1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/cls_lock_client.h> 35 #include <linux/ceph/striper.h> 36 #include <linux/ceph/decode.h> 37 #include <linux/fs_parser.h> 38 #include <linux/bsearch.h> 39 40 #include <linux/kernel.h> 41 #include <linux/device.h> 42 #include <linux/module.h> 43 #include <linux/blk-mq.h> 44 #include <linux/fs.h> 45 #include <linux/blkdev.h> 46 #include <linux/slab.h> 47 #include <linux/idr.h> 48 #include <linux/workqueue.h> 49 50 #include "rbd_types.h" 51 52 #define RBD_DEBUG /* Activate rbd_assert() calls */ 53 54 /* 55 * Increment the given counter and return its updated value. 56 * If the counter is already 0 it will not be incremented. 57 * If the counter is already at its maximum value returns 58 * -EINVAL without updating it. 59 */ 60 static int atomic_inc_return_safe(atomic_t *v) 61 { 62 unsigned int counter; 63 64 counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0); 65 if (counter <= (unsigned int)INT_MAX) 66 return (int)counter; 67 68 atomic_dec(v); 69 70 return -EINVAL; 71 } 72 73 /* Decrement the counter. Return the resulting value, or -EINVAL */ 74 static int atomic_dec_return_safe(atomic_t *v) 75 { 76 int counter; 77 78 counter = atomic_dec_return(v); 79 if (counter >= 0) 80 return counter; 81 82 atomic_inc(v); 83 84 return -EINVAL; 85 } 86 87 #define RBD_DRV_NAME "rbd" 88 89 #define RBD_MINORS_PER_MAJOR 256 90 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 91 92 #define RBD_MAX_PARENT_CHAIN_LEN 16 93 94 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 95 #define RBD_MAX_SNAP_NAME_LEN \ 96 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 97 98 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 99 100 #define RBD_SNAP_HEAD_NAME "-" 101 102 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 103 104 /* This allows a single page to hold an image name sent by OSD */ 105 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 106 #define RBD_IMAGE_ID_LEN_MAX 64 107 108 #define RBD_OBJ_PREFIX_LEN_MAX 64 109 110 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */ 111 #define RBD_RETRY_DELAY msecs_to_jiffies(1000) 112 113 /* Feature bits */ 114 115 #define RBD_FEATURE_LAYERING (1ULL<<0) 116 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1) 117 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2) 118 #define RBD_FEATURE_OBJECT_MAP (1ULL<<3) 119 #define RBD_FEATURE_FAST_DIFF (1ULL<<4) 120 #define RBD_FEATURE_DEEP_FLATTEN (1ULL<<5) 121 #define RBD_FEATURE_DATA_POOL (1ULL<<7) 122 #define RBD_FEATURE_OPERATIONS (1ULL<<8) 123 124 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \ 125 RBD_FEATURE_STRIPINGV2 | \ 126 RBD_FEATURE_EXCLUSIVE_LOCK | \ 127 RBD_FEATURE_OBJECT_MAP | \ 128 RBD_FEATURE_FAST_DIFF | \ 129 RBD_FEATURE_DEEP_FLATTEN | \ 130 RBD_FEATURE_DATA_POOL | \ 131 RBD_FEATURE_OPERATIONS) 132 133 /* Features supported by this (client software) implementation. */ 134 135 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 136 137 /* 138 * An RBD device name will be "rbd#", where the "rbd" comes from 139 * RBD_DRV_NAME above, and # is a unique integer identifier. 140 */ 141 #define DEV_NAME_LEN 32 142 143 /* 144 * block device image metadata (in-memory version) 145 */ 146 struct rbd_image_header { 147 /* These six fields never change for a given rbd image */ 148 char *object_prefix; 149 __u8 obj_order; 150 u64 stripe_unit; 151 u64 stripe_count; 152 s64 data_pool_id; 153 u64 features; /* Might be changeable someday? */ 154 155 /* The remaining fields need to be updated occasionally */ 156 u64 image_size; 157 struct ceph_snap_context *snapc; 158 char *snap_names; /* format 1 only */ 159 u64 *snap_sizes; /* format 1 only */ 160 }; 161 162 /* 163 * An rbd image specification. 164 * 165 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 166 * identify an image. Each rbd_dev structure includes a pointer to 167 * an rbd_spec structure that encapsulates this identity. 168 * 169 * Each of the id's in an rbd_spec has an associated name. For a 170 * user-mapped image, the names are supplied and the id's associated 171 * with them are looked up. For a layered image, a parent image is 172 * defined by the tuple, and the names are looked up. 173 * 174 * An rbd_dev structure contains a parent_spec pointer which is 175 * non-null if the image it represents is a child in a layered 176 * image. This pointer will refer to the rbd_spec structure used 177 * by the parent rbd_dev for its own identity (i.e., the structure 178 * is shared between the parent and child). 179 * 180 * Since these structures are populated once, during the discovery 181 * phase of image construction, they are effectively immutable so 182 * we make no effort to synchronize access to them. 183 * 184 * Note that code herein does not assume the image name is known (it 185 * could be a null pointer). 186 */ 187 struct rbd_spec { 188 u64 pool_id; 189 const char *pool_name; 190 const char *pool_ns; /* NULL if default, never "" */ 191 192 const char *image_id; 193 const char *image_name; 194 195 u64 snap_id; 196 const char *snap_name; 197 198 struct kref kref; 199 }; 200 201 /* 202 * an instance of the client. multiple devices may share an rbd client. 203 */ 204 struct rbd_client { 205 struct ceph_client *client; 206 struct kref kref; 207 struct list_head node; 208 }; 209 210 struct pending_result { 211 int result; /* first nonzero result */ 212 int num_pending; 213 }; 214 215 struct rbd_img_request; 216 217 enum obj_request_type { 218 OBJ_REQUEST_NODATA = 1, 219 OBJ_REQUEST_BIO, /* pointer into provided bio (list) */ 220 OBJ_REQUEST_BVECS, /* pointer into provided bio_vec array */ 221 OBJ_REQUEST_OWN_BVECS, /* private bio_vec array, doesn't own pages */ 222 }; 223 224 enum obj_operation_type { 225 OBJ_OP_READ = 1, 226 OBJ_OP_WRITE, 227 OBJ_OP_DISCARD, 228 OBJ_OP_ZEROOUT, 229 }; 230 231 #define RBD_OBJ_FLAG_DELETION (1U << 0) 232 #define RBD_OBJ_FLAG_COPYUP_ENABLED (1U << 1) 233 #define RBD_OBJ_FLAG_COPYUP_ZEROS (1U << 2) 234 #define RBD_OBJ_FLAG_MAY_EXIST (1U << 3) 235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT (1U << 4) 236 237 enum rbd_obj_read_state { 238 RBD_OBJ_READ_START = 1, 239 RBD_OBJ_READ_OBJECT, 240 RBD_OBJ_READ_PARENT, 241 }; 242 243 /* 244 * Writes go through the following state machine to deal with 245 * layering: 246 * 247 * . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . . 248 * . | . 249 * . v . 250 * . RBD_OBJ_WRITE_READ_FROM_PARENT. . . . 251 * . | . . 252 * . v v (deep-copyup . 253 * (image . RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC . not needed) . 254 * flattened) v | . . 255 * . v . . 256 * . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . . (copyup . 257 * | not needed) v 258 * v . 259 * done . . . . . . . . . . . . . . . . . . 260 * ^ 261 * | 262 * RBD_OBJ_WRITE_FLAT 263 * 264 * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether 265 * assert_exists guard is needed or not (in some cases it's not needed 266 * even if there is a parent). 267 */ 268 enum rbd_obj_write_state { 269 RBD_OBJ_WRITE_START = 1, 270 RBD_OBJ_WRITE_PRE_OBJECT_MAP, 271 RBD_OBJ_WRITE_OBJECT, 272 __RBD_OBJ_WRITE_COPYUP, 273 RBD_OBJ_WRITE_COPYUP, 274 RBD_OBJ_WRITE_POST_OBJECT_MAP, 275 }; 276 277 enum rbd_obj_copyup_state { 278 RBD_OBJ_COPYUP_START = 1, 279 RBD_OBJ_COPYUP_READ_PARENT, 280 __RBD_OBJ_COPYUP_OBJECT_MAPS, 281 RBD_OBJ_COPYUP_OBJECT_MAPS, 282 __RBD_OBJ_COPYUP_WRITE_OBJECT, 283 RBD_OBJ_COPYUP_WRITE_OBJECT, 284 }; 285 286 struct rbd_obj_request { 287 struct ceph_object_extent ex; 288 unsigned int flags; /* RBD_OBJ_FLAG_* */ 289 union { 290 enum rbd_obj_read_state read_state; /* for reads */ 291 enum rbd_obj_write_state write_state; /* for writes */ 292 }; 293 294 struct rbd_img_request *img_request; 295 struct ceph_file_extent *img_extents; 296 u32 num_img_extents; 297 298 union { 299 struct ceph_bio_iter bio_pos; 300 struct { 301 struct ceph_bvec_iter bvec_pos; 302 u32 bvec_count; 303 u32 bvec_idx; 304 }; 305 }; 306 307 enum rbd_obj_copyup_state copyup_state; 308 struct bio_vec *copyup_bvecs; 309 u32 copyup_bvec_count; 310 311 struct list_head osd_reqs; /* w/ r_private_item */ 312 313 struct mutex state_mutex; 314 struct pending_result pending; 315 struct kref kref; 316 }; 317 318 enum img_req_flags { 319 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 320 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 321 }; 322 323 enum rbd_img_state { 324 RBD_IMG_START = 1, 325 RBD_IMG_EXCLUSIVE_LOCK, 326 __RBD_IMG_OBJECT_REQUESTS, 327 RBD_IMG_OBJECT_REQUESTS, 328 }; 329 330 struct rbd_img_request { 331 struct rbd_device *rbd_dev; 332 enum obj_operation_type op_type; 333 enum obj_request_type data_type; 334 unsigned long flags; 335 enum rbd_img_state state; 336 union { 337 u64 snap_id; /* for reads */ 338 struct ceph_snap_context *snapc; /* for writes */ 339 }; 340 struct rbd_obj_request *obj_request; /* obj req initiator */ 341 342 struct list_head lock_item; 343 struct list_head object_extents; /* obj_req.ex structs */ 344 345 struct mutex state_mutex; 346 struct pending_result pending; 347 struct work_struct work; 348 int work_result; 349 }; 350 351 #define for_each_obj_request(ireq, oreq) \ 352 list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item) 353 #define for_each_obj_request_safe(ireq, oreq, n) \ 354 list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item) 355 356 enum rbd_watch_state { 357 RBD_WATCH_STATE_UNREGISTERED, 358 RBD_WATCH_STATE_REGISTERED, 359 RBD_WATCH_STATE_ERROR, 360 }; 361 362 enum rbd_lock_state { 363 RBD_LOCK_STATE_UNLOCKED, 364 RBD_LOCK_STATE_LOCKED, 365 RBD_LOCK_STATE_RELEASING, 366 }; 367 368 /* WatchNotify::ClientId */ 369 struct rbd_client_id { 370 u64 gid; 371 u64 handle; 372 }; 373 374 struct rbd_mapping { 375 u64 size; 376 }; 377 378 /* 379 * a single device 380 */ 381 struct rbd_device { 382 int dev_id; /* blkdev unique id */ 383 384 int major; /* blkdev assigned major */ 385 int minor; 386 struct gendisk *disk; /* blkdev's gendisk and rq */ 387 388 u32 image_format; /* Either 1 or 2 */ 389 struct rbd_client *rbd_client; 390 391 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 392 393 spinlock_t lock; /* queue, flags, open_count */ 394 395 struct rbd_image_header header; 396 unsigned long flags; /* possibly lock protected */ 397 struct rbd_spec *spec; 398 struct rbd_options *opts; 399 char *config_info; /* add{,_single_major} string */ 400 401 struct ceph_object_id header_oid; 402 struct ceph_object_locator header_oloc; 403 404 struct ceph_file_layout layout; /* used for all rbd requests */ 405 406 struct mutex watch_mutex; 407 enum rbd_watch_state watch_state; 408 struct ceph_osd_linger_request *watch_handle; 409 u64 watch_cookie; 410 struct delayed_work watch_dwork; 411 412 struct rw_semaphore lock_rwsem; 413 enum rbd_lock_state lock_state; 414 char lock_cookie[32]; 415 struct rbd_client_id owner_cid; 416 struct work_struct acquired_lock_work; 417 struct work_struct released_lock_work; 418 struct delayed_work lock_dwork; 419 struct work_struct unlock_work; 420 spinlock_t lock_lists_lock; 421 struct list_head acquiring_list; 422 struct list_head running_list; 423 struct completion acquire_wait; 424 int acquire_err; 425 struct completion releasing_wait; 426 427 spinlock_t object_map_lock; 428 u8 *object_map; 429 u64 object_map_size; /* in objects */ 430 u64 object_map_flags; 431 432 struct workqueue_struct *task_wq; 433 434 struct rbd_spec *parent_spec; 435 u64 parent_overlap; 436 atomic_t parent_ref; 437 struct rbd_device *parent; 438 439 /* Block layer tags. */ 440 struct blk_mq_tag_set tag_set; 441 442 /* protects updating the header */ 443 struct rw_semaphore header_rwsem; 444 445 struct rbd_mapping mapping; 446 447 struct list_head node; 448 449 /* sysfs related */ 450 struct device dev; 451 unsigned long open_count; /* protected by lock */ 452 }; 453 454 /* 455 * Flag bits for rbd_dev->flags: 456 * - REMOVING (which is coupled with rbd_dev->open_count) is protected 457 * by rbd_dev->lock 458 */ 459 enum rbd_dev_flags { 460 RBD_DEV_FLAG_EXISTS, /* rbd_dev_device_setup() ran */ 461 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 462 RBD_DEV_FLAG_READONLY, /* -o ro or snapshot */ 463 }; 464 465 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 466 467 static LIST_HEAD(rbd_dev_list); /* devices */ 468 static DEFINE_SPINLOCK(rbd_dev_list_lock); 469 470 static LIST_HEAD(rbd_client_list); /* clients */ 471 static DEFINE_SPINLOCK(rbd_client_list_lock); 472 473 /* Slab caches for frequently-allocated structures */ 474 475 static struct kmem_cache *rbd_img_request_cache; 476 static struct kmem_cache *rbd_obj_request_cache; 477 478 static int rbd_major; 479 static DEFINE_IDA(rbd_dev_id_ida); 480 481 static struct workqueue_struct *rbd_wq; 482 483 static struct ceph_snap_context rbd_empty_snapc = { 484 .nref = REFCOUNT_INIT(1), 485 }; 486 487 /* 488 * single-major requires >= 0.75 version of userspace rbd utility. 489 */ 490 static bool single_major = true; 491 module_param(single_major, bool, 0444); 492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)"); 493 494 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count); 495 static ssize_t remove_store(const struct bus_type *bus, const char *buf, 496 size_t count); 497 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf, 498 size_t count); 499 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf, 500 size_t count); 501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth); 502 503 static int rbd_dev_id_to_minor(int dev_id) 504 { 505 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 506 } 507 508 static int minor_to_rbd_dev_id(int minor) 509 { 510 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 511 } 512 513 static bool rbd_is_ro(struct rbd_device *rbd_dev) 514 { 515 return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags); 516 } 517 518 static bool rbd_is_snap(struct rbd_device *rbd_dev) 519 { 520 return rbd_dev->spec->snap_id != CEPH_NOSNAP; 521 } 522 523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev) 524 { 525 lockdep_assert_held(&rbd_dev->lock_rwsem); 526 527 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED || 528 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING; 529 } 530 531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev) 532 { 533 bool is_lock_owner; 534 535 down_read(&rbd_dev->lock_rwsem); 536 is_lock_owner = __rbd_is_lock_owner(rbd_dev); 537 up_read(&rbd_dev->lock_rwsem); 538 return is_lock_owner; 539 } 540 541 static ssize_t supported_features_show(const struct bus_type *bus, char *buf) 542 { 543 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED); 544 } 545 546 static BUS_ATTR_WO(add); 547 static BUS_ATTR_WO(remove); 548 static BUS_ATTR_WO(add_single_major); 549 static BUS_ATTR_WO(remove_single_major); 550 static BUS_ATTR_RO(supported_features); 551 552 static struct attribute *rbd_bus_attrs[] = { 553 &bus_attr_add.attr, 554 &bus_attr_remove.attr, 555 &bus_attr_add_single_major.attr, 556 &bus_attr_remove_single_major.attr, 557 &bus_attr_supported_features.attr, 558 NULL, 559 }; 560 561 static umode_t rbd_bus_is_visible(struct kobject *kobj, 562 struct attribute *attr, int index) 563 { 564 if (!single_major && 565 (attr == &bus_attr_add_single_major.attr || 566 attr == &bus_attr_remove_single_major.attr)) 567 return 0; 568 569 return attr->mode; 570 } 571 572 static const struct attribute_group rbd_bus_group = { 573 .attrs = rbd_bus_attrs, 574 .is_visible = rbd_bus_is_visible, 575 }; 576 __ATTRIBUTE_GROUPS(rbd_bus); 577 578 static struct bus_type rbd_bus_type = { 579 .name = "rbd", 580 .bus_groups = rbd_bus_groups, 581 }; 582 583 static void rbd_root_dev_release(struct device *dev) 584 { 585 } 586 587 static struct device rbd_root_dev = { 588 .init_name = "rbd", 589 .release = rbd_root_dev_release, 590 }; 591 592 static __printf(2, 3) 593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 594 { 595 struct va_format vaf; 596 va_list args; 597 598 va_start(args, fmt); 599 vaf.fmt = fmt; 600 vaf.va = &args; 601 602 if (!rbd_dev) 603 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 604 else if (rbd_dev->disk) 605 printk(KERN_WARNING "%s: %s: %pV\n", 606 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 607 else if (rbd_dev->spec && rbd_dev->spec->image_name) 608 printk(KERN_WARNING "%s: image %s: %pV\n", 609 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 610 else if (rbd_dev->spec && rbd_dev->spec->image_id) 611 printk(KERN_WARNING "%s: id %s: %pV\n", 612 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 613 else /* punt */ 614 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 615 RBD_DRV_NAME, rbd_dev, &vaf); 616 va_end(args); 617 } 618 619 #ifdef RBD_DEBUG 620 #define rbd_assert(expr) \ 621 if (unlikely(!(expr))) { \ 622 printk(KERN_ERR "\nAssertion failure in %s() " \ 623 "at line %d:\n\n" \ 624 "\trbd_assert(%s);\n\n", \ 625 __func__, __LINE__, #expr); \ 626 BUG(); \ 627 } 628 #else /* !RBD_DEBUG */ 629 # define rbd_assert(expr) ((void) 0) 630 #endif /* !RBD_DEBUG */ 631 632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 633 634 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev, 636 struct rbd_image_header *header); 637 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 638 u64 snap_id); 639 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 640 u8 *order, u64 *snap_size); 641 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev); 642 643 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result); 644 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result); 645 646 /* 647 * Return true if nothing else is pending. 648 */ 649 static bool pending_result_dec(struct pending_result *pending, int *result) 650 { 651 rbd_assert(pending->num_pending > 0); 652 653 if (*result && !pending->result) 654 pending->result = *result; 655 if (--pending->num_pending) 656 return false; 657 658 *result = pending->result; 659 return true; 660 } 661 662 static int rbd_open(struct gendisk *disk, blk_mode_t mode) 663 { 664 struct rbd_device *rbd_dev = disk->private_data; 665 bool removing = false; 666 667 spin_lock_irq(&rbd_dev->lock); 668 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 669 removing = true; 670 else 671 rbd_dev->open_count++; 672 spin_unlock_irq(&rbd_dev->lock); 673 if (removing) 674 return -ENOENT; 675 676 (void) get_device(&rbd_dev->dev); 677 678 return 0; 679 } 680 681 static void rbd_release(struct gendisk *disk) 682 { 683 struct rbd_device *rbd_dev = disk->private_data; 684 unsigned long open_count_before; 685 686 spin_lock_irq(&rbd_dev->lock); 687 open_count_before = rbd_dev->open_count--; 688 spin_unlock_irq(&rbd_dev->lock); 689 rbd_assert(open_count_before > 0); 690 691 put_device(&rbd_dev->dev); 692 } 693 694 static const struct block_device_operations rbd_bd_ops = { 695 .owner = THIS_MODULE, 696 .open = rbd_open, 697 .release = rbd_release, 698 }; 699 700 /* 701 * Initialize an rbd client instance. Success or not, this function 702 * consumes ceph_opts. Caller holds client_mutex. 703 */ 704 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 705 { 706 struct rbd_client *rbdc; 707 int ret = -ENOMEM; 708 709 dout("%s:\n", __func__); 710 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 711 if (!rbdc) 712 goto out_opt; 713 714 kref_init(&rbdc->kref); 715 INIT_LIST_HEAD(&rbdc->node); 716 717 rbdc->client = ceph_create_client(ceph_opts, rbdc); 718 if (IS_ERR(rbdc->client)) 719 goto out_rbdc; 720 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 721 722 ret = ceph_open_session(rbdc->client); 723 if (ret < 0) 724 goto out_client; 725 726 spin_lock(&rbd_client_list_lock); 727 list_add_tail(&rbdc->node, &rbd_client_list); 728 spin_unlock(&rbd_client_list_lock); 729 730 dout("%s: rbdc %p\n", __func__, rbdc); 731 732 return rbdc; 733 out_client: 734 ceph_destroy_client(rbdc->client); 735 out_rbdc: 736 kfree(rbdc); 737 out_opt: 738 if (ceph_opts) 739 ceph_destroy_options(ceph_opts); 740 dout("%s: error %d\n", __func__, ret); 741 742 return ERR_PTR(ret); 743 } 744 745 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 746 { 747 kref_get(&rbdc->kref); 748 749 return rbdc; 750 } 751 752 /* 753 * Find a ceph client with specific addr and configuration. If 754 * found, bump its reference count. 755 */ 756 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 757 { 758 struct rbd_client *rbdc = NULL, *iter; 759 760 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 761 return NULL; 762 763 spin_lock(&rbd_client_list_lock); 764 list_for_each_entry(iter, &rbd_client_list, node) { 765 if (!ceph_compare_options(ceph_opts, iter->client)) { 766 __rbd_get_client(iter); 767 768 rbdc = iter; 769 break; 770 } 771 } 772 spin_unlock(&rbd_client_list_lock); 773 774 return rbdc; 775 } 776 777 /* 778 * (Per device) rbd map options 779 */ 780 enum { 781 Opt_queue_depth, 782 Opt_alloc_size, 783 Opt_lock_timeout, 784 /* int args above */ 785 Opt_pool_ns, 786 Opt_compression_hint, 787 /* string args above */ 788 Opt_read_only, 789 Opt_read_write, 790 Opt_lock_on_read, 791 Opt_exclusive, 792 Opt_notrim, 793 }; 794 795 enum { 796 Opt_compression_hint_none, 797 Opt_compression_hint_compressible, 798 Opt_compression_hint_incompressible, 799 }; 800 801 static const struct constant_table rbd_param_compression_hint[] = { 802 {"none", Opt_compression_hint_none}, 803 {"compressible", Opt_compression_hint_compressible}, 804 {"incompressible", Opt_compression_hint_incompressible}, 805 {} 806 }; 807 808 static const struct fs_parameter_spec rbd_parameters[] = { 809 fsparam_u32 ("alloc_size", Opt_alloc_size), 810 fsparam_enum ("compression_hint", Opt_compression_hint, 811 rbd_param_compression_hint), 812 fsparam_flag ("exclusive", Opt_exclusive), 813 fsparam_flag ("lock_on_read", Opt_lock_on_read), 814 fsparam_u32 ("lock_timeout", Opt_lock_timeout), 815 fsparam_flag ("notrim", Opt_notrim), 816 fsparam_string ("_pool_ns", Opt_pool_ns), 817 fsparam_u32 ("queue_depth", Opt_queue_depth), 818 fsparam_flag ("read_only", Opt_read_only), 819 fsparam_flag ("read_write", Opt_read_write), 820 fsparam_flag ("ro", Opt_read_only), 821 fsparam_flag ("rw", Opt_read_write), 822 {} 823 }; 824 825 struct rbd_options { 826 int queue_depth; 827 int alloc_size; 828 unsigned long lock_timeout; 829 bool read_only; 830 bool lock_on_read; 831 bool exclusive; 832 bool trim; 833 834 u32 alloc_hint_flags; /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */ 835 }; 836 837 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_DEFAULT_RQ 838 #define RBD_ALLOC_SIZE_DEFAULT (64 * 1024) 839 #define RBD_LOCK_TIMEOUT_DEFAULT 0 /* no timeout */ 840 #define RBD_READ_ONLY_DEFAULT false 841 #define RBD_LOCK_ON_READ_DEFAULT false 842 #define RBD_EXCLUSIVE_DEFAULT false 843 #define RBD_TRIM_DEFAULT true 844 845 struct rbd_parse_opts_ctx { 846 struct rbd_spec *spec; 847 struct ceph_options *copts; 848 struct rbd_options *opts; 849 }; 850 851 static char* obj_op_name(enum obj_operation_type op_type) 852 { 853 switch (op_type) { 854 case OBJ_OP_READ: 855 return "read"; 856 case OBJ_OP_WRITE: 857 return "write"; 858 case OBJ_OP_DISCARD: 859 return "discard"; 860 case OBJ_OP_ZEROOUT: 861 return "zeroout"; 862 default: 863 return "???"; 864 } 865 } 866 867 /* 868 * Destroy ceph client 869 * 870 * Caller must hold rbd_client_list_lock. 871 */ 872 static void rbd_client_release(struct kref *kref) 873 { 874 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 875 876 dout("%s: rbdc %p\n", __func__, rbdc); 877 spin_lock(&rbd_client_list_lock); 878 list_del(&rbdc->node); 879 spin_unlock(&rbd_client_list_lock); 880 881 ceph_destroy_client(rbdc->client); 882 kfree(rbdc); 883 } 884 885 /* 886 * Drop reference to ceph client node. If it's not referenced anymore, release 887 * it. 888 */ 889 static void rbd_put_client(struct rbd_client *rbdc) 890 { 891 if (rbdc) 892 kref_put(&rbdc->kref, rbd_client_release); 893 } 894 895 /* 896 * Get a ceph client with specific addr and configuration, if one does 897 * not exist create it. Either way, ceph_opts is consumed by this 898 * function. 899 */ 900 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 901 { 902 struct rbd_client *rbdc; 903 int ret; 904 905 mutex_lock(&client_mutex); 906 rbdc = rbd_client_find(ceph_opts); 907 if (rbdc) { 908 ceph_destroy_options(ceph_opts); 909 910 /* 911 * Using an existing client. Make sure ->pg_pools is up to 912 * date before we look up the pool id in do_rbd_add(). 913 */ 914 ret = ceph_wait_for_latest_osdmap(rbdc->client, 915 rbdc->client->options->mount_timeout); 916 if (ret) { 917 rbd_warn(NULL, "failed to get latest osdmap: %d", ret); 918 rbd_put_client(rbdc); 919 rbdc = ERR_PTR(ret); 920 } 921 } else { 922 rbdc = rbd_client_create(ceph_opts); 923 } 924 mutex_unlock(&client_mutex); 925 926 return rbdc; 927 } 928 929 static bool rbd_image_format_valid(u32 image_format) 930 { 931 return image_format == 1 || image_format == 2; 932 } 933 934 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 935 { 936 size_t size; 937 u32 snap_count; 938 939 /* The header has to start with the magic rbd header text */ 940 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 941 return false; 942 943 /* The bio layer requires at least sector-sized I/O */ 944 945 if (ondisk->options.order < SECTOR_SHIFT) 946 return false; 947 948 /* If we use u64 in a few spots we may be able to loosen this */ 949 950 if (ondisk->options.order > 8 * sizeof (int) - 1) 951 return false; 952 953 /* 954 * The size of a snapshot header has to fit in a size_t, and 955 * that limits the number of snapshots. 956 */ 957 snap_count = le32_to_cpu(ondisk->snap_count); 958 size = SIZE_MAX - sizeof (struct ceph_snap_context); 959 if (snap_count > size / sizeof (__le64)) 960 return false; 961 962 /* 963 * Not only that, but the size of the entire the snapshot 964 * header must also be representable in a size_t. 965 */ 966 size -= snap_count * sizeof (__le64); 967 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 968 return false; 969 970 return true; 971 } 972 973 /* 974 * returns the size of an object in the image 975 */ 976 static u32 rbd_obj_bytes(struct rbd_image_header *header) 977 { 978 return 1U << header->obj_order; 979 } 980 981 static void rbd_init_layout(struct rbd_device *rbd_dev) 982 { 983 if (rbd_dev->header.stripe_unit == 0 || 984 rbd_dev->header.stripe_count == 0) { 985 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header); 986 rbd_dev->header.stripe_count = 1; 987 } 988 989 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit; 990 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count; 991 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header); 992 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ? 