xref: /linux/drivers/block/rbd.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/decode.h>
36 #include <linux/parser.h>
37 #include <linux/bsearch.h>
38 
39 #include <linux/kernel.h>
40 #include <linux/device.h>
41 #include <linux/module.h>
42 #include <linux/blk-mq.h>
43 #include <linux/fs.h>
44 #include <linux/blkdev.h>
45 #include <linux/slab.h>
46 #include <linux/idr.h>
47 #include <linux/workqueue.h>
48 
49 #include "rbd_types.h"
50 
51 #define RBD_DEBUG	/* Activate rbd_assert() calls */
52 
53 /*
54  * The basic unit of block I/O is a sector.  It is interpreted in a
55  * number of contexts in Linux (blk, bio, genhd), but the default is
56  * universally 512 bytes.  These symbols are just slightly more
57  * meaningful than the bare numbers they represent.
58  */
59 #define	SECTOR_SHIFT	9
60 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
61 
62 /*
63  * Increment the given counter and return its updated value.
64  * If the counter is already 0 it will not be incremented.
65  * If the counter is already at its maximum value returns
66  * -EINVAL without updating it.
67  */
68 static int atomic_inc_return_safe(atomic_t *v)
69 {
70 	unsigned int counter;
71 
72 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
73 	if (counter <= (unsigned int)INT_MAX)
74 		return (int)counter;
75 
76 	atomic_dec(v);
77 
78 	return -EINVAL;
79 }
80 
81 /* Decrement the counter.  Return the resulting value, or -EINVAL */
82 static int atomic_dec_return_safe(atomic_t *v)
83 {
84 	int counter;
85 
86 	counter = atomic_dec_return(v);
87 	if (counter >= 0)
88 		return counter;
89 
90 	atomic_inc(v);
91 
92 	return -EINVAL;
93 }
94 
95 #define RBD_DRV_NAME "rbd"
96 
97 #define RBD_MINORS_PER_MAJOR		256
98 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
99 
100 #define RBD_MAX_PARENT_CHAIN_LEN	16
101 
102 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
103 #define RBD_MAX_SNAP_NAME_LEN	\
104 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
105 
106 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
107 
108 #define RBD_SNAP_HEAD_NAME	"-"
109 
110 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
111 
112 /* This allows a single page to hold an image name sent by OSD */
113 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
114 #define RBD_IMAGE_ID_LEN_MAX	64
115 
116 #define RBD_OBJ_PREFIX_LEN_MAX	64
117 
118 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
119 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
120 
121 /* Feature bits */
122 
123 #define RBD_FEATURE_LAYERING		(1ULL<<0)
124 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
125 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
126 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
127 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
128 
129 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
130 				 RBD_FEATURE_STRIPINGV2 |	\
131 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
132 				 RBD_FEATURE_DATA_POOL |	\
133 				 RBD_FEATURE_OPERATIONS)
134 
135 /* Features supported by this (client software) implementation. */
136 
137 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
138 
139 /*
140  * An RBD device name will be "rbd#", where the "rbd" comes from
141  * RBD_DRV_NAME above, and # is a unique integer identifier.
142  */
143 #define DEV_NAME_LEN		32
144 
145 /*
146  * block device image metadata (in-memory version)
147  */
148 struct rbd_image_header {
149 	/* These six fields never change for a given rbd image */
150 	char *object_prefix;
151 	__u8 obj_order;
152 	u64 stripe_unit;
153 	u64 stripe_count;
154 	s64 data_pool_id;
155 	u64 features;		/* Might be changeable someday? */
156 
157 	/* The remaining fields need to be updated occasionally */
158 	u64 image_size;
159 	struct ceph_snap_context *snapc;
160 	char *snap_names;	/* format 1 only */
161 	u64 *snap_sizes;	/* format 1 only */
162 };
163 
164 /*
165  * An rbd image specification.
166  *
167  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
168  * identify an image.  Each rbd_dev structure includes a pointer to
169  * an rbd_spec structure that encapsulates this identity.
170  *
171  * Each of the id's in an rbd_spec has an associated name.  For a
172  * user-mapped image, the names are supplied and the id's associated
173  * with them are looked up.  For a layered image, a parent image is
174  * defined by the tuple, and the names are looked up.
175  *
176  * An rbd_dev structure contains a parent_spec pointer which is
177  * non-null if the image it represents is a child in a layered
178  * image.  This pointer will refer to the rbd_spec structure used
179  * by the parent rbd_dev for its own identity (i.e., the structure
180  * is shared between the parent and child).
181  *
182  * Since these structures are populated once, during the discovery
183  * phase of image construction, they are effectively immutable so
184  * we make no effort to synchronize access to them.
185  *
186  * Note that code herein does not assume the image name is known (it
187  * could be a null pointer).
188  */
189 struct rbd_spec {
190 	u64		pool_id;
191 	const char	*pool_name;
192 
193 	const char	*image_id;
194 	const char	*image_name;
195 
196 	u64		snap_id;
197 	const char	*snap_name;
198 
199 	struct kref	kref;
200 };
201 
202 /*
203  * an instance of the client.  multiple devices may share an rbd client.
204  */
205 struct rbd_client {
206 	struct ceph_client	*client;
207 	struct kref		kref;
208 	struct list_head	node;
209 };
210 
211 struct rbd_img_request;
212 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
213 
214 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
215 
216 struct rbd_obj_request;
217 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
218 
219 enum obj_request_type {
220 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
221 };
222 
223 enum obj_operation_type {
224 	OBJ_OP_WRITE,
225 	OBJ_OP_READ,
226 	OBJ_OP_DISCARD,
227 };
228 
229 enum obj_req_flags {
230 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
231 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
232 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
233 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
234 };
235 
236 struct rbd_obj_request {
237 	u64			object_no;
238 	u64			offset;		/* object start byte */
239 	u64			length;		/* bytes from offset */
240 	unsigned long		flags;
241 
242 	/*
243 	 * An object request associated with an image will have its
244 	 * img_data flag set; a standalone object request will not.
245 	 *
246 	 * A standalone object request will have which == BAD_WHICH
247 	 * and a null obj_request pointer.
248 	 *
249 	 * An object request initiated in support of a layered image
250 	 * object (to check for its existence before a write) will
251 	 * have which == BAD_WHICH and a non-null obj_request pointer.
252 	 *
253 	 * Finally, an object request for rbd image data will have
254 	 * which != BAD_WHICH, and will have a non-null img_request
255 	 * pointer.  The value of which will be in the range
256 	 * 0..(img_request->obj_request_count-1).
257 	 */
258 	union {
259 		struct rbd_obj_request	*obj_request;	/* STAT op */
260 		struct {
261 			struct rbd_img_request	*img_request;
262 			u64			img_offset;
263 			/* links for img_request->obj_requests list */
264 			struct list_head	links;
265 		};
266 	};
267 	u32			which;		/* posn image request list */
268 
269 	enum obj_request_type	type;
270 	union {
271 		struct bio	*bio_list;
272 		struct {
273 			struct page	**pages;
274 			u32		page_count;
275 		};
276 	};
277 	struct page		**copyup_pages;
278 	u32			copyup_page_count;
279 
280 	struct ceph_osd_request	*osd_req;
281 
282 	u64			xferred;	/* bytes transferred */
283 	int			result;
284 
285 	rbd_obj_callback_t	callback;
286 
287 	struct kref		kref;
288 };
289 
290 enum img_req_flags {
291 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
292 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
293 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
294 	IMG_REQ_DISCARD,	/* discard: normal = 0, discard request = 1 */
295 };
296 
297 struct rbd_img_request {
298 	struct rbd_device	*rbd_dev;
299 	u64			offset;	/* starting image byte offset */
300 	u64			length;	/* byte count from offset */
301 	unsigned long		flags;
302 	union {
303 		u64			snap_id;	/* for reads */
304 		struct ceph_snap_context *snapc;	/* for writes */
305 	};
306 	union {
307 		struct request		*rq;		/* block request */
308 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
309 	};
310 	struct page		**copyup_pages;
311 	u32			copyup_page_count;
312 	spinlock_t		completion_lock;/* protects next_completion */
313 	u32			next_completion;
314 	rbd_img_callback_t	callback;
315 	u64			xferred;/* aggregate bytes transferred */
316 	int			result;	/* first nonzero obj_request result */
317 
318 	u32			obj_request_count;
319 	struct list_head	obj_requests;	/* rbd_obj_request structs */
320 
321 	struct kref		kref;
322 };
323 
324 #define for_each_obj_request(ireq, oreq) \
325 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
326 #define for_each_obj_request_from(ireq, oreq) \
327 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
328 #define for_each_obj_request_safe(ireq, oreq, n) \
329 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
330 
331 enum rbd_watch_state {
332 	RBD_WATCH_STATE_UNREGISTERED,
333 	RBD_WATCH_STATE_REGISTERED,
334 	RBD_WATCH_STATE_ERROR,
335 };
336 
337 enum rbd_lock_state {
338 	RBD_LOCK_STATE_UNLOCKED,
339 	RBD_LOCK_STATE_LOCKED,
340 	RBD_LOCK_STATE_RELEASING,
341 };
342 
343 /* WatchNotify::ClientId */
344 struct rbd_client_id {
345 	u64 gid;
346 	u64 handle;
347 };
348 
349 struct rbd_mapping {
350 	u64                     size;
351 	u64                     features;
352 };
353 
354 /*
355  * a single device
356  */
357 struct rbd_device {
358 	int			dev_id;		/* blkdev unique id */
359 
360 	int			major;		/* blkdev assigned major */
361 	int			minor;
362 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
363 
364 	u32			image_format;	/* Either 1 or 2 */
365 	struct rbd_client	*rbd_client;
366 
367 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
368 
369 	spinlock_t		lock;		/* queue, flags, open_count */
370 
371 	struct rbd_image_header	header;
372 	unsigned long		flags;		/* possibly lock protected */
373 	struct rbd_spec		*spec;
374 	struct rbd_options	*opts;
375 	char			*config_info;	/* add{,_single_major} string */
376 
377 	struct ceph_object_id	header_oid;
378 	struct ceph_object_locator header_oloc;
379 
380 	struct ceph_file_layout	layout;		/* used for all rbd requests */
381 
382 	struct mutex		watch_mutex;
383 	enum rbd_watch_state	watch_state;
384 	struct ceph_osd_linger_request *watch_handle;
385 	u64			watch_cookie;
386 	struct delayed_work	watch_dwork;
387 
388 	struct rw_semaphore	lock_rwsem;
389 	enum rbd_lock_state	lock_state;
390 	char			lock_cookie[32];
391 	struct rbd_client_id	owner_cid;
392 	struct work_struct	acquired_lock_work;
393 	struct work_struct	released_lock_work;
394 	struct delayed_work	lock_dwork;
395 	struct work_struct	unlock_work;
396 	wait_queue_head_t	lock_waitq;
397 
398 	struct workqueue_struct	*task_wq;
399 
400 	struct rbd_spec		*parent_spec;
401 	u64			parent_overlap;
402 	atomic_t		parent_ref;
403 	struct rbd_device	*parent;
404 
405 	/* Block layer tags. */
406 	struct blk_mq_tag_set	tag_set;
407 
408 	/* protects updating the header */
409 	struct rw_semaphore     header_rwsem;
410 
411 	struct rbd_mapping	mapping;
412 
413 	struct list_head	node;
414 
415 	/* sysfs related */
416 	struct device		dev;
417 	unsigned long		open_count;	/* protected by lock */
418 };
419 
420 /*
421  * Flag bits for rbd_dev->flags:
422  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
423  *   by rbd_dev->lock
424  * - BLACKLISTED is protected by rbd_dev->lock_rwsem
425  */
426 enum rbd_dev_flags {
427 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
428 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
429 	RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */
430 };
431 
432 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
433 
434 static LIST_HEAD(rbd_dev_list);    /* devices */
435 static DEFINE_SPINLOCK(rbd_dev_list_lock);
436 
437 static LIST_HEAD(rbd_client_list);		/* clients */
438 static DEFINE_SPINLOCK(rbd_client_list_lock);
439 
440 /* Slab caches for frequently-allocated structures */
441 
442 static struct kmem_cache	*rbd_img_request_cache;
443 static struct kmem_cache	*rbd_obj_request_cache;
444 
445 static struct bio_set		*rbd_bio_clone;
446 
447 static int rbd_major;
448 static DEFINE_IDA(rbd_dev_id_ida);
449 
450 static struct workqueue_struct *rbd_wq;
451 
452 /*
453  * single-major requires >= 0.75 version of userspace rbd utility.
454  */
455 static bool single_major = true;
456 module_param(single_major, bool, S_IRUGO);
457 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
458 
459 static int rbd_img_request_submit(struct rbd_img_request *img_request);
460 
461 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
462 		       size_t count);
463 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
464 			  size_t count);
465 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
466 				    size_t count);
467 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
468 				       size_t count);
469 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
470 static void rbd_spec_put(struct rbd_spec *spec);
471 
472 static int rbd_dev_id_to_minor(int dev_id)
473 {
474 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
475 }
476 
477 static int minor_to_rbd_dev_id(int minor)
478 {
479 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
480 }
481 
482 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
483 {
484 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
485 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
486 }
487 
488 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
489 {
490 	bool is_lock_owner;
491 
492 	down_read(&rbd_dev->lock_rwsem);
493 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
494 	up_read(&rbd_dev->lock_rwsem);
495 	return is_lock_owner;
496 }
497 
498 static ssize_t rbd_supported_features_show(struct bus_type *bus, char *buf)
499 {
500 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
501 }
502 
503 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
504 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
505 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
506 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
507 static BUS_ATTR(supported_features, S_IRUGO, rbd_supported_features_show, NULL);
508 
509 static struct attribute *rbd_bus_attrs[] = {
510 	&bus_attr_add.attr,
511 	&bus_attr_remove.attr,
512 	&bus_attr_add_single_major.attr,
513 	&bus_attr_remove_single_major.attr,
514 	&bus_attr_supported_features.attr,
515 	NULL,
516 };
517 
518 static umode_t rbd_bus_is_visible(struct kobject *kobj,
519 				  struct attribute *attr, int index)
520 {
521 	if (!single_major &&
522 	    (attr == &bus_attr_add_single_major.attr ||
523 	     attr == &bus_attr_remove_single_major.attr))
524 		return 0;
525 
526 	return attr->mode;
527 }
528 
529 static const struct attribute_group rbd_bus_group = {
530 	.attrs = rbd_bus_attrs,
531 	.is_visible = rbd_bus_is_visible,
532 };
533 __ATTRIBUTE_GROUPS(rbd_bus);
534 
535 static struct bus_type rbd_bus_type = {
536 	.name		= "rbd",
537 	.bus_groups	= rbd_bus_groups,
538 };
539 
540 static void rbd_root_dev_release(struct device *dev)
541 {
542 }
543 
544 static struct device rbd_root_dev = {
545 	.init_name =    "rbd",
546 	.release =      rbd_root_dev_release,
547 };
548 
549 static __printf(2, 3)
550 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
551 {
552 	struct va_format vaf;
553 	va_list args;
554 
555 	va_start(args, fmt);
556 	vaf.fmt = fmt;
557 	vaf.va = &args;
558 
559 	if (!rbd_dev)
560 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
561 	else if (rbd_dev->disk)
562 		printk(KERN_WARNING "%s: %s: %pV\n",
563 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
564 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
565 		printk(KERN_WARNING "%s: image %s: %pV\n",
566 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
567 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
568 		printk(KERN_WARNING "%s: id %s: %pV\n",
569 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
570 	else	/* punt */
571 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
572 			RBD_DRV_NAME, rbd_dev, &vaf);
573 	va_end(args);
574 }
575 
576 #ifdef RBD_DEBUG
577 #define rbd_assert(expr)						\
578 		if (unlikely(!(expr))) {				\
579 			printk(KERN_ERR "\nAssertion failure in %s() "	\
580 						"at line %d:\n\n"	\
581 					"\trbd_assert(%s);\n\n",	\
582 					__func__, __LINE__, #expr);	\
583 			BUG();						\
584 		}
585 #else /* !RBD_DEBUG */
586 #  define rbd_assert(expr)	((void) 0)
587 #endif /* !RBD_DEBUG */
588 
589 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
590 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
591 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
592 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
593 
594 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
595 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
596 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
597 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
598 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
599 					u64 snap_id);
600 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
601 				u8 *order, u64 *snap_size);
602 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
603 		u64 *snap_features);
604 
605 static int rbd_open(struct block_device *bdev, fmode_t mode)
606 {
607 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
608 	bool removing = false;
609 
610 	spin_lock_irq(&rbd_dev->lock);
611 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
612 		removing = true;
613 	else
614 		rbd_dev->open_count++;
615 	spin_unlock_irq(&rbd_dev->lock);
616 	if (removing)
617 		return -ENOENT;
618 
619 	(void) get_device(&rbd_dev->dev);
620 
621 	return 0;
622 }
623 
624 static void rbd_release(struct gendisk *disk, fmode_t mode)
625 {
626 	struct rbd_device *rbd_dev = disk->private_data;
627 	unsigned long open_count_before;
628 
629 	spin_lock_irq(&rbd_dev->lock);
630 	open_count_before = rbd_dev->open_count--;
631 	spin_unlock_irq(&rbd_dev->lock);
632 	rbd_assert(open_count_before > 0);
633 
634 	put_device(&rbd_dev->dev);
635 }
636 
637 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
638 {
639 	int ro;
640 
641 	if (get_user(ro, (int __user *)arg))
642 		return -EFAULT;
643 
644 	/* Snapshots can't be marked read-write */
645 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
646 		return -EROFS;
647 
648 	/* Let blkdev_roset() handle it */
649 	return -ENOTTY;
650 }
651 
652 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
653 			unsigned int cmd, unsigned long arg)
654 {
655 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
656 	int ret;
657 
658 	switch (cmd) {
659 	case BLKROSET:
660 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
661 		break;
662 	default:
663 		ret = -ENOTTY;
664 	}
665 
666 	return ret;
667 }
668 
669 #ifdef CONFIG_COMPAT
670 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
671 				unsigned int cmd, unsigned long arg)
672 {
673 	return rbd_ioctl(bdev, mode, cmd, arg);
674 }
675 #endif /* CONFIG_COMPAT */
676 
677 static const struct block_device_operations rbd_bd_ops = {
678 	.owner			= THIS_MODULE,
679 	.open			= rbd_open,
680 	.release		= rbd_release,
681 	.ioctl			= rbd_ioctl,
682 #ifdef CONFIG_COMPAT
683 	.compat_ioctl		= rbd_compat_ioctl,
684 #endif
685 };
686 
687 /*
688  * Initialize an rbd client instance.  Success or not, this function
689  * consumes ceph_opts.  Caller holds client_mutex.
690  */
691 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
692 {
693 	struct rbd_client *rbdc;
694 	int ret = -ENOMEM;
695 
696 	dout("%s:\n", __func__);
697 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
698 	if (!rbdc)
699 		goto out_opt;
700 
701 	kref_init(&rbdc->kref);
702 	INIT_LIST_HEAD(&rbdc->node);
703 
704 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
705 	if (IS_ERR(rbdc->client))
706 		goto out_rbdc;
707 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
708 
709 	ret = ceph_open_session(rbdc->client);
710 	if (ret < 0)
711 		goto out_client;
712 
713 	spin_lock(&rbd_client_list_lock);
714 	list_add_tail(&rbdc->node, &rbd_client_list);
715 	spin_unlock(&rbd_client_list_lock);
716 
717 	dout("%s: rbdc %p\n", __func__, rbdc);
718 
719 	return rbdc;
720 out_client:
721 	ceph_destroy_client(rbdc->client);
722 out_rbdc:
723 	kfree(rbdc);
724 out_opt:
725 	if (ceph_opts)
726 		ceph_destroy_options(ceph_opts);
727 	dout("%s: error %d\n", __func__, ret);
728 
729 	return ERR_PTR(ret);
730 }
731 
732 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
733 {
734 	kref_get(&rbdc->kref);
735 
736 	return rbdc;
737 }
738 
739 /*
740  * Find a ceph client with specific addr and configuration.  If
741  * found, bump its reference count.
742  */
743 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
744 {
745 	struct rbd_client *client_node;
746 	bool found = false;
747 
748 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
749 		return NULL;
750 
751 	spin_lock(&rbd_client_list_lock);
752 	list_for_each_entry(client_node, &rbd_client_list, node) {
753 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
754 			__rbd_get_client(client_node);
755 
756 			found = true;
757 			break;
758 		}
759 	}
760 	spin_unlock(&rbd_client_list_lock);
761 
762 	return found ? client_node : NULL;
763 }
764 
765 /*
766  * (Per device) rbd map options
767  */
768 enum {
769 	Opt_queue_depth,
770 	Opt_last_int,
771 	/* int args above */
772 	Opt_last_string,
773 	/* string args above */
774 	Opt_read_only,
775 	Opt_read_write,
776 	Opt_lock_on_read,
777 	Opt_exclusive,
778 	Opt_err
779 };
780 
781 static match_table_t rbd_opts_tokens = {
782 	{Opt_queue_depth, "queue_depth=%d"},
783 	/* int args above */
784 	/* string args above */
785 	{Opt_read_only, "read_only"},
786 	{Opt_read_only, "ro"},		/* Alternate spelling */
787 	{Opt_read_write, "read_write"},
788 	{Opt_read_write, "rw"},		/* Alternate spelling */
789 	{Opt_lock_on_read, "lock_on_read"},
790 	{Opt_exclusive, "exclusive"},
791 	{Opt_err, NULL}
792 };
793 
794 struct rbd_options {
795 	int	queue_depth;
796 	bool	read_only;
797 	bool	lock_on_read;
798 	bool	exclusive;
799 };
800 
801 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
802 #define RBD_READ_ONLY_DEFAULT	false
803 #define RBD_LOCK_ON_READ_DEFAULT false
804 #define RBD_EXCLUSIVE_DEFAULT	false
805 
806 static int parse_rbd_opts_token(char *c, void *private)
807 {
808 	struct rbd_options *rbd_opts = private;
809 	substring_t argstr[MAX_OPT_ARGS];
810 	int token, intval, ret;
811 
812 	token = match_token(c, rbd_opts_tokens, argstr);
813 	if (token < Opt_last_int) {
814 		ret = match_int(&argstr[0], &intval);
815 		if (ret < 0) {
816 			pr_err("bad mount option arg (not int) at '%s'\n", c);
817 			return ret;
818 		}
819 		dout("got int token %d val %d\n", token, intval);
820 	} else if (token > Opt_last_int && token < Opt_last_string) {
821 		dout("got string token %d val %s\n", token, argstr[0].from);
822 	} else {
823 		dout("got token %d\n", token);
824 	}
825 
826 	switch (token) {
827 	case Opt_queue_depth:
828 		if (intval < 1) {
829 			pr_err("queue_depth out of range\n");
830 			return -EINVAL;
831 		}
832 		rbd_opts->queue_depth = intval;
833 		break;
834 	case Opt_read_only:
835 		rbd_opts->read_only = true;
836 		break;
837 	case Opt_read_write:
838 		rbd_opts->read_only = false;
839 		break;
840 	case Opt_lock_on_read:
841 		rbd_opts->lock_on_read = true;
842 		break;
843 	case Opt_exclusive:
844 		rbd_opts->exclusive = true;
845 		break;
846 	default:
847 		/* libceph prints "bad option" msg */
848 		return -EINVAL;
849 	}
850 
851 	return 0;
852 }
853 
854 static char* obj_op_name(enum obj_operation_type op_type)
855 {
856 	switch (op_type) {
857 	case OBJ_OP_READ:
858 		return "read";
859 	case OBJ_OP_WRITE:
860 		return "write";
861 	case OBJ_OP_DISCARD:
862 		return "discard";
863 	default:
864 		return "???";
865 	}
866 }
867 
868 /*
869  * Get a ceph client with specific addr and configuration, if one does
870  * not exist create it.  Either way, ceph_opts is consumed by this
871  * function.
872  */
873 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
874 {
875 	struct rbd_client *rbdc;
876 
877 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
878 	rbdc = rbd_client_find(ceph_opts);
879 	if (rbdc)	/* using an existing client */
880 		ceph_destroy_options(ceph_opts);
881 	else
882 		rbdc = rbd_client_create(ceph_opts);
883 	mutex_unlock(&client_mutex);
884 
885 	return rbdc;
886 }
887 
888 /*
889  * Destroy ceph client
890  *
891  * Caller must hold rbd_client_list_lock.
892  */
893 static void rbd_client_release(struct kref *kref)
894 {
895 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
896 
897 	dout("%s: rbdc %p\n", __func__, rbdc);
898 	spin_lock(&rbd_client_list_lock);
899 	list_del(&rbdc->node);
900 	spin_unlock(&rbd_client_list_lock);
901 
902 	ceph_destroy_client(rbdc->client);
903 	kfree(rbdc);
904 }
905 
906 /*
907  * Drop reference to ceph client node. If it's not referenced anymore, release
908  * it.
