xref: /linux/drivers/block/rbd.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37 
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47 
48 #include "rbd_types.h"
49 
50 #define RBD_DEBUG	/* Activate rbd_assert() calls */
51 
52 /*
53  * The basic unit of block I/O is a sector.  It is interpreted in a
54  * number of contexts in Linux (blk, bio, genhd), but the default is
55  * universally 512 bytes.  These symbols are just slightly more
56  * meaningful than the bare numbers they represent.
57  */
58 #define	SECTOR_SHIFT	9
59 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
60 
61 /*
62  * Increment the given counter and return its updated value.
63  * If the counter is already 0 it will not be incremented.
64  * If the counter is already at its maximum value returns
65  * -EINVAL without updating it.
66  */
67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69 	unsigned int counter;
70 
71 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72 	if (counter <= (unsigned int)INT_MAX)
73 		return (int)counter;
74 
75 	atomic_dec(v);
76 
77 	return -EINVAL;
78 }
79 
80 /* Decrement the counter.  Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83 	int counter;
84 
85 	counter = atomic_dec_return(v);
86 	if (counter >= 0)
87 		return counter;
88 
89 	atomic_inc(v);
90 
91 	return -EINVAL;
92 }
93 
94 #define RBD_DRV_NAME "rbd"
95 
96 #define RBD_MINORS_PER_MAJOR		256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
98 
99 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
100 #define RBD_MAX_SNAP_NAME_LEN	\
101 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
102 
103 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
104 
105 #define RBD_SNAP_HEAD_NAME	"-"
106 
107 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
108 
109 /* This allows a single page to hold an image name sent by OSD */
110 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
111 #define RBD_IMAGE_ID_LEN_MAX	64
112 
113 #define RBD_OBJ_PREFIX_LEN_MAX	64
114 
115 /* Feature bits */
116 
117 #define RBD_FEATURE_LAYERING	(1<<0)
118 #define RBD_FEATURE_STRIPINGV2	(1<<1)
119 #define RBD_FEATURES_ALL \
120 	    (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
121 
122 /* Features supported by this (client software) implementation. */
123 
124 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
125 
126 /*
127  * An RBD device name will be "rbd#", where the "rbd" comes from
128  * RBD_DRV_NAME above, and # is a unique integer identifier.
129  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
130  * enough to hold all possible device names.
131  */
132 #define DEV_NAME_LEN		32
133 #define MAX_INT_FORMAT_WIDTH	((5 * sizeof (int)) / 2 + 1)
134 
135 /*
136  * block device image metadata (in-memory version)
137  */
138 struct rbd_image_header {
139 	/* These six fields never change for a given rbd image */
140 	char *object_prefix;
141 	__u8 obj_order;
142 	__u8 crypt_type;
143 	__u8 comp_type;
144 	u64 stripe_unit;
145 	u64 stripe_count;
146 	u64 features;		/* Might be changeable someday? */
147 
148 	/* The remaining fields need to be updated occasionally */
149 	u64 image_size;
150 	struct ceph_snap_context *snapc;
151 	char *snap_names;	/* format 1 only */
152 	u64 *snap_sizes;	/* format 1 only */
153 };
154 
155 /*
156  * An rbd image specification.
157  *
158  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
159  * identify an image.  Each rbd_dev structure includes a pointer to
160  * an rbd_spec structure that encapsulates this identity.
161  *
162  * Each of the id's in an rbd_spec has an associated name.  For a
163  * user-mapped image, the names are supplied and the id's associated
164  * with them are looked up.  For a layered image, a parent image is
165  * defined by the tuple, and the names are looked up.
166  *
167  * An rbd_dev structure contains a parent_spec pointer which is
168  * non-null if the image it represents is a child in a layered
169  * image.  This pointer will refer to the rbd_spec structure used
170  * by the parent rbd_dev for its own identity (i.e., the structure
171  * is shared between the parent and child).
172  *
173  * Since these structures are populated once, during the discovery
174  * phase of image construction, they are effectively immutable so
175  * we make no effort to synchronize access to them.
176  *
177  * Note that code herein does not assume the image name is known (it
178  * could be a null pointer).
179  */
180 struct rbd_spec {
181 	u64		pool_id;
182 	const char	*pool_name;
183 
184 	const char	*image_id;
185 	const char	*image_name;
186 
187 	u64		snap_id;
188 	const char	*snap_name;
189 
190 	struct kref	kref;
191 };
192 
193 /*
194  * an instance of the client.  multiple devices may share an rbd client.
195  */
196 struct rbd_client {
197 	struct ceph_client	*client;
198 	struct kref		kref;
199 	struct list_head	node;
200 };
201 
202 struct rbd_img_request;
203 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
204 
205 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
206 
207 struct rbd_obj_request;
208 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
209 
210 enum obj_request_type {
211 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
212 };
213 
214 enum obj_operation_type {
215 	OBJ_OP_WRITE,
216 	OBJ_OP_READ,
217 	OBJ_OP_DISCARD,
218 };
219 
220 enum obj_req_flags {
221 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
222 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
223 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
224 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
225 };
226 
227 struct rbd_obj_request {
228 	const char		*object_name;
229 	u64			offset;		/* object start byte */
230 	u64			length;		/* bytes from offset */
231 	unsigned long		flags;
232 
233 	/*
234 	 * An object request associated with an image will have its
235 	 * img_data flag set; a standalone object request will not.
236 	 *
237 	 * A standalone object request will have which == BAD_WHICH
238 	 * and a null obj_request pointer.
239 	 *
240 	 * An object request initiated in support of a layered image
241 	 * object (to check for its existence before a write) will
242 	 * have which == BAD_WHICH and a non-null obj_request pointer.
243 	 *
244 	 * Finally, an object request for rbd image data will have
245 	 * which != BAD_WHICH, and will have a non-null img_request
246 	 * pointer.  The value of which will be in the range
247 	 * 0..(img_request->obj_request_count-1).
248 	 */
249 	union {
250 		struct rbd_obj_request	*obj_request;	/* STAT op */
251 		struct {
252 			struct rbd_img_request	*img_request;
253 			u64			img_offset;
254 			/* links for img_request->obj_requests list */
255 			struct list_head	links;
256 		};
257 	};
258 	u32			which;		/* posn image request list */
259 
260 	enum obj_request_type	type;
261 	union {
262 		struct bio	*bio_list;
263 		struct {
264 			struct page	**pages;
265 			u32		page_count;
266 		};
267 	};
268 	struct page		**copyup_pages;
269 	u32			copyup_page_count;
270 
271 	struct ceph_osd_request	*osd_req;
272 
273 	u64			xferred;	/* bytes transferred */
274 	int			result;
275 
276 	rbd_obj_callback_t	callback;
277 	struct completion	completion;
278 
279 	struct kref		kref;
280 };
281 
282 enum img_req_flags {
283 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
284 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
285 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
286 	IMG_REQ_DISCARD,	/* discard: normal = 0, discard request = 1 */
287 };
288 
289 struct rbd_img_request {
290 	struct rbd_device	*rbd_dev;
291 	u64			offset;	/* starting image byte offset */
292 	u64			length;	/* byte count from offset */
293 	unsigned long		flags;
294 	union {
295 		u64			snap_id;	/* for reads */
296 		struct ceph_snap_context *snapc;	/* for writes */
297 	};
298 	union {
299 		struct request		*rq;		/* block request */
300 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
301 	};
302 	struct page		**copyup_pages;
303 	u32			copyup_page_count;
304 	spinlock_t		completion_lock;/* protects next_completion */
305 	u32			next_completion;
306 	rbd_img_callback_t	callback;
307 	u64			xferred;/* aggregate bytes transferred */
308 	int			result;	/* first nonzero obj_request result */
309 
310 	u32			obj_request_count;
311 	struct list_head	obj_requests;	/* rbd_obj_request structs */
312 
313 	struct kref		kref;
314 };
315 
316 #define for_each_obj_request(ireq, oreq) \
317 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
318 #define for_each_obj_request_from(ireq, oreq) \
319 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_safe(ireq, oreq, n) \
321 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
322 
323 struct rbd_mapping {
324 	u64                     size;
325 	u64                     features;
326 	bool			read_only;
327 };
328 
329 /*
330  * a single device
331  */
332 struct rbd_device {
333 	int			dev_id;		/* blkdev unique id */
334 
335 	int			major;		/* blkdev assigned major */
336 	int			minor;
337 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
338 
339 	u32			image_format;	/* Either 1 or 2 */
340 	struct rbd_client	*rbd_client;
341 
342 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
343 
344 	spinlock_t		lock;		/* queue, flags, open_count */
345 
346 	struct rbd_image_header	header;
347 	unsigned long		flags;		/* possibly lock protected */
348 	struct rbd_spec		*spec;
349 
350 	char			*header_name;
351 
352 	struct ceph_file_layout	layout;
353 
354 	struct ceph_osd_event   *watch_event;
355 	struct rbd_obj_request	*watch_request;
356 
357 	struct rbd_spec		*parent_spec;
358 	u64			parent_overlap;
359 	atomic_t		parent_ref;
360 	struct rbd_device	*parent;
361 
362 	/* Block layer tags. */
363 	struct blk_mq_tag_set	tag_set;
364 
365 	/* protects updating the header */
366 	struct rw_semaphore     header_rwsem;
367 
368 	struct rbd_mapping	mapping;
369 
370 	struct list_head	node;
371 
372 	/* sysfs related */
373 	struct device		dev;
374 	unsigned long		open_count;	/* protected by lock */
375 };
376 
377 /*
378  * Flag bits for rbd_dev->flags.  If atomicity is required,
379  * rbd_dev->lock is used to protect access.
380  *
381  * Currently, only the "removing" flag (which is coupled with the
382  * "open_count" field) requires atomic access.
383  */
384 enum rbd_dev_flags {
385 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
386 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
387 };
388 
389 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
390 
391 static LIST_HEAD(rbd_dev_list);    /* devices */
392 static DEFINE_SPINLOCK(rbd_dev_list_lock);
393 
394 static LIST_HEAD(rbd_client_list);		/* clients */
395 static DEFINE_SPINLOCK(rbd_client_list_lock);
396 
397 /* Slab caches for frequently-allocated structures */
398 
399 static struct kmem_cache	*rbd_img_request_cache;
400 static struct kmem_cache	*rbd_obj_request_cache;
401 static struct kmem_cache	*rbd_segment_name_cache;
402 
403 static int rbd_major;
404 static DEFINE_IDA(rbd_dev_id_ida);
405 
406 static struct workqueue_struct *rbd_wq;
407 
408 /*
409  * Default to false for now, as single-major requires >= 0.75 version of
410  * userspace rbd utility.
411  */
412 static bool single_major = false;
413 module_param(single_major, bool, S_IRUGO);
414 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
415 
416 static int rbd_img_request_submit(struct rbd_img_request *img_request);
417 
418 static void rbd_dev_device_release(struct device *dev);
419 
420 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
421 		       size_t count);
422 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
423 			  size_t count);
424 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
425 				    size_t count);
426 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
427 				       size_t count);
428 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
429 static void rbd_spec_put(struct rbd_spec *spec);
430 
431 static int rbd_dev_id_to_minor(int dev_id)
432 {
433 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
434 }
435 
436 static int minor_to_rbd_dev_id(int minor)
437 {
438 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
439 }
440 
441 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
442 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
443 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
444 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
445 
446 static struct attribute *rbd_bus_attrs[] = {
447 	&bus_attr_add.attr,
448 	&bus_attr_remove.attr,
449 	&bus_attr_add_single_major.attr,
450 	&bus_attr_remove_single_major.attr,
451 	NULL,
452 };
453 
454 static umode_t rbd_bus_is_visible(struct kobject *kobj,
455 				  struct attribute *attr, int index)
456 {
457 	if (!single_major &&
458 	    (attr == &bus_attr_add_single_major.attr ||
459 	     attr == &bus_attr_remove_single_major.attr))
460 		return 0;
461 
462 	return attr->mode;
463 }
464 
465 static const struct attribute_group rbd_bus_group = {
466 	.attrs = rbd_bus_attrs,
467 	.is_visible = rbd_bus_is_visible,
468 };
469 __ATTRIBUTE_GROUPS(rbd_bus);
470 
471 static struct bus_type rbd_bus_type = {
472 	.name		= "rbd",
473 	.bus_groups	= rbd_bus_groups,
474 };
475 
476 static void rbd_root_dev_release(struct device *dev)
477 {
478 }
479 
480 static struct device rbd_root_dev = {
481 	.init_name =    "rbd",
482 	.release =      rbd_root_dev_release,
483 };
484 
485 static __printf(2, 3)
486 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
487 {
488 	struct va_format vaf;
489 	va_list args;
490 
491 	va_start(args, fmt);
492 	vaf.fmt = fmt;
493 	vaf.va = &args;
494 
495 	if (!rbd_dev)
496 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
497 	else if (rbd_dev->disk)
498 		printk(KERN_WARNING "%s: %s: %pV\n",
499 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
500 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
501 		printk(KERN_WARNING "%s: image %s: %pV\n",
502 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
503 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
504 		printk(KERN_WARNING "%s: id %s: %pV\n",
505 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
506 	else	/* punt */
507 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
508 			RBD_DRV_NAME, rbd_dev, &vaf);
509 	va_end(args);
510 }
511 
512 #ifdef RBD_DEBUG
513 #define rbd_assert(expr)						\
514 		if (unlikely(!(expr))) {				\
515 			printk(KERN_ERR "\nAssertion failure in %s() "	\
516 						"at line %d:\n\n"	\
517 					"\trbd_assert(%s);\n\n",	\
518 					__func__, __LINE__, #expr);	\
519 			BUG();						\
520 		}
521 #else /* !RBD_DEBUG */
522 #  define rbd_assert(expr)	((void) 0)
523 #endif /* !RBD_DEBUG */
524 
525 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
526 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
527 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
528 
529 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
530 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
531 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
532 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
533 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
534 					u64 snap_id);
535 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
536 				u8 *order, u64 *snap_size);
537 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
538 		u64 *snap_features);
539 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
540 
541 static int rbd_open(struct block_device *bdev, fmode_t mode)
542 {
543 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
544 	bool removing = false;
545 
546 	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
547 		return -EROFS;
548 
549 	spin_lock_irq(&rbd_dev->lock);
550 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
551 		removing = true;
552 	else
553 		rbd_dev->open_count++;
554 	spin_unlock_irq(&rbd_dev->lock);
555 	if (removing)
556 		return -ENOENT;
557 
558 	(void) get_device(&rbd_dev->dev);
559 
560 	return 0;
561 }
562 
563 static void rbd_release(struct gendisk *disk, fmode_t mode)
564 {
565 	struct rbd_device *rbd_dev = disk->private_data;
566 	unsigned long open_count_before;
567 
568 	spin_lock_irq(&rbd_dev->lock);
569 	open_count_before = rbd_dev->open_count--;
570 	spin_unlock_irq(&rbd_dev->lock);
571 	rbd_assert(open_count_before > 0);
572 
573 	put_device(&rbd_dev->dev);
574 }
575 
576 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
577 {
578 	int ret = 0;
579 	int val;
580 	bool ro;
581 	bool ro_changed = false;
582 
583 	/* get_user() may sleep, so call it before taking rbd_dev->lock */
584 	if (get_user(val, (int __user *)(arg)))
585 		return -EFAULT;
586 
587 	ro = val ? true : false;
588 	/* Snapshot doesn't allow to write*/
589 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
590 		return -EROFS;
591 
592 	spin_lock_irq(&rbd_dev->lock);
593 	/* prevent others open this device */
594 	if (rbd_dev->open_count > 1) {
595 		ret = -EBUSY;
596 		goto out;
597 	}
598 
599 	if (rbd_dev->mapping.read_only != ro) {
600 		rbd_dev->mapping.read_only = ro;
601 		ro_changed = true;
602 	}
603 
604 out:
605 	spin_unlock_irq(&rbd_dev->lock);
606 	/* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
607 	if (ret == 0 && ro_changed)
608 		set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
609 
610 	return ret;
611 }
612 
613 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
614 			unsigned int cmd, unsigned long arg)
615 {
616 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
617 	int ret = 0;
618 
619 	switch (cmd) {
620 	case BLKROSET:
621 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
622 		break;
623 	default:
624 		ret = -ENOTTY;
625 	}
626 
627 	return ret;
628 }
629 
630 #ifdef CONFIG_COMPAT
631 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
632 				unsigned int cmd, unsigned long arg)
633 {
634 	return rbd_ioctl(bdev, mode, cmd, arg);
635 }
636 #endif /* CONFIG_COMPAT */
637 
638 static const struct block_device_operations rbd_bd_ops = {
639 	.owner			= THIS_MODULE,
640 	.open			= rbd_open,
641 	.release		= rbd_release,
642 	.ioctl			= rbd_ioctl,
643 #ifdef CONFIG_COMPAT
644 	.compat_ioctl		= rbd_compat_ioctl,
645 #endif
646 };
647 
648 /*
649  * Initialize an rbd client instance.  Success or not, this function
650  * consumes ceph_opts.  Caller holds client_mutex.
651  */
652 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
653 {
654 	struct rbd_client *rbdc;
655 	int ret = -ENOMEM;
656 
657 	dout("%s:\n", __func__);
658 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
659 	if (!rbdc)
660 		goto out_opt;
661 
662 	kref_init(&rbdc->kref);
663 	INIT_LIST_HEAD(&rbdc->node);
664 
665 	rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
666 	if (IS_ERR(rbdc->client))
667 		goto out_rbdc;
668 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
669 
670 	ret = ceph_open_session(rbdc->client);
671 	if (ret < 0)
672 		goto out_client;
673 
674 	spin_lock(&rbd_client_list_lock);
675 	list_add_tail(&rbdc->node, &rbd_client_list);
676 	spin_unlock(&rbd_client_list_lock);
677 
678 	dout("%s: rbdc %p\n", __func__, rbdc);
679 
680 	return rbdc;
681 out_client:
682 	ceph_destroy_client(rbdc->client);
683 out_rbdc:
684 	kfree(rbdc);
685 out_opt:
686 	if (ceph_opts)
687 		ceph_destroy_options(ceph_opts);
688 	dout("%s: error %d\n", __func__, ret);
689 
690 	return ERR_PTR(ret);
691 }
692 
693 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
694 {
695 	kref_get(&rbdc->kref);
696 
697 	return rbdc;
698 }
699 
700 /*
701  * Find a ceph client with specific addr and configuration.  If
702  * found, bump its reference count.
703  */
704 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
705 {
706 	struct rbd_client *client_node;
707 	bool found = false;
708 
709 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
710 		return NULL;
711 
712 	spin_lock(&rbd_client_list_lock);
713 	list_for_each_entry(client_node, &rbd_client_list, node) {
714 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
715 			__rbd_get_client(client_node);
716 
717 			found = true;
718 			break;
719 		}
720 	}
721 	spin_unlock(&rbd_client_list_lock);
722 
723 	return found ? client_node : NULL;
724 }
725 
726 /*
727  * mount options
728  */
729 enum {
730 	Opt_last_int,
731 	/* int args above */
732 	Opt_last_string,
733 	/* string args above */
734 	Opt_read_only,
735 	Opt_read_write,
736 	/* Boolean args above */
737 	Opt_last_bool,
738 };
739 
740 static match_table_t rbd_opts_tokens = {
741 	/* int args above */
742 	/* string args above */
743 	{Opt_read_only, "read_only"},
744 	{Opt_read_only, "ro"},		/* Alternate spelling */
745 	{Opt_read_write, "read_write"},
746 	{Opt_read_write, "rw"},		/* Alternate spelling */
747 	/* Boolean args above */
748 	{-1, NULL}
749 };
750 
751 struct rbd_options {
752 	bool	read_only;
753 };
754 
755 #define RBD_READ_ONLY_DEFAULT	false
756 
757 static int parse_rbd_opts_token(char *c, void *private)
758 {
759 	struct rbd_options *rbd_opts = private;
760 	substring_t argstr[MAX_OPT_ARGS];
761 	int token, intval, ret;
762 
763 	token = match_token(c, rbd_opts_tokens, argstr);
764 	if (token < 0)
765 		return -EINVAL;
766 
767 	if (token < Opt_last_int) {
768 		ret = match_int(&argstr[0], &intval);
769 		if (ret < 0) {
770 			pr_err("bad mount option arg (not int) "
771 			       "at '%s'\n", c);
772 			return ret;
773 		}
774 		dout("got int token %d val %d\n", token, intval);
775 	} else if (token > Opt_last_int && token < Opt_last_string) {
776 		dout("got string token %d val %s\n", token,
777 		     argstr[0].from);
778 	} else if (token > Opt_last_string && token < Opt_last_bool) {
779 		dout("got Boolean token %d\n", token);
780 	} else {
781 		dout("got token %d\n", token);
782 	}
783 
784 	switch (token) {
785 	case Opt_read_only:
786 		rbd_opts->read_only = true;
787 		break;
788 	case Opt_read_write:
789 		rbd_opts->read_only = false;
790 		break;
791 	default:
792 		rbd_assert(false);
793 		break;
794 	}
795 	return 0;
796 }
797 
798 static char* obj_op_name(enum obj_operation_type op_type)
799 {
800 	switch (op_type) {
801 	case OBJ_OP_READ:
802 		return "read";
803 	case OBJ_OP_WRITE:
804 		return "write";
805 	case OBJ_OP_DISCARD:
806 		return "discard";
807 	default:
808 		return "???";
809 	}
810 }
811 
812 /*
813  * Get a ceph client with specific addr and configuration, if one does
814  * not exist create it.  Either way, ceph_opts is consumed by this
815  * function.
816  */
817 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
818 {
819 	struct rbd_client *rbdc;
820 
821 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
822 	rbdc = rbd_client_find(ceph_opts);
823 	if (rbdc)	/* using an existing client */
824 		ceph_destroy_options(ceph_opts);
825 	else
826 		rbdc = rbd_client_create(ceph_opts);
827 	mutex_unlock(&client_mutex);
828 
829 	return rbdc;
830 }
831 
832 /*
833  * Destroy ceph client
834  *
835  * Caller must hold rbd_client_list_lock.
