_id > (u64)U32_MAX) { 5144 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 5145 (unsigned long long)pool_id, U32_MAX); 5146 goto out_err; 5147 } 5148 5149 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 5150 if (IS_ERR(image_id)) { 5151 ret = PTR_ERR(image_id); 5152 goto out_err; 5153 } 5154 ceph_decode_64_safe(&p, end, snap_id, out_err); 5155 ceph_decode_64_safe(&p, end, overlap, out_err); 5156 5157 /* 5158 * The parent won't change (except when the clone is 5159 * flattened, already handled that). So we only need to 5160 * record the parent spec we have not already done so. 5161 */ 5162 if (!rbd_dev->parent_spec) { 5163 parent_spec->pool_id = pool_id; 5164 parent_spec->image_id = image_id; 5165 parent_spec->snap_id = snap_id; 5166 rbd_dev->parent_spec = parent_spec; 5167 parent_spec = NULL; /* rbd_dev now owns this */ 5168 } else { 5169 kfree(image_id); 5170 } 5171 5172 /* 5173 * We always update the parent overlap. If it's zero we issue 5174 * a warning, as we will proceed as if there was no parent. 5175 */ 5176 if (!overlap) { 5177 if (parent_spec) { 5178 /* refresh, careful to warn just once */ 5179 if (rbd_dev->parent_overlap) 5180 rbd_warn(rbd_dev, 5181 "clone now standalone (overlap became 0)"); 5182 } else { 5183 /* initial probe */ 5184 rbd_warn(rbd_dev, "clone is standalone (overlap 0)"); 5185 } 5186 } 5187 rbd_dev->parent_overlap = overlap; 5188 5189 out: 5190 ret = 0; 5191 out_err: 5192 kfree(reply_buf); 5193 rbd_spec_put(parent_spec); 5194 5195 return ret; 5196 } 5197 5198 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 5199 { 5200 struct { 5201 __le64 stripe_unit; 5202 __le64 stripe_count; 5203 } __attribute__ ((packed)) striping_info_buf = { 0 }; 5204 size_t size = sizeof (striping_info_buf); 5205 void *p; 5206 u64 obj_size; 5207 u64 stripe_unit; 5208 u64 stripe_count; 5209 int ret; 5210 5211 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name, 5212 "rbd", "get_stripe_unit_count", NULL, 0, 5213 (char *)&striping_info_buf, size); 5214 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5215 if (ret < 0) 5216 return ret; 5217 if (ret < size) 5218 return -ERANGE; 5219 5220 /* 5221 * We don't actually support the "fancy striping" feature 5222 * (STRIPINGV2) yet, but if the striping sizes are the 5223 * defaults the behavior is the same as before. So find 5224 * out, and only fail if the image has non-default values. 5225 */ 5226 ret = -EINVAL; 5227 obj_size = (u64)1 << rbd_dev->header.obj_order; 5228 p = &striping_info_buf; 5229 stripe_unit = ceph_decode_64(&p); 5230 if (stripe_unit != obj_size) { 5231 rbd_warn(rbd_dev, "unsupported stripe unit " 5232 "(got %llu want %llu)", 5233 stripe_unit, obj_size); 5234 return -EINVAL; 5235 } 5236 stripe_count = ceph_decode_64(&p); 5237 if (stripe_count != 1) { 5238 rbd_warn(rbd_dev, "unsupported stripe count " 5239 "(got %llu want 1)", stripe_count); 5240 return -EINVAL; 5241 } 5242 rbd_dev->header.stripe_unit = stripe_unit; 5243 rbd_dev->header.stripe_count = stripe_count; 5244 5245 return 0; 5246 } 5247 5248 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 5249 { 5250 size_t image_id_size; 5251 char *image_id; 5252 void *p; 5253 void *end; 5254 size_t size; 5255 void *reply_buf = NULL; 5256 size_t len = 0; 5257 char *image_name = NULL; 5258 int ret; 5259 5260 rbd_assert(!rbd_dev->spec->image_name); 5261 5262 len = strlen(rbd_dev->spec->image_id); 5263 image_id_size = sizeof (__le32) + len; 5264 image_id = kmalloc(image_id_size, GFP_KERNEL); 5265 if (!image_id) 5266 return NULL; 5267 5268 p = image_id; 5269 end = image_id + image_id_size; 5270 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 5271 5272 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 5273 reply_buf = kmalloc(size, GFP_KERNEL); 5274 if (!reply_buf) 5275 goto out; 5276 5277 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY, 5278 "rbd", "dir_get_name", 5279 image_id, image_id_size, 5280 reply_buf, size); 5281 if (ret < 0) 5282 goto out; 5283 p = reply_buf; 5284 end = reply_buf + ret; 5285 5286 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 5287 if (IS_ERR(image_name)) 5288 image_name = NULL; 5289 else 5290 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 5291 out: 5292 kfree(reply_buf); 5293 kfree(image_id); 5294 5295 return image_name; 5296 } 5297 5298 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5299 { 5300 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5301 const char *snap_name; 5302 u32 which = 0; 5303 5304 /* Skip over names until we find the one we are looking for */ 5305 5306 snap_name = rbd_dev->header.snap_names; 5307 while (which < snapc->num_snaps) { 5308 if (!strcmp(name, snap_name)) 5309 return snapc->snaps[which]; 5310 snap_name += strlen(snap_name) + 1; 5311 which++; 5312 } 5313 return CEPH_NOSNAP; 5314 } 5315 5316 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5317 { 5318 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5319 u32 which; 5320 bool found = false; 5321 u64 snap_id; 5322 5323 for (which = 0; !found && which < snapc->num_snaps; which++) { 5324 const char *snap_name; 5325 5326 snap_id = snapc->snaps[which]; 5327 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 5328 if (IS_ERR(snap_name)) { 5329 /* ignore no-longer existing snapshots */ 5330 if (PTR_ERR(snap_name) == -ENOENT) 5331 continue; 5332 else 5333 break; 5334 } 5335 found = !strcmp(name, snap_name); 5336 kfree(snap_name); 5337 } 5338 return found ? snap_id : CEPH_NOSNAP; 5339 } 5340 5341 /* 5342 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 5343 * no snapshot by that name is found, or if an error occurs. 