909  */
910 static void rbd_put_client(struct rbd_client *rbdc)
911 {
912 	if (rbdc)
913 		kref_put(&rbdc->kref, rbd_client_release);
914 }
915 
916 static bool rbd_image_format_valid(u32 image_format)
917 {
918 	return image_format == 1 || image_format == 2;
919 }
920 
921 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
922 {
923 	size_t size;
924 	u32 snap_count;
925 
926 	/* The header has to start with the magic rbd header text */
927 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
928 		return false;
929 
930 	/* The bio layer requires at least sector-sized I/O */
931 
932 	if (ondisk->options.order < SECTOR_SHIFT)
933 		return false;
934 
935 	/* If we use u64 in a few spots we may be able to loosen this */
936 
937 	if (ondisk->options.order > 8 * sizeof (int) - 1)
938 		return false;
939 
940 	/*
941 	 * The size of a snapshot header has to fit in a size_t, and
942 	 * that limits the number of snapshots.
943 	 */
944 	snap_count = le32_to_cpu(ondisk->snap_count);
945 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
946 	if (snap_count > size / sizeof (__le64))
947 		return false;
948 
949 	/*
950 	 * Not only that, but the size of the entire the snapshot
951 	 * header must also be representable in a size_t.
952 	 */
953 	size -= snap_count * sizeof (__le64);
954 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
955 		return false;
956 
957 	return true;
958 }
959 
960 /*
961  * returns the size of an object in the image
962  */
963 static u32 rbd_obj_bytes(struct rbd_image_header *header)
964 {
965 	return 1U << header->obj_order;
966 }
967 
968 static void rbd_init_layout(struct rbd_device *rbd_dev)
969 {
970 	if (rbd_dev->header.stripe_unit == 0 ||
971 	    rbd_dev->header.stripe_count == 0) {
972 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
973 		rbd_dev->header.stripe_count = 1;
974 	}
975 
976 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
977 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
978 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
979 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
980 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
981 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
982 }
983 
984 /*
985  * Fill an rbd image header with information from the given format 1
986  * on-disk header.
987  */
988 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
989 				 struct rbd_image_header_ondisk *ondisk)
990 {
991 	struct rbd_image_header *header = &rbd_dev->header;
992 	bool first_time = header->object_prefix == NULL;
993 	struct ceph_snap_context *snapc;
994 	char *object_prefix = NULL;
995 	char *snap_names = NULL;
996 	u64 *snap_sizes = NULL;
997 	u32 snap_count;
998 	int ret = -ENOMEM;
999 	u32 i;
1000 
1001 	/* Allocate this now to avoid having to handle failure below */
1002 
1003 	if (first_time) {
1004 		object_prefix = kstrndup(ondisk->object_prefix,
1005 					 sizeof(ondisk->object_prefix),
1006 					 GFP_KERNEL);
1007 		if (!object_prefix)
1008 			return -ENOMEM;
1009 	}
1010 
1011 	/* Allocate the snapshot context and fill it in */
1012 
1013 	snap_count = le32_to_cpu(ondisk->snap_count);
1014 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1015 	if (!snapc)
1016 		goto out_err;
1017 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1018 	if (snap_count) {
1019 		struct rbd_image_snap_ondisk *snaps;
1020 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1021 
1022 		/* We'll keep a copy of the snapshot names... */
1023 
1024 		if (snap_names_len > (u64)SIZE_MAX)
1025 			goto out_2big;
1026 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1027 		if (!snap_names)
1028 			goto out_err;
1029 
1030 		/* ...as well as the array of their sizes. */
1031 		snap_sizes = kmalloc_array(snap_count,
1032 					   sizeof(*header->snap_sizes),
1033 					   GFP_KERNEL);
1034 		if (!snap_sizes)
1035 			goto out_err;
1036 
1037 		/*
1038 		 * Copy the names, and fill in each snapshot's id
1039 		 * and size.
1040 		 *
1041 		 * Note that rbd_dev_v1_header_info() guarantees the
1042 		 * ondisk buffer we're working with has
1043 		 * snap_names_len bytes beyond the end of the
1044 		 * snapshot id array, this memcpy() is safe.
1045 		 */
1046 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1047 		snaps = ondisk->snaps;
1048 		for (i = 0; i < snap_count; i++) {
1049 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1050 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1051 		}
1052 	}
1053 
1054 	/* We won't fail any more, fill in the header */
1055 
1056 	if (first_time) {
1057 		header->object_prefix = object_prefix;
1058 		header->obj_order = ondisk->options.order;
1059 		rbd_init_layout(rbd_dev);
1060 	} else {
1061 		ceph_put_snap_context(header->snapc);
1062 		kfree(header->snap_names);
1063 		kfree(header->snap_sizes);
1064 	}
1065 
1066 	/* The remaining fields always get updated (when we refresh) */
1067 
1068 	header->image_size = le64_to_cpu(ondisk->image_size);
1069 	header->snapc = snapc;
1070 	header->snap_names = snap_names;
1071 	header->snap_sizes = snap_sizes;
1072 
1073 	return 0;
1074 out_2big:
1075 	ret = -EIO;
1076 out_err:
1077 	kfree(snap_sizes);
1078 	kfree(snap_names);
1079 	ceph_put_snap_context(snapc);
1080 	kfree(object_prefix);
1081 
1082 	return ret;
1083 }
1084 
1085 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1086 {
1087 	const char *snap_name;
1088 
1089 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1090 
1091 	/* Skip over names until we find the one we are looking for */
1092 
1093 	snap_name = rbd_dev->header.snap_names;
1094 	while (which--)
1095 		snap_name += strlen(snap_name) + 1;
1096 
1097 	return kstrdup(snap_name, GFP_KERNEL);
1098 }
1099 
1100 /*
1101  * Snapshot id comparison function for use with qsort()/bsearch().
1102  * Note that result is for snapshots in *descending* order.
1103  */
1104 static int snapid_compare_reverse(const void *s1, const void *s2)
1105 {
1106 	u64 snap_id1 = *(u64 *)s1;
1107 	u64 snap_id2 = *(u64 *)s2;
1108 
1109 	if (snap_id1 < snap_id2)
1110 		return 1;
1111 	return snap_id1 == snap_id2 ? 0 : -1;
1112 }
1113 
1114 /*
1115  * Search a snapshot context to see if the given snapshot id is
1116  * present.
1117  *
1118  * Returns the position of the snapshot id in the array if it's found,
1119  * or BAD_SNAP_INDEX otherwise.
1120  *
1121  * Note: The snapshot array is in kept sorted (by the osd) in
1122  * reverse order, highest snapshot id first.
1123  */
1124 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1125 {
1126 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1127 	u64 *found;
1128 
1129 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1130 				sizeof (snap_id), snapid_compare_reverse);
1131 
1132 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1133 }
1134 
1135 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1136 					u64 snap_id)
1137 {
1138 	u32 which;
1139 	const char *snap_name;
1140 
1141 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1142 	if (which == BAD_SNAP_INDEX)
1143 		return ERR_PTR(-ENOENT);
1144 
1145 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1146 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1147 }
1148 
1149 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1150 {
1151 	if (snap_id == CEPH_NOSNAP)
1152 		return RBD_SNAP_HEAD_NAME;
1153 
1154 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1155 	if (rbd_dev->image_format == 1)
1156 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1157 
1158 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1159 }
1160 
1161 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1162 				u64 *snap_size)
1163 {
1164 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1165 	if (snap_id == CEPH_NOSNAP) {
1166 		*snap_size = rbd_dev->header.image_size;
1167 	} else if (rbd_dev->image_format == 1) {
1168 		u32 which;
1169 
1170 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1171 		if (which == BAD_SNAP_INDEX)
1172 			return -ENOENT;
1173 
1174 		*snap_size = rbd_dev->header.snap_sizes[which];
1175 	} else {
1176 		u64 size = 0;
1177 		int ret;
1178 
1179 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1180 		if (ret)
1181 			return ret;
1182 
1183 		*snap_size = size;
1184 	}
1185 	return 0;
1186 }
1187 
1188 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1189 			u64 *snap_features)
1190 {
1191 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1192 	if (snap_id == CEPH_NOSNAP) {
1193 		*snap_features = rbd_dev->header.features;
1194 	} else if (rbd_dev->image_format == 1) {
1195 		*snap_features = 0;	/* No features for format 1 */
1196 	} else {
1197 		u64 features = 0;
1198 		int ret;
1199 
1200 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1201 		if (ret)
1202 			return ret;
1203 
1204 		*snap_features = features;
1205 	}
1206 	return 0;
1207 }
1208 
1209 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1210 {
1211 	u64 snap_id = rbd_dev->spec->snap_id;
1212 	u64 size = 0;
1213 	u64 features = 0;
1214 	int ret;
1215 
1216 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1217 	if (ret)
1218 		return ret;
1219 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1220 	if (ret)
1221 		return ret;
1222 
1223 	rbd_dev->mapping.size = size;
1224 	rbd_dev->mapping.features = features;
1225 
1226 	return 0;
1227 }
1228 
1229 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1230 {
1231 	rbd_dev->mapping.size = 0;
1232 	rbd_dev->mapping.features = 0;
1233 }
1234 
1235 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1236 {
1237 	u64 segment_size = rbd_obj_bytes(&rbd_dev->header);
1238 
1239 	return offset & (segment_size - 1);
1240 }
1241 
1242 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1243 				u64 offset, u64 length)
1244 {
1245 	u64 segment_size = rbd_obj_bytes(&rbd_dev->header);
1246 
1247 	offset &= segment_size - 1;
1248 
1249 	rbd_assert(length <= U64_MAX - offset);
1250 	if (offset + length > segment_size)
1251 		length = segment_size - offset;
1252 
1253 	return length;
1254 }
1255 
1256 /*
1257  * bio helpers
1258  */
1259 
1260 static void bio_chain_put(struct bio *chain)
1261 {
1262 	struct bio *tmp;
1263 
1264 	while (chain) {
1265 		tmp = chain;
1266 		chain = chain->bi_next;
1267 		bio_put(tmp);
1268 	}
1269 }
1270 
1271 /*
1272  * zeros a bio chain, starting at specific offset
1273  */
1274 static void zero_bio_chain(struct bio *chain, int start_ofs)
1275 {
1276 	struct bio_vec bv;
1277 	struct bvec_iter iter;
1278 	unsigned long flags;
1279 	void *buf;
1280 	int pos = 0;
1281 
1282 	while (chain) {
1283 		bio_for_each_segment(bv, chain, iter) {
1284 			if (pos + bv.bv_len > start_ofs) {
1285 				int remainder = max(start_ofs - pos, 0);
1286 				buf = bvec_kmap_irq(&bv, &flags);
1287 				memset(buf + remainder, 0,
1288 				       bv.bv_len - remainder);
1289 				flush_dcache_page(bv.bv_page);
1290 				bvec_kunmap_irq(buf, &flags);
1291 			}
1292 			pos += bv.bv_len;
1293 		}
1294 
1295 		chain = chain->bi_next;
1296 	}
1297 }
1298 
1299 /*
1300  * similar to zero_bio_chain(), zeros data defined by a page array,
1301  * starting at the given byte offset from the start of the array and
1302  * continuing up to the given end offset.  The pages array is
1303  * assumed to be big enough to hold all bytes up to the end.
1304  */
1305 static void zero_pages(struct page **pages, u64 offset, u64 end)
1306 {
1307 	struct page **page = &pages[offset >> PAGE_SHIFT];
1308 
1309 	rbd_assert(end > offset);
1310 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1311 	while (offset < end) {
1312 		size_t page_offset;
1313 		size_t length;
1314 		unsigned long flags;
1315 		void *kaddr;
1316 
1317 		page_offset = offset & ~PAGE_MASK;
1318 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1319 		local_irq_save(flags);
1320 		kaddr = kmap_atomic(*page);
1321 		memset(kaddr + page_offset, 0, length);
1322 		flush_dcache_page(*page);
1323 		kunmap_atomic(kaddr);
1324 		local_irq_restore(flags);
1325 
1326 		offset += length;
1327 		page++;
1328 	}
1329 }
1330 
1331 /*
1332  * Clone a portion of a bio, starting at the given byte offset
1333  * and continuing for the number of bytes indicated.
1334  */
1335 static struct bio *bio_clone_range(struct bio *bio_src,
1336 					unsigned int offset,
1337 					unsigned int len,
1338 					gfp_t gfpmask)
1339 {
1340 	struct bio *bio;
1341 
1342 	bio = bio_clone_fast(bio_src, gfpmask, rbd_bio_clone);
1343 	if (!bio)
1344 		return NULL;	/* ENOMEM */
1345 
1346 	bio_advance(bio, offset);
1347 	bio->bi_iter.bi_size = len;
1348 
1349 	return bio;
1350 }
1351 
1352 /*
1353  * Clone a portion of a bio chain, starting at the given byte offset
1354  * into the first bio in the source chain and continuing for the
1355  * number of bytes indicated.  The result is another bio chain of
1356  * exactly the given length, or a null pointer on error.
1357  *
1358  * The bio_src and offset parameters are both in-out.  On entry they
1359  * refer to the first source bio and the offset into that bio where
1360  * the start of data to be cloned is located.
1361  *
1362  * On return, bio_src is updated to refer to the bio in the source
1363  * chain that contains first un-cloned byte, and *offset will
1364  * contain the offset of that byte within that bio.
1365  */
1366 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1367 					unsigned int *offset,
1368 					unsigned int len,
1369 					gfp_t gfpmask)
1370 {
1371 	struct bio *bi = *bio_src;
1372 	unsigned int off = *offset;
1373 	struct bio *chain = NULL;
1374 	struct bio **end;
1375 
1376 	/* Build up a chain of clone bios up to the limit */
1377 
1378 	if (!bi || off >= bi->bi_iter.bi_size || !len)
1379 		return NULL;		/* Nothing to clone */
1380 
1381 	end = &chain;
1382 	while (len) {
1383 		unsigned int bi_size;
1384 		struct bio *bio;
1385 
1386 		if (!bi) {
1387 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1388 			goto out_err;	/* EINVAL; ran out of bio's */
1389 		}
1390 		bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1391 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1392 		if (!bio)
1393 			goto out_err;	/* ENOMEM */
1394 
1395 		*end = bio;
1396 		end = &bio->bi_next;
1397 
1398 		off += bi_size;
1399 		if (off == bi->bi_iter.bi_size) {
1400 			bi = bi->bi_next;
1401 			off = 0;
1402 		}
1403 		len -= bi_size;
1404 	}
1405 	*bio_src = bi;
1406 	*offset = off;
1407 
1408 	return chain;
1409 out_err:
1410 	bio_chain_put(chain);
1411 
1412 	return NULL;
1413 }
1414 
1415 /*
1416  * The default/initial value for all object request flags is 0.  For
1417  * each flag, once its value is set to 1 it is never reset to 0
1418  * again.
1419  */
1420 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1421 {
1422 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1423 		struct rbd_device *rbd_dev;
1424 
1425 		rbd_dev = obj_request->img_request->rbd_dev;
1426 		rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1427 			obj_request);
1428 	}
1429 }
1430 
1431 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1432 {
1433 	smp_mb();
1434 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1435 }
1436 
1437 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1438 {
1439 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1440 		struct rbd_device *rbd_dev = NULL;
1441 
1442 		if (obj_request_img_data_test(obj_request))
1443 			rbd_dev = obj_request->img_request->rbd_dev;
1444 		rbd_warn(rbd_dev, "obj_request %p already marked done",
1445 			obj_request);
1446 	}
1447 }
1448 
1449 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1450 {
1451 	smp_mb();
1452 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1453 }
1454 
1455 /*
1456  * This sets the KNOWN flag after (possibly) setting the EXISTS
1457  * flag.  The latter is set based on the "exists" value provided.
1458  *
1459  * Note that for our purposes once an object exists it never goes
1460  * away again.  It's possible that the response from two existence
1461  * checks are separated by the creation of the target object, and
1462  * the first ("doesn't exist") response arrives *after* the second
1463  * ("does exist").  In that case we ignore the second one.
1464  */
1465 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1466 				bool exists)
1467 {
1468 	if (exists)
1469 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1470 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1471 	smp_mb();
1472 }
1473 
1474 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1475 {
1476 	smp_mb();
1477 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1478 }
1479 
1480 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1481 {
1482 	smp_mb();
1483 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1484 }
1485 
1486 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1487 {
1488 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1489 
1490 	return obj_request->img_offset <
1491 	    round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1492 }
1493 
1494 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1495 {
1496 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1497 		kref_read(&obj_request->kref));
1498 	kref_get(&obj_request->kref);
1499 }
1500 
1501 static void rbd_obj_request_destroy(struct kref *kref);
1502 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1503 {
1504 	rbd_assert(obj_request != NULL);
1505 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1506 		kref_read(&obj_request->kref));
1507 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1508 }
1509 
1510 static void rbd_img_request_get(struct rbd_img_request *img_request)
1511 {
1512 	dout("%s: img %p (was %d)\n", __func__, img_request,
1513 	     kref_read(&img_request->kref));
1514 	kref_get(&img_request->kref);
1515 }
1516 
1517 static bool img_request_child_test(struct rbd_img_request *img_request);
1518 static void rbd_parent_request_destroy(struct kref *kref);
1519 static void rbd_img_request_destroy(struct kref *kref);
1520 static void rbd_img_request_put(struct rbd_img_request *img_request)
1521 {
1522 	rbd_assert(img_request != NULL);
1523 	dout("%s: img %p (was %d)\n", __func__, img_request,
1524 		kref_read(&img_request->kref));
1525 	if (img_request_child_test(img_request))
1526 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1527 	else
1528 		kref_put(&img_request->kref, rbd_img_request_destroy);
1529 }
1530 
1531 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1532 					struct rbd_obj_request *obj_request)
1533 {
1534 	rbd_assert(obj_request->img_request == NULL);
1535 
1536 	/* Image request now owns object's original reference */
1537 	obj_request->img_request = img_request;
1538 	obj_request->which = img_request->obj_request_count;
1539 	rbd_assert(!obj_request_img_data_test(obj_request));
1540 	obj_request_img_data_set(obj_request);
1541 	rbd_assert(obj_request->which != BAD_WHICH);
1542 	img_request->obj_request_count++;
1543 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1544 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1545 		obj_request->which);
1546 }
1547 
1548 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1549 					struct rbd_obj_request *obj_request)
1550 {
1551 	rbd_assert(obj_request->which != BAD_WHICH);
1552 
1553 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1554 		obj_request->which);
1555 	list_del(&obj_request->links);
1556 	rbd_assert(img_request->obj_request_count > 0);
1557 	img_request->obj_request_count--;
1558 	rbd_assert(obj_request->which == img_request->obj_request_count);
1559 	obj_request->which = BAD_WHICH;
1560 	rbd_assert(obj_request_img_data_test(obj_request));
1561 	rbd_assert(obj_request->img_request == img_request);
1562 	obj_request->img_request = NULL;
1563 	obj_request->callback = NULL;
1564 	rbd_obj_request_put(obj_request);
1565 }
1566 
1567 static bool obj_request_type_valid(enum obj_request_type type)
1568 {
1569 	switch (type) {
1570 	case OBJ_REQUEST_NODATA:
1571 	case OBJ_REQUEST_BIO:
1572 	case OBJ_REQUEST_PAGES:
1573 		return true;
1574 	default:
1575 		return false;
1576 	}
1577 }
1578 
1579 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request);
1580 
1581 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request)
1582 {
1583 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1584 
1585 	dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__,
1586 	     obj_request, obj_request->object_no, obj_request->offset,
1587 	     obj_request->length, osd_req);
1588 	if (obj_request_img_data_test(obj_request)) {
1589 		WARN_ON(obj_request->callback != rbd_img_obj_callback);
1590 		rbd_img_request_get(obj_request->img_request);
1591 	}
1592 	ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1593 }
1594 
1595 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1596 {
1597 
1598 	dout("%s: img %p\n", __func__, img_request);
1599 
1600 	/*
1601 	 * If no error occurred, compute the aggregate transfer
1602 	 * count for the image request.  We could instead use
1603 	 * atomic64_cmpxchg() to update it as each object request
1604 	 * completes; not clear which way is better off hand.
1605 	 */
1606 	if (!img_request->result) {
1607 		struct rbd_obj_request *obj_request;
1608 		u64 xferred = 0;
1609 
1610 		for_each_obj_request(img_request, obj_request)
1611 			xferred += obj_request->xferred;
1612 		img_request->xferred = xferred;
1613 	}
1614 
1615 	if (img_request->callback)
1616 		img_request->callback(img_request);
1617 	else
1618 		rbd_img_request_put(img_request);
1619 }
1620 
1621 /*
1622  * The default/initial value for all image request flags is 0.  Each
1623  * is conditionally set to 1 at image request initialization time
1624  * and currently never change thereafter.
1625  */
1626 static void img_request_write_set(struct rbd_img_request *img_request)
1627 {
1628 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1629 	smp_mb();
1630 }
1631 
1632 static bool img_request_write_test(struct rbd_img_request *img_request)
1633 {
1634 	smp_mb();
1635 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1636 }
1637 
1638 /*
1639  * Set the discard flag when the img_request is an discard request
1640  */
1641 static void img_request_discard_set(struct rbd_img_request *img_request)
1642 {
1643 	set_bit(IMG_REQ_DISCARD, &img_request->flags);
1644 	smp_mb();
1645 }
1646 
1647 static bool img_request_discard_test(struct rbd_img_request *img_request)
1648 {
1649 	smp_mb();
1650 	return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1651 }
1652 
1653 static void img_request_child_set(struct rbd_img_request *img_request)
1654 {
1655 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1656 	smp_mb();
1657 }
1658 
1659 static void img_request_child_clear(struct rbd_img_request *img_request)
1660 {
1661 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1662 	smp_mb();
1663 }
1664 
1665 static bool img_request_child_test(struct rbd_img_request *img_request)
1666 {
1667 	smp_mb();
1668 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1669 }
1670 
1671 static void img_request_layered_set(struct rbd_img_request *img_request)
1672 {
1673 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1674 	smp_mb();
1675 }
1676 
1677 static void img_request_layered_clear(struct rbd_img_request *img_request)
1678 {
1679 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1680 	smp_mb();
1681 }
1682 
1683 static bool img_request_layered_test(struct rbd_img_request *img_request)
1684 {
1685 	smp_mb();
1686 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1687 }
1688 
1689 static enum obj_operation_type
1690 rbd_img_request_op_type(struct rbd_img_request *img_request)
1691 {
1692 	if (img_request_write_test(img_request))
1693 		return OBJ_OP_WRITE;
1694 	else if (img_request_discard_test(img_request))
1695 		return OBJ_OP_DISCARD;
1696 	else
1697 		return OBJ_OP_READ;
1698 }
1699 
1700 static void
1701 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1702 {
1703 	u64 xferred = obj_request->xferred;
1704 	u64 length = obj_request->length;
1705 
1706 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1707 		obj_request, obj_request->img_request, obj_request->result,
1708 		xferred, length);
1709 	/*
1710 	 * ENOENT means a hole in the image.  We zero-fill the entire
1711 	 * length of the request.  A short read also implies zero-fill
1712 	 * to the end of the request.  An error requires the whole
1713 	 * length of the request to be reported finished with an error
1714 	 * to the block layer.  In each case we update the xferred
1715 	 * count to indicate the whole request was satisfied.