993 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id; 994 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL); 995 } 996 997 static void rbd_image_header_cleanup(struct rbd_image_header *header) 998 { 999 kfree(header->object_prefix); 1000 ceph_put_snap_context(header->snapc); 1001 kfree(header->snap_sizes); 1002 kfree(header->snap_names); 1003 1004 memset(header, 0, sizeof(*header)); 1005 } 1006 1007 /* 1008 * Fill an rbd image header with information from the given format 1 1009 * on-disk header. 1010 */ 1011 static int rbd_header_from_disk(struct rbd_image_header *header, 1012 struct rbd_image_header_ondisk *ondisk, 1013 bool first_time) 1014 { 1015 struct ceph_snap_context *snapc; 1016 char *object_prefix = NULL; 1017 char *snap_names = NULL; 1018 u64 *snap_sizes = NULL; 1019 u32 snap_count; 1020 int ret = -ENOMEM; 1021 u32 i; 1022 1023 /* Allocate this now to avoid having to handle failure below */ 1024 1025 if (first_time) { 1026 object_prefix = kstrndup(ondisk->object_prefix, 1027 sizeof(ondisk->object_prefix), 1028 GFP_KERNEL); 1029 if (!object_prefix) 1030 return -ENOMEM; 1031 } 1032 1033 /* Allocate the snapshot context and fill it in */ 1034 1035 snap_count = le32_to_cpu(ondisk->snap_count); 1036 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 1037 if (!snapc) 1038 goto out_err; 1039 snapc->seq = le64_to_cpu(ondisk->snap_seq); 1040 if (snap_count) { 1041 struct rbd_image_snap_ondisk *snaps; 1042 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 1043 1044 /* We'll keep a copy of the snapshot names... */ 1045 1046 if (snap_names_len > (u64)SIZE_MAX) 1047 goto out_2big; 1048 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 1049 if (!snap_names) 1050 goto out_err; 1051 1052 /* ...as well as the array of their sizes. */ 1053 snap_sizes = kmalloc_array(snap_count, 1054 sizeof(*header->snap_sizes), 1055 GFP_KERNEL); 1056 if (!snap_sizes) 1057 goto out_err; 1058 1059 /* 1060 * Copy the names, and fill in each snapshot's id 1061 * and size. 1062 * 1063 * Note that rbd_dev_v1_header_info() guarantees the 1064 * ondisk buffer we're working with has 1065 * snap_names_len bytes beyond the end of the 1066 * snapshot id array, this memcpy() is safe. 1067 */ 1068 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 1069 snaps = ondisk->snaps; 1070 for (i = 0; i < snap_count; i++) { 1071 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 1072 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 1073 } 1074 } 1075 1076 /* We won't fail any more, fill in the header */ 1077 1078 if (first_time) { 1079 header->object_prefix = object_prefix; 1080 header->obj_order = ondisk->options.order; 1081 } 1082 1083 /* The remaining fields always get updated (when we refresh) */ 1084 1085 header->image_size = le64_to_cpu(ondisk->image_size); 1086 header->snapc = snapc; 1087 header->snap_names = snap_names; 1088 header->snap_sizes = snap_sizes; 1089 1090 return 0; 1091 out_2big: 1092 ret = -EIO; 1093 out_err: 1094 kfree(snap_sizes); 1095 kfree(snap_names); 1096 ceph_put_snap_context(snapc); 1097 kfree(object_prefix); 1098 1099 return ret; 1100 } 1101 1102 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 1103 { 1104 const char *snap_name; 1105 1106 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 1107 1108 /* Skip over names until we find the one we are looking for */ 1109 1110 snap_name = rbd_dev->header.snap_names; 1111 while (which--) 1112 snap_name += strlen(snap_name) + 1; 1113 1114 return kstrdup(snap_name, GFP_KERNEL); 1115 } 1116 1117 /* 1118 * Snapshot id comparison function for use with qsort()/bsearch(). 1119 * Note that result is for snapshots in *descending* order. 1120 */ 1121 static int snapid_compare_reverse(const void *s1, const void *s2) 1122 { 1123 u64 snap_id1 = *(u64 *)s1; 1124 u64 snap_id2 = *(u64 *)s2; 1125 1126 if (snap_id1 < snap_id2) 1127 return 1; 1128 return snap_id1 == snap_id2 ? 0 : -1; 1129 } 1130 1131 /* 1132 * Search a snapshot context to see if the given snapshot id is 1133 * present. 1134 * 1135 * Returns the position of the snapshot id in the array if it's found, 1136 * or BAD_SNAP_INDEX otherwise. 1137 * 1138 * Note: The snapshot array is in kept sorted (by the osd) in 1139 * reverse order, highest snapshot id first. 1140 */ 1141 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1142 { 1143 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1144 u64 *found; 1145 1146 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1147 sizeof (snap_id), snapid_compare_reverse); 1148 1149 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1150 } 1151 1152 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1153 u64 snap_id) 1154 { 1155 u32 which; 1156 const char *snap_name; 1157 1158 which = rbd_dev_snap_index(rbd_dev, snap_id); 1159 if (which == BAD_SNAP_INDEX) 1160 return ERR_PTR(-ENOENT); 1161 1162 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1163 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1164 } 1165 1166 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1167 { 1168 if (snap_id == CEPH_NOSNAP) 1169 return RBD_SNAP_HEAD_NAME; 1170 1171 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1172 if (rbd_dev->image_format == 1) 1173 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1174 1175 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1176 } 1177 1178 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1179 u64 *snap_size) 1180 { 1181 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1182 if (snap_id == CEPH_NOSNAP) { 1183 *snap_size = rbd_dev->header.image_size; 1184 } else if (rbd_dev->image_format == 1) { 1185 u32 which; 1186 1187 which = rbd_dev_snap_index(rbd_dev, snap_id); 1188 if (which == BAD_SNAP_INDEX) 1189 return -ENOENT; 1190 1191 *snap_size = rbd_dev->header.snap_sizes[which]; 1192 } else { 1193 u64 size = 0; 1194 int ret; 1195 1196 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1197 if (ret) 1198 return ret; 1199 1200 *snap_size = size; 1201 } 1202 return 0; 1203 } 1204 1205 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1206 { 1207 u64 snap_id = rbd_dev->spec->snap_id; 1208 u64 size = 0; 1209 int ret; 1210 1211 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1212 if (ret) 1213 return ret; 1214 1215 rbd_dev->mapping.size = size; 1216 return 0; 1217 } 1218 1219 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1220 { 1221 rbd_dev->mapping.size = 0; 1222 } 1223 1224 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes) 1225 { 1226 struct ceph_bio_iter it = *bio_pos; 1227 1228 ceph_bio_iter_advance(&it, off); 1229 ceph_bio_iter_advance_step(&it, bytes, ({ 1230 memzero_bvec(&bv); 1231 })); 1232 } 1233 1234 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes) 1235 { 1236 struct ceph_bvec_iter it = *bvec_pos; 1237 1238 ceph_bvec_iter_advance(&it, off); 1239 ceph_bvec_iter_advance_step(&it, bytes, ({ 1240 memzero_bvec(&bv); 1241 })); 1242 } 1243 1244 /* 1245 * Zero a range in @obj_req data buffer defined by a bio (list) or 1246 * (private) bio_vec array. 1247 * 1248 * @off is relative to the start of the data buffer. 1249 */ 1250 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off, 1251 u32 bytes) 1252 { 1253 dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes); 1254 1255 switch (obj_req->img_request->data_type) { 1256 case OBJ_REQUEST_BIO: 1257 zero_bios(&obj_req->bio_pos, off, bytes); 1258 break; 1259 case OBJ_REQUEST_BVECS: 1260 case OBJ_REQUEST_OWN_BVECS: 1261 zero_bvecs(&obj_req->bvec_pos, off, bytes); 1262 break; 1263 default: 1264 BUG(); 1265 } 1266 } 1267 1268 static void rbd_obj_request_destroy(struct kref *kref); 1269 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1270 { 1271 rbd_assert(obj_request != NULL); 1272 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1273 kref_read(&obj_request->kref)); 1274 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1275 } 1276 1277 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1278 struct rbd_obj_request *obj_request) 1279 { 1280 rbd_assert(obj_request->img_request == NULL); 1281 1282 /* Image request now owns object's original reference */ 1283 obj_request->img_request = img_request; 1284 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 1285 } 1286 1287 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1288 struct rbd_obj_request *obj_request) 1289 { 1290 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 1291 list_del(&obj_request->ex.oe_item); 1292 rbd_assert(obj_request->img_request == img_request); 1293 rbd_obj_request_put(obj_request); 1294 } 1295 1296 static void rbd_osd_submit(struct ceph_osd_request *osd_req) 1297 { 1298 struct rbd_obj_request *obj_req = osd_req->r_priv; 1299 1300 dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n", 1301 __func__, osd_req, obj_req, obj_req->ex.oe_objno, 1302 obj_req->ex.oe_off, obj_req->ex.oe_len); 1303 ceph_osdc_start_request(osd_req->r_osdc, osd_req); 1304 } 1305 1306 /* 1307 * The default/initial value for all image request flags is 0. Each 1308 * is conditionally set to 1 at image request initialization time 1309 * and currently never change thereafter. 1310 */ 1311 static void img_request_layered_set(struct rbd_img_request *img_request) 1312 { 1313 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1314 } 1315 1316 static bool img_request_layered_test(struct rbd_img_request *img_request) 1317 { 1318 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1319 } 1320 1321 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req) 1322 { 1323 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1324 1325 return !obj_req->ex.oe_off && 1326 obj_req->ex.oe_len == rbd_dev->layout.object_size; 1327 } 1328 1329 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req) 1330 { 1331 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1332 1333 return obj_req->ex.oe_off + obj_req->ex.oe_len == 1334 rbd_dev->layout.object_size; 1335 } 1336 1337 /* 1338 * Must be called after rbd_obj_calc_img_extents(). 1339 */ 1340 static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req) 1341 { 1342 rbd_assert(obj_req->img_request->snapc); 1343 1344 if (obj_req->img_request->op_type == OBJ_OP_DISCARD) { 1345 dout("%s %p objno %llu discard\n", __func__, obj_req, 1346 obj_req->ex.oe_objno); 1347 return; 1348 } 1349 1350 if (!obj_req->num_img_extents) { 1351 dout("%s %p objno %llu not overlapping\n", __func__, obj_req, 1352 obj_req->ex.oe_objno); 1353 return; 1354 } 1355 1356 if (rbd_obj_is_entire(obj_req) && 1357 !obj_req->img_request->snapc->num_snaps) { 1358 dout("%s %p objno %llu entire\n", __func__, obj_req, 1359 obj_req->ex.oe_objno); 1360 return; 1361 } 1362 1363 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED; 1364 } 1365 1366 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req) 1367 { 1368 return ceph_file_extents_bytes(obj_req->img_extents, 1369 obj_req->num_img_extents); 1370 } 1371 1372 static bool rbd_img_is_write(struct rbd_img_request *img_req) 1373 { 1374 switch (img_req->op_type) { 1375 case OBJ_OP_READ: 1376 return false; 1377 case OBJ_OP_WRITE: 1378 case OBJ_OP_DISCARD: 1379 case OBJ_OP_ZEROOUT: 1380 return true; 1381 default: 1382 BUG(); 1383 } 1384 } 1385 1386 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req) 1387 { 1388 struct rbd_obj_request *obj_req = osd_req->r_priv; 1389 int result; 1390 1391 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req, 1392 osd_req->r_result, obj_req); 1393 1394 /* 1395 * Writes aren't allowed to return a data payload. In some 1396 * guarded write cases (e.g. stat + zero on an empty object) 1397 * a stat response makes it through, but we don't care. 1398 */ 1399 if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request)) 1400 result = 0; 1401 else 1402 result = osd_req->r_result; 1403 1404 rbd_obj_handle_request(obj_req, result); 1405 } 1406 1407 static void rbd_osd_format_read(struct ceph_osd_request *osd_req) 1408 { 1409 struct rbd_obj_request *obj_request = osd_req->r_priv; 1410 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 1411 struct ceph_options *opt = rbd_dev->rbd_client->client->options; 1412 1413 osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica; 1414 osd_req->r_snapid = obj_request->img_request->snap_id; 1415 } 1416 1417 static void rbd_osd_format_write(struct ceph_osd_request *osd_req) 1418 { 1419 struct rbd_obj_request *obj_request = osd_req->r_priv; 1420 1421 osd_req->r_flags = CEPH_OSD_FLAG_WRITE; 1422 ktime_get_real_ts64(&osd_req->r_mtime); 1423 osd_req->r_data_offset = obj_request->ex.oe_off; 1424 } 1425 1426 static struct ceph_osd_request * 1427 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, 1428 struct ceph_snap_context *snapc, int num_ops) 1429 { 1430 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1431 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1432 struct ceph_osd_request *req; 1433 const char *name_format = rbd_dev->image_format == 1 ? 1434 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT; 1435 int ret; 1436 1437 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO); 1438 if (!req) 1439 return ERR_PTR(-ENOMEM); 1440 1441 list_add_tail(&req->r_private_item, &obj_req->osd_reqs); 1442 req->r_callback = rbd_osd_req_callback; 1443 req->r_priv = obj_req; 1444 1445 /* 1446 * Data objects may be stored in a separate pool, but always in 1447 * the same namespace in that pool as the header in its pool. 1448 */ 1449 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc); 1450 req->r_base_oloc.pool = rbd_dev->layout.pool_id; 1451 1452 ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format, 1453 rbd_dev->header.object_prefix, 1454 obj_req->ex.oe_objno); 1455 if (ret) 1456 return ERR_PTR(ret); 1457 1458 return req; 1459 } 1460 1461 static struct ceph_osd_request * 1462 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops) 1463 { 1464 rbd_assert(obj_req->img_request->snapc); 1465 return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc, 1466 num_ops); 1467 } 1468 1469 static struct rbd_obj_request *rbd_obj_request_create(void) 1470 { 1471 struct rbd_obj_request *obj_request; 1472 1473 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO); 1474 if (!obj_request) 1475 return NULL; 1476 1477 ceph_object_extent_init(&obj_request->ex); 1478 INIT_LIST_HEAD(&obj_request->osd_reqs); 1479 mutex_init(&obj_request->state_mutex); 1480 kref_init(&obj_request->kref); 1481 1482 dout("%s %p\n", __func__, obj_request); 1483 return obj_request; 1484 } 1485 1486 static void rbd_obj_request_destroy(struct kref *kref) 1487 { 1488 struct rbd_obj_request *obj_request; 1489 struct ceph_osd_request *osd_req; 1490 u32 i; 1491 1492 obj_request = container_of(kref, struct rbd_obj_request, kref); 1493 1494 dout("%s: obj %p\n", __func__, obj_request); 1495 1496 while (!list_empty(&obj_request->osd_reqs)) { 1497 osd_req = list_first_entry(&obj_request->osd_reqs, 1498 struct ceph_osd_request, r_private_item); 1499 list_del_init(&osd_req->r_private_item); 1500 ceph_osdc_put_request(osd_req); 1501 } 1502 1503 switch (obj_request->img_request->data_type) { 1504 case OBJ_REQUEST_NODATA: 1505 case OBJ_REQUEST_BIO: 1506 case OBJ_REQUEST_BVECS: 1507 break; /* Nothing to do */ 1508 case OBJ_REQUEST_OWN_BVECS: 1509 kfree(obj_request->bvec_pos.bvecs); 1510 break; 1511 default: 1512 BUG(); 1513 } 1514 1515 kfree(obj_request->img_extents); 1516 if (obj_request->copyup_bvecs) { 1517 for (i = 0; i < obj_request->copyup_bvec_count; i++) { 1518 if (obj_request->copyup_bvecs[i].bv_page) 1519 __free_page(obj_request->copyup_bvecs[i].bv_page); 1520 } 1521 kfree(obj_request->copyup_bvecs); 1522 } 1523 1524 kmem_cache_free(rbd_obj_request_cache, obj_request); 1525 } 1526 1527 /* It's OK to call this for a device with no parent */ 1528 1529 static void rbd_spec_put(struct rbd_spec *spec); 1530 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 1531 { 1532 rbd_dev_remove_parent(rbd_dev); 1533 rbd_spec_put(rbd_dev->parent_spec); 1534 rbd_dev->parent_spec = NULL; 1535 rbd_dev->parent_overlap = 0; 1536 } 1537 1538 /* 1539 * Parent image reference counting is used to determine when an 1540 * image's parent fields can be safely torn down--after there are no 1541 * more in-flight requests to the parent image. When the last 1542 * reference is dropped, cleaning them up is safe. 1543 */ 1544 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 1545 { 1546 int counter; 1547 1548 if (!rbd_dev->parent_spec) 1549 return; 1550 1551 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 1552 if (counter > 0) 1553 return; 1554 1555 /* Last reference; clean up parent data structures */ 1556 1557 if (!counter) 1558 rbd_dev_unparent(rbd_dev); 1559 else 1560 rbd_warn(rbd_dev, "parent reference underflow"); 1561 } 1562 1563 /* 1564 * If an image has a non-zero parent overlap, get a reference to its 1565 * parent. 1566 * 1567 * Returns true if the rbd device has a parent with a non-zero 1568 * overlap and a reference for it was successfully taken, or 1569 * false otherwise. 1570 */ 1571 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 1572 { 1573 int counter = 0; 1574 1575 if (!rbd_dev->parent_spec) 1576 return false; 1577 1578 if (rbd_dev->parent_overlap) 1579 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 1580 1581 if (counter < 0) 1582 rbd_warn(rbd_dev, "parent reference overflow"); 1583 1584 return counter > 0; 1585 } 1586 1587 static void rbd_img_request_init(struct rbd_img_request *img_request, 1588 struct rbd_device *rbd_dev, 1589 enum obj_operation_type op_type) 1590 { 1591 memset(img_request, 0, sizeof(*img_request)); 1592 1593 img_request->rbd_dev = rbd_dev; 1594 img_request->op_type = op_type; 1595 1596 INIT_LIST_HEAD(&img_request->lock_item); 1597 INIT_LIST_HEAD(&img_request->object_extents); 1598 mutex_init(&img_request->state_mutex); 1599 } 1600 1601 /* 1602 * Only snap_id is captured here, for reads. For writes, snapshot 1603 * context is captured in rbd_img_object_requests() after exclusive 1604 * lock is ensured to be held. 1605 */ 1606 static void rbd_img_capture_header(struct rbd_img_request *img_req) 1607 { 1608 struct rbd_device *rbd_dev = img_req->rbd_dev; 1609 1610 lockdep_assert_held(&rbd_dev->header_rwsem); 1611 1612 if (!rbd_img_is_write(img_req)) 1613 img_req->snap_id = rbd_dev->spec->snap_id; 1614 1615 if (rbd_dev_parent_get(rbd_dev)) 1616 img_request_layered_set(img_req); 1617 } 1618 1619 static void rbd_img_request_destroy(struct rbd_img_request *img_request) 1620 { 1621 struct rbd_obj_request *obj_request; 1622 struct rbd_obj_request *next_obj_request; 1623 1624 dout("%s: img %p\n", __func__, img_request); 1625 1626 WARN_ON(!list_empty(&img_request->lock_item)); 1627 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 1628 rbd_img_obj_request_del(img_request, obj_request); 1629 1630 if (img_request_layered_test(img_request)) 1631 rbd_dev_parent_put(img_request->rbd_dev); 1632 1633 if (rbd_img_is_write(img_request)) 1634 ceph_put_snap_context(img_request->snapc); 1635 1636 if (test_bit(IMG_REQ_CHILD, &img_request->flags)) 1637 kmem_cache_free(rbd_img_request_cache, img_request); 1638 } 1639 1640 #define BITS_PER_OBJ 2 1641 #define OBJS_PER_BYTE (BITS_PER_BYTE / BITS_PER_OBJ) 1642 #define OBJ_MASK ((1 << BITS_PER_OBJ) - 1) 1643 1644 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno, 1645 u64 *index, u8 *shift) 1646 { 1647 u32 off; 1648 1649 rbd_assert(objno < rbd_dev->object_map_size); 1650 *index = div_u64_rem(objno, OBJS_PER_BYTE, &off); 1651 *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ; 1652 } 1653 1654 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno) 1655 { 1656 u64 index; 1657 u8 shift; 1658 1659 lockdep_assert_held(&rbd_dev->object_map_lock); 1660 __rbd_object_map_index(rbd_dev, objno, &index, &shift); 1661 return (rbd_dev->object_map[index] >> shift) & OBJ_MASK; 1662 } 1663 1664 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val) 1665 { 1666 u64 index; 1667 u8 shift; 1668 u8 *p; 1669 1670 lockdep_assert_held(&rbd_dev->object_map_lock); 1671 rbd_assert(!(val & ~OBJ_MASK)); 1672 1673 __rbd_object_map_index(rbd_dev, objno, &index, &shift); 1674 p = &rbd_dev->object_map[index]; 1675 *p = (*p & ~(OBJ_MASK << shift)) | (val << shift); 1676 } 1677 1678 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno) 1679 { 1680 u8 state; 1681 1682 spin_lock(&rbd_dev->object_map_lock); 1683 state = __rbd_object_map_get(rbd_dev, objno); 1684 spin_unlock(&rbd_dev->object_map_lock); 1685 return state; 1686 } 1687 1688 static bool use_object_map(struct rbd_device *rbd_dev) 1689 { 1690 /* 1691 * An image mapped read-only can't use the object map -- it isn't 1692 * loaded because the header lock isn't acquired. Someone else can 1693 * write to the image and update the object map behind our back. 1694 * 1695 * A snapshot can't be written to, so using the object map is always 1696 * safe. 1697 */ 1698 if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev)) 1699 return false; 1700 1701 return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) && 1702 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)); 1703 } 1704 1705 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno) 1706 { 1707 u8 state; 1708 1709 /* fall back to default logic if object map is disabled or invalid */ 1710 if (!use_object_map(rbd_dev)) 1711 return true; 1712 1713 state = rbd_object_map_get(rbd_dev, objno); 1714 return state != OBJECT_NONEXISTENT; 1715 } 1716 1717 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id, 1718 struct ceph_object_id *oid) 1719 { 1720 if (snap_id == CEPH_NOSNAP) 1721 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX, 1722 rbd_dev->spec->image_id); 1723 else 1724 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX, 1725 rbd_dev->spec->image_id, snap_id); 1726 } 1727 1728 static int rbd_object_map_lock(struct rbd_device *rbd_dev) 1729 { 1730 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1731 CEPH_DEFINE_OID_ONSTACK(oid); 1732 u8 lock_type; 1733 char *lock_tag; 1734 struct ceph_locker *lockers; 1735 u32 num_lockers; 1736 bool broke_lock = false; 1737 int ret; 1738 1739 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid); 1740 1741 again: 1742 ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME, 1743 CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0); 1744 if (ret != -EBUSY || broke_lock) { 1745 if (ret == -EEXIST) 1746 ret = 0; /* already locked by myself */ 1747 if (ret) 1748 rbd_warn(rbd_dev, "failed to lock object map: %d", ret); 1749 return ret; 1750 } 1751 1752 ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc, 1753 RBD_LOCK_NAME, &lock_type, &lock_tag, 1754 &lockers, &num_lockers); 1755 if (ret) { 1756 if (ret == -ENOENT) 1757 goto again; 1758 1759 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret); 1760 return ret; 1761 } 1762 1763 kfree(lock_tag); 1764 if (num_lockers == 0) 1765 goto again; 1766 1767 rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu", 1768 ENTITY_NAME(lockers[0].id.name)); 1769 1770 ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc, 1771 RBD_LOCK_NAME, lockers[0].id.cookie, 1772 &lockers[0].id.name); 1773 ceph_free_lockers(lockers, num_lockers); 1774 if (ret) { 1775 if (ret == -ENOENT) 1776 goto again; 1777 1778 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret); 1779 return ret; 1780 } 1781 1782 broke_lock = true; 1783 goto again; 1784 } 1785 1786 static void rbd_object_map_unlock(struct rbd_device *rbd_dev) 1787 { 1788 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1789 CEPH_DEFINE_OID_ONSTACK(oid); 1790 int ret; 1791 1792 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid); 1793 1794 ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME, 1795 ""); 1796 if (ret && ret != -ENOENT) 1797 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret); 1798 } 1799 1800 static int decode_object_map_header(void **p, void *end, u64 *object_map_size) 1801 { 1802 u8 struct_v; 1803 u32 struct_len; 1804 u32 header_len; 1805 void *header_end; 1806 int ret; 1807 1808 ceph_decode_32_safe(p, end, header_len, e_inval); 1809 header_end = *p + header_len; 1810 1811 ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v, 1812 &struct_len); 1813 if (ret) 1814 return ret; 1815 1816 ceph_decode_64_safe(p, end, *object_map_size, e_inval); 1817 1818 *p = header_end; 1819 return 0; 1820 1821 e_inval: 1822 return -EINVAL; 1823 } 1824 1825 static int __rbd_object_map_load(struct rbd_device *rbd_dev) 1826 { 1827 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1828 CEPH_DEFINE_OID_ONSTACK(oid); 1829 struct page **pages; 1830 void *p, *end; 1831 size_t reply_len; 1832 u64 num_objects; 1833 u64 object_map_bytes; 1834 u64 object_map_size; 1835 int num_pages; 1836 int ret; 1837 1838 rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size); 1839 1840 num_objects = ceph_get_num_objects(&rbd_dev->layout, 1841 rbd_dev->mapping.size); 1842 object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ, 1843 BITS_PER_BYTE); 1844 num_pages = calc_pages_for(0, object_map_bytes) + 1; 1845 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL); 1846 if (IS_ERR(pages)) 1847 return PTR_ERR(pages); 1848 1849 reply_len = num_pages * PAGE_SIZE; 1850 rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid); 1851 ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc, 1852 "rbd", "object_map_load", CEPH_OSD_FLAG_READ, 1853 NULL, 0, pages, &reply_len); 1854 if (ret) 1855 goto out; 1856 1857 p = page_address(pages[0]); 1858 end = p + min(reply_len, (size_t)PAGE_SIZE); 1859 ret = decode_object_map_header(&p, end, &object_map_size); 1860 if (ret) 1861 goto out; 1862 1863 if (object_map_size != num_objects) { 1864 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu", 1865 object_map_size, num_objects); 1866 ret = -EINVAL; 1867 goto out; 1868 } 1869 1870 if (offset_in_page(p) + object_map_bytes > reply_len) { 1871 ret = -EINVAL; 1872 goto out; 1873 } 1874 1875 rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL); 1876 if (!rbd_dev->object_map) { 1877 ret = -ENOMEM; 1878 goto out; 1879 } 1880 1881 rbd_dev->object_map_size = object_map_size; 1882 ceph_copy_from_page_vector(pages, rbd_dev->object_map, 1883 offset_in_page(p), object_map_bytes); 1884 1885 out: 1886 ceph_release_page_vector(pages, num_pages); 1887 return ret; 1888 } 1889 1890 static void rbd_object_map_free(struct rbd_device *rbd_dev) 1891 { 1892 kvfree(rbd_dev->object_map); 1893 rbd_dev->object_map = NULL; 1894 rbd_dev->object_map_size = 0; 1895 } 1896 1897 static int rbd_object_map_load(struct rbd_device *rbd_dev) 1898 { 1899 int ret; 1900 1901 ret = __rbd_object_map_load(rbd_dev); 1902 if (ret) 1903 return ret; 1904 1905 ret = rbd_dev_v2_get_flags(rbd_dev); 1906 if (ret) { 1907 rbd_object_map_free(rbd_dev); 1908 return ret; 1909 } 1910 1911 if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID) 1912 rbd_warn(rbd_dev, "object map is invalid"); 1913 1914 return 0; 1915 } 1916 1917 static int rbd_object_map_open(struct rbd_device *rbd_dev) 1918 { 1919 int ret; 1920 1921 ret = rbd_object_map_lock(rbd_dev); 1922 if (ret) 1923 return ret; 1924 1925 ret = rbd_object_map_load(rbd_dev); 1926 if (ret) { 1927 rbd_object_map_unlock(rbd_dev); 1928 return ret; 1929 } 1930 1931 return 0; 1932 } 1933 1934 static void rbd_object_map_close(struct rbd_device *rbd_dev) 1935 { 1936 rbd_object_map_free(rbd_dev); 1937 rbd_object_map_unlock(rbd_dev); 1938 } 1939 1940 /* 1941 * This function needs snap_id (or more precisely just something to 1942 * distinguish between HEAD and snapshot object maps), new_state and 1943 * current_state that were passed to rbd_object_map_update(). 