836  */
837 static void rbd_client_release(struct kref *kref)
838 {
839 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
840 
841 	dout("%s: rbdc %p\n", __func__, rbdc);
842 	spin_lock(&rbd_client_list_lock);
843 	list_del(&rbdc->node);
844 	spin_unlock(&rbd_client_list_lock);
845 
846 	ceph_destroy_client(rbdc->client);
847 	kfree(rbdc);
848 }
849 
850 /*
851  * Drop reference to ceph client node. If it's not referenced anymore, release
852  * it.
853  */
854 static void rbd_put_client(struct rbd_client *rbdc)
855 {
856 	if (rbdc)
857 		kref_put(&rbdc->kref, rbd_client_release);
858 }
859 
860 static bool rbd_image_format_valid(u32 image_format)
861 {
862 	return image_format == 1 || image_format == 2;
863 }
864 
865 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
866 {
867 	size_t size;
868 	u32 snap_count;
869 
870 	/* The header has to start with the magic rbd header text */
871 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
872 		return false;
873 
874 	/* The bio layer requires at least sector-sized I/O */
875 
876 	if (ondisk->options.order < SECTOR_SHIFT)
877 		return false;
878 
879 	/* If we use u64 in a few spots we may be able to loosen this */
880 
881 	if (ondisk->options.order > 8 * sizeof (int) - 1)
882 		return false;
883 
884 	/*
885 	 * The size of a snapshot header has to fit in a size_t, and
886 	 * that limits the number of snapshots.
887 	 */
888 	snap_count = le32_to_cpu(ondisk->snap_count);
889 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
890 	if (snap_count > size / sizeof (__le64))
891 		return false;
892 
893 	/*
894 	 * Not only that, but the size of the entire the snapshot
895 	 * header must also be representable in a size_t.
896 	 */
897 	size -= snap_count * sizeof (__le64);
898 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
899 		return false;
900 
901 	return true;
902 }
903 
904 /*
905  * Fill an rbd image header with information from the given format 1
906  * on-disk header.
907  */
908 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
909 				 struct rbd_image_header_ondisk *ondisk)
910 {
911 	struct rbd_image_header *header = &rbd_dev->header;
912 	bool first_time = header->object_prefix == NULL;
913 	struct ceph_snap_context *snapc;
914 	char *object_prefix = NULL;
915 	char *snap_names = NULL;
916 	u64 *snap_sizes = NULL;
917 	u32 snap_count;
918 	size_t size;
919 	int ret = -ENOMEM;
920 	u32 i;
921 
922 	/* Allocate this now to avoid having to handle failure below */
923 
924 	if (first_time) {
925 		size_t len;
926 
927 		len = strnlen(ondisk->object_prefix,
928 				sizeof (ondisk->object_prefix));
929 		object_prefix = kmalloc(len + 1, GFP_KERNEL);
930 		if (!object_prefix)
931 			return -ENOMEM;
932 		memcpy(object_prefix, ondisk->object_prefix, len);
933 		object_prefix[len] = '\0';
934 	}
935 
936 	/* Allocate the snapshot context and fill it in */
937 
938 	snap_count = le32_to_cpu(ondisk->snap_count);
939 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
940 	if (!snapc)
941 		goto out_err;
942 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
943 	if (snap_count) {
944 		struct rbd_image_snap_ondisk *snaps;
945 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
946 
947 		/* We'll keep a copy of the snapshot names... */
948 
949 		if (snap_names_len > (u64)SIZE_MAX)
950 			goto out_2big;
951 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
952 		if (!snap_names)
953 			goto out_err;
954 
955 		/* ...as well as the array of their sizes. */
956 
957 		size = snap_count * sizeof (*header->snap_sizes);
958 		snap_sizes = kmalloc(size, GFP_KERNEL);
959 		if (!snap_sizes)
960 			goto out_err;
961 
962 		/*
963 		 * Copy the names, and fill in each snapshot's id
964 		 * and size.
965 		 *
966 		 * Note that rbd_dev_v1_header_info() guarantees the
967 		 * ondisk buffer we're working with has
968 		 * snap_names_len bytes beyond the end of the
969 		 * snapshot id array, this memcpy() is safe.
970 		 */
971 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
972 		snaps = ondisk->snaps;
973 		for (i = 0; i < snap_count; i++) {
974 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
975 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
976 		}
977 	}
978 
979 	/* We won't fail any more, fill in the header */
980 
981 	if (first_time) {
982 		header->object_prefix = object_prefix;
983 		header->obj_order = ondisk->options.order;
984 		header->crypt_type = ondisk->options.crypt_type;
985 		header->comp_type = ondisk->options.comp_type;
986 		/* The rest aren't used for format 1 images */
987 		header->stripe_unit = 0;
988 		header->stripe_count = 0;
989 		header->features = 0;
990 	} else {
991 		ceph_put_snap_context(header->snapc);
992 		kfree(header->snap_names);
993 		kfree(header->snap_sizes);
994 	}
995 
996 	/* The remaining fields always get updated (when we refresh) */
997 
998 	header->image_size = le64_to_cpu(ondisk->image_size);
999 	header->snapc = snapc;
1000 	header->snap_names = snap_names;
1001 	header->snap_sizes = snap_sizes;
1002 
1003 	return 0;
1004 out_2big:
1005 	ret = -EIO;
1006 out_err:
1007 	kfree(snap_sizes);
1008 	kfree(snap_names);
1009 	ceph_put_snap_context(snapc);
1010 	kfree(object_prefix);
1011 
1012 	return ret;
1013 }
1014 
1015 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1016 {
1017 	const char *snap_name;
1018 
1019 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1020 
1021 	/* Skip over names until we find the one we are looking for */
1022 
1023 	snap_name = rbd_dev->header.snap_names;
1024 	while (which--)
1025 		snap_name += strlen(snap_name) + 1;
1026 
1027 	return kstrdup(snap_name, GFP_KERNEL);
1028 }
1029 
1030 /*
1031  * Snapshot id comparison function for use with qsort()/bsearch().
1032  * Note that result is for snapshots in *descending* order.
1033  */
1034 static int snapid_compare_reverse(const void *s1, const void *s2)
1035 {
1036 	u64 snap_id1 = *(u64 *)s1;
1037 	u64 snap_id2 = *(u64 *)s2;
1038 
1039 	if (snap_id1 < snap_id2)
1040 		return 1;
1041 	return snap_id1 == snap_id2 ? 0 : -1;
1042 }
1043 
1044 /*
1045  * Search a snapshot context to see if the given snapshot id is
1046  * present.
1047  *
1048  * Returns the position of the snapshot id in the array if it's found,
1049  * or BAD_SNAP_INDEX otherwise.
1050  *
1051  * Note: The snapshot array is in kept sorted (by the osd) in
1052  * reverse order, highest snapshot id first.
1053  */
1054 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1055 {
1056 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1057 	u64 *found;
1058 
1059 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1060 				sizeof (snap_id), snapid_compare_reverse);
1061 
1062 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1063 }
1064 
1065 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1066 					u64 snap_id)
1067 {
1068 	u32 which;
1069 	const char *snap_name;
1070 
1071 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1072 	if (which == BAD_SNAP_INDEX)
1073 		return ERR_PTR(-ENOENT);
1074 
1075 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1076 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1077 }
1078 
1079 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1080 {
1081 	if (snap_id == CEPH_NOSNAP)
1082 		return RBD_SNAP_HEAD_NAME;
1083 
1084 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1085 	if (rbd_dev->image_format == 1)
1086 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1087 
1088 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1089 }
1090 
1091 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1092 				u64 *snap_size)
1093 {
1094 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1095 	if (snap_id == CEPH_NOSNAP) {
1096 		*snap_size = rbd_dev->header.image_size;
1097 	} else if (rbd_dev->image_format == 1) {
1098 		u32 which;
1099 
1100 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1101 		if (which == BAD_SNAP_INDEX)
1102 			return -ENOENT;
1103 
1104 		*snap_size = rbd_dev->header.snap_sizes[which];
1105 	} else {
1106 		u64 size = 0;
1107 		int ret;
1108 
1109 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1110 		if (ret)
1111 			return ret;
1112 
1113 		*snap_size = size;
1114 	}
1115 	return 0;
1116 }
1117 
1118 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1119 			u64 *snap_features)
1120 {
1121 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1122 	if (snap_id == CEPH_NOSNAP) {
1123 		*snap_features = rbd_dev->header.features;
1124 	} else if (rbd_dev->image_format == 1) {
1125 		*snap_features = 0;	/* No features for format 1 */
1126 	} else {
1127 		u64 features = 0;
1128 		int ret;
1129 
1130 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1131 		if (ret)
1132 			return ret;
1133 
1134 		*snap_features = features;
1135 	}
1136 	return 0;
1137 }
1138 
1139 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1140 {
1141 	u64 snap_id = rbd_dev->spec->snap_id;
1142 	u64 size = 0;
1143 	u64 features = 0;
1144 	int ret;
1145 
1146 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1147 	if (ret)
1148 		return ret;
1149 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1150 	if (ret)
1151 		return ret;
1152 
1153 	rbd_dev->mapping.size = size;
1154 	rbd_dev->mapping.features = features;
1155 
1156 	return 0;
1157 }
1158 
1159 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1160 {
1161 	rbd_dev->mapping.size = 0;
1162 	rbd_dev->mapping.features = 0;
1163 }
1164 
1165 static void rbd_segment_name_free(const char *name)
1166 {
1167 	/* The explicit cast here is needed to drop the const qualifier */
1168 
1169 	kmem_cache_free(rbd_segment_name_cache, (void *)name);
1170 }
1171 
1172 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1173 {
1174 	char *name;
1175 	u64 segment;
1176 	int ret;
1177 	char *name_format;
1178 
1179 	name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1180 	if (!name)
1181 		return NULL;
1182 	segment = offset >> rbd_dev->header.obj_order;
1183 	name_format = "%s.%012llx";
1184 	if (rbd_dev->image_format == 2)
1185 		name_format = "%s.%016llx";
1186 	ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1187 			rbd_dev->header.object_prefix, segment);
1188 	if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1189 		pr_err("error formatting segment name for #%llu (%d)\n",
1190 			segment, ret);
1191 		rbd_segment_name_free(name);
1192 		name = NULL;
1193 	}
1194 
1195 	return name;
1196 }
1197 
1198 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1199 {
1200 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1201 
1202 	return offset & (segment_size - 1);
1203 }
1204 
1205 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1206 				u64 offset, u64 length)
1207 {
1208 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1209 
1210 	offset &= segment_size - 1;
1211 
1212 	rbd_assert(length <= U64_MAX - offset);
1213 	if (offset + length > segment_size)
1214 		length = segment_size - offset;
1215 
1216 	return length;
1217 }
1218 
1219 /*
1220  * returns the size of an object in the image
1221  */
1222 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1223 {
1224 	return 1 << header->obj_order;
1225 }
1226 
1227 /*
1228  * bio helpers
1229  */
1230 
1231 static void bio_chain_put(struct bio *chain)
1232 {
1233 	struct bio *tmp;
1234 
1235 	while (chain) {
1236 		tmp = chain;
1237 		chain = chain->bi_next;
1238 		bio_put(tmp);
1239 	}
1240 }
1241 
1242 /*
1243  * zeros a bio chain, starting at specific offset
1244  */
1245 static void zero_bio_chain(struct bio *chain, int start_ofs)
1246 {
1247 	struct bio_vec bv;
1248 	struct bvec_iter iter;
1249 	unsigned long flags;
1250 	void *buf;
1251 	int pos = 0;
1252 
1253 	while (chain) {
1254 		bio_for_each_segment(bv, chain, iter) {
1255 			if (pos + bv.bv_len > start_ofs) {
1256 				int remainder = max(start_ofs - pos, 0);
1257 				buf = bvec_kmap_irq(&bv, &flags);
1258 				memset(buf + remainder, 0,
1259 				       bv.bv_len - remainder);
1260 				flush_dcache_page(bv.bv_page);
1261 				bvec_kunmap_irq(buf, &flags);
1262 			}
1263 			pos += bv.bv_len;
1264 		}
1265 
1266 		chain = chain->bi_next;
1267 	}
1268 }
1269 
1270 /*
1271  * similar to zero_bio_chain(), zeros data defined by a page array,
1272  * starting at the given byte offset from the start of the array and
1273  * continuing up to the given end offset.  The pages array is
1274  * assumed to be big enough to hold all bytes up to the end.
1275  */
1276 static void zero_pages(struct page **pages, u64 offset, u64 end)
1277 {
1278 	struct page **page = &pages[offset >> PAGE_SHIFT];
1279 
1280 	rbd_assert(end > offset);
1281 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1282 	while (offset < end) {
1283 		size_t page_offset;
1284 		size_t length;
1285 		unsigned long flags;
1286 		void *kaddr;
1287 
1288 		page_offset = offset & ~PAGE_MASK;
1289 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1290 		local_irq_save(flags);
1291 		kaddr = kmap_atomic(*page);
1292 		memset(kaddr + page_offset, 0, length);
1293 		flush_dcache_page(*page);
1294 		kunmap_atomic(kaddr);
1295 		local_irq_restore(flags);
1296 
1297 		offset += length;
1298 		page++;
1299 	}
1300 }
1301 
1302 /*
1303  * Clone a portion of a bio, starting at the given byte offset
1304  * and continuing for the number of bytes indicated.
1305  */
1306 static struct bio *bio_clone_range(struct bio *bio_src,
1307 					unsigned int offset,
1308 					unsigned int len,
1309 					gfp_t gfpmask)
1310 {
1311 	struct bio *bio;
1312 
1313 	bio = bio_clone(bio_src, gfpmask);
1314 	if (!bio)
1315 		return NULL;	/* ENOMEM */
1316 
1317 	bio_advance(bio, offset);
1318 	bio->bi_iter.bi_size = len;
1319 
1320 	return bio;
1321 }
1322 
1323 /*
1324  * Clone a portion of a bio chain, starting at the given byte offset
1325  * into the first bio in the source chain and continuing for the
1326  * number of bytes indicated.  The result is another bio chain of
1327  * exactly the given length, or a null pointer on error.
1328  *
1329  * The bio_src and offset parameters are both in-out.  On entry they
1330  * refer to the first source bio and the offset into that bio where
1331  * the start of data to be cloned is located.
1332  *
1333  * On return, bio_src is updated to refer to the bio in the source
1334  * chain that contains first un-cloned byte, and *offset will
1335  * contain the offset of that byte within that bio.
1336  */
1337 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1338 					unsigned int *offset,
1339 					unsigned int len,
1340 					gfp_t gfpmask)
1341 {
1342 	struct bio *bi = *bio_src;
1343 	unsigned int off = *offset;
1344 	struct bio *chain = NULL;
1345 	struct bio **end;
1346 
1347 	/* Build up a chain of clone bios up to the limit */
1348 
1349 	if (!bi || off >= bi->bi_iter.bi_size || !len)
1350 		return NULL;		/* Nothing to clone */
1351 
1352 	end = &chain;
1353 	while (len) {
1354 		unsigned int bi_size;
1355 		struct bio *bio;
1356 
1357 		if (!bi) {
1358 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1359 			goto out_err;	/* EINVAL; ran out of bio's */
1360 		}
1361 		bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1362 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1363 		if (!bio)
1364 			goto out_err;	/* ENOMEM */
1365 
1366 		*end = bio;
1367 		end = &bio->bi_next;
1368 
1369 		off += bi_size;
1370 		if (off == bi->bi_iter.bi_size) {
1371 			bi = bi->bi_next;
1372 			off = 0;
1373 		}
1374 		len -= bi_size;
1375 	}
1376 	*bio_src = bi;
1377 	*offset = off;
1378 
1379 	return chain;
1380 out_err:
1381 	bio_chain_put(chain);
1382 
1383 	return NULL;
1384 }
1385 
1386 /*
1387  * The default/initial value for all object request flags is 0.  For
1388  * each flag, once its value is set to 1 it is never reset to 0
1389  * again.
1390  */
1391 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1392 {
1393 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1394 		struct rbd_device *rbd_dev;
1395 
1396 		rbd_dev = obj_request->img_request->rbd_dev;
1397 		rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1398 			obj_request);
1399 	}
1400 }
1401 
1402 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1403 {
1404 	smp_mb();
1405 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1406 }
1407 
1408 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1409 {
1410 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1411 		struct rbd_device *rbd_dev = NULL;
1412 
1413 		if (obj_request_img_data_test(obj_request))
1414 			rbd_dev = obj_request->img_request->rbd_dev;
1415 		rbd_warn(rbd_dev, "obj_request %p already marked done",
1416 			obj_request);
1417 	}
1418 }
1419 
1420 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1421 {
1422 	smp_mb();
1423 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1424 }
1425 
1426 /*
1427  * This sets the KNOWN flag after (possibly) setting the EXISTS
1428  * flag.  The latter is set based on the "exists" value provided.
1429  *
1430  * Note that for our purposes once an object exists it never goes
1431  * away again.  It's possible that the response from two existence
1432  * checks are separated by the creation of the target object, and
1433  * the first ("doesn't exist") response arrives *after* the second
1434  * ("does exist").  In that case we ignore the second one.
1435  */
1436 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1437 				bool exists)
1438 {
1439 	if (exists)
1440 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1441 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1442 	smp_mb();
1443 }
1444 
1445 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1446 {
1447 	smp_mb();
1448 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1449 }
1450 
1451 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1452 {
1453 	smp_mb();
1454 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1455 }
1456 
1457 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1458 {
1459 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1460 
1461 	return obj_request->img_offset <
1462 	    round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1463 }
1464 
1465 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1466 {
1467 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1468 		atomic_read(&obj_request->kref.refcount));
1469 	kref_get(&obj_request->kref);
1470 }
1471 
1472 static void rbd_obj_request_destroy(struct kref *kref);
1473 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1474 {
1475 	rbd_assert(obj_request != NULL);
1476 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1477 		atomic_read(&obj_request->kref.refcount));
1478 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1479 }
1480 
1481 static void rbd_img_request_get(struct rbd_img_request *img_request)
1482 {
1483 	dout("%s: img %p (was %d)\n", __func__, img_request,
1484 	     atomic_read(&img_request->kref.refcount));
1485 	kref_get(&img_request->kref);
1486 }
1487 
1488 static bool img_request_child_test(struct rbd_img_request *img_request);
1489 static void rbd_parent_request_destroy(struct kref *kref);
1490 static void rbd_img_request_destroy(struct kref *kref);
1491 static void rbd_img_request_put(struct rbd_img_request *img_request)
1492 {
1493 	rbd_assert(img_request != NULL);
1494 	dout("%s: img %p (was %d)\n", __func__, img_request,
1495 		atomic_read(&img_request->kref.refcount));
1496 	if (img_request_child_test(img_request))
1497 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1498 	else
1499 		kref_put(&img_request->kref, rbd_img_request_destroy);
1500 }
1501 
1502 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1503 					struct rbd_obj_request *obj_request)
1504 {
1505 	rbd_assert(obj_request->img_request == NULL);
1506 
1507 	/* Image request now owns object's original reference */
1508 	obj_request->img_request = img_request;
1509 	obj_request->which = img_request->obj_request_count;
1510 	rbd_assert(!obj_request_img_data_test(obj_request));
1511 	obj_request_img_data_set(obj_request);
1512 	rbd_assert(obj_request->which != BAD_WHICH);
1513 	img_request->obj_request_count++;
1514 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1515 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1516 		obj_request->which);
1517 }
1518 
1519 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1520 					struct rbd_obj_request *obj_request)
1521 {
1522 	rbd_assert(obj_request->which != BAD_WHICH);
1523 
1524 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1525 		obj_request->which);
1526 	list_del(&obj_request->links);
1527 	rbd_assert(img_request->obj_request_count > 0);
1528 	img_request->obj_request_count--;
1529 	rbd_assert(obj_request->which == img_request->obj_request_count);
1530 	obj_request->which = BAD_WHICH;
1531 	rbd_assert(obj_request_img_data_test(obj_request));
1532 	rbd_assert(obj_request->img_request == img_request);
1533 	obj_request->img_request = NULL;
1534 	obj_request->callback = NULL;
1535 	rbd_obj_request_put(obj_request);
1536 }
1537 
1538 static bool obj_request_type_valid(enum obj_request_type type)
1539 {
1540 	switch (type) {
1541 	case OBJ_REQUEST_NODATA:
1542 	case OBJ_REQUEST_BIO:
1543 	case OBJ_REQUEST_PAGES:
1544 		return true;
1545 	default:
1546 		return false;
1547 	}
1548 }
1549 
1550 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1551 				struct rbd_obj_request *obj_request)
1552 {
1553 	dout("%s %p\n", __func__, obj_request);
1554 	return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1555 }
1556 
1557 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1558 {
1559 	dout("%s %p\n", __func__, obj_request);
1560 	ceph_osdc_cancel_request(obj_request->osd_req);
1561 }
1562 
1563 /*
1564  * Wait for an object request to complete.  If interrupted, cancel the
1565  * underlying osd request.
1566  */
1567 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1568 {
1569 	int ret;
1570 
1571 	dout("%s %p\n", __func__, obj_request);
1572 
1573 	ret = wait_for_completion_interruptible(&obj_request->completion);
1574 	if (ret < 0) {
1575 		dout("%s %p interrupted\n", __func__, obj_request);
1576 		rbd_obj_request_end(obj_request);
1577 		return ret;
1578 	}
1579 
1580 	dout("%s %p done\n", __func__, obj_request);
1581 	return 0;
1582 }
1583 
1584 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1585 {
1586 
1587 	dout("%s: img %p\n", __func__, img_request);
1588 
1589 	/*
1590 	 * If no error occurred, compute the aggregate transfer
1591 	 * count for the image request.  We could instead use
1592 	 * atomic64_cmpxchg() to update it as each object request
1593 	 * completes; not clear which way is better off hand.