5344 */ 5345 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5346 { 5347 if (rbd_dev->image_format == 1) 5348 return rbd_v1_snap_id_by_name(rbd_dev, name); 5349 5350 return rbd_v2_snap_id_by_name(rbd_dev, name); 5351 } 5352 5353 /* 5354 * An image being mapped will have everything but the snap id. 5355 */ 5356 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 5357 { 5358 struct rbd_spec *spec = rbd_dev->spec; 5359 5360 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 5361 rbd_assert(spec->image_id && spec->image_name); 5362 rbd_assert(spec->snap_name); 5363 5364 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 5365 u64 snap_id; 5366 5367 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 5368 if (snap_id == CEPH_NOSNAP) 5369 return -ENOENT; 5370 5371 spec->snap_id = snap_id; 5372 } else { 5373 spec->snap_id = CEPH_NOSNAP; 5374 } 5375 5376 return 0; 5377 } 5378 5379 /* 5380 * A parent image will have all ids but none of the names. 5381 * 5382 * All names in an rbd spec are dynamically allocated. It's OK if we 5383 * can't figure out the name for an image id. 5384 */ 5385 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 5386 { 5387 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 5388 struct rbd_spec *spec = rbd_dev->spec; 5389 const char *pool_name; 5390 const char *image_name; 5391 const char *snap_name; 5392 int ret; 5393 5394 rbd_assert(spec->pool_id != CEPH_NOPOOL); 5395 rbd_assert(spec->image_id); 5396 rbd_assert(spec->snap_id != CEPH_NOSNAP); 5397 5398 /* Get the pool name; we have to make our own copy of this */ 5399 5400 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 5401 if (!pool_name) { 5402 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 5403 return -EIO; 5404 } 5405 pool_name = kstrdup(pool_name, GFP_KERNEL); 5406 if (!pool_name) 5407 return -ENOMEM; 5408 5409 /* Fetch the image name; tolerate failure here */ 5410 5411 image_name = rbd_dev_image_name(rbd_dev); 5412 if (!image_name) 5413 rbd_warn(rbd_dev, "unable to get image name"); 5414 5415 /* Fetch the snapshot name */ 5416 5417 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 5418 if (IS_ERR(snap_name)) { 5419 ret = PTR_ERR(snap_name); 5420 goto out_err; 5421 } 5422 5423 spec->pool_name = pool_name; 5424 spec->image_name = image_name; 5425 spec->snap_name = snap_name; 5426 5427 return 0; 5428 5429 out_err: 5430 kfree(image_name); 5431 kfree(pool_name); 5432 return ret; 5433 } 5434 5435 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 5436 { 5437 size_t size; 5438 int ret; 5439 void *reply_buf; 5440 void *p; 5441 void *end; 5442 u64 seq; 5443 u32 snap_count; 5444 struct ceph_snap_context *snapc; 5445 u32 i; 5446 5447 /* 5448 * We'll need room for the seq value (maximum snapshot id), 5449 * snapshot count, and array of that many snapshot ids. 5450 * For now we have a fixed upper limit on the number we're 5451 * prepared to receive. 5452 */ 5453 size = sizeof (__le64) + sizeof (__le32) + 5454 RBD_MAX_SNAP_COUNT * sizeof (__le64); 5455 reply_buf = kzalloc(size, GFP_KERNEL); 5456 if (!reply_buf) 5457 return -ENOMEM; 5458 5459 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name, 5460 "rbd", "get_snapcontext", NULL, 0, 5461 reply_buf, size); 5462 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5463 if (ret < 0) 5464 goto out; 5465 5466 p = reply_buf; 5467 end = reply_buf + ret; 5468 ret = -ERANGE; 5469 ceph_decode_64_safe(&p, end, seq, out); 5470 ceph_decode_32_safe(&p, end, snap_count, out); 5471 5472 /* 5473 * Make sure the reported number of snapshot ids wouldn't go 5474 * beyond the end of our buffer. But before checking that, 5475 * make sure the computed size of the snapshot context we 5476 * allocate is representable in a size_t. 5477 */ 5478 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 5479 / sizeof (u64)) { 5480 ret = -EINVAL; 5481 goto out; 5482 } 5483 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 5484 goto out; 5485 ret = 0; 5486 5487 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 5488 if (!snapc) { 5489 ret = -ENOMEM; 5490 goto out; 5491 } 5492 snapc->seq = seq; 5493 for (i = 0; i < snap_count; i++) 5494 snapc->snaps[i] = ceph_decode_64(&p); 5495 5496 ceph_put_snap_context(rbd_dev->header.snapc); 5497 