1944 * 1945 * To avoid allocating and stashing a context we piggyback on the OSD 1946 * request. A HEAD update has two ops (assert_locked). For new_state 1947 * and current_state we decode our own object_map_update op, encoded in 1948 * rbd_cls_object_map_update(). 1949 */ 1950 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req, 1951 struct ceph_osd_request *osd_req) 1952 { 1953 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1954 struct ceph_osd_data *osd_data; 1955 u64 objno; 1956 u8 state, new_state, current_state; 1957 bool has_current_state; 1958 void *p; 1959 1960 if (osd_req->r_result) 1961 return osd_req->r_result; 1962 1963 /* 1964 * Nothing to do for a snapshot object map. 1965 */ 1966 if (osd_req->r_num_ops == 1) 1967 return 0; 1968 1969 /* 1970 * Update in-memory HEAD object map. 1971 */ 1972 rbd_assert(osd_req->r_num_ops == 2); 1973 osd_data = osd_req_op_data(osd_req, 1, cls, request_data); 1974 rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES); 1975 1976 p = page_address(osd_data->pages[0]); 1977 objno = ceph_decode_64(&p); 1978 rbd_assert(objno == obj_req->ex.oe_objno); 1979 rbd_assert(ceph_decode_64(&p) == objno + 1); 1980 new_state = ceph_decode_8(&p); 1981 has_current_state = ceph_decode_8(&p); 1982 if (has_current_state) 1983 current_state = ceph_decode_8(&p); 1984 1985 spin_lock(&rbd_dev->object_map_lock); 1986 state = __rbd_object_map_get(rbd_dev, objno); 1987 if (!has_current_state || current_state == state || 1988 (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN)) 1989 __rbd_object_map_set(rbd_dev, objno, new_state); 1990 spin_unlock(&rbd_dev->object_map_lock); 1991 1992 return 0; 1993 } 1994 1995 static void rbd_object_map_callback(struct ceph_osd_request *osd_req) 1996 { 1997 struct rbd_obj_request *obj_req = osd_req->r_priv; 1998 int result; 1999 2000 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req, 2001 osd_req->r_result, obj_req); 2002 2003 result = rbd_object_map_update_finish(obj_req, osd_req); 2004 rbd_obj_handle_request(obj_req, result); 2005 } 2006 2007 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state) 2008 { 2009 u8 state = rbd_object_map_get(rbd_dev, objno); 2010 2011 if (state == new_state || 2012 (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) || 2013 (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING)) 2014 return false; 2015 2016 return true; 2017 } 2018 2019 static int rbd_cls_object_map_update(struct ceph_osd_request *req, 2020 int which, u64 objno, u8 new_state, 2021 const u8 *current_state) 2022 { 2023 struct page **pages; 2024 void *p, *start; 2025 int ret; 2026 2027 ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update"); 2028 if (ret) 2029 return ret; 2030 2031 pages = ceph_alloc_page_vector(1, GFP_NOIO); 2032 if (IS_ERR(pages)) 2033 return PTR_ERR(pages); 2034 2035 p = start = page_address(pages[0]); 2036 ceph_encode_64(&p, objno); 2037 ceph_encode_64(&p, objno + 1); 2038 ceph_encode_8(&p, new_state); 2039 if (current_state) { 2040 ceph_encode_8(&p, 1); 2041 ceph_encode_8(&p, *current_state); 2042 } else { 2043 ceph_encode_8(&p, 0); 2044 } 2045 2046 osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0, 2047 false, true); 2048 return 0; 2049 } 2050 2051 /* 2052 * Return: 2053 * 0 - object map update sent 2054 * 1 - object map update isn't needed 2055 * <0 - error 2056 */ 2057 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id, 2058 u8 new_state, const u8 *current_state) 2059 { 2060 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2061 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2062 struct ceph_osd_request *req; 2063 int num_ops = 1; 2064 int which = 0; 2065 int ret; 2066 2067 if (snap_id == CEPH_NOSNAP) { 2068 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state)) 2069 return 1; 2070 2071 num_ops++; /* assert_locked */ 2072 } 2073 2074 req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO); 2075 if (!req) 2076 return -ENOMEM; 2077 2078 list_add_tail(&req->r_private_item, &obj_req->osd_reqs); 2079 req->r_callback = rbd_object_map_callback; 2080 req->r_priv = obj_req; 2081 2082 rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid); 2083 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc); 2084 req->r_flags = CEPH_OSD_FLAG_WRITE; 2085 ktime_get_real_ts64(&req->r_mtime); 2086 2087 if (snap_id == CEPH_NOSNAP) { 2088 /* 2089 * Protect against possible race conditions during lock 2090 * ownership transitions. 2091 */ 2092 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME, 2093 CEPH_CLS_LOCK_EXCLUSIVE, "", ""); 2094 if (ret) 2095 return ret; 2096 } 2097 2098 ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno, 2099 new_state, current_state); 2100 if (ret) 2101 return ret; 2102 2103 ret = ceph_osdc_alloc_messages(req, GFP_NOIO); 2104 if (ret) 2105 return ret; 2106 2107 ceph_osdc_start_request(osdc, req); 2108 return 0; 2109 } 2110 2111 static void prune_extents(struct ceph_file_extent *img_extents, 2112 u32 *num_img_extents, u64 overlap) 2113 { 2114 u32 cnt = *num_img_extents; 2115 2116 /* drop extents completely beyond the overlap */ 2117 while (cnt && img_extents[cnt - 1].fe_off >= overlap) 2118 cnt--; 2119 2120 if (cnt) { 2121 struct ceph_file_extent *ex = &img_extents[cnt - 1]; 2122 2123 /* trim final overlapping extent */ 2124 if (ex->fe_off + ex->fe_len > overlap) 2125 ex->fe_len = overlap - ex->fe_off; 2126 } 2127 2128 *num_img_extents = cnt; 2129 } 2130 2131 /* 2132 * Determine the byte range(s) covered by either just the object extent 2133 * or the entire object in the parent image. 2134 */ 2135 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req, 2136 bool entire) 2137 { 2138 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2139 int ret; 2140 2141 if (!rbd_dev->parent_overlap) 2142 return 0; 2143 2144 ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno, 2145 entire ? 0 : obj_req->ex.oe_off, 2146 entire ? rbd_dev->layout.object_size : 2147 obj_req->ex.oe_len, 2148 &obj_req->img_extents, 2149 &obj_req->num_img_extents); 2150 if (ret) 2151 return ret; 2152 2153 prune_extents(obj_req->img_extents, &obj_req->num_img_extents, 2154 rbd_dev->parent_overlap); 2155 return 0; 2156 } 2157 2158 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which) 2159 { 2160 struct rbd_obj_request *obj_req = osd_req->r_priv; 2161 2162 switch (obj_req->img_request->data_type) { 2163 case OBJ_REQUEST_BIO: 2164 osd_req_op_extent_osd_data_bio(osd_req, which, 2165 &obj_req->bio_pos, 2166 obj_req->ex.oe_len); 2167 break; 2168 case OBJ_REQUEST_BVECS: 2169 case OBJ_REQUEST_OWN_BVECS: 2170 rbd_assert(obj_req->bvec_pos.iter.bi_size == 2171 obj_req->ex.oe_len); 2172 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count); 2173 osd_req_op_extent_osd_data_bvec_pos(osd_req, which, 2174 &obj_req->bvec_pos); 2175 break; 2176 default: 2177 BUG(); 2178 } 2179 } 2180 2181 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which) 2182 { 2183 struct page **pages; 2184 2185 /* 2186 * The response data for a STAT call consists of: 2187 * le64 length; 2188 * struct { 2189 * le32 tv_sec; 2190 * le32 tv_nsec; 2191 * } mtime; 2192 */ 2193 pages = ceph_alloc_page_vector(1, GFP_NOIO); 2194 if (IS_ERR(pages)) 2195 return PTR_ERR(pages); 2196 2197 osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0); 2198 osd_req_op_raw_data_in_pages(osd_req, which, pages, 2199 8 + sizeof(struct ceph_timespec), 2200 0, false, true); 2201 return 0; 2202 } 2203 2204 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which, 2205 u32 bytes) 2206 { 2207 struct rbd_obj_request *obj_req = osd_req->r_priv; 2208 int ret; 2209 2210 ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup"); 2211 if (ret) 2212 return ret; 2213 2214 osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs, 2215 obj_req->copyup_bvec_count, bytes); 2216 return 0; 2217 } 2218 2219 static int rbd_obj_init_read(struct rbd_obj_request *obj_req) 2220 { 2221 obj_req->read_state = RBD_OBJ_READ_START; 2222 return 0; 2223 } 2224 2225 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req, 2226 int which) 2227 { 2228 struct rbd_obj_request *obj_req = osd_req->r_priv; 2229 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2230 u16 opcode; 2231 2232 if (!use_object_map(rbd_dev) || 2233 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) { 2234 osd_req_op_alloc_hint_init(osd_req, which++, 2235 rbd_dev->layout.object_size, 2236 rbd_dev->layout.object_size, 2237 rbd_dev->opts->alloc_hint_flags); 2238 } 2239 2240 if (rbd_obj_is_entire(obj_req)) 2241 opcode = CEPH_OSD_OP_WRITEFULL; 2242 else 2243 opcode = CEPH_OSD_OP_WRITE; 2244 2245 osd_req_op_extent_init(osd_req, which, opcode, 2246 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0); 2247 rbd_osd_setup_data(osd_req, which); 2248 } 2249 2250 static int rbd_obj_init_write(struct rbd_obj_request *obj_req) 2251 { 2252 int ret; 2253 2254 /* reverse map the entire object onto the parent */ 2255 ret = rbd_obj_calc_img_extents(obj_req, true); 2256 if (ret) 2257 return ret; 2258 2259 obj_req->write_state = RBD_OBJ_WRITE_START; 2260 return 0; 2261 } 2262 2263 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req) 2264 { 2265 return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE : 2266 CEPH_OSD_OP_ZERO; 2267 } 2268 2269 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req, 2270 int which) 2271 { 2272 struct rbd_obj_request *obj_req = osd_req->r_priv; 2273 2274 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) { 2275 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION); 2276 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0); 2277 } else { 2278 osd_req_op_extent_init(osd_req, which, 2279 truncate_or_zero_opcode(obj_req), 2280 obj_req->ex.oe_off, obj_req->ex.oe_len, 2281 0, 0); 2282 } 2283 } 2284 2285 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req) 2286 { 2287 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2288 u64 off, next_off; 2289 int ret; 2290 2291 /* 2292 * Align the range to alloc_size boundary and punt on discards 2293 * that are too small to free up any space. 2294 * 2295 * alloc_size == object_size && is_tail() is a special case for 2296 * filestore with filestore_punch_hole = false, needed to allow 2297 * truncate (in addition to delete). 2298 */ 2299 if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size || 2300 !rbd_obj_is_tail(obj_req)) { 2301 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size); 2302 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len, 2303 rbd_dev->opts->alloc_size); 2304 if (off >= next_off) 2305 return 1; 2306 2307 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__, 2308 obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len, 2309 off, next_off - off); 2310 obj_req->ex.oe_off = off; 2311 obj_req->ex.oe_len = next_off - off; 2312 } 2313 2314 /* reverse map the entire object onto the parent */ 2315 ret = rbd_obj_calc_img_extents(obj_req, true); 2316 if (ret) 2317 return ret; 2318 2319 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT; 2320 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) 2321 obj_req->flags |= RBD_OBJ_FLAG_DELETION; 2322 2323 obj_req->write_state = RBD_OBJ_WRITE_START; 2324 return 0; 2325 } 2326 2327 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req, 2328 int which) 2329 { 2330 struct rbd_obj_request *obj_req = osd_req->r_priv; 2331 u16 opcode; 2332 2333 if (rbd_obj_is_entire(obj_req)) { 2334 if (obj_req->num_img_extents) { 2335 if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)) 2336 osd_req_op_init(osd_req, which++, 2337 CEPH_OSD_OP_CREATE, 0); 2338 opcode = CEPH_OSD_OP_TRUNCATE; 2339 } else { 2340 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION); 2341 osd_req_op_init(osd_req, which++, 2342 CEPH_OSD_OP_DELETE, 0); 2343 opcode = 0; 2344 } 2345 } else { 2346 opcode = truncate_or_zero_opcode(obj_req); 2347 } 2348 2349 if (opcode) 2350 osd_req_op_extent_init(osd_req, which, opcode, 2351 obj_req->ex.oe_off, obj_req->ex.oe_len, 2352 0, 0); 2353 } 2354 2355 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req) 2356 { 2357 int ret; 2358 2359 /* reverse map the entire object onto the parent */ 2360 ret = rbd_obj_calc_img_extents(obj_req, true); 2361 if (ret) 2362 return ret; 2363 2364 if (!obj_req->num_img_extents) { 2365 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT; 2366 if (rbd_obj_is_entire(obj_req)) 2367 obj_req->flags |= RBD_OBJ_FLAG_DELETION; 2368 } 2369 2370 obj_req->write_state = RBD_OBJ_WRITE_START; 2371 return 0; 2372 } 2373 2374 static int count_write_ops(struct rbd_obj_request *obj_req) 2375 { 2376 struct rbd_img_request *img_req = obj_req->img_request; 2377 2378 switch (img_req->op_type) { 2379 case OBJ_OP_WRITE: 2380 if (!use_object_map(img_req->rbd_dev) || 2381 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) 2382 return 2; /* setallochint + write/writefull */ 2383 2384 return 1; /* write/writefull */ 2385 case OBJ_OP_DISCARD: 2386 return 1; /* delete/truncate/zero */ 2387 case OBJ_OP_ZEROOUT: 2388 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents && 2389 !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)) 2390 return 2; /* create + truncate */ 2391 2392 return 1; /* delete/truncate/zero */ 2393 default: 2394 BUG(); 2395 } 2396 } 2397 2398 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req, 2399 int which) 2400 { 2401 struct rbd_obj_request *obj_req = osd_req->r_priv; 2402 2403 switch (obj_req->img_request->op_type) { 2404 case OBJ_OP_WRITE: 2405 __rbd_osd_setup_write_ops(osd_req, which); 2406 break; 2407 case OBJ_OP_DISCARD: 2408 __rbd_osd_setup_discard_ops(osd_req, which); 2409 break; 2410 case OBJ_OP_ZEROOUT: 2411 __rbd_osd_setup_zeroout_ops(osd_req, which); 2412 break; 2413 default: 2414 BUG(); 2415 } 2416 } 2417 2418 /* 2419 * Prune the list of object requests (adjust offset and/or length, drop 2420 * redundant requests). Prepare object request state machines and image 2421 * request state machine for execution. 2422 */ 2423 static int __rbd_img_fill_request(struct rbd_img_request *img_req) 2424 { 2425 struct rbd_obj_request *obj_req, *next_obj_req; 2426 int ret; 2427 2428 for_each_obj_request_safe(img_req, obj_req, next_obj_req) { 2429 switch (img_req->op_type) { 2430 case OBJ_OP_READ: 2431 ret = rbd_obj_init_read(obj_req); 2432 break; 2433 case OBJ_OP_WRITE: 2434 ret = rbd_obj_init_write(obj_req); 2435 break; 2436 case OBJ_OP_DISCARD: 2437 ret = rbd_obj_init_discard(obj_req); 2438 break; 2439 case OBJ_OP_ZEROOUT: 2440 ret = rbd_obj_init_zeroout(obj_req); 2441 break; 2442 default: 2443 BUG(); 2444 } 2445 if (ret < 0) 2446 return ret; 2447 if (ret > 0) { 2448 rbd_img_obj_request_del(img_req, obj_req); 2449 continue; 2450 } 2451 } 2452 2453 img_req->state = RBD_IMG_START; 2454 return 0; 2455 } 2456 2457 union rbd_img_fill_iter { 2458 struct ceph_bio_iter bio_iter; 2459 struct ceph_bvec_iter bvec_iter; 2460 }; 2461 2462 struct rbd_img_fill_ctx { 2463 enum obj_request_type pos_type; 2464 union rbd_img_fill_iter *pos; 2465 union rbd_img_fill_iter iter; 2466 ceph_object_extent_fn_t set_pos_fn; 2467 ceph_object_extent_fn_t count_fn; 2468 ceph_object_extent_fn_t copy_fn; 2469 }; 2470 2471 static struct ceph_object_extent *alloc_object_extent(void *arg) 2472 { 2473 struct rbd_img_request *img_req = arg; 2474 struct rbd_obj_request *obj_req; 2475 2476 obj_req = rbd_obj_request_create(); 2477 if (!obj_req) 2478 return NULL; 2479 2480 rbd_img_obj_request_add(img_req, obj_req); 2481 return &obj_req->ex; 2482 } 2483 2484 /* 2485 * While su != os && sc == 1 is technically not fancy (it's the same 2486 * layout as su == os && sc == 1), we can't use the nocopy path for it 2487 * because ->set_pos_fn() should be called only once per object. 2488 * ceph_file_to_extents() invokes action_fn once per stripe unit, so 2489 * treat su != os && sc == 1 as fancy. 2490 */ 2491 static bool rbd_layout_is_fancy(struct ceph_file_layout *l) 2492 { 2493 return l->stripe_unit != l->object_size; 2494 } 2495 2496 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req, 2497 struct ceph_file_extent *img_extents, 2498 u32 num_img_extents, 2499 struct rbd_img_fill_ctx *fctx) 2500 { 2501 u32 i; 2502 int ret; 2503 2504 img_req->data_type = fctx->pos_type; 2505 2506 /* 2507 * Create object requests and set each object request's starting 2508 * position in the provided bio (list) or bio_vec array. 2509 */ 2510 fctx->iter = *fctx->pos; 2511 for (i = 0; i < num_img_extents; i++) { 2512 ret = ceph_file_to_extents(&img_req->rbd_dev->layout, 2513 img_extents[i].fe_off, 2514 img_extents[i].fe_len, 2515 &img_req->object_extents, 2516 alloc_object_extent, img_req, 2517 fctx->set_pos_fn, &fctx->iter); 2518 if (ret) 2519 return ret; 2520 } 2521 2522 return __rbd_img_fill_request(img_req); 2523 } 2524 2525 /* 2526 * Map a list of image extents to a list of object extents, create the 2527 * corresponding object requests (normally each to a different object, 2528 * but not always) and add them to @img_req. For each object request, 2529 * set up its data descriptor to point to the corresponding chunk(s) of 2530 * @fctx->pos data buffer. 2531 * 2532 * Because ceph_file_to_extents() will merge adjacent object extents 2533 * together, each object request's data descriptor may point to multiple 2534 * different chunks of @fctx->pos data buffer. 2535 * 2536 * @fctx->pos data buffer is assumed to be large enough. 2537 */ 2538 static int rbd_img_fill_request(struct rbd_img_request *img_req, 2539 struct ceph_file_extent *img_extents, 2540 u32 num_img_extents, 2541 struct rbd_img_fill_ctx *fctx) 2542 { 2543 struct rbd_device *rbd_dev = img_req->rbd_dev; 2544 struct rbd_obj_request *obj_req; 2545 u32 i; 2546 int ret; 2547 2548 if (fctx->pos_type == OBJ_REQUEST_NODATA || 2549 !rbd_layout_is_fancy(&rbd_dev->layout)) 2550 return rbd_img_fill_request_nocopy(img_req, img_extents, 2551 num_img_extents, fctx); 2552 2553 img_req->data_type = OBJ_REQUEST_OWN_BVECS; 2554 2555 /* 2556 * Create object requests and determine ->bvec_count for each object 2557 * request. Note that ->bvec_count sum over all object requests may 2558 * be greater than the number of bio_vecs in the provided bio (list) 2559 * or bio_vec array because when mapped, those bio_vecs can straddle 2560 * stripe unit boundaries. 2561 */ 2562 fctx->iter = *fctx->pos; 2563 for (i = 0; i < num_img_extents; i++) { 2564 ret = ceph_file_to_extents(&rbd_dev->layout, 2565 img_extents[i].fe_off, 2566 img_extents[i].fe_len, 2567 &img_req->object_extents, 2568 alloc_object_extent, img_req, 2569 fctx->count_fn, &fctx->iter); 2570 if (ret) 2571 return ret; 2572 } 2573 2574 for_each_obj_request(img_req, obj_req) { 2575 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count, 2576 sizeof(*obj_req->bvec_pos.bvecs), 2577 GFP_NOIO); 2578 if (!obj_req->bvec_pos.bvecs) 2579 return -ENOMEM; 2580 } 2581 2582 /* 2583 * Fill in each object request's private bio_vec array, splitting and 2584 * rearranging the provided bio_vecs in stripe unit chunks as needed. 2585 */ 2586 fctx->iter = *fctx->pos; 2587 for (i = 0; i < num_img_extents; i++) { 2588 ret = ceph_iterate_extents(&rbd_dev->layout, 2589 img_extents[i].fe_off, 2590 img_extents[i].fe_len, 2591 &img_req->object_extents, 2592 fctx->copy_fn, &fctx->iter); 2593 if (ret) 2594 return ret; 2595 } 2596 2597 return __rbd_img_fill_request(img_req); 2598 } 2599 2600 static int rbd_img_fill_nodata(struct rbd_img_request *img_req, 2601 u64 off, u64 len) 2602 { 2603 struct ceph_file_extent ex = { off, len }; 2604 union rbd_img_fill_iter dummy = {}; 2605 struct rbd_img_fill_ctx fctx = { 2606 .pos_type = OBJ_REQUEST_NODATA, 2607 .pos = &dummy, 2608 }; 2609 2610 return rbd_img_fill_request(img_req, &ex, 1, &fctx); 2611 } 2612 2613 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg) 2614 { 2615 struct rbd_obj_request *obj_req = 2616 container_of(ex, struct rbd_obj_request, ex); 2617 struct ceph_bio_iter *it = arg; 2618 2619 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2620 obj_req->bio_pos = *it; 2621 ceph_bio_iter_advance(it, bytes); 2622 } 2623 2624 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2625 { 2626 struct rbd_obj_request *obj_req = 2627 container_of(ex, struct rbd_obj_request, ex); 2628 struct ceph_bio_iter *it = arg; 2629 2630 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2631 ceph_bio_iter_advance_step(it, bytes, ({ 2632 obj_req->bvec_count++; 2633 })); 2634 2635 } 2636 2637 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2638 { 2639 struct rbd_obj_request *obj_req = 2640 container_of(ex, struct rbd_obj_request, ex); 2641 struct ceph_bio_iter *it = arg; 2642 2643 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2644 ceph_bio_iter_advance_step(it, bytes, ({ 2645 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv; 2646 obj_req->bvec_pos.iter.bi_size += bv.bv_len; 2647 })); 2648 } 2649 2650 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req, 2651 struct ceph_file_extent *img_extents, 2652 u32 num_img_extents, 2653 struct ceph_bio_iter *bio_pos) 2654 { 2655 struct rbd_img_fill_ctx fctx = { 2656 .pos_type = OBJ_REQUEST_BIO, 2657 .pos = (union rbd_img_fill_iter *)bio_pos, 2658 .set_pos_fn = set_bio_pos, 2659 .count_fn = count_bio_bvecs, 2660 .copy_fn = copy_bio_bvecs, 2661 }; 2662 2663 return rbd_img_fill_request(img_req, img_extents, num_img_extents, 2664 &fctx); 2665 } 2666 2667 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req, 2668 u64 off, u64 len, struct bio *bio) 2669 { 2670 struct ceph_file_extent ex = { off, len }; 2671 struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter }; 2672 2673 return __rbd_img_fill_from_bio(img_req, &ex, 1, &it); 2674 } 2675 2676 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg) 2677 { 2678 struct rbd_obj_request *obj_req = 2679 container_of(ex, struct rbd_obj_request, ex); 2680 struct ceph_bvec_iter *it = arg; 2681 2682 obj_req->bvec_pos = *it; 2683 ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes); 2684 ceph_bvec_iter_advance(it, bytes); 2685 } 2686 2687 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2688 { 2689 struct rbd_obj_request *obj_req = 2690 container_of(ex, struct rbd_obj_request, ex); 2691 struct ceph_bvec_iter *it = arg; 2692 2693 ceph_bvec_iter_advance_step(it, bytes, ({ 2694 obj_req->bvec_count++; 2695 })); 2696 } 2697 2698 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2699 { 2700 struct rbd_obj_request *obj_req = 2701 container_of(ex, struct rbd_obj_request, ex); 2702 struct ceph_bvec_iter *it = arg; 2703 2704 ceph_bvec_iter_advance_step(it, bytes, ({ 2705 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv; 2706 obj_req->bvec_pos.iter.bi_size += bv.bv_len; 2707 })); 2708 } 2709 2710 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req, 2711 struct ceph_file_extent *img_extents, 2712 u32 num_img_extents, 2713 struct ceph_bvec_iter *bvec_pos) 2714 { 2715 struct rbd_img_fill_ctx fctx = { 2716 .pos_type = OBJ_REQUEST_BVECS, 2717 .pos = (union rbd_img_fill_iter *)bvec_pos, 2718 .set_pos_fn = set_bvec_pos, 2719 .count_fn = count_bvecs, 2720 .copy_fn = copy_bvecs, 2721 }; 2722 2723 return rbd_img_fill_request(img_req, img_extents, num_img_extents, 2724 &fctx); 2725 } 2726 2727 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req, 2728 struct ceph_file_extent *img_extents, 2729 u32 num_img_extents, 2730 struct bio_vec *bvecs) 2731 { 2732 struct ceph_bvec_iter it = { 2733 .bvecs = bvecs, 2734 .iter = { .bi_size = ceph_file_extents_bytes(img_extents, 2735 num_img_extents) }, 2736 }; 2737 2738 return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents, 2739 &it); 2740 } 2741 2742 static void rbd_img_handle_request_work(struct work_struct *work) 2743 { 2744 struct rbd_img_request *img_req = 2745 container_of(work, struct rbd_img_request, work); 2746 2747 rbd_img_handle_request(img_req, img_req->work_result); 2748 } 2749 2750 static void rbd_img_schedule(struct rbd_img_request *img_req, int result) 2751 { 2752 INIT_WORK(&img_req->work, rbd_img_handle_request_work); 2753 img_req->work_result = result; 2754 queue_work(rbd_wq, &img_req->work); 2755 } 2756 2757 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req) 2758 { 2759 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2760 2761 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) { 2762 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST; 2763 return true; 2764 } 2765 2766 dout("%s %p objno %llu assuming dne\n", __func__, obj_req, 2767 obj_req->ex.oe_objno); 2768 return false; 2769 } 2770 2771 static int rbd_obj_read_object(struct rbd_obj_request *obj_req) 2772 { 2773 struct ceph_osd_request *osd_req; 2774 int ret; 2775 2776 osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1); 2777 if (IS_ERR(osd_req)) 2778 return PTR_ERR(osd_req); 2779 2780 osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ, 2781 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0); 2782 rbd_osd_setup_data(osd_req, 0); 2783 rbd_osd_format_read(osd_req); 2784 2785 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 2786 if (ret) 2787 return ret; 2788 2789 rbd_osd_submit(osd_req); 2790 return 0; 2791 } 2792 2793 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req) 2794 { 2795 struct rbd_img_request *img_req = obj_req->img_request; 2796 struct rbd_device *parent = img_req->rbd_dev->parent; 2797 struct rbd_img_request *child_img_req; 2798 int ret; 2799 2800 child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO); 2801 if (!child_img_req) 2802 return -ENOMEM; 2803 2804 rbd_img_request_init(child_img_req, parent, OBJ_OP_READ); 2805 __set_bit(IMG_REQ_CHILD, &child_img_req->flags); 2806 child_img_req->obj_request = obj_req; 2807 2808 down_read(&parent->header_rwsem); 2809 rbd_img_capture_header(child_img_req); 2810 up_read(&parent->header_rwsem); 2811 2812 dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req, 2813 obj_req); 2814 2815 if (!rbd_img_is_write(img_req)) { 2816 switch (img_req->data_type) { 2817 case OBJ_REQUEST_BIO: 2818 ret = __rbd_img_fill_from_bio(child_img_req, 2819 obj_req->img_extents, 2820 obj_req->num_img_extents, 2821 &obj_req->bio_pos); 2822 break; 2823 case OBJ_REQUEST_BVECS: 2824 case OBJ_REQUEST_OWN_BVECS: 2825 ret = __rbd_img_fill_from_bvecs(child_img_req, 2826 obj_req->img_extents, 2827 obj_req->num_img_extents, 2828 &obj_req->bvec_pos); 2829 break; 2830 default: 2831 BUG(); 2832 } 2833 } else { 2834 ret = rbd_img_fill_from_bvecs(child_img_req, 2835 obj_req->img_extents, 2836 obj_req->num_img_extents, 2837 obj_req->copyup_bvecs); 2838 } 2839 if (ret) { 2840 rbd_img_request_destroy(child_img_req); 2841 return ret; 2842 } 2843 2844 /* avoid parent chain recursion */ 2845 rbd_img_schedule(child_img_req, 0); 2846 return 0; 2847 } 2848 2849 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result) 2850 { 2851 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2852 int ret; 2853 2854 again: 2855 switch (obj_req->read_state) { 2856 case RBD_OBJ_READ_START: 2857 rbd_assert(!