xref: /linux/drivers/block/rbd.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37 
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47 
48 #include "rbd_types.h"
49 
50 #define RBD_DEBUG	/* Activate rbd_assert() calls */
51 
52 /*
53  * The basic unit of block I/O is a sector.  It is interpreted in a
54  * number of contexts in Linux (blk, bio, genhd), but the default is
55  * universally 512 bytes.  These symbols are just slightly more
56  * meaningful than the bare numbers they represent.
57  */
58 #define	SECTOR_SHIFT	9
59 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
60 
61 /*
62  * Increment the given counter and return its updated value.
63  * If the counter is already 0 it will not be incremented.
64  * If the counter is already at its maximum value returns
65  * -EINVAL without updating it.
66  */
67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69 	unsigned int counter;
70 
71 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72 	if (counter <= (unsigned int)INT_MAX)
73 		return (int)counter;
74 
75 	atomic_dec(v);
76 
77 	return -EINVAL;
78 }
79 
80 /* Decrement the counter.  Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83 	int counter;
84 
85 	counter = atomic_dec_return(v);
86 	if (counter >= 0)
87 		return counter;
88 
89 	atomic_inc(v);
90 
91 	return -EINVAL;
92 }
93 
94 #define RBD_DRV_NAME "rbd"
95 
96 #define RBD_MINORS_PER_MAJOR		256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
98 
99 #define RBD_MAX_PARENT_CHAIN_LEN	16
100 
101 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
102 #define RBD_MAX_SNAP_NAME_LEN	\
103 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
104 
105 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
106 
107 #define RBD_SNAP_HEAD_NAME	"-"
108 
109 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
110 
111 /* This allows a single page to hold an image name sent by OSD */
112 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
113 #define RBD_IMAGE_ID_LEN_MAX	64
114 
115 #define RBD_OBJ_PREFIX_LEN_MAX	64
116 
117 /* Feature bits */
118 
119 #define RBD_FEATURE_LAYERING	(1<<0)
120 #define RBD_FEATURE_STRIPINGV2	(1<<1)
121 #define RBD_FEATURES_ALL \
122 	    (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
123 
124 /* Features supported by this (client software) implementation. */
125 
126 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
127 
128 /*
129  * An RBD device name will be "rbd#", where the "rbd" comes from
130  * RBD_DRV_NAME above, and # is a unique integer identifier.
131  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
132  * enough to hold all possible device names.
133  */
134 #define DEV_NAME_LEN		32
135 #define MAX_INT_FORMAT_WIDTH	((5 * sizeof (int)) / 2 + 1)
136 
137 /*
138  * block device image metadata (in-memory version)
139  */
140 struct rbd_image_header {
141 	/* These six fields never change for a given rbd image */
142 	char *object_prefix;
143 	__u8 obj_order;
144 	__u8 crypt_type;
145 	__u8 comp_type;
146 	u64 stripe_unit;
147 	u64 stripe_count;
148 	u64 features;		/* Might be changeable someday? */
149 
150 	/* The remaining fields need to be updated occasionally */
151 	u64 image_size;
152 	struct ceph_snap_context *snapc;
153 	char *snap_names;	/* format 1 only */
154 	u64 *snap_sizes;	/* format 1 only */
155 };
156 
157 /*
158  * An rbd image specification.
159  *
160  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
161  * identify an image.  Each rbd_dev structure includes a pointer to
162  * an rbd_spec structure that encapsulates this identity.
163  *
164  * Each of the id's in an rbd_spec has an associated name.  For a
165  * user-mapped image, the names are supplied and the id's associated
166  * with them are looked up.  For a layered image, a parent image is
167  * defined by the tuple, and the names are looked up.
168  *
169  * An rbd_dev structure contains a parent_spec pointer which is
170  * non-null if the image it represents is a child in a layered
171  * image.  This pointer will refer to the rbd_spec structure used
172  * by the parent rbd_dev for its own identity (i.e., the structure
173  * is shared between the parent and child).
174  *
175  * Since these structures are populated once, during the discovery
176  * phase of image construction, they are effectively immutable so
177  * we make no effort to synchronize access to them.
178  *
179  * Note that code herein does not assume the image name is known (it
180  * could be a null pointer).
181  */
182 struct rbd_spec {
183 	u64		pool_id;
184 	const char	*pool_name;
185 
186 	const char	*image_id;
187 	const char	*image_name;
188 
189 	u64		snap_id;
190 	const char	*snap_name;
191 
192 	struct kref	kref;
193 };
194 
195 /*
196  * an instance of the client.  multiple devices may share an rbd client.
197  */
198 struct rbd_client {
199 	struct ceph_client	*client;
200 	struct kref		kref;
201 	struct list_head	node;
202 };
203 
204 struct rbd_img_request;
205 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
206 
207 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
208 
209 struct rbd_obj_request;
210 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
211 
212 enum obj_request_type {
213 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
214 };
215 
216 enum obj_operation_type {
217 	OBJ_OP_WRITE,
218 	OBJ_OP_READ,
219 	OBJ_OP_DISCARD,
220 };
221 
222 enum obj_req_flags {
223 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
224 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
225 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
226 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
227 };
228 
229 struct rbd_obj_request {
230 	const char		*object_name;
231 	u64			offset;		/* object start byte */
232 	u64			length;		/* bytes from offset */
233 	unsigned long		flags;
234 
235 	/*
236 	 * An object request associated with an image will have its
237 	 * img_data flag set; a standalone object request will not.
238 	 *
239 	 * A standalone object request will have which == BAD_WHICH
240 	 * and a null obj_request pointer.
241 	 *
242 	 * An object request initiated in support of a layered image
243 	 * object (to check for its existence before a write) will
244 	 * have which == BAD_WHICH and a non-null obj_request pointer.
245 	 *
246 	 * Finally, an object request for rbd image data will have
247 	 * which != BAD_WHICH, and will have a non-null img_request
248 	 * pointer.  The value of which will be in the range
249 	 * 0..(img_request->obj_request_count-1).
250 	 */
251 	union {
252 		struct rbd_obj_request	*obj_request;	/* STAT op */
253 		struct {
254 			struct rbd_img_request	*img_request;
255 			u64			img_offset;
256 			/* links for img_request->obj_requests list */
257 			struct list_head	links;
258 		};
259 	};
260 	u32			which;		/* posn image request list */
261 
262 	enum obj_request_type	type;
263 	union {
264 		struct bio	*bio_list;
265 		struct {
266 			struct page	**pages;
267 			u32		page_count;
268 		};
269 	};
270 	struct page		**copyup_pages;
271 	u32			copyup_page_count;
272 
273 	struct ceph_osd_request	*osd_req;
274 
275 	u64			xferred;	/* bytes transferred */
276 	int			result;
277 
278 	rbd_obj_callback_t	callback;
279 	struct completion	completion;
280 
281 	struct kref		kref;
282 };
283 
284 enum img_req_flags {
285 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
286 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
287 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
288 	IMG_REQ_DISCARD,	/* discard: normal = 0, discard request = 1 */
289 };
290 
291 struct rbd_img_request {
292 	struct rbd_device	*rbd_dev;
293 	u64			offset;	/* starting image byte offset */
294 	u64			length;	/* byte count from offset */
295 	unsigned long		flags;
296 	union {
297 		u64			snap_id;	/* for reads */
298 		struct ceph_snap_context *snapc;	/* for writes */
299 	};
300 	union {
301 		struct request		*rq;		/* block request */
302 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
303 	};
304 	struct page		**copyup_pages;
305 	u32			copyup_page_count;
306 	spinlock_t		completion_lock;/* protects next_completion */
307 	u32			next_completion;
308 	rbd_img_callback_t	callback;
309 	u64			xferred;/* aggregate bytes transferred */
310 	int			result;	/* first nonzero obj_request result */
311 
312 	u32			obj_request_count;
313 	struct list_head	obj_requests;	/* rbd_obj_request structs */
314 
315 	struct kref		kref;
316 };
317 
318 #define for_each_obj_request(ireq, oreq) \
319 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_from(ireq, oreq) \
321 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
322 #define for_each_obj_request_safe(ireq, oreq, n) \
323 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
324 
325 struct rbd_mapping {
326 	u64                     size;
327 	u64                     features;
328 	bool			read_only;
329 };
330 
331 /*
332  * a single device
333  */
334 struct rbd_device {
335 	int			dev_id;		/* blkdev unique id */
336 
337 	int			major;		/* blkdev assigned major */
338 	int			minor;
339 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
340 
341 	u32			image_format;	/* Either 1 or 2 */
342 	struct rbd_client	*rbd_client;
343 
344 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
345 
346 	spinlock_t		lock;		/* queue, flags, open_count */
347 
348 	struct rbd_image_header	header;
349 	unsigned long		flags;		/* possibly lock protected */
350 	struct rbd_spec		*spec;
351 	struct rbd_options	*opts;
352 
353 	char			*header_name;
354 
355 	struct ceph_file_layout	layout;
356 
357 	struct ceph_osd_event   *watch_event;
358 	struct rbd_obj_request	*watch_request;
359 
360 	struct rbd_spec		*parent_spec;
361 	u64			parent_overlap;
362 	atomic_t		parent_ref;
363 	struct rbd_device	*parent;
364 
365 	/* Block layer tags. */
366 	struct blk_mq_tag_set	tag_set;
367 
368 	/* protects updating the header */
369 	struct rw_semaphore     header_rwsem;
370 
371 	struct rbd_mapping	mapping;
372 
373 	struct list_head	node;
374 
375 	/* sysfs related */
376 	struct device		dev;
377 	unsigned long		open_count;	/* protected by lock */
378 };
379 
380 /*
381  * Flag bits for rbd_dev->flags.  If atomicity is required,
382  * rbd_dev->lock is used to protect access.