rbd_dev->header.snapc = snapc; 5498 5499 dout(" snap context seq = %llu, snap_count = %u\n", 5500 (unsigned long long)seq, (unsigned int)snap_count); 5501 out: 5502 kfree(reply_buf); 5503 5504 return ret; 5505 } 5506 5507 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 5508 u64 snap_id) 5509 { 5510 size_t size; 5511 void *reply_buf; 5512 __le64 snapid; 5513 int ret; 5514 void *p; 5515 void *end; 5516 char *snap_name; 5517 5518 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 5519 reply_buf = kmalloc(size, GFP_KERNEL); 5520 if (!reply_buf) 5521 return ERR_PTR(-ENOMEM); 5522 5523 snapid = cpu_to_le64(snap_id); 5524 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name, 5525 "rbd", "get_snapshot_name", 5526 &snapid, sizeof (snapid), 5527 reply_buf, size); 5528 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5529 if (ret < 0) { 5530 snap_name = ERR_PTR(ret); 5531 goto out; 5532 } 5533 5534 p = reply_buf; 5535 end = reply_buf + ret; 5536 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 5537 if (IS_ERR(snap_name)) 5538 goto out; 5539 5540 dout(" snap_id 0x%016llx snap_name = %s\n", 5541 (unsigned long long)snap_id, snap_name); 5542 out: 5543 kfree(reply_buf); 5544 5545 return snap_name; 5546 } 5547 5548 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 5549 { 5550 bool first_time = rbd_dev->header.object_prefix == NULL; 5551 int ret; 5552 5553 ret = rbd_dev_v2_image_size(rbd_dev); 5554 if (ret) 5555 return ret; 5556 5557 if (first_time) { 5558 ret = rbd_dev_v2_header_onetime(rbd_dev); 5559 if (ret) 5560 return ret; 5561 } 5562 5563 ret = rbd_dev_v2_snap_context(rbd_dev); 5564 if (ret && first_time) { 5565 kfree(rbd_dev->header.object_prefix); 5566 rbd_dev->header.object_prefix = NULL; 5567 } 5568 5569 return ret; 5570 } 5571 5572 static int rbd_dev_header_info(struct rbd_device *rbd_dev) 5573 { 5574 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 5575 5576 if (rbd_dev->image_format == 1) 5577 return rbd_dev_v1_header_info(rbd_dev); 5578 5579 return rbd_dev_v2_header_info(rbd_dev); 5580 } 5581 5582 /* 5583 * Skips over white space at *buf, and updates *buf to point to the 5584 * first found non-space character (if any). Returns the length of 5585 * the token (string of non-white space characters) found. Note 5586 * that *buf must be terminated with '\0'. 5587 */ 5588 static inline size_t next_token(const char **buf) 5589 { 5590 /* 5591 * These are the characters that produce nonzero for 5592 * isspace() in the "C" and "POSIX" locales. 5593 */ 5594 const char *spaces = " \f\n\r\t\v"; 5595 5596 *buf += strspn(*buf, spaces); /* Find start of token */ 5597 5598 return strcspn(*buf, spaces); /* Return token length */ 5599 } 5600 5601 /* 5602 * Finds the next token in *buf, dynamically allocates a buffer big 5603 * enough to hold a copy of it, and copies the token into the new 5604 * buffer. The copy is guaranteed to be terminated with '\0'. Note 5605 * that a duplicate buffer is created even for a zero-length token. 5606 * 5607 * Returns a pointer to the newly-allocated duplicate, or a null 5608 * pointer if memory for the duplicate was not available. If 5609 * the lenp argument is a non-null pointer, the length of the token 5610 * (not including the '\0') is returned in *lenp. 5611 * 5612 * If successful, the *buf pointer will be updated to point beyond 5613 * the end of the found token. 5614 * 5615 * Note: uses GFP_KERNEL for allocation. 5616 */ 5617 static inline char *dup_token(const char **buf, size_t *lenp) 5618 { 5619 char *dup; 5620 size_t len; 5621 5622 len = next_token(buf); 5623 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 5624 if (!dup) 5625 return NULL; 5626 *(dup + len) = '\0'; 5627 *buf += len; 5628 5629 if (lenp) 5630 *lenp = len; 5631 5632 return dup; 5633 } 5634 5635 /* 5636 * Parse the options provided for an "rbd add" (i.e., rbd image 5637 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 5638 * and the data written is passed here via a NUL-terminated buffer. 5639 * Returns 0 if successful or an error code otherwise. 5640 * 5641 * The information extracted from these options is recorded in 5642 * the other parameters which return dynamically-allocated 5643 * structures: 5644 * ceph_opts 5645 * The address of a pointer that will refer to a ceph options 5646 * structure. Caller must release the returned pointer using 5647 * ceph_destroy_options() when it is no longer needed. 5648 * rbd_opts 5649 * Address of an rbd options pointer. Fully initialized by 5650 * this function; caller must release with kfree(). 5651 * spec 5652 * Address of an rbd image specification pointer. Fully 5653 * initialized by this function based on parsed options. 5654 * Caller must release with rbd_spec_put(). 5655 * 5656 * The options passed take this form: 5657 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 5658 * where: 5659 * <mon_addrs> 5660 * A comma-separated list of one or more monitor addresses. 