*result); 2858 2859 if (!rbd_obj_may_exist(obj_req)) { 2860 *result = -ENOENT; 2861 obj_req->read_state = RBD_OBJ_READ_OBJECT; 2862 goto again; 2863 } 2864 2865 ret = rbd_obj_read_object(obj_req); 2866 if (ret) { 2867 *result = ret; 2868 return true; 2869 } 2870 obj_req->read_state = RBD_OBJ_READ_OBJECT; 2871 return false; 2872 case RBD_OBJ_READ_OBJECT: 2873 if (*result == -ENOENT && rbd_dev->parent_overlap) { 2874 /* reverse map this object extent onto the parent */ 2875 ret = rbd_obj_calc_img_extents(obj_req, false); 2876 if (ret) { 2877 *result = ret; 2878 return true; 2879 } 2880 if (obj_req->num_img_extents) { 2881 ret = rbd_obj_read_from_parent(obj_req); 2882 if (ret) { 2883 *result = ret; 2884 return true; 2885 } 2886 obj_req->read_state = RBD_OBJ_READ_PARENT; 2887 return false; 2888 } 2889 } 2890 2891 /* 2892 * -ENOENT means a hole in the image -- zero-fill the entire 2893 * length of the request. A short read also implies zero-fill 2894 * to the end of the request. 2895 */ 2896 if (*result == -ENOENT) { 2897 rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len); 2898 *result = 0; 2899 } else if (*result >= 0) { 2900 if (*result < obj_req->ex.oe_len) 2901 rbd_obj_zero_range(obj_req, *result, 2902 obj_req->ex.oe_len - *result); 2903 else 2904 rbd_assert(*result == obj_req->ex.oe_len); 2905 *result = 0; 2906 } 2907 return true; 2908 case RBD_OBJ_READ_PARENT: 2909 /* 2910 * The parent image is read only up to the overlap -- zero-fill 2911 * from the overlap to the end of the request. 2912 */ 2913 if (!*result) { 2914 u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req); 2915 2916 if (obj_overlap < obj_req->ex.oe_len) 2917 rbd_obj_zero_range(obj_req, obj_overlap, 2918 obj_req->ex.oe_len - obj_overlap); 2919 } 2920 return true; 2921 default: 2922 BUG(); 2923 } 2924 } 2925 2926 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req) 2927 { 2928 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2929 2930 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) 2931 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST; 2932 2933 if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) && 2934 (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) { 2935 dout("%s %p noop for nonexistent\n", __func__, obj_req); 2936 return true; 2937 } 2938 2939 return false; 2940 } 2941 2942 /* 2943 * Return: 2944 * 0 - object map update sent 2945 * 1 - object map update isn't needed 2946 * <0 - error 2947 */ 2948 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req) 2949 { 2950 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2951 u8 new_state; 2952 2953 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 2954 return 1; 2955 2956 if (obj_req->flags & RBD_OBJ_FLAG_DELETION) 2957 new_state = OBJECT_PENDING; 2958 else 2959 new_state = OBJECT_EXISTS; 2960 2961 return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL); 2962 } 2963 2964 static int rbd_obj_write_object(struct rbd_obj_request *obj_req) 2965 { 2966 struct ceph_osd_request *osd_req; 2967 int num_ops = count_write_ops(obj_req); 2968 int which = 0; 2969 int ret; 2970 2971 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) 2972 num_ops++; /* stat */ 2973 2974 osd_req = rbd_obj_add_osd_request(obj_req, num_ops); 2975 if (IS_ERR(osd_req)) 2976 return PTR_ERR(osd_req); 2977 2978 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) { 2979 ret = rbd_osd_setup_stat(osd_req, which++); 2980 if (ret) 2981 return ret; 2982 } 2983 2984 rbd_osd_setup_write_ops(osd_req, which); 2985 rbd_osd_format_write(osd_req); 2986 2987 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 2988 if (ret) 2989 return ret; 2990 2991 rbd_osd_submit(osd_req); 2992 return 0; 2993 } 2994 2995 /* 2996 * copyup_bvecs pages are never highmem pages 2997 */ 2998 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes) 2999 { 3000 struct ceph_bvec_iter it = { 3001 .bvecs = bvecs, 3002 .iter = { .bi_size = bytes }, 3003 }; 3004 3005 ceph_bvec_iter_advance_step(&it, bytes, ({ 3006 if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len)) 3007 return false; 3008 })); 3009 return true; 3010 } 3011 3012 #define MODS_ONLY U32_MAX 3013 3014 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req, 3015 u32 bytes) 3016 { 3017 struct ceph_osd_request *osd_req; 3018 int ret; 3019 3020 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes); 3021 rbd_assert(bytes > 0 && bytes != MODS_ONLY); 3022 3023 osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1); 3024 if (IS_ERR(osd_req)) 3025 return PTR_ERR(osd_req); 3026 3027 ret = rbd_osd_setup_copyup(osd_req, 0, bytes); 3028 if (ret) 3029 return ret; 3030 3031 rbd_osd_format_write(osd_req); 3032 3033 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 3034 if (ret) 3035 return ret; 3036 3037 rbd_osd_submit(osd_req); 3038 return 0; 3039 } 3040 3041 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req, 3042 u32 bytes) 3043 { 3044 struct ceph_osd_request *osd_req; 3045 int num_ops = count_write_ops(obj_req); 3046 int which = 0; 3047 int ret; 3048 3049 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes); 3050 3051 if (bytes != MODS_ONLY) 3052 num_ops++; /* copyup */ 3053 3054 osd_req = rbd_obj_add_osd_request(obj_req, num_ops); 3055 if (IS_ERR(osd_req)) 3056 return PTR_ERR(osd_req); 3057 3058 if (bytes != MODS_ONLY) { 3059 ret = rbd_osd_setup_copyup(osd_req, which++, bytes); 3060 if (ret) 3061 return ret; 3062 } 3063 3064 rbd_osd_setup_write_ops(osd_req, which); 3065 rbd_osd_format_write(osd_req); 3066 3067 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 3068 if (ret) 3069 return ret; 3070 3071 rbd_osd_submit(osd_req); 3072 return 0; 3073 } 3074 3075 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap) 3076 { 3077 u32 i; 3078 3079 rbd_assert(!obj_req->copyup_bvecs); 3080 obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap); 3081 obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count, 3082 sizeof(*obj_req->copyup_bvecs), 3083 GFP_NOIO); 3084 if (!obj_req->copyup_bvecs) 3085 return -ENOMEM; 3086 3087 for (i = 0; i < obj_req->copyup_bvec_count; i++) { 3088 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE); 3089 struct page *page = alloc_page(GFP_NOIO); 3090 3091 if (!page) 3092 return -ENOMEM; 3093 3094 bvec_set_page(&obj_req->copyup_bvecs[i], page, len, 0); 3095 obj_overlap -= len; 3096 } 3097 3098 rbd_assert(!obj_overlap); 3099 return 0; 3100 } 3101 3102 /* 3103 * The target object doesn't exist. Read the data for the entire 3104 * target object up to the overlap point (if any) from the parent, 3105 * so we can use it for a copyup. 3106 */ 3107 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req) 3108 { 3109 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3110 int ret; 3111 3112 rbd_assert(obj_req->num_img_extents); 3113 prune_extents(obj_req->img_extents, &obj_req->num_img_extents, 3114 rbd_dev->parent_overlap); 3115 if (!obj_req->num_img_extents) { 3116 /* 3117 * The overlap has become 0 (most likely because the 3118 * image has been flattened). Re-submit the original write 3119 * request -- pass MODS_ONLY since the copyup isn't needed 3120 * anymore. 3121 */ 3122 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY); 3123 } 3124 3125 ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req)); 3126 if (ret) 3127 return ret; 3128 3129 return rbd_obj_read_from_parent(obj_req); 3130 } 3131 3132 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req) 3133 { 3134 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3135 struct ceph_snap_context *snapc = obj_req->img_request->snapc; 3136 u8 new_state; 3137 u32 i; 3138 int ret; 3139 3140 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending); 3141 3142 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3143 return; 3144 3145 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS) 3146 return; 3147 3148 for (i = 0; i < snapc->num_snaps; i++) { 3149 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) && 3150 i + 1 < snapc->num_snaps) 3151 new_state = OBJECT_EXISTS_CLEAN; 3152 else 3153 new_state = OBJECT_EXISTS; 3154 3155 ret = rbd_object_map_update(obj_req, snapc->snaps[i], 3156 new_state, NULL); 3157 if (ret < 0) { 3158 obj_req->pending.result = ret; 3159 return; 3160 } 3161 3162 rbd_assert(!ret); 3163 obj_req->pending.num_pending++; 3164 } 3165 } 3166 3167 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req) 3168 { 3169 u32 bytes = rbd_obj_img_extents_bytes(obj_req); 3170 int ret; 3171 3172 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending); 3173 3174 /* 3175 * Only send non-zero copyup data to save some I/O and network 3176 * bandwidth -- zero copyup data is equivalent to the object not 3177 * existing. 3178 */ 3179 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS) 3180 bytes = 0; 3181 3182 if (obj_req->img_request->snapc->num_snaps && bytes > 0) { 3183 /* 3184 * Send a copyup request with an empty snapshot context to 3185 * deep-copyup the object through all existing snapshots. 3186 * A second request with the current snapshot context will be 3187 * sent for the actual modification. 3188 */ 3189 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes); 3190 if (ret) { 3191 obj_req->pending.result = ret; 3192 return; 3193 } 3194 3195 obj_req->pending.num_pending++; 3196 bytes = MODS_ONLY; 3197 } 3198 3199 ret = rbd_obj_copyup_current_snapc(obj_req, bytes); 3200 if (ret) { 3201 obj_req->pending.result = ret; 3202 return; 3203 } 3204 3205 obj_req->pending.num_pending++; 3206 } 3207 3208 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result) 3209 { 3210 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3211 int ret; 3212 3213 again: 3214 switch (obj_req->copyup_state) { 3215 case RBD_OBJ_COPYUP_START: 3216 rbd_assert(!*result); 3217 3218 ret = rbd_obj_copyup_read_parent(obj_req); 3219 if (ret) { 3220 *result = ret; 3221 return true; 3222 } 3223 if (obj_req->num_img_extents) 3224 obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT; 3225 else 3226 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT; 3227 return false; 3228 case RBD_OBJ_COPYUP_READ_PARENT: 3229 if (*result) 3230 return true; 3231 3232 if (is_zero_bvecs(obj_req->copyup_bvecs, 3233 rbd_obj_img_extents_bytes(obj_req))) { 3234 dout("%s %p detected zeros\n", __func__, obj_req); 3235 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS; 3236 } 3237 3238 rbd_obj_copyup_object_maps(obj_req); 3239 if (!obj_req->pending.num_pending) { 3240 *result = obj_req->pending.result; 3241 obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS; 3242 goto again; 3243 } 3244 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS; 3245 return false; 3246 case __RBD_OBJ_COPYUP_OBJECT_MAPS: 3247 if (!pending_result_dec(&obj_req->pending, result)) 3248 return false; 3249 fallthrough; 3250 case RBD_OBJ_COPYUP_OBJECT_MAPS: 3251 if (*result) { 3252 rbd_warn(rbd_dev, "snap object map update failed: %d", 3253 *result); 3254 return true; 3255 } 3256 3257 rbd_obj_copyup_write_object(obj_req); 3258 if (!obj_req->pending.num_pending) { 3259 *result = obj_req->pending.result; 3260 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT; 3261 goto again; 3262 } 3263 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT; 3264 return false; 3265 case __RBD_OBJ_COPYUP_WRITE_OBJECT: 3266 if (!pending_result_dec(&obj_req->pending, result)) 3267 return false; 3268 fallthrough; 3269 case RBD_OBJ_COPYUP_WRITE_OBJECT: 3270 return true; 3271 default: 3272 BUG(); 3273 } 3274 } 3275 3276 /* 3277 * Return: 3278 * 0 - object map update sent 3279 * 1 - object map update isn't needed 3280 * <0 - error 3281 */ 3282 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req) 3283 { 3284 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3285 u8 current_state = OBJECT_PENDING; 3286 3287 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3288 return 1; 3289 3290 if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION)) 3291 return 1; 3292 3293 return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT, 3294 ¤t_state); 3295 } 3296 3297 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result) 3298 { 3299 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3300 int ret; 3301 3302 again: 3303 switch (obj_req->write_state) { 3304 case RBD_OBJ_WRITE_START: 3305 rbd_assert(!*result); 3306 3307 rbd_obj_set_copyup_enabled(obj_req); 3308 if (rbd_obj_write_is_noop(obj_req)) 3309 return true; 3310 3311 ret = rbd_obj_write_pre_object_map(obj_req); 3312 if (ret < 0) { 3313 *result = ret; 3314 return true; 3315 } 3316 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP; 3317 if (ret > 0) 3318 goto again; 3319 return false; 3320 case RBD_OBJ_WRITE_PRE_OBJECT_MAP: 3321 if (*result) { 3322 rbd_warn(rbd_dev, "pre object map update failed: %d", 3323 *result); 3324 return true; 3325 } 3326 ret = rbd_obj_write_object(obj_req); 3327 if (ret) { 3328 *result = ret; 3329 return true; 3330 } 3331 obj_req->write_state = RBD_OBJ_WRITE_OBJECT; 3332 return false; 3333 case RBD_OBJ_WRITE_OBJECT: 3334 if (*result == -ENOENT) { 3335 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) { 3336 *result = 0; 3337 obj_req->copyup_state = RBD_OBJ_COPYUP_START; 3338 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP; 3339 goto again; 3340 } 3341 /* 3342 * On a non-existent object: 3343 * delete - -ENOENT, truncate/zero - 0 3344 */ 3345 if (obj_req->flags & RBD_OBJ_FLAG_DELETION) 3346 *result = 0; 3347 } 3348 if (*result) 3349 return true; 3350 3351 obj_req->write_state = RBD_OBJ_WRITE_COPYUP; 3352 goto again; 3353 case __RBD_OBJ_WRITE_COPYUP: 3354 if (!rbd_obj_advance_copyup(obj_req, result)) 3355 return false; 3356 fallthrough; 3357 case RBD_OBJ_WRITE_COPYUP: 3358 if (*result) { 3359 rbd_warn(rbd_dev, "copyup failed: %d", *result); 3360 return true; 3361 } 3362 ret = rbd_obj_write_post_object_map(obj_req); 3363 if (ret < 0) { 3364 *result = ret; 3365 return true; 3366 } 3367 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP; 3368 if (ret > 0) 3369 goto again; 3370 return false; 3371 case RBD_OBJ_WRITE_POST_OBJECT_MAP: 3372 if (*result) 3373 rbd_warn(rbd_dev, "post object map update failed: %d", 3374 *result); 3375 return true; 3376 default: 3377 BUG(); 3378 } 3379 } 3380 3381 /* 3382 * Return true if @obj_req is completed. 3383 */ 3384 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req, 3385 int *result) 3386 { 3387 struct rbd_img_request *img_req = obj_req->img_request; 3388 struct rbd_device *rbd_dev = img_req->rbd_dev; 3389 bool done; 3390 3391 mutex_lock(&obj_req->state_mutex); 3392 if (!rbd_img_is_write(img_req)) 3393 done = rbd_obj_advance_read(obj_req, result); 3394 else 3395 done = rbd_obj_advance_write(obj_req, result); 3396 mutex_unlock(&obj_req->state_mutex); 3397 3398 if (done && *result) { 3399 rbd_assert(*result < 0); 3400 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d", 3401 obj_op_name(img_req->op_type), obj_req->ex.oe_objno, 3402 obj_req->ex.oe_off, obj_req->ex.oe_len, *result); 3403 } 3404 return done; 3405 } 3406 3407 /* 3408 * This is open-coded in rbd_img_handle_request() to avoid parent chain 3409 * recursion. 3410 */ 3411 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result) 3412 { 3413 if (__rbd_obj_handle_request(obj_req, &result)) 3414 rbd_img_handle_request(obj_req->img_request, result); 3415 } 3416 3417 static bool need_exclusive_lock(struct rbd_img_request *img_req) 3418 { 3419 struct rbd_device *rbd_dev = img_req->rbd_dev; 3420 3421 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) 3422 return false; 3423 3424 if (rbd_is_ro(rbd_dev)) 3425 return false; 3426 3427 rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags)); 3428 if (rbd_dev->opts->lock_on_read || 3429 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3430 return true; 3431 3432 return rbd_img_is_write(img_req); 3433 } 3434 3435 static bool rbd_lock_add_request(struct rbd_img_request *img_req) 3436 { 3437 struct rbd_device *rbd_dev = img_req->rbd_dev; 3438 bool locked; 3439 3440 lockdep_assert_held(&rbd_dev->lock_rwsem); 3441 locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED; 3442 spin_lock(&rbd_dev->lock_lists_lock); 3443 rbd_assert(list_empty(&img_req->lock_item)); 3444 if (!locked) 3445 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list); 3446 else 3447 list_add_tail(&img_req->lock_item, &rbd_dev->running_list); 3448 spin_unlock(&rbd_dev->lock_lists_lock); 3449 return locked; 3450 } 3451 3452 static void rbd_lock_del_request(struct rbd_img_request *img_req) 3453 { 3454 struct rbd_device *rbd_dev = img_req->rbd_dev; 3455 bool need_wakeup = false; 3456 3457 lockdep_assert_held(&rbd_dev->lock_rwsem); 3458 spin_lock(&rbd_dev->lock_lists_lock); 3459 if (!list_empty(&img_req->lock_item)) { 3460 list_del_init(&img_req->lock_item); 3461 need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING && 3462 list_empty(&rbd_dev->running_list)); 3463 } 3464 spin_unlock(&rbd_dev->lock_lists_lock); 3465 if (need_wakeup) 3466 complete(&rbd_dev->releasing_wait); 3467 } 3468 3469 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req) 3470 { 3471 struct rbd_device *rbd_dev = img_req->rbd_dev; 3472 3473 if (!need_exclusive_lock(img_req)) 3474 return 1; 3475 3476 if (rbd_lock_add_request(img_req)) 3477 return 1; 3478 3479 if (rbd_dev->opts->exclusive) { 3480 WARN_ON(1); /* lock got released? */ 3481 return -EROFS; 3482 } 3483 3484 /* 3485 * Note the use of mod_delayed_work() in rbd_acquire_lock() 3486 * and cancel_delayed_work() in wake_lock_waiters(). 3487 */ 3488 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev); 3489 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 3490 return 0; 3491 } 3492 3493 static void rbd_img_object_requests(struct rbd_img_request *img_req) 3494 { 3495 struct rbd_device *rbd_dev = img_req->rbd_dev; 3496 struct rbd_obj_request *obj_req; 3497 3498 rbd_assert(!img_req->pending.result && !img_req->pending.num_pending); 3499 rbd_assert(!need_exclusive_lock(img_req) || 3500 __rbd_is_lock_owner(rbd_dev)); 3501 3502 if (rbd_img_is_write(img_req)) { 3503 rbd_assert(!img_req->snapc); 3504 down_read(&rbd_dev->header_rwsem); 3505 img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc); 3506 up_read(&rbd_dev->header_rwsem); 3507 } 3508 3509 for_each_obj_request(img_req, obj_req) { 3510 int result = 0; 3511 3512 if (__rbd_obj_handle_request(obj_req, &result)) { 3513 if (result) { 3514 img_req->pending.result = result; 3515 return; 3516 } 3517 } else { 3518 img_req->pending.num_pending++; 3519 } 3520 } 3521 } 3522 3523 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result) 3524 { 3525 int ret; 3526 3527 again: 3528 switch (img_req->state) { 3529 case RBD_IMG_START: 3530 rbd_assert(!*result); 3531 3532 ret = rbd_img_exclusive_lock(img_req); 3533 if (ret < 0) { 3534 *result = ret; 3535 return true; 3536 } 3537 img_req->state = RBD_IMG_EXCLUSIVE_LOCK; 3538 if (ret > 0) 3539 goto again; 3540 return false; 3541 case RBD_IMG_EXCLUSIVE_LOCK: 3542 if (*result) 3543 return true; 3544 3545 rbd_img_object_requests(img_req); 3546 if (!img_req->pending.num_pending) { 3547 *result = img_req->pending.result; 3548 img_req->state = RBD_IMG_OBJECT_REQUESTS; 3549 goto again; 3550 } 3551 img_req->state = __RBD_IMG_OBJECT_REQUESTS; 3552 return false; 3553 case __RBD_IMG_OBJECT_REQUESTS: 3554 if (!pending_result_dec(&img_req->pending, result)) 3555 return false; 3556 fallthrough; 3557 case RBD_IMG_OBJECT_REQUESTS: 3558 return true; 3559 default: 3560 BUG(); 3561 } 3562 } 3563 3564 /* 3565 * Return true if @img_req is completed. 3566 */ 3567 static bool __rbd_img_handle_request(struct rbd_img_request *img_req, 3568 int *result) 3569 { 3570 struct rbd_device *rbd_dev = img_req->rbd_dev; 3571 bool done; 3572 3573 if (need_exclusive_lock(img_req)) { 3574 down_read(&rbd_dev->lock_rwsem); 3575 mutex_lock(&img_req->state_mutex); 3576 done = rbd_img_advance(img_req, result); 3577 if (done) 3578 rbd_lock_del_request(img_req); 3579 mutex_unlock(&img_req->state_mutex); 3580 up_read(&rbd_dev->lock_rwsem); 3581 } else { 3582 mutex_lock(&img_req->state_mutex); 3583 done = rbd_img_advance(img_req, result); 3584 mutex_unlock(&img_req->state_mutex); 3585 } 3586 3587 if (done && *result) { 3588 rbd_assert(*result < 0); 3589 rbd_warn(rbd_dev, "%s%s result %d", 3590 test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "", 3591 obj_op_name(img_req->op_type), *result); 3592 } 3593 return done; 3594 } 3595 3596 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result) 3597 { 3598 again: 3599 if (!__rbd_img_handle_request(img_req, &result)) 3600 return; 3601 3602 if (test_bit(IMG_REQ_CHILD, &img_req->flags)) { 3603 struct rbd_obj_request *obj_req = img_req->obj_request; 3604 3605 rbd_img_request_destroy(img_req); 3606 if (__rbd_obj_handle_request(obj_req, &result)) { 3607 img_req = obj_req->img_request; 3608 goto again; 3609 } 3610 } else { 3611 struct request *rq = blk_mq_rq_from_pdu(img_req); 3612 3613 rbd_img_request_destroy(img_req); 3614 blk_mq_end_request(rq, errno_to_blk_status(result)); 3615 } 3616 } 3617 3618 static const struct rbd_client_id rbd_empty_cid; 3619 3620 static bool rbd_cid_equal(const struct rbd_client_id *lhs, 3621 const struct rbd_client_id *rhs) 3622 { 3623 return lhs->gid == rhs->gid && lhs->handle == rhs->handle; 3624 } 3625 3626 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev) 3627 { 3628 struct rbd_client_id cid; 3629 3630 mutex_lock(&rbd_dev->watch_mutex); 3631 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client); 3632 cid.handle = rbd_dev->watch_cookie; 3633 mutex_unlock(&rbd_dev->watch_mutex); 3634 return cid; 3635 } 3636 3637 /* 3638 * lock_rwsem must be held for write 3639 */ 3640 static void rbd_set_owner_cid(struct rbd_device *rbd_dev, 3641 const struct rbd_client_id *cid) 3642 { 3643 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev, 3644 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle, 3645 cid->gid, cid->handle); 3646 rbd_dev->owner_cid = *cid; /* struct */ 3647 } 3648 3649 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf) 3650 { 3651 mutex_lock(&rbd_dev->watch_mutex); 3652 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie); 3653 mutex_unlock(&rbd_dev->watch_mutex); 3654 } 3655 3656 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie) 3657 { 3658 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3659 3660 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED; 3661 strcpy(rbd_dev->lock_cookie, cookie); 3662 rbd_set_owner_cid(rbd_dev, &cid); 3663 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work); 3664 } 3665 3666 /* 3667 * lock_rwsem must be held for write 3668 */ 3669 static int rbd_lock(struct rbd_device *rbd_dev) 3670 { 3671 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3672 char cookie[32]; 3673 int ret; 3674 3675 WARN_ON(__rbd_is_lock_owner(rbd_dev) || 3676 rbd_dev->lock_cookie[0] != '\0'); 3677 3678 format_lock_cookie(rbd_dev, cookie); 3679 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3680 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie, 3681 RBD_LOCK_TAG, "", 0); 3682 if (ret && ret != -EEXIST) 3683 return ret; 3684 3685 __rbd_lock(rbd_dev, cookie); 3686 return 0; 3687 } 3688 3689 /* 3690 * lock_rwsem must be held for write 3691 */ 3692 static void rbd_unlock(struct rbd_device *rbd_dev) 3693 { 3694 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3695 int ret; 3696 3697 WARN_ON(!