383  *
384  * Currently, only the "removing" flag (which is coupled with the
385  * "open_count" field) requires atomic access.
386  */
387 enum rbd_dev_flags {
388 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
389 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
390 };
391 
392 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
393 
394 static LIST_HEAD(rbd_dev_list);    /* devices */
395 static DEFINE_SPINLOCK(rbd_dev_list_lock);
396 
397 static LIST_HEAD(rbd_client_list);		/* clients */
398 static DEFINE_SPINLOCK(rbd_client_list_lock);
399 
400 /* Slab caches for frequently-allocated structures */
401 
402 static struct kmem_cache	*rbd_img_request_cache;
403 static struct kmem_cache	*rbd_obj_request_cache;
404 static struct kmem_cache	*rbd_segment_name_cache;
405 
406 static int rbd_major;
407 static DEFINE_IDA(rbd_dev_id_ida);
408 
409 static struct workqueue_struct *rbd_wq;
410 
411 /*
412  * Default to false for now, as single-major requires >= 0.75 version of
413  * userspace rbd utility.
414  */
415 static bool single_major = false;
416 module_param(single_major, bool, S_IRUGO);
417 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
418 
419 static int rbd_img_request_submit(struct rbd_img_request *img_request);
420 
421 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
422 		       size_t count);
423 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
424 			  size_t count);
425 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
426 				    size_t count);
427 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
428 				       size_t count);
429 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
430 static void rbd_spec_put(struct rbd_spec *spec);
431 
432 static int rbd_dev_id_to_minor(int dev_id)
433 {
434 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
435 }
436 
437 static int minor_to_rbd_dev_id(int minor)
438 {
439 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
440 }
441 
442 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
443 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
444 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
445 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
446 
447 static struct attribute *rbd_bus_attrs[] = {
448 	&bus_attr_add.attr,
449 	&bus_attr_remove.attr,
450 	&bus_attr_add_single_major.attr,
451 	&bus_attr_remove_single_major.attr,
452 	NULL,
453 };
454 
455 static umode_t rbd_bus_is_visible(struct kobject *kobj,
456 				  struct attribute *attr, int index)
457 {
458 	if (!single_major &&
459 	    (attr == &bus_attr_add_single_major.attr ||
460 	     attr == &bus_attr_remove_single_major.attr))
461 		return 0;
462 
463 	return attr->mode;
464 }
465 
466 static const struct attribute_group rbd_bus_group = {
467 	.attrs = rbd_bus_attrs,
468 	.is_visible = rbd_bus_is_visible,
469 };
470 __ATTRIBUTE_GROUPS(rbd_bus);
471 
472 static struct bus_type rbd_bus_type = {
473 	.name		= "rbd",
474 	.bus_groups	= rbd_bus_groups,
475 };
476 
477 static void rbd_root_dev_release(struct device *dev)
478 {
479 }
480 
481 static struct device rbd_root_dev = {
482 	.init_name =    "rbd",
483 	.release =      rbd_root_dev_release,
484 };
485 
486 static __printf(2, 3)
487 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
488 {
489 	struct va_format vaf;
490 	va_list args;
491 
492 	va_start(args, fmt);
493 	vaf.fmt = fmt;
494 	vaf.va = &args;
495 
496 	if (!rbd_dev)
497 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
498 	else if (rbd_dev->disk)
499 		printk(KERN_WARNING "%s: %s: %pV\n",
500 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
501 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
502 		printk(KERN_WARNING "%s: image %s: %pV\n",
503 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
504 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
505 		printk(KERN_WARNING "%s: id %s: %pV\n",
506 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
507 	else	/* punt */
508 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
509 			RBD_DRV_NAME, rbd_dev, &vaf);
510 	va_end(args);
511 }
512 
513 #ifdef RBD_DEBUG
514 #define rbd_assert(expr)						\
515 		if (unlikely(!(expr))) {				\
516 			printk(KERN_ERR "\nAssertion failure in %s() "	\
517 						"at line %d:\n\n"	\
518 					"\trbd_assert(%s);\n\n",	\
519 					__func__, __LINE__, #expr);	\
520 			BUG();						\
521 		}
522 #else /* !RBD_DEBUG */
523 #  define rbd_assert(expr)	((void) 0)
524 #endif /* !RBD_DEBUG */
525 
526 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
527 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
528 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
529 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
530 
531 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
532 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
533 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
534 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
535 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
536 					u64 snap_id);
537 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
538 				u8 *order, u64 *snap_size);
539 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
540 		u64 *snap_features);
541 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
542 
543 static int rbd_open(struct block_device *bdev, fmode_t mode)
544 {
545 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
546 	bool removing = false;
547 
548 	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
549 		return -EROFS;
550 
551 	spin_lock_irq(&rbd_dev->lock);
552 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
553 		removing = true;
554 	else
555 		rbd_dev->open_count++;
556 	spin_unlock_irq(&rbd_dev->lock);
557 	if (removing)
558 		return -ENOENT;
559 
560 	(void) get_device(&rbd_dev->dev);
561 
562 	return 0;
563 }
564 
565 static void rbd_release(struct gendisk *disk, fmode_t mode)
566 {
567 	struct rbd_device *rbd_dev = disk->private_data;
568 	unsigned long open_count_before;
569 
570 	spin_lock_irq(&rbd_dev->lock);
571 	open_count_before = rbd_dev->open_count--;
572 	spin_unlock_irq(&rbd_dev->lock);
573 	rbd_assert(open_count_before > 0);
574 
575 	put_device(&rbd_dev->dev);
576 }
577 
578 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
579 {
580 	int ret = 0;
581 	int val;
582 	bool ro;
583 	bool ro_changed = false;
584 
585 	/* get_user() may sleep, so call it before taking rbd_dev->lock */
586 	if (get_user(val, (int __user *)(arg)))
587 		return -EFAULT;
588 
589 	ro = val ? true : false;
590 	/* Snapshot doesn't allow to write*/
591 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
592 		return -EROFS;
593 
594 	spin_lock_irq(&rbd_dev->lock);
595 	/* prevent others open this device */
596 	if (rbd_dev->open_count > 1) {
597 		ret = -EBUSY;
598 		goto out;
599 	}
600 
601 	if (rbd_dev->mapping.read_only != ro) {
602 		rbd_dev->mapping.read_only = ro;
603 		ro_changed = true;
604 	}
605 
606 out:
607 	spin_unlock_irq(&rbd_dev->lock);
608 	/* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
609 	if (ret == 0 && ro_changed)
610 		set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
611 
612 	return ret;
613 }
614 
615 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
616 			unsigned int cmd, unsigned long arg)
617 {
618 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
619 	int ret = 0;
620 
621 	switch (cmd) {
622 	case BLKROSET:
623 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
624 		break;
625 	default:
626 		ret = -ENOTTY;
627 	}
628 
629 	return ret;
630 }
631 
632 #ifdef CONFIG_COMPAT
633 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
634 				unsigned int cmd, unsigned long arg)
635 {
636 	return rbd_ioctl(bdev, mode, cmd, arg);
637 }
638 #endif /* CONFIG_COMPAT */
639 
640 static const struct block_device_operations rbd_bd_ops = {
641 	.owner			= THIS_MODULE,
642 	.open			= rbd_open,
643 	.release		= rbd_release,
644 	.ioctl			= rbd_ioctl,
645 #ifdef CONFIG_COMPAT
646 	.compat_ioctl		= rbd_compat_ioctl,
647 #endif
648 };
649 
650 /*
651  * Initialize an rbd client instance.  Success or not, this function
652  * consumes ceph_opts.  Caller holds client_mutex.