5661 * A monitor address is an ip address, optionally followed 5662 * by a port number (separated by a colon). 5663 * I.e.: ip1[:port1][,ip2[:port2]...] 5664 * <options> 5665 * A comma-separated list of ceph and/or rbd options. 5666 * <pool_name> 5667 * The name of the rados pool containing the rbd image. 5668 * <image_name> 5669 * The name of the image in that pool to map. 5670 * <snap_id> 5671 * An optional snapshot id. If provided, the mapping will 5672 * present data from the image at the time that snapshot was 5673 * created. The image head is used if no snapshot id is 5674 * provided. Snapshot mappings are always read-only. 5675 */ 5676 static int rbd_add_parse_args(const char *buf, 5677 struct ceph_options **ceph_opts, 5678 struct rbd_options **opts, 5679 struct rbd_spec **rbd_spec) 5680 { 5681 size_t len; 5682 char *options; 5683 const char *mon_addrs; 5684 char *snap_name; 5685 size_t mon_addrs_size; 5686 struct rbd_spec *spec = NULL; 5687 struct rbd_options *rbd_opts = NULL; 5688 struct ceph_options *copts; 5689 int ret; 5690 5691 /* The first four tokens are required */ 5692 5693 len = next_token(&buf); 5694 if (!len) { 5695 rbd_warn(NULL, "no monitor address(es) provided"); 5696 return -EINVAL; 5697 } 5698 mon_addrs = buf; 5699 mon_addrs_size = len + 1; 5700 buf += len; 5701 5702 ret = -EINVAL; 5703 options = dup_token(&buf, NULL); 5704 if (!options) 5705 return -ENOMEM; 5706 if (!*options) { 5707 rbd_warn(NULL, "no options provided"); 5708 goto out_err; 5709 } 5710 5711 spec = rbd_spec_alloc(); 5712 if (!spec) 5713 goto out_mem; 5714 5715 spec->pool_name = dup_token(&buf, NULL); 5716 if (!spec->pool_name) 5717 goto out_mem; 5718 if (!*spec->pool_name) { 5719 rbd_warn(NULL, "no pool name provided"); 5720 goto out_err; 5721 } 5722 5723 spec->image_name = dup_token(&buf, NULL); 5724 if (!spec->image_name) 5725 goto out_mem; 5726 if (!*spec->image_name) { 5727 rbd_warn(NULL, "no image name provided"); 5728 goto out_err; 5729 } 5730 5731 /* 5732 * Snapshot name is optional; default is to use "-" 5733 * (indicating the head/no snapshot). 5734 */ 5735 len = next_token(&buf); 5736 if (!len) { 5737 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 5738 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 5739 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 5740 ret = -ENAMETOOLONG; 5741 goto out_err; 5742 } 5743 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 5744 if (!snap_name) 5745 goto out_mem; 5746 *(snap_name + len) = '\0'; 5747 spec->snap_name = snap_name; 5748 5749 /* Initialize all rbd options to the defaults */ 5750 5751 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL); 5752 if (!rbd_opts) 5753 goto out_mem; 5754 5755 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT; 5756 rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT; 5757 rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT; 5758 5759 copts = ceph_parse_options(options, mon_addrs, 5760 mon_addrs + mon_addrs_size - 1, 5761 parse_rbd_opts_token, rbd_opts); 5762 if (IS_ERR(copts)) { 5763 ret = PTR_ERR(copts); 5764 goto out_err; 5765 } 5766 kfree(options); 5767 5768 *ceph_opts = copts; 5769 *opts = rbd_opts; 5770 *rbd_spec = spec; 5771 5772 return 0; 5773 out_mem: 5774 ret = -ENOMEM; 5775 out_err: 5776 kfree(rbd_opts); 5777 rbd_spec_put(spec); 5778 kfree(options); 5779 5780 return ret; 5781 } 5782 5783 /* 5784 * Return pool id (>= 0) or a negative error code. 5785 */ 5786 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name) 5787 { 5788 struct ceph_options *opts = rbdc->client->options; 5789 u64 newest_epoch; 5790 int tries = 0; 5791 int ret; 5792 5793 again: 5794 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name); 5795 if (ret == -ENOENT && tries++ < 1) { 5796 ret = ceph_monc_get_version(&rbdc->client->monc, "osdmap", 5797 &newest_epoch); 5798 if (ret < 0) 5799 return ret; 5800 5801 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) { 5802 ceph_osdc_maybe_request_map(&rbdc->client->osdc); 5803 (void) ceph_monc_wait_osdmap(&rbdc->client->monc, 5804 newest_epoch, 5805 opts->mount_timeout); 5806 goto again; 5807 } else { 5808 /* the osdmap we have is new enough */ 5809 return -ENOENT; 5810 } 5811 } 5812 5813 return ret; 5814 } 5815 5816 /* 5817 * An rbd format 2 image has a unique identifier, distinct from the 5818 * name given to it by the user. Internally, that identifier is 5819 * what's used to specify the names of objects related to the image. 5820 * 5821 * A special "rbd id" object is used to map an rbd image name to its 5822 * id. If that object doesn't exist, then there is no v2 rbd image 5823 * with the supplied name. 5824 * 5825 * This function will record the given rbd_dev's image_id field if 5826 * it can be determined, and in that case will return 0. If any 5827 * errors occur a negative errno will be returned and the rbd_dev's 5828 * image_id field will be unchanged (and should be NULL). 