__rbd_is_lock_owner(rbd_dev) || 3698 rbd_dev->lock_cookie[0] == '\0'); 3699 3700 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3701 RBD_LOCK_NAME, rbd_dev->lock_cookie); 3702 if (ret && ret != -ENOENT) 3703 rbd_warn(rbd_dev, "failed to unlock header: %d", ret); 3704 3705 /* treat errors as the image is unlocked */ 3706 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 3707 rbd_dev->lock_cookie[0] = '\0'; 3708 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3709 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work); 3710 } 3711 3712 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev, 3713 enum rbd_notify_op notify_op, 3714 struct page ***preply_pages, 3715 size_t *preply_len) 3716 { 3717 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3718 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3719 char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN]; 3720 int buf_size = sizeof(buf); 3721 void *p = buf; 3722 3723 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op); 3724 3725 /* encode *LockPayload NotifyMessage (op + ClientId) */ 3726 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN); 3727 ceph_encode_32(&p, notify_op); 3728 ceph_encode_64(&p, cid.gid); 3729 ceph_encode_64(&p, cid.handle); 3730 3731 return ceph_osdc_notify(osdc, &rbd_dev->header_oid, 3732 &rbd_dev->header_oloc, buf, buf_size, 3733 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len); 3734 } 3735 3736 static void rbd_notify_op_lock(struct rbd_device *rbd_dev, 3737 enum rbd_notify_op notify_op) 3738 { 3739 __rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL); 3740 } 3741 3742 static void rbd_notify_acquired_lock(struct work_struct *work) 3743 { 3744 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3745 acquired_lock_work); 3746 3747 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK); 3748 } 3749 3750 static void rbd_notify_released_lock(struct work_struct *work) 3751 { 3752 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3753 released_lock_work); 3754 3755 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK); 3756 } 3757 3758 static int rbd_request_lock(struct rbd_device *rbd_dev) 3759 { 3760 struct page **reply_pages; 3761 size_t reply_len; 3762 bool lock_owner_responded = false; 3763 int ret; 3764 3765 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3766 3767 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK, 3768 &reply_pages, &reply_len); 3769 if (ret && ret != -ETIMEDOUT) { 3770 rbd_warn(rbd_dev, "failed to request lock: %d", ret); 3771 goto out; 3772 } 3773 3774 if (reply_len > 0 && reply_len <= PAGE_SIZE) { 3775 void *p = page_address(reply_pages[0]); 3776 void *const end = p + reply_len; 3777 u32 n; 3778 3779 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */ 3780 while (n--) { 3781 u8 struct_v; 3782 u32 len; 3783 3784 ceph_decode_need(&p, end, 8 + 8, e_inval); 3785 p += 8 + 8; /* skip gid and cookie */ 3786 3787 ceph_decode_32_safe(&p, end, len, e_inval); 3788 if (!len) 3789 continue; 3790 3791 if (lock_owner_responded) { 3792 rbd_warn(rbd_dev, 3793 "duplicate lock owners detected"); 3794 ret = -EIO; 3795 goto out; 3796 } 3797 3798 lock_owner_responded = true; 3799 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage", 3800 &struct_v, &len); 3801 if (ret) { 3802 rbd_warn(rbd_dev, 3803 "failed to decode ResponseMessage: %d", 3804 ret); 3805 goto e_inval; 3806 } 3807 3808 ret = ceph_decode_32(&p); 3809 } 3810 } 3811 3812 if (!lock_owner_responded) { 3813 rbd_warn(rbd_dev, "no lock owners detected"); 3814 ret = -ETIMEDOUT; 3815 } 3816 3817 out: 3818 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 3819 return ret; 3820 3821 e_inval: 3822 ret = -EINVAL; 3823 goto out; 3824 } 3825 3826 /* 3827 * Either image request state machine(s) or rbd_add_acquire_lock() 3828 * (i.e. "rbd map"). 3829 */ 3830 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result) 3831 { 3832 struct rbd_img_request *img_req; 3833 3834 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 3835 lockdep_assert_held_write(&rbd_dev->lock_rwsem); 3836 3837 cancel_delayed_work(&rbd_dev->lock_dwork); 3838 if (!completion_done(&rbd_dev->acquire_wait)) { 3839 rbd_assert(list_empty(&rbd_dev->acquiring_list) && 3840 list_empty(&rbd_dev->running_list)); 3841 rbd_dev->acquire_err = result; 3842 complete_all(&rbd_dev->acquire_wait); 3843 return; 3844 } 3845 3846 while (!list_empty(&rbd_dev->acquiring_list)) { 3847 img_req = list_first_entry(&rbd_dev->acquiring_list, 3848 struct rbd_img_request, lock_item); 3849 mutex_lock(&img_req->state_mutex); 3850 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK); 3851 if (!result) 3852 list_move_tail(&img_req->lock_item, 3853 &rbd_dev->running_list); 3854 else 3855 list_del_init(&img_req->lock_item); 3856 rbd_img_schedule(img_req, result); 3857 mutex_unlock(&img_req->state_mutex); 3858 } 3859 } 3860 3861 static bool locker_equal(const struct ceph_locker *lhs, 3862 const struct ceph_locker *rhs) 3863 { 3864 return lhs->id.name.type == rhs->id.name.type && 3865 lhs->id.name.num == rhs->id.name.num && 3866 !strcmp(lhs->id.cookie, rhs->id.cookie) && 3867 ceph_addr_equal_no_type(&lhs->info.addr, &rhs->info.addr); 3868 } 3869 3870 static void free_locker(struct ceph_locker *locker) 3871 { 3872 if (locker) 3873 ceph_free_lockers(locker, 1); 3874 } 3875 3876 static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev) 3877 { 3878 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3879 struct ceph_locker *lockers; 3880 u32 num_lockers; 3881 u8 lock_type; 3882 char *lock_tag; 3883 u64 handle; 3884 int ret; 3885 3886 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid, 3887 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3888 &lock_type, &lock_tag, &lockers, &num_lockers); 3889 if (ret) { 3890 rbd_warn(rbd_dev, "failed to get header lockers: %d", ret); 3891 return ERR_PTR(ret); 3892 } 3893 3894 if (num_lockers == 0) { 3895 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev); 3896 lockers = NULL; 3897 goto out; 3898 } 3899 3900 if (strcmp(lock_tag, RBD_LOCK_TAG)) { 3901 rbd_warn(rbd_dev, "locked by external mechanism, tag %s", 3902 lock_tag); 3903 goto err_busy; 3904 } 3905 3906 if (lock_type != CEPH_CLS_LOCK_EXCLUSIVE) { 3907 rbd_warn(rbd_dev, "incompatible lock type detected"); 3908 goto err_busy; 3909 } 3910 3911 WARN_ON(num_lockers != 1); 3912 ret = sscanf(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", 3913 &handle); 3914 if (ret != 1) { 3915 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s", 3916 lockers[0].id.cookie); 3917 goto err_busy; 3918 } 3919 if (ceph_addr_is_blank(&lockers[0].info.addr)) { 3920 rbd_warn(rbd_dev, "locker has a blank address"); 3921 goto err_busy; 3922 } 3923 3924 dout("%s rbd_dev %p got locker %s%llu@%pISpc/%u handle %llu\n", 3925 __func__, rbd_dev, ENTITY_NAME(lockers[0].id.name), 3926 &lockers[0].info.addr.in_addr, 3927 le32_to_cpu(lockers[0].info.addr.nonce), handle); 3928 3929 out: 3930 kfree(lock_tag); 3931 return lockers; 3932 3933 err_busy: 3934 kfree(lock_tag); 3935 ceph_free_lockers(lockers, num_lockers); 3936 return ERR_PTR(-EBUSY); 3937 } 3938 3939 static int find_watcher(struct rbd_device *rbd_dev, 3940 const struct ceph_locker *locker) 3941 { 3942 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3943 struct ceph_watch_item *watchers; 3944 u32 num_watchers; 3945 u64 cookie; 3946 int i; 3947 int ret; 3948 3949 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid, 3950 &rbd_dev->header_oloc, &watchers, 3951 &num_watchers); 3952 if (ret) { 3953 rbd_warn(rbd_dev, "failed to get watchers: %d", ret); 3954 return ret; 3955 } 3956 3957 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie); 3958 for (i = 0; i < num_watchers; i++) { 3959 /* 3960 * Ignore addr->type while comparing. This mimics 3961 * entity_addr_t::get_legacy_str() + strcmp(). 3962 */ 3963 if (ceph_addr_equal_no_type(&watchers[i].addr, 3964 &locker->info.addr) && 3965 watchers[i].cookie == cookie) { 3966 struct rbd_client_id cid = { 3967 .gid = le64_to_cpu(watchers[i].name.num), 3968 .handle = cookie, 3969 }; 3970 3971 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__, 3972 rbd_dev, cid.gid, cid.handle); 3973 rbd_set_owner_cid(rbd_dev, &cid); 3974 ret = 1; 3975 goto out; 3976 } 3977 } 3978 3979 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev); 3980 ret = 0; 3981 out: 3982 kfree(watchers); 3983 return ret; 3984 } 3985 3986 /* 3987 * lock_rwsem must be held for write 3988 */ 3989 static int rbd_try_lock(struct rbd_device *rbd_dev) 3990 { 3991 struct ceph_client *client = rbd_dev->rbd_client->client; 3992 struct ceph_locker *locker, *refreshed_locker; 3993 int ret; 3994 3995 for (;;) { 3996 locker = refreshed_locker = NULL; 3997 3998 ret = rbd_lock(rbd_dev); 3999 if (!ret) 4000 goto out; 4001 if (ret != -EBUSY) { 4002 rbd_warn(rbd_dev, "failed to lock header: %d", ret); 4003 goto out; 4004 } 4005 4006 /* determine if the current lock holder is still alive */ 4007 locker = get_lock_owner_info(rbd_dev); 4008 if (IS_ERR(locker)) { 4009 ret = PTR_ERR(locker); 4010 locker = NULL; 4011 goto out; 4012 } 4013 if (!locker) 4014 goto again; 4015 4016 ret = find_watcher(rbd_dev, locker); 4017 if (ret) 4018 goto out; /* request lock or error */ 4019 4020 refreshed_locker = get_lock_owner_info(rbd_dev); 4021 if (IS_ERR(refreshed_locker)) { 4022 ret = PTR_ERR(refreshed_locker); 4023 refreshed_locker = NULL; 4024 goto out; 4025 } 4026 if (!refreshed_locker || 4027 !locker_equal(locker, refreshed_locker)) 4028 goto again; 4029 4030 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu", 4031 ENTITY_NAME(locker->id.name)); 4032 4033 ret = ceph_monc_blocklist_add(&client->monc, 4034 &locker->info.addr); 4035 if (ret) { 4036 rbd_warn(rbd_dev, "failed to blocklist %s%llu: %d", 4037 ENTITY_NAME(locker->id.name), ret); 4038 goto out; 4039 } 4040 4041 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid, 4042 &rbd_dev->header_oloc, RBD_LOCK_NAME, 4043 locker->id.cookie, &locker->id.name); 4044 if (ret && ret != -ENOENT) { 4045 rbd_warn(rbd_dev, "failed to break header lock: %d", 4046 ret); 4047 goto out; 4048 } 4049 4050 again: 4051 free_locker(refreshed_locker); 4052 free_locker(locker); 4053 } 4054 4055 out: 4056 free_locker(refreshed_locker); 4057 free_locker(locker); 4058 return ret; 4059 } 4060 4061 static int rbd_post_acquire_action(struct rbd_device *rbd_dev) 4062 { 4063 int ret; 4064 4065 ret = rbd_dev_refresh(rbd_dev); 4066 if (ret) 4067 return ret; 4068 4069 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) { 4070 ret = rbd_object_map_open(rbd_dev); 4071 if (ret) 4072 return ret; 4073 } 4074 4075 return 0; 4076 } 4077 4078 /* 4079 * Return: 4080 * 0 - lock acquired 4081 * 1 - caller should call rbd_request_lock() 4082 * <0 - error 4083 */ 4084 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev) 4085 { 4086 int ret; 4087 4088 down_read(&rbd_dev->lock_rwsem); 4089 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 4090 rbd_dev->lock_state); 4091 if (__rbd_is_lock_owner(rbd_dev)) { 4092 up_read(&rbd_dev->lock_rwsem); 4093 return 0; 4094 } 4095 4096 up_read(&rbd_dev->lock_rwsem); 4097 down_write(&rbd_dev->lock_rwsem); 4098 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 4099 rbd_dev->lock_state); 4100 if (__rbd_is_lock_owner(rbd_dev)) { 4101 up_write(&rbd_dev->lock_rwsem); 4102 return 0; 4103 } 4104 4105 ret = rbd_try_lock(rbd_dev); 4106 if (ret < 0) { 4107 rbd_warn(rbd_dev, "failed to acquire lock: %d", ret); 4108 goto out; 4109 } 4110 if (ret > 0) { 4111 up_write(&rbd_dev->lock_rwsem); 4112 return ret; 4113 } 4114 4115 rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED); 4116 rbd_assert(list_empty(&rbd_dev->running_list)); 4117 4118 ret = rbd_post_acquire_action(rbd_dev); 4119 if (ret) { 4120 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret); 4121 /* 4122 * Can't stay in RBD_LOCK_STATE_LOCKED because 4123 * rbd_lock_add_request() would let the request through, 4124 * assuming that e.g. object map is locked and loaded. 4125 */ 4126 rbd_unlock(rbd_dev); 4127 } 4128 4129 out: 4130 wake_lock_waiters(rbd_dev, ret); 4131 up_write(&rbd_dev->lock_rwsem); 4132 return ret; 4133 } 4134 4135 static void rbd_acquire_lock(struct work_struct *work) 4136 { 4137 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 4138 struct rbd_device, lock_dwork); 4139 int ret; 4140 4141 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4142 again: 4143 ret = rbd_try_acquire_lock(rbd_dev); 4144 if (ret <= 0) { 4145 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret); 4146 return; 4147 } 4148 4149 ret = rbd_request_lock(rbd_dev); 4150 if (ret == -ETIMEDOUT) { 4151 goto again; /* treat this as a dead client */ 4152 } else if (ret == -EROFS) { 4153 rbd_warn(rbd_dev, "peer will not release lock"); 4154 down_write(&rbd_dev->lock_rwsem); 4155 wake_lock_waiters(rbd_dev, ret); 4156 up_write(&rbd_dev->lock_rwsem); 4157 } else if (ret < 0) { 4158 rbd_warn(rbd_dev, "error requesting lock: %d", ret); 4159 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 4160 RBD_RETRY_DELAY); 4161 } else { 4162 /* 4163 * lock owner acked, but resend if we don't see them 4164 * release the lock 4165 */ 4166 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__, 4167 rbd_dev); 4168 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 4169 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC)); 4170 } 4171 } 4172 4173 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev) 4174 { 4175 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4176 lockdep_assert_held_write(&rbd_dev->lock_rwsem); 4177 4178 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED) 4179 return false; 4180 4181 /* 4182 * Ensure that all in-flight IO is flushed. 4183 */ 4184 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING; 4185 rbd_assert(!completion_done(&rbd_dev->releasing_wait)); 4186 if (list_empty(&rbd_dev->running_list)) 4187 return true; 4188 4189 up_write(&rbd_dev->lock_rwsem); 4190 wait_for_completion(&rbd_dev->releasing_wait); 4191 4192 down_write(&rbd_dev->lock_rwsem); 4193 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING) 4194 return false; 4195 4196 rbd_assert(list_empty(&rbd_dev->running_list)); 4197 return true; 4198 } 4199 4200 static void rbd_pre_release_action(struct rbd_device *rbd_dev) 4201 { 4202 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) 4203 rbd_object_map_close(rbd_dev); 4204 } 4205 4206 static void __rbd_release_lock(struct rbd_device *rbd_dev) 4207 { 4208 rbd_assert(list_empty(&rbd_dev->running_list)); 4209 4210 rbd_pre_release_action(rbd_dev); 4211 rbd_unlock(rbd_dev); 4212 } 4213 4214 /* 4215 * lock_rwsem must be held for write 4216 */ 4217 static void rbd_release_lock(struct rbd_device *rbd_dev) 4218 { 4219 if (!rbd_quiesce_lock(rbd_dev)) 4220 return; 4221 4222 __rbd_release_lock(rbd_dev); 4223 4224 /* 4225 * Give others a chance to grab the lock - we would re-acquire 4226 * almost immediately if we got new IO while draining the running 4227 * list otherwise. We need to ack our own notifications, so this 4228 * lock_dwork will be requeued from rbd_handle_released_lock() by 4229 * way of maybe_kick_acquire(). 4230 */ 4231 cancel_delayed_work(&rbd_dev->lock_dwork); 4232 } 4233 4234 static void rbd_release_lock_work(struct work_struct *work) 4235 { 4236 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 4237 unlock_work); 4238 4239 down_write(&rbd_dev->lock_rwsem); 4240 rbd_release_lock(rbd_dev); 4241 up_write(&rbd_dev->lock_rwsem); 4242 } 4243 4244 static void maybe_kick_acquire(struct rbd_device *rbd_dev) 4245 { 4246 bool have_requests; 4247 4248 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4249 if (__rbd_is_lock_owner(rbd_dev)) 4250 return; 4251 4252 spin_lock(&rbd_dev->lock_lists_lock); 4253 have_requests = !list_empty(&rbd_dev->acquiring_list); 4254 spin_unlock(&rbd_dev->lock_lists_lock); 4255 if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) { 4256 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev); 4257 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 4258 } 4259 } 4260 4261 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v, 4262 void **p) 4263 { 4264 struct rbd_client_id cid = { 0 }; 4265 4266 if (struct_v >= 2) { 4267 cid.gid = ceph_decode_64(p); 4268 cid.handle = ceph_decode_64(p); 4269 } 4270 4271 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4272 cid.handle); 4273 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 4274 down_write(&rbd_dev->lock_rwsem); 4275 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 4276 dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n", 4277 __func__, rbd_dev, cid.gid, cid.handle); 4278 } else { 4279 rbd_set_owner_cid(rbd_dev, &cid); 4280 } 4281 downgrade_write(&rbd_dev->lock_rwsem); 4282 } else { 4283 down_read(&rbd_dev->lock_rwsem); 4284 } 4285 4286 maybe_kick_acquire(rbd_dev); 4287 up_read(&rbd_dev->lock_rwsem); 4288 } 4289 4290 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v, 4291 void **p) 4292 { 4293 struct rbd_client_id cid = { 0 }; 4294 4295 if (struct_v >= 2) { 4296 cid.gid = ceph_decode_64(p); 4297 cid.handle = ceph_decode_64(p); 4298 } 4299 4300 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4301 cid.handle); 4302 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 4303 down_write(&rbd_dev->lock_rwsem); 4304 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 4305 dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n", 4306 __func__, rbd_dev, cid.gid, cid.handle, 4307 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle); 4308 } else { 4309 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 4310 } 4311 downgrade_write(&rbd_dev->lock_rwsem); 4312 } else { 4313 down_read(&rbd_dev->lock_rwsem); 4314 } 4315 4316 maybe_kick_acquire(rbd_dev); 4317 up_read(&rbd_dev->lock_rwsem); 4318 } 4319 4320 /* 4321 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no 4322 * ResponseMessage is needed. 4323 */ 4324 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v, 4325 void **p) 4326 { 4327 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev); 4328 struct rbd_client_id cid = { 0 }; 4329 int result = 1; 4330 4331 if (struct_v >= 2) { 4332 cid.gid = ceph_decode_64(p); 4333 cid.handle = ceph_decode_64(p); 4334 } 4335 4336 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4337 cid.handle); 4338 if (rbd_cid_equal(&cid, &my_cid)) 4339 return result; 4340 4341 down_read(&rbd_dev->lock_rwsem); 4342 if (__rbd_is_lock_owner(rbd_dev)) { 4343 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED && 4344 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) 4345 goto out_unlock; 4346 4347 /* 4348 * encode ResponseMessage(0) so the peer can detect 4349 * a missing owner 4350 */ 4351 result = 0; 4352 4353 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) { 4354 if (!rbd_dev->opts->exclusive) { 4355 dout("%s rbd_dev %p queueing unlock_work\n", 4356 __func__, rbd_dev); 4357 queue_work(rbd_dev->task_wq, 4358 &rbd_dev->unlock_work); 4359 } else { 4360 /* refuse to release the lock */ 4361 result = -EROFS; 4362 } 4363 } 4364 } 4365 4366 out_unlock: 4367 up_read(&rbd_dev->lock_rwsem); 4368 return result; 4369 } 4370 4371 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev, 4372 u64 notify_id, u64 cookie, s32 *result) 4373 { 4374 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4375 char buf[4 + CEPH_ENCODING_START_BLK_LEN]; 4376 int buf_size = sizeof(buf); 4377 int ret; 4378 4379 if (result) { 4380 void *p = buf; 4381 4382 /* encode ResponseMessage */ 4383 ceph_start_encoding(&p, 1, 1, 4384 buf_size - CEPH_ENCODING_START_BLK_LEN); 4385 ceph_encode_32(&p, *result); 4386 } else { 4387 buf_size = 0; 4388 } 4389 4390 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid, 4391 &rbd_dev->header_oloc, notify_id, cookie, 4392 buf, buf_size); 4393 if (ret) 4394 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret); 4395 } 4396 4397 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id, 4398 u64 cookie) 4399 { 4400 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4401 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL); 4402 } 4403 4404 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev, 4405 u64 notify_id, u64 cookie, s32 result) 4406 { 4407 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 4408 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result); 4409 } 4410 4411 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie, 4412 u64 notifier_id, void *data, size_t data_len) 4413 { 4414 struct rbd_device *rbd_dev = arg; 4415 void *p = data; 4416 void *const end = p + data_len; 4417 u8 struct_v = 0; 4418 u32 len; 4419 u32 notify_op; 4420 int ret; 4421 4422 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n", 4423 __func__, rbd_dev, cookie, notify_id, data_len); 4424 if (data_len) { 4425 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage", 4426 &struct_v, &len); 4427 if (ret) { 4428 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d", 4429 ret); 4430 return; 4431 } 4432 4433 notify_op = ceph_decode_32(&p); 4434 } else { 4435 /* legacy notification for header updates */ 4436 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE; 4437 len = 0; 4438 } 4439 4440 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op); 4441 switch (notify_op) { 4442 case RBD_NOTIFY_OP_ACQUIRED_LOCK: 4443 rbd_handle_acquired_lock(rbd_dev, struct_v, &p); 4444 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4445 break; 4446 case RBD_NOTIFY_OP_RELEASED_LOCK: 4447 rbd_handle_released_lock(rbd_dev, struct_v, &p); 4448 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4449 break; 4450 case RBD_NOTIFY_OP_REQUEST_LOCK: 4451 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p); 4452 if (ret <= 0) 4453 rbd_acknowledge_notify_result(rbd_dev, notify_id, 4454 cookie, ret); 4455 else 4456 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4457 break; 4458 case RBD_NOTIFY_OP_HEADER_UPDATE: 4459 ret = rbd_dev_refresh(rbd_dev); 4460 if (ret) 4461 rbd_warn(rbd_dev, "refresh failed: %d", ret); 4462 4463 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4464 break; 4465 default: 4466 if (rbd_is_lock_owner(rbd_dev)) 4467 rbd_acknowledge_notify_result(rbd_dev, notify_id, 4468 cookie, -EOPNOTSUPP); 4469 else 4470 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4471 break; 4472 } 4473 } 4474 4475 static void __rbd_unregister_watch(struct rbd_device *rbd_dev); 4476 4477 static void rbd_watch_errcb(void *arg, u64 cookie, int err) 4478 { 4479 struct rbd_device *rbd_dev = arg; 4480 4481 rbd_warn(rbd_dev, "encountered watch error: %d", err); 4482 4483 down_write(&rbd_dev->lock_rwsem); 4484 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 4485 up_write(&rbd_dev->lock_rwsem); 4486 4487 mutex_lock(&rbd_dev->watch_mutex); 4488 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) { 4489 __rbd_unregister_watch(rbd_dev); 4490 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR; 4491 4492 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0); 4493 } 4494 mutex_unlock(&rbd_dev->watch_mutex); 4495 } 4496 4497 /* 4498 * watch_mutex must be locked 4499 */ 4500 static int __rbd_register_watch(struct rbd_device *rbd_dev) 4501 { 4502 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4503 struct ceph_osd_linger_request *handle; 4504 4505 rbd_assert(!rbd_dev->watch_handle); 4506 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4507 4508 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid, 4509 &rbd_dev->header_oloc, rbd_watch_cb, 4510 rbd_watch_errcb, rbd_dev); 4511 if (IS_ERR(handle)) 4512 return PTR_ERR(handle); 4513 4514 rbd_dev->watch_handle = handle; 4515 return 0; 4516 } 4517 4518 /* 4519 * watch_mutex must be locked 4520 */ 4521 static void __rbd_unregister_watch(struct rbd_device *rbd_dev) 4522 { 4523 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4524 int ret; 4525 4526 rbd_assert(rbd_dev->watch_handle); 4527 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4528 4529 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle); 4530 if (ret) 4531 rbd_warn(rbd_dev, "failed to unwatch: %d", ret); 4532 4533 rbd_dev->watch_handle = NULL; 4534 } 4535 4536 static int rbd_register_watch(struct rbd_device *rbd_dev) 4537 { 4538 int ret; 4539 4540 mutex_lock(&rbd_dev->watch_mutex); 4541 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED); 4542 ret = __rbd_register_watch(rbd_dev); 4543 if (ret) 4544 goto out; 4545 4546 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 4547 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 4548 4549 out: 4550 mutex_unlock(&rbd_dev->watch_mutex); 4551 return ret; 4552 } 4553 4554 static void cancel_tasks_sync(struct rbd_device *rbd_dev) 4555 { 4556 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4557 4558 cancel_work_sync(&rbd_dev->acquired_lock_work); 4559 cancel_work_sync(&rbd_dev->released_lock_work); 4560 cancel_delayed_work_sync(&rbd_dev->lock_dwork); 4561 cancel_work_sync(&rbd_dev->unlock_work); 4562 } 4563 4564 /* 4565 * header_rwsem must not be held to avoid a deadlock with 4566 * rbd_dev_refresh() when flushing notifies. 4567 */ 4568 static void rbd_unregister_watch(struct rbd_device *rbd_dev) 4569 { 4570 cancel_tasks_sync(rbd_dev); 4571 4572 mutex_lock(&rbd_dev->watch_mutex); 4573 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) 4574 __rbd_unregister_watch(rbd_dev); 4575 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 4576 mutex_unlock(&rbd_dev->watch_mutex); 4577 4578 cancel_delayed_work_sync(&rbd_dev->watch_dwork); 4579 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 4580 } 4581 4582 /* 4583 * lock_rwsem must be held for write 4584 */ 4585 static void rbd_reacquire_lock(struct rbd_device *rbd_dev) 4586 { 4587 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4588 char cookie[32]; 4589 int ret; 4590 4591 if (!rbd_quiesce_lock(rbd_dev)) 4592 return; 4593 4594 format_lock_cookie(rbd_dev, cookie); 4595 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid, 4596 &rbd_dev->header_oloc, RBD_LOCK_NAME, 4597 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie, 4598 RBD_LOCK_TAG, cookie); 4599 if (ret) { 4600 if (ret != -EOPNOTSUPP) 4601 rbd_warn(rbd_dev, "failed to update lock cookie: %d", 4602 ret); 4603 4604 /* 4605 * Lock cookie cannot be updated on older OSDs, so do 4606 * a manual release and queue an acquire. 