1716 	 */
1717 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1718 	if (obj_request->result == -ENOENT) {
1719 		if (obj_request->type == OBJ_REQUEST_BIO)
1720 			zero_bio_chain(obj_request->bio_list, 0);
1721 		else
1722 			zero_pages(obj_request->pages, 0, length);
1723 		obj_request->result = 0;
1724 	} else if (xferred < length && !obj_request->result) {
1725 		if (obj_request->type == OBJ_REQUEST_BIO)
1726 			zero_bio_chain(obj_request->bio_list, xferred);
1727 		else
1728 			zero_pages(obj_request->pages, xferred, length);
1729 	}
1730 	obj_request->xferred = length;
1731 	obj_request_done_set(obj_request);
1732 }
1733 
1734 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1735 {
1736 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1737 		obj_request->callback);
1738 	obj_request->callback(obj_request);
1739 }
1740 
1741 static void rbd_obj_request_error(struct rbd_obj_request *obj_request, int err)
1742 {
1743 	obj_request->result = err;
1744 	obj_request->xferred = 0;
1745 	/*
1746 	 * kludge - mirror rbd_obj_request_submit() to match a put in
1747 	 * rbd_img_obj_callback()
1748 	 */
1749 	if (obj_request_img_data_test(obj_request)) {
1750 		WARN_ON(obj_request->callback != rbd_img_obj_callback);
1751 		rbd_img_request_get(obj_request->img_request);
1752 	}
1753 	obj_request_done_set(obj_request);
1754 	rbd_obj_request_complete(obj_request);
1755 }
1756 
1757 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1758 {
1759 	struct rbd_img_request *img_request = NULL;
1760 	struct rbd_device *rbd_dev = NULL;
1761 	bool layered = false;
1762 
1763 	if (obj_request_img_data_test(obj_request)) {
1764 		img_request = obj_request->img_request;
1765 		layered = img_request && img_request_layered_test(img_request);
1766 		rbd_dev = img_request->rbd_dev;
1767 	}
1768 
1769 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1770 		obj_request, img_request, obj_request->result,
1771 		obj_request->xferred, obj_request->length);
1772 	if (layered && obj_request->result == -ENOENT &&
1773 			obj_request->img_offset < rbd_dev->parent_overlap)
1774 		rbd_img_parent_read(obj_request);
1775 	else if (img_request)
1776 		rbd_img_obj_request_read_callback(obj_request);
1777 	else
1778 		obj_request_done_set(obj_request);
1779 }
1780 
1781 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1782 {
1783 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1784 		obj_request->result, obj_request->length);
1785 	/*
1786 	 * There is no such thing as a successful short write.  Set
1787 	 * it to our originally-requested length.
1788 	 */
1789 	obj_request->xferred = obj_request->length;
1790 	obj_request_done_set(obj_request);
1791 }
1792 
1793 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1794 {
1795 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1796 		obj_request->result, obj_request->length);
1797 	/*
1798 	 * There is no such thing as a successful short discard.  Set
1799 	 * it to our originally-requested length.
1800 	 */
1801 	obj_request->xferred = obj_request->length;
1802 	/* discarding a non-existent object is not a problem */
1803 	if (obj_request->result == -ENOENT)
1804 		obj_request->result = 0;
1805 	obj_request_done_set(obj_request);
1806 }
1807 
1808 /*
1809  * For a simple stat call there's nothing to do.  We'll do more if
1810  * this is part of a write sequence for a layered image.
1811  */
1812 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1813 {
1814 	dout("%s: obj %p\n", __func__, obj_request);
1815 	obj_request_done_set(obj_request);
1816 }
1817 
1818 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1819 {
1820 	dout("%s: obj %p\n", __func__, obj_request);
1821 
1822 	if (obj_request_img_data_test(obj_request))
1823 		rbd_osd_copyup_callback(obj_request);
1824 	else
1825 		obj_request_done_set(obj_request);
1826 }
1827 
1828 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1829 {
1830 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1831 	u16 opcode;
1832 
1833 	dout("%s: osd_req %p\n", __func__, osd_req);
1834 	rbd_assert(osd_req == obj_request->osd_req);
1835 	if (obj_request_img_data_test(obj_request)) {
1836 		rbd_assert(obj_request->img_request);
1837 		rbd_assert(obj_request->which != BAD_WHICH);
1838 	} else {
1839 		rbd_assert(obj_request->which == BAD_WHICH);
1840 	}
1841 
1842 	if (osd_req->r_result < 0)
1843 		obj_request->result = osd_req->r_result;
1844 
1845 	/*
1846 	 * We support a 64-bit length, but ultimately it has to be
1847 	 * passed to the block layer, which just supports a 32-bit
1848 	 * length field.
1849 	 */
1850 	obj_request->xferred = osd_req->r_ops[0].outdata_len;
1851 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1852 
1853 	opcode = osd_req->r_ops[0].op;
1854 	switch (opcode) {
1855 	case CEPH_OSD_OP_READ:
1856 		rbd_osd_read_callback(obj_request);
1857 		break;
1858 	case CEPH_OSD_OP_SETALLOCHINT:
1859 		rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1860 			   osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1861 		/* fall through */
1862 	case CEPH_OSD_OP_WRITE:
1863 	case CEPH_OSD_OP_WRITEFULL:
1864 		rbd_osd_write_callback(obj_request);
1865 		break;
1866 	case CEPH_OSD_OP_STAT:
1867 		rbd_osd_stat_callback(obj_request);
1868 		break;
1869 	case CEPH_OSD_OP_DELETE:
1870 	case CEPH_OSD_OP_TRUNCATE:
1871 	case CEPH_OSD_OP_ZERO:
1872 		rbd_osd_discard_callback(obj_request);
1873 		break;
1874 	case CEPH_OSD_OP_CALL:
1875 		rbd_osd_call_callback(obj_request);
1876 		break;
1877 	default:
1878 		rbd_warn(NULL, "unexpected OSD op: object_no %016llx opcode %d",
1879 			 obj_request->object_no, opcode);
1880 		break;
1881 	}
1882 
1883 	if (obj_request_done_test(obj_request))
1884 		rbd_obj_request_complete(obj_request);
1885 }
1886 
1887 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1888 {
1889 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1890 
1891 	rbd_assert(obj_request_img_data_test(obj_request));
1892 	osd_req->r_snapid = obj_request->img_request->snap_id;
1893 }
1894 
1895 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1896 {
1897 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1898 
1899 	ktime_get_real_ts(&osd_req->r_mtime);
1900 	osd_req->r_data_offset = obj_request->offset;
1901 }
1902 
1903 static struct ceph_osd_request *
1904 __rbd_osd_req_create(struct rbd_device *rbd_dev,
1905 		     struct ceph_snap_context *snapc,
1906 		     int num_ops, unsigned int flags,
1907 		     struct rbd_obj_request *obj_request)
1908 {
1909 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1910 	struct ceph_osd_request *req;
1911 	const char *name_format = rbd_dev->image_format == 1 ?
1912 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1913 
1914 	req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1915 	if (!req)
1916 		return NULL;
1917 
1918 	req->r_flags = flags;
1919 	req->r_callback = rbd_osd_req_callback;
1920 	req->r_priv = obj_request;
1921 
1922 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1923 	if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1924 			rbd_dev->header.object_prefix, obj_request->object_no))
1925 		goto err_req;
1926 
1927 	if (ceph_osdc_alloc_messages(req, GFP_NOIO))
1928 		goto err_req;
1929 
1930 	return req;
1931 
1932 err_req:
1933 	ceph_osdc_put_request(req);
1934 	return NULL;
1935 }
1936 
1937 /*
1938  * Create an osd request.  A read request has one osd op (read).
1939  * A write request has either one (watch) or two (hint+write) osd ops.
1940  * (All rbd data writes are prefixed with an allocation hint op, but
1941  * technically osd watch is a write request, hence this distinction.)
1942  */
1943 static struct ceph_osd_request *rbd_osd_req_create(
1944 					struct rbd_device *rbd_dev,
1945 					enum obj_operation_type op_type,
1946 					unsigned int num_ops,
1947 					struct rbd_obj_request *obj_request)
1948 {
1949 	struct ceph_snap_context *snapc = NULL;
1950 
1951 	if (obj_request_img_data_test(obj_request) &&
1952 		(op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1953 		struct rbd_img_request *img_request = obj_request->img_request;
1954 		if (op_type == OBJ_OP_WRITE) {
1955 			rbd_assert(img_request_write_test(img_request));
1956 		} else {
1957 			rbd_assert(img_request_discard_test(img_request));
1958 		}
1959 		snapc = img_request->snapc;
1960 	}
1961 
1962 	rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1963 
1964 	return __rbd_osd_req_create(rbd_dev, snapc, num_ops,
1965 	    (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) ?
1966 	    CEPH_OSD_FLAG_WRITE : CEPH_OSD_FLAG_READ, obj_request);
1967 }
1968 
1969 /*
1970  * Create a copyup osd request based on the information in the object
1971  * request supplied.  A copyup request has two or three osd ops, a
1972  * copyup method call, potentially a hint op, and a write or truncate
1973  * or zero op.
1974  */
1975 static struct ceph_osd_request *
1976 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1977 {
1978 	struct rbd_img_request *img_request;
1979 	int num_osd_ops = 3;
1980 
1981 	rbd_assert(obj_request_img_data_test(obj_request));
1982 	img_request = obj_request->img_request;
1983 	rbd_assert(img_request);
1984 	rbd_assert(img_request_write_test(img_request) ||
1985 			img_request_discard_test(img_request));
1986 
1987 	if (img_request_discard_test(img_request))
1988 		num_osd_ops = 2;
1989 
1990 	return __rbd_osd_req_create(img_request->rbd_dev,
1991 				    img_request->snapc, num_osd_ops,
1992 				    CEPH_OSD_FLAG_WRITE, obj_request);
1993 }
1994 
1995 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1996 {
1997 	ceph_osdc_put_request(osd_req);
1998 }
1999 
2000 static struct rbd_obj_request *
2001 rbd_obj_request_create(enum obj_request_type type)
2002 {
2003 	struct rbd_obj_request *obj_request;
2004 
2005 	rbd_assert(obj_request_type_valid(type));
2006 
2007 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2008 	if (!obj_request)
2009 		return NULL;
2010 
2011 	obj_request->which = BAD_WHICH;
2012 	obj_request->type = type;
2013 	INIT_LIST_HEAD(&obj_request->links);
2014 	kref_init(&obj_request->kref);
2015 
2016 	dout("%s %p\n", __func__, obj_request);
2017 	return obj_request;
2018 }
2019 
2020 static void rbd_obj_request_destroy(struct kref *kref)
2021 {
2022 	struct rbd_obj_request *obj_request;
2023 
2024 	obj_request = container_of(kref, struct rbd_obj_request, kref);
2025 
2026 	dout("%s: obj %p\n", __func__, obj_request);
2027 
2028 	rbd_assert(obj_request->img_request == NULL);
2029 	rbd_assert(obj_request->which == BAD_WHICH);
2030 
2031 	if (obj_request->osd_req)
2032 		rbd_osd_req_destroy(obj_request->osd_req);
2033 
2034 	rbd_assert(obj_request_type_valid(obj_request->type));
2035 	switch (obj_request->type) {
2036 	case OBJ_REQUEST_NODATA:
2037 		break;		/* Nothing to do */
2038 	case OBJ_REQUEST_BIO:
2039 		if (obj_request->bio_list)
2040 			bio_chain_put(obj_request->bio_list);
2041 		break;
2042 	case OBJ_REQUEST_PAGES:
2043 		/* img_data requests don't own their page array */
2044 		if (obj_request->pages &&
2045 		    !obj_request_img_data_test(obj_request))
2046 			ceph_release_page_vector(obj_request->pages,
2047 						obj_request->page_count);
2048 		break;
2049 	}
2050 
2051 	kmem_cache_free(rbd_obj_request_cache, obj_request);
2052 }
2053 
2054 /* It's OK to call this for a device with no parent */
2055 
2056 static void rbd_spec_put(struct rbd_spec *spec);
2057 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2058 {
2059 	rbd_dev_remove_parent(rbd_dev);
2060 	rbd_spec_put(rbd_dev->parent_spec);
2061 	rbd_dev->parent_spec = NULL;
2062 	rbd_dev->parent_overlap = 0;
2063 }
2064 
2065 /*
2066  * Parent image reference counting is used to determine when an
2067  * image's parent fields can be safely torn down--after there are no
2068  * more in-flight requests to the parent image.  When the last
2069  * reference is dropped, cleaning them up is safe.
2070  */
2071 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2072 {
2073 	int counter;
2074 
2075 	if (!rbd_dev->parent_spec)
2076 		return;
2077 
2078 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2079 	if (counter > 0)
2080 		return;
2081 
2082 	/* Last reference; clean up parent data structures */
2083 
2084 	if (!counter)
2085 		rbd_dev_unparent(rbd_dev);
2086 	else
2087 		rbd_warn(rbd_dev, "parent reference underflow");
2088 }
2089 
2090 /*
2091  * If an image has a non-zero parent overlap, get a reference to its
2092  * parent.
2093  *
2094  * Returns true if the rbd device has a parent with a non-zero
2095  * overlap and a reference for it was successfully taken, or
2096  * false otherwise.
2097  */
2098 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2099 {
2100 	int counter = 0;
2101 
2102 	if (!rbd_dev->parent_spec)
2103 		return false;
2104 
2105 	down_read(&rbd_dev->header_rwsem);
2106 	if (rbd_dev->parent_overlap)
2107 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2108 	up_read(&rbd_dev->header_rwsem);
2109 
2110 	if (counter < 0)
2111 		rbd_warn(rbd_dev, "parent reference overflow");
2112 
2113 	return counter > 0;
2114 }
2115 
2116 /*
2117  * Caller is responsible for filling in the list of object requests
2118  * that comprises the image request, and the Linux request pointer
2119  * (if there is one).
2120  */
2121 static struct rbd_img_request *rbd_img_request_create(
2122 					struct rbd_device *rbd_dev,
2123 					u64 offset, u64 length,
2124 					enum obj_operation_type op_type,
2125 					struct ceph_snap_context *snapc)
2126 {
2127 	struct rbd_img_request *img_request;
2128 
2129 	img_request = kmem_cache_zalloc(rbd_img_request_cache, GFP_NOIO);
2130 	if (!img_request)
2131 		return NULL;
2132 
2133 	img_request->rbd_dev = rbd_dev;
2134 	img_request->offset = offset;
2135 	img_request->length = length;
2136 	if (op_type == OBJ_OP_DISCARD) {
2137 		img_request_discard_set(img_request);
2138 		img_request->snapc = snapc;
2139 	} else if (op_type == OBJ_OP_WRITE) {
2140 		img_request_write_set(img_request);
2141 		img_request->snapc = snapc;
2142 	} else {
2143 		img_request->snap_id = rbd_dev->spec->snap_id;
2144 	}
2145 	if (rbd_dev_parent_get(rbd_dev))
2146 		img_request_layered_set(img_request);
2147 
2148 	spin_lock_init(&img_request->completion_lock);
2149 	INIT_LIST_HEAD(&img_request->obj_requests);
2150 	kref_init(&img_request->kref);
2151 
2152 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2153 		obj_op_name(op_type), offset, length, img_request);
2154 
2155 	return img_request;
2156 }
2157 
2158 static void rbd_img_request_destroy(struct kref *kref)
2159 {
2160 	struct rbd_img_request *img_request;
2161 	struct rbd_obj_request *obj_request;
2162 	struct rbd_obj_request *next_obj_request;
2163 
2164 	img_request = container_of(kref, struct rbd_img_request, kref);
2165 
2166 	dout("%s: img %p\n", __func__, img_request);
2167 
2168 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2169 		rbd_img_obj_request_del(img_request, obj_request);
2170 	rbd_assert(img_request->obj_request_count == 0);
2171 
2172 	if (img_request_layered_test(img_request)) {
2173 		img_request_layered_clear(img_request);
2174 		rbd_dev_parent_put(img_request->rbd_dev);
2175 	}
2176 
2177 	if (img_request_write_test(img_request) ||
2178 		img_request_discard_test(img_request))
2179 		ceph_put_snap_context(img_request->snapc);
2180 
2181 	kmem_cache_free(rbd_img_request_cache, img_request);
2182 }
2183 
2184 static struct rbd_img_request *rbd_parent_request_create(
2185 					struct rbd_obj_request *obj_request,
2186 					u64 img_offset, u64 length)
2187 {
2188 	struct rbd_img_request *parent_request;
2189 	struct rbd_device *rbd_dev;
2190 
2191 	rbd_assert(obj_request->img_request);
2192 	rbd_dev = obj_request->img_request->rbd_dev;
2193 
2194 	parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2195 						length, OBJ_OP_READ, NULL);
2196 	if (!parent_request)
2197 		return NULL;
2198 
2199 	img_request_child_set(parent_request);
2200 	rbd_obj_request_get(obj_request);
2201 	parent_request->obj_request = obj_request;
2202 
2203 	return parent_request;
2204 }
2205 
2206 static void rbd_parent_request_destroy(struct kref *kref)
2207 {
2208 	struct rbd_img_request *parent_request;
2209 	struct rbd_obj_request *orig_request;
2210 
2211 	parent_request = container_of(kref, struct rbd_img_request, kref);
2212 	orig_request = parent_request->obj_request;
2213 
2214 	parent_request->obj_request = NULL;
2215 	rbd_obj_request_put(orig_request);
2216 	img_request_child_clear(parent_request);
2217 
2218 	rbd_img_request_destroy(kref);
2219 }
2220 
2221 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2222 {
2223 	struct rbd_img_request *img_request;
2224 	unsigned int xferred;
2225 	int result;
2226 	bool more;
2227 
2228 	rbd_assert(obj_request_img_data_test(obj_request));
2229 	img_request = obj_request->img_request;
2230 
2231 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2232 	xferred = (unsigned int)obj_request->xferred;
2233 	result = obj_request->result;
2234 	if (result) {
2235 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2236 		enum obj_operation_type op_type;
2237 
2238 		if (img_request_discard_test(img_request))
2239 			op_type = OBJ_OP_DISCARD;
2240 		else if (img_request_write_test(img_request))
2241 			op_type = OBJ_OP_WRITE;
2242 		else
2243 			op_type = OBJ_OP_READ;
2244 
2245 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2246 			obj_op_name(op_type), obj_request->length,
2247 			obj_request->img_offset, obj_request->offset);
2248 		rbd_warn(rbd_dev, "  result %d xferred %x",
2249 			result, xferred);
2250 		if (!img_request->result)
2251 			img_request->result = result;
2252 		/*
2253 		 * Need to end I/O on the entire obj_request worth of
2254 		 * bytes in case of error.
2255 		 */
2256 		xferred = obj_request->length;
2257 	}
2258 
2259 	if (img_request_child_test(img_request)) {
2260 		rbd_assert(img_request->obj_request != NULL);
2261 		more = obj_request->which < img_request->obj_request_count - 1;
2262 	} else {
2263 		blk_status_t status = errno_to_blk_status(result);
2264 
2265 		rbd_assert(img_request->rq != NULL);
2266 
2267 		more = blk_update_request(img_request->rq, status, xferred);
2268 		if (!more)
2269 			__blk_mq_end_request(img_request->rq, status);
2270 	}
2271 
2272 	return more;
2273 }
2274 
2275 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2276 {
2277 	struct rbd_img_request *img_request;
2278 	u32 which = obj_request->which;
2279 	bool more = true;
2280 
2281 	rbd_assert(obj_request_img_data_test(obj_request));
2282 	img_request = obj_request->img_request;
2283 
2284 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2285 	rbd_assert(img_request != NULL);
2286 	rbd_assert(img_request->obj_request_count > 0);
2287 	rbd_assert(which != BAD_WHICH);
2288 	rbd_assert(which < img_request->obj_request_count);
2289 
2290 	spin_lock_irq(&img_request->completion_lock);
2291 	if (which != img_request->next_completion)
2292 		goto out;
2293 
2294 	for_each_obj_request_from(img_request, obj_request) {
2295 		rbd_assert(more);
2296 		rbd_assert(which < img_request->obj_request_count);
2297 
2298 		if (!obj_request_done_test(obj_request))
2299 			break;
2300 		more = rbd_img_obj_end_request(obj_request);
2301 		which++;
2302 	}
2303 
2304 	rbd_assert(more ^ (which == img_request->obj_request_count));
2305 	img_request->next_completion = which;
2306 out:
2307 	spin_unlock_irq(&img_request->completion_lock);
2308 	rbd_img_request_put(img_request);
2309 
2310 	if (!more)
2311 		rbd_img_request_complete(img_request);
2312 }
2313 
2314 /*
2315  * Add individual osd ops to the given ceph_osd_request and prepare
2316  * them for submission. num_ops is the current number of
2317  * osd operations already to the object request.
2318  */
2319 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2320 				struct ceph_osd_request *osd_request,
2321 				enum obj_operation_type op_type,
2322 				unsigned int num_ops)
2323 {
2324 	struct rbd_img_request *img_request = obj_request->img_request;
2325 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2326 	u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2327 	u64 offset = obj_request->offset;
2328 	u64 length = obj_request->length;
2329 	u64 img_end;
2330 	u16 opcode;
2331 
2332 	if (op_type == OBJ_OP_DISCARD) {
2333 		if (!offset && length == object_size &&
2334 		    (!img_request_layered_test(img_request) ||
2335 		     !obj_request_overlaps_parent(obj_request))) {
2336 			opcode = CEPH_OSD_OP_DELETE;
2337 		} else if ((offset + length == object_size)) {
2338 			opcode = CEPH_OSD_OP_TRUNCATE;
2339 		} else {
2340 			down_read(&rbd_dev->header_rwsem);
2341 			img_end = rbd_dev->header.image_size;
2342 			up_read(&rbd_dev->header_rwsem);
2343 
2344 			if (obj_request->img_offset + length == img_end)
2345 				opcode = CEPH_OSD_OP_TRUNCATE;
2346 			else
2347 				opcode = CEPH_OSD_OP_ZERO;
2348 		}
2349 	} else if (op_type == OBJ_OP_WRITE) {
2350 		if (!offset && length == object_size)
2351 			opcode = CEPH_OSD_OP_WRITEFULL;
2352 		else
2353 			opcode = CEPH_OSD_OP_WRITE;
2354 		osd_req_op_alloc_hint_init(osd_request, num_ops,
2355 					object_size, object_size);
2356 		num_ops++;
2357 	} else {
2358 		opcode = CEPH_OSD_OP_READ;
2359 	}
2360 
2361 	if (opcode == CEPH_OSD_OP_DELETE)
2362 		osd_req_op_init(osd_request, num_ops, opcode, 0);
2363 	else
2364 		osd_req_op_extent_init(osd_request, num_ops, opcode,
2365 				       offset, length, 0, 0);
2366 
2367 	if (obj_request->type == OBJ_REQUEST_BIO)
2368 		osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2369 					obj_request->bio_list, length);
2370 	else if (obj_request->type == OBJ_REQUEST_PAGES)
2371 		osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2372 					obj_request->pages, length,
2373 					offset & ~PAGE_MASK, false, false);
2374 
2375 	/* Discards are also writes */
2376 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2377 		rbd_osd_req_format_write(obj_request);
2378 	else
2379 		rbd_osd_req_format_read(obj_request);
2380 }
2381 
2382 /*
2383  * Split up an image request into one or more object requests, each
2384  * to a different object.  The "type" parameter indicates whether
2385  * "data_desc" is the pointer to the head of a list of bio
2386  * structures, or the base of a page array.  In either case this
2387  * function assumes data_desc describes memory sufficient to hold
2388  * all data described by the image request.