653  */
654 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
655 {
656 	struct rbd_client *rbdc;
657 	int ret = -ENOMEM;
658 
659 	dout("%s:\n", __func__);
660 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
661 	if (!rbdc)
662 		goto out_opt;
663 
664 	kref_init(&rbdc->kref);
665 	INIT_LIST_HEAD(&rbdc->node);
666 
667 	rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
668 	if (IS_ERR(rbdc->client))
669 		goto out_rbdc;
670 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
671 
672 	ret = ceph_open_session(rbdc->client);
673 	if (ret < 0)
674 		goto out_client;
675 
676 	spin_lock(&rbd_client_list_lock);
677 	list_add_tail(&rbdc->node, &rbd_client_list);
678 	spin_unlock(&rbd_client_list_lock);
679 
680 	dout("%s: rbdc %p\n", __func__, rbdc);
681 
682 	return rbdc;
683 out_client:
684 	ceph_destroy_client(rbdc->client);
685 out_rbdc:
686 	kfree(rbdc);
687 out_opt:
688 	if (ceph_opts)
689 		ceph_destroy_options(ceph_opts);
690 	dout("%s: error %d\n", __func__, ret);
691 
692 	return ERR_PTR(ret);
693 }
694 
695 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
696 {
697 	kref_get(&rbdc->kref);
698 
699 	return rbdc;
700 }
701 
702 /*
703  * Find a ceph client with specific addr and configuration.  If
704  * found, bump its reference count.
705  */
706 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
707 {
708 	struct rbd_client *client_node;
709 	bool found = false;
710 
711 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
712 		return NULL;
713 
714 	spin_lock(&rbd_client_list_lock);
715 	list_for_each_entry(client_node, &rbd_client_list, node) {
716 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
717 			__rbd_get_client(client_node);
718 
719 			found = true;
720 			break;
721 		}
722 	}
723 	spin_unlock(&rbd_client_list_lock);
724 
725 	return found ? client_node : NULL;
726 }
727 
728 /*
729  * (Per device) rbd map options
730  */
731 enum {
732 	Opt_queue_depth,
733 	Opt_last_int,
734 	/* int args above */
735 	Opt_last_string,
736 	/* string args above */
737 	Opt_read_only,
738 	Opt_read_write,
739 	Opt_err
740 };
741 
742 static match_table_t rbd_opts_tokens = {
743 	{Opt_queue_depth, "queue_depth=%d"},
744 	/* int args above */
745 	/* string args above */
746 	{Opt_read_only, "read_only"},
747 	{Opt_read_only, "ro"},		/* Alternate spelling */
748 	{Opt_read_write, "read_write"},
749 	{Opt_read_write, "rw"},		/* Alternate spelling */
750 	{Opt_err, NULL}
751 };
752 
753 struct rbd_options {
754 	int	queue_depth;
755 	bool	read_only;
756 };
757 
758 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
759 #define RBD_READ_ONLY_DEFAULT	false
760 
761 static int parse_rbd_opts_token(char *c, void *private)
762 {
763 	struct rbd_options *rbd_opts = private;
764 	substring_t argstr[MAX_OPT_ARGS];
765 	int token, intval, ret;
766 
767 	token = match_token(c, rbd_opts_tokens, argstr);
768 	if (token < Opt_last_int) {
769 		ret = match_int(&argstr[0], &intval);
770 		if (ret < 0) {
771 			pr_err("bad mount option arg (not int) at '%s'\n", c);
772 			return ret;
773 		}
774 		dout("got int token %d val %d\n", token, intval);
775 	} else if (token > Opt_last_int && token < Opt_last_string) {
776 		dout("got string token %d val %s\n", token, argstr[0].from);
777 	} else {
778 		dout("got token %d\n", token);
779 	}
780 
781 	switch (token) {
782 	case Opt_queue_depth:
783 		if (intval < 1) {
784 			pr_err("queue_depth out of range\n");
785 			return -EINVAL;
786 		}
787 		rbd_opts->queue_depth = intval;
788 		break;
789 	case Opt_read_only:
790 		rbd_opts->read_only = true;
791 		break;
792 	case Opt_read_write:
793 		rbd_opts->read_only = false;
794 		break;
795 	default:
796 		/* libceph prints "bad option" msg */
797 		return -EINVAL;
798 	}
799 
800 	return 0;
801 }
802 
803 static char* obj_op_name(enum obj_operation_type op_type)
804 {
805 	switch (op_type) {
806 	case OBJ_OP_READ:
807 		return "read";
808 	case OBJ_OP_WRITE:
809 		return "write";
810 	case OBJ_OP_DISCARD:
811 		return "discard";
812 	default:
813 		return "???";
814 	}
815 }
816 
817 /*
818  * Get a ceph client with specific addr and configuration, if one does
819  * not exist create it.  Either way, ceph_opts is consumed by this
820  * function.
821  */
822 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
823 {
824 	struct rbd_client *rbdc;
825 
826 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
827 	rbdc = rbd_client_find(ceph_opts);
828 	if (rbdc)	/* using an existing client */
829 		ceph_destroy_options(ceph_opts);
830 	else
831 		rbdc = rbd_client_create(ceph_opts);
832 	mutex_unlock(&client_mutex);
833 
834 	return rbdc;
835 }
836 
837 /*
838  * Destroy ceph client
839  *
840  * Caller must hold rbd_client_list_lock.
841  */
842 static void rbd_client_release(struct kref *kref)
843 {
844 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
845 
846 	dout("%s: rbdc %p\n", __func__, rbdc);
847 	spin_lock(&rbd_client_list_lock);
848 	list_del(&rbdc->node);
849 	spin_unlock(&rbd_client_list_lock);
850 
851 	ceph_destroy_client(rbdc->client);
852 	kfree(rbdc);
853 }
854 
855 /*
856  * Drop reference to ceph client node. If it's not referenced anymore, release
857  * it.
858  */
859 static void rbd_put_client(struct rbd_client *rbdc)
860 {
861 	if (rbdc)
862 		kref_put(&rbdc->kref, rbd_client_release);
863 }
864 
865 static bool rbd_image_format_valid(u32 image_format)
866 {
867 	return image_format == 1 || image_format == 2;
868 }
869 
870 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
871 {
872 	size_t size;
873 	u32 snap_count;
874 
875 	/* The header has to start with the magic rbd header text */
876 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
877 		return false;
878 
879 	/* The bio layer requires at least sector-sized I/O */
880 
881 	if (ondisk->options.order < SECTOR_SHIFT)
882 		return false;
883 
884 	/* If we use u64 in a few spots we may be able to loosen this */
885 
886 	if (ondisk->options.order > 8 * sizeof (int) - 1)
887 		return false;
888 
889 	/*
890 	 * The size of a snapshot header has to fit in a size_t, and
891 	 * that limits the number of snapshots.
892 	 */
893 	snap_count = le32_to_cpu(ondisk->snap_count);
894 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
895 	if (snap_count > size / sizeof (__le64))
896 		return false;
897 
898 	/*
899 	 * Not only that, but the size of the entire the snapshot
900 	 * header must also be representable in a size_t.
901 	 */
902 	size -= snap_count * sizeof (__le64);
903 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
904 		return false;
905 
906 	return true;
907 }
908 
909 /*
910  * Fill an rbd image header with information from the given format 1
911  * on-disk header.