1594 	 */
1595 	if (!img_request->result) {
1596 		struct rbd_obj_request *obj_request;
1597 		u64 xferred = 0;
1598 
1599 		for_each_obj_request(img_request, obj_request)
1600 			xferred += obj_request->xferred;
1601 		img_request->xferred = xferred;
1602 	}
1603 
1604 	if (img_request->callback)
1605 		img_request->callback(img_request);
1606 	else
1607 		rbd_img_request_put(img_request);
1608 }
1609 
1610 /*
1611  * The default/initial value for all image request flags is 0.  Each
1612  * is conditionally set to 1 at image request initialization time
1613  * and currently never change thereafter.
1614  */
1615 static void img_request_write_set(struct rbd_img_request *img_request)
1616 {
1617 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1618 	smp_mb();
1619 }
1620 
1621 static bool img_request_write_test(struct rbd_img_request *img_request)
1622 {
1623 	smp_mb();
1624 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1625 }
1626 
1627 /*
1628  * Set the discard flag when the img_request is an discard request
1629  */
1630 static void img_request_discard_set(struct rbd_img_request *img_request)
1631 {
1632 	set_bit(IMG_REQ_DISCARD, &img_request->flags);
1633 	smp_mb();
1634 }
1635 
1636 static bool img_request_discard_test(struct rbd_img_request *img_request)
1637 {
1638 	smp_mb();
1639 	return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1640 }
1641 
1642 static void img_request_child_set(struct rbd_img_request *img_request)
1643 {
1644 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1645 	smp_mb();
1646 }
1647 
1648 static void img_request_child_clear(struct rbd_img_request *img_request)
1649 {
1650 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1651 	smp_mb();
1652 }
1653 
1654 static bool img_request_child_test(struct rbd_img_request *img_request)
1655 {
1656 	smp_mb();
1657 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1658 }
1659 
1660 static void img_request_layered_set(struct rbd_img_request *img_request)
1661 {
1662 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1663 	smp_mb();
1664 }
1665 
1666 static void img_request_layered_clear(struct rbd_img_request *img_request)
1667 {
1668 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1669 	smp_mb();
1670 }
1671 
1672 static bool img_request_layered_test(struct rbd_img_request *img_request)
1673 {
1674 	smp_mb();
1675 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1676 }
1677 
1678 static enum obj_operation_type
1679 rbd_img_request_op_type(struct rbd_img_request *img_request)
1680 {
1681 	if (img_request_write_test(img_request))
1682 		return OBJ_OP_WRITE;
1683 	else if (img_request_discard_test(img_request))
1684 		return OBJ_OP_DISCARD;
1685 	else
1686 		return OBJ_OP_READ;
1687 }
1688 
1689 static void
1690 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1691 {
1692 	u64 xferred = obj_request->xferred;
1693 	u64 length = obj_request->length;
1694 
1695 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1696 		obj_request, obj_request->img_request, obj_request->result,
1697 		xferred, length);
1698 	/*
1699 	 * ENOENT means a hole in the image.  We zero-fill the entire
1700 	 * length of the request.  A short read also implies zero-fill
1701 	 * to the end of the request.  An error requires the whole
1702 	 * length of the request to be reported finished with an error
1703 	 * to the block layer.  In each case we update the xferred
1704 	 * count to indicate the whole request was satisfied.
1705 	 */
1706 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1707 	if (obj_request->result == -ENOENT) {
1708 		if (obj_request->type == OBJ_REQUEST_BIO)
1709 			zero_bio_chain(obj_request->bio_list, 0);
1710 		else
1711 			zero_pages(obj_request->pages, 0, length);
1712 		obj_request->result = 0;
1713 	} else if (xferred < length && !obj_request->result) {
1714 		if (obj_request->type == OBJ_REQUEST_BIO)
1715 			zero_bio_chain(obj_request->bio_list, xferred);
1716 		else
1717 			zero_pages(obj_request->pages, xferred, length);
1718 	}
1719 	obj_request->xferred = length;
1720 	obj_request_done_set(obj_request);
1721 }
1722 
1723 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1724 {
1725 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1726 		obj_request->callback);
1727 	if (obj_request->callback)
1728 		obj_request->callback(obj_request);
1729 	else
1730 		complete_all(&obj_request->completion);
1731 }
1732 
1733 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1734 {
1735 	dout("%s: obj %p\n", __func__, obj_request);
1736 	obj_request_done_set(obj_request);
1737 }
1738 
1739 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1740 {
1741 	struct rbd_img_request *img_request = NULL;
1742 	struct rbd_device *rbd_dev = NULL;
1743 	bool layered = false;
1744 
1745 	if (obj_request_img_data_test(obj_request)) {
1746 		img_request = obj_request->img_request;
1747 		layered = img_request && img_request_layered_test(img_request);
1748 		rbd_dev = img_request->rbd_dev;
1749 	}
1750 
1751 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1752 		obj_request, img_request, obj_request->result,
1753 		obj_request->xferred, obj_request->length);
1754 	if (layered && obj_request->result == -ENOENT &&
1755 			obj_request->img_offset < rbd_dev->parent_overlap)
1756 		rbd_img_parent_read(obj_request);
1757 	else if (img_request)
1758 		rbd_img_obj_request_read_callback(obj_request);
1759 	else
1760 		obj_request_done_set(obj_request);
1761 }
1762 
1763 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1764 {
1765 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1766 		obj_request->result, obj_request->length);
1767 	/*
1768 	 * There is no such thing as a successful short write.  Set
1769 	 * it to our originally-requested length.
1770 	 */
1771 	obj_request->xferred = obj_request->length;
1772 	obj_request_done_set(obj_request);
1773 }
1774 
1775 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1776 {
1777 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1778 		obj_request->result, obj_request->length);
1779 	/*
1780 	 * There is no such thing as a successful short discard.  Set
1781 	 * it to our originally-requested length.
1782 	 */
1783 	obj_request->xferred = obj_request->length;
1784 	/* discarding a non-existent object is not a problem */
1785 	if (obj_request->result == -ENOENT)
1786 		obj_request->result = 0;
1787 	obj_request_done_set(obj_request);
1788 }
1789 
1790 /*
1791  * For a simple stat call there's nothing to do.  We'll do more if
1792  * this is part of a write sequence for a layered image.
1793  */
1794 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1795 {
1796 	dout("%s: obj %p\n", __func__, obj_request);
1797 	obj_request_done_set(obj_request);
1798 }
1799 
1800 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1801 				struct ceph_msg *msg)
1802 {
1803 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1804 	u16 opcode;
1805 
1806 	dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1807 	rbd_assert(osd_req == obj_request->osd_req);
1808 	if (obj_request_img_data_test(obj_request)) {
1809 		rbd_assert(obj_request->img_request);
1810 		rbd_assert(obj_request->which != BAD_WHICH);
1811 	} else {
1812 		rbd_assert(obj_request->which == BAD_WHICH);
1813 	}
1814 
1815 	if (osd_req->r_result < 0)
1816 		obj_request->result = osd_req->r_result;
1817 
1818 	rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1819 
1820 	/*
1821 	 * We support a 64-bit length, but ultimately it has to be
1822 	 * passed to the block layer, which just supports a 32-bit
1823 	 * length field.
1824 	 */
1825 	obj_request->xferred = osd_req->r_reply_op_len[0];
1826 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1827 
1828 	opcode = osd_req->r_ops[0].op;
1829 	switch (opcode) {
1830 	case CEPH_OSD_OP_READ:
1831 		rbd_osd_read_callback(obj_request);
1832 		break;
1833 	case CEPH_OSD_OP_SETALLOCHINT:
1834 		rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1835 		/* fall through */
1836 	case CEPH_OSD_OP_WRITE:
1837 		rbd_osd_write_callback(obj_request);
1838 		break;
1839 	case CEPH_OSD_OP_STAT:
1840 		rbd_osd_stat_callback(obj_request);
1841 		break;
1842 	case CEPH_OSD_OP_DELETE:
1843 	case CEPH_OSD_OP_TRUNCATE:
1844 	case CEPH_OSD_OP_ZERO:
1845 		rbd_osd_discard_callback(obj_request);
1846 		break;
1847 	case CEPH_OSD_OP_CALL:
1848 	case CEPH_OSD_OP_NOTIFY_ACK:
1849 	case CEPH_OSD_OP_WATCH:
1850 		rbd_osd_trivial_callback(obj_request);
1851 		break;
1852 	default:
1853 		rbd_warn(NULL, "%s: unsupported op %hu",
1854 			obj_request->object_name, (unsigned short) opcode);
1855 		break;
1856 	}
1857 
1858 	if (obj_request_done_test(obj_request))
1859 		rbd_obj_request_complete(obj_request);
1860 }
1861 
1862 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1863 {
1864 	struct rbd_img_request *img_request = obj_request->img_request;
1865 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1866 	u64 snap_id;
1867 
1868 	rbd_assert(osd_req != NULL);
1869 
1870 	snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1871 	ceph_osdc_build_request(osd_req, obj_request->offset,
1872 			NULL, snap_id, NULL);
1873 }
1874 
1875 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1876 {
1877 	struct rbd_img_request *img_request = obj_request->img_request;
1878 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1879 	struct ceph_snap_context *snapc;
1880 	struct timespec mtime = CURRENT_TIME;
1881 
1882 	rbd_assert(osd_req != NULL);
1883 
1884 	snapc = img_request ? img_request->snapc : NULL;
1885 	ceph_osdc_build_request(osd_req, obj_request->offset,
1886 			snapc, CEPH_NOSNAP, &mtime);
1887 }
1888 
1889 /*
1890  * Create an osd request.  A read request has one osd op (read).
1891  * A write request has either one (watch) or two (hint+write) osd ops.
1892  * (All rbd data writes are prefixed with an allocation hint op, but
1893  * technically osd watch is a write request, hence this distinction.)
1894  */
1895 static struct ceph_osd_request *rbd_osd_req_create(
1896 					struct rbd_device *rbd_dev,
1897 					enum obj_operation_type op_type,
1898 					unsigned int num_ops,
1899 					struct rbd_obj_request *obj_request)
1900 {
1901 	struct ceph_snap_context *snapc = NULL;
1902 	struct ceph_osd_client *osdc;
1903 	struct ceph_osd_request *osd_req;
1904 
1905 	if (obj_request_img_data_test(obj_request) &&
1906 		(op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1907 		struct rbd_img_request *img_request = obj_request->img_request;
1908 		if (op_type == OBJ_OP_WRITE) {
1909 			rbd_assert(img_request_write_test(img_request));
1910 		} else {
1911 			rbd_assert(img_request_discard_test(img_request));
1912 		}
1913 		snapc = img_request->snapc;
1914 	}
1915 
1916 	rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1917 
1918 	/* Allocate and initialize the request, for the num_ops ops */
1919 
1920 	osdc = &rbd_dev->rbd_client->client->osdc;
1921 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1922 					  GFP_ATOMIC);
1923 	if (!osd_req)
1924 		return NULL;	/* ENOMEM */
1925 
1926 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1927 		osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1928 	else
1929 		osd_req->r_flags = CEPH_OSD_FLAG_READ;
1930 
1931 	osd_req->r_callback = rbd_osd_req_callback;
1932 	osd_req->r_priv = obj_request;
1933 
1934 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1935 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1936 
1937 	return osd_req;
1938 }
1939 
1940 /*
1941  * Create a copyup osd request based on the information in the object
1942  * request supplied.  A copyup request has two or three osd ops, a
1943  * copyup method call, potentially a hint op, and a write or truncate
1944  * or zero op.
1945  */
1946 static struct ceph_osd_request *
1947 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1948 {
1949 	struct rbd_img_request *img_request;
1950 	struct ceph_snap_context *snapc;
1951 	struct rbd_device *rbd_dev;
1952 	struct ceph_osd_client *osdc;
1953 	struct ceph_osd_request *osd_req;
1954 	int num_osd_ops = 3;
1955 
1956 	rbd_assert(obj_request_img_data_test(obj_request));
1957 	img_request = obj_request->img_request;
1958 	rbd_assert(img_request);
1959 	rbd_assert(img_request_write_test(img_request) ||
1960 			img_request_discard_test(img_request));
1961 
1962 	if (img_request_discard_test(img_request))
1963 		num_osd_ops = 2;
1964 
1965 	/* Allocate and initialize the request, for all the ops */
1966 
1967 	snapc = img_request->snapc;
1968 	rbd_dev = img_request->rbd_dev;
1969 	osdc = &rbd_dev->rbd_client->client->osdc;
1970 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1971 						false, GFP_ATOMIC);
1972 	if (!osd_req)
1973 		return NULL;	/* ENOMEM */
1974 
1975 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1976 	osd_req->r_callback = rbd_osd_req_callback;
1977 	osd_req->r_priv = obj_request;
1978 
1979 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1980 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1981 
1982 	return osd_req;
1983 }
1984 
1985 
1986 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1987 {
1988 	ceph_osdc_put_request(osd_req);
1989 }
1990 
1991 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1992 
1993 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1994 						u64 offset, u64 length,
1995 						enum obj_request_type type)
1996 {
1997 	struct rbd_obj_request *obj_request;
1998 	size_t size;
1999 	char *name;
2000 
2001 	rbd_assert(obj_request_type_valid(type));
2002 
2003 	size = strlen(object_name) + 1;
2004 	name = kmalloc(size, GFP_KERNEL);
2005 	if (!name)
2006 		return NULL;
2007 
2008 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
2009 	if (!obj_request) {
2010 		kfree(name);
2011 		return NULL;
2012 	}
2013 
2014 	obj_request->object_name = memcpy(name, object_name, size);
2015 	obj_request->offset = offset;
2016 	obj_request->length = length;
2017 	obj_request->flags = 0;
2018 	obj_request->which = BAD_WHICH;
2019 	obj_request->type = type;
2020 	INIT_LIST_HEAD(&obj_request->links);
2021 	init_completion(&obj_request->completion);
2022 	kref_init(&obj_request->kref);
2023 
2024 	dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2025 		offset, length, (int)type, obj_request);
2026 
2027 	return obj_request;
2028 }
2029 
2030 static void rbd_obj_request_destroy(struct kref *kref)
2031 {
2032 	struct rbd_obj_request *obj_request;
2033 
2034 	obj_request = container_of(kref, struct rbd_obj_request, kref);
2035 
2036 	dout("%s: obj %p\n", __func__, obj_request);
2037 
2038 	rbd_assert(obj_request->img_request == NULL);
2039 	rbd_assert(obj_request->which == BAD_WHICH);
2040 
2041 	if (obj_request->osd_req)
2042 		rbd_osd_req_destroy(obj_request->osd_req);
2043 
2044 	rbd_assert(obj_request_type_valid(obj_request->type));
2045 	switch (obj_request->type) {
2046 	case OBJ_REQUEST_NODATA:
2047 		break;		/* Nothing to do */
2048 	case OBJ_REQUEST_BIO:
2049 		if (obj_request->bio_list)
2050 			bio_chain_put(obj_request->bio_list);
2051 		break;
2052 	case OBJ_REQUEST_PAGES:
2053 		if (obj_request->pages)
2054 			ceph_release_page_vector(obj_request->pages,
2055 						obj_request->page_count);
2056 		break;
2057 	}
2058 
2059 	kfree(obj_request->object_name);
2060 	obj_request->object_name = NULL;
2061 	kmem_cache_free(rbd_obj_request_cache, obj_request);
2062 }
2063 
2064 /* It's OK to call this for a device with no parent */
2065 
2066 static void rbd_spec_put(struct rbd_spec *spec);
2067 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2068 {
2069 	rbd_dev_remove_parent(rbd_dev);
2070 	rbd_spec_put(rbd_dev->parent_spec);
2071 	rbd_dev->parent_spec = NULL;
2072 	rbd_dev->parent_overlap = 0;
2073 }
2074 
2075 /*
2076  * Parent image reference counting is used to determine when an
2077  * image's parent fields can be safely torn down--after there are no
2078  * more in-flight requests to the parent image.  When the last
2079  * reference is dropped, cleaning them up is safe.
2080  */
2081 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2082 {
2083 	int counter;
2084 
2085 	if (!rbd_dev->parent_spec)
2086 		return;
2087 
2088 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2089 	if (counter > 0)
2090 		return;
2091 
2092 	/* Last reference; clean up parent data structures */
2093 
2094 	if (!counter)
2095 		rbd_dev_unparent(rbd_dev);
2096 	else
2097 		rbd_warn(rbd_dev, "parent reference underflow");
2098 }
2099 
2100 /*
2101  * If an image has a non-zero parent overlap, get a reference to its
2102  * parent.
2103  *
2104  * Returns true if the rbd device has a parent with a non-zero
2105  * overlap and a reference for it was successfully taken, or
2106  * false otherwise.
2107  */
2108 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2109 {
2110 	int counter = 0;
2111 
2112 	if (!rbd_dev->parent_spec)
2113 		return false;
2114 
2115 	down_read(&rbd_dev->header_rwsem);
2116 	if (rbd_dev->parent_overlap)
2117 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2118 	up_read(&rbd_dev->header_rwsem);
2119 
2120 	if (counter < 0)
2121 		rbd_warn(rbd_dev, "parent reference overflow");
2122 
2123 	return counter > 0;
2124 }
2125 
2126 /*
2127  * Caller is responsible for filling in the list of object requests
2128  * that comprises the image request, and the Linux request pointer
2129  * (if there is one).
2130  */
2131 static struct rbd_img_request *rbd_img_request_create(
2132 					struct rbd_device *rbd_dev,
2133 					u64 offset, u64 length,
2134 					enum obj_operation_type op_type,
2135 					struct ceph_snap_context *snapc)
2136 {
2137 	struct rbd_img_request *img_request;
2138 
2139 	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2140 	if (!img_request)
2141 		return NULL;
2142 
2143 	img_request->rq = NULL;
2144 	img_request->rbd_dev = rbd_dev;
2145 	img_request->offset = offset;
2146 	img_request->length = length;
2147 	img_request->flags = 0;
2148 	if (op_type == OBJ_OP_DISCARD) {
2149 		img_request_discard_set(img_request);
2150 		img_request->snapc = snapc;
2151 	} else if (op_type == OBJ_OP_WRITE) {
2152 		img_request_write_set(img_request);
2153 		img_request->snapc = snapc;
2154 	} else {
2155 		img_request->snap_id = rbd_dev->spec->snap_id;
2156 	}
2157 	if (rbd_dev_parent_get(rbd_dev))
2158 		img_request_layered_set(img_request);
2159 	spin_lock_init(&img_request->completion_lock);
2160 	img_request->next_completion = 0;
2161 	img_request->callback = NULL;
2162 	img_request->result = 0;
2163 	img_request->obj_request_count = 0;
2164 	INIT_LIST_HEAD(&img_request->obj_requests);
2165 	kref_init(&img_request->kref);
2166 
2167 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2168 		obj_op_name(op_type), offset, length, img_request);
2169 
2170 	return img_request;
2171 }
2172 
2173 static void rbd_img_request_destroy(struct kref *kref)
2174 {
2175 	struct rbd_img_request *img_request;
2176 	struct rbd_obj_request *obj_request;
2177 	struct rbd_obj_request *next_obj_request;
2178 
2179 	img_request = container_of(kref, struct rbd_img_request, kref);
2180 
2181 	dout("%s: img %p\n", __func__, img_request);
2182 
2183 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2184 		rbd_img_obj_request_del(img_request, obj_request);
2185 	rbd_assert(img_request->obj_request_count == 0);
2186 
2187 	if (img_request_layered_test(img_request)) {
2188 		img_request_layered_clear(img_request);
2189 		rbd_dev_parent_put(img_request->rbd_dev);
2190 	}
2191 
2192 	if (img_request_write_test(img_request) ||
2193 		img_request_discard_test(img_request))
2194 		ceph_put_snap_context(img_request->snapc);
2195 
2196 	kmem_cache_free(rbd_img_request_cache, img_request);
2197 }
2198 
2199 static struct rbd_img_request *rbd_parent_request_create(
2200 					struct rbd_obj_request *obj_request,
2201 					u64 img_offset, u64 length)
2202 {
2203 	struct rbd_img_request *parent_request;
2204 	struct rbd_device *rbd_dev;
2205 
2206 	rbd_assert(obj_request->img_request);
2207 	rbd_dev = obj_request->img_request->rbd_dev;
2208 
2209 	parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2210 						length, OBJ_OP_READ, NULL);
2211 	if (!parent_request)
2212 		return NULL;
2213 
2214 	img_request_child_set(parent_request);
2215 	rbd_obj_request_get(obj_request);
2216 	parent_request->obj_request = obj_request;
2217 
2218 	return parent_request;
2219 }
2220 
2221 static void rbd_parent_request_destroy(struct kref *kref)
2222 {
2223 	struct rbd_img_request *parent_request;
2224 	struct rbd_obj_request *orig_request;
2225 
2226 	parent_request = container_of(kref, struct rbd_img_request, kref);
2227 	orig_request = parent_request->obj_request;
2228 
2229 	parent_request->obj_request = NULL;
2230 	rbd_obj_request_put(orig_request);
2231 	img_request_child_clear(parent_request);
2232 
2233 	rbd_img_request_destroy(kref);
2234 }
2235 
2236 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2237 {
2238 	struct rbd_img_request *img_request;
2239 	unsigned int xferred;
2240 	int result;
2241 	bool more;
2242 
2243 	rbd_assert(obj_request_img_data_test(obj_request));
2244 	img_request = obj_request->img_request;
2245 
2246 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2247 	xferred = (unsigned int)obj_request->xferred;
2248 	result = obj_request->result;
2249 	if (result) {
2250 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2251 		enum obj_operation_type op_type;
2252 
2253 		if (img_request_discard_test(img_request))
2254 			op_type = OBJ_OP_DISCARD;
2255 		else if (img_request_write_test(img_request))
2256 			op_type = OBJ_OP_WRITE;
2257 		else
2258 			op_type = OBJ_OP_READ;
2259 
2260 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2261 			obj_op_name(op_type), obj_request->length,
2262 			obj_request->img_offset, obj_request->offset);
2263 		rbd_warn(rbd_dev, "  result %d xferred %x",
2264 			result, xferred);
2265 		if (!img_request->result)
2266 			img_request->result = result;
2267 	}
2268 
2269 	/* Image object requests don't own their page array */
2270 
2271 	if (obj_request->type == OBJ_REQUEST_PAGES) {
2272 		obj_request->pages = NULL;
2273 		obj_request->page_count = 0;
2274 	}
2275 
2276 	if (img_request_child_test(img_request)) {
2277 		rbd_assert(img_request->obj_request != NULL);
2278 		more = obj_request->which < img_request->obj_request_count - 1;
2279 	} else {
2280 		rbd_assert(img_request->rq != NULL);
2281 
2282 		more = blk_update_request(img_request->rq, result, xferred);
2283 		if (!more)
2284 			__blk_mq_end_request(img_request->rq, result);
2285 	}
2286 
2287 	return more;
2288 }
2289 
2290 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2291 {
2292 	struct rbd_img_request *img_request;
2293 	u32 which = obj_request->which;
2294 	bool more = true;
2295 
2296 	rbd_assert(obj_request_img_data_test(obj_request));
2297 	img_request = obj_request->img_request;
2298 
2299 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2300 	rbd_assert(img_request != NULL);
2301 	rbd_assert(img_request->obj_request_count > 0);
2302 	rbd_assert(which != BAD_WHICH);
2303 	rbd_assert(which < img_request->obj_request_count);
2304 
2305 	spin_lock_irq(&img_request->completion_lock);
2306 	if (which != img_request->next_completion)
2307 		goto out;
2308 
2309 	for_each_obj_request_from(img_request, obj_request) {
2310 		rbd_assert(more);
2311 		rbd_assert(which < img_request->obj_request_count);
2312 
2313 		if (!obj_request_done_test(obj_request))
2314 			break;
2315 		more = rbd_img_obj_end_request(obj_request);
2316 		which++;
2317 	}
2318 
2319 	rbd_assert(more ^ (which == img_request->obj_request_count));
2320 	img_request->next_completion = which;
2321 out:
2322 	spin_unlock_irq(&img_request->completion_lock);
2323 	rbd_img_request_put(img_request);
2324 
2325 	if (!more)
2326 		rbd_img_request_complete(img_request);
2327 }
2328 
2329 /*
2330  * Add individual osd ops to the given ceph_osd_request and prepare
2331  * them for submission. num_ops is the current number of
2332  * osd operations already to the object request.