2389  */
2390 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2391 					enum obj_request_type type,
2392 					void *data_desc)
2393 {
2394 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2395 	struct rbd_obj_request *obj_request = NULL;
2396 	struct rbd_obj_request *next_obj_request;
2397 	struct bio *bio_list = NULL;
2398 	unsigned int bio_offset = 0;
2399 	struct page **pages = NULL;
2400 	enum obj_operation_type op_type;
2401 	u64 img_offset;
2402 	u64 resid;
2403 
2404 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2405 		(int)type, data_desc);
2406 
2407 	img_offset = img_request->offset;
2408 	resid = img_request->length;
2409 	rbd_assert(resid > 0);
2410 	op_type = rbd_img_request_op_type(img_request);
2411 
2412 	if (type == OBJ_REQUEST_BIO) {
2413 		bio_list = data_desc;
2414 		rbd_assert(img_offset ==
2415 			   bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2416 	} else if (type == OBJ_REQUEST_PAGES) {
2417 		pages = data_desc;
2418 	}
2419 
2420 	while (resid) {
2421 		struct ceph_osd_request *osd_req;
2422 		u64 object_no = img_offset >> rbd_dev->header.obj_order;
2423 		u64 offset = rbd_segment_offset(rbd_dev, img_offset);
2424 		u64 length = rbd_segment_length(rbd_dev, img_offset, resid);
2425 
2426 		obj_request = rbd_obj_request_create(type);
2427 		if (!obj_request)
2428 			goto out_unwind;
2429 
2430 		obj_request->object_no = object_no;
2431 		obj_request->offset = offset;
2432 		obj_request->length = length;
2433 
2434 		/*
2435 		 * set obj_request->img_request before creating the
2436 		 * osd_request so that it gets the right snapc
2437 		 */
2438 		rbd_img_obj_request_add(img_request, obj_request);
2439 
2440 		if (type == OBJ_REQUEST_BIO) {
2441 			unsigned int clone_size;
2442 
2443 			rbd_assert(length <= (u64)UINT_MAX);
2444 			clone_size = (unsigned int)length;
2445 			obj_request->bio_list =
2446 					bio_chain_clone_range(&bio_list,
2447 								&bio_offset,
2448 								clone_size,
2449 								GFP_NOIO);
2450 			if (!obj_request->bio_list)
2451 				goto out_unwind;
2452 		} else if (type == OBJ_REQUEST_PAGES) {
2453 			unsigned int page_count;
2454 
2455 			obj_request->pages = pages;
2456 			page_count = (u32)calc_pages_for(offset, length);
2457 			obj_request->page_count = page_count;
2458 			if ((offset + length) & ~PAGE_MASK)
2459 				page_count--;	/* more on last page */
2460 			pages += page_count;
2461 		}
2462 
2463 		osd_req = rbd_osd_req_create(rbd_dev, op_type,
2464 					(op_type == OBJ_OP_WRITE) ? 2 : 1,
2465 					obj_request);
2466 		if (!osd_req)
2467 			goto out_unwind;
2468 
2469 		obj_request->osd_req = osd_req;
2470 		obj_request->callback = rbd_img_obj_callback;
2471 		obj_request->img_offset = img_offset;
2472 
2473 		rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2474 
2475 		img_offset += length;
2476 		resid -= length;
2477 	}
2478 
2479 	return 0;
2480 
2481 out_unwind:
2482 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2483 		rbd_img_obj_request_del(img_request, obj_request);
2484 
2485 	return -ENOMEM;
2486 }
2487 
2488 static void
2489 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2490 {
2491 	struct rbd_img_request *img_request;
2492 	struct rbd_device *rbd_dev;
2493 	struct page **pages;
2494 	u32 page_count;
2495 
2496 	dout("%s: obj %p\n", __func__, obj_request);
2497 
2498 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2499 		obj_request->type == OBJ_REQUEST_NODATA);
2500 	rbd_assert(obj_request_img_data_test(obj_request));
2501 	img_request = obj_request->img_request;
2502 	rbd_assert(img_request);
2503 
2504 	rbd_dev = img_request->rbd_dev;
2505 	rbd_assert(rbd_dev);
2506 
2507 	pages = obj_request->copyup_pages;
2508 	rbd_assert(pages != NULL);
2509 	obj_request->copyup_pages = NULL;
2510 	page_count = obj_request->copyup_page_count;
2511 	rbd_assert(page_count);
2512 	obj_request->copyup_page_count = 0;
2513 	ceph_release_page_vector(pages, page_count);
2514 
2515 	/*
2516 	 * We want the transfer count to reflect the size of the
2517 	 * original write request.  There is no such thing as a
2518 	 * successful short write, so if the request was successful
2519 	 * we can just set it to the originally-requested length.
2520 	 */
2521 	if (!obj_request->result)
2522 		obj_request->xferred = obj_request->length;
2523 
2524 	obj_request_done_set(obj_request);
2525 }
2526 
2527 static void
2528 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2529 {
2530 	struct rbd_obj_request *orig_request;
2531 	struct ceph_osd_request *osd_req;
2532 	struct rbd_device *rbd_dev;
2533 	struct page **pages;
2534 	enum obj_operation_type op_type;
2535 	u32 page_count;
2536 	int img_result;
2537 	u64 parent_length;
2538 
2539 	rbd_assert(img_request_child_test(img_request));
2540 
2541 	/* First get what we need from the image request */
2542 
2543 	pages = img_request->copyup_pages;
2544 	rbd_assert(pages != NULL);
2545 	img_request->copyup_pages = NULL;
2546 	page_count = img_request->copyup_page_count;
2547 	rbd_assert(page_count);
2548 	img_request->copyup_page_count = 0;
2549 
2550 	orig_request = img_request->obj_request;
2551 	rbd_assert(orig_request != NULL);
2552 	rbd_assert(obj_request_type_valid(orig_request->type));
2553 	img_result = img_request->result;
2554 	parent_length = img_request->length;
2555 	rbd_assert(img_result || parent_length == img_request->xferred);
2556 	rbd_img_request_put(img_request);
2557 
2558 	rbd_assert(orig_request->img_request);
2559 	rbd_dev = orig_request->img_request->rbd_dev;
2560 	rbd_assert(rbd_dev);
2561 
2562 	/*
2563 	 * If the overlap has become 0 (most likely because the
2564 	 * image has been flattened) we need to free the pages
2565 	 * and re-submit the original write request.
2566 	 */
2567 	if (!rbd_dev->parent_overlap) {
2568 		ceph_release_page_vector(pages, page_count);
2569 		rbd_obj_request_submit(orig_request);
2570 		return;
2571 	}
2572 
2573 	if (img_result)
2574 		goto out_err;
2575 
2576 	/*
2577 	 * The original osd request is of no use to use any more.
2578 	 * We need a new one that can hold the three ops in a copyup
2579 	 * request.  Allocate the new copyup osd request for the
2580 	 * original request, and release the old one.
2581 	 */
2582 	img_result = -ENOMEM;
2583 	osd_req = rbd_osd_req_create_copyup(orig_request);
2584 	if (!osd_req)
2585 		goto out_err;
2586 	rbd_osd_req_destroy(orig_request->osd_req);
2587 	orig_request->osd_req = osd_req;
2588 	orig_request->copyup_pages = pages;
2589 	orig_request->copyup_page_count = page_count;
2590 
2591 	/* Initialize the copyup op */
2592 
2593 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2594 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2595 						false, false);
2596 
2597 	/* Add the other op(s) */
2598 
2599 	op_type = rbd_img_request_op_type(orig_request->img_request);
2600 	rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2601 
2602 	/* All set, send it off. */
2603 
2604 	rbd_obj_request_submit(orig_request);
2605 	return;
2606 
2607 out_err:
2608 	ceph_release_page_vector(pages, page_count);
2609 	rbd_obj_request_error(orig_request, img_result);
2610 }
2611 
2612 /*
2613  * Read from the parent image the range of data that covers the
2614  * entire target of the given object request.  This is used for
2615  * satisfying a layered image write request when the target of an
2616  * object request from the image request does not exist.
2617  *
2618  * A page array big enough to hold the returned data is allocated
2619  * and supplied to rbd_img_request_fill() as the "data descriptor."
2620  * When the read completes, this page array will be transferred to
2621  * the original object request for the copyup operation.
2622  *
2623  * If an error occurs, it is recorded as the result of the original
2624  * object request in rbd_img_obj_exists_callback().
2625  */
2626 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2627 {
2628 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
2629 	struct rbd_img_request *parent_request = NULL;
2630 	u64 img_offset;
2631 	u64 length;
2632 	struct page **pages = NULL;
2633 	u32 page_count;
2634 	int result;
2635 
2636 	rbd_assert(rbd_dev->parent != NULL);
2637 
2638 	/*
2639 	 * Determine the byte range covered by the object in the
2640 	 * child image to which the original request was to be sent.
2641 	 */
2642 	img_offset = obj_request->img_offset - obj_request->offset;
2643 	length = rbd_obj_bytes(&rbd_dev->header);
2644 
2645 	/*
2646 	 * There is no defined parent data beyond the parent
2647 	 * overlap, so limit what we read at that boundary if
2648 	 * necessary.
2649 	 */
2650 	if (img_offset + length > rbd_dev->parent_overlap) {
2651 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2652 		length = rbd_dev->parent_overlap - img_offset;
2653 	}
2654 
2655 	/*
2656 	 * Allocate a page array big enough to receive the data read
2657 	 * from the parent.
2658 	 */
2659 	page_count = (u32)calc_pages_for(0, length);
2660 	pages = ceph_alloc_page_vector(page_count, GFP_NOIO);
2661 	if (IS_ERR(pages)) {
2662 		result = PTR_ERR(pages);
2663 		pages = NULL;
2664 		goto out_err;
2665 	}
2666 
2667 	result = -ENOMEM;
2668 	parent_request = rbd_parent_request_create(obj_request,
2669 						img_offset, length);
2670 	if (!parent_request)
2671 		goto out_err;
2672 
2673 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2674 	if (result)
2675 		goto out_err;
2676 
2677 	parent_request->copyup_pages = pages;
2678 	parent_request->copyup_page_count = page_count;
2679 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2680 
2681 	result = rbd_img_request_submit(parent_request);
2682 	if (!result)
2683 		return 0;
2684 
2685 	parent_request->copyup_pages = NULL;
2686 	parent_request->copyup_page_count = 0;
2687 out_err:
2688 	if (pages)
2689 		ceph_release_page_vector(pages, page_count);
2690 	if (parent_request)
2691 		rbd_img_request_put(parent_request);
2692 	return result;
2693 }
2694 
2695 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2696 {
2697 	struct rbd_obj_request *orig_request;
2698 	struct rbd_device *rbd_dev;
2699 	int result;
2700 
2701 	rbd_assert(!obj_request_img_data_test(obj_request));
2702 
2703 	/*
2704 	 * All we need from the object request is the original
2705 	 * request and the result of the STAT op.  Grab those, then
2706 	 * we're done with the request.
2707 	 */
2708 	orig_request = obj_request->obj_request;
2709 	obj_request->obj_request = NULL;
2710 	rbd_obj_request_put(orig_request);
2711 	rbd_assert(orig_request);
2712 	rbd_assert(orig_request->img_request);
2713 
2714 	result = obj_request->result;
2715 	obj_request->result = 0;
2716 
2717 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2718 		obj_request, orig_request, result,
2719 		obj_request->xferred, obj_request->length);
2720 	rbd_obj_request_put(obj_request);
2721 
2722 	/*
2723 	 * If the overlap has become 0 (most likely because the
2724 	 * image has been flattened) we need to re-submit the
2725 	 * original request.
2726 	 */
2727 	rbd_dev = orig_request->img_request->rbd_dev;
2728 	if (!rbd_dev->parent_overlap) {
2729 		rbd_obj_request_submit(orig_request);
2730 		return;
2731 	}
2732 
2733 	/*
2734 	 * Our only purpose here is to determine whether the object
2735 	 * exists, and we don't want to treat the non-existence as
2736 	 * an error.  If something else comes back, transfer the
2737 	 * error to the original request and complete it now.
2738 	 */
2739 	if (!result) {
2740 		obj_request_existence_set(orig_request, true);
2741 	} else if (result == -ENOENT) {
2742 		obj_request_existence_set(orig_request, false);
2743 	} else {
2744 		goto fail_orig_request;
2745 	}
2746 
2747 	/*
2748 	 * Resubmit the original request now that we have recorded
2749 	 * whether the target object exists.
2750 	 */
2751 	result = rbd_img_obj_request_submit(orig_request);
2752 	if (result)
2753 		goto fail_orig_request;
2754 
2755 	return;
2756 
2757 fail_orig_request:
2758 	rbd_obj_request_error(orig_request, result);
2759 }
2760 
2761 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2762 {
2763 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
2764 	struct rbd_obj_request *stat_request;
2765 	struct page **pages;
2766 	u32 page_count;
2767 	size_t size;
2768 	int ret;
2769 
2770 	stat_request = rbd_obj_request_create(OBJ_REQUEST_PAGES);
2771 	if (!stat_request)
2772 		return -ENOMEM;
2773 
2774 	stat_request->object_no = obj_request->object_no;
2775 
2776 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2777 						   stat_request);
2778 	if (!stat_request->osd_req) {
2779 		ret = -ENOMEM;
2780 		goto fail_stat_request;
2781 	}
2782 
2783 	/*
2784 	 * The response data for a STAT call consists of:
2785 	 *     le64 length;
2786 	 *     struct {
2787 	 *         le32 tv_sec;
2788 	 *         le32 tv_nsec;
2789 	 *     } mtime;
2790 	 */
2791 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2792 	page_count = (u32)calc_pages_for(0, size);
2793 	pages = ceph_alloc_page_vector(page_count, GFP_NOIO);
2794 	if (IS_ERR(pages)) {
2795 		ret = PTR_ERR(pages);
2796 		goto fail_stat_request;
2797 	}
2798 
2799 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2800 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2801 				     false, false);
2802 
2803 	rbd_obj_request_get(obj_request);
2804 	stat_request->obj_request = obj_request;
2805 	stat_request->pages = pages;
2806 	stat_request->page_count = page_count;
2807 	stat_request->callback = rbd_img_obj_exists_callback;
2808 
2809 	rbd_obj_request_submit(stat_request);
2810 	return 0;
2811 
2812 fail_stat_request:
2813 	rbd_obj_request_put(stat_request);
2814 	return ret;
2815 }
2816 
2817 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2818 {
2819 	struct rbd_img_request *img_request = obj_request->img_request;
2820 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2821 
2822 	/* Reads */
2823 	if (!img_request_write_test(img_request) &&
2824 	    !img_request_discard_test(img_request))
2825 		return true;
2826 
2827 	/* Non-layered writes */
2828 	if (!img_request_layered_test(img_request))
2829 		return true;
2830 
2831 	/*
2832 	 * Layered writes outside of the parent overlap range don't
2833 	 * share any data with the parent.
2834 	 */
2835 	if (!obj_request_overlaps_parent(obj_request))
2836 		return true;
2837 
2838 	/*
2839 	 * Entire-object layered writes - we will overwrite whatever
2840 	 * parent data there is anyway.
2841 	 */
2842 	if (!obj_request->offset &&
2843 	    obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2844 		return true;
2845 
2846 	/*
2847 	 * If the object is known to already exist, its parent data has
2848 	 * already been copied.
2849 	 */
2850 	if (obj_request_known_test(obj_request) &&
2851 	    obj_request_exists_test(obj_request))
2852 		return true;
2853 
2854 	return false;
2855 }
2856 
2857 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2858 {
2859 	rbd_assert(obj_request_img_data_test(obj_request));
2860 	rbd_assert(obj_request_type_valid(obj_request->type));
2861 	rbd_assert(obj_request->img_request);
2862 
2863 	if (img_obj_request_simple(obj_request)) {
2864 		rbd_obj_request_submit(obj_request);
2865 		return 0;
2866 	}
2867 
2868 	/*
2869 	 * It's a layered write.  The target object might exist but
2870 	 * we may not know that yet.  If we know it doesn't exist,
2871 	 * start by reading the data for the full target object from
2872 	 * the parent so we can use it for a copyup to the target.
2873 	 */
2874 	if (obj_request_known_test(obj_request))
2875 		return rbd_img_obj_parent_read_full(obj_request);
2876 
2877 	/* We don't know whether the target exists.  Go find out. */
2878 
2879 	return rbd_img_obj_exists_submit(obj_request);
2880 }
2881 
2882 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2883 {
2884 	struct rbd_obj_request *obj_request;
2885 	struct rbd_obj_request *next_obj_request;
2886 	int ret = 0;
2887 
2888 	dout("%s: img %p\n", __func__, img_request);
2889 
2890 	rbd_img_request_get(img_request);
2891 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2892 		ret = rbd_img_obj_request_submit(obj_request);
2893 		if (ret)
2894 			goto out_put_ireq;
2895 	}
2896 
2897 out_put_ireq:
2898 	rbd_img_request_put(img_request);
2899 	return ret;
2900 }
2901 
2902 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2903 {
2904 	struct rbd_obj_request *obj_request;
2905 	struct rbd_device *rbd_dev;
2906 	u64 obj_end;
2907 	u64 img_xferred;
2908 	int img_result;
2909 
2910 	rbd_assert(img_request_child_test(img_request));
2911 
2912 	/* First get what we need from the image request and release it */
2913 
2914 	obj_request = img_request->obj_request;
2915 	img_xferred = img_request->xferred;
2916 	img_result = img_request->result;
2917 	rbd_img_request_put(img_request);
2918 
2919 	/*
2920 	 * If the overlap has become 0 (most likely because the
2921 	 * image has been flattened) we need to re-submit the
2922 	 * original request.
2923 	 */
2924 	rbd_assert(obj_request);
2925 	rbd_assert(obj_request->img_request);
2926 	rbd_dev = obj_request->img_request->rbd_dev;
2927 	if (!rbd_dev->parent_overlap) {
2928 		rbd_obj_request_submit(obj_request);
2929 		return;
2930 	}
2931 
2932 	obj_request->result = img_result;
2933 	if (obj_request->result)
2934 		goto out;
2935 
2936 	/*
2937 	 * We need to zero anything beyond the parent overlap
2938 	 * boundary.  Since rbd_img_obj_request_read_callback()
2939 	 * will zero anything beyond the end of a short read, an
2940 	 * easy way to do this is to pretend the data from the
2941 	 * parent came up short--ending at the overlap boundary.
2942 	 */
2943 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2944 	obj_end = obj_request->img_offset + obj_request->length;
2945 	if (obj_end > rbd_dev->parent_overlap) {
2946 		u64 xferred = 0;
2947 
2948 		if (obj_request->img_offset < rbd_dev->parent_overlap)
2949 			xferred = rbd_dev->parent_overlap -
2950 					obj_request->img_offset;
2951 
2952 		obj_request->xferred = min(img_xferred, xferred);
2953 	} else {
2954 		obj_request->xferred = img_xferred;
2955 	}
2956 out:
2957 	rbd_img_obj_request_read_callback(obj_request);
2958 	rbd_obj_request_complete(obj_request);
2959 }
2960 
2961 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2962 {
2963 	struct rbd_img_request *img_request;
2964 	int result;
2965 
2966 	rbd_assert(obj_request_img_data_test(obj_request));
2967 	rbd_assert(obj_request->img_request != NULL);
2968 	rbd_assert(obj_request->result == (s32) -ENOENT);
2969 	rbd_assert(obj_request_type_valid(obj_request->type));
2970 
2971 	/* rbd_read_finish(obj_request, obj_request->length); */
2972 	img_request = rbd_parent_request_create(obj_request,
2973 						obj_request->img_offset,
2974 						obj_request->length);
2975 	result = -ENOMEM;
2976 	if (!img_request)
2977 		goto out_err;
2978 
2979 	if (obj_request->type == OBJ_REQUEST_BIO)
2980 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2981 						obj_request->bio_list);
2982 	else
2983 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2984 						obj_request->pages);
2985 	if (result)
2986 		goto out_err;
2987 
2988 	img_request->callback = rbd_img_parent_read_callback;
2989 	result = rbd_img_request_submit(img_request);
2990 	if (result)
2991 		goto out_err;
2992 
2993 	return;
2994 out_err:
2995 	if (img_request)
2996 		rbd_img_request_put(img_request);
2997 	obj_request->result = result;
2998 	obj_request->xferred = 0;
2999 	obj_request_done_set(obj_request);
3000 }
3001 
3002 static const struct rbd_client_id rbd_empty_cid;
3003 
3004 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3005 			  const struct rbd_client_id *rhs)
3006 {
3007 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3008 }
3009 
3010 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3011 {
3012 	struct rbd_client_id cid;
3013 
3014 	mutex_lock(&rbd_dev->watch_mutex);
3015 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3016 	cid.handle = rbd_dev->watch_cookie;
3017 	mutex_unlock(&rbd_dev->watch_mutex);
3018 	return cid;
3019 }
3020 
3021 /*
3022  * lock_rwsem must be held for write
3023  */
3024 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3025 			      const struct rbd_client_id *cid)
3026 {
3027 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3028 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3029 	     cid->gid, cid->handle);
3030 	rbd_dev->owner_cid = *cid; /* struct */
3031 }
3032 
3033 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3034 {
3035 	mutex_lock(&rbd_dev->watch_mutex);
3036 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3037 	mutex_unlock(&rbd_dev->watch_mutex);
3038 }
3039 
3040 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3041 {
3042 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3043 
3044 	strcpy(rbd_dev->lock_cookie, cookie);
3045 	rbd_set_owner_cid(rbd_dev, &cid);
3046 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3047 }
3048 
3049 /*
3050  * lock_rwsem must be held for write
3051  */
3052 static int rbd_lock(struct rbd_device *rbd_dev)
3053 {
3054 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3055 	char cookie[32];
3056 	int ret;
3057 
3058 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3059 		rbd_dev->lock_cookie[0] != '\0');
3060 
3061 	format_lock_cookie(rbd_dev, cookie);
3062 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3063 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3064 			    RBD_LOCK_TAG, "", 0);
3065 	if (ret)
3066 		return ret;
3067 
3068 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3069 	__rbd_lock(rbd_dev, cookie);
3070 	return 0;
3071 }
3072 
3073 /*
3074  * lock_rwsem must be held for write
3075  */
3076 static void rbd_unlock(struct rbd_device *rbd_dev)
3077 {
3078 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3079 	int ret;
3080 
3081 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3082 		rbd_dev->lock_cookie[0] == '\0');
3083 
3084 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3085 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
3086 	if (ret && ret != -ENOENT)
3087 		rbd_warn(rbd_dev, "failed to unlock: %d", ret);
3088 
3089 	/* treat errors as the image is unlocked */
3090 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3091 	rbd_dev->lock_cookie[0] = '\0';
3092 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3093 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3094 }
3095 
3096 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3097 				enum rbd_notify_op notify_op,
3098 				struct page ***preply_pages,
3099 				size_t *preply_len)
3100 {
3101 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3102 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3103 	int buf_size = 4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN;
3104 	char buf[buf_size];
3105 	void *p = buf;
3106 
3107 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3108 
3109 	/* encode *LockPayload NotifyMessage (op + ClientId) */
3110 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3111 	ceph_encode_32(&p, notify_op);
3112 	ceph_encode_64(&p, cid.gid);
3113 	ceph_encode_64(&p, cid.handle);
3114 
3115 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3116 				&rbd_dev->header_oloc, buf, buf_size,
3117 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3118 }
3119 
3120 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3121 			       enum rbd_notify_op notify_op)
3122 {
3123 	struct page **reply_pages;
3124 	size_t reply_len;
3125 
3126 	__rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
3127 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3128 }
3129 
3130 static void rbd_notify_acquired_lock(struct work_struct *work)
3131 {
3132 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3133 						  acquired_lock_work);
3134 
3135 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3136 }
3137 
3138 static void rbd_notify_released_lock(struct work_struct *work)
3139 {
3140 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3141 						  released_lock_work);
3142 
3143 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3144 }
3145 
3146 static int rbd_request_lock(struct rbd_device *rbd_dev)
3147 {
3148 	struct page **reply_pages;
3149 	size_t reply_len;
3150 	bool lock_owner_responded = false;
3151 	int ret;
3152 
3153 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3154 
3155 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3156 				   &reply_pages, &reply_len);
3157 	if (ret && ret != -ETIMEDOUT) {
3158 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3159 		goto out;
3160 	}
3161 
3162 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3163 		void *p = page_address(reply_pages[0]);
3164 		void *const end = p + reply_len;
3165 		u32 n;
3166 
3167 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3168 		while (n--) {
3169 			u8 struct_v;
3170 			u32 len;
3171 
3172 			ceph_decode_need(&p, end, 8 + 8, e_inval);
3173 			p += 8 + 8; /* skip gid and cookie */
3174 
3175 			ceph_decode_32_safe(&p, end, len, e_inval);
3176 			if (!len)
3177 				continue;
3178 
3179 			if (lock_owner_responded) {
3180 				rbd_warn(rbd_dev,
3181 					 "duplicate lock owners detected");
3182 				ret = -EIO;
3183 				goto out;
3184 			}
3185 
3186 			lock_owner_responded = true;
3187 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3188 						  &struct_v, &len);
3189 			if (ret) {
3190 				rbd_warn(rbd_dev,
3191 					 "failed to decode ResponseMessage: %d",
3192 					 ret);
3193 				goto e_inval;
3194 			}
3195 
3196 			ret = ceph_decode_32(&p);
3197 		}
3198 	}
3199 
3200 	if (!lock_owner_responded) {
3201 		rbd_warn(rbd_dev, "no lock owners detected");
3202 		ret = -ETIMEDOUT;
3203 	}
3204 
3205 out:
3206 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3207 	return ret;
3208 
3209 e_inval:
3210 	ret = -EINVAL;
3211 	goto out;
3212 }
3213 
3214 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
3215 {
3216 	dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
3217 
3218 	cancel_delayed_work(&rbd_dev->lock_dwork);
3219 	if (wake_all)
3220 		wake_up_all(&rbd_dev->lock_waitq);
3221 	else
3222 		wake_up(&rbd_dev->lock_waitq);
3223 }
3224 
3225 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3226 			       struct ceph_locker **lockers, u32 *num_lockers)
3227 {
3228 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3229 	u8 lock_type;
3230 	char *lock_tag;
3231 	int ret;
3232 
3233 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3234 
3235 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3236 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3237 				 &lock_type, &lock_tag, lockers, num_lockers);
3238 	if (ret)
3239 		return ret;
3240 
3241 	if (*num_lockers == 0) {
3242 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3243 		goto out;
3244 	}
3245 
3246 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3247 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3248 			 lock_tag);
3249 		ret = -EBUSY;
3250 		goto out;
3251 	}
3252 
3253 	if (lock_type == CEPH_CLS_LOCK_SHARED) {
3254 		rbd_warn(rbd_dev, "shared lock type detected");
3255 		ret = -EBUSY;
3256 		goto out;
3257 	}
3258 
3259 	if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3260 		    strlen(RBD_LOCK_COOKIE_PREFIX))) {
3261 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3262 			 (*lockers)[0].id.cookie);
3263 		ret = -EBUSY;
3264 		goto out;
3265 	}
3266 
3267 out:
3268 	kfree(lock_tag);
3269 	return ret;
3270 }
3271 
3272 static int find_watcher(struct rbd_device *rbd_dev,
3273 			const struct ceph_locker *locker)
3274 {
3275 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3276 	struct ceph_watch_item *watchers;
3277 	u32 num_watchers;
3278 	u64 cookie;
3279 	int i;
3280 	int ret;
3281 
3282 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3283 				      &rbd_dev->header_oloc, &watchers,
3284 				      &num_watchers);
3285 	if (ret)
3286 		return ret;
3287 
3288 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3289 	for (i = 0; i < num_watchers; i++) {
3290 		if (!memcmp(&watchers[i].addr, &locker->info.addr,
3291 			    sizeof(locker->info.addr)) &&
3292 		    watchers[i].cookie == cookie) {
3293 			struct rbd_client_id cid = {
3294 				.gid = le64_to_cpu(watchers[i].name.num),
3295 				.handle = cookie,
3296 			};
3297 
3298 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3299 			     rbd_dev, cid.gid, cid.handle);
3300 			rbd_set_owner_cid(rbd_dev, &cid);
3301 			ret = 1;
3302 			goto out;
3303 		}
3304 	}
3305 
3306 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3307 	ret = 0;
3308 out:
3309 	kfree(watchers);
3310 	return ret;
3311 }
3312 
3313 /*
3314  * lock_rwsem must be held for write
3315  */
3316 static int rbd_try_lock(struct rbd_device *rbd_dev)
3317 {
3318 	struct ceph_client *client = rbd_dev->rbd_client->client;
3319 	struct ceph_locker *lockers;
3320 	u32 num_lockers;
3321 	int ret;
3322 
3323 	for (;;) {
3324 		ret = rbd_lock(rbd_dev);
3325 		if (ret != -EBUSY)
3326 			return ret;
3327 
3328 		/* determine if the current lock holder is still alive */
3329 		ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3330 		if (ret)
3331 			return ret;
3332 
3333 		if (num_lockers == 0)
3334 			goto again;
3335 
3336 		ret = find_watcher(rbd_dev, lockers);
3337 		if (ret) {
3338 			if (ret > 0)
3339 				ret = 0; /* have to request lock */
3340 			goto out;
3341 		}
3342 
3343 		rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
3344 			 ENTITY_NAME(lockers[0].id.name));
3345 
3346 		ret = ceph_monc_blacklist_add(&client->monc,
3347 					      &lockers[0].info.addr);
3348 		if (ret) {
3349 			rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
3350 				 ENTITY_NAME(lockers[0].id.name), ret);
3351 			goto out;
3352 		}
3353 
3354 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3355 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3356 					  lockers[0].id.cookie,
3357 					  &lockers[0].id.name);
3358 		if (ret && ret != -ENOENT)
3359 			goto out;
3360 
3361 again:
3362 		ceph_free_lockers(lockers, num_lockers);
3363 	}
3364 
3365 out:
3366 	ceph_free_lockers(lockers, num_lockers);
3367 	return ret;
3368 }
3369 
3370 /*
3371  * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
3372  */
3373 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
3374 						int *pret)
3375 {
3376 	enum rbd_lock_state lock_state;
3377 
3378 	down_read(&rbd_dev->lock_rwsem);
3379 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3380 	     rbd_dev->lock_state);
3381 	if (__rbd_is_lock_owner(rbd_dev)) {
3382 		lock_state = rbd_dev->lock_state;
3383 		up_read(&rbd_dev->lock_rwsem);
3384 		return lock_state;
3385 	}
3386 
3387 	up_read(&rbd_dev->lock_rwsem);
3388 	down_write(&rbd_dev->lock_rwsem);
3389 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3390 	     rbd_dev->lock_state);
3391 	if (!__rbd_is_lock_owner(rbd_dev)) {
3392 		*pret = rbd_try_lock(rbd_dev);
3393 		if (*pret)
3394 			rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
3395 	}
3396 
3397 	lock_state = rbd_dev->lock_state;
3398 	up_write(&rbd_dev->lock_rwsem);
3399 	return lock_state;
3400 }
3401 
3402 static void rbd_acquire_lock(struct work_struct *work)
3403 {
3404 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3405 					    struct rbd_device, lock_dwork);
3406 	enum rbd_lock_state lock_state;
3407 	int ret = 0;
3408 
3409 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3410 again:
3411 	lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
3412 	if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
3413 		if (lock_state == RBD_LOCK_STATE_LOCKED)
3414 			wake_requests(rbd_dev, true);
3415 		dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
3416 		     rbd_dev, lock_state, ret);
3417 		return;
3418 	}
3419 
3420 	ret = rbd_request_lock(rbd_dev);
3421 	if (ret == -ETIMEDOUT) {
3422 		goto again; /* treat this as a dead client */
3423 	} else if (ret == -EROFS) {
3424 		rbd_warn(rbd_dev, "peer will not release lock");
3425 		/*
3426 		 * If this is rbd_add_acquire_lock(), we want to fail
3427 		 * immediately -- reuse BLACKLISTED flag.  Otherwise we
3428 		 * want to block.