912  */
913 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
914 				 struct rbd_image_header_ondisk *ondisk)
915 {
916 	struct rbd_image_header *header = &rbd_dev->header;
917 	bool first_time = header->object_prefix == NULL;
918 	struct ceph_snap_context *snapc;
919 	char *object_prefix = NULL;
920 	char *snap_names = NULL;
921 	u64 *snap_sizes = NULL;
922 	u32 snap_count;
923 	size_t size;
924 	int ret = -ENOMEM;
925 	u32 i;
926 
927 	/* Allocate this now to avoid having to handle failure below */
928 
929 	if (first_time) {
930 		size_t len;
931 
932 		len = strnlen(ondisk->object_prefix,
933 				sizeof (ondisk->object_prefix));
934 		object_prefix = kmalloc(len + 1, GFP_KERNEL);
935 		if (!object_prefix)
936 			return -ENOMEM;
937 		memcpy(object_prefix, ondisk->object_prefix, len);
938 		object_prefix[len] = '\0';
939 	}
940 
941 	/* Allocate the snapshot context and fill it in */
942 
943 	snap_count = le32_to_cpu(ondisk->snap_count);
944 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
945 	if (!snapc)
946 		goto out_err;
947 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
948 	if (snap_count) {
949 		struct rbd_image_snap_ondisk *snaps;
950 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
951 
952 		/* We'll keep a copy of the snapshot names... */
953 
954 		if (snap_names_len > (u64)SIZE_MAX)
955 			goto out_2big;
956 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
957 		if (!snap_names)
958 			goto out_err;
959 
960 		/* ...as well as the array of their sizes. */
961 
962 		size = snap_count * sizeof (*header->snap_sizes);
963 		snap_sizes = kmalloc(size, GFP_KERNEL);
964 		if (!snap_sizes)
965 			goto out_err;
966 
967 		/*
968 		 * Copy the names, and fill in each snapshot's id
969 		 * and size.
970 		 *
971 		 * Note that rbd_dev_v1_header_info() guarantees the
972 		 * ondisk buffer we're working with has
973 		 * snap_names_len bytes beyond the end of the
974 		 * snapshot id array, this memcpy() is safe.
975 		 */
976 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
977 		snaps = ondisk->snaps;
978 		for (i = 0; i < snap_count; i++) {
979 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
980 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
981 		}
982 	}
983 
984 	/* We won't fail any more, fill in the header */
985 
986 	if (first_time) {
987 		header->object_prefix = object_prefix;
988 		header->obj_order = ondisk->options.order;
989 		header->crypt_type = ondisk->options.crypt_type;
990 		header->comp_type = ondisk->options.comp_type;
991 		/* The rest aren't used for format 1 images */
992 		header->stripe_unit = 0;
993 		header->stripe_count = 0;
994 		header->features = 0;
995 	} else {
996 		ceph_put_snap_context(header->snapc);
997 		kfree(header->snap_names);
998 		kfree(header->snap_sizes);
999 	}
1000 
1001 	/* The remaining fields always get updated (when we refresh) */
1002 
1003 	header->image_size = le64_to_cpu(ondisk->image_size);
1004 	header->snapc = snapc;
1005 	header->snap_names = snap_names;
1006 	header->snap_sizes = snap_sizes;
1007 
1008 	return 0;
1009 out_2big:
1010 	ret = -EIO;
1011 out_err:
1012 	kfree(snap_sizes);
1013 	kfree(snap_names);
1014 	ceph_put_snap_context(snapc);
1015 	kfree(object_prefix);
1016 
1017 	return ret;
1018 }
1019 
1020 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1021 {
1022 	const char *snap_name;
1023 
1024 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1025 
1026 	/* Skip over names until we find the one we are looking for */
1027 
1028 	snap_name = rbd_dev->header.snap_names;
1029 	while (which--)
1030 		snap_name += strlen(snap_name) + 1;
1031 
1032 	return kstrdup(snap_name, GFP_KERNEL);
1033 }
1034 
1035 /*
1036  * Snapshot id comparison function for use with qsort()/bsearch().
1037  * Note that result is for snapshots in *descending* order.
1038  */
1039 static int snapid_compare_reverse(const void *s1, const void *s2)
1040 {
1041 	u64 snap_id1 = *(u64 *)s1;
1042 	u64 snap_id2 = *(u64 *)s2;
1043 
1044 	if (snap_id1 < snap_id2)
1045 		return 1;
1046 	return snap_id1 == snap_id2 ? 0 : -1;
1047 }
1048 
1049 /*
1050  * Search a snapshot context to see if the given snapshot id is
1051  * present.
1052  *
1053  * Returns the position of the snapshot id in the array if it's found,
1054  * or BAD_SNAP_INDEX otherwise.
1055  *
1056  * Note: The snapshot array is in kept sorted (by the osd) in
1057  * reverse order, highest snapshot id first.
1058  */
1059 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1060 {
1061 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1062 	u64 *found;
1063 
1064 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1065 				sizeof (snap_id), snapid_compare_reverse);
1066 
1067 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1068 }
1069 
1070 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1071 					u64 snap_id)
1072 {
1073 	u32 which;
1074 	const char *snap_name;
1075 
1076 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1077 	if (which == BAD_SNAP_INDEX)
1078 		return ERR_PTR(-ENOENT);
1079 
1080 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1081 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1082 }
1083 
1084 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1085 {
1086 	if (snap_id == CEPH_NOSNAP)
1087 		return RBD_SNAP_HEAD_NAME;
1088 
1089 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1090 	if (rbd_dev->image_format == 1)
1091 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1092 
1093 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1094 }
1095 
1096 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1097 				u64 *snap_size)
1098 {
1099 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1100 	if (snap_id == CEPH_NOSNAP) {
1101 		*snap_size = rbd_dev->header.image_size;
1102 	} else if (rbd_dev->image_format == 1) {
1103 		u32 which;
1104 
1105 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1106 		if (which == BAD_SNAP_INDEX)
1107 			return -ENOENT;
1108 
1109 		*snap_size = rbd_dev->header.snap_sizes[which];
1110 	} else {
1111 		u64 size = 0;
1112 		int ret;
1113 
1114 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1115 		if (ret)
1116 			return ret;
1117 
1118 		*snap_size = size;
1119 	}
1120 	return 0;
1121 }
1122 
1123 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1124 			u64 *snap_features)
1125 {
1126 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1127 	if (snap_id == CEPH_NOSNAP) {
1128 		*snap_features = rbd_dev->header.features;
1129 	} else if (rbd_dev->image_format == 1) {
1130 		*snap_features = 0;	/* No features for format 1 */
1131 	} else {
1132 		u64 features = 0;
1133 		int ret;
1134 
1135 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1136 		if (ret)
1137 			return ret;
1138 
1139 		*snap_features = features;
1140 	}
1141 	return 0;
1142 }
1143 
1144 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1145 {
1146 	u64 snap_id = rbd_dev->spec->snap_id;
1147 	u64 size = 0;
1148 	u64 features = 0;
1149 	int ret;
1150 
1151 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1152 	if (ret)
1153 		return ret;
1154 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1155 	if (ret)
1156 		return ret;
1157 
1158 	rbd_dev->mapping.size = size;
1159 	rbd_dev->mapping.features = features;
1160 
1161 	return 0;
1162 }
1163 
1164 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1165 {
1166 	rbd_dev->mapping.size = 0;
1167 	rbd_dev->mapping.features = 0;
1168 }
1169 
1170 static void rbd_segment_name_free(const char *name)
1171 {
1172 	/* The explicit cast here is needed to drop the const qualifier */
1173 
1174 	kmem_cache_free(rbd_segment_name_cache, (void *)name);
1175 }
1176 
1177 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1178 {
1179 	char *name;
1180 	u64 segment;
1181 	int ret;
1182 	char *name_format;
1183 
1184 	name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1185 	if (!name)
1186 		return NULL;
1187 	segment = offset >> rbd_dev->header.obj_order;
1188 	name_format = "%s.%012llx";
1189 	if (rbd_dev->image_format == 2)
1190 		name_format = "%s.%016llx";
1191 	ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1192 			rbd_dev->header.object_prefix, segment);
1193 	if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1194 		pr_err("error formatting segment name for #%llu (%d)\n",
1195 			segment, ret);
1196 		rbd_segment_name_free(name);
1197 		name = NULL;
1198 	}
1199 
1200 	return name;
1201 }
1202 
1203 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1204 {
1205 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1206 
1207 	return offset & (segment_size - 1);
1208 }
1209 
1210 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1211 				u64 offset, u64 length)
1212 {
1213 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1214 
1215 	offset &= segment_size - 1;
1216 
1217 	rbd_assert(length <= U64_MAX - offset);
1218 	if (offset + length > segment_size)
1219 		length = segment_size - offset;
1220 
1221 	return length;
1222 }
1223 
1224 /*
1225  * returns the size of an object in the image
1226  */
1227 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1228 {
1229 	return 1 << header->obj_order;
1230 }
1231 
1232 /*
1233  * bio helpers
1234  */
1235 
1236 static void bio_chain_put(struct bio *chain)
1237 {
1238 	struct bio *tmp;
1239 
1240 	while (chain) {
1241 		tmp = chain;
1242 		chain = chain->bi_next;
1243 		bio_put(tmp);
1244 	}
1245 }
1246 
1247 /*
1248  * zeros a bio chain, starting at specific offset
1249  */
1250 static void zero_bio_chain(struct bio *chain, int start_ofs)
1251 {
1252 	struct bio_vec bv;
1253 	struct bvec_iter iter;
1254 	unsigned long flags;
1255 	void *buf;
1256 	int pos = 0;
1257 
1258 	while (chain) {
1259 		bio_for_each_segment(bv, chain, iter) {
1260 			if (pos + bv.bv_len > start_ofs) {
1261 				int remainder = max(start_ofs - pos, 0);
1262 				buf = bvec_kmap_irq(&bv, &flags);
1263 				memset(buf + remainder, 0,
1264 				       bv.bv_len - remainder);
1265 				flush_dcache_page(bv.bv_page);
1266 				bvec_kunmap_irq(buf, &flags);
1267 			}
1268 			pos += bv.bv_len;
1269 		}
1270 
1271 		chain = chain->bi_next;
1272 	}
1273 }
1274 
1275 /*
1276  * similar to zero_bio_chain(), zeros data defined by a page array,
1277  * starting at the given byte offset from the start of the array and
1278  * continuing up to the given end offset.  The pages array is
1279  * assumed to be big enough to hold all bytes up to the end.