5829 */ 5830 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 5831 { 5832 int ret; 5833 size_t size; 5834 char *object_name; 5835 void *response; 5836 char *image_id; 5837 5838 /* 5839 * When probing a parent image, the image id is already 5840 * known (and the image name likely is not). There's no 5841 * need to fetch the image id again in this case. We 5842 * do still need to set the image format though. 5843 */ 5844 if (rbd_dev->spec->image_id) { 5845 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 5846 5847 return 0; 5848 } 5849 5850 /* 5851 * First, see if the format 2 image id file exists, and if 5852 * so, get the image's persistent id from it. 5853 */ 5854 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name); 5855 object_name = kmalloc(size, GFP_NOIO); 5856 if (!object_name) 5857 return -ENOMEM; 5858 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name); 5859 dout("rbd id object name is %s\n", object_name); 5860 5861 /* Response will be an encoded string, which includes a length */ 5862 5863 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 5864 response = kzalloc(size, GFP_NOIO); 5865 if (!response) { 5866 ret = -ENOMEM; 5867 goto out; 5868 } 5869 5870 /* If it doesn't exist we'll assume it's a format 1 image */ 5871 5872 ret = rbd_obj_method_sync(rbd_dev, object_name, 5873 "rbd", "get_id", NULL, 0, 5874 response, RBD_IMAGE_ID_LEN_MAX); 5875 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5876 if (ret == -ENOENT) { 5877 image_id = kstrdup("", GFP_KERNEL); 5878 ret = image_id ? 0 : -ENOMEM; 5879 if (!ret) 5880 rbd_dev->image_format = 1; 5881 } else if (ret >= 0) { 5882 void *p = response; 5883 5884 image_id = ceph_extract_encoded_string(&p, p + ret, 5885 NULL, GFP_NOIO); 5886 ret = PTR_ERR_OR_ZERO(image_id); 5887 if (!ret) 5888 rbd_dev->image_format = 2; 5889 } 5890 5891 if (!ret) { 5892 rbd_dev->spec->image_id = image_id; 5893 dout("image_id is %s\n", image_id); 5894 } 5895 out: 5896 kfree(response); 5897 kfree(object_name); 5898 5899 return ret; 5900 } 5901 5902 /* 5903 * Undo whatever state changes are made by v1 or v2 header info 5904 * call. 5905 */ 5906 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 5907 { 5908 struct rbd_image_header *header; 5909 5910 rbd_dev_parent_put(rbd_dev); 5911 5912 /* Free dynamic fields from the header, then zero it out */ 5913 5914 header = &rbd_dev->header; 5915 ceph_put_snap_context(header->snapc); 5916 kfree(header->snap_sizes); 5917 kfree(header->snap_names); 5918 kfree(header->object_prefix); 5919 memset(header, 0, sizeof (*header)); 5920 } 5921 5922 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 5923 { 5924 int ret; 5925 5926 ret = rbd_dev_v2_object_prefix(rbd_dev); 5927 if (ret) 5928 goto out_err; 5929 5930 /* 5931 * Get the and check features for the image. Currently the 5932 * features are assumed to never change. 5933 */ 5934 ret = rbd_dev_v2_features(rbd_dev); 5935 if (ret) 5936 goto out_err; 5937 5938 /* If the image supports fancy striping, get its parameters */ 5939 5940 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 5941 ret = rbd_dev_v2_striping_info(rbd_dev); 5942 if (ret < 0) 5943 goto out_err; 5944 } 5945 /* No support for crypto and compression type format 2 images */ 5946 5947 return 0; 5948 out_err: 5949 rbd_dev->header.features = 0; 5950 kfree(rbd_dev->header.object_prefix); 5951 rbd_dev->header.object_prefix = NULL; 5952 5953 return ret; 5954 } 5955 5956 /* 5957 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() -> 5958 * rbd_dev_image_probe() recursion depth, which means it's also the 5959 * length of the already discovered part of the parent chain. 5960 */ 5961 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth) 5962 { 5963 struct rbd_device *parent = NULL; 5964 int ret; 5965 5966 if (!rbd_dev->parent_spec) 5967 return 0; 5968 5969 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) { 5970 pr_info("parent chain is too long (%d)\n", depth); 5971 ret = -EINVAL; 5972 goto out_err; 5973 } 5974 5975 parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec); 5976 if (!parent) { 5977 ret = -ENOMEM; 5978 goto out_err; 5979 } 5980 5981 /* 5982 * Images related by parent/child relationships always share 5983 * rbd_client and spec/parent_spec, so bump their refcounts. 5984 */ 5985 __rbd_get_client(rbd_dev->rbd_client); 5986 rbd_spec_get(rbd_dev->parent_spec); 5987 5988 ret = rbd_dev_image_probe(parent, depth); 5989 if (ret < 0) 5990 goto out_err; 5991 5992 rbd_dev->parent = parent; 5993 atomic_set(&rbd_dev->parent_ref, 1); 5994 return 0; 5995 5996 out_err: 5997 rbd_dev_unparent(rbd_dev); 5998 rbd_dev_destroy(parent); 5999 return ret; 6000 } 6001 6002 /* 6003 * rbd_dev->header_rwsem must be locked for write and will be unlocked 6004 * upon return. 