3429 		 */
3430 		if (!(rbd_dev->disk->flags & GENHD_FL_UP)) {
3431 			set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3432 			/* wake "rbd map --exclusive" process */
3433 			wake_requests(rbd_dev, false);
3434 		}
3435 	} else if (ret < 0) {
3436 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3437 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3438 				 RBD_RETRY_DELAY);
3439 	} else {
3440 		/*
3441 		 * lock owner acked, but resend if we don't see them
3442 		 * release the lock
3443 		 */
3444 		dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3445 		     rbd_dev);
3446 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3447 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3448 	}
3449 }
3450 
3451 /*
3452  * lock_rwsem must be held for write
3453  */
3454 static bool rbd_release_lock(struct rbd_device *rbd_dev)
3455 {
3456 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3457 	     rbd_dev->lock_state);
3458 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3459 		return false;
3460 
3461 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3462 	downgrade_write(&rbd_dev->lock_rwsem);
3463 	/*
3464 	 * Ensure that all in-flight IO is flushed.
3465 	 *
3466 	 * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3467 	 * may be shared with other devices.
3468 	 */
3469 	ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3470 	up_read(&rbd_dev->lock_rwsem);
3471 
3472 	down_write(&rbd_dev->lock_rwsem);
3473 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3474 	     rbd_dev->lock_state);
3475 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3476 		return false;
3477 
3478 	rbd_unlock(rbd_dev);
3479 	/*
3480 	 * Give others a chance to grab the lock - we would re-acquire
3481 	 * almost immediately if we got new IO during ceph_osdc_sync()
3482 	 * otherwise.  We need to ack our own notifications, so this
3483 	 * lock_dwork will be requeued from rbd_wait_state_locked()
3484 	 * after wake_requests() in rbd_handle_released_lock().
3485 	 */
3486 	cancel_delayed_work(&rbd_dev->lock_dwork);
3487 	return true;
3488 }
3489 
3490 static void rbd_release_lock_work(struct work_struct *work)
3491 {
3492 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3493 						  unlock_work);
3494 
3495 	down_write(&rbd_dev->lock_rwsem);
3496 	rbd_release_lock(rbd_dev);
3497 	up_write(&rbd_dev->lock_rwsem);
3498 }
3499 
3500 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3501 				     void **p)
3502 {
3503 	struct rbd_client_id cid = { 0 };
3504 
3505 	if (struct_v >= 2) {
3506 		cid.gid = ceph_decode_64(p);
3507 		cid.handle = ceph_decode_64(p);
3508 	}
3509 
3510 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3511 	     cid.handle);
3512 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3513 		down_write(&rbd_dev->lock_rwsem);
3514 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3515 			/*
3516 			 * we already know that the remote client is
3517 			 * the owner
3518 			 */
3519 			up_write(&rbd_dev->lock_rwsem);
3520 			return;
3521 		}
3522 
3523 		rbd_set_owner_cid(rbd_dev, &cid);
3524 		downgrade_write(&rbd_dev->lock_rwsem);
3525 	} else {
3526 		down_read(&rbd_dev->lock_rwsem);
3527 	}
3528 
3529 	if (!__rbd_is_lock_owner(rbd_dev))
3530 		wake_requests(rbd_dev, false);
3531 	up_read(&rbd_dev->lock_rwsem);
3532 }
3533 
3534 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3535 				     void **p)
3536 {
3537 	struct rbd_client_id cid = { 0 };
3538 
3539 	if (struct_v >= 2) {
3540 		cid.gid = ceph_decode_64(p);
3541 		cid.handle = ceph_decode_64(p);
3542 	}
3543 
3544 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3545 	     cid.handle);
3546 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3547 		down_write(&rbd_dev->lock_rwsem);
3548 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3549 			dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3550 			     __func__, rbd_dev, cid.gid, cid.handle,
3551 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3552 			up_write(&rbd_dev->lock_rwsem);
3553 			return;
3554 		}
3555 
3556 		rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3557 		downgrade_write(&rbd_dev->lock_rwsem);
3558 	} else {
3559 		down_read(&rbd_dev->lock_rwsem);
3560 	}
3561 
3562 	if (!__rbd_is_lock_owner(rbd_dev))
3563 		wake_requests(rbd_dev, false);
3564 	up_read(&rbd_dev->lock_rwsem);
3565 }
3566 
3567 /*
3568  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
3569  * ResponseMessage is needed.
3570  */
3571 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3572 				   void **p)
3573 {
3574 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3575 	struct rbd_client_id cid = { 0 };
3576 	int result = 1;
3577 
3578 	if (struct_v >= 2) {
3579 		cid.gid = ceph_decode_64(p);
3580 		cid.handle = ceph_decode_64(p);
3581 	}
3582 
3583 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3584 	     cid.handle);
3585 	if (rbd_cid_equal(&cid, &my_cid))
3586 		return result;
3587 
3588 	down_read(&rbd_dev->lock_rwsem);
3589 	if (__rbd_is_lock_owner(rbd_dev)) {
3590 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
3591 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
3592 			goto out_unlock;
3593 
3594 		/*
3595 		 * encode ResponseMessage(0) so the peer can detect
3596 		 * a missing owner
3597 		 */
3598 		result = 0;
3599 
3600 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3601 			if (!rbd_dev->opts->exclusive) {
3602 				dout("%s rbd_dev %p queueing unlock_work\n",
3603 				     __func__, rbd_dev);
3604 				queue_work(rbd_dev->task_wq,
3605 					   &rbd_dev->unlock_work);
3606 			} else {
3607 				/* refuse to release the lock */
3608 				result = -EROFS;
3609 			}
3610 		}
3611 	}
3612 
3613 out_unlock:
3614 	up_read(&rbd_dev->lock_rwsem);
3615 	return result;
3616 }
3617 
3618 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3619 				     u64 notify_id, u64 cookie, s32 *result)
3620 {
3621 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3622 	int buf_size = 4 + CEPH_ENCODING_START_BLK_LEN;
3623 	char buf[buf_size];
3624 	int ret;
3625 
3626 	if (result) {
3627 		void *p = buf;
3628 
3629 		/* encode ResponseMessage */
3630 		ceph_start_encoding(&p, 1, 1,
3631 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
3632 		ceph_encode_32(&p, *result);
3633 	} else {
3634 		buf_size = 0;
3635 	}
3636 
3637 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3638 				   &rbd_dev->header_oloc, notify_id, cookie,
3639 				   buf, buf_size);
3640 	if (ret)
3641 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3642 }
3643 
3644 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3645 				   u64 cookie)
3646 {
3647 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3648 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3649 }
3650 
3651 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3652 					  u64 notify_id, u64 cookie, s32 result)
3653 {
3654 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3655 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3656 }
3657 
3658 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3659 			 u64 notifier_id, void *data, size_t data_len)
3660 {
3661 	struct rbd_device *rbd_dev = arg;
3662 	void *p = data;
3663 	void *const end = p + data_len;
3664 	u8 struct_v = 0;
3665 	u32 len;
3666 	u32 notify_op;
3667 	int ret;
3668 
3669 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3670 	     __func__, rbd_dev, cookie, notify_id, data_len);
3671 	if (data_len) {
3672 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3673 					  &struct_v, &len);
3674 		if (ret) {
3675 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3676 				 ret);
3677 			return;
3678 		}
3679 
3680 		notify_op = ceph_decode_32(&p);
3681 	} else {
3682 		/* legacy notification for header updates */
3683 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3684 		len = 0;
3685 	}
3686 
3687 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3688 	switch (notify_op) {
3689 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3690 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3691 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3692 		break;
3693 	case RBD_NOTIFY_OP_RELEASED_LOCK:
3694 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
3695 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3696 		break;
3697 	case RBD_NOTIFY_OP_REQUEST_LOCK:
3698 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
3699 		if (ret <= 0)
3700 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
3701 						      cookie, ret);
3702 		else
3703 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3704 		break;
3705 	case RBD_NOTIFY_OP_HEADER_UPDATE:
3706 		ret = rbd_dev_refresh(rbd_dev);
3707 		if (ret)
3708 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
3709 
3710 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3711 		break;
3712 	default:
3713 		if (rbd_is_lock_owner(rbd_dev))
3714 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
3715 						      cookie, -EOPNOTSUPP);
3716 		else
3717 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3718 		break;
3719 	}
3720 }
3721 
3722 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3723 
3724 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3725 {
3726 	struct rbd_device *rbd_dev = arg;
3727 
3728 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
3729 
3730 	down_write(&rbd_dev->lock_rwsem);
3731 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3732 	up_write(&rbd_dev->lock_rwsem);
3733 
3734 	mutex_lock(&rbd_dev->watch_mutex);
3735 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3736 		__rbd_unregister_watch(rbd_dev);
3737 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3738 
3739 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3740 	}
3741 	mutex_unlock(&rbd_dev->watch_mutex);
3742 }
3743 
3744 /*
3745  * watch_mutex must be locked
3746  */
3747 static int __rbd_register_watch(struct rbd_device *rbd_dev)
3748 {
3749 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3750 	struct ceph_osd_linger_request *handle;
3751 
3752 	rbd_assert(!rbd_dev->watch_handle);
3753 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3754 
3755 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3756 				 &rbd_dev->header_oloc, rbd_watch_cb,
3757 				 rbd_watch_errcb, rbd_dev);
3758 	if (IS_ERR(handle))
3759 		return PTR_ERR(handle);
3760 
3761 	rbd_dev->watch_handle = handle;
3762 	return 0;
3763 }
3764 
3765 /*
3766  * watch_mutex must be locked
3767  */
3768 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3769 {
3770 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3771 	int ret;
3772 
3773 	rbd_assert(rbd_dev->watch_handle);
3774 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3775 
3776 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3777 	if (ret)
3778 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3779 
3780 	rbd_dev->watch_handle = NULL;
3781 }
3782 
3783 static int rbd_register_watch(struct rbd_device *rbd_dev)
3784 {
3785 	int ret;
3786 
3787 	mutex_lock(&rbd_dev->watch_mutex);
3788 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3789 	ret = __rbd_register_watch(rbd_dev);
3790 	if (ret)
3791 		goto out;
3792 
3793 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3794 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3795 
3796 out:
3797 	mutex_unlock(&rbd_dev->watch_mutex);
3798 	return ret;
3799 }
3800 
3801 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3802 {
3803 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3804 
3805 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3806 	cancel_work_sync(&rbd_dev->acquired_lock_work);
3807 	cancel_work_sync(&rbd_dev->released_lock_work);
3808 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3809 	cancel_work_sync(&rbd_dev->unlock_work);
3810 }
3811 
3812 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3813 {
3814 	WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3815 	cancel_tasks_sync(rbd_dev);
3816 
3817 	mutex_lock(&rbd_dev->watch_mutex);
3818 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3819 		__rbd_unregister_watch(rbd_dev);
3820 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3821 	mutex_unlock(&rbd_dev->watch_mutex);
3822 
3823 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3824 }
3825 
3826 /*
3827  * lock_rwsem must be held for write
3828  */
3829 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
3830 {
3831 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3832 	char cookie[32];
3833 	int ret;
3834 
3835 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3836 
3837 	format_lock_cookie(rbd_dev, cookie);
3838 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
3839 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3840 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
3841 				  RBD_LOCK_TAG, cookie);
3842 	if (ret) {
3843 		if (ret != -EOPNOTSUPP)
3844 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
3845 				 ret);
3846 
3847 		/*
3848 		 * Lock cookie cannot be updated on older OSDs, so do
3849 		 * a manual release and queue an acquire.
3850 		 */
3851 		if (rbd_release_lock(rbd_dev))
3852 			queue_delayed_work(rbd_dev->task_wq,
3853 					   &rbd_dev->lock_dwork, 0);
3854 	} else {
3855 		__rbd_lock(rbd_dev, cookie);
3856 	}
3857 }
3858 
3859 static void rbd_reregister_watch(struct work_struct *work)
3860 {
3861 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3862 					    struct rbd_device, watch_dwork);
3863 	int ret;
3864 
3865 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3866 
3867 	mutex_lock(&rbd_dev->watch_mutex);
3868 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
3869 		mutex_unlock(&rbd_dev->watch_mutex);
3870 		return;
3871 	}
3872 
3873 	ret = __rbd_register_watch(rbd_dev);
3874 	if (ret) {
3875 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3876 		if (ret == -EBLACKLISTED || ret == -ENOENT) {
3877 			set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3878 			wake_requests(rbd_dev, true);
3879 		} else {
3880 			queue_delayed_work(rbd_dev->task_wq,
3881 					   &rbd_dev->watch_dwork,
3882 					   RBD_RETRY_DELAY);
3883 		}
3884 		mutex_unlock(&rbd_dev->watch_mutex);
3885 		return;
3886 	}
3887 
3888 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3889 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3890 	mutex_unlock(&rbd_dev->watch_mutex);
3891 
3892 	down_write(&rbd_dev->lock_rwsem);
3893 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3894 		rbd_reacquire_lock(rbd_dev);
3895 	up_write(&rbd_dev->lock_rwsem);
3896 
3897 	ret = rbd_dev_refresh(rbd_dev);
3898 	if (ret)
3899 		rbd_warn(rbd_dev, "reregisteration refresh failed: %d", ret);
3900 }
3901 
3902 /*
3903  * Synchronous osd object method call.  Returns the number of bytes
3904  * returned in the outbound buffer, or a negative error code.
3905  */
3906 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3907 			     struct ceph_object_id *oid,
3908 			     struct ceph_object_locator *oloc,
3909 			     const char *method_name,
3910 			     const void *outbound,
3911 			     size_t outbound_size,
3912 			     void *inbound,
3913 			     size_t inbound_size)
3914 {
3915 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3916 	struct page *req_page = NULL;
3917 	struct page *reply_page;
3918 	int ret;
3919 
3920 	/*
3921 	 * Method calls are ultimately read operations.  The result
3922 	 * should placed into the inbound buffer provided.  They
3923 	 * also supply outbound data--parameters for the object
3924 	 * method.  Currently if this is present it will be a
3925 	 * snapshot id.
3926 	 */
3927 	if (outbound) {
3928 		if (outbound_size > PAGE_SIZE)
3929 			return -E2BIG;
3930 
3931 		req_page = alloc_page(GFP_KERNEL);
3932 		if (!req_page)
3933 			return -ENOMEM;
3934 
3935 		memcpy(page_address(req_page), outbound, outbound_size);
3936 	}
3937 
3938 	reply_page = alloc_page(GFP_KERNEL);
3939 	if (!reply_page) {
3940 		if (req_page)
3941 			__free_page(req_page);
3942 		return -ENOMEM;
3943 	}
3944 
3945 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
3946 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
3947 			     reply_page, &inbound_size);
3948 	if (!ret) {
3949 		memcpy(inbound, page_address(reply_page), inbound_size);
3950 		ret = inbound_size;
3951 	}
3952 
3953 	if (req_page)
3954 		__free_page(req_page);
3955 	__free_page(reply_page);
3956 	return ret;
3957 }
3958 
3959 /*
3960  * lock_rwsem must be held for read
3961  */
3962 static void rbd_wait_state_locked(struct rbd_device *rbd_dev)
3963 {
3964 	DEFINE_WAIT(wait);
3965 
3966 	do {
3967 		/*
3968 		 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3969 		 * and cancel_delayed_work() in wake_requests().
3970 		 */
3971 		dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3972 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3973 		prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
3974 					  TASK_UNINTERRUPTIBLE);
3975 		up_read(&rbd_dev->lock_rwsem);
3976 		schedule();
3977 		down_read(&rbd_dev->lock_rwsem);
3978 	} while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED &&
3979 		 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags));
3980 
3981 	finish_wait(&rbd_dev->lock_waitq, &wait);
3982 }
3983 
3984 static void rbd_queue_workfn(struct work_struct *work)
3985 {
3986 	struct request *rq = blk_mq_rq_from_pdu(work);
3987 	struct rbd_device *rbd_dev = rq->q->queuedata;
3988 	struct rbd_img_request *img_request;
3989 	struct ceph_snap_context *snapc = NULL;
3990 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3991 	u64 length = blk_rq_bytes(rq);
3992 	enum obj_operation_type op_type;
3993 	u64 mapping_size;
3994 	bool must_be_locked;
3995 	int result;
3996 
3997 	switch (req_op(rq)) {
3998 	case REQ_OP_DISCARD:
3999 	case REQ_OP_WRITE_ZEROES:
4000 		op_type = OBJ_OP_DISCARD;
4001 		break;
4002 	case REQ_OP_WRITE:
4003 		op_type = OBJ_OP_WRITE;
4004 		break;
4005 	case REQ_OP_READ:
4006 		op_type = OBJ_OP_READ;
4007 		break;
4008 	default:
4009 		dout("%s: non-fs request type %d\n", __func__, req_op(rq));
4010 		result = -EIO;
4011 		goto err;
4012 	}
4013 
4014 	/* Ignore/skip any zero-length requests */
4015 
4016 	if (!length) {
4017 		dout("%s: zero-length request\n", __func__);
4018 		result = 0;
4019 		goto err_rq;
4020 	}
4021 
4022 	rbd_assert(op_type == OBJ_OP_READ ||
4023 		   rbd_dev->spec->snap_id == CEPH_NOSNAP);
4024 
4025 	/*
4026 	 * Quit early if the mapped snapshot no longer exists.  It's
4027 	 * still possible the snapshot will have disappeared by the
4028 	 * time our request arrives at the osd, but there's no sense in
4029 	 * sending it if we already know.