2333  */
2334 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2335 				struct ceph_osd_request *osd_request,
2336 				enum obj_operation_type op_type,
2337 				unsigned int num_ops)
2338 {
2339 	struct rbd_img_request *img_request = obj_request->img_request;
2340 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2341 	u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2342 	u64 offset = obj_request->offset;
2343 	u64 length = obj_request->length;
2344 	u64 img_end;
2345 	u16 opcode;
2346 
2347 	if (op_type == OBJ_OP_DISCARD) {
2348 		if (!offset && length == object_size &&
2349 		    (!img_request_layered_test(img_request) ||
2350 		     !obj_request_overlaps_parent(obj_request))) {
2351 			opcode = CEPH_OSD_OP_DELETE;
2352 		} else if ((offset + length == object_size)) {
2353 			opcode = CEPH_OSD_OP_TRUNCATE;
2354 		} else {
2355 			down_read(&rbd_dev->header_rwsem);
2356 			img_end = rbd_dev->header.image_size;
2357 			up_read(&rbd_dev->header_rwsem);
2358 
2359 			if (obj_request->img_offset + length == img_end)
2360 				opcode = CEPH_OSD_OP_TRUNCATE;
2361 			else
2362 				opcode = CEPH_OSD_OP_ZERO;
2363 		}
2364 	} else if (op_type == OBJ_OP_WRITE) {
2365 		opcode = CEPH_OSD_OP_WRITE;
2366 		osd_req_op_alloc_hint_init(osd_request, num_ops,
2367 					object_size, object_size);
2368 		num_ops++;
2369 	} else {
2370 		opcode = CEPH_OSD_OP_READ;
2371 	}
2372 
2373 	if (opcode == CEPH_OSD_OP_DELETE)
2374 		osd_req_op_init(osd_request, num_ops, opcode);
2375 	else
2376 		osd_req_op_extent_init(osd_request, num_ops, opcode,
2377 				       offset, length, 0, 0);
2378 
2379 	if (obj_request->type == OBJ_REQUEST_BIO)
2380 		osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2381 					obj_request->bio_list, length);
2382 	else if (obj_request->type == OBJ_REQUEST_PAGES)
2383 		osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2384 					obj_request->pages, length,
2385 					offset & ~PAGE_MASK, false, false);
2386 
2387 	/* Discards are also writes */
2388 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2389 		rbd_osd_req_format_write(obj_request);
2390 	else
2391 		rbd_osd_req_format_read(obj_request);
2392 }
2393 
2394 /*
2395  * Split up an image request into one or more object requests, each
2396  * to a different object.  The "type" parameter indicates whether
2397  * "data_desc" is the pointer to the head of a list of bio
2398  * structures, or the base of a page array.  In either case this
2399  * function assumes data_desc describes memory sufficient to hold
2400  * all data described by the image request.
2401  */
2402 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2403 					enum obj_request_type type,
2404 					void *data_desc)
2405 {
2406 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2407 	struct rbd_obj_request *obj_request = NULL;
2408 	struct rbd_obj_request *next_obj_request;
2409 	struct bio *bio_list = NULL;
2410 	unsigned int bio_offset = 0;
2411 	struct page **pages = NULL;
2412 	enum obj_operation_type op_type;
2413 	u64 img_offset;
2414 	u64 resid;
2415 
2416 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2417 		(int)type, data_desc);
2418 
2419 	img_offset = img_request->offset;
2420 	resid = img_request->length;
2421 	rbd_assert(resid > 0);
2422 	op_type = rbd_img_request_op_type(img_request);
2423 
2424 	if (type == OBJ_REQUEST_BIO) {
2425 		bio_list = data_desc;
2426 		rbd_assert(img_offset ==
2427 			   bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2428 	} else if (type == OBJ_REQUEST_PAGES) {
2429 		pages = data_desc;
2430 	}
2431 
2432 	while (resid) {
2433 		struct ceph_osd_request *osd_req;
2434 		const char *object_name;
2435 		u64 offset;
2436 		u64 length;
2437 
2438 		object_name = rbd_segment_name(rbd_dev, img_offset);
2439 		if (!object_name)
2440 			goto out_unwind;
2441 		offset = rbd_segment_offset(rbd_dev, img_offset);
2442 		length = rbd_segment_length(rbd_dev, img_offset, resid);
2443 		obj_request = rbd_obj_request_create(object_name,
2444 						offset, length, type);
2445 		/* object request has its own copy of the object name */
2446 		rbd_segment_name_free(object_name);
2447 		if (!obj_request)
2448 			goto out_unwind;
2449 
2450 		/*
2451 		 * set obj_request->img_request before creating the
2452 		 * osd_request so that it gets the right snapc
2453 		 */
2454 		rbd_img_obj_request_add(img_request, obj_request);
2455 
2456 		if (type == OBJ_REQUEST_BIO) {
2457 			unsigned int clone_size;
2458 
2459 			rbd_assert(length <= (u64)UINT_MAX);
2460 			clone_size = (unsigned int)length;
2461 			obj_request->bio_list =
2462 					bio_chain_clone_range(&bio_list,
2463 								&bio_offset,
2464 								clone_size,
2465 								GFP_ATOMIC);
2466 			if (!obj_request->bio_list)
2467 				goto out_unwind;
2468 		} else if (type == OBJ_REQUEST_PAGES) {
2469 			unsigned int page_count;
2470 
2471 			obj_request->pages = pages;
2472 			page_count = (u32)calc_pages_for(offset, length);
2473 			obj_request->page_count = page_count;
2474 			if ((offset + length) & ~PAGE_MASK)
2475 				page_count--;	/* more on last page */
2476 			pages += page_count;
2477 		}
2478 
2479 		osd_req = rbd_osd_req_create(rbd_dev, op_type,
2480 					(op_type == OBJ_OP_WRITE) ? 2 : 1,
2481 					obj_request);
2482 		if (!osd_req)
2483 			goto out_unwind;
2484 
2485 		obj_request->osd_req = osd_req;
2486 		obj_request->callback = rbd_img_obj_callback;
2487 		obj_request->img_offset = img_offset;
2488 
2489 		rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2490 
2491 		rbd_img_request_get(img_request);
2492 
2493 		img_offset += length;
2494 		resid -= length;
2495 	}
2496 
2497 	return 0;
2498 
2499 out_unwind:
2500 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2501 		rbd_img_obj_request_del(img_request, obj_request);
2502 
2503 	return -ENOMEM;
2504 }
2505 
2506 static void
2507 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2508 {
2509 	struct rbd_img_request *img_request;
2510 	struct rbd_device *rbd_dev;
2511 	struct page **pages;
2512 	u32 page_count;
2513 
2514 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2515 		obj_request->type == OBJ_REQUEST_NODATA);
2516 	rbd_assert(obj_request_img_data_test(obj_request));
2517 	img_request = obj_request->img_request;
2518 	rbd_assert(img_request);
2519 
2520 	rbd_dev = img_request->rbd_dev;
2521 	rbd_assert(rbd_dev);
2522 
2523 	pages = obj_request->copyup_pages;
2524 	rbd_assert(pages != NULL);
2525 	obj_request->copyup_pages = NULL;
2526 	page_count = obj_request->copyup_page_count;
2527 	rbd_assert(page_count);
2528 	obj_request->copyup_page_count = 0;
2529 	ceph_release_page_vector(pages, page_count);
2530 
2531 	/*
2532 	 * We want the transfer count to reflect the size of the
2533 	 * original write request.  There is no such thing as a
2534 	 * successful short write, so if the request was successful
2535 	 * we can just set it to the originally-requested length.
2536 	 */
2537 	if (!obj_request->result)
2538 		obj_request->xferred = obj_request->length;
2539 
2540 	/* Finish up with the normal image object callback */
2541 
2542 	rbd_img_obj_callback(obj_request);
2543 }
2544 
2545 static void
2546 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2547 {
2548 	struct rbd_obj_request *orig_request;
2549 	struct ceph_osd_request *osd_req;
2550 	struct ceph_osd_client *osdc;
2551 	struct rbd_device *rbd_dev;
2552 	struct page **pages;
2553 	enum obj_operation_type op_type;
2554 	u32 page_count;
2555 	int img_result;
2556 	u64 parent_length;
2557 
2558 	rbd_assert(img_request_child_test(img_request));
2559 
2560 	/* First get what we need from the image request */
2561 
2562 	pages = img_request->copyup_pages;
2563 	rbd_assert(pages != NULL);
2564 	img_request->copyup_pages = NULL;
2565 	page_count = img_request->copyup_page_count;
2566 	rbd_assert(page_count);
2567 	img_request->copyup_page_count = 0;
2568 
2569 	orig_request = img_request->obj_request;
2570 	rbd_assert(orig_request != NULL);
2571 	rbd_assert(obj_request_type_valid(orig_request->type));
2572 	img_result = img_request->result;
2573 	parent_length = img_request->length;
2574 	rbd_assert(parent_length == img_request->xferred);
2575 	rbd_img_request_put(img_request);
2576 
2577 	rbd_assert(orig_request->img_request);
2578 	rbd_dev = orig_request->img_request->rbd_dev;
2579 	rbd_assert(rbd_dev);
2580 
2581 	/*
2582 	 * If the overlap has become 0 (most likely because the
2583 	 * image has been flattened) we need to free the pages
2584 	 * and re-submit the original write request.
2585 	 */
2586 	if (!rbd_dev->parent_overlap) {
2587 		struct ceph_osd_client *osdc;
2588 
2589 		ceph_release_page_vector(pages, page_count);
2590 		osdc = &rbd_dev->rbd_client->client->osdc;
2591 		img_result = rbd_obj_request_submit(osdc, orig_request);
2592 		if (!img_result)
2593 			return;
2594 	}
2595 
2596 	if (img_result)
2597 		goto out_err;
2598 
2599 	/*
2600 	 * The original osd request is of no use to use any more.
2601 	 * We need a new one that can hold the three ops in a copyup
2602 	 * request.  Allocate the new copyup osd request for the
2603 	 * original request, and release the old one.
2604 	 */
2605 	img_result = -ENOMEM;
2606 	osd_req = rbd_osd_req_create_copyup(orig_request);
2607 	if (!osd_req)
2608 		goto out_err;
2609 	rbd_osd_req_destroy(orig_request->osd_req);
2610 	orig_request->osd_req = osd_req;
2611 	orig_request->copyup_pages = pages;
2612 	orig_request->copyup_page_count = page_count;
2613 
2614 	/* Initialize the copyup op */
2615 
2616 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2617 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2618 						false, false);
2619 
2620 	/* Add the other op(s) */
2621 
2622 	op_type = rbd_img_request_op_type(orig_request->img_request);
2623 	rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2624 
2625 	/* All set, send it off. */
2626 
2627 	orig_request->callback = rbd_img_obj_copyup_callback;
2628 	osdc = &rbd_dev->rbd_client->client->osdc;
2629 	img_result = rbd_obj_request_submit(osdc, orig_request);
2630 	if (!img_result)
2631 		return;
2632 out_err:
2633 	/* Record the error code and complete the request */
2634 
2635 	orig_request->result = img_result;
2636 	orig_request->xferred = 0;
2637 	obj_request_done_set(orig_request);
2638 	rbd_obj_request_complete(orig_request);
2639 }
2640 
2641 /*
2642  * Read from the parent image the range of data that covers the
2643  * entire target of the given object request.  This is used for
2644  * satisfying a layered image write request when the target of an
2645  * object request from the image request does not exist.
2646  *
2647  * A page array big enough to hold the returned data is allocated
2648  * and supplied to rbd_img_request_fill() as the "data descriptor."
2649  * When the read completes, this page array will be transferred to
2650  * the original object request for the copyup operation.
2651  *
2652  * If an error occurs, record it as the result of the original
2653  * object request and mark it done so it gets completed.
2654  */
2655 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2656 {
2657 	struct rbd_img_request *img_request = NULL;
2658 	struct rbd_img_request *parent_request = NULL;
2659 	struct rbd_device *rbd_dev;
2660 	u64 img_offset;
2661 	u64 length;
2662 	struct page **pages = NULL;
2663 	u32 page_count;
2664 	int result;
2665 
2666 	rbd_assert(obj_request_img_data_test(obj_request));
2667 	rbd_assert(obj_request_type_valid(obj_request->type));
2668 
2669 	img_request = obj_request->img_request;
2670 	rbd_assert(img_request != NULL);
2671 	rbd_dev = img_request->rbd_dev;
2672 	rbd_assert(rbd_dev->parent != NULL);
2673 
2674 	/*
2675 	 * Determine the byte range covered by the object in the
2676 	 * child image to which the original request was to be sent.
2677 	 */
2678 	img_offset = obj_request->img_offset - obj_request->offset;
2679 	length = (u64)1 << rbd_dev->header.obj_order;
2680 
2681 	/*
2682 	 * There is no defined parent data beyond the parent
2683 	 * overlap, so limit what we read at that boundary if
2684 	 * necessary.
2685 	 */
2686 	if (img_offset + length > rbd_dev->parent_overlap) {
2687 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2688 		length = rbd_dev->parent_overlap - img_offset;
2689 	}
2690 
2691 	/*
2692 	 * Allocate a page array big enough to receive the data read
2693 	 * from the parent.
2694 	 */
2695 	page_count = (u32)calc_pages_for(0, length);
2696 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2697 	if (IS_ERR(pages)) {
2698 		result = PTR_ERR(pages);
2699 		pages = NULL;
2700 		goto out_err;
2701 	}
2702 
2703 	result = -ENOMEM;
2704 	parent_request = rbd_parent_request_create(obj_request,
2705 						img_offset, length);
2706 	if (!parent_request)
2707 		goto out_err;
2708 
2709 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2710 	if (result)
2711 		goto out_err;
2712 	parent_request->copyup_pages = pages;
2713 	parent_request->copyup_page_count = page_count;
2714 
2715 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2716 	result = rbd_img_request_submit(parent_request);
2717 	if (!result)
2718 		return 0;
2719 
2720 	parent_request->copyup_pages = NULL;
2721 	parent_request->copyup_page_count = 0;
2722 	parent_request->obj_request = NULL;
2723 	rbd_obj_request_put(obj_request);
2724 out_err:
2725 	if (pages)
2726 		ceph_release_page_vector(pages, page_count);
2727 	if (parent_request)
2728 		rbd_img_request_put(parent_request);
2729 	obj_request->result = result;
2730 	obj_request->xferred = 0;
2731 	obj_request_done_set(obj_request);
2732 
2733 	return result;
2734 }
2735 
2736 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2737 {
2738 	struct rbd_obj_request *orig_request;
2739 	struct rbd_device *rbd_dev;
2740 	int result;
2741 
2742 	rbd_assert(!obj_request_img_data_test(obj_request));
2743 
2744 	/*
2745 	 * All we need from the object request is the original
2746 	 * request and the result of the STAT op.  Grab those, then
2747 	 * we're done with the request.
2748 	 */
2749 	orig_request = obj_request->obj_request;
2750 	obj_request->obj_request = NULL;
2751 	rbd_obj_request_put(orig_request);
2752 	rbd_assert(orig_request);
2753 	rbd_assert(orig_request->img_request);
2754 
2755 	result = obj_request->result;
2756 	obj_request->result = 0;
2757 
2758 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2759 		obj_request, orig_request, result,
2760 		obj_request->xferred, obj_request->length);
2761 	rbd_obj_request_put(obj_request);
2762 
2763 	/*
2764 	 * If the overlap has become 0 (most likely because the
2765 	 * image has been flattened) we need to free the pages
2766 	 * and re-submit the original write request.
2767 	 */
2768 	rbd_dev = orig_request->img_request->rbd_dev;
2769 	if (!rbd_dev->parent_overlap) {
2770 		struct ceph_osd_client *osdc;
2771 
2772 		osdc = &rbd_dev->rbd_client->client->osdc;
2773 		result = rbd_obj_request_submit(osdc, orig_request);
2774 		if (!result)
2775 			return;
2776 	}
2777 
2778 	/*
2779 	 * Our only purpose here is to determine whether the object
2780 	 * exists, and we don't want to treat the non-existence as
2781 	 * an error.  If something else comes back, transfer the
2782 	 * error to the original request and complete it now.
2783 	 */
2784 	if (!result) {
2785 		obj_request_existence_set(orig_request, true);
2786 	} else if (result == -ENOENT) {
2787 		obj_request_existence_set(orig_request, false);
2788 	} else if (result) {
2789 		orig_request->result = result;
2790 		goto out;
2791 	}
2792 
2793 	/*
2794 	 * Resubmit the original request now that we have recorded
2795 	 * whether the target object exists.
2796 	 */
2797 	orig_request->result = rbd_img_obj_request_submit(orig_request);
2798 out:
2799 	if (orig_request->result)
2800 		rbd_obj_request_complete(orig_request);
2801 }
2802 
2803 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2804 {
2805 	struct rbd_obj_request *stat_request;
2806 	struct rbd_device *rbd_dev;
2807 	struct ceph_osd_client *osdc;
2808 	struct page **pages = NULL;
2809 	u32 page_count;
2810 	size_t size;
2811 	int ret;
2812 
2813 	/*
2814 	 * The response data for a STAT call consists of:
2815 	 *     le64 length;
2816 	 *     struct {
2817 	 *         le32 tv_sec;
2818 	 *         le32 tv_nsec;
2819 	 *     } mtime;
2820 	 */
2821 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2822 	page_count = (u32)calc_pages_for(0, size);
2823 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2824 	if (IS_ERR(pages))
2825 		return PTR_ERR(pages);
2826 
2827 	ret = -ENOMEM;
2828 	stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2829 							OBJ_REQUEST_PAGES);
2830 	if (!stat_request)
2831 		goto out;
2832 
2833 	rbd_obj_request_get(obj_request);
2834 	stat_request->obj_request = obj_request;
2835 	stat_request->pages = pages;
2836 	stat_request->page_count = page_count;
2837 
2838 	rbd_assert(obj_request->img_request);
2839 	rbd_dev = obj_request->img_request->rbd_dev;
2840 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2841 						   stat_request);
2842 	if (!stat_request->osd_req)
2843 		goto out;
2844 	stat_request->callback = rbd_img_obj_exists_callback;
2845 
2846 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2847 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2848 					false, false);
2849 	rbd_osd_req_format_read(stat_request);
2850 
2851 	osdc = &rbd_dev->rbd_client->client->osdc;
2852 	ret = rbd_obj_request_submit(osdc, stat_request);
2853 out:
2854 	if (ret)
2855 		rbd_obj_request_put(obj_request);
2856 
2857 	return ret;
2858 }
2859 
2860 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2861 {
2862 	struct rbd_img_request *img_request;
2863 	struct rbd_device *rbd_dev;
2864 
2865 	rbd_assert(obj_request_img_data_test(obj_request));
2866 
2867 	img_request = obj_request->img_request;
2868 	rbd_assert(img_request);
2869 	rbd_dev = img_request->rbd_dev;
2870 
2871 	/* Reads */
2872 	if (!img_request_write_test(img_request) &&
2873 	    !img_request_discard_test(img_request))
2874 		return true;
2875 
2876 	/* Non-layered writes */
2877 	if (!img_request_layered_test(img_request))
2878 		return true;
2879 
2880 	/*
2881 	 * Layered writes outside of the parent overlap range don't
2882 	 * share any data with the parent.
2883 	 */
2884 	if (!obj_request_overlaps_parent(obj_request))
2885 		return true;
2886 
2887 	/*
2888 	 * Entire-object layered writes - we will overwrite whatever
2889 	 * parent data there is anyway.
2890 	 */
2891 	if (!obj_request->offset &&
2892 	    obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2893 		return true;
2894 
2895 	/*
2896 	 * If the object is known to already exist, its parent data has
2897 	 * already been copied.