4607 */ 4608 __rbd_release_lock(rbd_dev); 4609 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 4610 } else { 4611 __rbd_lock(rbd_dev, cookie); 4612 wake_lock_waiters(rbd_dev, 0); 4613 } 4614 } 4615 4616 static void rbd_reregister_watch(struct work_struct *work) 4617 { 4618 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 4619 struct rbd_device, watch_dwork); 4620 int ret; 4621 4622 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4623 4624 mutex_lock(&rbd_dev->watch_mutex); 4625 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) { 4626 mutex_unlock(&rbd_dev->watch_mutex); 4627 return; 4628 } 4629 4630 ret = __rbd_register_watch(rbd_dev); 4631 if (ret) { 4632 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret); 4633 if (ret != -EBLOCKLISTED && ret != -ENOENT) { 4634 queue_delayed_work(rbd_dev->task_wq, 4635 &rbd_dev->watch_dwork, 4636 RBD_RETRY_DELAY); 4637 mutex_unlock(&rbd_dev->watch_mutex); 4638 return; 4639 } 4640 4641 mutex_unlock(&rbd_dev->watch_mutex); 4642 down_write(&rbd_dev->lock_rwsem); 4643 wake_lock_waiters(rbd_dev, ret); 4644 up_write(&rbd_dev->lock_rwsem); 4645 return; 4646 } 4647 4648 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 4649 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 4650 mutex_unlock(&rbd_dev->watch_mutex); 4651 4652 down_write(&rbd_dev->lock_rwsem); 4653 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) 4654 rbd_reacquire_lock(rbd_dev); 4655 up_write(&rbd_dev->lock_rwsem); 4656 4657 ret = rbd_dev_refresh(rbd_dev); 4658 if (ret) 4659 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret); 4660 } 4661 4662 /* 4663 * Synchronous osd object method call. Returns the number of bytes 4664 * returned in the outbound buffer, or a negative error code. 4665 */ 4666 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 4667 struct ceph_object_id *oid, 4668 struct ceph_object_locator *oloc, 4669 const char *method_name, 4670 const void *outbound, 4671 size_t outbound_size, 4672 void *inbound, 4673 size_t inbound_size) 4674 { 4675 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4676 struct page *req_page = NULL; 4677 struct page *reply_page; 4678 int ret; 4679 4680 /* 4681 * Method calls are ultimately read operations. The result 4682 * should placed into the inbound buffer provided. They 4683 * also supply outbound data--parameters for the object 4684 * method. Currently if this is present it will be a 4685 * snapshot id. 4686 */ 4687 if (outbound) { 4688 if (outbound_size > PAGE_SIZE) 4689 return -E2BIG; 4690 4691 req_page = alloc_page(GFP_KERNEL); 4692 if (!req_page) 4693 return -ENOMEM; 4694 4695 memcpy(page_address(req_page), outbound, outbound_size); 4696 } 4697 4698 reply_page = alloc_page(GFP_KERNEL); 4699 if (!reply_page) { 4700 if (req_page) 4701 __free_page(req_page); 4702 return -ENOMEM; 4703 } 4704 4705 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name, 4706 CEPH_OSD_FLAG_READ, req_page, outbound_size, 4707 &reply_page, &inbound_size); 4708 if (!ret) { 4709 memcpy(inbound, page_address(reply_page), inbound_size); 4710 ret = inbound_size; 4711 } 4712 4713 if (req_page) 4714 __free_page(req_page); 4715 __free_page(reply_page); 4716 return ret; 4717 } 4718 4719 static void rbd_queue_workfn(struct work_struct *work) 4720 { 4721 struct rbd_img_request *img_request = 4722 container_of(work, struct rbd_img_request, work); 4723 struct rbd_device *rbd_dev = img_request->rbd_dev; 4724 enum obj_operation_type op_type = img_request->op_type; 4725 struct request *rq = blk_mq_rq_from_pdu(img_request); 4726 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 4727 u64 length = blk_rq_bytes(rq); 4728 u64 mapping_size; 4729 int result; 4730 4731 /* Ignore/skip any zero-length requests */ 4732 if (!length) { 4733 dout("%s: zero-length request\n", __func__); 4734 result = 0; 4735 goto err_img_request; 4736 } 4737 4738 blk_mq_start_request(rq); 4739 4740 down_read(&rbd_dev->header_rwsem); 4741 mapping_size = rbd_dev->mapping.size; 4742 rbd_img_capture_header(img_request); 4743 up_read(&rbd_dev->header_rwsem); 4744 4745 if (offset + length > mapping_size) { 4746 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset, 4747 length, mapping_size); 4748 result = -EIO; 4749 goto err_img_request; 4750 } 4751 4752 dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev, 4753 img_request, obj_op_name(op_type), offset, length); 4754 4755 if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT) 4756 result = rbd_img_fill_nodata(img_request, offset, length); 4757 else 4758 result = rbd_img_fill_from_bio(img_request, offset, length, 4759 rq->bio); 4760 if (result) 4761 goto err_img_request; 4762 4763 rbd_img_handle_request(img_request, 0); 4764 return; 4765 4766 err_img_request: 4767 rbd_img_request_destroy(img_request); 4768 if (result) 4769 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 4770 obj_op_name(op_type), length, offset, result); 4771 blk_mq_end_request(rq, errno_to_blk_status(result)); 4772 } 4773 4774 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx, 4775 const struct blk_mq_queue_data *bd) 4776 { 4777 struct rbd_device *rbd_dev = hctx->queue->queuedata; 4778 struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq); 4779 enum obj_operation_type op_type; 4780 4781 switch (req_op(bd->rq)) { 4782 case REQ_OP_DISCARD: 4783 op_type = OBJ_OP_DISCARD; 4784 break; 4785 case REQ_OP_WRITE_ZEROES: 4786 op_type = OBJ_OP_ZEROOUT; 4787 break; 4788 case REQ_OP_WRITE: 4789 op_type = OBJ_OP_WRITE; 4790 break; 4791 case REQ_OP_READ: 4792 op_type = OBJ_OP_READ; 4793 break; 4794 default: 4795 rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq)); 4796 return BLK_STS_IOERR; 4797 } 4798 4799 rbd_img_request_init(img_req, rbd_dev, op_type); 4800 4801 if (rbd_img_is_write(img_req)) { 4802 if (rbd_is_ro(rbd_dev)) { 4803 rbd_warn(rbd_dev, "%s on read-only mapping", 4804 obj_op_name(img_req->op_type)); 4805 return BLK_STS_IOERR; 4806 } 4807 rbd_assert(!rbd_is_snap(rbd_dev)); 4808 } 4809 4810 INIT_WORK(&img_req->work, rbd_queue_workfn); 4811 queue_work(rbd_wq, &img_req->work); 4812 return BLK_STS_OK; 4813 } 4814 4815 static void rbd_free_disk(struct rbd_device *rbd_dev) 4816 { 4817 put_disk(rbd_dev->disk); 4818 blk_mq_free_tag_set(&rbd_dev->tag_set); 4819 rbd_dev->disk = NULL; 4820 } 4821 4822 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 4823 struct ceph_object_id *oid, 4824 struct ceph_object_locator *oloc, 4825 void *buf, int buf_len) 4826 4827 { 4828 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4829 struct ceph_osd_request *req; 4830 struct page **pages; 4831 int num_pages = calc_pages_for(0, buf_len); 4832 int ret; 4833 4834 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL); 4835 if (!req) 4836 return -ENOMEM; 4837 4838 ceph_oid_copy(&req->r_base_oid, oid); 4839 ceph_oloc_copy(&req->r_base_oloc, oloc); 4840 req->r_flags = CEPH_OSD_FLAG_READ; 4841 4842 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL); 4843 if (IS_ERR(pages)) { 4844 ret = PTR_ERR(pages); 4845 goto out_req; 4846 } 4847 4848 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0); 4849 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false, 4850 true); 4851 4852 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL); 4853 if (ret) 4854 goto out_req; 4855 4856 ceph_osdc_start_request(osdc, req); 4857 ret = ceph_osdc_wait_request(osdc, req); 4858 if (ret >= 0) 4859 ceph_copy_from_page_vector(pages, buf, 0, ret); 4860 4861 out_req: 4862 ceph_osdc_put_request(req); 4863 return ret; 4864 } 4865 4866 /* 4867 * Read the complete header for the given rbd device. On successful 4868 * return, the rbd_dev->header field will contain up-to-date 4869 * information about the image. 4870 */ 4871 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev, 4872 struct rbd_image_header *header, 4873 bool first_time) 4874 { 4875 struct rbd_image_header_ondisk *ondisk = NULL; 4876 u32 snap_count = 0; 4877 u64 names_size = 0; 4878 u32 want_count; 4879 int ret; 4880 4881 /* 4882 * The complete header will include an array of its 64-bit 4883 * snapshot ids, followed by the names of those snapshots as 4884 * a contiguous block of NUL-terminated strings. Note that 4885 * the number of snapshots could change by the time we read 4886 * it in, in which case we re-read it. 4887 */ 4888 do { 4889 size_t size; 4890 4891 kfree(ondisk); 4892 4893 size = sizeof (*ondisk); 4894 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 4895 size += names_size; 4896 ondisk = kmalloc(size, GFP_KERNEL); 4897 if (!ondisk) 4898 return -ENOMEM; 4899 4900 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid, 4901 &rbd_dev->header_oloc, ondisk, size); 4902 if (ret < 0) 4903 goto out; 4904 if ((size_t)ret < size) { 4905 ret = -ENXIO; 4906 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 4907 size, ret); 4908 goto out; 4909 } 4910 if (!rbd_dev_ondisk_valid(ondisk)) { 4911 ret = -ENXIO; 4912 rbd_warn(rbd_dev, "invalid header"); 4913 goto out; 4914 } 4915 4916 names_size = le64_to_cpu(ondisk->snap_names_len); 4917 want_count = snap_count; 4918 snap_count = le32_to_cpu(ondisk->snap_count); 4919 } while (snap_count != want_count); 4920 4921 ret = rbd_header_from_disk(header, ondisk, first_time); 4922 out: 4923 kfree(ondisk); 4924 4925 return ret; 4926 } 4927 4928 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 4929 { 4930 sector_t size; 4931 4932 /* 4933 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't 4934 * try to update its size. If REMOVING is set, updating size 4935 * is just useless work since the device can't be opened. 4936 */ 4937 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) && 4938 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) { 4939 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 4940 dout("setting size to %llu sectors", (unsigned long long)size); 4941 set_capacity_and_notify(rbd_dev->disk, size); 4942 } 4943 } 4944 4945 static const struct blk_mq_ops rbd_mq_ops = { 4946 .queue_rq = rbd_queue_rq, 4947 }; 4948 4949 static int rbd_init_disk(struct rbd_device *rbd_dev) 4950 { 4951 struct gendisk *disk; 4952 struct request_queue *q; 4953 unsigned int objset_bytes = 4954 rbd_dev->layout.object_size * rbd_dev->layout.stripe_count; 4955 int err; 4956 4957 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set)); 4958 rbd_dev->tag_set.ops = &rbd_mq_ops; 4959 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth; 4960 rbd_dev->tag_set.numa_node = NUMA_NO_NODE; 4961 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 4962 rbd_dev->tag_set.nr_hw_queues = num_present_cpus(); 4963 rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request); 4964 4965 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set); 4966 if (err) 4967 return err; 4968 4969 disk = blk_mq_alloc_disk(&rbd_dev->tag_set, rbd_dev); 4970 if (IS_ERR(disk)) { 4971 err = PTR_ERR(disk); 4972 goto out_tag_set; 4973 } 4974 q = disk->queue; 4975 4976 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 4977 rbd_dev->dev_id); 4978 disk->major = rbd_dev->major; 4979 disk->first_minor = rbd_dev->minor; 4980 if (single_major) 4981 disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT); 4982 else 4983 disk->minors = RBD_MINORS_PER_MAJOR; 4984 disk->fops = &rbd_bd_ops; 4985 disk->private_data = rbd_dev; 4986 4987 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 4988 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */ 4989 4990 blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT); 4991 q->limits.max_sectors = queue_max_hw_sectors(q); 4992 blk_queue_max_segments(q, USHRT_MAX); 4993 blk_queue_max_segment_size(q, UINT_MAX); 4994 blk_queue_io_min(q, rbd_dev->opts->alloc_size); 4995 blk_queue_io_opt(q, rbd_dev->opts->alloc_size); 4996 4997 if (rbd_dev->opts->trim) { 4998 q->limits.discard_granularity = rbd_dev->opts->alloc_size; 4999 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT); 5000 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT); 5001 } 5002 5003 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC)) 5004 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 5005 5006 rbd_dev->disk = disk; 5007 5008 return 0; 5009 out_tag_set: 5010 blk_mq_free_tag_set(&rbd_dev->tag_set); 5011 return err; 5012 } 5013 5014 /* 5015 sysfs 5016 */ 5017 5018 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 5019 { 5020 return container_of(dev, struct rbd_device, dev); 5021 } 5022 5023 static ssize_t rbd_size_show(struct device *dev, 5024 struct device_attribute *attr, char *buf) 5025 { 5026 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5027 5028 return sprintf(buf, "%llu\n", 5029 (unsigned long long)rbd_dev->mapping.size); 5030 } 5031 5032 static ssize_t rbd_features_show(struct device *dev, 5033 struct device_attribute *attr, char *buf) 5034 { 5035 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5036 5037 return sprintf(buf, "0x%016llx\n", rbd_dev->header.features); 5038 } 5039 5040 static ssize_t rbd_major_show(struct device *dev, 5041 struct device_attribute *attr, char *buf) 5042 { 5043 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5044 5045 if (rbd_dev->major) 5046 return sprintf(buf, "%d\n", rbd_dev->major); 5047 5048 return sprintf(buf, "(none)\n"); 5049 } 5050 5051 static ssize_t rbd_minor_show(struct device *dev, 5052 struct device_attribute *attr, char *buf) 5053 { 5054 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5055 5056 return sprintf(buf, "%d\n", rbd_dev->minor); 5057 } 5058 5059 static ssize_t rbd_client_addr_show(struct device *dev, 5060 struct device_attribute *attr, char *buf) 5061 { 5062 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5063 struct ceph_entity_addr *client_addr = 5064 ceph_client_addr(rbd_dev->rbd_client->client); 5065 5066 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr, 5067 le32_to_cpu(client_addr->nonce)); 5068 } 5069 5070 static ssize_t rbd_client_id_show(struct device *dev, 5071 struct device_attribute *attr, char *buf) 5072 { 5073 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5074 5075 return sprintf(buf, "client%lld\n", 5076 ceph_client_gid(rbd_dev->rbd_client->client)); 5077 } 5078 5079 static ssize_t rbd_cluster_fsid_show(struct device *dev, 5080 struct device_attribute *attr, char *buf) 5081 { 5082 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5083 5084 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid); 5085 } 5086 5087 static ssize_t rbd_config_info_show(struct device *dev, 5088 struct device_attribute *attr, char *buf) 5089 { 5090 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5091 5092 if (!capable(CAP_SYS_ADMIN)) 5093 return -EPERM; 5094 5095 return sprintf(buf, "%s\n", rbd_dev->config_info); 5096 } 5097 5098 static ssize_t rbd_pool_show(struct device *dev, 5099 struct device_attribute *attr, char *buf) 5100 { 5101 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5102 5103 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 5104 } 5105 5106 static ssize_t rbd_pool_id_show(struct device *dev, 5107 struct device_attribute *attr, char *buf) 5108 { 5109 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5110 5111 return sprintf(buf, "%llu\n", 5112 (unsigned long long) rbd_dev->spec->pool_id); 5113 } 5114 5115 static ssize_t rbd_pool_ns_show(struct device *dev, 5116 struct device_attribute *attr, char *buf) 5117 { 5118 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5119 5120 return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: ""); 5121 } 5122 5123 static ssize_t rbd_name_show(struct device *dev, 5124 struct device_attribute *attr, char *buf) 5125 { 5126 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5127 5128 if (rbd_dev->spec->image_name) 5129 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 5130 5131 return sprintf(buf, "(unknown)\n"); 5132 } 5133 5134 static ssize_t rbd_image_id_show(struct device *dev, 5135 struct device_attribute *attr, char *buf) 5136 { 5137 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5138 5139 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 5140 } 5141 5142 /* 5143 * Shows the name of the currently-mapped snapshot (or 5144 * RBD_SNAP_HEAD_NAME for the base image). 5145 */ 5146 static ssize_t rbd_snap_show(struct device *dev, 5147 struct device_attribute *attr, 5148 char *buf) 5149 { 5150 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5151 5152 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 5153 } 5154 5155 static ssize_t rbd_snap_id_show(struct device *dev, 5156 struct device_attribute *attr, char *buf) 5157 { 5158 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5159 5160 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id); 5161 } 5162 5163 /* 5164 * For a v2 image, shows the chain of parent images, separated by empty 5165 * lines. For v1 images or if there is no parent, shows "(no parent 5166 * image)". 5167 */ 5168 static ssize_t rbd_parent_show(struct device *dev, 5169 struct device_attribute *attr, 5170 char *buf) 5171 { 5172 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5173 ssize_t count = 0; 5174 5175 if (!rbd_dev->parent) 5176 return sprintf(buf, "(no parent image)\n"); 5177 5178 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 5179 struct rbd_spec *spec = rbd_dev->parent_spec; 5180 5181 count += sprintf(&buf[count], "%s" 5182 "pool_id %llu\npool_name %s\n" 5183 "pool_ns %s\n" 5184 "image_id %s\nimage_name %s\n" 5185 "snap_id %llu\nsnap_name %s\n" 5186 "overlap %llu\n", 5187 !count ? "" : "\n", /* first? */ 5188 spec->pool_id, spec->pool_name, 5189 spec->pool_ns ?: "", 5190 spec->image_id, spec->image_name ?: "(unknown)", 5191 spec->snap_id, spec->snap_name, 5192 rbd_dev->parent_overlap); 5193 } 5194 5195 return count; 5196 } 5197 5198 static ssize_t rbd_image_refresh(struct device *dev, 5199 struct device_attribute *attr, 5200 const char *buf, 5201 size_t size) 5202 { 5203 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5204 int ret; 5205 5206 if (!capable(CAP_SYS_ADMIN)) 5207 return -EPERM; 5208 5209 ret = rbd_dev_refresh(rbd_dev); 5210 if (ret) 5211 return ret; 5212 5213 return size; 5214 } 5215 5216 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL); 5217 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL); 5218 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL); 5219 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL); 5220 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL); 5221 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL); 5222 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL); 5223 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL); 5224 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL); 5225 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL); 5226 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL); 5227 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL); 5228 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL); 5229 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh); 5230 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL); 5231 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL); 5232 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL); 5233 5234 static struct attribute *rbd_attrs[] = { 5235 &dev_attr_size.attr, 5236 &dev_attr_features.attr, 5237 &dev_attr_major.attr, 5238 &dev_attr_minor.attr, 5239 &dev_attr_client_addr.attr, 5240 &dev_attr_client_id.attr, 5241 &dev_attr_cluster_fsid.attr, 5242 &dev_attr_config_info.attr, 5243 &dev_attr_pool.attr, 5244 &dev_attr_pool_id.attr, 5245 &dev_attr_pool_ns.attr, 5246 &dev_attr_name.attr, 5247 &dev_attr_image_id.attr, 5248 &dev_attr_current_snap.attr, 5249 &dev_attr_snap_id.attr, 5250 &dev_attr_parent.attr, 5251 &dev_attr_refresh.attr, 5252 NULL 5253 }; 5254 5255 static struct attribute_group rbd_attr_group = { 5256 .attrs = rbd_attrs, 5257 }; 5258 5259 static const struct attribute_group *rbd_attr_groups[] = { 5260 &rbd_attr_group, 5261 NULL 5262 }; 5263 5264 static void rbd_dev_release(struct device *dev); 5265 5266 static const struct device_type rbd_device_type = { 5267 .name = "rbd", 5268 .groups = rbd_attr_groups, 5269 .release = rbd_dev_release, 5270 }; 5271 5272 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 5273 { 5274 kref_get(&spec->kref); 5275 5276 return spec; 5277 } 5278 5279 static void rbd_spec_free(struct kref *kref); 5280 static void rbd_spec_put(struct rbd_spec *spec) 5281 { 5282 if (spec) 5283 kref_put(&spec->kref, rbd_spec_free); 5284 } 5285 5286 static struct rbd_spec *rbd_spec_alloc(void) 5287 { 5288 struct rbd_spec *spec; 5289 5290 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 5291 if (!spec) 5292 return NULL; 5293 5294 spec->pool_id = CEPH_NOPOOL; 5295 spec->snap_id = CEPH_NOSNAP; 5296 kref_init(&spec->kref); 5297 5298 return spec; 5299 } 5300 5301 static void rbd_spec_free(struct kref *kref) 5302 { 5303 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 5304 5305 kfree(spec->pool_name); 5306 kfree(spec->pool_ns); 5307 kfree(spec->image_id); 5308 kfree(spec->image_name); 5309 kfree(spec->snap_name); 5310 kfree(spec); 5311 } 5312 5313 static void rbd_dev_free(struct rbd_device *rbd_dev) 5314 { 5315 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED); 5316 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED); 5317 5318 ceph_oid_destroy(&rbd_dev->header_oid); 5319 ceph_oloc_destroy(&rbd_dev->header_oloc); 5320 kfree(rbd_dev->config_info); 5321 5322 rbd_put_client(rbd_dev->rbd_client); 5323 rbd_spec_put(rbd_dev->spec); 5324 kfree(rbd_dev->opts); 5325 kfree(rbd_dev); 5326 } 5327 5328 static void rbd_dev_release(struct device *dev) 5329 { 5330 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5331 bool need_put = !!rbd_dev->opts; 5332 5333 if (need_put) { 5334 destroy_workqueue(rbd_dev->task_wq); 5335 ida_free(&rbd_dev_id_ida, rbd_dev->dev_id); 5336 } 5337 5338 rbd_dev_free(rbd_dev); 5339 5340 /* 5341 * This is racy, but way better than putting module outside of 5342 * the release callback. The race window is pretty small, so 5343 * doing something similar to dm (dm-builtin.c) is overkill. 5344 */ 5345 if (need_put) 5346 module_put(THIS_MODULE); 5347 } 5348 5349 static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec) 5350 { 5351 struct rbd_device *rbd_dev; 5352 5353 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL); 5354 if (!rbd_dev) 5355 return NULL; 5356 5357 spin_lock_init(&rbd_dev->lock); 5358 INIT_LIST_HEAD(&rbd_dev->node); 5359 init_rwsem(&rbd_dev->header_rwsem); 5360 5361 rbd_dev->header.data_pool_id = CEPH_NOPOOL; 5362 ceph_oid_init(&rbd_dev->header_oid); 5363 rbd_dev->header_oloc.pool = spec->pool_id; 5364 if (spec->pool_ns) { 5365 WARN_ON(!*spec->pool_ns); 5366 rbd_dev->header_oloc.pool_ns = 5367 ceph_find_or_create_string(spec->pool_ns, 5368 strlen(spec->pool_ns)); 5369 } 5370 5371 mutex_init(&rbd_dev->watch_mutex); 5372 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 5373 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch); 5374 5375 init_rwsem(&rbd_dev->lock_rwsem); 5376 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 5377 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock); 5378 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock); 5379 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock); 5380 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work); 5381 spin_lock_init(&rbd_dev->lock_lists_lock); 5382 INIT_LIST_HEAD(&rbd_dev->acquiring_list); 5383 INIT_LIST_HEAD(&rbd_dev->running_list); 5384 init_completion(&rbd_dev->acquire_wait); 5385 init_completion(&rbd_dev->releasing_wait); 5386 5387 spin_lock_init(&rbd_dev->object_map_lock); 5388 5389 rbd_dev->dev.bus = &rbd_bus_type; 5390 rbd_dev->dev.type = &rbd_device_type; 5391 rbd_dev->dev.parent = &rbd_root_dev; 5392 device_initialize(&rbd_dev->dev); 5393 5394 return rbd_dev; 5395 } 5396 5397 /* 5398 * Create a mapping rbd_dev. 5399 */ 5400 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 5401 struct rbd_spec *spec, 5402 struct rbd_options *opts) 5403 { 5404 struct rbd_device *rbd_dev; 5405 5406 rbd_dev = __rbd_dev_create(spec); 5407 if (!rbd_dev) 5408 return NULL; 5409 5410 /* get an id and fill in device name */ 5411 rbd_dev->dev_id = ida_alloc_max(&rbd_dev_id_ida, 5412 minor_to_rbd_dev_id(1 << MINORBITS) - 1, 5413 GFP_KERNEL); 5414 if (rbd_dev->dev_id < 0) 5415 goto fail_rbd_dev; 5416 5417 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id); 5418 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM, 5419 rbd_dev->name); 5420 if (!rbd_dev->task_wq) 5421 goto fail_dev_id; 5422 5423 /* we have a ref from do_rbd_add() */ 5424 __module_get(THIS_MODULE); 5425 5426 rbd_dev->rbd_client = rbdc; 5427 rbd_dev->spec = spec; 5428 rbd_dev->opts = opts; 5429 5430 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id); 5431 return rbd_dev; 5432 5433 fail_dev_id: 5434 ida_free(&rbd_dev_id_ida, rbd_dev->dev_id); 5435 fail_rbd_dev: 5436 rbd_dev_free(rbd_dev); 5437 return NULL; 5438 } 5439 5440 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 5441 { 5442 if (rbd_dev) 5443 put_device(&rbd_dev->dev); 5444 } 5445 5446 /* 5447 * Get the size and object order for an image snapshot, or if 5448 * snap_id is CEPH_NOSNAP, gets this information for the base 5449 * image. 5450 */ 5451 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 5452 u8 *order, u64 *snap_size) 5453 { 5454 __le64 snapid = cpu_to_le64(snap_id); 5455 int ret; 5456 struct { 5457 u8 order; 5458 __le64 size; 5459 } __attribute__ ((packed)) size_buf = { 0 }; 5460 5461 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5462 &rbd_dev->header_oloc, "get_size", 5463 &snapid, sizeof(snapid), 5464 &size_buf, sizeof(size_buf)); 5465 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5466 if (ret < 0) 5467 return ret; 5468 if (ret < sizeof (size_buf)) 5469 return -ERANGE; 5470 5471 if (order) { 5472 *order = size_buf.order; 5473 dout(" order %u", (unsigned int)*order); 5474 } 5475 *snap_size = le64_to_cpu(size_buf.size); 5476 5477 dout(" snap_id 0x%016llx snap_size = %llu\n", 5478 (unsigned long long)snap_id, 5479 (unsigned long long)*snap_size); 5480 5481 return 0; 5482 } 5483 5484 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev, 5485 char **pobject_prefix) 5486 { 5487 size_t size; 5488 void *reply_buf; 5489 char *object_prefix; 5490 int ret; 5491 void *p; 5492 5493 /* Response will be an encoded string, which includes a length */ 5494 size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX; 5495 reply_buf = kzalloc(size, GFP_KERNEL); 5496 if (!reply_buf) 5497 return -ENOMEM; 5498 5499 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5500 &rbd_dev->header_oloc, "get_object_prefix", 5501 NULL, 0, reply_buf, size); 5502 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5503 if (ret < 0) 5504 goto out; 5505 5506 p = reply_buf; 5507 object_prefix = ceph_extract_encoded_string(&p, p + ret, NULL, 5508 GFP_NOIO); 5509 if (IS_ERR(object_prefix)) { 5510 ret = PTR_ERR(object_prefix); 5511 goto out; 5512 } 5513 ret = 0; 5514 5515 *pobject_prefix = object_prefix; 5516 dout(" object_prefix = %s\n", object_prefix); 5517 out: 5518 kfree(reply_buf); 5519 5520 return ret; 5521 } 5522 5523 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 5524 bool read_only, u64 *snap_features) 5525 { 5526 struct { 5527 __le64 snap_id; 5528 u8 read_only; 5529 } features_in; 5530 struct { 5531 __le64 features; 5532 __le64 incompat; 5533 } __attribute__ ((packed)) features_buf = { 0 }; 5534 u64 unsup; 5535 int ret; 5536 5537 features_in.snap_id = cpu_to_le64(snap_id); 5538 features_in.read_only = read_only; 5539 5540 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5541 &rbd_dev->header_oloc, "get_features", 5542 &features_in, sizeof(features_in), 5543 &features_buf, sizeof(features_buf)); 5544 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5545 if (ret < 0) 5546 return ret; 5547 if (ret < sizeof (features_buf)) 5548 return -ERANGE; 5549 5550 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED; 5551 if (unsup) { 5552 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx", 5553 unsup); 5554 return -ENXIO; 5555 } 5556 5557 *snap_features = le64_to_cpu(features_buf.features); 5558 5559 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 5560 (unsigned long long)snap_id, 5561 (unsigned long long)*snap_features, 5562 (unsigned long long)le64_to_cpu(features_buf.incompat)); 5563 5564 return 0; 5565 } 5566 5567 /* 5568 * These are generic image flags, but since they are used only for 5569 * object map, store them in rbd_dev->object_map_flags. 