6005 */ 6006 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 6007 { 6008 int ret; 6009 6010 /* Record our major and minor device numbers. */ 6011 6012 if (!single_major) { 6013 ret = register_blkdev(0, rbd_dev->name); 6014 if (ret < 0) 6015 goto err_out_unlock; 6016 6017 rbd_dev->major = ret; 6018 rbd_dev->minor = 0; 6019 } else { 6020 rbd_dev->major = rbd_major; 6021 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 6022 } 6023 6024 /* Set up the blkdev mapping. */ 6025 6026 ret = rbd_init_disk(rbd_dev); 6027 if (ret) 6028 goto err_out_blkdev; 6029 6030 ret = rbd_dev_mapping_set(rbd_dev); 6031 if (ret) 6032 goto err_out_disk; 6033 6034 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 6035 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only); 6036 6037 dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id); 6038 ret = device_add(&rbd_dev->dev); 6039 if (ret) 6040 goto err_out_mapping; 6041 6042 /* Everything's ready. Announce the disk to the world. */ 6043 6044 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 6045 up_write(&rbd_dev->header_rwsem); 6046 6047 spin_lock(&rbd_dev_list_lock); 6048 list_add_tail(&rbd_dev->node, &rbd_dev_list); 6049 spin_unlock(&rbd_dev_list_lock); 6050 6051 add_disk(rbd_dev->disk); 6052 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name, 6053 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT, 6054 rbd_dev->header.features); 6055 6056 return ret; 6057 6058 err_out_mapping: 6059 rbd_dev_mapping_clear(rbd_dev); 6060 err_out_disk: 6061 rbd_free_disk(rbd_dev); 6062 err_out_blkdev: 6063 if (!single_major) 6064 unregister_blkdev(rbd_dev->major, rbd_dev->name); 6065 err_out_unlock: 6066 up_write(&rbd_dev->header_rwsem); 6067 return ret; 6068 } 6069 6070 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 6071 { 6072 struct rbd_spec *spec = rbd_dev->spec; 6073 int ret; 6074 6075 /* Record the header object name for this rbd image. */ 6076 6077 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 6078 6079 rbd_dev->header_oloc.pool = rbd_dev->layout.pool_id; 6080 if (rbd_dev->image_format == 1) 6081 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 6082 spec->image_name, RBD_SUFFIX); 6083 else 6084 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 6085 RBD_HEADER_PREFIX, spec->image_id); 6086 6087 return ret; 6088 } 6089 6090 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 6091 { 6092 rbd_dev_unprobe(rbd_dev); 6093 rbd_dev->image_format = 0; 6094 kfree(rbd_dev->spec->image_id); 6095 rbd_dev->spec->image_id = NULL; 6096 6097 rbd_dev_destroy(rbd_dev); 6098 } 6099 6100 /* 6101 * Probe for the existence of the header object for the given rbd 6102 * device. If this image is the one being mapped (i.e., not a 6103 * parent), initiate a watch on its header object before using that 6104 * object to get detailed information about the rbd image. 6105 */ 6106 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth) 6107 { 6108 int ret; 6109 6110 /* 6111 * Get the id from the image id object. Unless there's an 6112 * error, rbd_dev->spec->image_id will be filled in with 6113 * a dynamically-allocated string, and rbd_dev->image_format 6114 * will be set to either 1 or 2. 6115 */ 6116 ret = rbd_dev_image_id(rbd_dev); 6117 if (ret) 6118 return ret; 6119 6120 ret = rbd_dev_header_name(rbd_dev); 6121 if (ret) 6122 goto err_out_format; 6123 6124 if (!depth) { 6125 ret = rbd_register_watch(rbd_dev); 6126 if (ret) { 6127 if (ret == -ENOENT) 6128 pr_info("image %s/%s does not exist\n", 6129 rbd_dev->spec->pool_name, 6130 rbd_dev->spec->image_name); 6131 goto err_out_format; 6132 } 6133 } 6134 6135 ret = rbd_dev_header_info(rbd_dev); 6136 if (ret) 6137 goto err_out_watch; 6138 6139 /* 6140 * If this image is the one being mapped, we have pool name and 6141 * id, image name and id, and snap name - need to fill snap id. 6142 * Otherwise this is a parent image, identified by pool, image 6143 * and snap ids - need to fill in names for those ids. 6144 */ 6145 if (!depth) 6146 ret = rbd_spec_fill_snap_id(rbd_dev); 6147 else 6148 ret = rbd_spec_fill_names(rbd_dev); 6149 if (ret) { 6150 if (ret == -ENOENT) 6151 pr_info("snap %s/%s@%s does not exist\n", 6152 rbd_dev->spec->pool_name, 6153 rbd_dev->spec->image_name, 6154 rbd_dev->spec->snap_name); 6155 goto err_out_probe; 6156 } 6157 6158 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 6159 ret = rbd_dev_v2_parent_info(rbd_dev); 6160 if (ret) 6161 goto err_out_probe; 6162 6163 /* 6164 * Need to warn users if this image is the one being 6165 * mapped and has a parent. 