1280  */
1281 static void zero_pages(struct page **pages, u64 offset, u64 end)
1282 {
1283 	struct page **page = &pages[offset >> PAGE_SHIFT];
1284 
1285 	rbd_assert(end > offset);
1286 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1287 	while (offset < end) {
1288 		size_t page_offset;
1289 		size_t length;
1290 		unsigned long flags;
1291 		void *kaddr;
1292 
1293 		page_offset = offset & ~PAGE_MASK;
1294 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1295 		local_irq_save(flags);
1296 		kaddr = kmap_atomic(*page);
1297 		memset(kaddr + page_offset, 0, length);
1298 		flush_dcache_page(*page);
1299 		kunmap_atomic(kaddr);
1300 		local_irq_restore(flags);
1301 
1302 		offset += length;
1303 		page++;
1304 	}
1305 }
1306 
1307 /*
1308  * Clone a portion of a bio, starting at the given byte offset
1309  * and continuing for the number of bytes indicated.
1310  */
1311 static struct bio *bio_clone_range(struct bio *bio_src,
1312 					unsigned int offset,
1313 					unsigned int len,
1314 					gfp_t gfpmask)
1315 {
1316 	struct bio *bio;
1317 
1318 	bio = bio_clone(bio_src, gfpmask);
1319 	if (!bio)
1320 		return NULL;	/* ENOMEM */
1321 
1322 	bio_advance(bio, offset);
1323 	bio->bi_iter.bi_size = len;
1324 
1325 	return bio;
1326 }
1327 
1328 /*
1329  * Clone a portion of a bio chain, starting at the given byte offset
1330  * into the first bio in the source chain and continuing for the
1331  * number of bytes indicated.  The result is another bio chain of
1332  * exactly the given length, or a null pointer on error.
1333  *
1334  * The bio_src and offset parameters are both in-out.  On entry they
1335  * refer to the first source bio and the offset into that bio where
1336  * the start of data to be cloned is located.
1337  *
1338  * On return, bio_src is updated to refer to the bio in the source
1339  * chain that contains first un-cloned byte, and *offset will
1340  * contain the offset of that byte within that bio.
1341  */
1342 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1343 					unsigned int *offset,
1344 					unsigned int len,
1345 					gfp_t gfpmask)
1346 {
1347 	struct bio *bi = *bio_src;
1348 	unsigned int off = *offset;
1349 	struct bio *chain = NULL;
1350 	struct bio **end;
1351 
1352 	/* Build up a chain of clone bios up to the limit */
1353 
1354 	if (!bi || off >= bi->bi_iter.bi_size || !len)
1355 		return NULL;		/* Nothing to clone */
1356 
1357 	end = &chain;
1358 	while (len) {
1359 		unsigned int bi_size;
1360 		struct bio *bio;
1361 
1362 		if (!bi) {
1363 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1364 			goto out_err;	/* EINVAL; ran out of bio's */
1365 		}
1366 		bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1367 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1368 		if (!bio)
1369 			goto out_err;	/* ENOMEM */
1370 
1371 		*end = bio;
1372 		end = &bio->bi_next;
1373 
1374 		off += bi_size;
1375 		if (off == bi->bi_iter.bi_size) {
1376 			bi = bi->bi_next;
1377 			off = 0;
1378 		}
1379 		len -= bi_size;
1380 	}
1381 	*bio_src = bi;
1382 	*offset = off;
1383 
1384 	return chain;
1385 out_err:
1386 	bio_chain_put(chain);
1387 
1388 	return NULL;
1389 }
1390 
1391 /*
1392  * The default/initial value for all object request flags is 0.  For
1393  * each flag, once its value is set to 1 it is never reset to 0
1394  * again.
1395  */
1396 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1397 {
1398 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1399 		struct rbd_device *rbd_dev;
1400 
1401 		rbd_dev = obj_request->img_request->rbd_dev;
1402 		rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1403 			obj_request);
1404 	}
1405 }
1406 
1407 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1408 {
1409 	smp_mb();
1410 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1411 }
1412 
1413 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1414 {
1415 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1416 		struct rbd_device *rbd_dev = NULL;
1417 
1418 		if (obj_request_img_data_test(obj_request))
1419 			rbd_dev = obj_request->img_request->rbd_dev;
1420 		rbd_warn(rbd_dev, "obj_request %p already marked done",
1421 			obj_request);
1422 	}
1423 }
1424 
1425 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1426 {
1427 	smp_mb();
1428 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1429 }
1430 
1431 /*
1432  * This sets the KNOWN flag after (possibly) setting the EXISTS
1433  * flag.  The latter is set based on the "exists" value provided.
1434  *
1435  * Note that for our purposes once an object exists it never goes
1436  * away again.  It's possible that the response from two existence
1437  * checks are separated by the creation of the target object, and
1438  * the first ("doesn't exist") response arrives *after* the second
1439  * ("does exist").  In that case we ignore the second one.