5570 * 5571 * For the same reason, this function is called only on object map 5572 * (re)load and not on header refresh. 5573 */ 5574 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev) 5575 { 5576 __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id); 5577 __le64 flags; 5578 int ret; 5579 5580 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5581 &rbd_dev->header_oloc, "get_flags", 5582 &snapid, sizeof(snapid), 5583 &flags, sizeof(flags)); 5584 if (ret < 0) 5585 return ret; 5586 if (ret < sizeof(flags)) 5587 return -EBADMSG; 5588 5589 rbd_dev->object_map_flags = le64_to_cpu(flags); 5590 return 0; 5591 } 5592 5593 struct parent_image_info { 5594 u64 pool_id; 5595 const char *pool_ns; 5596 const char *image_id; 5597 u64 snap_id; 5598 5599 bool has_overlap; 5600 u64 overlap; 5601 }; 5602 5603 static void rbd_parent_info_cleanup(struct parent_image_info *pii) 5604 { 5605 kfree(pii->pool_ns); 5606 kfree(pii->image_id); 5607 5608 memset(pii, 0, sizeof(*pii)); 5609 } 5610 5611 /* 5612 * The caller is responsible for @pii. 5613 */ 5614 static int decode_parent_image_spec(void **p, void *end, 5615 struct parent_image_info *pii) 5616 { 5617 u8 struct_v; 5618 u32 struct_len; 5619 int ret; 5620 5621 ret = ceph_start_decoding(p, end, 1, "ParentImageSpec", 5622 &struct_v, &struct_len); 5623 if (ret) 5624 return ret; 5625 5626 ceph_decode_64_safe(p, end, pii->pool_id, e_inval); 5627 pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL); 5628 if (IS_ERR(pii->pool_ns)) { 5629 ret = PTR_ERR(pii->pool_ns); 5630 pii->pool_ns = NULL; 5631 return ret; 5632 } 5633 pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL); 5634 if (IS_ERR(pii->image_id)) { 5635 ret = PTR_ERR(pii->image_id); 5636 pii->image_id = NULL; 5637 return ret; 5638 } 5639 ceph_decode_64_safe(p, end, pii->snap_id, e_inval); 5640 return 0; 5641 5642 e_inval: 5643 return -EINVAL; 5644 } 5645 5646 static int __get_parent_info(struct rbd_device *rbd_dev, 5647 struct page *req_page, 5648 struct page *reply_page, 5649 struct parent_image_info *pii) 5650 { 5651 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 5652 size_t reply_len = PAGE_SIZE; 5653 void *p, *end; 5654 int ret; 5655 5656 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5657 "rbd", "parent_get", CEPH_OSD_FLAG_READ, 5658 req_page, sizeof(u64), &reply_page, &reply_len); 5659 if (ret) 5660 return ret == -EOPNOTSUPP ? 1 : ret; 5661 5662 p = page_address(reply_page); 5663 end = p + reply_len; 5664 ret = decode_parent_image_spec(&p, end, pii); 5665 if (ret) 5666 return ret; 5667 5668 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5669 "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ, 5670 req_page, sizeof(u64), &reply_page, &reply_len); 5671 if (ret) 5672 return ret; 5673 5674 p = page_address(reply_page); 5675 end = p + reply_len; 5676 ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval); 5677 if (pii->has_overlap) 5678 ceph_decode_64_safe(&p, end, pii->overlap, e_inval); 5679 5680 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n", 5681 __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id, 5682 pii->has_overlap, pii->overlap); 5683 return 0; 5684 5685 e_inval: 5686 return -EINVAL; 5687 } 5688 5689 /* 5690 * The caller is responsible for @pii. 5691 */ 5692 static int __get_parent_info_legacy(struct rbd_device *rbd_dev, 5693 struct page *req_page, 5694 struct page *reply_page, 5695 struct parent_image_info *pii) 5696 { 5697 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 5698 size_t reply_len = PAGE_SIZE; 5699 void *p, *end; 5700 int ret; 5701 5702 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5703 "rbd", "get_parent", CEPH_OSD_FLAG_READ, 5704 req_page, sizeof(u64), &reply_page, &reply_len); 5705 if (ret) 5706 return ret; 5707 5708 p = page_address(reply_page); 5709 end = p + reply_len; 5710 ceph_decode_64_safe(&p, end, pii->pool_id, e_inval); 5711 pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 5712 if (IS_ERR(pii->image_id)) { 5713 ret = PTR_ERR(pii->image_id); 5714 pii->image_id = NULL; 5715 return ret; 5716 } 5717 ceph_decode_64_safe(&p, end, pii->snap_id, e_inval); 5718 pii->has_overlap = true; 5719 ceph_decode_64_safe(&p, end, pii->overlap, e_inval); 5720 5721 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n", 5722 __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id, 5723 pii->has_overlap, pii->overlap); 5724 return 0; 5725 5726 e_inval: 5727 return -EINVAL; 5728 } 5729 5730 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev, 5731 struct parent_image_info *pii) 5732 { 5733 struct page *req_page, *reply_page; 5734 void *p; 5735 int ret; 5736 5737 req_page = alloc_page(GFP_KERNEL); 5738 if (!req_page) 5739 return -ENOMEM; 5740 5741 reply_page = alloc_page(GFP_KERNEL); 5742 if (!reply_page) { 5743 __free_page(req_page); 5744 return -ENOMEM; 5745 } 5746 5747 p = page_address(req_page); 5748 ceph_encode_64(&p, rbd_dev->spec->snap_id); 5749 ret = __get_parent_info(rbd_dev, req_page, reply_page, pii); 5750 if (ret > 0) 5751 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page, 5752 pii); 5753 5754 __free_page(req_page); 5755 __free_page(reply_page); 5756 return ret; 5757 } 5758 5759 static int rbd_dev_setup_parent(struct rbd_device *rbd_dev) 5760 { 5761 struct rbd_spec *parent_spec; 5762 struct parent_image_info pii = { 0 }; 5763 int ret; 5764 5765 parent_spec = rbd_spec_alloc(); 5766 if (!parent_spec) 5767 return -ENOMEM; 5768 5769 ret = rbd_dev_v2_parent_info(rbd_dev, &pii); 5770 if (ret) 5771 goto out_err; 5772 5773 if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) 5774 goto out; /* No parent? No problem. */ 5775 5776 /* The ceph file layout needs to fit pool id in 32 bits */ 5777 5778 ret = -EIO; 5779 if (pii.pool_id > (u64)U32_MAX) { 5780 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 5781 (unsigned long long)pii.pool_id, U32_MAX); 5782 goto out_err; 5783 } 5784 5785 /* 5786 * The parent won't change except when the clone is flattened, 5787 * so we only need to record the parent image spec once. 5788 */ 5789 parent_spec->pool_id = pii.pool_id; 5790 if (pii.pool_ns && *pii.pool_ns) { 5791 parent_spec->pool_ns = pii.pool_ns; 5792 pii.pool_ns = NULL; 5793 } 5794 parent_spec->image_id = pii.image_id; 5795 pii.image_id = NULL; 5796 parent_spec->snap_id = pii.snap_id; 5797 5798 rbd_assert(!rbd_dev->parent_spec); 5799 rbd_dev->parent_spec = parent_spec; 5800 parent_spec = NULL; /* rbd_dev now owns this */ 5801 5802 /* 5803 * Record the parent overlap. If it's zero, issue a warning as 5804 * we will proceed as if there is no parent. 5805 */ 5806 if (!pii.overlap) 5807 rbd_warn(rbd_dev, "clone is standalone (overlap 0)"); 5808 rbd_dev->parent_overlap = pii.overlap; 5809 5810 out: 5811 ret = 0; 5812 out_err: 5813 rbd_parent_info_cleanup(&pii); 5814 rbd_spec_put(parent_spec); 5815 return ret; 5816 } 5817 5818 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev, 5819 u64 *stripe_unit, u64 *stripe_count) 5820 { 5821 struct { 5822 __le64 stripe_unit; 5823 __le64 stripe_count; 5824 } __attribute__ ((packed)) striping_info_buf = { 0 }; 5825 size_t size = sizeof (striping_info_buf); 5826 int ret; 5827 5828 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5829 &rbd_dev->header_oloc, "get_stripe_unit_count", 5830 NULL, 0, &striping_info_buf, size); 5831 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5832 if (ret < 0) 5833 return ret; 5834 if (ret < size) 5835 return -ERANGE; 5836 5837 *stripe_unit = le64_to_cpu(striping_info_buf.stripe_unit); 5838 *stripe_count = le64_to_cpu(striping_info_buf.stripe_count); 5839 dout(" stripe_unit = %llu stripe_count = %llu\n", *stripe_unit, 5840 *stripe_count); 5841 5842 return 0; 5843 } 5844 5845 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev, s64 *data_pool_id) 5846 { 5847 __le64 data_pool_buf; 5848 int ret; 5849 5850 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5851 &rbd_dev->header_oloc, "get_data_pool", 5852 NULL, 0, &data_pool_buf, 5853 sizeof(data_pool_buf)); 5854 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5855 if (ret < 0) 5856 return ret; 5857 if (ret < sizeof(data_pool_buf)) 5858 return -EBADMSG; 5859 5860 *data_pool_id = le64_to_cpu(data_pool_buf); 5861 dout(" data_pool_id = %lld\n", *data_pool_id); 5862 WARN_ON(*data_pool_id == CEPH_NOPOOL); 5863 5864 return 0; 5865 } 5866 5867 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 5868 { 5869 CEPH_DEFINE_OID_ONSTACK(oid); 5870 size_t image_id_size; 5871 char *image_id; 5872 void *p; 5873 void *end; 5874 size_t size; 5875 void *reply_buf = NULL; 5876 size_t len = 0; 5877 char *image_name = NULL; 5878 int ret; 5879 5880 rbd_assert(!rbd_dev->spec->image_name); 5881 5882 len = strlen(rbd_dev->spec->image_id); 5883 image_id_size = sizeof (__le32) + len; 5884 image_id = kmalloc(image_id_size, GFP_KERNEL); 5885 if (!image_id) 5886 return NULL; 5887 5888 p = image_id; 5889 end = image_id + image_id_size; 5890 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 5891 5892 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 5893 reply_buf = kmalloc(size, GFP_KERNEL); 5894 if (!reply_buf) 5895 goto out; 5896 5897 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY); 5898 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 5899 "dir_get_name", image_id, image_id_size, 5900 reply_buf, size); 5901 if (ret < 0) 5902 goto out; 5903 p = reply_buf; 5904 end = reply_buf + ret; 5905 5906 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 5907 if (IS_ERR(image_name)) 5908 image_name = NULL; 5909 else 5910 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 5911 out: 5912 kfree(reply_buf); 5913 kfree(image_id); 5914 5915 return image_name; 5916 } 5917 5918 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5919 { 5920 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5921 const char *snap_name; 5922 u32 which = 0; 5923 5924 /* Skip over names until we find the one we are looking for */ 5925 5926 snap_name = rbd_dev->header.snap_names; 5927 while (which < snapc->num_snaps) { 5928 if (!strcmp(name, snap_name)) 5929 return snapc->snaps[which]; 5930 snap_name += strlen(snap_name) + 1; 5931 which++; 5932 } 5933 return CEPH_NOSNAP; 5934 } 5935 5936 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5937 { 5938 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5939 u32 which; 5940 bool found = false; 5941 u64 snap_id; 5942 5943 for (which = 0; !found && which < snapc->num_snaps; which++) { 5944 const char *snap_name; 5945 5946 snap_id = snapc->snaps[which]; 5947 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 5948 if (IS_ERR(snap_name)) { 5949 /* ignore no-longer existing snapshots */ 5950 if (PTR_ERR(snap_name) == -ENOENT) 5951 continue; 5952 else 5953 break; 5954 } 5955 found = !strcmp(name, snap_name); 5956 kfree(snap_name); 5957 } 5958 return found ? snap_id : CEPH_NOSNAP; 5959 } 5960 5961 /* 5962 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 5963 * no snapshot by that name is found, or if an error occurs. 5964 */ 5965 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5966 { 5967 if (rbd_dev->image_format == 1) 5968 return rbd_v1_snap_id_by_name(rbd_dev, name); 5969 5970 return rbd_v2_snap_id_by_name(rbd_dev, name); 5971 } 5972 5973 /* 5974 * An image being mapped will have everything but the snap id. 5975 */ 5976 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 5977 { 5978 struct rbd_spec *spec = rbd_dev->spec; 5979 5980 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 5981 rbd_assert(spec->image_id && spec->image_name); 5982 rbd_assert(spec->snap_name); 5983 5984 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 5985 u64 snap_id; 5986 5987 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 5988 if (snap_id == CEPH_NOSNAP) 5989 return -ENOENT; 5990 5991 spec->snap_id = snap_id; 5992 } else { 5993 spec->snap_id = CEPH_NOSNAP; 5994 } 5995 5996 return 0; 5997 } 5998 5999 /* 6000 * A parent image will have all ids but none of the names. 6001 * 6002 * All names in an rbd spec are dynamically allocated. It's OK if we 6003 * can't figure out the name for an image id. 6004 */ 6005 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 6006 { 6007 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 6008 struct rbd_spec *spec = rbd_dev->spec; 6009 const char *pool_name; 6010 const char *image_name; 6011 const char *snap_name; 6012 int ret; 6013 6014 rbd_assert(spec->pool_id != CEPH_NOPOOL); 6015 rbd_assert(spec->image_id); 6016 rbd_assert(spec->snap_id != CEPH_NOSNAP); 6017 6018 /* Get the pool name; we have to make our own copy of this */ 6019 6020 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 6021 if (!pool_name) { 6022 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 6023 return -EIO; 6024 } 6025 pool_name = kstrdup(pool_name, GFP_KERNEL); 6026 if (!pool_name) 6027 return -ENOMEM; 6028 6029 /* Fetch the image name; tolerate failure here */ 6030 6031 image_name = rbd_dev_image_name(rbd_dev); 6032 if (!image_name) 6033 rbd_warn(rbd_dev, "unable to get image name"); 6034 6035 /* Fetch the snapshot name */ 6036 6037 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 6038 if (IS_ERR(snap_name)) { 6039 ret = PTR_ERR(snap_name); 6040 goto out_err; 6041 } 6042 6043 spec->pool_name = pool_name; 6044 spec->image_name = image_name; 6045 spec->snap_name = snap_name; 6046 6047 return 0; 6048 6049 out_err: 6050 kfree(image_name); 6051 kfree(pool_name); 6052 return ret; 6053 } 6054 6055 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev, 6056 struct ceph_snap_context **psnapc) 6057 { 6058 size_t size; 6059 int ret; 6060 void *reply_buf; 6061 void *p; 6062 void *end; 6063 u64 seq; 6064 u32 snap_count; 6065 struct ceph_snap_context *snapc; 6066 u32 i; 6067 6068 /* 6069 * We'll need room for the seq value (maximum snapshot id), 6070 * snapshot count, and array of that many snapshot ids. 6071 * For now we have a fixed upper limit on the number we're 6072 * prepared to receive. 6073 */ 6074 size = sizeof (__le64) + sizeof (__le32) + 6075 RBD_MAX_SNAP_COUNT * sizeof (__le64); 6076 reply_buf = kzalloc(size, GFP_KERNEL); 6077 if (!reply_buf) 6078 return -ENOMEM; 6079 6080 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 6081 &rbd_dev->header_oloc, "get_snapcontext", 6082 NULL, 0, reply_buf, size); 6083 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6084 if (ret < 0) 6085 goto out; 6086 6087 p = reply_buf; 6088 end = reply_buf + ret; 6089 ret = -ERANGE; 6090 ceph_decode_64_safe(&p, end, seq, out); 6091 ceph_decode_32_safe(&p, end, snap_count, out); 6092 6093 /* 6094 * Make sure the reported number of snapshot ids wouldn't go 6095 * beyond the end of our buffer. But before checking that, 6096 * make sure the computed size of the snapshot context we 6097 * allocate is representable in a size_t. 6098 */ 6099 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 6100 / sizeof (u64)) { 6101 ret = -EINVAL; 6102 goto out; 6103 } 6104 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 6105 goto out; 6106 ret = 0; 6107 6108 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 6109 if (!snapc) { 6110 ret = -ENOMEM; 6111 goto out; 6112 } 6113 snapc->seq = seq; 6114 for (i = 0; i < snap_count; i++) 6115 snapc->snaps[i] = ceph_decode_64(&p); 6116 6117 *psnapc = snapc; 6118 dout(" snap context seq = %llu, snap_count = %u\n", 6119 (unsigned long long)seq, (unsigned int)snap_count); 6120 out: 6121 kfree(reply_buf); 6122 6123 return ret; 6124 } 6125 6126 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 6127 u64 snap_id) 6128 { 6129 size_t size; 6130 void *reply_buf; 6131 __le64 snapid; 6132 int ret; 6133 void *p; 6134 void *end; 6135 char *snap_name; 6136 6137 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 6138 reply_buf = kmalloc(size, GFP_KERNEL); 6139 if (!reply_buf) 6140 return ERR_PTR(-ENOMEM); 6141 6142 snapid = cpu_to_le64(snap_id); 6143 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 6144 &rbd_dev->header_oloc, "get_snapshot_name", 6145 &snapid, sizeof(snapid), reply_buf, size); 6146 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6147 if (ret < 0) { 6148 snap_name = ERR_PTR(ret); 6149 goto out; 6150 } 6151 6152 p = reply_buf; 6153 end = reply_buf + ret; 6154 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 6155 if (IS_ERR(snap_name)) 6156 goto out; 6157 6158 dout(" snap_id 0x%016llx snap_name = %s\n", 6159 (unsigned long long)snap_id, snap_name); 6160 out: 6161 kfree(reply_buf); 6162 6163 return snap_name; 6164 } 6165 6166 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev, 6167 struct rbd_image_header *header, 6168 bool first_time) 6169 { 6170 int ret; 6171 6172 ret = _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 6173 first_time ? &header->obj_order : NULL, 6174 &header->image_size); 6175 if (ret) 6176 return ret; 6177 6178 if (first_time) { 6179 ret = rbd_dev_v2_header_onetime(rbd_dev, header); 6180 if (ret) 6181 return ret; 6182 } 6183 6184 ret = rbd_dev_v2_snap_context(rbd_dev, &header->snapc); 6185 if (ret) 6186 return ret; 6187 6188 return 0; 6189 } 6190 6191 static int rbd_dev_header_info(struct rbd_device *rbd_dev, 6192 struct rbd_image_header *header, 6193 bool first_time) 6194 { 6195 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 6196 rbd_assert(!header->object_prefix && !header->snapc); 6197 6198 if (rbd_dev->image_format == 1) 6199 return rbd_dev_v1_header_info(rbd_dev, header, first_time); 6200 6201 return rbd_dev_v2_header_info(rbd_dev, header, first_time); 6202 } 6203 6204 /* 6205 * Skips over white space at *buf, and updates *buf to point to the 6206 * first found non-space character (if any). Returns the length of 6207 * the token (string of non-white space characters) found. Note 6208 * that *buf must be terminated with '\0'. 6209 */ 6210 static inline size_t next_token(const char **buf) 6211 { 6212 /* 6213 * These are the characters that produce nonzero for 6214 * isspace() in the "C" and "POSIX" locales. 6215 */ 6216 static const char spaces[] = " \f\n\r\t\v"; 6217 6218 *buf += strspn(*buf, spaces); /* Find start of token */ 6219 6220 return strcspn(*buf, spaces); /* Return token length */ 6221 } 6222 6223 /* 6224 * Finds the next token in *buf, dynamically allocates a buffer big 6225 * enough to hold a copy of it, and copies the token into the new 6226 * buffer. The copy is guaranteed to be terminated with '\0'. Note 6227 * that a duplicate buffer is created even for a zero-length token. 6228 * 6229 * Returns a pointer to the newly-allocated duplicate, or a null 6230 * pointer if memory for the duplicate was not available. If 6231 * the lenp argument is a non-null pointer, the length of the token 6232 * (not including the '\0') is returned in *lenp. 6233 * 6234 * If successful, the *buf pointer will be updated to point beyond 6235 * the end of the found token. 6236 * 6237 * Note: uses GFP_KERNEL for allocation. 6238 */ 6239 static inline char *dup_token(const char **buf, size_t *lenp) 6240 { 6241 char *dup; 6242 size_t len; 6243 6244 len = next_token(buf); 6245 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 6246 if (!dup) 6247 return NULL; 6248 *(dup + len) = '\0'; 6249 *buf += len; 6250 6251 if (lenp) 6252 *lenp = len; 6253 6254 return dup; 6255 } 6256 6257 static int rbd_parse_param(struct fs_parameter *param, 6258 struct rbd_parse_opts_ctx *pctx) 6259 { 6260 struct rbd_options *opt = pctx->opts; 6261 struct fs_parse_result result; 6262 struct p_log log = {.prefix = "rbd"}; 6263 int token, ret; 6264 6265 ret = ceph_parse_param(param, pctx->copts, NULL); 6266 if (ret != -ENOPARAM) 6267 return ret; 6268 6269 token = __fs_parse(&log, rbd_parameters, param, &result); 6270 dout("%s fs_parse '%s' token %d\n", __func__, param->key, token); 6271 if (token < 0) { 6272 if (token == -ENOPARAM) 6273 return inval_plog(&log, "Unknown parameter '%s'", 6274 param->key); 6275 return token; 6276 } 6277 6278 switch (token) { 6279 case Opt_queue_depth: 6280 if (result.uint_32 < 1) 6281 goto out_of_range; 6282 opt->queue_depth = result.uint_32; 6283 break; 6284 case Opt_alloc_size: 6285 if (result.uint_32 < SECTOR_SIZE) 6286 goto out_of_range; 6287 if (!is_power_of_2(result.uint_32)) 6288 return inval_plog(&log, "alloc_size must be a power of 2"); 6289 opt->alloc_size = result.uint_32; 6290 break; 6291 case Opt_lock_timeout: 6292 /* 0 is "wait forever" (i.e. infinite timeout) */ 6293 if (result.uint_32 > INT_MAX / 1000) 6294 goto out_of_range; 6295 opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000); 6296 break; 6297 case Opt_pool_ns: 6298 kfree(pctx->spec->pool_ns); 6299 pctx->spec->pool_ns = param->string; 6300 param->string = NULL; 6301 break; 6302 case Opt_compression_hint: 6303 switch (result.uint_32) { 6304 case Opt_compression_hint_none: 6305 opt->alloc_hint_flags &= 6306 ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE | 6307 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE); 6308 break; 6309 case Opt_compression_hint_compressible: 6310 opt->alloc_hint_flags |= 6311 CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE; 6312 opt->alloc_hint_flags &= 6313 ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE; 6314 break; 6315 case Opt_compression_hint_incompressible: 6316 opt->alloc_hint_flags |= 6317 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE; 6318 opt->alloc_hint_flags &= 6319 ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE; 6320 break; 6321 default: 6322 BUG(); 6323 } 6324 break; 6325 case Opt_read_only: 6326 opt->read_only = true; 6327 break; 6328 case Opt_read_write: 6329 opt->read_only = false; 6330 break; 6331 case Opt_lock_on_read: 6332 opt->lock_on_read = true; 6333 break; 6334 case Opt_exclusive: 6335 opt->exclusive = true; 6336 break; 6337 case Opt_notrim: 6338 opt->trim = false; 6339 break; 6340 default: 6341 BUG(); 6342 } 6343 6344 return 0; 6345 6346 out_of_range: 6347 return inval_plog(&log, "%s out of range", param->key); 6348 } 6349 6350 /* 6351 * This duplicates most of generic_parse_monolithic(), untying it from 6352 * fs_context and skipping standard superblock and security options. 6353 */ 6354 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx) 6355 { 6356 char *key; 6357 int ret = 0; 6358 6359 dout("%s '%s'\n", __func__, options); 6360 while ((key = strsep(&options, ",")) != NULL) { 6361 if (*key) { 6362 struct fs_parameter param = { 6363 .key = key, 6364 .type = fs_value_is_flag, 6365 }; 6366 char *value = strchr(key, '='); 6367 size_t v_len = 0; 6368 6369 if (value) { 6370 if (value == key) 6371 continue; 6372 *value++ = 0; 6373 v_len = strlen(value); 6374 param.string = kmemdup_nul(value, v_len, 6375 GFP_KERNEL); 6376 if (!param.string) 6377 return -ENOMEM; 6378 param.type = fs_value_is_string; 6379 } 6380 param.size = v_len; 6381 6382 ret = rbd_parse_param(¶m, pctx); 6383 kfree(param.string); 6384 if (ret) 6385 break; 6386 } 6387 } 6388 6389 return ret; 6390 } 6391 6392 /* 6393 * Parse the options provided for an "rbd add" (i.e., rbd image 6394 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 6395 * and the data written is passed here via a NUL-terminated buffer. 6396 * Returns 0 if successful or an error code otherwise. 6397 * 6398 * The information extracted from these options is recorded in 6399 * the other parameters which return dynamically-allocated 6400 * structures: 6401 * ceph_opts 6402 * The address of a pointer that will refer to a ceph options 6403 * structure. Caller must release the returned pointer using 6404 * ceph_destroy_options() when it is no longer needed. 6405 * rbd_opts 6406 * Address of an rbd options pointer. Fully initialized by 6407 * this function; caller must release with kfree(). 6408 * spec 6409 * Address of an rbd image specification pointer. Fully 6410 * initialized by this function based on parsed options. 6411 * Caller must release with rbd_spec_put(). 6412 * 6413 * The options passed take this form: 6414 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 6415 * where: 6416 * <mon_addrs> 6417 * A comma-separated list of one or more monitor addresses. 6418 * A monitor address is an ip address, optionally followed 6419 * by a port number (separated by a colon). 6420 * I.e.: ip1[:port1][,ip2[:port2]...] 6421 * <options> 6422 * A comma-separated list of ceph and/or rbd options. 6423 * <pool_name> 6424 * The name of the rados pool containing the rbd image. 6425 * <image_name> 6426 * The name of the image in that pool to map. 6427 * <snap_id> 6428 * An optional snapshot id. If provided, the mapping will 6429 * present data from the image at the time that snapshot was 6430 * created. The image head is used if no snapshot id is 6431 * provided. Snapshot mappings are always read-only. 6432 */ 6433 static int rbd_add_parse_args(const char *buf, 6434 struct ceph_options **ceph_opts, 6435 struct rbd_options **opts, 6436 struct rbd_spec **rbd_spec) 6437 { 6438 size_t len; 6439 char *options; 6440 const char *mon_addrs; 6441 char *snap_name; 6442 size_t mon_addrs_size; 6443 struct rbd_parse_opts_ctx pctx = { 0 }; 6444 int ret; 6445 6446 /* The first four tokens are required */ 6447 6448 len = next_token(&buf); 6449 if (!len) { 6450 rbd_warn(NULL, "no monitor address(es) provided"); 6451 return -EINVAL; 6452 } 6453 mon_addrs = buf; 6454 mon_addrs_size = len; 6455 buf += len; 6456 6457 ret = -EINVAL; 6458 options = dup_token(&buf, NULL); 6459 if (!options) 6460 return -ENOMEM; 6461 if (!*options) { 6462 rbd_warn(NULL, "no options provided"); 6463 goto out_err; 6464 } 6465 6466 pctx.spec = rbd_spec_alloc(); 6467 if (!pctx.spec) 6468 goto out_mem; 6469 6470 pctx.spec->pool_name = dup_token(&buf, NULL); 6471 if (!pctx.spec->pool_name) 6472 goto out_mem; 6473 if (!*pctx.spec->pool_name) { 6474 rbd_warn(NULL, "no pool name provided"); 6475 goto out_err; 6476 } 6477 6478 pctx.spec->image_name = dup_token(&buf, NULL); 6479 if (!pctx.spec->image_name) 6480 goto out_mem; 6481 if (!*pctx.spec->image_name) { 6482 rbd_warn(NULL, "no image name provided"); 6483 goto out_err; 6484 } 6485 6486 /* 6487 * Snapshot name is optional; default is to use "-" 6488 * (indicating the head/no snapshot). 