6166 */ 6167 if (!depth && rbd_dev->parent_spec) 6168 rbd_warn(rbd_dev, 6169 "WARNING: kernel layering is EXPERIMENTAL!"); 6170 } 6171 6172 ret = rbd_dev_probe_parent(rbd_dev, depth); 6173 if (ret) 6174 goto err_out_probe; 6175 6176 dout("discovered format %u image, header name is %s\n", 6177 rbd_dev->image_format, rbd_dev->header_oid.name); 6178 return 0; 6179 6180 err_out_probe: 6181 rbd_dev_unprobe(rbd_dev); 6182 err_out_watch: 6183 if (!depth) 6184 rbd_unregister_watch(rbd_dev); 6185 err_out_format: 6186 rbd_dev->image_format = 0; 6187 kfree(rbd_dev->spec->image_id); 6188 rbd_dev->spec->image_id = NULL; 6189 return ret; 6190 } 6191 6192 static ssize_t do_rbd_add(struct bus_type *bus, 6193 const char *buf, 6194 size_t count) 6195 { 6196 struct rbd_device *rbd_dev = NULL; 6197 struct ceph_options *ceph_opts = NULL; 6198 struct rbd_options *rbd_opts = NULL; 6199 struct rbd_spec *spec = NULL; 6200 struct rbd_client *rbdc; 6201 bool read_only; 6202 int rc; 6203 6204 if (!try_module_get(THIS_MODULE)) 6205 return -ENODEV; 6206 6207 /* parse add command */ 6208 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 6209 if (rc < 0) 6210 goto out; 6211 6212 rbdc = rbd_get_client(ceph_opts); 6213 if (IS_ERR(rbdc)) { 6214 rc = PTR_ERR(rbdc); 6215 goto err_out_args; 6216 } 6217 6218 /* pick the pool */ 6219 rc = rbd_add_get_pool_id(rbdc, spec->pool_name); 6220 if (rc < 0) { 6221 if (rc == -ENOENT) 6222 pr_info("pool %s does not exist\n", spec->pool_name); 6223 goto err_out_client; 6224 } 6225 spec->pool_id = (u64)rc; 6226 6227 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts); 6228 if (!rbd_dev) { 6229 rc = -ENOMEM; 6230 goto err_out_client; 6231 } 6232 rbdc = NULL; /* rbd_dev now owns this */ 6233 spec = NULL; /* rbd_dev now owns this */ 6234 rbd_opts = NULL; /* rbd_dev now owns this */ 6235 6236 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL); 6237 if (!rbd_dev->config_info) { 6238 rc = -ENOMEM; 6239 goto err_out_rbd_dev; 6240 } 6241 6242 down_write(&rbd_dev->header_rwsem); 6243 rc = rbd_dev_image_probe(rbd_dev, 0); 6244 if (rc < 0) { 6245 up_write(&rbd_dev->header_rwsem); 6246 goto err_out_rbd_dev; 6247 } 6248 6249 /* If we are mapping a snapshot it must be marked read-only */ 6250 6251 read_only = rbd_dev->opts->read_only; 6252 if (rbd_dev->spec->snap_id != CEPH_NOSNAP) 6253 read_only = true; 6254 rbd_dev->mapping.read_only = read_only; 6255 6256 rc = rbd_dev_device_setup(rbd_dev); 6257 if (rc) { 6258 /* 6259 * rbd_unregister_watch() can't be moved into 6260 * rbd_dev_image_release() without refactoring, see 6261 * commit 1f3ef78861ac. 6262 */ 6263 rbd_unregister_watch(rbd_dev); 6264 rbd_dev_image_release(rbd_dev); 6265 goto out; 6266 } 6267 6268 rc = count; 6269 out: 6270 module_put(THIS_MODULE); 6271 return rc; 6272 6273 err_out_rbd_dev: 6274 rbd_dev_destroy(rbd_dev); 6275 err_out_client: 6276 rbd_put_client(rbdc); 6277 err_out_args: 6278 rbd_spec_put(spec); 6279 kfree(rbd_opts); 6280 goto out; 6281 } 6282 6283 static ssize_t rbd_add(struct bus_type *bus, 6284 const char *buf, 6285 size_t count) 6286 { 6287 if (single_major) 6288 return -EINVAL; 6289 6290 return do_rbd_add(bus, buf, count); 6291 } 6292 6293 static ssize_t rbd_add_single_major(struct bus_type *bus, 6294 const char *buf, 6295 size_t count) 6296 { 6297 return do_rbd_add(bus, buf, count); 6298 } 6299 6300 static void rbd_dev_device_release(struct rbd_device *rbd_dev) 6301 { 6302 rbd_free_disk(rbd_dev); 6303 6304 spin_lock(&rbd_dev_list_lock); 6305 list_del_init(&rbd_dev->node); 6306 spin_unlock(&rbd_dev_list_lock); 6307 6308 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 6309 device_del(&rbd_dev->dev); 6310 rbd_dev_mapping_clear(rbd_dev); 6311 if (!single_major) 6312 unregister_blkdev(rbd_dev->major, rbd_dev->name); 6313 } 6314 6315 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 6316 { 6317 while (rbd_dev->parent) { 6318 struct rbd_device *first = rbd_dev; 6319 struct rbd_device *second = first->parent; 6320 struct rbd_device *third; 6321 6322 /* 6323 * Follow to the parent with no grandparent and 6324 * remove it. 6325 */ 6326 while (second && (third = second->parent)) { 6327 first = second; 6328 second = third; 6329 } 6330 rbd_assert(second); 6331 rbd_dev_image_release(second); 6332 first->parent = NULL; 6333 first->parent_overlap = 0; 6334 6335 rbd_assert(first->parent_spec); 6336 rbd_spec_put(first->parent_spec); 6337 first->parent_spec = NULL; 6338 } 6339 } 6340 6341 static ssize_t do_rbd_remove(struct bus_type *bus, 6342 const char *buf, 6343 size_t count) 6344 { 6345 struct rbd_device *rbd_dev = NULL; 6346 struct list_head *tmp; 6347 int dev_id; 6348 char opt_buf[6]; 6349 bool already = false; 6350 bool force = false; 6351 int ret; 6352 6353 dev_id = -1; 6354 opt_buf[0] = '\0'; 6355 sscanf(buf, "%d %5s", &dev_id, opt_buf); 6356 if (dev_id < 0) { 6357 pr_err("dev_id out of range\n"); 6358 return -EINVAL; 6359 } 6360 if (opt_buf[0] != '\0') { 6361 if (!strcmp(opt_buf, "force")) { 6362 force = true; 6363 } else { 6364 pr_err("bad remove option at '%s'\n", opt_buf); 6365 return -EINVAL; 6366 } 6367 } 6368 6369 ret = -ENOENT; 6370 spin_lock(&rbd_dev_list_lock); 6371 list_for_each(tmp, &rbd_dev_list) { 6372 rbd_dev = list_entry(tmp, struct rbd_device, node); 6373 if (rbd_dev->dev_id == dev_id) { 6374 ret = 0; 6375 break; 6376 } 6377 } 6378 if (!ret) { 6379 spin_lock_irq(&rbd_dev->lock); 6380 if (rbd_dev->open_count && !force) 6381 ret = -EBUSY; 6382 else 6383 