2898 	 */
2899 	if (obj_request_known_test(obj_request) &&
2900 	    obj_request_exists_test(obj_request))
2901 		return true;
2902 
2903 	return false;
2904 }
2905 
2906 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2907 {
2908 	if (img_obj_request_simple(obj_request)) {
2909 		struct rbd_device *rbd_dev;
2910 		struct ceph_osd_client *osdc;
2911 
2912 		rbd_dev = obj_request->img_request->rbd_dev;
2913 		osdc = &rbd_dev->rbd_client->client->osdc;
2914 
2915 		return rbd_obj_request_submit(osdc, obj_request);
2916 	}
2917 
2918 	/*
2919 	 * It's a layered write.  The target object might exist but
2920 	 * we may not know that yet.  If we know it doesn't exist,
2921 	 * start by reading the data for the full target object from
2922 	 * the parent so we can use it for a copyup to the target.
2923 	 */
2924 	if (obj_request_known_test(obj_request))
2925 		return rbd_img_obj_parent_read_full(obj_request);
2926 
2927 	/* We don't know whether the target exists.  Go find out. */
2928 
2929 	return rbd_img_obj_exists_submit(obj_request);
2930 }
2931 
2932 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2933 {
2934 	struct rbd_obj_request *obj_request;
2935 	struct rbd_obj_request *next_obj_request;
2936 
2937 	dout("%s: img %p\n", __func__, img_request);
2938 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2939 		int ret;
2940 
2941 		ret = rbd_img_obj_request_submit(obj_request);
2942 		if (ret)
2943 			return ret;
2944 	}
2945 
2946 	return 0;
2947 }
2948 
2949 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2950 {
2951 	struct rbd_obj_request *obj_request;
2952 	struct rbd_device *rbd_dev;
2953 	u64 obj_end;
2954 	u64 img_xferred;
2955 	int img_result;
2956 
2957 	rbd_assert(img_request_child_test(img_request));
2958 
2959 	/* First get what we need from the image request and release it */
2960 
2961 	obj_request = img_request->obj_request;
2962 	img_xferred = img_request->xferred;
2963 	img_result = img_request->result;
2964 	rbd_img_request_put(img_request);
2965 
2966 	/*
2967 	 * If the overlap has become 0 (most likely because the
2968 	 * image has been flattened) we need to re-submit the
2969 	 * original request.
2970 	 */
2971 	rbd_assert(obj_request);
2972 	rbd_assert(obj_request->img_request);
2973 	rbd_dev = obj_request->img_request->rbd_dev;
2974 	if (!rbd_dev->parent_overlap) {
2975 		struct ceph_osd_client *osdc;
2976 
2977 		osdc = &rbd_dev->rbd_client->client->osdc;
2978 		img_result = rbd_obj_request_submit(osdc, obj_request);
2979 		if (!img_result)
2980 			return;
2981 	}
2982 
2983 	obj_request->result = img_result;
2984 	if (obj_request->result)
2985 		goto out;
2986 
2987 	/*
2988 	 * We need to zero anything beyond the parent overlap
2989 	 * boundary.  Since rbd_img_obj_request_read_callback()
2990 	 * will zero anything beyond the end of a short read, an
2991 	 * easy way to do this is to pretend the data from the
2992 	 * parent came up short--ending at the overlap boundary.
2993 	 */
2994 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2995 	obj_end = obj_request->img_offset + obj_request->length;
2996 	if (obj_end > rbd_dev->parent_overlap) {
2997 		u64 xferred = 0;
2998 
2999 		if (obj_request->img_offset < rbd_dev->parent_overlap)
3000 			xferred = rbd_dev->parent_overlap -
3001 					obj_request->img_offset;
3002 
3003 		obj_request->xferred = min(img_xferred, xferred);
3004 	} else {
3005 		obj_request->xferred = img_xferred;
3006 	}
3007 out:
3008 	rbd_img_obj_request_read_callback(obj_request);
3009 	rbd_obj_request_complete(obj_request);
3010 }
3011 
3012 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3013 {
3014 	struct rbd_img_request *img_request;
3015 	int result;
3016 
3017 	rbd_assert(obj_request_img_data_test(obj_request));
3018 	rbd_assert(obj_request->img_request != NULL);
3019 	rbd_assert(obj_request->result == (s32) -ENOENT);
3020 	rbd_assert(obj_request_type_valid(obj_request->type));
3021 
3022 	/* rbd_read_finish(obj_request, obj_request->length); */
3023 	img_request = rbd_parent_request_create(obj_request,
3024 						obj_request->img_offset,
3025 						obj_request->length);
3026 	result = -ENOMEM;
3027 	if (!img_request)
3028 		goto out_err;
3029 
3030 	if (obj_request->type == OBJ_REQUEST_BIO)
3031 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3032 						obj_request->bio_list);
3033 	else
3034 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3035 						obj_request->pages);
3036 	if (result)
3037 		goto out_err;
3038 
3039 	img_request->callback = rbd_img_parent_read_callback;
3040 	result = rbd_img_request_submit(img_request);
3041 	if (result)
3042 		goto out_err;
3043 
3044 	return;
3045 out_err:
3046 	if (img_request)
3047 		rbd_img_request_put(img_request);
3048 	obj_request->result = result;
3049 	obj_request->xferred = 0;
3050 	obj_request_done_set(obj_request);
3051 }
3052 
3053 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3054 {
3055 	struct rbd_obj_request *obj_request;
3056 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3057 	int ret;
3058 
3059 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3060 							OBJ_REQUEST_NODATA);
3061 	if (!obj_request)
3062 		return -ENOMEM;
3063 
3064 	ret = -ENOMEM;
3065 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3066 						  obj_request);
3067 	if (!obj_request->osd_req)
3068 		goto out;
3069 
3070 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3071 					notify_id, 0, 0);
3072 	rbd_osd_req_format_read(obj_request);
3073 
3074 	ret = rbd_obj_request_submit(osdc, obj_request);
3075 	if (ret)
3076 		goto out;
3077 	ret = rbd_obj_request_wait(obj_request);
3078 out:
3079 	rbd_obj_request_put(obj_request);
3080 
3081 	return ret;
3082 }
3083 
3084 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3085 {
3086 	struct rbd_device *rbd_dev = (struct rbd_device *)data;
3087 	int ret;
3088 
3089 	if (!rbd_dev)
3090 		return;
3091 
3092 	dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3093 		rbd_dev->header_name, (unsigned long long)notify_id,
3094 		(unsigned int)opcode);
3095 
3096 	/*
3097 	 * Until adequate refresh error handling is in place, there is
3098 	 * not much we can do here, except warn.
3099 	 *
3100 	 * See http://tracker.ceph.com/issues/5040
3101 	 */
3102 	ret = rbd_dev_refresh(rbd_dev);
3103 	if (ret)
3104 		rbd_warn(rbd_dev, "refresh failed: %d", ret);
3105 
3106 	ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3107 	if (ret)
3108 		rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3109 }
3110 
3111 /*
3112  * Send a (un)watch request and wait for the ack.  Return a request
3113  * with a ref held on success or error.
3114  */
3115 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3116 						struct rbd_device *rbd_dev,
3117 						bool watch)
3118 {
3119 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3120 	struct rbd_obj_request *obj_request;
3121 	int ret;
3122 
3123 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3124 					     OBJ_REQUEST_NODATA);
3125 	if (!obj_request)
3126 		return ERR_PTR(-ENOMEM);
3127 
3128 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3129 						  obj_request);
3130 	if (!obj_request->osd_req) {
3131 		ret = -ENOMEM;
3132 		goto out;
3133 	}
3134 
3135 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3136 			      rbd_dev->watch_event->cookie, 0, watch);
3137 	rbd_osd_req_format_write(obj_request);
3138 
3139 	if (watch)
3140 		ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3141 
3142 	ret = rbd_obj_request_submit(osdc, obj_request);
3143 	if (ret)
3144 		goto out;
3145 
3146 	ret = rbd_obj_request_wait(obj_request);
3147 	if (ret)
3148 		goto out;
3149 
3150 	ret = obj_request->result;
3151 	if (ret) {
3152 		if (watch)
3153 			rbd_obj_request_end(obj_request);
3154 		goto out;
3155 	}
3156 
3157 	return obj_request;
3158 
3159 out:
3160 	rbd_obj_request_put(obj_request);
3161 	return ERR_PTR(ret);
3162 }
3163 
3164 /*
3165  * Initiate a watch request, synchronously.
3166  */
3167 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3168 {
3169 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3170 	struct rbd_obj_request *obj_request;
3171 	int ret;
3172 
3173 	rbd_assert(!rbd_dev->watch_event);
3174 	rbd_assert(!rbd_dev->watch_request);
3175 
3176 	ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3177 				     &rbd_dev->watch_event);
3178 	if (ret < 0)
3179 		return ret;
3180 
3181 	obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3182 	if (IS_ERR(obj_request)) {
3183 		ceph_osdc_cancel_event(rbd_dev->watch_event);
3184 		rbd_dev->watch_event = NULL;
3185 		return PTR_ERR(obj_request);
3186 	}
3187 
3188 	/*
3189 	 * A watch request is set to linger, so the underlying osd
3190 	 * request won't go away until we unregister it.  We retain
3191 	 * a pointer to the object request during that time (in
3192 	 * rbd_dev->watch_request), so we'll keep a reference to it.
3193 	 * We'll drop that reference after we've unregistered it in
3194 	 * rbd_dev_header_unwatch_sync().
3195 	 */
3196 	rbd_dev->watch_request = obj_request;
3197 
3198 	return 0;
3199 }
3200 
3201 /*
3202  * Tear down a watch request, synchronously.
3203  */
3204 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3205 {
3206 	struct rbd_obj_request *obj_request;
3207 
3208 	rbd_assert(rbd_dev->watch_event);
3209 	rbd_assert(rbd_dev->watch_request);
3210 
3211 	rbd_obj_request_end(rbd_dev->watch_request);
3212 	rbd_obj_request_put(rbd_dev->watch_request);
3213 	rbd_dev->watch_request = NULL;
3214 
3215 	obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3216 	if (!IS_ERR(obj_request))
3217 		rbd_obj_request_put(obj_request);
3218 	else
3219 		rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3220 			 PTR_ERR(obj_request));
3221 
3222 	ceph_osdc_cancel_event(rbd_dev->watch_event);
3223 	rbd_dev->watch_event = NULL;
3224 }
3225 
3226 /*
3227  * Synchronous osd object method call.  Returns the number of bytes
3228  * returned in the outbound buffer, or a negative error code.
3229  */
3230 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3231 			     const char *object_name,
3232 			     const char *class_name,
3233 			     const char *method_name,
3234 			     const void *outbound,
3235 			     size_t outbound_size,
3236 			     void *inbound,
3237 			     size_t inbound_size)
3238 {
3239 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3240 	struct rbd_obj_request *obj_request;
3241 	struct page **pages;
3242 	u32 page_count;
3243 	int ret;
3244 
3245 	/*
3246 	 * Method calls are ultimately read operations.  The result
3247 	 * should placed into the inbound buffer provided.  They
3248 	 * also supply outbound data--parameters for the object
3249 	 * method.  Currently if this is present it will be a
3250 	 * snapshot id.
3251 	 */
3252 	page_count = (u32)calc_pages_for(0, inbound_size);
3253 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3254 	if (IS_ERR(pages))
3255 		return PTR_ERR(pages);
3256 
3257 	ret = -ENOMEM;
3258 	obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3259 							OBJ_REQUEST_PAGES);
3260 	if (!obj_request)
3261 		goto out;
3262 
3263 	obj_request->pages = pages;
3264 	obj_request->page_count = page_count;
3265 
3266 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3267 						  obj_request);
3268 	if (!obj_request->osd_req)
3269 		goto out;
3270 
3271 	osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3272 					class_name, method_name);
3273 	if (outbound_size) {
3274 		struct ceph_pagelist *pagelist;
3275 
3276 		pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3277 		if (!pagelist)
3278 			goto out;
3279 
3280 		ceph_pagelist_init(pagelist);
3281 		ceph_pagelist_append(pagelist, outbound, outbound_size);
3282 		osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3283 						pagelist);
3284 	}
3285 	osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3286 					obj_request->pages, inbound_size,
3287 					0, false, false);
3288 	rbd_osd_req_format_read(obj_request);
3289 
3290 	ret = rbd_obj_request_submit(osdc, obj_request);
3291 	if (ret)
3292 		goto out;
3293 	ret = rbd_obj_request_wait(obj_request);
3294 	if (ret)
3295 		goto out;
3296 
3297 	ret = obj_request->result;
3298 	if (ret < 0)
3299 		goto out;
3300 
3301 	rbd_assert(obj_request->xferred < (u64)INT_MAX);
3302 	ret = (int)obj_request->xferred;
3303 	ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3304 out:
3305 	if (obj_request)
3306 		rbd_obj_request_put(obj_request);
3307 	else
3308 		ceph_release_page_vector(pages, page_count);
3309 
3310 	return ret;
3311 }
3312 
3313 static void rbd_queue_workfn(struct work_struct *work)
3314 {
3315 	struct request *rq = blk_mq_rq_from_pdu(work);
3316 	struct rbd_device *rbd_dev = rq->q->queuedata;
3317 	struct rbd_img_request *img_request;
3318 	struct ceph_snap_context *snapc = NULL;
3319 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3320 	u64 length = blk_rq_bytes(rq);
3321 	enum obj_operation_type op_type;
3322 	u64 mapping_size;
3323 	int result;
3324 
3325 	if (rq->cmd_type != REQ_TYPE_FS) {
3326 		dout("%s: non-fs request type %d\n", __func__,
3327 			(int) rq->cmd_type);
3328 		result = -EIO;
3329 		goto err;
3330 	}
3331 
3332 	if (rq->cmd_flags & REQ_DISCARD)
3333 		op_type = OBJ_OP_DISCARD;
3334 	else if (rq->cmd_flags & REQ_WRITE)
3335 		op_type = OBJ_OP_WRITE;
3336 	else
3337 		op_type = OBJ_OP_READ;
3338 
3339 	/* Ignore/skip any zero-length requests */
3340 
3341 	if (!length) {
3342 		dout("%s: zero-length request\n", __func__);
3343 		result = 0;
3344 		goto err_rq;
3345 	}
3346 
3347 	/* Only reads are allowed to a read-only device */
3348 
3349 	if (op_type != OBJ_OP_READ) {
3350 		if (rbd_dev->mapping.read_only) {
3351 			result = -EROFS;
3352 			goto err_rq;
3353 		}
3354 		rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3355 	}
3356 
3357 	/*
3358 	 * Quit early if the mapped snapshot no longer exists.  It's
3359 	 * still possible the snapshot will have disappeared by the
3360 	 * time our request arrives at the osd, but there's no sense in
3361 	 * sending it if we already know.
3362 	 */
3363 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3364 		dout("request for non-existent snapshot");
3365 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3366 		result = -ENXIO;
3367 		goto err_rq;
3368 	}
3369 
3370 	if (offset && length > U64_MAX - offset + 1) {
3371 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3372 			 length);
3373 		result = -EINVAL;
3374 		goto err_rq;	/* Shouldn't happen */
3375 	}
3376 
3377 	blk_mq_start_request(rq);
3378 
3379 	down_read(&rbd_dev->header_rwsem);
3380 	mapping_size = rbd_dev->mapping.size;
3381 	if (op_type != OBJ_OP_READ) {
3382 		snapc = rbd_dev->header.snapc;
3383 		ceph_get_snap_context(snapc);
3384 	}
3385 	up_read(&rbd_dev->header_rwsem);
3386 
3387 	if (offset + length > mapping_size) {
3388 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3389 			 length, mapping_size);
3390 		result = -EIO;
3391 		goto err_rq;
3392 	}
3393 
3394 	img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3395 					     snapc);
3396 	if (!img_request) {
3397 		result = -ENOMEM;
3398 		goto err_rq;
3399 	}
3400 	img_request->rq = rq;
3401 
3402 	if (op_type == OBJ_OP_DISCARD)
3403 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3404 					      NULL);
3405 	else
3406 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3407 					      rq->bio);
3408 	if (result)
3409 		goto err_img_request;
3410 
3411 	result = rbd_img_request_submit(img_request);
3412 	if (result)
3413 		goto err_img_request;
3414 
3415 	return;
3416 
3417 err_img_request:
3418 	rbd_img_request_put(img_request);
3419 err_rq:
3420 	if (result)
3421 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3422 			 obj_op_name(op_type), length, offset, result);
3423 	ceph_put_snap_context(snapc);
3424 err:
3425 	blk_mq_end_request(rq, result);
3426 }
3427 
3428 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3429 		const struct blk_mq_queue_data *bd)
3430 {
3431 	struct request *rq = bd->rq;
3432 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3433 
3434 	queue_work(rbd_wq, work);
3435 	return BLK_MQ_RQ_QUEUE_OK;
3436 }
3437 
3438 /*
3439  * a queue callback. Makes sure that we don't create a bio that spans across
3440  * multiple osd objects. One exception would be with a single page bios,
3441  * which we handle later at bio_chain_clone_range()
3442  */
3443 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3444 			  struct bio_vec *bvec)
3445 {
3446 	struct rbd_device *rbd_dev = q->queuedata;
3447 	sector_t sector_offset;
3448 	sector_t sectors_per_obj;
3449 	sector_t obj_sector_offset;
3450 	int ret;
3451 
3452 	/*
3453 	 * Find how far into its rbd object the partition-relative
3454 	 * bio start sector is to offset relative to the enclosing
3455 	 * device.
3456 	 */
3457 	sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3458 	sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3459 	obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3460 
3461 	/*
3462 	 * Compute the number of bytes from that offset to the end
3463 	 * of the object.  Account for what's already used by the bio.
3464 	 */
3465 	ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3466 	if (ret > bmd->bi_size)
3467 		ret -= bmd->bi_size;
3468 	else
3469 		ret = 0;
3470 
3471 	/*
3472 	 * Don't send back more than was asked for.  And if the bio
3473 	 * was empty, let the whole thing through because:  "Note
3474 	 * that a block device *must* allow a single page to be
3475 	 * added to an empty bio."
3476 	 */
3477 	rbd_assert(bvec->bv_len <= PAGE_SIZE);
3478 	if (ret > (int) bvec->bv_len || !bmd->bi_size)
3479 		ret = (int) bvec->bv_len;
3480 
3481 	return ret;
3482 }
3483 
3484 static void rbd_free_disk(struct rbd_device *rbd_dev)
3485 {
3486 	struct gendisk *disk = rbd_dev->disk;
3487 
3488 	if (!disk)
3489 		return;
3490 
3491 	rbd_dev->disk = NULL;
3492 	if (disk->flags & GENHD_FL_UP) {
3493 		del_gendisk(disk);
3494 		if (disk->queue)
3495 			blk_cleanup_queue(disk->queue);
3496 		blk_mq_free_tag_set(&rbd_dev->tag_set);
3497 	}
3498 	put_disk(disk);
3499 }
3500 
3501 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3502 				const char *object_name,
3503 				u64 offset, u64 length, void *buf)
3504 
3505 {
3506 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3507 	struct rbd_obj_request *obj_request;
3508 	struct page **pages = NULL;
3509 	u32 page_count;
3510 	size_t size;
3511 	int ret;
3512 
3513 	page_count = (u32) calc_pages_for(offset, length);
3514 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3515 	if (IS_ERR(pages))
3516 		return PTR_ERR(pages);
3517 
3518 	ret = -ENOMEM;
3519 	obj_request = rbd_obj_request_create(object_name, offset, length,
3520 							OBJ_REQUEST_PAGES);
3521 	if (!obj_request)
3522 		goto out;
3523 
3524 	obj_request->pages = pages;
3525 	obj_request->page_count = page_count;
3526 
3527 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3528 						  obj_request);
3529 	if (!obj_request->osd_req)
3530 		goto out;
3531 
3532 	osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3533 					offset, length, 0, 0);
3534 	osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3535 					obj_request->pages,
3536 					obj_request->length,
3537 					obj_request->offset & ~PAGE_MASK,
3538 					false, false);
3539 	rbd_osd_req_format_read(obj_request);
3540 
3541 	ret = rbd_obj_request_submit(osdc, obj_request);
3542 	if (ret)
3543 		goto out;
3544 	ret = rbd_obj_request_wait(obj_request);
3545 	if (ret)
3546 		goto out;
3547 
3548 	ret = obj_request->result;
3549 	if (ret < 0)
3550 		goto out;
3551 
3552 	rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3553 	size = (size_t) obj_request->xferred;
3554 	ceph_copy_from_page_vector(pages, buf, 0, size);
3555 	rbd_assert(size <= (size_t)INT_MAX);
3556 	ret = (int)size;
3557 out:
3558 	if (obj_request)
3559 		rbd_obj_request_put(obj_request);
3560 	else
3561 		ceph_release_page_vector(pages, page_count);
3562 
3563 	return ret;
3564 }
3565 
3566 /*
3567  * Read the complete header for the given rbd device.  On successful
3568  * return, the rbd_dev->header field will contain up-to-date
3569  * information about the image.
3570  */
3571 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3572 {
3573 	struct rbd_image_header_ondisk *ondisk = NULL;
3574 	u32 snap_count = 0;
3575 	u64 names_size = 0;
3576 	u32 want_count;
3577 	int ret;
3578 
3579 	/*
3580 	 * The complete header will include an array of its 64-bit
3581 	 * snapshot ids, followed by the names of those snapshots as
3582 	 * a contiguous block of NUL-terminated strings.  Note that
3583 	 * the number of snapshots could change by the time we read
3584 	 * it in, in which case we re-read it.