6489 */ 6490 len = next_token(&buf); 6491 if (!len) { 6492 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 6493 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 6494 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 6495 ret = -ENAMETOOLONG; 6496 goto out_err; 6497 } 6498 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 6499 if (!snap_name) 6500 goto out_mem; 6501 *(snap_name + len) = '\0'; 6502 pctx.spec->snap_name = snap_name; 6503 6504 pctx.copts = ceph_alloc_options(); 6505 if (!pctx.copts) 6506 goto out_mem; 6507 6508 /* Initialize all rbd options to the defaults */ 6509 6510 pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL); 6511 if (!pctx.opts) 6512 goto out_mem; 6513 6514 pctx.opts->read_only = RBD_READ_ONLY_DEFAULT; 6515 pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT; 6516 pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT; 6517 pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT; 6518 pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT; 6519 pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT; 6520 pctx.opts->trim = RBD_TRIM_DEFAULT; 6521 6522 ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL, 6523 ','); 6524 if (ret) 6525 goto out_err; 6526 6527 ret = rbd_parse_options(options, &pctx); 6528 if (ret) 6529 goto out_err; 6530 6531 *ceph_opts = pctx.copts; 6532 *opts = pctx.opts; 6533 *rbd_spec = pctx.spec; 6534 kfree(options); 6535 return 0; 6536 6537 out_mem: 6538 ret = -ENOMEM; 6539 out_err: 6540 kfree(pctx.opts); 6541 ceph_destroy_options(pctx.copts); 6542 rbd_spec_put(pctx.spec); 6543 kfree(options); 6544 return ret; 6545 } 6546 6547 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev) 6548 { 6549 down_write(&rbd_dev->lock_rwsem); 6550 if (__rbd_is_lock_owner(rbd_dev)) 6551 __rbd_release_lock(rbd_dev); 6552 up_write(&rbd_dev->lock_rwsem); 6553 } 6554 6555 /* 6556 * If the wait is interrupted, an error is returned even if the lock 6557 * was successfully acquired. rbd_dev_image_unlock() will release it 6558 * if needed. 6559 */ 6560 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev) 6561 { 6562 long ret; 6563 6564 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) { 6565 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read) 6566 return 0; 6567 6568 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled"); 6569 return -EINVAL; 6570 } 6571 6572 if (rbd_is_ro(rbd_dev)) 6573 return 0; 6574 6575 rbd_assert(!rbd_is_lock_owner(rbd_dev)); 6576 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 6577 ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait, 6578 ceph_timeout_jiffies(rbd_dev->opts->lock_timeout)); 6579 if (ret > 0) { 6580 ret = rbd_dev->acquire_err; 6581 } else { 6582 cancel_delayed_work_sync(&rbd_dev->lock_dwork); 6583 if (!ret) 6584 ret = -ETIMEDOUT; 6585 6586 rbd_warn(rbd_dev, "failed to acquire lock: %ld", ret); 6587 } 6588 if (ret) 6589 return ret; 6590 6591 /* 6592 * The lock may have been released by now, unless automatic lock 6593 * transitions are disabled. 6594 */ 6595 rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev)); 6596 return 0; 6597 } 6598 6599 /* 6600 * An rbd format 2 image has a unique identifier, distinct from the 6601 * name given to it by the user. Internally, that identifier is 6602 * what's used to specify the names of objects related to the image. 6603 * 6604 * A special "rbd id" object is used to map an rbd image name to its 6605 * id. If that object doesn't exist, then there is no v2 rbd image 6606 * with the supplied name. 6607 * 6608 * This function will record the given rbd_dev's image_id field if 6609 * it can be determined, and in that case will return 0. If any 6610 * errors occur a negative errno will be returned and the rbd_dev's 6611 * image_id field will be unchanged (and should be NULL). 6612 */ 6613 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 6614 { 6615 int ret; 6616 size_t size; 6617 CEPH_DEFINE_OID_ONSTACK(oid); 6618 void *response; 6619 char *image_id; 6620 6621 /* 6622 * When probing a parent image, the image id is already 6623 * known (and the image name likely is not). There's no 6624 * need to fetch the image id again in this case. We 6625 * do still need to set the image format though. 6626 */ 6627 if (rbd_dev->spec->image_id) { 6628 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 6629 6630 return 0; 6631 } 6632 6633 /* 6634 * First, see if the format 2 image id file exists, and if 6635 * so, get the image's persistent id from it. 6636 */ 6637 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX, 6638 rbd_dev->spec->image_name); 6639 if (ret) 6640 return ret; 6641 6642 dout("rbd id object name is %s\n", oid.name); 6643 6644 /* Response will be an encoded string, which includes a length */ 6645 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 6646 response = kzalloc(size, GFP_NOIO); 6647 if (!response) { 6648 ret = -ENOMEM; 6649 goto out; 6650 } 6651 6652 /* If it doesn't exist we'll assume it's a format 1 image */ 6653 6654 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 6655 "get_id", NULL, 0, 6656 response, size); 6657 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6658 if (ret == -ENOENT) { 6659 image_id = kstrdup("", GFP_KERNEL); 6660 ret = image_id ? 0 : -ENOMEM; 6661 if (!ret) 6662 rbd_dev->image_format = 1; 6663 } else if (ret >= 0) { 6664 void *p = response; 6665 6666 image_id = ceph_extract_encoded_string(&p, p + ret, 6667 NULL, GFP_NOIO); 6668 ret = PTR_ERR_OR_ZERO(image_id); 6669 if (!ret) 6670 rbd_dev->image_format = 2; 6671 } 6672 6673 if (!ret) { 6674 rbd_dev->spec->image_id = image_id; 6675 dout("image_id is %s\n", image_id); 6676 } 6677 out: 6678 kfree(response); 6679 ceph_oid_destroy(&oid); 6680 return ret; 6681 } 6682 6683 /* 6684 * Undo whatever state changes are made by v1 or v2 header info 6685 * call. 6686 */ 6687 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 6688 { 6689 rbd_dev_parent_put(rbd_dev); 6690 rbd_object_map_free(rbd_dev); 6691 rbd_dev_mapping_clear(rbd_dev); 6692 6693 /* Free dynamic fields from the header, then zero it out */ 6694 6695 rbd_image_header_cleanup(&rbd_dev->header); 6696 } 6697 6698 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev, 6699 struct rbd_image_header *header) 6700 { 6701 int ret; 6702 6703 ret = rbd_dev_v2_object_prefix(rbd_dev, &header->object_prefix); 6704 if (ret) 6705 return ret; 6706 6707 /* 6708 * Get the and check features for the image. Currently the 6709 * features are assumed to never change. 6710 */ 6711 ret = _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 6712 rbd_is_ro(rbd_dev), &header->features); 6713 if (ret) 6714 return ret; 6715 6716 /* If the image supports fancy striping, get its parameters */ 6717 6718 if (header->features & RBD_FEATURE_STRIPINGV2) { 6719 ret = rbd_dev_v2_striping_info(rbd_dev, &header->stripe_unit, 6720 &header->stripe_count); 6721 if (ret) 6722 return ret; 6723 } 6724 6725 if (header->features & RBD_FEATURE_DATA_POOL) { 6726 ret = rbd_dev_v2_data_pool(rbd_dev, &header->data_pool_id); 6727 if (ret) 6728 return ret; 6729 } 6730 6731 return 0; 6732 } 6733 6734 /* 6735 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() -> 6736 * rbd_dev_image_probe() recursion depth, which means it's also the 6737 * length of the already discovered part of the parent chain. 6738 */ 6739 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth) 6740 { 6741 struct rbd_device *parent = NULL; 6742 int ret; 6743 6744 if (!rbd_dev->parent_spec) 6745 return 0; 6746 6747 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) { 6748 pr_info("parent chain is too long (%d)\n", depth); 6749 ret = -EINVAL; 6750 goto out_err; 6751 } 6752 6753 parent = __rbd_dev_create(rbd_dev->parent_spec); 6754 if (!parent) { 6755 ret = -ENOMEM; 6756 goto out_err; 6757 } 6758 6759 /* 6760 * Images related by parent/child relationships always share 6761 * rbd_client and spec/parent_spec, so bump their refcounts. 6762 */ 6763 parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client); 6764 parent->spec = rbd_spec_get(rbd_dev->parent_spec); 6765 6766 __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags); 6767 6768 ret = rbd_dev_image_probe(parent, depth); 6769 if (ret < 0) 6770 goto out_err; 6771 6772 rbd_dev->parent = parent; 6773 atomic_set(&rbd_dev->parent_ref, 1); 6774 return 0; 6775 6776 out_err: 6777 rbd_dev_unparent(rbd_dev); 6778 rbd_dev_destroy(parent); 6779 return ret; 6780 } 6781 6782 static void rbd_dev_device_release(struct rbd_device *rbd_dev) 6783 { 6784 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 6785 rbd_free_disk(rbd_dev); 6786 if (!single_major) 6787 unregister_blkdev(rbd_dev->major, rbd_dev->name); 6788 } 6789 6790 /* 6791 * rbd_dev->header_rwsem must be locked for write and will be unlocked 6792 * upon return. 6793 */ 6794 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 6795 { 6796 int ret; 6797 6798 /* Record our major and minor device numbers. */ 6799 6800 if (!single_major) { 6801 ret = register_blkdev(0, rbd_dev->name); 6802 if (ret < 0) 6803 goto err_out_unlock; 6804 6805 rbd_dev->major = ret; 6806 rbd_dev->minor = 0; 6807 } else { 6808 rbd_dev->major = rbd_major; 6809 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 6810 } 6811 6812 /* Set up the blkdev mapping. */ 6813 6814 ret = rbd_init_disk(rbd_dev); 6815 if (ret) 6816 goto err_out_blkdev; 6817 6818 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 6819 set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev)); 6820 6821 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id); 6822 if (ret) 6823 goto err_out_disk; 6824 6825 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 6826 up_write(&rbd_dev->header_rwsem); 6827 return 0; 6828 6829 err_out_disk: 6830 rbd_free_disk(rbd_dev); 6831 err_out_blkdev: 6832 if (!single_major) 6833 unregister_blkdev(rbd_dev->major, rbd_dev->name); 6834 err_out_unlock: 6835 up_write(&rbd_dev->header_rwsem); 6836 return ret; 6837 } 6838 6839 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 6840 { 6841 struct rbd_spec *spec = rbd_dev->spec; 6842 int ret; 6843 6844 /* Record the header object name for this rbd image. */ 6845 6846 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 6847 if (rbd_dev->image_format == 1) 6848 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 6849 spec->image_name, RBD_SUFFIX); 6850 else 6851 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 6852 RBD_HEADER_PREFIX, spec->image_id); 6853 6854 return ret; 6855 } 6856 6857 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap) 6858 { 6859 if (!is_snap) { 6860 pr_info("image %s/%s%s%s does not exist\n", 6861 rbd_dev->spec->pool_name, 6862 rbd_dev->spec->pool_ns ?: "", 6863 rbd_dev->spec->pool_ns ? "/" : "", 6864 rbd_dev->spec->image_name); 6865 } else { 6866 pr_info("snap %s/%s%s%s@%s does not exist\n", 6867 rbd_dev->spec->pool_name, 6868 rbd_dev->spec->pool_ns ?: "", 6869 rbd_dev->spec->pool_ns ? "/" : "", 6870 rbd_dev->spec->image_name, 6871 rbd_dev->spec->snap_name); 6872 } 6873 } 6874 6875 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 6876 { 6877 if (!rbd_is_ro(rbd_dev)) 6878 rbd_unregister_watch(rbd_dev); 6879 6880 rbd_dev_unprobe(rbd_dev); 6881 rbd_dev->image_format = 0; 6882 kfree(rbd_dev->spec->image_id); 6883 rbd_dev->spec->image_id = NULL; 6884 } 6885 6886 /* 6887 * Probe for the existence of the header object for the given rbd 6888 * device. If this image is the one being mapped (i.e., not a 6889 * parent), initiate a watch on its header object before using that 6890 * object to get detailed information about the rbd image. 6891 * 6892 * On success, returns with header_rwsem held for write if called 6893 * with @depth == 0. 6894 */ 6895 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth) 6896 { 6897 bool need_watch = !rbd_is_ro(rbd_dev); 6898 int ret; 6899 6900 /* 6901 * Get the id from the image id object. Unless there's an 6902 * error, rbd_dev->spec->image_id will be filled in with 6903 * a dynamically-allocated string, and rbd_dev->image_format 6904 * will be set to either 1 or 2. 6905 */ 6906 ret = rbd_dev_image_id(rbd_dev); 6907 if (ret) 6908 return ret; 6909 6910 ret = rbd_dev_header_name(rbd_dev); 6911 if (ret) 6912 goto err_out_format; 6913 6914 if (need_watch) { 6915 ret = rbd_register_watch(rbd_dev); 6916 if (ret) { 6917 if (ret == -ENOENT) 6918 rbd_print_dne(rbd_dev, false); 6919 goto err_out_format; 6920 } 6921 } 6922 6923 if (!depth) 6924 down_write(&rbd_dev->header_rwsem); 6925 6926 ret = rbd_dev_header_info(rbd_dev, &rbd_dev->header, true); 6927 if (ret) { 6928 if (ret == -ENOENT && !need_watch) 6929 rbd_print_dne(rbd_dev, false); 6930 goto err_out_probe; 6931 } 6932 6933 rbd_init_layout(rbd_dev); 6934 6935 /* 6936 * If this image is the one being mapped, we have pool name and 6937 * id, image name and id, and snap name - need to fill snap id. 6938 * Otherwise this is a parent image, identified by pool, image 6939 * and snap ids - need to fill in names for those ids. 6940 */ 6941 if (!depth) 6942 ret = rbd_spec_fill_snap_id(rbd_dev); 6943 else 6944 ret = rbd_spec_fill_names(rbd_dev); 6945 if (ret) { 6946 if (ret == -ENOENT) 6947 rbd_print_dne(rbd_dev, true); 6948 goto err_out_probe; 6949 } 6950 6951 ret = rbd_dev_mapping_set(rbd_dev); 6952 if (ret) 6953 goto err_out_probe; 6954 6955 if (rbd_is_snap(rbd_dev) && 6956 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) { 6957 ret = rbd_object_map_load(rbd_dev); 6958 if (ret) 6959 goto err_out_probe; 6960 } 6961 6962 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 6963 ret = rbd_dev_setup_parent(rbd_dev); 6964 if (ret) 6965 goto err_out_probe; 6966 } 6967 6968 ret = rbd_dev_probe_parent(rbd_dev, depth); 6969 if (ret) 6970 goto err_out_probe; 6971 6972 dout("discovered format %u image, header name is %s\n", 6973 rbd_dev->image_format, rbd_dev->header_oid.name); 6974 return 0; 6975 6976 err_out_probe: 6977 if (!depth) 6978 up_write(&rbd_dev->header_rwsem); 6979 if (need_watch) 6980 rbd_unregister_watch(rbd_dev); 6981 rbd_dev_unprobe(rbd_dev); 6982 err_out_format: 6983 rbd_dev->image_format = 0; 6984 kfree(rbd_dev->spec->image_id); 6985 rbd_dev->spec->image_id = NULL; 6986 return ret; 6987 } 6988 6989 static void rbd_dev_update_header(struct rbd_device *rbd_dev, 6990 struct rbd_image_header *header) 6991 { 6992 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 6993 rbd_assert(rbd_dev->header.object_prefix); /* !first_time */ 6994 6995 if (rbd_dev->header.image_size != header->image_size) { 6996 rbd_dev->header.image_size = header->image_size; 6997 6998 if (!rbd_is_snap(rbd_dev)) { 6999 rbd_dev->mapping.size = header->image_size; 7000 rbd_dev_update_size(rbd_dev); 7001 } 7002 } 7003 7004 ceph_put_snap_context(rbd_dev->header.snapc); 7005 rbd_dev->header.snapc = header->snapc; 7006 header->snapc = NULL; 7007 7008 if (rbd_dev->image_format == 1) { 7009 kfree(rbd_dev->header.snap_names); 7010 rbd_dev->header.snap_names = header->snap_names; 7011 header->snap_names = NULL; 7012 7013 kfree(rbd_dev->header.snap_sizes); 7014 rbd_dev->header.snap_sizes = header->snap_sizes; 7015 header->snap_sizes = NULL; 7016 } 7017 } 7018 7019 static void rbd_dev_update_parent(struct rbd_device *rbd_dev, 7020 struct parent_image_info *pii) 7021 { 7022 if (pii->pool_id == CEPH_NOPOOL || !pii->has_overlap) { 7023 /* 7024 * Either the parent never existed, or we have 7025 * record of it but the image got flattened so it no 7026 * longer has a parent. When the parent of a 7027 * layered image disappears we immediately set the 7028 * overlap to 0. The effect of this is that all new 7029 * requests will be treated as if the image had no 7030 * parent. 7031 * 7032 * If !pii.has_overlap, the parent image spec is not 7033 * applicable. It's there to avoid duplication in each 7034 * snapshot record. 7035 */ 7036 if (rbd_dev->parent_overlap) { 7037 rbd_dev->parent_overlap = 0; 7038 rbd_dev_parent_put(rbd_dev); 7039 pr_info("%s: clone has been flattened\n", 7040 rbd_dev->disk->disk_name); 7041 } 7042 } else { 7043 rbd_assert(rbd_dev->parent_spec); 7044 7045 /* 7046 * Update the parent overlap. If it became zero, issue 7047 * a warning as we will proceed as if there is no parent. 7048 */ 7049 if (!pii->overlap && rbd_dev->parent_overlap) 7050 rbd_warn(rbd_dev, 7051 "clone has become standalone (overlap 0)"); 7052 rbd_dev->parent_overlap = pii->overlap; 7053 } 7054 } 7055 7056 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 7057 { 7058 struct rbd_image_header header = { 0 }; 7059 struct parent_image_info pii = { 0 }; 7060 int ret; 7061 7062 dout("%s rbd_dev %p\n", __func__, rbd_dev); 7063 7064 ret = rbd_dev_header_info(rbd_dev, &header, false); 7065 if (ret) 7066 goto out; 7067 7068 /* 7069 * If there is a parent, see if it has disappeared due to the 7070 * mapped image getting flattened. 7071 */ 7072 if (rbd_dev->parent) { 7073 ret = rbd_dev_v2_parent_info(rbd_dev, &pii); 7074 if (ret) 7075 goto out; 7076 } 7077 7078 down_write(&rbd_dev->header_rwsem); 7079 rbd_dev_update_header(rbd_dev, &header); 7080 if (rbd_dev->parent) 7081 rbd_dev_update_parent(rbd_dev, &pii); 7082 up_write(&rbd_dev->header_rwsem); 7083 7084 out: 7085 rbd_parent_info_cleanup(&pii); 7086 rbd_image_header_cleanup(&header); 7087 return ret; 7088 } 7089 7090 static ssize_t do_rbd_add(const char *buf, size_t count) 7091 { 7092 struct rbd_device *rbd_dev = NULL; 7093 struct ceph_options *ceph_opts = NULL; 7094 struct rbd_options *rbd_opts = NULL; 7095 struct rbd_spec *spec = NULL; 7096 struct rbd_client *rbdc; 7097 int rc; 7098 7099 if (!capable(CAP_SYS_ADMIN)) 7100 return -EPERM; 7101 7102 if (!try_module_get(THIS_MODULE)) 7103 return -ENODEV; 7104 7105 /* parse add command */ 7106 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 7107 if (rc < 0) 7108 goto out; 7109 7110 rbdc = rbd_get_client(ceph_opts); 7111 if (IS_ERR(rbdc)) { 7112 rc = PTR_ERR(rbdc); 7113 goto err_out_args; 7114 } 7115 7116 /* pick the pool */ 7117 rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name); 7118 if (rc < 0) { 7119 if (rc == -ENOENT) 7120 pr_info("pool %s does not exist\n", spec->pool_name); 7121 goto err_out_client; 7122 } 7123 spec->pool_id = (u64)rc; 7124 7125 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts); 7126 if (!rbd_dev) { 7127 rc = -ENOMEM; 7128 goto err_out_client; 7129 } 7130 rbdc = NULL; /* rbd_dev now owns this */ 7131 spec = NULL; /* rbd_dev now owns this */ 7132 rbd_opts = NULL; /* rbd_dev now owns this */ 7133 7134 /* if we are mapping a snapshot it will be a read-only mapping */ 7135 if (rbd_dev->opts->read_only || 7136 strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME)) 7137 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags); 7138 7139 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL); 7140 if (!rbd_dev->config_info) { 7141 rc = -ENOMEM; 7142 goto err_out_rbd_dev; 7143 } 7144 7145 rc = rbd_dev_image_probe(rbd_dev, 0); 7146 if (rc < 0) 7147 goto err_out_rbd_dev; 7148 7149 if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) { 7150 rbd_warn(rbd_dev, "alloc_size adjusted to %u", 7151 rbd_dev->layout.object_size); 7152 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size; 7153 } 7154 7155 rc = rbd_dev_device_setup(rbd_dev); 7156 if (rc) 7157 goto err_out_image_probe; 7158 7159 rc = rbd_add_acquire_lock(rbd_dev); 7160 if (rc) 7161 goto err_out_image_lock; 7162 7163 /* Everything's ready. Announce the disk to the world. */ 7164 7165 rc = device_add(&rbd_dev->dev); 7166 if (rc) 7167 goto err_out_image_lock; 7168 7169 rc = device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL); 7170 if (rc) 7171 goto err_out_cleanup_disk; 7172 7173 spin_lock(&rbd_dev_list_lock); 7174 list_add_tail(&rbd_dev->node, &rbd_dev_list); 7175 spin_unlock(&rbd_dev_list_lock); 7176 7177 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name, 7178 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT, 7179 rbd_dev->header.features); 7180 rc = count; 7181 out: 7182 module_put(THIS_MODULE); 7183 return rc; 7184 7185 err_out_cleanup_disk: 7186 rbd_free_disk(rbd_dev); 7187 err_out_image_lock: 7188 rbd_dev_image_unlock(rbd_dev); 7189 rbd_dev_device_release(rbd_dev); 7190 err_out_image_probe: 7191 rbd_dev_image_release(rbd_dev); 7192 err_out_rbd_dev: 7193 rbd_dev_destroy(rbd_dev); 7194 err_out_client: 7195 rbd_put_client(rbdc); 7196 err_out_args: 7197 rbd_spec_put(spec); 7198 kfree(rbd_opts); 7199 goto out; 7200 } 7201 7202 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count) 7203 { 7204 if (single_major) 7205 return -EINVAL; 7206 7207 return do_rbd_add(buf, count); 7208 } 7209 7210 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf, 7211 size_t count) 7212 { 7213 return do_rbd_add(buf, count); 7214 } 7215 7216 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 7217 { 7218 while (rbd_dev->parent) { 7219 struct rbd_device *first = rbd_dev; 7220 struct rbd_device *second = first->parent; 7221 struct rbd_device *third; 7222 7223 /* 7224 * Follow to the parent with no grandparent and 7225 * remove it. 7226 */ 7227 while (second && (third = second->parent)) { 7228 first = second; 7229 second = third; 7230 } 7231 rbd_assert(second); 7232 rbd_dev_image_release(second); 7233 rbd_dev_destroy(second); 7234 first->parent = NULL; 7235 first->parent_overlap = 0; 7236 7237 rbd_assert(first->parent_spec); 7238 rbd_spec_put(first->parent_spec); 7239 first->parent_spec = NULL; 7240 } 7241 } 7242 7243 static ssize_t do_rbd_remove(const char *buf, size_t count) 7244 { 7245 struct rbd_device *rbd_dev = NULL; 7246 int dev_id; 7247 char opt_buf[6]; 7248 bool force = false; 7249 int ret; 7250 7251 if (!capable(CAP_SYS_ADMIN)) 7252 return -EPERM; 7253 7254 dev_id = -1; 7255 opt_buf[0] = '\0'; 7256 sscanf(buf, "%d %5s", &dev_id, opt_buf); 7257 if (dev_id < 0) { 7258 pr_err("dev_id out of range\n"); 7259 return -EINVAL; 7260 } 7261 if (opt_buf[0] != '\0') { 7262 if (!strcmp(opt_buf, "force")) { 7263 force = true; 7264 } else { 7265 pr_err("bad remove option at '%s'\n", opt_buf); 7266 return -EINVAL; 7267 } 7268 } 7269 7270 ret = -ENOENT; 7271 spin_lock(&rbd_dev_list_lock); 7272 list_for_each_entry(rbd_dev, &rbd_dev_list, node) { 7273 if (rbd_dev->dev_id == dev_id) { 7274 ret = 0; 7275 break; 7276 } 7277 } 7278 if (!ret) { 7279 spin_lock_irq(&rbd_dev->lock); 7280 if (rbd_dev->open_count && !force) 7281 ret = -EBUSY; 7282 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING, 7283 &rbd_dev->flags)) 7284 ret = -EINPROGRESS; 7285 spin_unlock_irq(&rbd_dev->lock); 7286 } 7287 spin_unlock(&rbd_dev_list_lock); 7288 if (ret) 7289 return ret; 7290 7291 if (force) { 7292 /* 7293 * Prevent new IO from being queued and wait for existing 7294 * IO to complete/fail. 7295 */ 7296 blk_mq_freeze_queue(rbd_dev->disk->queue); 7297 blk_mark_disk_dead(rbd_dev->disk); 7298 } 7299 7300 del_gendisk(rbd_dev->disk); 7301 spin_lock(&rbd_dev_list_lock); 7302 list_del_init(&rbd_dev->node); 7303 spin_unlock(&rbd_dev_list_lock); 7304 device_del(&rbd_dev->dev); 7305 7306 rbd_dev_image_unlock(rbd_dev); 7307 rbd_dev_device_release(rbd_dev); 7308 rbd_dev_image_release(rbd_dev); 7309 rbd_dev_destroy(rbd_dev); 7310 return count; 7311 } 7312 7313 static ssize_t remove_store(const struct bus_type *bus, const char *buf, size_t count) 7314 { 7315 if (single_major) 7316 return -EINVAL; 7317 7318 return do_rbd_remove(buf, count); 7319 } 7320 7321 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf, 7322 size_t count) 7323 { 7324 return do_rbd_remove(buf, count); 7325 } 7326 7327 /* 7328 * create control files in sysfs 7329 * /sys/bus/rbd/... 7330 */ 7331 static int __init rbd_sysfs_init(void) 7332 { 7333 int ret; 7334 7335 ret = device_register(&rbd_root_dev); 7336 if (ret < 0) { 7337 put_device(&rbd_root_dev); 7338 return ret; 7339 } 7340 7341 ret = bus_register(&rbd_bus_type); 7342 if (ret < 0) 7343 device_unregister(&rbd_root_dev); 7344 7345 return ret; 7346 } 7347 7348 static void __exit rbd_sysfs_cleanup(void) 7349 { 7350 bus_unregister(&rbd_bus_type); 7351 device_unregister(&rbd_root_dev); 7352 } 7353 7354 static int __init rbd_slab_init(void) 7355 { 7356 rbd_assert(!rbd_img_request_cache); 7357 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0); 7358 if (!rbd_img_request_cache) 7359 return -ENOMEM; 7360 7361 rbd_assert(!rbd_obj_request_cache); 7362 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0); 7363 if (!rbd_obj_request_cache) 7364 goto out_err; 7365 7366 return 0; 7367 7368 out_err: 7369 kmem_cache_destroy(rbd_img_request_cache); 7370 rbd_img_request_cache = NULL; 7371 return -ENOMEM; 7372 } 7373 7374 static void rbd_slab_exit(void) 7375 { 7376 rbd_assert(rbd_obj_request_cache); 7377 kmem_cache_destroy(rbd_obj_request_cache); 7378 rbd_obj_request_cache = NULL; 7379 7380 rbd_assert(rbd_img_request_cache); 7381 kmem_cache_destroy(rbd_img_request_cache); 7382 rbd_img_request_cache = NULL; 7383 } 7384 7385 static int __init rbd_init(void) 7386 { 7387 int rc; 7388 7389 if (!libceph_compatible(NULL)) { 7390 rbd_warn(NULL, "libceph incompatibility (quitting)"); 7391 return -EINVAL; 7392 } 7393 7394 rc = rbd_slab_init(); 7395 if (rc) 7396 return rc; 7397 7398 /* 7399 * The number of active work items is limited by the number of 7400 * rbd devices * queue depth, so leave @max_active at default. 7401 */ 7402 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0); 7403 if (!rbd_wq) { 7404 rc = -ENOMEM; 7405 goto err_out_slab; 7406 } 7407 7408 if (single_major) { 7409 rbd_major = register_blkdev(0, RBD_DRV_NAME); 7410 if (rbd_major < 0) { 7411 rc = rbd_major; 7412 goto err_out_wq; 7413 } 7414 } 7415 7416 rc = rbd_sysfs_init(); 7417 if (rc) 7418 goto err_out_blkdev; 7419 7420 if (single_major) 7421 pr_info("loaded (major %d)\n", rbd_major); 7422 else 7423 pr_info("loaded\n"); 7424 7425 return 0; 7426 7427 err_out_blkdev: 7428 if (single_major) 7429 unregister_blkdev(rbd_major, RBD_DRV_NAME); 7430 err_out_wq: 7431 destroy_workqueue(rbd_wq); 7432 err_out_slab: 7433 rbd_slab_exit(); 7434 return rc; 7435 } 7436 7437 static void __exit rbd_exit(void) 7438 { 7439 ida_destroy(&rbd_dev_id_ida); 7440 rbd_sysfs_cleanup(); 7441 if (single_major) 7442 unregister_blkdev(rbd_major, RBD_DRV_NAME); 7443 destroy_workqueue(rbd_wq); 7444 rbd_slab_exit(); 7445 } 7446 7447 module_init(rbd_init); 7448 module_exit(rbd_exit); 7449 7450 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 7451 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 7452 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 7453 /* following authorship retained from original osdblk.c */ 7454 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 7455 7456 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 7457 MODULE_LICENSE("GPL"); 7458