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING, 6384 &rbd_dev->flags); 6385 spin_unlock_irq(&rbd_dev->lock); 6386 } 6387 spin_unlock(&rbd_dev_list_lock); 6388 if (ret < 0 || already) 6389 return ret; 6390 6391 if (force) { 6392 /* 6393 * Prevent new IO from being queued and wait for existing 6394 * IO to complete/fail. 6395 */ 6396 blk_mq_freeze_queue(rbd_dev->disk->queue); 6397 blk_set_queue_dying(rbd_dev->disk->queue); 6398 } 6399 6400 down_write(&rbd_dev->lock_rwsem); 6401 if (__rbd_is_lock_owner(rbd_dev)) 6402 rbd_unlock(rbd_dev); 6403 up_write(&rbd_dev->lock_rwsem); 6404 rbd_unregister_watch(rbd_dev); 6405 6406 /* 6407 * Don't free anything from rbd_dev->disk until after all 6408 * notifies are completely processed. Otherwise 6409 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting 6410 * in a potential use after free of rbd_dev->disk or rbd_dev. 6411 */ 6412 rbd_dev_device_release(rbd_dev); 6413 rbd_dev_image_release(rbd_dev); 6414 6415 return count; 6416 } 6417 6418 static ssize_t rbd_remove(struct bus_type *bus, 6419 const char *buf, 6420 size_t count) 6421 { 6422 if (single_major) 6423 return -EINVAL; 6424 6425 return do_rbd_remove(bus, buf, count); 6426 } 6427 6428 static ssize_t rbd_remove_single_major(struct bus_type *bus, 6429 const char *buf, 6430 size_t count) 6431 { 6432 return do_rbd_remove(bus, buf, count); 6433 } 6434 6435 /* 6436 * create control files in sysfs 6437 * /sys/bus/rbd/... 6438 */ 6439 static int rbd_sysfs_init(void) 6440 { 6441 int ret; 6442 6443 ret = device_register(&rbd_root_dev); 6444 if (ret < 0) 6445 return ret; 6446 6447 ret = bus_register(&rbd_bus_type); 6448 if (ret < 0) 6449 device_unregister(&rbd_root_dev); 6450 6451 return ret; 6452 } 6453 6454 static void rbd_sysfs_cleanup(void) 6455 { 6456 bus_unregister(&rbd_bus_type); 6457 device_unregister(&rbd_root_dev); 6458 } 6459 6460 static int rbd_slab_init(void) 6461 { 6462 rbd_assert(!rbd_img_request_cache); 6463 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0); 6464 if (!rbd_img_request_cache) 6465 return -ENOMEM; 6466 6467 rbd_assert(!rbd_obj_request_cache); 6468 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0); 6469 if (!rbd_obj_request_cache) 6470 goto out_err; 6471 6472 rbd_assert(!rbd_segment_name_cache); 6473 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name", 6474 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL); 6475 if (rbd_segment_name_cache) 6476 return 0; 6477 out_err: 6478 kmem_cache_destroy(rbd_obj_request_cache); 6479 rbd_obj_request_cache = NULL; 6480 6481 kmem_cache_destroy(rbd_img_request_cache); 6482 rbd_img_request_cache = NULL; 6483 6484 return -ENOMEM; 6485 } 6486 6487 static void rbd_slab_exit(void) 6488 { 6489 rbd_assert(rbd_segment_name_cache); 6490 kmem_cache_destroy(rbd_segment_name_cache); 6491 rbd_segment_name_cache = NULL; 6492 6493 rbd_assert(rbd_obj_request_cache); 6494 kmem_cache_destroy(rbd_obj_request_cache); 6495 rbd_obj_request_cache = NULL; 6496 6497 rbd_assert(rbd_img_request_cache); 6498 kmem_cache_destroy(rbd_img_request_cache); 6499 rbd_img_request_cache = NULL; 6500 } 6501 6502 static int __init rbd_init(void) 6503 { 6504 int rc; 6505 6506 if (!libceph_compatible(NULL)) { 6507 rbd_warn(NULL, "libceph incompatibility (quitting)"); 6508 return -EINVAL; 6509 } 6510 6511 rc = rbd_slab_init(); 6512 if (rc) 6513 return rc; 6514 6515 /* 6516 * The number of active work items is limited by the number of 6517 * rbd devices * queue depth, so leave @max_active at default. 6518 */ 6519 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0); 6520 if (!rbd_wq) { 6521 rc = -ENOMEM; 6522 goto err_out_slab; 6523 } 6524 6525 if (single_major) { 6526 rbd_major = register_blkdev(0, RBD_DRV_NAME); 6527 if (rbd_major < 0) { 6528 rc = rbd_major; 6529 goto err_out_wq; 6530 } 6531 } 6532 6533 rc = rbd_sysfs_init(); 6534 if (rc) 6535 goto err_out_blkdev; 6536 6537 if (single_major) 6538 pr_info("loaded (major %d)\n", rbd_major); 6539 else 6540 pr_info("loaded\n"); 6541 6542 return 0; 6543 6544 err_out_blkdev: 6545 if (single_major) 6546 unregister_blkdev(rbd_major, RBD_DRV_NAME); 6547 err_out_wq: 6548 destroy_workqueue(rbd_wq); 6549 err_out_slab: 6550 rbd_slab_exit(); 6551 return rc; 6552 } 6553 6554 static void __exit rbd_exit(void) 6555 { 6556 ida_destroy(&rbd_dev_id_ida); 6557 rbd_sysfs_cleanup(); 6558 if (single_major) 6559 unregister_blkdev(rbd_major, RBD_DRV_NAME); 6560 destroy_workqueue(rbd_wq); 6561 rbd_slab_exit(); 6562 } 6563 6564 module_init(rbd_init); 6565 module_exit(rbd_exit); 6566 6567 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 6568 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 6569 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 6570 /* following authorship retained from original osdblk.c */ 6571 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 6572 6573 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 6574 MODULE_LICENSE("GPL"); 6575