3585 	 */
3586 	do {
3587 		size_t size;
3588 
3589 		kfree(ondisk);
3590 
3591 		size = sizeof (*ondisk);
3592 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3593 		size += names_size;
3594 		ondisk = kmalloc(size, GFP_KERNEL);
3595 		if (!ondisk)
3596 			return -ENOMEM;
3597 
3598 		ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3599 				       0, size, ondisk);
3600 		if (ret < 0)
3601 			goto out;
3602 		if ((size_t)ret < size) {
3603 			ret = -ENXIO;
3604 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3605 				size, ret);
3606 			goto out;
3607 		}
3608 		if (!rbd_dev_ondisk_valid(ondisk)) {
3609 			ret = -ENXIO;
3610 			rbd_warn(rbd_dev, "invalid header");
3611 			goto out;
3612 		}
3613 
3614 		names_size = le64_to_cpu(ondisk->snap_names_len);
3615 		want_count = snap_count;
3616 		snap_count = le32_to_cpu(ondisk->snap_count);
3617 	} while (snap_count != want_count);
3618 
3619 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3620 out:
3621 	kfree(ondisk);
3622 
3623 	return ret;
3624 }
3625 
3626 /*
3627  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3628  * has disappeared from the (just updated) snapshot context.
3629  */
3630 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3631 {
3632 	u64 snap_id;
3633 
3634 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3635 		return;
3636 
3637 	snap_id = rbd_dev->spec->snap_id;
3638 	if (snap_id == CEPH_NOSNAP)
3639 		return;
3640 
3641 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3642 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3643 }
3644 
3645 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3646 {
3647 	sector_t size;
3648 	bool removing;
3649 
3650 	/*
3651 	 * Don't hold the lock while doing disk operations,
3652 	 * or lock ordering will conflict with the bdev mutex via:
3653 	 * rbd_add() -> blkdev_get() -> rbd_open()
3654 	 */
3655 	spin_lock_irq(&rbd_dev->lock);
3656 	removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3657 	spin_unlock_irq(&rbd_dev->lock);
3658 	/*
3659 	 * If the device is being removed, rbd_dev->disk has
3660 	 * been destroyed, so don't try to update its size
3661 	 */
3662 	if (!removing) {
3663 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3664 		dout("setting size to %llu sectors", (unsigned long long)size);
3665 		set_capacity(rbd_dev->disk, size);
3666 		revalidate_disk(rbd_dev->disk);
3667 	}
3668 }
3669 
3670 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3671 {
3672 	u64 mapping_size;
3673 	int ret;
3674 
3675 	down_write(&rbd_dev->header_rwsem);
3676 	mapping_size = rbd_dev->mapping.size;
3677 
3678 	ret = rbd_dev_header_info(rbd_dev);
3679 	if (ret)
3680 		goto out;
3681 
3682 	/*
3683 	 * If there is a parent, see if it has disappeared due to the
3684 	 * mapped image getting flattened.
3685 	 */
3686 	if (rbd_dev->parent) {
3687 		ret = rbd_dev_v2_parent_info(rbd_dev);
3688 		if (ret)
3689 			goto out;
3690 	}
3691 
3692 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3693 		rbd_dev->mapping.size = rbd_dev->header.image_size;
3694 	} else {
3695 		/* validate mapped snapshot's EXISTS flag */
3696 		rbd_exists_validate(rbd_dev);
3697 	}
3698 
3699 out:
3700 	up_write(&rbd_dev->header_rwsem);
3701 	if (!ret && mapping_size != rbd_dev->mapping.size)
3702 		rbd_dev_update_size(rbd_dev);
3703 
3704 	return ret;
3705 }
3706 
3707 static int rbd_init_request(void *data, struct request *rq,
3708 		unsigned int hctx_idx, unsigned int request_idx,
3709 		unsigned int numa_node)
3710 {
3711 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3712 
3713 	INIT_WORK(work, rbd_queue_workfn);
3714 	return 0;
3715 }
3716 
3717 static struct blk_mq_ops rbd_mq_ops = {
3718 	.queue_rq	= rbd_queue_rq,
3719 	.map_queue	= blk_mq_map_queue,
3720 	.init_request	= rbd_init_request,
3721 };
3722 
3723 static int rbd_init_disk(struct rbd_device *rbd_dev)
3724 {
3725 	struct gendisk *disk;
3726 	struct request_queue *q;
3727 	u64 segment_size;
3728 	int err;
3729 
3730 	/* create gendisk info */
3731 	disk = alloc_disk(single_major ?
3732 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3733 			  RBD_MINORS_PER_MAJOR);
3734 	if (!disk)
3735 		return -ENOMEM;
3736 
3737 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3738 		 rbd_dev->dev_id);
3739 	disk->major = rbd_dev->major;
3740 	disk->first_minor = rbd_dev->minor;
3741 	if (single_major)
3742 		disk->flags |= GENHD_FL_EXT_DEVT;
3743 	disk->fops = &rbd_bd_ops;
3744 	disk->private_data = rbd_dev;
3745 
3746 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3747 	rbd_dev->tag_set.ops = &rbd_mq_ops;
3748 	rbd_dev->tag_set.queue_depth = BLKDEV_MAX_RQ;
3749 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3750 	rbd_dev->tag_set.flags =
3751 		BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3752 	rbd_dev->tag_set.nr_hw_queues = 1;
3753 	rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3754 
3755 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3756 	if (err)
3757 		goto out_disk;
3758 
3759 	q = blk_mq_init_queue(&rbd_dev->tag_set);
3760 	if (IS_ERR(q)) {
3761 		err = PTR_ERR(q);
3762 		goto out_tag_set;
3763 	}
3764 
3765 	/* We use the default size, but let's be explicit about it. */
3766 	blk_queue_physical_block_size(q, SECTOR_SIZE);
3767 
3768 	/* set io sizes to object size */
3769 	segment_size = rbd_obj_bytes(&rbd_dev->header);
3770 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3771 	blk_queue_max_segment_size(q, segment_size);
3772 	blk_queue_io_min(q, segment_size);
3773 	blk_queue_io_opt(q, segment_size);
3774 
3775 	/* enable the discard support */
3776 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3777 	q->limits.discard_granularity = segment_size;
3778 	q->limits.discard_alignment = segment_size;
3779 	q->limits.max_discard_sectors = segment_size / SECTOR_SIZE;
3780 	q->limits.discard_zeroes_data = 1;
3781 
3782 	blk_queue_merge_bvec(q, rbd_merge_bvec);
3783 	disk->queue = q;
3784 
3785 	q->queuedata = rbd_dev;
3786 
3787 	rbd_dev->disk = disk;
3788 
3789 	return 0;
3790 out_tag_set:
3791 	blk_mq_free_tag_set(&rbd_dev->tag_set);
3792 out_disk:
3793 	put_disk(disk);
3794 	return err;
3795 }
3796 
3797 /*
3798   sysfs
3799 */
3800 
3801 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3802 {
3803 	return container_of(dev, struct rbd_device, dev);
3804 }
3805 
3806 static ssize_t rbd_size_show(struct device *dev,
3807 			     struct device_attribute *attr, char *buf)
3808 {
3809 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3810 
3811 	return sprintf(buf, "%llu\n",
3812 		(unsigned long long)rbd_dev->mapping.size);
3813 }
3814 
3815 /*
3816  * Note this shows the features for whatever's mapped, which is not
3817  * necessarily the base image.
3818  */
3819 static ssize_t rbd_features_show(struct device *dev,
3820 			     struct device_attribute *attr, char *buf)
3821 {
3822 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3823 
3824 	return sprintf(buf, "0x%016llx\n",
3825 			(unsigned long long)rbd_dev->mapping.features);
3826 }
3827 
3828 static ssize_t rbd_major_show(struct device *dev,
3829 			      struct device_attribute *attr, char *buf)
3830 {
3831 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3832 
3833 	if (rbd_dev->major)
3834 		return sprintf(buf, "%d\n", rbd_dev->major);
3835 
3836 	return sprintf(buf, "(none)\n");
3837 }
3838 
3839 static ssize_t rbd_minor_show(struct device *dev,
3840 			      struct device_attribute *attr, char *buf)
3841 {
3842 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3843 
3844 	return sprintf(buf, "%d\n", rbd_dev->minor);
3845 }
3846 
3847 static ssize_t rbd_client_id_show(struct device *dev,
3848 				  struct device_attribute *attr, char *buf)
3849 {
3850 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3851 
3852 	return sprintf(buf, "client%lld\n",
3853 			ceph_client_id(rbd_dev->rbd_client->client));
3854 }
3855 
3856 static ssize_t rbd_pool_show(struct device *dev,
3857 			     struct device_attribute *attr, char *buf)
3858 {
3859 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3860 
3861 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3862 }
3863 
3864 static ssize_t rbd_pool_id_show(struct device *dev,
3865 			     struct device_attribute *attr, char *buf)
3866 {
3867 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3868 
3869 	return sprintf(buf, "%llu\n",
3870 			(unsigned long long) rbd_dev->spec->pool_id);
3871 }
3872 
3873 static ssize_t rbd_name_show(struct device *dev,
3874 			     struct device_attribute *attr, char *buf)
3875 {
3876 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3877 
3878 	if (rbd_dev->spec->image_name)
3879 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3880 
3881 	return sprintf(buf, "(unknown)\n");
3882 }
3883 
3884 static ssize_t rbd_image_id_show(struct device *dev,
3885 			     struct device_attribute *attr, char *buf)
3886 {
3887 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3888 
3889 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3890 }
3891 
3892 /*
3893  * Shows the name of the currently-mapped snapshot (or
3894  * RBD_SNAP_HEAD_NAME for the base image).
3895  */
3896 static ssize_t rbd_snap_show(struct device *dev,
3897 			     struct device_attribute *attr,
3898 			     char *buf)
3899 {
3900 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3901 
3902 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3903 }
3904 
3905 /*
3906  * For a v2 image, shows the chain of parent images, separated by empty
3907  * lines.  For v1 images or if there is no parent, shows "(no parent
3908  * image)".
3909  */
3910 static ssize_t rbd_parent_show(struct device *dev,
3911 			       struct device_attribute *attr,
3912 			       char *buf)
3913 {
3914 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3915 	ssize_t count = 0;
3916 
3917 	if (!rbd_dev->parent)
3918 		return sprintf(buf, "(no parent image)\n");
3919 
3920 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3921 		struct rbd_spec *spec = rbd_dev->parent_spec;
3922 
3923 		count += sprintf(&buf[count], "%s"
3924 			    "pool_id %llu\npool_name %s\n"
3925 			    "image_id %s\nimage_name %s\n"
3926 			    "snap_id %llu\nsnap_name %s\n"
3927 			    "overlap %llu\n",
3928 			    !count ? "" : "\n", /* first? */
3929 			    spec->pool_id, spec->pool_name,
3930 			    spec->image_id, spec->image_name ?: "(unknown)",
3931 			    spec->snap_id, spec->snap_name,
3932 			    rbd_dev->parent_overlap);
3933 	}
3934 
3935 	return count;
3936 }
3937 
3938 static ssize_t rbd_image_refresh(struct device *dev,
3939 				 struct device_attribute *attr,
3940 				 const char *buf,
3941 				 size_t size)
3942 {
3943 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3944 	int ret;
3945 
3946 	ret = rbd_dev_refresh(rbd_dev);
3947 	if (ret)
3948 		return ret;
3949 
3950 	return size;
3951 }
3952 
3953 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3954 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3955 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3956 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3957 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3958 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3959 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3960 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3961 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3962 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3963 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3964 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3965 
3966 static struct attribute *rbd_attrs[] = {
3967 	&dev_attr_size.attr,
3968 	&dev_attr_features.attr,
3969 	&dev_attr_major.attr,
3970 	&dev_attr_minor.attr,
3971 	&dev_attr_client_id.attr,
3972 	&dev_attr_pool.attr,
3973 	&dev_attr_pool_id.attr,
3974 	&dev_attr_name.attr,
3975 	&dev_attr_image_id.attr,
3976 	&dev_attr_current_snap.attr,
3977 	&dev_attr_parent.attr,
3978 	&dev_attr_refresh.attr,
3979 	NULL
3980 };
3981 
3982 static struct attribute_group rbd_attr_group = {
3983 	.attrs = rbd_attrs,
3984 };
3985 
3986 static const struct attribute_group *rbd_attr_groups[] = {
3987 	&rbd_attr_group,
3988 	NULL
3989 };
3990 
3991 static void rbd_sysfs_dev_release(struct device *dev)
3992 {
3993 }
3994 
3995 static struct device_type rbd_device_type = {
3996 	.name		= "rbd",
3997 	.groups		= rbd_attr_groups,
3998 	.release	= rbd_sysfs_dev_release,
3999 };
4000 
4001 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4002 {
4003 	kref_get(&spec->kref);
4004 
4005 	return spec;
4006 }
4007 
4008 static void rbd_spec_free(struct kref *kref);
4009 static void rbd_spec_put(struct rbd_spec *spec)
4010 {
4011 	if (spec)
4012 		kref_put(&spec->kref, rbd_spec_free);
4013 }
4014 
4015 static struct rbd_spec *rbd_spec_alloc(void)
4016 {
4017 	struct rbd_spec *spec;
4018 
4019 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4020 	if (!spec)
4021 		return NULL;
4022 
4023 	spec->pool_id = CEPH_NOPOOL;
4024 	spec->snap_id = CEPH_NOSNAP;
4025 	kref_init(&spec->kref);
4026 
4027 	return spec;
4028 }
4029 
4030 static void rbd_spec_free(struct kref *kref)
4031 {
4032 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4033 
4034 	kfree(spec->pool_name);
4035 	kfree(spec->image_id);
4036 	kfree(spec->image_name);
4037 	kfree(spec->snap_name);
4038 	kfree(spec);
4039 }
4040 
4041 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4042 				struct rbd_spec *spec)
4043 {
4044 	struct rbd_device *rbd_dev;
4045 
4046 	rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4047 	if (!rbd_dev)
4048 		return NULL;
4049 
4050 	spin_lock_init(&rbd_dev->lock);
4051 	rbd_dev->flags = 0;
4052 	atomic_set(&rbd_dev->parent_ref, 0);
4053 	INIT_LIST_HEAD(&rbd_dev->node);
4054 	init_rwsem(&rbd_dev->header_rwsem);
4055 
4056 	rbd_dev->spec = spec;
4057 	rbd_dev->rbd_client = rbdc;
4058 
4059 	/* Initialize the layout used for all rbd requests */
4060 
4061 	rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4062 	rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4063 	rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4064 	rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4065 
4066 	return rbd_dev;
4067 }
4068 
4069 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4070 {
4071 	rbd_put_client(rbd_dev->rbd_client);
4072 	rbd_spec_put(rbd_dev->spec);
4073 	kfree(rbd_dev);
4074 }
4075 
4076 /*
4077  * Get the size and object order for an image snapshot, or if
4078  * snap_id is CEPH_NOSNAP, gets this information for the base
4079  * image.
4080  */
4081 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4082 				u8 *order, u64 *snap_size)
4083 {
4084 	__le64 snapid = cpu_to_le64(snap_id);
4085 	int ret;
4086 	struct {
4087 		u8 order;
4088 		__le64 size;
4089 	} __attribute__ ((packed)) size_buf = { 0 };
4090 
4091 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4092 				"rbd", "get_size",
4093 				&snapid, sizeof (snapid),
4094 				&size_buf, sizeof (size_buf));
4095 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4096 	if (ret < 0)
4097 		return ret;
4098 	if (ret < sizeof (size_buf))
4099 		return -ERANGE;
4100 
4101 	if (order) {
4102 		*order = size_buf.order;
4103 		dout("  order %u", (unsigned int)*order);
4104 	}
4105 	*snap_size = le64_to_cpu(size_buf.size);
4106 
4107 	dout("  snap_id 0x%016llx snap_size = %llu\n",
4108 		(unsigned long long)snap_id,
4109 		(unsigned long long)*snap_size);
4110 
4111 	return 0;
4112 }
4113 
4114 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4115 {
4116 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4117 					&rbd_dev->header.obj_order,
4118 					&rbd_dev->header.image_size);
4119 }
4120 
4121 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4122 {
4123 	void *reply_buf;
4124 	int ret;
4125 	void *p;
4126 
4127 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4128 	if (!reply_buf)
4129 		return -ENOMEM;
4130 
4131 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4132 				"rbd", "get_object_prefix", NULL, 0,
4133 				reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4134 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4135 	if (ret < 0)
4136 		goto out;
4137 
4138 	p = reply_buf;
4139 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4140 						p + ret, NULL, GFP_NOIO);
4141 	ret = 0;
4142 
4143 	if (IS_ERR(rbd_dev->header.object_prefix)) {
4144 		ret = PTR_ERR(rbd_dev->header.object_prefix);
4145 		rbd_dev->header.object_prefix = NULL;
4146 	} else {
4147 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4148 	}
4149 out:
4150 	kfree(reply_buf);
4151 
4152 	return ret;
4153 }
4154 
4155 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4156 		u64 *snap_features)
4157 {
4158 	__le64 snapid = cpu_to_le64(snap_id);
4159 	struct {
4160 		__le64 features;
4161 		__le64 incompat;
4162 	} __attribute__ ((packed)) features_buf = { 0 };
4163 	u64 incompat;
4164 	int ret;
4165 
4166 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4167 				"rbd", "get_features",
4168 				&snapid, sizeof (snapid),
4169 				&features_buf, sizeof (features_buf));
4170 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4171 	if (ret < 0)
4172 		return ret;
4173 	if (ret < sizeof (features_buf))
4174 		return -ERANGE;
4175 
4176 	incompat = le64_to_cpu(features_buf.incompat);
4177 	if (incompat & ~RBD_FEATURES_SUPPORTED)
4178 		return -ENXIO;
4179 
4180 	*snap_features = le64_to_cpu(features_buf.features);
4181 
4182 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4183 		(unsigned long long)snap_id,
4184 		(unsigned long long)*snap_features,
4185 		(unsigned long long)le64_to_cpu(features_buf.incompat));
4186 
4187 	return 0;
4188 }
4189 
4190 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4191 {
4192 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4193 						&rbd_dev->header.features);
4194 }
4195 
4196 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4197 {
4198 	struct rbd_spec *parent_spec;
4199 	size_t size;
4200 	void *reply_buf = NULL;
4201 	__le64 snapid;
4202 	void *p;
4203 	void *end;
4204 	u64 pool_id;
4205 	char *image_id;
4206 	u64 snap_id;
4207 	u64 overlap;
4208 	int ret;
4209 
4210 	parent_spec = rbd_spec_alloc();
4211 	if (!parent_spec)
4212 		return -ENOMEM;
4213 
4214 	size = sizeof (__le64) +				/* pool_id */
4215 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
4216 		sizeof (__le64) +				/* snap_id */
4217 		sizeof (__le64);				/* overlap */
4218 	reply_buf = kmalloc(size, GFP_KERNEL);
4219 	if (!reply_buf) {
4220 		ret = -ENOMEM;
4221 		goto out_err;
4222 	}
4223 
4224 	snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4225 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4226 				"rbd", "get_parent",
4227 				&snapid, sizeof (snapid),
4228 				reply_buf, size);
4229 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4230 	if (ret < 0)
4231 		goto out_err;
4232 
4233 	p = reply_buf;
4234 	end = reply_buf + ret;
4235 	ret = -ERANGE;
4236 	ceph_decode_64_safe(&p, end, pool_id, out_err);
4237 	if (pool_id == CEPH_NOPOOL) {
4238 		/*
4239 		 * Either the parent never existed, or we have
4240 		 * record of it but the image got flattened so it no
4241 		 * longer has a parent.  When the parent of a
4242 		 * layered image disappears we immediately set the
4243 		 * overlap to 0.  The effect of this is that all new
4244 		 * requests will be treated as if the image had no
4245 		 * parent.
4246 		 */
4247 		if (rbd_dev->parent_overlap) {
4248 			rbd_dev->parent_overlap = 0;
4249 			rbd_dev_parent_put(rbd_dev);
4250 			pr_info("%s: clone image has been flattened\n",
4251 				rbd_dev->disk->disk_name);
4252 		}
4253 
4254 		goto out;	/* No parent?  No problem. */
4255 	}
4256 
4257 	/* The ceph file layout needs to fit pool id in 32 bits */
4258 
4259 	ret = -EIO;
4260 	if (pool_id > (u64)U32_MAX) {
4261 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4262 			(unsigned long long)pool_id, U32_MAX);
4263 		goto out_err;
4264 	}
4265 
4266 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4267 	if (IS_ERR(image_id)) {
4268 		ret = PTR_ERR(image_id);
4269 		goto out_err;
4270 	}
4271 	ceph_decode_64_safe(&p, end, snap_id, out_err);
4272 	ceph_decode_64_safe(&p, end, overlap, out_err);
4273 
4274 	/*
4275 	 * The parent won't change (except when the clone is
4276 	 * flattened, already handled that).  So we only need to
4277 	 * record the parent spec we have not already done so.
4278 	 */
4279 	if (!rbd_dev->parent_spec) {
4280 		parent_spec->pool_id = pool_id;
4281 		parent_spec->image_id = image_id;
4282 		parent_spec->snap_id = snap_id;
4283 		rbd_dev->parent_spec = parent_spec;
4284 		parent_spec = NULL;	/* rbd_dev now owns this */
4285 	} else {
4286 		kfree(image_id);
4287 	}
4288 
4289 	/*
4290 	 * We always update the parent overlap.  If it's zero we issue
4291 	 * a warning, as we will proceed as if there was no parent.
4292 	 */
4293 	if (!overlap) {
4294 		if (parent_spec) {
4295 			/* refresh, careful to warn just once */
4296 			if (rbd_dev->parent_overlap)
4297 				rbd_warn(rbd_dev,
4298 				    "clone now standalone (overlap became 0)");
4299 		} else {
4300 			/* initial probe */
4301 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4302 		}
4303 	}
4304 	rbd_dev->parent_overlap = overlap;
4305 
4306 out:
4307 	ret = 0;
4308 out_err:
4309 	kfree(reply_buf);
4310 	rbd_spec_put(parent_spec);
4311 
4312 	return ret;
4313 }
4314 
4315 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4316 {
4317 	struct {
4318 		__le64 stripe_unit;
4319 		__le64 stripe_count;
4320 	} __attribute__ ((packed)) striping_info_buf = { 0 };
4321 	size_t size = sizeof (striping_info_buf);
4322 	void *p;
4323 	u64 obj_size;
4324 	u64 stripe_unit;
4325 	u64 stripe_count;
4326 	int ret;
4327 
4328 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4329 				"rbd", "get_stripe_unit_count", NULL, 0,
4330 				(char *)&striping_info_buf, size);
4331 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4332 	if (ret < 0)
4333 		return ret;
4334 	if (ret < size)
4335 		return -ERANGE;
4336 
4337 	/*
4338 	 * We don't actually support the "fancy striping" feature
4339 	 * (STRIPINGV2) yet, but if the striping sizes are the
4340 	 * defaults the behavior is the same as before.  So find
4341 	 * out, and only fail if the image has non-default values.