1440  */
1441 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1442 				bool exists)
1443 {
1444 	if (exists)
1445 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1446 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1447 	smp_mb();
1448 }
1449 
1450 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1451 {
1452 	smp_mb();
1453 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1454 }
1455 
1456 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1457 {
1458 	smp_mb();
1459 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1460 }
1461 
1462 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1463 {
1464 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1465 
1466 	return obj_request->img_offset <
1467 	    round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1468 }
1469 
1470 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1471 {
1472 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1473 		atomic_read(&obj_request->kref.refcount));
1474 	kref_get(&obj_request->kref);
1475 }
1476 
1477 static void rbd_obj_request_destroy(struct kref *kref);
1478 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1479 {
1480 	rbd_assert(obj_request != NULL);
1481 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1482 		atomic_read(&obj_request->kref.refcount));
1483 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1484 }
1485 
1486 static void rbd_img_request_get(struct rbd_img_request *img_request)
1487 {
1488 	dout("%s: img %p (was %d)\n", __func__, img_request,
1489 	     atomic_read(&img_request->kref.refcount));
1490 	kref_get(&img_request->kref);
1491 }
1492 
1493 static bool img_request_child_test(struct rbd_img_request *img_request);
1494 static void rbd_parent_request_destroy(struct kref *kref);
1495 static void rbd_img_request_destroy(struct kref *kref);
1496 static void rbd_img_request_put(struct rbd_img_request *img_request)
1497 {
1498 	rbd_assert(img_request != NULL);
1499 	dout("%s: img %p (was %d)\n", __func__, img_request,
1500 		atomic_read(&img_request->kref.refcount));
1501 	if (img_request_child_test(img_request))
1502 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1503 	else
1504 		kref_put(&img_request->kref, rbd_img_request_destroy);
1505 }
1506 
1507 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1508 					struct rbd_obj_request *obj_request)
1509 {
1510 	rbd_assert(obj_request->img_request == NULL);
1511 
1512 	/* Image request now owns object's original reference */
1513 	obj_request->img_request = img_request;
1514 	obj_request->which = img_request->obj_request_count;
1515 	rbd_assert(!obj_request_img_data_test(obj_request));
1516 	obj_request_img_data_set(obj_request);
1517 	rbd_assert(obj_request->which != BAD_WHICH);
1518 	img_request->obj_request_count++;
1519 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1520 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1521 		obj_request->which);
1522 }
1523 
1524 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1525 					struct rbd_obj_request *obj_request)
1526 {
1527 	rbd_assert(obj_request->which != BAD_WHICH);
1528 
1529 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1530 		obj_request->which);
1531 	list_del(&obj_request->links);
1532 	rbd_assert(img_request->obj_request_count > 0);
1533 	img_request->obj_request_count--;
1534 	rbd_assert(obj_request->which == img_request->obj_request_count);
1535 	obj_request->which = BAD_WHICH;
1536 	rbd_assert(obj_request_img_data_test(obj_request));
1537 	rbd_assert(obj_request->img_request == img_request);
1538 	obj_request->img_request = NULL;
1539 	obj_request->callback = NULL;
1540 	rbd_obj_request_put(obj_request);
1541 }
1542 
1543 static bool obj_request_type_valid(enum obj_request_type type)
1544 {
1545 	switch (type) {
1546 	case OBJ_REQUEST_NODATA:
1547 	case OBJ_REQUEST_BIO:
1548 	case OBJ_REQUEST_PAGES:
1549 		return true;
1550 	default:
1551 		return false;
1552 	}
1553 }
1554 
1555 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1556 				struct rbd_obj_request *obj_request)
1557 {
1558 	dout("%s %p\n", __func__, obj_request);
1559 	return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1560 }
1561 
1562 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1563 {
1564 	dout("%s %p\n", __func__, obj_request);
1565 	ceph_osdc_cancel_request(obj_request->osd_req);
1566 }
1567 
1568 /*
1569  * Wait for an object request to complete.  If interrupted, cancel the
1570  * underlying osd request.
1571  *
1572  * @timeout: in jiffies, 0 means "wait forever"
1573  */
1574 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1575 				  unsigned long timeout)
1576 {
1577 	long ret;
1578 
1579 	dout("%s %p\n", __func__, obj_request);
1580 	ret = wait_for_completion_interruptible_timeout(
1581 					&obj_request->completion,
1582 					ceph_timeout_jiffies(timeout));
1583 	if (ret <= 0) {
1584 		if (ret == 0)
1585 			ret = -ETIMEDOUT;
1586 		rbd_obj_request_end(obj_request);
1587 	} else {
1588 		ret = 0;
1589 	}
1590 
1591 	dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1592 	return ret;
1593 }
1594 
1595 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1596 {
1597 	return __rbd_obj_request_wait(obj_request, 0);
1598 }
1599 
1600 static int rbd_obj_request_wait_timeout(struct rbd_obj_request *obj_request,
1601 					unsigned long timeout)
1602 {
1603 	return __rbd_obj_request_wait(obj_request, timeout);
1604 }
1605 
1606 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1607 {
1608 
1609 	dout("%s: img %p\n", __func__, img_request);
1610 
1611 	/*
1612 	 * If no error occurred, compute the aggregate transfer
1613 	 * count for the image request.  We could instead use
1614 	 * atomic64_cmpxchg() to update it as each object request
1615 	 * completes; not clear which way is better off hand.
1616 	 */
1617 	if (!img_request->result) {
1618 		struct rbd_obj_request *obj_request;
1619 		u64 xferred = 0;
1620 
1621 		for_each_obj_request(img_request, obj_request)
1622 			xferred += obj_request->xferred;
1623 		img_request->xferred = xferred;
1624 	}
1625 
1626 	if (img_request->callback)
1627 		img_request->callback(img_request);
1628 	else
1629 		rbd_img_request_put(img_request);
1630 }
1631 
1632 /*
1633  * The default/initial value for all image request flags is 0.  Each
1634  * is conditionally set to 1 at image request initialization time
1635  * and currently never change thereafter.
1636  */
1637 static void img_request_write_set(struct rbd_img_request *img_request)
1638 {
1639 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1640 	smp_mb();
1641 }
1642 
1643 static bool img_request_write_test(struct rbd_img_request *img_request)
1644 {
1645 	smp_mb();
1646 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1647 }
1648 
1649 /*
1650  * Set the discard flag when the img_request is an discard request
1651  */
1652 static void img_request_discard_set(struct rbd_img_request *img_request)
1653 {
1654 	set_bit(IMG_REQ_DISCARD, &img_request->flags);
1655 	smp_mb();
1656 }
1657 
1658 static bool img_request_discard_test(struct rbd_img_request *img_request)
1659 {
1660 	smp_mb();
1661 	return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1662 }
1663 
1664 static void img_request_child_set(struct rbd_img_request *img_request)
1665 {
1666 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1667 	smp_mb();
1668 }
1669 
1670 static void img_request_child_clear(struct rbd_img_request *img_request)
1671 {
1672 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1673 	smp_mb();
1674 }
1675 
1676 static bool img_request_child_test(struct rbd_img_request *img_request)
1677 {
1678 	smp_mb();
1679 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1680 }
1681 
1682 static void img_request_layered_set(struct rbd_img_request *img_request)
1683 {
1684 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1685 	smp_mb();
1686 }
1687 
1688 static void img_request_layered_clear(struct rbd_img_request *img_request)
1689 {
1690 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1691 	smp_mb();
1692 }
1693 
1694 static bool img_request_layered_test(struct rbd_img_request *img_request)
1695 {
1696 	smp_mb();
1697 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1698 }
1699 
1700 static enum obj_operation_type
1701 rbd_img_request_op_type(struct rbd_img_request *img_request)
1702 {
1703 	if (img_request_write_test(img_request))
1704 		return OBJ_OP_WRITE;
1705 	else if (img_request_discard_test(img_request))
1706 		return OBJ_OP_DISCARD;
1707 	else
1708 		return OBJ_OP_READ;
1709 }
1710 
1711 static void
1712 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1713 {
1714 	u64 xferred = obj_request->xferred;
1715 	u64 length = obj_request->length;
1716 
1717 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1718 		obj_request, obj_request->img_request, obj_request->result,
1719 		xferred, length);
1720 	/*
1721 	 * ENOENT means a hole in the image.  We zero-fill the entire
1722 	 * length of the request.  A short read also implies zero-fill
1723 	 * to the end of the request.  An error requires the whole
1724 	 * length of the request to be reported finished with an error
1725 	 * to the block layer.  In each case we update the xferred
1726 	 * count to indicate the whole request was satisfied.