4030 	 */
4031 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
4032 		dout("request for non-existent snapshot");
4033 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
4034 		result = -ENXIO;
4035 		goto err_rq;
4036 	}
4037 
4038 	if (offset && length > U64_MAX - offset + 1) {
4039 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
4040 			 length);
4041 		result = -EINVAL;
4042 		goto err_rq;	/* Shouldn't happen */
4043 	}
4044 
4045 	blk_mq_start_request(rq);
4046 
4047 	down_read(&rbd_dev->header_rwsem);
4048 	mapping_size = rbd_dev->mapping.size;
4049 	if (op_type != OBJ_OP_READ) {
4050 		snapc = rbd_dev->header.snapc;
4051 		ceph_get_snap_context(snapc);
4052 	}
4053 	up_read(&rbd_dev->header_rwsem);
4054 
4055 	if (offset + length > mapping_size) {
4056 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4057 			 length, mapping_size);
4058 		result = -EIO;
4059 		goto err_rq;
4060 	}
4061 
4062 	must_be_locked =
4063 	    (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
4064 	    (op_type != OBJ_OP_READ || rbd_dev->opts->lock_on_read);
4065 	if (must_be_locked) {
4066 		down_read(&rbd_dev->lock_rwsem);
4067 		if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED &&
4068 		    !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
4069 			if (rbd_dev->opts->exclusive) {
4070 				rbd_warn(rbd_dev, "exclusive lock required");
4071 				result = -EROFS;
4072 				goto err_unlock;
4073 			}
4074 			rbd_wait_state_locked(rbd_dev);
4075 		}
4076 		if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
4077 			result = -EBLACKLISTED;
4078 			goto err_unlock;
4079 		}
4080 	}
4081 
4082 	img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
4083 					     snapc);
4084 	if (!img_request) {
4085 		result = -ENOMEM;
4086 		goto err_unlock;
4087 	}
4088 	img_request->rq = rq;
4089 	snapc = NULL; /* img_request consumes a ref */
4090 
4091 	if (op_type == OBJ_OP_DISCARD)
4092 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
4093 					      NULL);
4094 	else
4095 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
4096 					      rq->bio);
4097 	if (result)
4098 		goto err_img_request;
4099 
4100 	result = rbd_img_request_submit(img_request);
4101 	if (result)
4102 		goto err_img_request;
4103 
4104 	if (must_be_locked)
4105 		up_read(&rbd_dev->lock_rwsem);
4106 	return;
4107 
4108 err_img_request:
4109 	rbd_img_request_put(img_request);
4110 err_unlock:
4111 	if (must_be_locked)
4112 		up_read(&rbd_dev->lock_rwsem);
4113 err_rq:
4114 	if (result)
4115 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4116 			 obj_op_name(op_type), length, offset, result);
4117 	ceph_put_snap_context(snapc);
4118 err:
4119 	blk_mq_end_request(rq, errno_to_blk_status(result));
4120 }
4121 
4122 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4123 		const struct blk_mq_queue_data *bd)
4124 {
4125 	struct request *rq = bd->rq;
4126 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
4127 
4128 	queue_work(rbd_wq, work);
4129 	return BLK_STS_OK;
4130 }
4131 
4132 static void rbd_free_disk(struct rbd_device *rbd_dev)
4133 {
4134 	blk_cleanup_queue(rbd_dev->disk->queue);
4135 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4136 	put_disk(rbd_dev->disk);
4137 	rbd_dev->disk = NULL;
4138 }
4139 
4140 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4141 			     struct ceph_object_id *oid,
4142 			     struct ceph_object_locator *oloc,
4143 			     void *buf, int buf_len)
4144 
4145 {
4146 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4147 	struct ceph_osd_request *req;
4148 	struct page **pages;
4149 	int num_pages = calc_pages_for(0, buf_len);
4150 	int ret;
4151 
4152 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4153 	if (!req)
4154 		return -ENOMEM;
4155 
4156 	ceph_oid_copy(&req->r_base_oid, oid);
4157 	ceph_oloc_copy(&req->r_base_oloc, oloc);
4158 	req->r_flags = CEPH_OSD_FLAG_READ;
4159 
4160 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4161 	if (ret)
4162 		goto out_req;
4163 
4164 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4165 	if (IS_ERR(pages)) {
4166 		ret = PTR_ERR(pages);
4167 		goto out_req;
4168 	}
4169 
4170 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4171 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4172 					 true);
4173 
4174 	ceph_osdc_start_request(osdc, req, false);
4175 	ret = ceph_osdc_wait_request(osdc, req);
4176 	if (ret >= 0)
4177 		ceph_copy_from_page_vector(pages, buf, 0, ret);
4178 
4179 out_req:
4180 	ceph_osdc_put_request(req);
4181 	return ret;
4182 }
4183 
4184 /*
4185  * Read the complete header for the given rbd device.  On successful
4186  * return, the rbd_dev->header field will contain up-to-date
4187  * information about the image.
4188  */
4189 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4190 {
4191 	struct rbd_image_header_ondisk *ondisk = NULL;
4192 	u32 snap_count = 0;
4193 	u64 names_size = 0;
4194 	u32 want_count;
4195 	int ret;
4196 
4197 	/*
4198 	 * The complete header will include an array of its 64-bit
4199 	 * snapshot ids, followed by the names of those snapshots as
4200 	 * a contiguous block of NUL-terminated strings.  Note that
4201 	 * the number of snapshots could change by the time we read
4202 	 * it in, in which case we re-read it.
4203 	 */
4204 	do {
4205 		size_t size;
4206 
4207 		kfree(ondisk);
4208 
4209 		size = sizeof (*ondisk);
4210 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4211 		size += names_size;
4212 		ondisk = kmalloc(size, GFP_KERNEL);
4213 		if (!ondisk)
4214 			return -ENOMEM;
4215 
4216 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4217 					&rbd_dev->header_oloc, ondisk, size);
4218 		if (ret < 0)
4219 			goto out;
4220 		if ((size_t)ret < size) {
4221 			ret = -ENXIO;
4222 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4223 				size, ret);
4224 			goto out;
4225 		}
4226 		if (!rbd_dev_ondisk_valid(ondisk)) {
4227 			ret = -ENXIO;
4228 			rbd_warn(rbd_dev, "invalid header");
4229 			goto out;
4230 		}
4231 
4232 		names_size = le64_to_cpu(ondisk->snap_names_len);
4233 		want_count = snap_count;
4234 		snap_count = le32_to_cpu(ondisk->snap_count);
4235 	} while (snap_count != want_count);
4236 
4237 	ret = rbd_header_from_disk(rbd_dev, ondisk);
4238 out:
4239 	kfree(ondisk);
4240 
4241 	return ret;
4242 }
4243 
4244 /*
4245  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
4246  * has disappeared from the (just updated) snapshot context.
4247  */
4248 static void rbd_exists_validate(struct rbd_device *rbd_dev)
4249 {
4250 	u64 snap_id;
4251 
4252 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
4253 		return;
4254 
4255 	snap_id = rbd_dev->spec->snap_id;
4256 	if (snap_id == CEPH_NOSNAP)
4257 		return;
4258 
4259 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
4260 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4261 }
4262 
4263 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4264 {
4265 	sector_t size;
4266 
4267 	/*
4268 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4269 	 * try to update its size.  If REMOVING is set, updating size
4270 	 * is just useless work since the device can't be opened.
4271 	 */
4272 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4273 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4274 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4275 		dout("setting size to %llu sectors", (unsigned long long)size);
4276 		set_capacity(rbd_dev->disk, size);
4277 		revalidate_disk(rbd_dev->disk);
4278 	}
4279 }
4280 
4281 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4282 {
4283 	u64 mapping_size;
4284 	int ret;
4285 
4286 	down_write(&rbd_dev->header_rwsem);
4287 	mapping_size = rbd_dev->mapping.size;
4288 
4289 	ret = rbd_dev_header_info(rbd_dev);
4290 	if (ret)
4291 		goto out;
4292 
4293 	/*
4294 	 * If there is a parent, see if it has disappeared due to the
4295 	 * mapped image getting flattened.
4296 	 */
4297 	if (rbd_dev->parent) {
4298 		ret = rbd_dev_v2_parent_info(rbd_dev);
4299 		if (ret)
4300 			goto out;
4301 	}
4302 
4303 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
4304 		rbd_dev->mapping.size = rbd_dev->header.image_size;
4305 	} else {
4306 		/* validate mapped snapshot's EXISTS flag */
4307 		rbd_exists_validate(rbd_dev);
4308 	}
4309 
4310 out:
4311 	up_write(&rbd_dev->header_rwsem);
4312 	if (!ret && mapping_size != rbd_dev->mapping.size)
4313 		rbd_dev_update_size(rbd_dev);
4314 
4315 	return ret;
4316 }
4317 
4318 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq,
4319 		unsigned int hctx_idx, unsigned int numa_node)
4320 {
4321 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
4322 
4323 	INIT_WORK(work, rbd_queue_workfn);
4324 	return 0;
4325 }
4326 
4327 static const struct blk_mq_ops rbd_mq_ops = {
4328 	.queue_rq	= rbd_queue_rq,
4329 	.init_request	= rbd_init_request,
4330 };
4331 
4332 static int rbd_init_disk(struct rbd_device *rbd_dev)
4333 {
4334 	struct gendisk *disk;
4335 	struct request_queue *q;
4336 	u64 segment_size;
4337 	int err;
4338 
4339 	/* create gendisk info */
4340 	disk = alloc_disk(single_major ?
4341 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4342 			  RBD_MINORS_PER_MAJOR);
4343 	if (!disk)
4344 		return -ENOMEM;
4345 
4346 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4347 		 rbd_dev->dev_id);
4348 	disk->major = rbd_dev->major;
4349 	disk->first_minor = rbd_dev->minor;
4350 	if (single_major)
4351 		disk->flags |= GENHD_FL_EXT_DEVT;
4352 	disk->fops = &rbd_bd_ops;
4353 	disk->private_data = rbd_dev;
4354 
4355 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4356 	rbd_dev->tag_set.ops = &rbd_mq_ops;
4357 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4358 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4359 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
4360 	rbd_dev->tag_set.nr_hw_queues = 1;
4361 	rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
4362 
4363 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4364 	if (err)
4365 		goto out_disk;
4366 
4367 	q = blk_mq_init_queue(&rbd_dev->tag_set);
4368 	if (IS_ERR(q)) {
4369 		err = PTR_ERR(q);
4370 		goto out_tag_set;
4371 	}
4372 
4373 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
4374 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4375 
4376 	/* set io sizes to object size */
4377 	segment_size = rbd_obj_bytes(&rbd_dev->header);
4378 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
4379 	q->limits.max_sectors = queue_max_hw_sectors(q);
4380 	blk_queue_max_segments(q, USHRT_MAX);
4381 	blk_queue_max_segment_size(q, segment_size);
4382 	blk_queue_io_min(q, segment_size);
4383 	blk_queue_io_opt(q, segment_size);
4384 
4385 	/* enable the discard support */
4386 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
4387 	q->limits.discard_granularity = segment_size;
4388 	blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
4389 	blk_queue_max_write_zeroes_sectors(q, segment_size / SECTOR_SIZE);
4390 
4391 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4392 		q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
4393 
4394 	/*
4395 	 * disk_release() expects a queue ref from add_disk() and will
4396 	 * put it.  Hold an extra ref until add_disk() is called.
4397 	 */
4398 	WARN_ON(!blk_get_queue(q));
4399 	disk->queue = q;
4400 	q->queuedata = rbd_dev;
4401 
4402 	rbd_dev->disk = disk;
4403 
4404 	return 0;
4405 out_tag_set:
4406 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4407 out_disk:
4408 	put_disk(disk);
4409 	return err;
4410 }
4411 
4412 /*
4413   sysfs
4414 */
4415 
4416 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4417 {
4418 	return container_of(dev, struct rbd_device, dev);
4419 }
4420 
4421 static ssize_t rbd_size_show(struct device *dev,
4422 			     struct device_attribute *attr, char *buf)
4423 {
4424 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4425 
4426 	return sprintf(buf, "%llu\n",
4427 		(unsigned long long)rbd_dev->mapping.size);
4428 }
4429 
4430 /*
4431  * Note this shows the features for whatever's mapped, which is not
4432  * necessarily the base image.
4433  */
4434 static ssize_t rbd_features_show(struct device *dev,
4435 			     struct device_attribute *attr, char *buf)
4436 {
4437 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4438 
4439 	return sprintf(buf, "0x%016llx\n",
4440 			(unsigned long long)rbd_dev->mapping.features);
4441 }
4442 
4443 static ssize_t rbd_major_show(struct device *dev,
4444 			      struct device_attribute *attr, char *buf)
4445 {
4446 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4447 
4448 	if (rbd_dev->major)
4449 		return sprintf(buf, "%d\n", rbd_dev->major);
4450 
4451 	return sprintf(buf, "(none)\n");
4452 }
4453 
4454 static ssize_t rbd_minor_show(struct device *dev,
4455 			      struct device_attribute *attr, char *buf)
4456 {
4457 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4458 
4459 	return sprintf(buf, "%d\n", rbd_dev->minor);
4460 }
4461 
4462 static ssize_t rbd_client_addr_show(struct device *dev,
4463 				    struct device_attribute *attr, char *buf)
4464 {
4465 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4466 	struct ceph_entity_addr *client_addr =
4467 	    ceph_client_addr(rbd_dev->rbd_client->client);
4468 
4469 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4470 		       le32_to_cpu(client_addr->nonce));
4471 }
4472 
4473 static ssize_t rbd_client_id_show(struct device *dev,
4474 				  struct device_attribute *attr, char *buf)
4475 {
4476 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4477 
4478 	return sprintf(buf, "client%lld\n",
4479 		       ceph_client_gid(rbd_dev->rbd_client->client));
4480 }
4481 
4482 static ssize_t rbd_cluster_fsid_show(struct device *dev,
4483 				     struct device_attribute *attr, char *buf)
4484 {
4485 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4486 
4487 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4488 }
4489 
4490 static ssize_t rbd_config_info_show(struct device *dev,
4491 				    struct device_attribute *attr, char *buf)
4492 {
4493 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4494 
4495 	return sprintf(buf, "%s\n", rbd_dev->config_info);
4496 }
4497 
4498 static ssize_t rbd_pool_show(struct device *dev,
4499 			     struct device_attribute *attr, char *buf)
4500 {
4501 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4502 
4503 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4504 }
4505 
4506 static ssize_t rbd_pool_id_show(struct device *dev,
4507 			     struct device_attribute *attr, char *buf)
4508 {
4509 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4510 
4511 	return sprintf(buf, "%llu\n",
4512 			(unsigned long long) rbd_dev->spec->pool_id);
4513 }
4514 
4515 static ssize_t rbd_name_show(struct device *dev,
4516 			     struct device_attribute *attr, char *buf)
4517 {
4518 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4519 
4520 	if (rbd_dev->spec->image_name)
4521 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4522 
4523 	return sprintf(buf, "(unknown)\n");
4524 }
4525 
4526 static ssize_t rbd_image_id_show(struct device *dev,
4527 			     struct device_attribute *attr, char *buf)
4528 {
4529 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4530 
4531 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4532 }
4533 
4534 /*
4535  * Shows the name of the currently-mapped snapshot (or
4536  * RBD_SNAP_HEAD_NAME for the base image).
4537  */
4538 static ssize_t rbd_snap_show(struct device *dev,
4539 			     struct device_attribute *attr,
4540 			     char *buf)
4541 {
4542 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4543 
4544 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4545 }
4546 
4547 static ssize_t rbd_snap_id_show(struct device *dev,
4548 				struct device_attribute *attr, char *buf)
4549 {
4550 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4551 
4552 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4553 }
4554 
4555 /*
4556  * For a v2 image, shows the chain of parent images, separated by empty
4557  * lines.  For v1 images or if there is no parent, shows "(no parent
4558  * image)".
4559  */
4560 static ssize_t rbd_parent_show(struct device *dev,
4561 			       struct device_attribute *attr,
4562 			       char *buf)
4563 {
4564 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4565 	ssize_t count = 0;
4566 
4567 	if (!rbd_dev->parent)
4568 		return sprintf(buf, "(no parent image)\n");
4569 
4570 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4571 		struct rbd_spec *spec = rbd_dev->parent_spec;
4572 
4573 		count += sprintf(&buf[count], "%s"
4574 			    "pool_id %llu\npool_name %s\n"
4575 			    "image_id %s\nimage_name %s\n"
4576 			    "snap_id %llu\nsnap_name %s\n"
4577 			    "overlap %llu\n",
4578 			    !count ? "" : "\n", /* first? */
4579 			    spec->pool_id, spec->pool_name,
4580 			    spec->image_id, spec->image_name ?: "(unknown)",
4581 			    spec->snap_id, spec->snap_name,
4582 			    rbd_dev->parent_overlap);
4583 	}
4584 
4585 	return count;
4586 }
4587 
4588 static ssize_t rbd_image_refresh(struct device *dev,
4589 				 struct device_attribute *attr,
4590 				 const char *buf,
4591 				 size_t size)
4592 {
4593 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4594 	int ret;
4595 
4596 	ret = rbd_dev_refresh(rbd_dev);
4597 	if (ret)
4598 		return ret;
4599 
4600 	return size;
4601 }
4602 
4603 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
4604 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
4605 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
4606 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
4607 static DEVICE_ATTR(client_addr, S_IRUGO, rbd_client_addr_show, NULL);
4608 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
4609 static DEVICE_ATTR(cluster_fsid, S_IRUGO, rbd_cluster_fsid_show, NULL);
4610 static DEVICE_ATTR(config_info, S_IRUSR, rbd_config_info_show, NULL);
4611 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
4612 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
4613 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
4614 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
4615 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
4616 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
4617 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
4618 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
4619 
4620 static struct attribute *rbd_attrs[] = {
4621 	&dev_attr_size.attr,
4622 	&dev_attr_features.attr,
4623 	&dev_attr_major.attr,
4624 	&dev_attr_minor.attr,
4625 	&dev_attr_client_addr.attr,
4626 	&dev_attr_client_id.attr,
4627 	&dev_attr_cluster_fsid.attr,
4628 	&dev_attr_config_info.attr,
4629 	&dev_attr_pool.attr,
4630 	&dev_attr_pool_id.attr,
4631 	&dev_attr_name.attr,
4632 	&dev_attr_image_id.attr,
4633 	&dev_attr_current_snap.attr,
4634 	&dev_attr_snap_id.attr,
4635 	&dev_attr_parent.attr,
4636 	&dev_attr_refresh.attr,
4637 	NULL
4638 };
4639 
4640 static struct attribute_group rbd_attr_group = {
4641 	.attrs = rbd_attrs,
4642 };
4643 
4644 static const struct attribute_group *rbd_attr_groups[] = {
4645 	&rbd_attr_group,
4646 	NULL
4647 };
4648 
4649 static void rbd_dev_release(struct device *dev);
4650 
4651 static const struct device_type rbd_device_type = {
4652 	.name		= "rbd",
4653 	.groups		= rbd_attr_groups,
4654 	.release	= rbd_dev_release,
4655 };
4656 
4657 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4658 {
4659 	kref_get(&spec->kref);
4660 
4661 	return spec;
4662 }
4663 
4664 static void rbd_spec_free(struct kref *kref);
4665 static void rbd_spec_put(struct rbd_spec *spec)
4666 {
4667 	if (spec)
4668 		kref_put(&spec->kref, rbd_spec_free);
4669 }
4670 
4671 static struct rbd_spec *rbd_spec_alloc(void)
4672 {
4673 	struct rbd_spec *spec;
4674 
4675 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4676 	if (!spec)
4677 		return NULL;
4678 
4679 	spec->pool_id = CEPH_NOPOOL;
4680 	spec->snap_id = CEPH_NOSNAP;
4681 	kref_init(&spec->kref);
4682 
4683 	return spec;
4684 }
4685 
4686 static void rbd_spec_free(struct kref *kref)
4687 {
4688 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4689 
4690 	kfree(spec->pool_name);
4691 	kfree(spec->image_id);
4692 	kfree(spec->image_name);
4693 	kfree(spec->snap_name);
4694 	kfree(spec);
4695 }
4696 
4697 static void rbd_dev_free(struct rbd_device *rbd_dev)
4698 {
4699 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4700 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4701 
4702 	ceph_oid_destroy(&rbd_dev->header_oid);
4703 	ceph_oloc_destroy(&rbd_dev->header_oloc);
4704 	kfree(rbd_dev->config_info);
4705 
4706 	rbd_put_client(rbd_dev->rbd_client);
4707 	rbd_spec_put(rbd_dev->spec);
4708 	kfree(rbd_dev->opts);
4709 	kfree(rbd_dev);
4710 }
4711 
4712 static void rbd_dev_release(struct device *dev)
4713 {
4714 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4715 	bool need_put = !!rbd_dev->opts;
4716 
4717 	if (need_put) {
4718 		destroy_workqueue(rbd_dev->task_wq);
4719 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4720 	}
4721 
4722 	rbd_dev_free(rbd_dev);
4723 
4724 	/*
4725 	 * This is racy, but way better than putting module outside of
4726 	 * the release callback.  The race window is pretty small, so
4727 	 * doing something similar to dm (dm-builtin.c) is overkill.
4728 	 */
4729 	if (need_put)
4730 		module_put(THIS_MODULE);
4731 }
4732 
4733 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4734 					   struct rbd_spec *spec)
4735 {
4736 	struct rbd_device *rbd_dev;
4737 
4738 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4739 	if (!rbd_dev)
4740 		return NULL;
4741 
4742 	spin_lock_init(&rbd_dev->lock);
4743 	INIT_LIST_HEAD(&rbd_dev->node);
4744 	init_rwsem(&rbd_dev->header_rwsem);
4745 
4746 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
4747 	ceph_oid_init(&rbd_dev->header_oid);
4748 	rbd_dev->header_oloc.pool = spec->pool_id;
4749 
4750 	mutex_init(&rbd_dev->watch_mutex);
4751 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4752 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4753 
4754 	init_rwsem(&rbd_dev->lock_rwsem);
4755 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4756 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4757 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4758 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4759 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4760 	init_waitqueue_head(&rbd_dev->lock_waitq);
4761 
4762 	rbd_dev->dev.bus = &rbd_bus_type;
4763 	rbd_dev->dev.type = &rbd_device_type;
4764 	rbd_dev->dev.parent = &rbd_root_dev;
4765 	device_initialize(&rbd_dev->dev);
4766 
4767 	rbd_dev->rbd_client = rbdc;
4768 	rbd_dev->spec = spec;
4769 
4770 	return rbd_dev;
4771 }
4772 
4773 /*
4774  * Create a mapping rbd_dev.
4775  */
4776 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4777 					 struct rbd_spec *spec,
4778 					 struct rbd_options *opts)
4779 {
4780 	struct rbd_device *rbd_dev;
4781 
4782 	rbd_dev = __rbd_dev_create(rbdc, spec);
4783 	if (!rbd_dev)
4784 		return NULL;
4785 
4786 	rbd_dev->opts = opts;
4787 
4788 	/* get an id and fill in device name */
4789 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4790 					 minor_to_rbd_dev_id(1 << MINORBITS),
4791 					 GFP_KERNEL);
4792 	if (rbd_dev->dev_id < 0)
4793 		goto fail_rbd_dev;
4794 
4795 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4796 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4797 						   rbd_dev->name);
4798 	if (!rbd_dev->task_wq)
4799 		goto fail_dev_id;
4800 
4801 	/* we have a ref from do_rbd_add() */
4802 	__module_get(THIS_MODULE);
4803 
4804 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4805 	return rbd_dev;
4806 
4807 fail_dev_id:
4808 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4809 fail_rbd_dev:
4810 	rbd_dev_free(rbd_dev);
4811 	return NULL;
4812 }
4813 
4814 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4815 {
4816 	if (rbd_dev)
4817 		put_device(&rbd_dev->dev);
4818 }
4819 
4820 /*
4821  * Get the size and object order for an image snapshot, or if
4822  * snap_id is CEPH_NOSNAP, gets this information for the base
4823  * image.
4824  */
4825 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4826 				u8 *order, u64 *snap_size)
4827 {
4828 	__le64 snapid = cpu_to_le64(snap_id);
4829 	int ret;
4830 	struct {
4831 		u8 order;
4832 		__le64 size;
4833 	} __attribute__ ((packed)) size_buf = { 0 };
4834 
4835 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4836 				  &rbd_dev->header_oloc, "get_size",
4837 				  &snapid, sizeof(snapid),
4838 				  &size_buf, sizeof(size_buf));
4839 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4840 	if (ret < 0)
4841 		return ret;
4842 	if (ret < sizeof (size_buf))
4843 		return -ERANGE;
4844 
4845 	if (order) {
4846 		*order = size_buf.order;
4847 		dout("  order %u", (unsigned int)*order);
4848 	}
4849 	*snap_size = le64_to_cpu(size_buf.size);
4850 
4851 	dout("  snap_id 0x%016llx snap_size = %llu\n",
4852 		(unsigned long long)snap_id,
4853 		(unsigned long long)*snap_size);
4854 
4855 	return 0;
4856 }
4857 
4858 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4859 {
4860 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4861 					&rbd_dev->header.obj_order,
4862 					&rbd_dev->header.image_size);
4863 }
4864 
4865 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4866 {
4867 	void *reply_buf;
4868 	int ret;
4869 	void *p;
4870 
4871 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4872 	if (!reply_buf)
4873 		return -ENOMEM;
4874 
4875 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4876 				  &rbd_dev->header_oloc, "get_object_prefix",
4877 				  NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4878 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4879 	if (ret < 0)
4880 		goto out;
4881 
4882 	p = reply_buf;
4883 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4884 						p + ret, NULL, GFP_NOIO);
4885 	ret = 0;
4886 
4887 	if (IS_ERR(rbd_dev->header.object_prefix)) {
4888 		ret = PTR_ERR(rbd_dev->header.object_prefix);
4889 		rbd_dev->header.object_prefix = NULL;
4890 	} else {
4891 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4892 	}
4893 out:
4894 	kfree(reply_buf);
4895 
4896 	return ret;
4897 }
4898 
4899 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4900 		u64 *snap_features)
4901 {
4902 	__le64 snapid = cpu_to_le64(snap_id);
4903 	struct {
4904 		__le64 features;
4905 		__le64 incompat;
4906 	} __attribute__ ((packed)) features_buf = { 0 };
4907 	u64 unsup;
4908 	int ret;
4909 
4910 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4911 				  &rbd_dev->header_oloc, "get_features",
4912 				  &snapid, sizeof(snapid),
4913 				  &features_buf, sizeof(features_buf));
4914 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4915 	if (ret < 0)
4916 		return ret;
4917 	if (ret < sizeof (features_buf))
4918 		return -ERANGE;
4919 
4920 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4921 	if (unsup) {
4922 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4923 			 unsup);
4924 		return -ENXIO;
4925 	}
4926 
4927 	*snap_features = le64_to_cpu(features_buf.features);
4928 
4929 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4930 		(unsigned long long)snap_id,
4931 		(unsigned long long)*snap_features,
4932 		(unsigned long long)le64_to_cpu(features_buf.incompat));
4933 
4934 	return 0;
4935 }
4936 
4937 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4938 {
4939 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4940 						&rbd_dev->header.features);
4941 }
4942 
4943 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4944 {
4945 	struct rbd_spec *parent_spec;
4946 	size_t size;
4947 	void *reply_buf = NULL;
4948 	__le64 snapid;
4949 	void *p;
4950 	void *end;
4951 	u64 pool_id;
4952 	char *image_id;
4953 	u64 snap_id;
4954 	u64 overlap;
4955 	int ret;
4956 
4957 	parent_spec = rbd_spec_alloc();
4958 	if (!parent_spec)
4959 		return -ENOMEM;
4960 
4961 	size = sizeof (__le64) +				/* pool_id */
4962 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
4963 		sizeof (__le64) +				/* snap_id */
4964 		sizeof (__le64);				/* overlap */
4965 	reply_buf = kmalloc(size, GFP_KERNEL);
4966 	if (!reply_buf) {
4967 		ret = -ENOMEM;
4968 		goto out_err;
4969 	}
4970 
4971 	snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4972 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4973 				  &rbd_dev->header_oloc, "get_parent",
4974 				  &snapid, sizeof(snapid), reply_buf, size);
4975 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4976 	if (ret < 0)
4977 		goto out_err;
4978 
4979 	p = reply_buf;
4980 	end = reply_buf + ret;
4981 	ret = -ERANGE;
4982 	ceph_decode_64_safe(&p, end, pool_id, out_err);
4983 	if (pool_id == CEPH_NOPOOL) {
4984 		/*
4985 		 * Either the parent never existed, or we have
4986 		 * record of it but the image got flattened so it no
4987 		 * longer has a parent.  When the parent of a
4988 		 * layered image disappears we immediately set the
4989 		 * overlap to 0.  The effect of this is that all new
4990 		 * requests will be treated as if the image had no
4991 		 * parent.