4342 	 */
4343 	ret = -EINVAL;
4344 	obj_size = (u64)1 << rbd_dev->header.obj_order;
4345 	p = &striping_info_buf;
4346 	stripe_unit = ceph_decode_64(&p);
4347 	if (stripe_unit != obj_size) {
4348 		rbd_warn(rbd_dev, "unsupported stripe unit "
4349 				"(got %llu want %llu)",
4350 				stripe_unit, obj_size);
4351 		return -EINVAL;
4352 	}
4353 	stripe_count = ceph_decode_64(&p);
4354 	if (stripe_count != 1) {
4355 		rbd_warn(rbd_dev, "unsupported stripe count "
4356 				"(got %llu want 1)", stripe_count);
4357 		return -EINVAL;
4358 	}
4359 	rbd_dev->header.stripe_unit = stripe_unit;
4360 	rbd_dev->header.stripe_count = stripe_count;
4361 
4362 	return 0;
4363 }
4364 
4365 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4366 {
4367 	size_t image_id_size;
4368 	char *image_id;
4369 	void *p;
4370 	void *end;
4371 	size_t size;
4372 	void *reply_buf = NULL;
4373 	size_t len = 0;
4374 	char *image_name = NULL;
4375 	int ret;
4376 
4377 	rbd_assert(!rbd_dev->spec->image_name);
4378 
4379 	len = strlen(rbd_dev->spec->image_id);
4380 	image_id_size = sizeof (__le32) + len;
4381 	image_id = kmalloc(image_id_size, GFP_KERNEL);
4382 	if (!image_id)
4383 		return NULL;
4384 
4385 	p = image_id;
4386 	end = image_id + image_id_size;
4387 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4388 
4389 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4390 	reply_buf = kmalloc(size, GFP_KERNEL);
4391 	if (!reply_buf)
4392 		goto out;
4393 
4394 	ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4395 				"rbd", "dir_get_name",
4396 				image_id, image_id_size,
4397 				reply_buf, size);
4398 	if (ret < 0)
4399 		goto out;
4400 	p = reply_buf;
4401 	end = reply_buf + ret;
4402 
4403 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4404 	if (IS_ERR(image_name))
4405 		image_name = NULL;
4406 	else
4407 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4408 out:
4409 	kfree(reply_buf);
4410 	kfree(image_id);
4411 
4412 	return image_name;
4413 }
4414 
4415 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4416 {
4417 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4418 	const char *snap_name;
4419 	u32 which = 0;
4420 
4421 	/* Skip over names until we find the one we are looking for */
4422 
4423 	snap_name = rbd_dev->header.snap_names;
4424 	while (which < snapc->num_snaps) {
4425 		if (!strcmp(name, snap_name))
4426 			return snapc->snaps[which];
4427 		snap_name += strlen(snap_name) + 1;
4428 		which++;
4429 	}
4430 	return CEPH_NOSNAP;
4431 }
4432 
4433 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4434 {
4435 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4436 	u32 which;
4437 	bool found = false;
4438 	u64 snap_id;
4439 
4440 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4441 		const char *snap_name;
4442 
4443 		snap_id = snapc->snaps[which];
4444 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4445 		if (IS_ERR(snap_name)) {
4446 			/* ignore no-longer existing snapshots */
4447 			if (PTR_ERR(snap_name) == -ENOENT)
4448 				continue;
4449 			else
4450 				break;
4451 		}
4452 		found = !strcmp(name, snap_name);
4453 		kfree(snap_name);
4454 	}
4455 	return found ? snap_id : CEPH_NOSNAP;
4456 }
4457 
4458 /*
4459  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4460  * no snapshot by that name is found, or if an error occurs.
4461  */
4462 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4463 {
4464 	if (rbd_dev->image_format == 1)
4465 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4466 
4467 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4468 }
4469 
4470 /*
4471  * An image being mapped will have everything but the snap id.
4472  */
4473 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4474 {
4475 	struct rbd_spec *spec = rbd_dev->spec;
4476 
4477 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4478 	rbd_assert(spec->image_id && spec->image_name);
4479 	rbd_assert(spec->snap_name);
4480 
4481 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4482 		u64 snap_id;
4483 
4484 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4485 		if (snap_id == CEPH_NOSNAP)
4486 			return -ENOENT;
4487 
4488 		spec->snap_id = snap_id;
4489 	} else {
4490 		spec->snap_id = CEPH_NOSNAP;
4491 	}
4492 
4493 	return 0;
4494 }
4495 
4496 /*
4497  * A parent image will have all ids but none of the names.
4498  *
4499  * All names in an rbd spec are dynamically allocated.  It's OK if we
4500  * can't figure out the name for an image id.
4501  */
4502 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4503 {
4504 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4505 	struct rbd_spec *spec = rbd_dev->spec;
4506 	const char *pool_name;
4507 	const char *image_name;
4508 	const char *snap_name;
4509 	int ret;
4510 
4511 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
4512 	rbd_assert(spec->image_id);
4513 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
4514 
4515 	/* Get the pool name; we have to make our own copy of this */
4516 
4517 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4518 	if (!pool_name) {
4519 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4520 		return -EIO;
4521 	}
4522 	pool_name = kstrdup(pool_name, GFP_KERNEL);
4523 	if (!pool_name)
4524 		return -ENOMEM;
4525 
4526 	/* Fetch the image name; tolerate failure here */
4527 
4528 	image_name = rbd_dev_image_name(rbd_dev);
4529 	if (!image_name)
4530 		rbd_warn(rbd_dev, "unable to get image name");
4531 
4532 	/* Fetch the snapshot name */
4533 
4534 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4535 	if (IS_ERR(snap_name)) {
4536 		ret = PTR_ERR(snap_name);
4537 		goto out_err;
4538 	}
4539 
4540 	spec->pool_name = pool_name;
4541 	spec->image_name = image_name;
4542 	spec->snap_name = snap_name;
4543 
4544 	return 0;
4545 
4546 out_err:
4547 	kfree(image_name);
4548 	kfree(pool_name);
4549 	return ret;
4550 }
4551 
4552 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4553 {
4554 	size_t size;
4555 	int ret;
4556 	void *reply_buf;
4557 	void *p;
4558 	void *end;
4559 	u64 seq;
4560 	u32 snap_count;
4561 	struct ceph_snap_context *snapc;
4562 	u32 i;
4563 
4564 	/*
4565 	 * We'll need room for the seq value (maximum snapshot id),
4566 	 * snapshot count, and array of that many snapshot ids.
4567 	 * For now we have a fixed upper limit on the number we're
4568 	 * prepared to receive.
4569 	 */
4570 	size = sizeof (__le64) + sizeof (__le32) +
4571 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4572 	reply_buf = kzalloc(size, GFP_KERNEL);
4573 	if (!reply_buf)
4574 		return -ENOMEM;
4575 
4576 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4577 				"rbd", "get_snapcontext", NULL, 0,
4578 				reply_buf, size);
4579 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4580 	if (ret < 0)
4581 		goto out;
4582 
4583 	p = reply_buf;
4584 	end = reply_buf + ret;
4585 	ret = -ERANGE;
4586 	ceph_decode_64_safe(&p, end, seq, out);
4587 	ceph_decode_32_safe(&p, end, snap_count, out);
4588 
4589 	/*
4590 	 * Make sure the reported number of snapshot ids wouldn't go
4591 	 * beyond the end of our buffer.  But before checking that,
4592 	 * make sure the computed size of the snapshot context we
4593 	 * allocate is representable in a size_t.
4594 	 */
4595 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4596 				 / sizeof (u64)) {
4597 		ret = -EINVAL;
4598 		goto out;
4599 	}
4600 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4601 		goto out;
4602 	ret = 0;
4603 
4604 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4605 	if (!snapc) {
4606 		ret = -ENOMEM;
4607 		goto out;
4608 	}
4609 	snapc->seq = seq;
4610 	for (i = 0; i < snap_count; i++)
4611 		snapc->snaps[i] = ceph_decode_64(&p);
4612 
4613 	ceph_put_snap_context(rbd_dev->header.snapc);
4614 	rbd_dev->header.snapc = snapc;
4615 
4616 	dout("  snap context seq = %llu, snap_count = %u\n",
4617 		(unsigned long long)seq, (unsigned int)snap_count);
4618 out:
4619 	kfree(reply_buf);
4620 
4621 	return ret;
4622 }
4623 
4624 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4625 					u64 snap_id)
4626 {
4627 	size_t size;
4628 	void *reply_buf;
4629 	__le64 snapid;
4630 	int ret;
4631 	void *p;
4632 	void *end;
4633 	char *snap_name;
4634 
4635 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4636 	reply_buf = kmalloc(size, GFP_KERNEL);
4637 	if (!reply_buf)
4638 		return ERR_PTR(-ENOMEM);
4639 
4640 	snapid = cpu_to_le64(snap_id);
4641 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4642 				"rbd", "get_snapshot_name",
4643 				&snapid, sizeof (snapid),
4644 				reply_buf, size);
4645 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4646 	if (ret < 0) {
4647 		snap_name = ERR_PTR(ret);
4648 		goto out;
4649 	}
4650 
4651 	p = reply_buf;
4652 	end = reply_buf + ret;
4653 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4654 	if (IS_ERR(snap_name))
4655 		goto out;
4656 
4657 	dout("  snap_id 0x%016llx snap_name = %s\n",
4658 		(unsigned long long)snap_id, snap_name);
4659 out:
4660 	kfree(reply_buf);
4661 
4662 	return snap_name;
4663 }
4664 
4665 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4666 {
4667 	bool first_time = rbd_dev->header.object_prefix == NULL;
4668 	int ret;
4669 
4670 	ret = rbd_dev_v2_image_size(rbd_dev);
4671 	if (ret)
4672 		return ret;
4673 
4674 	if (first_time) {
4675 		ret = rbd_dev_v2_header_onetime(rbd_dev);
4676 		if (ret)
4677 			return ret;
4678 	}
4679 
4680 	ret = rbd_dev_v2_snap_context(rbd_dev);
4681 	dout("rbd_dev_v2_snap_context returned %d\n", ret);
4682 
4683 	return ret;
4684 }
4685 
4686 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4687 {
4688 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4689 
4690 	if (rbd_dev->image_format == 1)
4691 		return rbd_dev_v1_header_info(rbd_dev);
4692 
4693 	return rbd_dev_v2_header_info(rbd_dev);
4694 }
4695 
4696 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4697 {
4698 	struct device *dev;
4699 	int ret;
4700 
4701 	dev = &rbd_dev->dev;
4702 	dev->bus = &rbd_bus_type;
4703 	dev->type = &rbd_device_type;
4704 	dev->parent = &rbd_root_dev;
4705 	dev->release = rbd_dev_device_release;
4706 	dev_set_name(dev, "%d", rbd_dev->dev_id);
4707 	ret = device_register(dev);
4708 
4709 	return ret;
4710 }
4711 
4712 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4713 {
4714 	device_unregister(&rbd_dev->dev);
4715 }
4716 
4717 /*
4718  * Get a unique rbd identifier for the given new rbd_dev, and add
4719  * the rbd_dev to the global list.
4720  */
4721 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4722 {
4723 	int new_dev_id;
4724 
4725 	new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4726 				    0, minor_to_rbd_dev_id(1 << MINORBITS),
4727 				    GFP_KERNEL);
4728 	if (new_dev_id < 0)
4729 		return new_dev_id;
4730 
4731 	rbd_dev->dev_id = new_dev_id;
4732 
4733 	spin_lock(&rbd_dev_list_lock);
4734 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
4735 	spin_unlock(&rbd_dev_list_lock);
4736 
4737 	dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4738 
4739 	return 0;
4740 }
4741 
4742 /*
4743  * Remove an rbd_dev from the global list, and record that its
4744  * identifier is no longer in use.
4745  */
4746 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4747 {
4748 	spin_lock(&rbd_dev_list_lock);
4749 	list_del_init(&rbd_dev->node);
4750 	spin_unlock(&rbd_dev_list_lock);
4751 
4752 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4753 
4754 	dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4755 }
4756 
4757 /*
4758  * Skips over white space at *buf, and updates *buf to point to the
4759  * first found non-space character (if any). Returns the length of
4760  * the token (string of non-white space characters) found.  Note
4761  * that *buf must be terminated with '\0'.
4762  */
4763 static inline size_t next_token(const char **buf)
4764 {
4765         /*
4766         * These are the characters that produce nonzero for
4767         * isspace() in the "C" and "POSIX" locales.
4768         */
4769         const char *spaces = " \f\n\r\t\v";
4770 
4771         *buf += strspn(*buf, spaces);	/* Find start of token */
4772 
4773 	return strcspn(*buf, spaces);   /* Return token length */
4774 }
4775 
4776 /*
4777  * Finds the next token in *buf, dynamically allocates a buffer big
4778  * enough to hold a copy of it, and copies the token into the new
4779  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4780  * that a duplicate buffer is created even for a zero-length token.
4781  *
4782  * Returns a pointer to the newly-allocated duplicate, or a null
4783  * pointer if memory for the duplicate was not available.  If
4784  * the lenp argument is a non-null pointer, the length of the token
4785  * (not including the '\0') is returned in *lenp.
4786  *
4787  * If successful, the *buf pointer will be updated to point beyond
4788  * the end of the found token.
4789  *
4790  * Note: uses GFP_KERNEL for allocation.
4791  */
4792 static inline char *dup_token(const char **buf, size_t *lenp)
4793 {
4794 	char *dup;
4795 	size_t len;
4796 
4797 	len = next_token(buf);
4798 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4799 	if (!dup)
4800 		return NULL;
4801 	*(dup + len) = '\0';
4802 	*buf += len;
4803 
4804 	if (lenp)
4805 		*lenp = len;
4806 
4807 	return dup;
4808 }
4809 
4810 /*
4811  * Parse the options provided for an "rbd add" (i.e., rbd image
4812  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4813  * and the data written is passed here via a NUL-terminated buffer.
4814  * Returns 0 if successful or an error code otherwise.
4815  *
4816  * The information extracted from these options is recorded in
4817  * the other parameters which return dynamically-allocated
4818  * structures:
4819  *  ceph_opts
4820  *      The address of a pointer that will refer to a ceph options
4821  *      structure.  Caller must release the returned pointer using
4822  *      ceph_destroy_options() when it is no longer needed.
4823  *  rbd_opts
4824  *	Address of an rbd options pointer.  Fully initialized by
4825  *	this function; caller must release with kfree().
4826  *  spec
4827  *	Address of an rbd image specification pointer.  Fully
4828  *	initialized by this function based on parsed options.
4829  *	Caller must release with rbd_spec_put().
4830  *
4831  * The options passed take this form:
4832  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4833  * where:
4834  *  <mon_addrs>
4835  *      A comma-separated list of one or more monitor addresses.
4836  *      A monitor address is an ip address, optionally followed
4837  *      by a port number (separated by a colon).
4838  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4839  *  <options>
4840  *      A comma-separated list of ceph and/or rbd options.
4841  *  <pool_name>
4842  *      The name of the rados pool containing the rbd image.
4843  *  <image_name>
4844  *      The name of the image in that pool to map.
4845  *  <snap_id>
4846  *      An optional snapshot id.  If provided, the mapping will
4847  *      present data from the image at the time that snapshot was
4848  *      created.  The image head is used if no snapshot id is
4849  *      provided.  Snapshot mappings are always read-only.
4850  */
4851 static int rbd_add_parse_args(const char *buf,
4852 				struct ceph_options **ceph_opts,
4853 				struct rbd_options **opts,
4854 				struct rbd_spec **rbd_spec)
4855 {
4856 	size_t len;
4857 	char *options;
4858 	const char *mon_addrs;
4859 	char *snap_name;
4860 	size_t mon_addrs_size;
4861 	struct rbd_spec *spec = NULL;
4862 	struct rbd_options *rbd_opts = NULL;
4863 	struct ceph_options *copts;
4864 	int ret;
4865 
4866 	/* The first four tokens are required */
4867 
4868 	len = next_token(&buf);
4869 	if (!len) {
4870 		rbd_warn(NULL, "no monitor address(es) provided");
4871 		return -EINVAL;
4872 	}
4873 	mon_addrs = buf;
4874 	mon_addrs_size = len + 1;
4875 	buf += len;
4876 
4877 	ret = -EINVAL;
4878 	options = dup_token(&buf, NULL);
4879 	if (!options)
4880 		return -ENOMEM;
4881 	if (!*options) {
4882 		rbd_warn(NULL, "no options provided");
4883 		goto out_err;
4884 	}
4885 
4886 	spec = rbd_spec_alloc();
4887 	if (!spec)
4888 		goto out_mem;
4889 
4890 	spec->pool_name = dup_token(&buf, NULL);
4891 	if (!spec->pool_name)
4892 		goto out_mem;
4893 	if (!*spec->pool_name) {
4894 		rbd_warn(NULL, "no pool name provided");
4895 		goto out_err;
4896 	}
4897 
4898 	spec->image_name = dup_token(&buf, NULL);
4899 	if (!spec->image_name)
4900 		goto out_mem;
4901 	if (!*spec->image_name) {
4902 		rbd_warn(NULL, "no image name provided");
4903 		goto out_err;
4904 	}
4905 
4906 	/*
4907 	 * Snapshot name is optional; default is to use "-"
4908 	 * (indicating the head/no snapshot).
4909 	 */
4910 	len = next_token(&buf);
4911 	if (!len) {
4912 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4913 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4914 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
4915 		ret = -ENAMETOOLONG;
4916 		goto out_err;
4917 	}
4918 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4919 	if (!snap_name)
4920 		goto out_mem;
4921 	*(snap_name + len) = '\0';
4922 	spec->snap_name = snap_name;
4923 
4924 	/* Initialize all rbd options to the defaults */
4925 
4926 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4927 	if (!rbd_opts)
4928 		goto out_mem;
4929 
4930 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4931 
4932 	copts = ceph_parse_options(options, mon_addrs,
4933 					mon_addrs + mon_addrs_size - 1,
4934 					parse_rbd_opts_token, rbd_opts);
4935 	if (IS_ERR(copts)) {
4936 		ret = PTR_ERR(copts);
4937 		goto out_err;
4938 	}
4939 	kfree(options);
4940 
4941 	*ceph_opts = copts;
4942 	*opts = rbd_opts;
4943 	*rbd_spec = spec;
4944 
4945 	return 0;
4946 out_mem:
4947 	ret = -ENOMEM;
4948 out_err:
4949 	kfree(rbd_opts);
4950 	rbd_spec_put(spec);
4951 	kfree(options);
4952 
4953 	return ret;
4954 }
4955 
4956 /*
4957  * Return pool id (>= 0) or a negative error code.
4958  */
4959 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4960 {
4961 	u64 newest_epoch;
4962 	unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4963 	int tries = 0;
4964 	int ret;
4965 
4966 again:
4967 	ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4968 	if (ret == -ENOENT && tries++ < 1) {
4969 		ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4970 					       &newest_epoch);
4971 		if (ret < 0)
4972 			return ret;
4973 
4974 		if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4975 			ceph_monc_request_next_osdmap(&rbdc->client->monc);
4976 			(void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4977 						     newest_epoch, timeout);
4978 			goto again;
4979 		} else {
4980 			/* the osdmap we have is new enough */
4981 			return -ENOENT;
4982 		}
4983 	}
4984 
4985 	return ret;
4986 }
4987 
4988 /*
4989  * An rbd format 2 image has a unique identifier, distinct from the
4990  * name given to it by the user.  Internally, that identifier is
4991  * what's used to specify the names of objects related to the image.
4992  *
4993  * A special "rbd id" object is used to map an rbd image name to its
4994  * id.  If that object doesn't exist, then there is no v2 rbd image
4995  * with the supplied name.
4996  *
4997  * This function will record the given rbd_dev's image_id field if
4998  * it can be determined, and in that case will return 0.  If any
4999  * errors occur a negative errno will be returned and the rbd_dev's
5000  * image_id field will be unchanged (and should be NULL).
5001  */
5002 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5003 {
5004 	int ret;
5005 	size_t size;
5006 	char *object_name;
5007 	void *response;
5008 	char *image_id;
5009 
5010 	/*
5011 	 * When probing a parent image, the image id is already
5012 	 * known (and the image name likely is not).  There's no
5013 	 * need to fetch the image id again in this case.  We
5014 	 * do still need to set the image format though.
5015 	 */
5016 	if (rbd_dev->spec->image_id) {
5017 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5018 
5019 		return 0;
5020 	}
5021 
5022 	/*
5023 	 * First, see if the format 2 image id file exists, and if
5024 	 * so, get the image's persistent id from it.