1727 	 */
1728 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1729 	if (obj_request->result == -ENOENT) {
1730 		if (obj_request->type == OBJ_REQUEST_BIO)
1731 			zero_bio_chain(obj_request->bio_list, 0);
1732 		else
1733 			zero_pages(obj_request->pages, 0, length);
1734 		obj_request->result = 0;
1735 	} else if (xferred < length && !obj_request->result) {
1736 		if (obj_request->type == OBJ_REQUEST_BIO)
1737 			zero_bio_chain(obj_request->bio_list, xferred);
1738 		else
1739 			zero_pages(obj_request->pages, xferred, length);
1740 	}
1741 	obj_request->xferred = length;
1742 	obj_request_done_set(obj_request);
1743 }
1744 
1745 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1746 {
1747 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1748 		obj_request->callback);
1749 	if (obj_request->callback)
1750 		obj_request->callback(obj_request);
1751 	else
1752 		complete_all(&obj_request->completion);
1753 }
1754 
1755 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1756 {
1757 	dout("%s: obj %p\n", __func__, obj_request);
1758 	obj_request_done_set(obj_request);
1759 }
1760 
1761 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1762 {
1763 	struct rbd_img_request *img_request = NULL;
1764 	struct rbd_device *rbd_dev = NULL;
1765 	bool layered = false;
1766 
1767 	if (obj_request_img_data_test(obj_request)) {
1768 		img_request = obj_request->img_request;
1769 		layered = img_request && img_request_layered_test(img_request);
1770 		rbd_dev = img_request->rbd_dev;
1771 	}
1772 
1773 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1774 		obj_request, img_request, obj_request->result,
1775 		obj_request->xferred, obj_request->length);
1776 	if (layered && obj_request->result == -ENOENT &&
1777 			obj_request->img_offset < rbd_dev->parent_overlap)
1778 		rbd_img_parent_read(obj_request);
1779 	else if (img_request)
1780 		rbd_img_obj_request_read_callback(obj_request);
1781 	else
1782 		obj_request_done_set(obj_request);
1783 }
1784 
1785 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1786 {
1787 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1788 		obj_request->result, obj_request->length);
1789 	/*
1790 	 * There is no such thing as a successful short write.  Set
1791 	 * it to our originally-requested length.
1792 	 */
1793 	obj_request->xferred = obj_request->length;
1794 	obj_request_done_set(obj_request);
1795 }
1796 
1797 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1798 {
1799 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1800 		obj_request->result, obj_request->length);
1801 	/*
1802 	 * There is no such thing as a successful short discard.  Set
1803 	 * it to our originally-requested length.
1804 	 */
1805 	obj_request->xferred = obj_request->length;
1806 	/* discarding a non-existent object is not a problem */
1807 	if (obj_request->result == -ENOENT)
1808 		obj_request->result = 0;
1809 	obj_request_done_set(obj_request);
1810 }
1811 
1812 /*
1813  * For a simple stat call there's nothing to do.  We'll do more if
1814  * this is part of a write sequence for a layered image.
1815  */
1816 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1817 {
1818 	dout("%s: obj %p\n", __func__, obj_request);
1819 	obj_request_done_set(obj_request);
1820 }
1821 
1822 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1823 {
1824 	dout("%s: obj %p\n", __func__, obj_request);
1825 
1826 	if (obj_request_img_data_test(obj_request))
1827 		rbd_osd_copyup_callback(obj_request);
1828 	else
1829 		obj_request_done_set(obj_request);
1830 }
1831 
1832 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1833 				struct ceph_msg *msg)
1834 {
1835 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1836 	u16 opcode;
1837 
1838 	dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1839 	rbd_assert(osd_req == obj_request->osd_req);
1840 	if (obj_request_img_data_test(obj_request)) {
1841 		rbd_assert(obj_request->img_request);
1842 		rbd_assert(obj_request->which != BAD_WHICH);
1843 	} else {
1844 		rbd_assert(obj_request->which == BAD_WHICH);
1845 	}
1846 
1847 	if (osd_req->r_result < 0)
1848 		obj_request->result = osd_req->r_result;
1849 
1850 	rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1851 
1852 	/*
1853 	 * We support a 64-bit length, but ultimately it has to be
1854 	 * passed to the block layer, which just supports a 32-bit
1855 	 * length field.
1856 	 */
1857 	obj_request->xferred = osd_req->r_reply_op_len[0];
1858 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1859 
1860 	opcode = osd_req->r_ops[0].op;
1861 	switch (opcode) {
1862 	case CEPH_OSD_OP_READ:
1863 		rbd_osd_read_callback(obj_request);
1864 		break;
1865 	case CEPH_OSD_OP_SETALLOCHINT:
1866 		rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1867 			   osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1868 		/* fall through */
1869 	case CEPH_OSD_OP_WRITE:
1870 	case CEPH_OSD_OP_WRITEFULL:
1871 		rbd_osd_write_callback(obj_request);
1872 		break;
1873 	case CEPH_OSD_OP_STAT:
1874 		rbd_osd_stat_callback(obj_request);
1875 		break;
1876 	case CEPH_OSD_OP_DELETE:
1877 	case CEPH_OSD_OP_TRUNCATE:
1878 	case CEPH_OSD_OP_ZERO:
1879 		rbd_osd_discard_callback(obj_request);
1880 		break;
1881 	case CEPH_OSD_OP_CALL:
1882 		rbd_osd_call_callback(obj_request);
1883 		break;
1884 	case CEPH_OSD_OP_NOTIFY_ACK:
1885 	case CEPH_OSD_OP_WATCH:
1886 		rbd_osd_trivial_callback(obj_request);
1887 		break;
1888 	default:
1889 		rbd_warn(NULL, "%s: unsupported op %hu",
1890 			obj_request->object_name, (unsigned short) opcode);
1891 		break;
1892 	}
1893 
1894 	if (obj_request_done_test(obj_request))
1895 		rbd_obj_request_complete(obj_request);
1896 }
1897 
1898 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1899 {
1900 	struct rbd_img_request *img_request = obj_request->img_request;
1901 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1902 	u64 snap_id;
1903 
1904 	rbd_assert(osd_req != NULL);
1905 
1906 	snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1907 	ceph_osdc_build_request(osd_req, obj_request->offset,
1908 			NULL, snap_id, NULL);
1909 }
1910 
1911 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1912 {
1913 	struct rbd_img_request *img_request = obj_request->img_request;
1914 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1915 	struct ceph_snap_context *snapc;
1916 	struct timespec mtime = CURRENT_TIME;
1917 
1918 	rbd_assert(osd_req != NULL);
1919 
1920 	snapc = img_request ? img_request->snapc : NULL;
1921 	ceph_osdc_build_request(osd_req, obj_request->offset,
1922 			snapc, CEPH_NOSNAP, &mtime);
1923 }
1924 
1925 /*
1926  * Create an osd request.  A read request has one osd op (read).
1927  * A write request has either one (watch) or two (hint+write) osd ops.
1928  * (All rbd data writes are prefixed with an allocation hint op, but
1929  * technically osd watch is a write request, hence this distinction.)
1930  */
1931 static struct ceph_osd_request *rbd_osd_req_create(
1932 					struct rbd_device *rbd_dev,
1933 					enum obj_operation_type op_type,
1934 					unsigned int num_ops,
1935 					struct rbd_obj_request *obj_request)
1936 {
1937 	struct ceph_snap_context *snapc = NULL;
1938 	struct ceph_osd_client *osdc;
1939 	struct ceph_osd_request *osd_req;
1940 
1941 	if (obj_request_img_data_test(obj_request) &&
1942 		(op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1943 		struct rbd_img_request *img_request = obj_request->img_request;
1944 		if (op_type == OBJ_OP_WRITE) {
1945 			rbd_assert(img_request_write_test(img_request));
1946 		} else {
1947 			rbd_assert(img_request_discard_test(img_request));
1948 		}
1949 		snapc = img_request->snapc;
1950 	}
1951 
1952 	rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1953 
1954 	/* Allocate and initialize the request, for the num_ops ops */
1955 
1956 	osdc = &rbd_dev->rbd_client->client->osdc;
1957 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1958 					  GFP_ATOMIC);
1959 	if (!osd_req)
1960 		return NULL;	/* ENOMEM */
1961 
1962 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1963 		osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1964 	else
1965 		osd_req->r_flags = CEPH_OSD_FLAG_READ;
1966 
1967 	osd_req->r_callback = rbd_osd_req_callback;
1968 	osd_req->r_priv = obj_request;
1969 
1970 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1971 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1972 
1973 	return osd_req;
1974 }
1975 
1976 /*
1977  * Create a copyup osd request based on the information in the object
1978  * request supplied.  A copyup request has two or three osd ops, a
1979  * copyup method call, potentially a hint op, and a write or truncate
1980  * or zero op.