4992 		 */
4993 		if (rbd_dev->parent_overlap) {
4994 			rbd_dev->parent_overlap = 0;
4995 			rbd_dev_parent_put(rbd_dev);
4996 			pr_info("%s: clone image has been flattened\n",
4997 				rbd_dev->disk->disk_name);
4998 		}
4999 
5000 		goto out;	/* No parent?  No problem. */
5001 	}
5002 
5003 	/* The ceph file layout needs to fit pool id in 32 bits */
5004 
5005 	ret = -EIO;
5006 	if (pool_id > (u64)U32_MAX) {
5007 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5008 			(unsigned long long)pool_id, U32_MAX);
5009 		goto out_err;
5010 	}
5011 
5012 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5013 	if (IS_ERR(image_id)) {
5014 		ret = PTR_ERR(image_id);
5015 		goto out_err;
5016 	}
5017 	ceph_decode_64_safe(&p, end, snap_id, out_err);
5018 	ceph_decode_64_safe(&p, end, overlap, out_err);
5019 
5020 	/*
5021 	 * The parent won't change (except when the clone is
5022 	 * flattened, already handled that).  So we only need to
5023 	 * record the parent spec we have not already done so.
5024 	 */
5025 	if (!rbd_dev->parent_spec) {
5026 		parent_spec->pool_id = pool_id;
5027 		parent_spec->image_id = image_id;
5028 		parent_spec->snap_id = snap_id;
5029 		rbd_dev->parent_spec = parent_spec;
5030 		parent_spec = NULL;	/* rbd_dev now owns this */
5031 	} else {
5032 		kfree(image_id);
5033 	}
5034 
5035 	/*
5036 	 * We always update the parent overlap.  If it's zero we issue
5037 	 * a warning, as we will proceed as if there was no parent.
5038 	 */
5039 	if (!overlap) {
5040 		if (parent_spec) {
5041 			/* refresh, careful to warn just once */
5042 			if (rbd_dev->parent_overlap)
5043 				rbd_warn(rbd_dev,
5044 				    "clone now standalone (overlap became 0)");
5045 		} else {
5046 			/* initial probe */
5047 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5048 		}
5049 	}
5050 	rbd_dev->parent_overlap = overlap;
5051 
5052 out:
5053 	ret = 0;
5054 out_err:
5055 	kfree(reply_buf);
5056 	rbd_spec_put(parent_spec);
5057 
5058 	return ret;
5059 }
5060 
5061 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5062 {
5063 	struct {
5064 		__le64 stripe_unit;
5065 		__le64 stripe_count;
5066 	} __attribute__ ((packed)) striping_info_buf = { 0 };
5067 	size_t size = sizeof (striping_info_buf);
5068 	void *p;
5069 	u64 obj_size;
5070 	u64 stripe_unit;
5071 	u64 stripe_count;
5072 	int ret;
5073 
5074 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5075 				&rbd_dev->header_oloc, "get_stripe_unit_count",
5076 				NULL, 0, &striping_info_buf, size);
5077 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5078 	if (ret < 0)
5079 		return ret;
5080 	if (ret < size)
5081 		return -ERANGE;
5082 
5083 	/*
5084 	 * We don't actually support the "fancy striping" feature
5085 	 * (STRIPINGV2) yet, but if the striping sizes are the
5086 	 * defaults the behavior is the same as before.  So find
5087 	 * out, and only fail if the image has non-default values.
5088 	 */
5089 	ret = -EINVAL;
5090 	obj_size = rbd_obj_bytes(&rbd_dev->header);
5091 	p = &striping_info_buf;
5092 	stripe_unit = ceph_decode_64(&p);
5093 	if (stripe_unit != obj_size) {
5094 		rbd_warn(rbd_dev, "unsupported stripe unit "
5095 				"(got %llu want %llu)",
5096 				stripe_unit, obj_size);
5097 		return -EINVAL;
5098 	}
5099 	stripe_count = ceph_decode_64(&p);
5100 	if (stripe_count != 1) {
5101 		rbd_warn(rbd_dev, "unsupported stripe count "
5102 				"(got %llu want 1)", stripe_count);
5103 		return -EINVAL;
5104 	}
5105 	rbd_dev->header.stripe_unit = stripe_unit;
5106 	rbd_dev->header.stripe_count = stripe_count;
5107 
5108 	return 0;
5109 }
5110 
5111 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5112 {
5113 	__le64 data_pool_id;
5114 	int ret;
5115 
5116 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5117 				  &rbd_dev->header_oloc, "get_data_pool",
5118 				  NULL, 0, &data_pool_id, sizeof(data_pool_id));
5119 	if (ret < 0)
5120 		return ret;
5121 	if (ret < sizeof(data_pool_id))
5122 		return -EBADMSG;
5123 
5124 	rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5125 	WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5126 	return 0;
5127 }
5128 
5129 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5130 {
5131 	CEPH_DEFINE_OID_ONSTACK(oid);
5132 	size_t image_id_size;
5133 	char *image_id;
5134 	void *p;
5135 	void *end;
5136 	size_t size;
5137 	void *reply_buf = NULL;
5138 	size_t len = 0;
5139 	char *image_name = NULL;
5140 	int ret;
5141 
5142 	rbd_assert(!rbd_dev->spec->image_name);
5143 
5144 	len = strlen(rbd_dev->spec->image_id);
5145 	image_id_size = sizeof (__le32) + len;
5146 	image_id = kmalloc(image_id_size, GFP_KERNEL);
5147 	if (!image_id)
5148 		return NULL;
5149 
5150 	p = image_id;
5151 	end = image_id + image_id_size;
5152 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5153 
5154 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5155 	reply_buf = kmalloc(size, GFP_KERNEL);
5156 	if (!reply_buf)
5157 		goto out;
5158 
5159 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5160 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5161 				  "dir_get_name", image_id, image_id_size,
5162 				  reply_buf, size);
5163 	if (ret < 0)
5164 		goto out;
5165 	p = reply_buf;
5166 	end = reply_buf + ret;
5167 
5168 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5169 	if (IS_ERR(image_name))
5170 		image_name = NULL;
5171 	else
5172 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5173 out:
5174 	kfree(reply_buf);
5175 	kfree(image_id);
5176 
5177 	return image_name;
5178 }
5179 
5180 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5181 {
5182 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5183 	const char *snap_name;
5184 	u32 which = 0;
5185 
5186 	/* Skip over names until we find the one we are looking for */
5187 
5188 	snap_name = rbd_dev->header.snap_names;
5189 	while (which < snapc->num_snaps) {
5190 		if (!strcmp(name, snap_name))
5191 			return snapc->snaps[which];
5192 		snap_name += strlen(snap_name) + 1;
5193 		which++;
5194 	}
5195 	return CEPH_NOSNAP;
5196 }
5197 
5198 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5199 {
5200 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5201 	u32 which;
5202 	bool found = false;
5203 	u64 snap_id;
5204 
5205 	for (which = 0; !found && which < snapc->num_snaps; which++) {
5206 		const char *snap_name;
5207 
5208 		snap_id = snapc->snaps[which];
5209 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5210 		if (IS_ERR(snap_name)) {
5211 			/* ignore no-longer existing snapshots */
5212 			if (PTR_ERR(snap_name) == -ENOENT)
5213 				continue;
5214 			else
5215 				break;
5216 		}
5217 		found = !strcmp(name, snap_name);
5218 		kfree(snap_name);
5219 	}
5220 	return found ? snap_id : CEPH_NOSNAP;
5221 }
5222 
5223 /*
5224  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5225  * no snapshot by that name is found, or if an error occurs.
5226  */
5227 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5228 {
5229 	if (rbd_dev->image_format == 1)
5230 		return rbd_v1_snap_id_by_name(rbd_dev, name);
5231 
5232 	return rbd_v2_snap_id_by_name(rbd_dev, name);
5233 }
5234 
5235 /*
5236  * An image being mapped will have everything but the snap id.
5237  */
5238 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5239 {
5240 	struct rbd_spec *spec = rbd_dev->spec;
5241 
5242 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5243 	rbd_assert(spec->image_id && spec->image_name);
5244 	rbd_assert(spec->snap_name);
5245 
5246 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5247 		u64 snap_id;
5248 
5249 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5250 		if (snap_id == CEPH_NOSNAP)
5251 			return -ENOENT;
5252 
5253 		spec->snap_id = snap_id;
5254 	} else {
5255 		spec->snap_id = CEPH_NOSNAP;
5256 	}
5257 
5258 	return 0;
5259 }
5260 
5261 /*
5262  * A parent image will have all ids but none of the names.
5263  *
5264  * All names in an rbd spec are dynamically allocated.  It's OK if we
5265  * can't figure out the name for an image id.
5266  */
5267 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5268 {
5269 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5270 	struct rbd_spec *spec = rbd_dev->spec;
5271 	const char *pool_name;
5272 	const char *image_name;
5273 	const char *snap_name;
5274 	int ret;
5275 
5276 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
5277 	rbd_assert(spec->image_id);
5278 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
5279 
5280 	/* Get the pool name; we have to make our own copy of this */
5281 
5282 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
5283 	if (!pool_name) {
5284 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
5285 		return -EIO;
5286 	}
5287 	pool_name = kstrdup(pool_name, GFP_KERNEL);
5288 	if (!pool_name)
5289 		return -ENOMEM;
5290 
5291 	/* Fetch the image name; tolerate failure here */
5292 
5293 	image_name = rbd_dev_image_name(rbd_dev);
5294 	if (!image_name)
5295 		rbd_warn(rbd_dev, "unable to get image name");
5296 
5297 	/* Fetch the snapshot name */
5298 
5299 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
5300 	if (IS_ERR(snap_name)) {
5301 		ret = PTR_ERR(snap_name);
5302 		goto out_err;
5303 	}
5304 
5305 	spec->pool_name = pool_name;
5306 	spec->image_name = image_name;
5307 	spec->snap_name = snap_name;
5308 
5309 	return 0;
5310 
5311 out_err:
5312 	kfree(image_name);
5313 	kfree(pool_name);
5314 	return ret;
5315 }
5316 
5317 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
5318 {
5319 	size_t size;
5320 	int ret;
5321 	void *reply_buf;
5322 	void *p;
5323 	void *end;
5324 	u64 seq;
5325 	u32 snap_count;
5326 	struct ceph_snap_context *snapc;
5327 	u32 i;
5328 
5329 	/*
5330 	 * We'll need room for the seq value (maximum snapshot id),
5331 	 * snapshot count, and array of that many snapshot ids.
5332 	 * For now we have a fixed upper limit on the number we're
5333 	 * prepared to receive.
5334 	 */
5335 	size = sizeof (__le64) + sizeof (__le32) +
5336 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
5337 	reply_buf = kzalloc(size, GFP_KERNEL);
5338 	if (!reply_buf)
5339 		return -ENOMEM;
5340 
5341 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5342 				  &rbd_dev->header_oloc, "get_snapcontext",
5343 				  NULL, 0, reply_buf, size);
5344 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5345 	if (ret < 0)
5346 		goto out;
5347 
5348 	p = reply_buf;
5349 	end = reply_buf + ret;
5350 	ret = -ERANGE;
5351 	ceph_decode_64_safe(&p, end, seq, out);
5352 	ceph_decode_32_safe(&p, end, snap_count, out);
5353 
5354 	/*
5355 	 * Make sure the reported number of snapshot ids wouldn't go
5356 	 * beyond the end of our buffer.  But before checking that,
5357 	 * make sure the computed size of the snapshot context we
5358 	 * allocate is representable in a size_t.
5359 	 */
5360 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
5361 				 / sizeof (u64)) {
5362 		ret = -EINVAL;
5363 		goto out;
5364 	}
5365 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
5366 		goto out;
5367 	ret = 0;
5368 
5369 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
5370 	if (!snapc) {
5371 		ret = -ENOMEM;
5372 		goto out;
5373 	}
5374 	snapc->seq = seq;
5375 	for (i = 0; i < snap_count; i++)
5376 		snapc->snaps[i] = ceph_decode_64(&p);
5377 
5378 	ceph_put_snap_context(rbd_dev->header.snapc);
5379 	rbd_dev->header.snapc = snapc;
5380 
5381 	dout("  snap context seq = %llu, snap_count = %u\n",
5382 		(unsigned long long)seq, (unsigned int)snap_count);
5383 out:
5384 	kfree(reply_buf);
5385 
5386 	return ret;
5387 }
5388 
5389 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
5390 					u64 snap_id)
5391 {
5392 	size_t size;
5393 	void *reply_buf;
5394 	__le64 snapid;
5395 	int ret;
5396 	void *p;
5397 	void *end;
5398 	char *snap_name;
5399 
5400 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
5401 	reply_buf = kmalloc(size, GFP_KERNEL);
5402 	if (!reply_buf)
5403 		return ERR_PTR(-ENOMEM);
5404 
5405 	snapid = cpu_to_le64(snap_id);
5406 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5407 				  &rbd_dev->header_oloc, "get_snapshot_name",
5408 				  &snapid, sizeof(snapid), reply_buf, size);
5409 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5410 	if (ret < 0) {
5411 		snap_name = ERR_PTR(ret);
5412 		goto out;
5413 	}
5414 
5415 	p = reply_buf;
5416 	end = reply_buf + ret;
5417 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5418 	if (IS_ERR(snap_name))
5419 		goto out;
5420 
5421 	dout("  snap_id 0x%016llx snap_name = %s\n",
5422 		(unsigned long long)snap_id, snap_name);
5423 out:
5424 	kfree(reply_buf);
5425 
5426 	return snap_name;
5427 }
5428 
5429 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
5430 {
5431 	bool first_time = rbd_dev->header.object_prefix == NULL;
5432 	int ret;
5433 
5434 	ret = rbd_dev_v2_image_size(rbd_dev);
5435 	if (ret)
5436 		return ret;
5437 
5438 	if (first_time) {
5439 		ret = rbd_dev_v2_header_onetime(rbd_dev);
5440 		if (ret)
5441 			return ret;
5442 	}
5443 
5444 	ret = rbd_dev_v2_snap_context(rbd_dev);
5445 	if (ret && first_time) {
5446 		kfree(rbd_dev->header.object_prefix);
5447 		rbd_dev->header.object_prefix = NULL;
5448 	}
5449 
5450 	return ret;
5451 }
5452 
5453 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
5454 {
5455 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5456 
5457 	if (rbd_dev->image_format == 1)
5458 		return rbd_dev_v1_header_info(rbd_dev);
5459 
5460 	return rbd_dev_v2_header_info(rbd_dev);
5461 }
5462 
5463 /*
5464  * Skips over white space at *buf, and updates *buf to point to the
5465  * first found non-space character (if any). Returns the length of
5466  * the token (string of non-white space characters) found.  Note
5467  * that *buf must be terminated with '\0'.
5468  */
5469 static inline size_t next_token(const char **buf)
5470 {
5471         /*
5472         * These are the characters that produce nonzero for
5473         * isspace() in the "C" and "POSIX" locales.
5474         */
5475         const char *spaces = " \f\n\r\t\v";
5476 
5477         *buf += strspn(*buf, spaces);	/* Find start of token */
5478 
5479 	return strcspn(*buf, spaces);   /* Return token length */
5480 }
5481 
5482 /*
5483  * Finds the next token in *buf, dynamically allocates a buffer big
5484  * enough to hold a copy of it, and copies the token into the new
5485  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
5486  * that a duplicate buffer is created even for a zero-length token.
5487  *
5488  * Returns a pointer to the newly-allocated duplicate, or a null
5489  * pointer if memory for the duplicate was not available.  If
5490  * the lenp argument is a non-null pointer, the length of the token
5491  * (not including the '\0') is returned in *lenp.
5492  *
5493  * If successful, the *buf pointer will be updated to point beyond
5494  * the end of the found token.
5495  *
5496  * Note: uses GFP_KERNEL for allocation.
5497  */
5498 static inline char *dup_token(const char **buf, size_t *lenp)
5499 {
5500 	char *dup;
5501 	size_t len;
5502 
5503 	len = next_token(buf);
5504 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5505 	if (!dup)
5506 		return NULL;
5507 	*(dup + len) = '\0';
5508 	*buf += len;
5509 
5510 	if (lenp)
5511 		*lenp = len;
5512 
5513 	return dup;
5514 }
5515 
5516 /*
5517  * Parse the options provided for an "rbd add" (i.e., rbd image
5518  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
5519  * and the data written is passed here via a NUL-terminated buffer.
5520  * Returns 0 if successful or an error code otherwise.
5521  *
5522  * The information extracted from these options is recorded in
5523  * the other parameters which return dynamically-allocated
5524  * structures:
5525  *  ceph_opts
5526  *      The address of a pointer that will refer to a ceph options
5527  *      structure.  Caller must release the returned pointer using
5528  *      ceph_destroy_options() when it is no longer needed.
5529  *  rbd_opts
5530  *	Address of an rbd options pointer.  Fully initialized by
5531  *	this function; caller must release with kfree().
5532  *  spec
5533  *	Address of an rbd image specification pointer.  Fully
5534  *	initialized by this function based on parsed options.
5535  *	Caller must release with rbd_spec_put().
5536  *
5537  * The options passed take this form:
5538  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5539  * where:
5540  *  <mon_addrs>
5541  *      A comma-separated list of one or more monitor addresses.
5542  *      A monitor address is an ip address, optionally followed
5543  *      by a port number (separated by a colon).
5544  *        I.e.:  ip1[:port1][,ip2[:port2]...]
5545  *  <options>
5546  *      A comma-separated list of ceph and/or rbd options.
5547  *  <pool_name>
5548  *      The name of the rados pool containing the rbd image.
5549  *  <image_name>
5550  *      The name of the image in that pool to map.
5551  *  <snap_id>
5552  *      An optional snapshot id.  If provided, the mapping will
5553  *      present data from the image at the time that snapshot was
5554  *      created.  The image head is used if no snapshot id is
5555  *      provided.  Snapshot mappings are always read-only.
5556  */
5557 static int rbd_add_parse_args(const char *buf,
5558 				struct ceph_options **ceph_opts,
5559 				struct rbd_options **opts,
5560 				struct rbd_spec **rbd_spec)
5561 {
5562 	size_t len;
5563 	char *options;
5564 	const char *mon_addrs;
5565 	char *snap_name;
5566 	size_t mon_addrs_size;
5567 	struct rbd_spec *spec = NULL;
5568 	struct rbd_options *rbd_opts = NULL;
5569 	struct ceph_options *copts;
5570 	int ret;
5571 
5572 	/* The first four tokens are required */
5573 
5574 	len = next_token(&buf);
5575 	if (!len) {
5576 		rbd_warn(NULL, "no monitor address(es) provided");
5577 		return -EINVAL;
5578 	}
5579 	mon_addrs = buf;
5580 	mon_addrs_size = len + 1;
5581 	buf += len;
5582 
5583 	ret = -EINVAL;
5584 	options = dup_token(&buf, NULL);
5585 	if (!options)
5586 		return -ENOMEM;
5587 	if (!*options) {
5588 		rbd_warn(NULL, "no options provided");
5589 		goto out_err;
5590 	}
5591 
5592 	spec = rbd_spec_alloc();
5593 	if (!spec)
5594 		goto out_mem;
5595 
5596 	spec->pool_name = dup_token(&buf, NULL);
5597 	if (!spec->pool_name)
5598 		goto out_mem;
5599 	if (!*spec->pool_name) {
5600 		rbd_warn(NULL, "no pool name provided");
5601 		goto out_err;
5602 	}
5603 
5604 	spec->image_name = dup_token(&buf, NULL);
5605 	if (!spec->image_name)
5606 		goto out_mem;
5607 	if (!*spec->image_name) {
5608 		rbd_warn(NULL, "no image name provided");
5609 		goto out_err;
5610 	}
5611 
5612 	/*
5613 	 * Snapshot name is optional; default is to use "-"
5614 	 * (indicating the head/no snapshot).
5615 	 */
5616 	len = next_token(&buf);
5617 	if (!len) {
5618 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5619 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5620 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
5621 		ret = -ENAMETOOLONG;
5622 		goto out_err;
5623 	}
5624 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5625 	if (!snap_name)
5626 		goto out_mem;
5627 	*(snap_name + len) = '\0';
5628 	spec->snap_name = snap_name;
5629 
5630 	/* Initialize all rbd options to the defaults */
5631 
5632 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
5633 	if (!rbd_opts)
5634 		goto out_mem;
5635 
5636 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
5637 	rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5638 	rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
5639 	rbd_opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
5640 
5641 	copts = ceph_parse_options(options, mon_addrs,
5642 					mon_addrs + mon_addrs_size - 1,
5643 					parse_rbd_opts_token, rbd_opts);
5644 	if (IS_ERR(copts)) {
5645 		ret = PTR_ERR(copts);
5646 		goto out_err;
5647 	}
5648 	kfree(options);
5649 
5650 	*ceph_opts = copts;
5651 	*opts = rbd_opts;
5652 	*rbd_spec = spec;
5653 
5654 	return 0;
5655 out_mem:
5656 	ret = -ENOMEM;
5657 out_err:
5658 	kfree(rbd_opts);
5659 	rbd_spec_put(spec);
5660 	kfree(options);
5661 
5662 	return ret;
5663 }
5664 
5665 /*
5666  * Return pool id (>= 0) or a negative error code.
5667  */
5668 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
5669 {
5670 	struct ceph_options *opts = rbdc->client->options;
5671 	u64 newest_epoch;
5672 	int tries = 0;
5673 	int ret;
5674 
5675 again:
5676 	ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
5677 	if (ret == -ENOENT && tries++ < 1) {
5678 		ret = ceph_monc_get_version(&rbdc->client->monc, "osdmap",
5679 					    &newest_epoch);
5680 		if (ret < 0)
5681 			return ret;
5682 
5683 		if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5684 			ceph_osdc_maybe_request_map(&rbdc->client->osdc);
5685 			(void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5686 						     newest_epoch,
5687 						     opts->mount_timeout);
5688 			goto again;
5689 		} else {
5690 			/* the osdmap we have is new enough */
5691 			return -ENOENT;
5692 		}
5693 	}
5694 
5695 	return ret;
5696 }
5697 
5698 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
5699 {
5700 	down_write(&rbd_dev->lock_rwsem);
5701 	if (__rbd_is_lock_owner(rbd_dev))
5702 		rbd_unlock(rbd_dev);
5703 	up_write(&rbd_dev->lock_rwsem);
5704 }
5705 
5706 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
5707 {
5708 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
5709 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
5710 		return -EINVAL;
5711 	}
5712 
5713 	/* FIXME: "rbd map --exclusive" should be in interruptible */
5714 	down_read(&rbd_dev->lock_rwsem);
5715 	rbd_wait_state_locked(rbd_dev);
5716 	up_read(&rbd_dev->lock_rwsem);
5717 	if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
5718 		rbd_warn(rbd_dev, "failed to acquire exclusive lock");
5719 		return -EROFS;
5720 	}
5721 
5722 	return 0;
5723 }
5724 
5725 /*
5726  * An rbd format 2 image has a unique identifier, distinct from the
5727  * name given to it by the user.  Internally, that identifier is
5728  * what's used to specify the names of objects related to the image.