5025 	 */
5026 	size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5027 	object_name = kmalloc(size, GFP_NOIO);
5028 	if (!object_name)
5029 		return -ENOMEM;
5030 	sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5031 	dout("rbd id object name is %s\n", object_name);
5032 
5033 	/* Response will be an encoded string, which includes a length */
5034 
5035 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5036 	response = kzalloc(size, GFP_NOIO);
5037 	if (!response) {
5038 		ret = -ENOMEM;
5039 		goto out;
5040 	}
5041 
5042 	/* If it doesn't exist we'll assume it's a format 1 image */
5043 
5044 	ret = rbd_obj_method_sync(rbd_dev, object_name,
5045 				"rbd", "get_id", NULL, 0,
5046 				response, RBD_IMAGE_ID_LEN_MAX);
5047 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5048 	if (ret == -ENOENT) {
5049 		image_id = kstrdup("", GFP_KERNEL);
5050 		ret = image_id ? 0 : -ENOMEM;
5051 		if (!ret)
5052 			rbd_dev->image_format = 1;
5053 	} else if (ret >= 0) {
5054 		void *p = response;
5055 
5056 		image_id = ceph_extract_encoded_string(&p, p + ret,
5057 						NULL, GFP_NOIO);
5058 		ret = PTR_ERR_OR_ZERO(image_id);
5059 		if (!ret)
5060 			rbd_dev->image_format = 2;
5061 	}
5062 
5063 	if (!ret) {
5064 		rbd_dev->spec->image_id = image_id;
5065 		dout("image_id is %s\n", image_id);
5066 	}
5067 out:
5068 	kfree(response);
5069 	kfree(object_name);
5070 
5071 	return ret;
5072 }
5073 
5074 /*
5075  * Undo whatever state changes are made by v1 or v2 header info
5076  * call.
5077  */
5078 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5079 {
5080 	struct rbd_image_header	*header;
5081 
5082 	rbd_dev_parent_put(rbd_dev);
5083 
5084 	/* Free dynamic fields from the header, then zero it out */
5085 
5086 	header = &rbd_dev->header;
5087 	ceph_put_snap_context(header->snapc);
5088 	kfree(header->snap_sizes);
5089 	kfree(header->snap_names);
5090 	kfree(header->object_prefix);
5091 	memset(header, 0, sizeof (*header));
5092 }
5093 
5094 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5095 {
5096 	int ret;
5097 
5098 	ret = rbd_dev_v2_object_prefix(rbd_dev);
5099 	if (ret)
5100 		goto out_err;
5101 
5102 	/*
5103 	 * Get the and check features for the image.  Currently the
5104 	 * features are assumed to never change.
5105 	 */
5106 	ret = rbd_dev_v2_features(rbd_dev);
5107 	if (ret)
5108 		goto out_err;
5109 
5110 	/* If the image supports fancy striping, get its parameters */
5111 
5112 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5113 		ret = rbd_dev_v2_striping_info(rbd_dev);
5114 		if (ret < 0)
5115 			goto out_err;
5116 	}
5117 	/* No support for crypto and compression type format 2 images */
5118 
5119 	return 0;
5120 out_err:
5121 	rbd_dev->header.features = 0;
5122 	kfree(rbd_dev->header.object_prefix);
5123 	rbd_dev->header.object_prefix = NULL;
5124 
5125 	return ret;
5126 }
5127 
5128 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5129 {
5130 	struct rbd_device *parent = NULL;
5131 	struct rbd_spec *parent_spec;
5132 	struct rbd_client *rbdc;
5133 	int ret;
5134 
5135 	if (!rbd_dev->parent_spec)
5136 		return 0;
5137 	/*
5138 	 * We need to pass a reference to the client and the parent
5139 	 * spec when creating the parent rbd_dev.  Images related by
5140 	 * parent/child relationships always share both.
5141 	 */
5142 	parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5143 	rbdc = __rbd_get_client(rbd_dev->rbd_client);
5144 
5145 	ret = -ENOMEM;
5146 	parent = rbd_dev_create(rbdc, parent_spec);
5147 	if (!parent)
5148 		goto out_err;
5149 
5150 	ret = rbd_dev_image_probe(parent, false);
5151 	if (ret < 0)
5152 		goto out_err;
5153 	rbd_dev->parent = parent;
5154 	atomic_set(&rbd_dev->parent_ref, 1);
5155 
5156 	return 0;
5157 out_err:
5158 	if (parent) {
5159 		rbd_dev_unparent(rbd_dev);
5160 		kfree(rbd_dev->header_name);
5161 		rbd_dev_destroy(parent);
5162 	} else {
5163 		rbd_put_client(rbdc);
5164 		rbd_spec_put(parent_spec);
5165 	}
5166 
5167 	return ret;
5168 }
5169 
5170 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5171 {
5172 	int ret;
5173 
5174 	/* Get an id and fill in device name. */
5175 
5176 	ret = rbd_dev_id_get(rbd_dev);
5177 	if (ret)
5178 		return ret;
5179 
5180 	BUILD_BUG_ON(DEV_NAME_LEN
5181 			< sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5182 	sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5183 
5184 	/* Record our major and minor device numbers. */
5185 
5186 	if (!single_major) {
5187 		ret = register_blkdev(0, rbd_dev->name);
5188 		if (ret < 0)
5189 			goto err_out_id;
5190 
5191 		rbd_dev->major = ret;
5192 		rbd_dev->minor = 0;
5193 	} else {
5194 		rbd_dev->major = rbd_major;
5195 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5196 	}
5197 
5198 	/* Set up the blkdev mapping. */
5199 
5200 	ret = rbd_init_disk(rbd_dev);
5201 	if (ret)
5202 		goto err_out_blkdev;
5203 
5204 	ret = rbd_dev_mapping_set(rbd_dev);
5205 	if (ret)
5206 		goto err_out_disk;
5207 
5208 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5209 	set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5210 
5211 	ret = rbd_bus_add_dev(rbd_dev);
5212 	if (ret)
5213 		goto err_out_mapping;
5214 
5215 	/* Everything's ready.  Announce the disk to the world. */
5216 
5217 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5218 	add_disk(rbd_dev->disk);
5219 
5220 	pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5221 		(unsigned long long) rbd_dev->mapping.size);
5222 
5223 	return ret;
5224 
5225 err_out_mapping:
5226 	rbd_dev_mapping_clear(rbd_dev);
5227 err_out_disk:
5228 	rbd_free_disk(rbd_dev);
5229 err_out_blkdev:
5230 	if (!single_major)
5231 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5232 err_out_id:
5233 	rbd_dev_id_put(rbd_dev);
5234 	rbd_dev_mapping_clear(rbd_dev);
5235 
5236 	return ret;
5237 }
5238 
5239 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5240 {
5241 	struct rbd_spec *spec = rbd_dev->spec;
5242 	size_t size;
5243 
5244 	/* Record the header object name for this rbd image. */
5245 
5246 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5247 
5248 	if (rbd_dev->image_format == 1)
5249 		size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5250 	else
5251 		size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5252 
5253 	rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5254 	if (!rbd_dev->header_name)
5255 		return -ENOMEM;
5256 
5257 	if (rbd_dev->image_format == 1)
5258 		sprintf(rbd_dev->header_name, "%s%s",
5259 			spec->image_name, RBD_SUFFIX);
5260 	else
5261 		sprintf(rbd_dev->header_name, "%s%s",
5262 			RBD_HEADER_PREFIX, spec->image_id);
5263 	return 0;
5264 }
5265 
5266 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5267 {
5268 	rbd_dev_unprobe(rbd_dev);
5269 	kfree(rbd_dev->header_name);
5270 	rbd_dev->header_name = NULL;
5271 	rbd_dev->image_format = 0;
5272 	kfree(rbd_dev->spec->image_id);
5273 	rbd_dev->spec->image_id = NULL;
5274 
5275 	rbd_dev_destroy(rbd_dev);
5276 }
5277 
5278 /*
5279  * Probe for the existence of the header object for the given rbd
5280  * device.  If this image is the one being mapped (i.e., not a
5281  * parent), initiate a watch on its header object before using that
5282  * object to get detailed information about the rbd image.
5283  */
5284 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5285 {
5286 	int ret;
5287 
5288 	/*
5289 	 * Get the id from the image id object.  Unless there's an
5290 	 * error, rbd_dev->spec->image_id will be filled in with
5291 	 * a dynamically-allocated string, and rbd_dev->image_format
5292 	 * will be set to either 1 or 2.
5293 	 */
5294 	ret = rbd_dev_image_id(rbd_dev);
5295 	if (ret)
5296 		return ret;
5297 
5298 	ret = rbd_dev_header_name(rbd_dev);
5299 	if (ret)
5300 		goto err_out_format;
5301 
5302 	if (mapping) {
5303 		ret = rbd_dev_header_watch_sync(rbd_dev);
5304 		if (ret)
5305 			goto out_header_name;
5306 	}
5307 
5308 	ret = rbd_dev_header_info(rbd_dev);
5309 	if (ret)
5310 		goto err_out_watch;
5311 
5312 	/*
5313 	 * If this image is the one being mapped, we have pool name and
5314 	 * id, image name and id, and snap name - need to fill snap id.
5315 	 * Otherwise this is a parent image, identified by pool, image
5316 	 * and snap ids - need to fill in names for those ids.
5317 	 */
5318 	if (mapping)
5319 		ret = rbd_spec_fill_snap_id(rbd_dev);
5320 	else
5321 		ret = rbd_spec_fill_names(rbd_dev);
5322 	if (ret)
5323 		goto err_out_probe;
5324 
5325 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5326 		ret = rbd_dev_v2_parent_info(rbd_dev);
5327 		if (ret)
5328 			goto err_out_probe;
5329 
5330 		/*
5331 		 * Need to warn users if this image is the one being
5332 		 * mapped and has a parent.
5333 		 */
5334 		if (mapping && rbd_dev->parent_spec)
5335 			rbd_warn(rbd_dev,
5336 				 "WARNING: kernel layering is EXPERIMENTAL!");
5337 	}
5338 
5339 	ret = rbd_dev_probe_parent(rbd_dev);
5340 	if (ret)
5341 		goto err_out_probe;
5342 
5343 	dout("discovered format %u image, header name is %s\n",
5344 		rbd_dev->image_format, rbd_dev->header_name);
5345 	return 0;
5346 
5347 err_out_probe:
5348 	rbd_dev_unprobe(rbd_dev);
5349 err_out_watch:
5350 	if (mapping)
5351 		rbd_dev_header_unwatch_sync(rbd_dev);
5352 out_header_name:
5353 	kfree(rbd_dev->header_name);
5354 	rbd_dev->header_name = NULL;
5355 err_out_format:
5356 	rbd_dev->image_format = 0;
5357 	kfree(rbd_dev->spec->image_id);
5358 	rbd_dev->spec->image_id = NULL;
5359 	return ret;
5360 }
5361 
5362 static ssize_t do_rbd_add(struct bus_type *bus,
5363 			  const char *buf,
5364 			  size_t count)
5365 {
5366 	struct rbd_device *rbd_dev = NULL;
5367 	struct ceph_options *ceph_opts = NULL;
5368 	struct rbd_options *rbd_opts = NULL;
5369 	struct rbd_spec *spec = NULL;
5370 	struct rbd_client *rbdc;
5371 	bool read_only;
5372 	int rc = -ENOMEM;
5373 
5374 	if (!try_module_get(THIS_MODULE))
5375 		return -ENODEV;
5376 
5377 	/* parse add command */
5378 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5379 	if (rc < 0)
5380 		goto err_out_module;
5381 	read_only = rbd_opts->read_only;
5382 	kfree(rbd_opts);
5383 	rbd_opts = NULL;	/* done with this */
5384 
5385 	rbdc = rbd_get_client(ceph_opts);
5386 	if (IS_ERR(rbdc)) {
5387 		rc = PTR_ERR(rbdc);
5388 		goto err_out_args;
5389 	}
5390 
5391 	/* pick the pool */
5392 	rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5393 	if (rc < 0)
5394 		goto err_out_client;
5395 	spec->pool_id = (u64)rc;
5396 
5397 	/* The ceph file layout needs to fit pool id in 32 bits */
5398 
5399 	if (spec->pool_id > (u64)U32_MAX) {
5400 		rbd_warn(NULL, "pool id too large (%llu > %u)",
5401 				(unsigned long long)spec->pool_id, U32_MAX);
5402 		rc = -EIO;
5403 		goto err_out_client;
5404 	}
5405 
5406 	rbd_dev = rbd_dev_create(rbdc, spec);
5407 	if (!rbd_dev)
5408 		goto err_out_client;
5409 	rbdc = NULL;		/* rbd_dev now owns this */
5410 	spec = NULL;		/* rbd_dev now owns this */
5411 
5412 	rc = rbd_dev_image_probe(rbd_dev, true);
5413 	if (rc < 0)
5414 		goto err_out_rbd_dev;
5415 
5416 	/* If we are mapping a snapshot it must be marked read-only */
5417 
5418 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5419 		read_only = true;
5420 	rbd_dev->mapping.read_only = read_only;
5421 
5422 	rc = rbd_dev_device_setup(rbd_dev);
5423 	if (rc) {
5424 		/*
5425 		 * rbd_dev_header_unwatch_sync() can't be moved into
5426 		 * rbd_dev_image_release() without refactoring, see
5427 		 * commit 1f3ef78861ac.
5428 		 */
5429 		rbd_dev_header_unwatch_sync(rbd_dev);
5430 		rbd_dev_image_release(rbd_dev);
5431 		goto err_out_module;
5432 	}
5433 
5434 	return count;
5435 
5436 err_out_rbd_dev:
5437 	rbd_dev_destroy(rbd_dev);
5438 err_out_client:
5439 	rbd_put_client(rbdc);
5440 err_out_args:
5441 	rbd_spec_put(spec);
5442 err_out_module:
5443 	module_put(THIS_MODULE);
5444 
5445 	dout("Error adding device %s\n", buf);
5446 
5447 	return (ssize_t)rc;
5448 }
5449 
5450 static ssize_t rbd_add(struct bus_type *bus,
5451 		       const char *buf,
5452 		       size_t count)
5453 {
5454 	if (single_major)
5455 		return -EINVAL;
5456 
5457 	return do_rbd_add(bus, buf, count);
5458 }
5459 
5460 static ssize_t rbd_add_single_major(struct bus_type *bus,
5461 				    const char *buf,
5462 				    size_t count)
5463 {
5464 	return do_rbd_add(bus, buf, count);
5465 }
5466 
5467 static void rbd_dev_device_release(struct device *dev)
5468 {
5469 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5470 
5471 	rbd_free_disk(rbd_dev);
5472 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5473 	rbd_dev_mapping_clear(rbd_dev);
5474 	if (!single_major)
5475 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5476 	rbd_dev_id_put(rbd_dev);
5477 	rbd_dev_mapping_clear(rbd_dev);
5478 }
5479 
5480 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5481 {
5482 	while (rbd_dev->parent) {
5483 		struct rbd_device *first = rbd_dev;
5484 		struct rbd_device *second = first->parent;
5485 		struct rbd_device *third;
5486 
5487 		/*
5488 		 * Follow to the parent with no grandparent and
5489 		 * remove it.
5490 		 */
5491 		while (second && (third = second->parent)) {
5492 			first = second;
5493 			second = third;
5494 		}
5495 		rbd_assert(second);
5496 		rbd_dev_image_release(second);
5497 		first->parent = NULL;
5498 		first->parent_overlap = 0;
5499 
5500 		rbd_assert(first->parent_spec);
5501 		rbd_spec_put(first->parent_spec);
5502 		first->parent_spec = NULL;
5503 	}
5504 }
5505 
5506 static ssize_t do_rbd_remove(struct bus_type *bus,
5507 			     const char *buf,
5508 			     size_t count)
5509 {
5510 	struct rbd_device *rbd_dev = NULL;
5511 	struct list_head *tmp;
5512 	int dev_id;
5513 	unsigned long ul;
5514 	bool already = false;
5515 	int ret;
5516 
5517 	ret = kstrtoul(buf, 10, &ul);
5518 	if (ret)
5519 		return ret;
5520 
5521 	/* convert to int; abort if we lost anything in the conversion */
5522 	dev_id = (int)ul;
5523 	if (dev_id != ul)
5524 		return -EINVAL;
5525 
5526 	ret = -ENOENT;
5527 	spin_lock(&rbd_dev_list_lock);
5528 	list_for_each(tmp, &rbd_dev_list) {
5529 		rbd_dev = list_entry(tmp, struct rbd_device, node);
5530 		if (rbd_dev->dev_id == dev_id) {
5531 			ret = 0;
5532 			break;
5533 		}
5534 	}
5535 	if (!ret) {
5536 		spin_lock_irq(&rbd_dev->lock);
5537 		if (rbd_dev->open_count)
5538 			ret = -EBUSY;
5539 		else
5540 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5541 							&rbd_dev->flags);
5542 		spin_unlock_irq(&rbd_dev->lock);
5543 	}
5544 	spin_unlock(&rbd_dev_list_lock);
5545 	if (ret < 0 || already)
5546 		return ret;
5547 
5548 	rbd_dev_header_unwatch_sync(rbd_dev);
5549 	/*
5550 	 * flush remaining watch callbacks - these must be complete
5551 	 * before the osd_client is shutdown
5552 	 */
5553 	dout("%s: flushing notifies", __func__);
5554 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5555 
5556 	/*
5557 	 * Don't free anything from rbd_dev->disk until after all
5558 	 * notifies are completely processed. Otherwise
5559 	 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5560 	 * in a potential use after free of rbd_dev->disk or rbd_dev.
5561 	 */
5562 	rbd_bus_del_dev(rbd_dev);
5563 	rbd_dev_image_release(rbd_dev);
5564 	module_put(THIS_MODULE);
5565 
5566 	return count;
5567 }
5568 
5569 static ssize_t rbd_remove(struct bus_type *bus,
5570 			  const char *buf,
5571 			  size_t count)
5572 {
5573 	if (single_major)
5574 		return -EINVAL;
5575 
5576 	return do_rbd_remove(bus, buf, count);
5577 }
5578 
5579 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5580 				       const char *buf,
5581 				       size_t count)
5582 {
5583 	return do_rbd_remove(bus, buf, count);
5584 }
5585 
5586 /*
5587  * create control files in sysfs
5588  * /sys/bus/rbd/...
5589  */
5590 static int rbd_sysfs_init(void)
5591 {
5592 	int ret;
5593 
5594 	ret = device_register(&rbd_root_dev);
5595 	if (ret < 0)
5596 		return ret;
5597 
5598 	ret = bus_register(&rbd_bus_type);
5599 	if (ret < 0)
5600 		device_unregister(&rbd_root_dev);
5601 
5602 	return ret;
5603 }
5604 
5605 static void rbd_sysfs_cleanup(void)
5606 {
5607 	bus_unregister(&rbd_bus_type);
5608 	device_unregister(&rbd_root_dev);
5609 }
5610 
5611 static int rbd_slab_init(void)
5612 {
5613 	rbd_assert(!rbd_img_request_cache);
5614 	rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5615 					sizeof (struct rbd_img_request),
5616 					__alignof__(struct rbd_img_request),
5617 					0, NULL);
5618 	if (!rbd_img_request_cache)
5619 		return -ENOMEM;
5620 
5621 	rbd_assert(!rbd_obj_request_cache);
5622 	rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5623 					sizeof (struct rbd_obj_request),
5624 					__alignof__(struct rbd_obj_request),
5625 					0, NULL);
5626 	if (!rbd_obj_request_cache)
5627 		goto out_err;
5628 
5629 	rbd_assert(!rbd_segment_name_cache);
5630 	rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5631 					CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5632 	if (rbd_segment_name_cache)
5633 		return 0;
5634 out_err:
5635 	if (rbd_obj_request_cache) {
5636 		kmem_cache_destroy(rbd_obj_request_cache);
5637 		rbd_obj_request_cache = NULL;
5638 	}
5639 
5640 	kmem_cache_destroy(rbd_img_request_cache);
5641 	rbd_img_request_cache = NULL;
5642 
5643 	return -ENOMEM;
5644 }
5645 
5646 static void rbd_slab_exit(void)
5647 {
5648 	rbd_assert(rbd_segment_name_cache);
5649 	kmem_cache_destroy(rbd_segment_name_cache);
5650 	rbd_segment_name_cache = NULL;
5651 
5652 	rbd_assert(rbd_obj_request_cache);
5653 	kmem_cache_destroy(rbd_obj_request_cache);
5654 	rbd_obj_request_cache = NULL;
5655 
5656 	rbd_assert(rbd_img_request_cache);
5657 	kmem_cache_destroy(rbd_img_request_cache);
5658 	rbd_img_request_cache = NULL;
5659 }
5660 
5661 static int __init rbd_init(void)
5662 {
5663 	int rc;
5664 
5665 	if (!libceph_compatible(NULL)) {
5666 		rbd_warn(NULL, "libceph incompatibility (quitting)");
5667 		return -EINVAL;
5668 	}
5669 
5670 	rc = rbd_slab_init();
5671 	if (rc)
5672 		return rc;
5673 
5674 	/*
5675 	 * The number of active work items is limited by the number of
5676 	 * rbd devices, so leave @max_active at default.
5677 	 */
5678 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5679 	if (!rbd_wq) {
5680 		rc = -ENOMEM;
5681 		goto err_out_slab;
5682 	}
5683 
5684 	if (single_major) {
5685 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
5686 		if (rbd_major < 0) {
5687 			rc = rbd_major;
5688 			goto err_out_wq;
5689 		}
5690 	}
5691 
5692 	rc = rbd_sysfs_init();
5693 	if (rc)
5694 		goto err_out_blkdev;
5695 
5696 	if (single_major)
5697 		pr_info("loaded (major %d)\n", rbd_major);
5698 	else
5699 		pr_info("loaded\n");
5700 
5701 	return 0;
5702 
5703 err_out_blkdev:
5704 	if (single_major)
5705 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5706 err_out_wq:
5707 	destroy_workqueue(rbd_wq);
5708 err_out_slab:
5709 	rbd_slab_exit();
5710 	return rc;
5711 }
5712 
5713 static void __exit rbd_exit(void)
5714 {
5715 	ida_destroy(&rbd_dev_id_ida);
5716 	rbd_sysfs_cleanup();
5717 	if (single_major)
5718 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5719 	destroy_workqueue(rbd_wq);
5720 	rbd_slab_exit();
5721 }
5722 
5723 module_init(rbd_init);
5724 module_exit(rbd_exit);
5725 
5726 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5727 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5728 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5729 /* following authorship retained from original osdblk.c */
5730 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5731 
5732 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5733 MODULE_LICENSE("GPL");
5734