5729  *
5730  * A special "rbd id" object is used to map an rbd image name to its
5731  * id.  If that object doesn't exist, then there is no v2 rbd image
5732  * with the supplied name.
5733  *
5734  * This function will record the given rbd_dev's image_id field if
5735  * it can be determined, and in that case will return 0.  If any
5736  * errors occur a negative errno will be returned and the rbd_dev's
5737  * image_id field will be unchanged (and should be NULL).
5738  */
5739 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5740 {
5741 	int ret;
5742 	size_t size;
5743 	CEPH_DEFINE_OID_ONSTACK(oid);
5744 	void *response;
5745 	char *image_id;
5746 
5747 	/*
5748 	 * When probing a parent image, the image id is already
5749 	 * known (and the image name likely is not).  There's no
5750 	 * need to fetch the image id again in this case.  We
5751 	 * do still need to set the image format though.
5752 	 */
5753 	if (rbd_dev->spec->image_id) {
5754 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5755 
5756 		return 0;
5757 	}
5758 
5759 	/*
5760 	 * First, see if the format 2 image id file exists, and if
5761 	 * so, get the image's persistent id from it.
5762 	 */
5763 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
5764 			       rbd_dev->spec->image_name);
5765 	if (ret)
5766 		return ret;
5767 
5768 	dout("rbd id object name is %s\n", oid.name);
5769 
5770 	/* Response will be an encoded string, which includes a length */
5771 
5772 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5773 	response = kzalloc(size, GFP_NOIO);
5774 	if (!response) {
5775 		ret = -ENOMEM;
5776 		goto out;
5777 	}
5778 
5779 	/* If it doesn't exist we'll assume it's a format 1 image */
5780 
5781 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5782 				  "get_id", NULL, 0,
5783 				  response, RBD_IMAGE_ID_LEN_MAX);
5784 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5785 	if (ret == -ENOENT) {
5786 		image_id = kstrdup("", GFP_KERNEL);
5787 		ret = image_id ? 0 : -ENOMEM;
5788 		if (!ret)
5789 			rbd_dev->image_format = 1;
5790 	} else if (ret >= 0) {
5791 		void *p = response;
5792 
5793 		image_id = ceph_extract_encoded_string(&p, p + ret,
5794 						NULL, GFP_NOIO);
5795 		ret = PTR_ERR_OR_ZERO(image_id);
5796 		if (!ret)
5797 			rbd_dev->image_format = 2;
5798 	}
5799 
5800 	if (!ret) {
5801 		rbd_dev->spec->image_id = image_id;
5802 		dout("image_id is %s\n", image_id);
5803 	}
5804 out:
5805 	kfree(response);
5806 	ceph_oid_destroy(&oid);
5807 	return ret;
5808 }
5809 
5810 /*
5811  * Undo whatever state changes are made by v1 or v2 header info
5812  * call.
5813  */
5814 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5815 {
5816 	struct rbd_image_header	*header;
5817 
5818 	rbd_dev_parent_put(rbd_dev);
5819 
5820 	/* Free dynamic fields from the header, then zero it out */
5821 
5822 	header = &rbd_dev->header;
5823 	ceph_put_snap_context(header->snapc);
5824 	kfree(header->snap_sizes);
5825 	kfree(header->snap_names);
5826 	kfree(header->object_prefix);
5827 	memset(header, 0, sizeof (*header));
5828 }
5829 
5830 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5831 {
5832 	int ret;
5833 
5834 	ret = rbd_dev_v2_object_prefix(rbd_dev);
5835 	if (ret)
5836 		goto out_err;
5837 
5838 	/*
5839 	 * Get the and check features for the image.  Currently the
5840 	 * features are assumed to never change.
5841 	 */
5842 	ret = rbd_dev_v2_features(rbd_dev);
5843 	if (ret)
5844 		goto out_err;
5845 
5846 	/* If the image supports fancy striping, get its parameters */
5847 
5848 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5849 		ret = rbd_dev_v2_striping_info(rbd_dev);
5850 		if (ret < 0)
5851 			goto out_err;
5852 	}
5853 
5854 	if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
5855 		ret = rbd_dev_v2_data_pool(rbd_dev);
5856 		if (ret)
5857 			goto out_err;
5858 	}
5859 
5860 	rbd_init_layout(rbd_dev);
5861 	return 0;
5862 
5863 out_err:
5864 	rbd_dev->header.features = 0;
5865 	kfree(rbd_dev->header.object_prefix);
5866 	rbd_dev->header.object_prefix = NULL;
5867 	return ret;
5868 }
5869 
5870 /*
5871  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5872  * rbd_dev_image_probe() recursion depth, which means it's also the
5873  * length of the already discovered part of the parent chain.
5874  */
5875 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5876 {
5877 	struct rbd_device *parent = NULL;
5878 	int ret;
5879 
5880 	if (!rbd_dev->parent_spec)
5881 		return 0;
5882 
5883 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5884 		pr_info("parent chain is too long (%d)\n", depth);
5885 		ret = -EINVAL;
5886 		goto out_err;
5887 	}
5888 
5889 	parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5890 	if (!parent) {
5891 		ret = -ENOMEM;
5892 		goto out_err;
5893 	}
5894 
5895 	/*
5896 	 * Images related by parent/child relationships always share
5897 	 * rbd_client and spec/parent_spec, so bump their refcounts.
5898 	 */
5899 	__rbd_get_client(rbd_dev->rbd_client);
5900 	rbd_spec_get(rbd_dev->parent_spec);
5901 
5902 	ret = rbd_dev_image_probe(parent, depth);
5903 	if (ret < 0)
5904 		goto out_err;
5905 
5906 	rbd_dev->parent = parent;
5907 	atomic_set(&rbd_dev->parent_ref, 1);
5908 	return 0;
5909 
5910 out_err:
5911 	rbd_dev_unparent(rbd_dev);
5912 	rbd_dev_destroy(parent);
5913 	return ret;
5914 }
5915 
5916 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5917 {
5918 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5919 	rbd_dev_mapping_clear(rbd_dev);
5920 	rbd_free_disk(rbd_dev);
5921 	if (!single_major)
5922 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5923 }
5924 
5925 /*
5926  * rbd_dev->header_rwsem must be locked for write and will be unlocked
5927  * upon return.
5928  */
5929 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5930 {
5931 	int ret;
5932 
5933 	/* Record our major and minor device numbers. */
5934 
5935 	if (!single_major) {
5936 		ret = register_blkdev(0, rbd_dev->name);
5937 		if (ret < 0)
5938 			goto err_out_unlock;
5939 
5940 		rbd_dev->major = ret;
5941 		rbd_dev->minor = 0;
5942 	} else {
5943 		rbd_dev->major = rbd_major;
5944 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5945 	}
5946 
5947 	/* Set up the blkdev mapping. */
5948 
5949 	ret = rbd_init_disk(rbd_dev);
5950 	if (ret)
5951 		goto err_out_blkdev;
5952 
5953 	ret = rbd_dev_mapping_set(rbd_dev);
5954 	if (ret)
5955 		goto err_out_disk;
5956 
5957 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5958 	set_disk_ro(rbd_dev->disk, rbd_dev->opts->read_only);
5959 
5960 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5961 	if (ret)
5962 		goto err_out_mapping;
5963 
5964 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5965 	up_write(&rbd_dev->header_rwsem);
5966 	return 0;
5967 
5968 err_out_mapping:
5969 	rbd_dev_mapping_clear(rbd_dev);
5970 err_out_disk:
5971 	rbd_free_disk(rbd_dev);
5972 err_out_blkdev:
5973 	if (!single_major)
5974 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5975 err_out_unlock:
5976 	up_write(&rbd_dev->header_rwsem);
5977 	return ret;
5978 }
5979 
5980 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5981 {
5982 	struct rbd_spec *spec = rbd_dev->spec;
5983 	int ret;
5984 
5985 	/* Record the header object name for this rbd image. */
5986 
5987 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5988 	if (rbd_dev->image_format == 1)
5989 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5990 				       spec->image_name, RBD_SUFFIX);
5991 	else
5992 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5993 				       RBD_HEADER_PREFIX, spec->image_id);
5994 
5995 	return ret;
5996 }
5997 
5998 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5999 {
6000 	rbd_dev_unprobe(rbd_dev);
6001 	if (rbd_dev->opts)
6002 		rbd_unregister_watch(rbd_dev);
6003 	rbd_dev->image_format = 0;
6004 	kfree(rbd_dev->spec->image_id);
6005 	rbd_dev->spec->image_id = NULL;
6006 }
6007 
6008 /*
6009  * Probe for the existence of the header object for the given rbd
6010  * device.  If this image is the one being mapped (i.e., not a
6011  * parent), initiate a watch on its header object before using that
6012  * object to get detailed information about the rbd image.
6013  */
6014 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6015 {
6016 	int ret;
6017 
6018 	/*
6019 	 * Get the id from the image id object.  Unless there's an
6020 	 * error, rbd_dev->spec->image_id will be filled in with
6021 	 * a dynamically-allocated string, and rbd_dev->image_format
6022 	 * will be set to either 1 or 2.
6023 	 */
6024 	ret = rbd_dev_image_id(rbd_dev);
6025 	if (ret)
6026 		return ret;
6027 
6028 	ret = rbd_dev_header_name(rbd_dev);
6029 	if (ret)
6030 		goto err_out_format;
6031 
6032 	if (!depth) {
6033 		ret = rbd_register_watch(rbd_dev);
6034 		if (ret) {
6035 			if (ret == -ENOENT)
6036 				pr_info("image %s/%s does not exist\n",
6037 					rbd_dev->spec->pool_name,
6038 					rbd_dev->spec->image_name);
6039 			goto err_out_format;
6040 		}
6041 	}
6042 
6043 	ret = rbd_dev_header_info(rbd_dev);
6044 	if (ret)
6045 		goto err_out_watch;
6046 
6047 	/*
6048 	 * If this image is the one being mapped, we have pool name and
6049 	 * id, image name and id, and snap name - need to fill snap id.
6050 	 * Otherwise this is a parent image, identified by pool, image
6051 	 * and snap ids - need to fill in names for those ids.
6052 	 */
6053 	if (!depth)
6054 		ret = rbd_spec_fill_snap_id(rbd_dev);
6055 	else
6056 		ret = rbd_spec_fill_names(rbd_dev);
6057 	if (ret) {
6058 		if (ret == -ENOENT)
6059 			pr_info("snap %s/%s@%s does not exist\n",
6060 				rbd_dev->spec->pool_name,
6061 				rbd_dev->spec->image_name,
6062 				rbd_dev->spec->snap_name);
6063 		goto err_out_probe;
6064 	}
6065 
6066 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6067 		ret = rbd_dev_v2_parent_info(rbd_dev);
6068 		if (ret)
6069 			goto err_out_probe;
6070 
6071 		/*
6072 		 * Need to warn users if this image is the one being
6073 		 * mapped and has a parent.
6074 		 */
6075 		if (!depth && rbd_dev->parent_spec)
6076 			rbd_warn(rbd_dev,
6077 				 "WARNING: kernel layering is EXPERIMENTAL!");
6078 	}
6079 
6080 	ret = rbd_dev_probe_parent(rbd_dev, depth);
6081 	if (ret)
6082 		goto err_out_probe;
6083 
6084 	dout("discovered format %u image, header name is %s\n",
6085 		rbd_dev->image_format, rbd_dev->header_oid.name);
6086 	return 0;
6087 
6088 err_out_probe:
6089 	rbd_dev_unprobe(rbd_dev);
6090 err_out_watch:
6091 	if (!depth)
6092 		rbd_unregister_watch(rbd_dev);
6093 err_out_format:
6094 	rbd_dev->image_format = 0;
6095 	kfree(rbd_dev->spec->image_id);
6096 	rbd_dev->spec->image_id = NULL;
6097 	return ret;
6098 }
6099 
6100 static ssize_t do_rbd_add(struct bus_type *bus,
6101 			  const char *buf,
6102 			  size_t count)
6103 {
6104 	struct rbd_device *rbd_dev = NULL;
6105 	struct ceph_options *ceph_opts = NULL;
6106 	struct rbd_options *rbd_opts = NULL;
6107 	struct rbd_spec *spec = NULL;
6108 	struct rbd_client *rbdc;
6109 	int rc;
6110 
6111 	if (!try_module_get(THIS_MODULE))
6112 		return -ENODEV;
6113 
6114 	/* parse add command */
6115 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
6116 	if (rc < 0)
6117 		goto out;
6118 
6119 	rbdc = rbd_get_client(ceph_opts);
6120 	if (IS_ERR(rbdc)) {
6121 		rc = PTR_ERR(rbdc);
6122 		goto err_out_args;
6123 	}
6124 
6125 	/* pick the pool */
6126 	rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
6127 	if (rc < 0) {
6128 		if (rc == -ENOENT)
6129 			pr_info("pool %s does not exist\n", spec->pool_name);
6130 		goto err_out_client;
6131 	}
6132 	spec->pool_id = (u64)rc;
6133 
6134 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
6135 	if (!rbd_dev) {
6136 		rc = -ENOMEM;
6137 		goto err_out_client;
6138 	}
6139 	rbdc = NULL;		/* rbd_dev now owns this */
6140 	spec = NULL;		/* rbd_dev now owns this */
6141 	rbd_opts = NULL;	/* rbd_dev now owns this */
6142 
6143 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
6144 	if (!rbd_dev->config_info) {
6145 		rc = -ENOMEM;
6146 		goto err_out_rbd_dev;
6147 	}
6148 
6149 	down_write(&rbd_dev->header_rwsem);
6150 	rc = rbd_dev_image_probe(rbd_dev, 0);
6151 	if (rc < 0) {
6152 		up_write(&rbd_dev->header_rwsem);
6153 		goto err_out_rbd_dev;
6154 	}
6155 
6156 	/* If we are mapping a snapshot it must be marked read-only */
6157 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
6158 		rbd_dev->opts->read_only = true;
6159 
6160 	rc = rbd_dev_device_setup(rbd_dev);
6161 	if (rc)
6162 		goto err_out_image_probe;
6163 
6164 	if (rbd_dev->opts->exclusive) {
6165 		rc = rbd_add_acquire_lock(rbd_dev);
6166 		if (rc)
6167 			goto err_out_device_setup;
6168 	}
6169 
6170 	/* Everything's ready.  Announce the disk to the world. */
6171 
6172 	rc = device_add(&rbd_dev->dev);
6173 	if (rc)
6174 		goto err_out_image_lock;
6175 
6176 	add_disk(rbd_dev->disk);
6177 	/* see rbd_init_disk() */
6178 	blk_put_queue(rbd_dev->disk->queue);
6179 
6180 	spin_lock(&rbd_dev_list_lock);
6181 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
6182 	spin_unlock(&rbd_dev_list_lock);
6183 
6184 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
6185 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
6186 		rbd_dev->header.features);
6187 	rc = count;
6188 out:
6189 	module_put(THIS_MODULE);
6190 	return rc;
6191 
6192 err_out_image_lock:
6193 	rbd_dev_image_unlock(rbd_dev);
6194 err_out_device_setup:
6195 	rbd_dev_device_release(rbd_dev);
6196 err_out_image_probe:
6197 	rbd_dev_image_release(rbd_dev);
6198 err_out_rbd_dev:
6199 	rbd_dev_destroy(rbd_dev);
6200 err_out_client:
6201 	rbd_put_client(rbdc);
6202 err_out_args:
6203 	rbd_spec_put(spec);
6204 	kfree(rbd_opts);
6205 	goto out;
6206 }
6207 
6208 static ssize_t rbd_add(struct bus_type *bus,
6209 		       const char *buf,
6210 		       size_t count)
6211 {
6212 	if (single_major)
6213 		return -EINVAL;
6214 
6215 	return do_rbd_add(bus, buf, count);
6216 }
6217 
6218 static ssize_t rbd_add_single_major(struct bus_type *bus,
6219 				    const char *buf,
6220 				    size_t count)
6221 {
6222 	return do_rbd_add(bus, buf, count);
6223 }
6224 
6225 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
6226 {
6227 	while (rbd_dev->parent) {
6228 		struct rbd_device *first = rbd_dev;
6229 		struct rbd_device *second = first->parent;
6230 		struct rbd_device *third;
6231 
6232 		/*
6233 		 * Follow to the parent with no grandparent and
6234 		 * remove it.
6235 		 */
6236 		while (second && (third = second->parent)) {
6237 			first = second;
6238 			second = third;
6239 		}
6240 		rbd_assert(second);
6241 		rbd_dev_image_release(second);
6242 		rbd_dev_destroy(second);
6243 		first->parent = NULL;
6244 		first->parent_overlap = 0;
6245 
6246 		rbd_assert(first->parent_spec);
6247 		rbd_spec_put(first->parent_spec);
6248 		first->parent_spec = NULL;
6249 	}
6250 }
6251 
6252 static ssize_t do_rbd_remove(struct bus_type *bus,
6253 			     const char *buf,
6254 			     size_t count)
6255 {
6256 	struct rbd_device *rbd_dev = NULL;
6257 	struct list_head *tmp;
6258 	int dev_id;
6259 	char opt_buf[6];
6260 	bool already = false;
6261 	bool force = false;
6262 	int ret;
6263 
6264 	dev_id = -1;
6265 	opt_buf[0] = '\0';
6266 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
6267 	if (dev_id < 0) {
6268 		pr_err("dev_id out of range\n");
6269 		return -EINVAL;
6270 	}
6271 	if (opt_buf[0] != '\0') {
6272 		if (!strcmp(opt_buf, "force")) {
6273 			force = true;
6274 		} else {
6275 			pr_err("bad remove option at '%s'\n", opt_buf);
6276 			return -EINVAL;
6277 		}
6278 	}
6279 
6280 	ret = -ENOENT;
6281 	spin_lock(&rbd_dev_list_lock);
6282 	list_for_each(tmp, &rbd_dev_list) {
6283 		rbd_dev = list_entry(tmp, struct rbd_device, node);
6284 		if (rbd_dev->dev_id == dev_id) {
6285 			ret = 0;
6286 			break;
6287 		}
6288 	}
6289 	if (!ret) {
6290 		spin_lock_irq(&rbd_dev->lock);
6291 		if (rbd_dev->open_count && !force)
6292 			ret = -EBUSY;
6293 		else
6294 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
6295 							&rbd_dev->flags);
6296 		spin_unlock_irq(&rbd_dev->lock);
6297 	}
6298 	spin_unlock(&rbd_dev_list_lock);
6299 	if (ret < 0 || already)
6300 		return ret;
6301 
6302 	if (force) {
6303 		/*
6304 		 * Prevent new IO from being queued and wait for existing
6305 		 * IO to complete/fail.
6306 		 */
6307 		blk_mq_freeze_queue(rbd_dev->disk->queue);
6308 		blk_set_queue_dying(rbd_dev->disk->queue);
6309 	}
6310 
6311 	del_gendisk(rbd_dev->disk);
6312 	spin_lock(&rbd_dev_list_lock);
6313 	list_del_init(&rbd_dev->node);
6314 	spin_unlock(&rbd_dev_list_lock);
6315 	device_del(&rbd_dev->dev);
6316 
6317 	rbd_dev_image_unlock(rbd_dev);
6318 	rbd_dev_device_release(rbd_dev);
6319 	rbd_dev_image_release(rbd_dev);
6320 	rbd_dev_destroy(rbd_dev);
6321 	return count;
6322 }
6323 
6324 static ssize_t rbd_remove(struct bus_type *bus,
6325 			  const char *buf,
6326 			  size_t count)
6327 {
6328 	if (single_major)
6329 		return -EINVAL;
6330 
6331 	return do_rbd_remove(bus, buf, count);
6332 }
6333 
6334 static ssize_t rbd_remove_single_major(struct bus_type *bus,
6335 				       const char *buf,
6336 				       size_t count)
6337 {
6338 	return do_rbd_remove(bus, buf, count);
6339 }
6340 
6341 /*
6342  * create control files in sysfs
6343  * /sys/bus/rbd/...
6344  */
6345 static int rbd_sysfs_init(void)
6346 {
6347 	int ret;
6348 
6349 	ret = device_register(&rbd_root_dev);
6350 	if (ret < 0)
6351 		return ret;
6352 
6353 	ret = bus_register(&rbd_bus_type);
6354 	if (ret < 0)
6355 		device_unregister(&rbd_root_dev);
6356 
6357 	return ret;
6358 }
6359 
6360 static void rbd_sysfs_cleanup(void)
6361 {
6362 	bus_unregister(&rbd_bus_type);
6363 	device_unregister(&rbd_root_dev);
6364 }
6365 
6366 static int rbd_slab_init(void)
6367 {
6368 	rbd_assert(!rbd_img_request_cache);
6369 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
6370 	if (!rbd_img_request_cache)
6371 		return -ENOMEM;
6372 
6373 	rbd_assert(!rbd_obj_request_cache);
6374 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
6375 	if (!rbd_obj_request_cache)
6376 		goto out_err;
6377 
6378 	rbd_assert(!rbd_bio_clone);
6379 	rbd_bio_clone = bioset_create(BIO_POOL_SIZE, 0, 0);
6380 	if (!rbd_bio_clone)
6381 		goto out_err_clone;
6382 
6383 	return 0;
6384 
6385 out_err_clone:
6386 	kmem_cache_destroy(rbd_obj_request_cache);
6387 	rbd_obj_request_cache = NULL;
6388 out_err:
6389 	kmem_cache_destroy(rbd_img_request_cache);
6390 	rbd_img_request_cache = NULL;
6391 	return -ENOMEM;
6392 }
6393 
6394 static void rbd_slab_exit(void)
6395 {
6396 	rbd_assert(rbd_obj_request_cache);
6397 	kmem_cache_destroy(rbd_obj_request_cache);
6398 	rbd_obj_request_cache = NULL;
6399 
6400 	rbd_assert(rbd_img_request_cache);
6401 	kmem_cache_destroy(rbd_img_request_cache);
6402 	rbd_img_request_cache = NULL;
6403 
6404 	rbd_assert(rbd_bio_clone);
6405 	bioset_free(rbd_bio_clone);
6406 	rbd_bio_clone = NULL;
6407 }
6408 
6409 static int __init rbd_init(void)
6410 {
6411 	int rc;
6412 
6413 	if (!libceph_compatible(NULL)) {
6414 		rbd_warn(NULL, "libceph incompatibility (quitting)");
6415 		return -EINVAL;
6416 	}
6417 
6418 	rc = rbd_slab_init();
6419 	if (rc)
6420 		return rc;
6421 
6422 	/*
6423 	 * The number of active work items is limited by the number of
6424 	 * rbd devices * queue depth, so leave @max_active at default.
6425 	 */
6426 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
6427 	if (!rbd_wq) {
6428 		rc = -ENOMEM;
6429 		goto err_out_slab;
6430 	}
6431 
6432 	if (single_major) {
6433 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
6434 		if (rbd_major < 0) {
6435 			rc = rbd_major;
6436 			goto err_out_wq;
6437 		}
6438 	}
6439 
6440 	rc = rbd_sysfs_init();
6441 	if (rc)
6442 		goto err_out_blkdev;
6443 
6444 	if (single_major)
6445 		pr_info("loaded (major %d)\n", rbd_major);
6446 	else
6447 		pr_info("loaded\n");
6448 
6449 	return 0;
6450 
6451 err_out_blkdev:
6452 	if (single_major)
6453 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
6454 err_out_wq:
6455 	destroy_workqueue(rbd_wq);
6456 err_out_slab:
6457 	rbd_slab_exit();
6458 	return rc;
6459 }
6460 
6461 static void __exit rbd_exit(void)
6462 {
6463 	ida_destroy(&rbd_dev_id_ida);
6464 	rbd_sysfs_cleanup();
6465 	if (single_major)
6466 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
6467 	destroy_workqueue(rbd_wq);
6468 	rbd_slab_exit();
6469 }
6470 
6471 module_init(rbd_init);
6472 module_exit(rbd_exit);
6473 
6474 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
6475 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
6476 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
6477 /* following authorship retained from original osdblk.c */
6478 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
6479 
6480 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
6481 MODULE_LICENSE("GPL");
6482