1981  */
1982 static struct ceph_osd_request *
1983 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1984 {
1985 	struct rbd_img_request *img_request;
1986 	struct ceph_snap_context *snapc;
1987 	struct rbd_device *rbd_dev;
1988 	struct ceph_osd_client *osdc;
1989 	struct ceph_osd_request *osd_req;
1990 	int num_osd_ops = 3;
1991 
1992 	rbd_assert(obj_request_img_data_test(obj_request));
1993 	img_request = obj_request->img_request;
1994 	rbd_assert(img_request);
1995 	rbd_assert(img_request_write_test(img_request) ||
1996 			img_request_discard_test(img_request));
1997 
1998 	if (img_request_discard_test(img_request))
1999 		num_osd_ops = 2;
2000 
2001 	/* Allocate and initialize the request, for all the ops */
2002 
2003 	snapc = img_request->snapc;
2004 	rbd_dev = img_request->rbd_dev;
2005 	osdc = &rbd_dev->rbd_client->client->osdc;
2006 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
2007 						false, GFP_ATOMIC);
2008 	if (!osd_req)
2009 		return NULL;	/* ENOMEM */
2010 
2011 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2012 	osd_req->r_callback = rbd_osd_req_callback;
2013 	osd_req->r_priv = obj_request;
2014 
2015 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
2016 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
2017 
2018 	return osd_req;
2019 }
2020 
2021 
2022 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2023 {
2024 	ceph_osdc_put_request(osd_req);
2025 }
2026 
2027 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2028 
2029 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2030 						u64 offset, u64 length,
2031 						enum obj_request_type type)
2032 {
2033 	struct rbd_obj_request *obj_request;
2034 	size_t size;
2035 	char *name;
2036 
2037 	rbd_assert(obj_request_type_valid(type));
2038 
2039 	size = strlen(object_name) + 1;
2040 	name = kmalloc(size, GFP_NOIO);
2041 	if (!name)
2042 		return NULL;
2043 
2044 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2045 	if (!obj_request) {
2046 		kfree(name);
2047 		return NULL;
2048 	}
2049 
2050 	obj_request->object_name = memcpy(name, object_name, size);
2051 	obj_request->offset = offset;
2052 	obj_request->length = length;
2053 	obj_request->flags = 0;
2054 	obj_request->which = BAD_WHICH;
2055 	obj_request->type = type;
2056 	INIT_LIST_HEAD(&obj_request->links);
2057 	init_completion(&obj_request->completion);
2058 	kref_init(&obj_request->kref);
2059 
2060 	dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2061 		offset, length, (int)type, obj_request);
2062 
2063 	return obj_request;
2064 }
2065 
2066 static void rbd_obj_request_destroy(struct kref *kref)
2067 {
2068 	struct rbd_obj_request *obj_request;
2069 
2070 	obj_request = container_of(kref, struct rbd_obj_request, kref);
2071 
2072 	dout("%s: obj %p\n", __func__, obj_request);
2073 
2074 	rbd_assert(obj_request->img_request == NULL);
2075 	rbd_assert(obj_request->which == BAD_WHICH);
2076 
2077 	if (obj_request->osd_req)
2078 		rbd_osd_req_destroy(obj_request->osd_req);
2079 
2080 	rbd_assert(obj_request_type_valid(obj_request->type));
2081 	switch (obj_request->type) {
2082 	case OBJ_REQUEST_NODATA:
2083 		break;		/* Nothing to do */
2084 	case OBJ_REQUEST_BIO:
2085 		if (obj_request->bio_list)
2086 			bio_chain_put(obj_request->bio_list);
2087 		break;
2088 	case OBJ_REQUEST_PAGES:
2089 		if (obj_request->pages)
2090 			ceph_release_page_vector(obj_request->pages,
2091 						obj_request->page_count);
2092 		break;
2093 	}
2094 
2095 	kfree(obj_request->object_name);
2096 	obj_request->object_name = NULL;
2097 	kmem_cache_free(rbd_obj_request_cache, obj_request);
2098 }
2099 
2100 /* It's OK to call this for a device with no parent */
2101 
2102 static void rbd_spec_put(struct rbd_spec *spec);
2103 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2104 {
2105 	rbd_dev_remove_parent(rbd_dev);
2106 	rbd_spec_put(rbd_dev->parent_spec);
2107 	rbd_dev->parent_spec = NULL;
2108 	rbd_dev->parent_overlap = 0;
2109 }
2110 
2111 /*
2112  * Parent image reference counting is used to determine when an
2113  * image's parent fields can be safely torn down--after there are no
2114  * more in-flight requests to the parent image.  When the last
2115  * reference is dropped, cleaning them up is safe.
2116  */
2117 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2118 {
2119 	int counter;
2120 
2121 	if (!rbd_dev->parent_spec)
2122 		return;
2123 
2124 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2125 	if (counter > 0)
2126 		return;
2127 
2128 	/* Last reference; clean up parent data structures */
2129 
2130 	if (!counter)
2131 		rbd_dev_unparent(rbd_dev);
2132 	else
2133 		rbd_warn(rbd_dev, "parent reference underflow");
2134 }
2135 
2136 /*
2137  * If an image has a non-zero parent overlap, get a reference to its
2138  * parent.
2139  *
2140  * Returns true if the rbd device has a parent with a non-zero
2141  * overlap and a reference for it was successfully taken, or
2142  * false otherwise.
2143  */
2144 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2145 {
2146 	int counter = 0;
2147 
2148 	if (!rbd_dev->parent_spec)
2149 		return false;
2150 
2151 	down_read(&rbd_dev->header_rwsem);
2152 	if (rbd_dev->parent_overlap)
2153 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2154 	up_read(&rbd_dev->header_rwsem);
2155 
2156 	if (counter < 0)
2157 		rbd_warn(rbd_dev, "parent reference overflow");
2158 
2159 	return counter > 0;
2160 }
2161 
2162 /*
2163  * Caller is responsible for filling in the list of object requests
2164  * that comprises the image request, and the Linux request pointer
2165  * (if there is one).
2166  */
2167 static struct rbd_img_request *rbd_img_request_create(
2168 					struct rbd_device *rbd_dev,
2169 					u64 offset, u64 length,
2170 					enum obj_operation_type op_type,
2171 					struct ceph_snap_context *snapc)
2172 {
2173 	struct rbd_img_request *img_request;
2174 
2175 	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2176 	if (!img_request)
2177 		return NULL;
2178 
2179 	img_request->rq = NULL;
2180 	img_request->rbd_dev = rbd_dev;
2181 	img_request->offset = offset;
2182 	img_request->length = length;
2183 	img_request->flags = 0;
2184 	if (op_type == OBJ_OP_DISCARD) {
2185 		img_request_discard_set(img_request);
2186 		img_request->snapc = snapc;
2187 	} else if (op_type == OBJ_OP_WRITE) {
2188 		img_request_write_set(img_request);
2189 		img_request->snapc = snapc;
2190 	} else {
2191 		img_request->snap_id = rbd_dev->spec->snap_id;
2192 	}
2193 	if (rbd_dev_parent_get(rbd_dev))
2194 		img_request_layered_set(img_request);
2195 	spin_lock_init(&img_request->completion_lock);
2196 	img_request->next_completion = 0;
2197 	img_request->callback = NULL;
2198 	img_request->result = 0;
2199 	img_request->obj_request_count = 0;
2200 	INIT_LIST_HEAD(&img_request->obj_requests);
2201 	kref_init(&img_request->kref);
2202 
2203 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2204 		obj_op_name(op_type), offset, length, img_request);
2205 
2206 	return img_request;
2207 }
2208 
2209 static void rbd_img_request_destroy(struct kref *kref)
2210 {
2211 	struct rbd_img_request *img_request;
2212 	struct rbd_obj_request *obj_request;
2213 	struct rbd_obj_request *next_obj_request;
2214 
2215 	img_request = container_of(kref, struct rbd_img_request, kref);
2216 
2217 	dout("%s: img %p\n", __func__, img_request);
2218 
2219 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2220 		rbd_img_obj_request_del(img_request, obj_request);
2221 	rbd_assert(img_request->obj_request_count == 0);
2222 
2223 	if (img_request_layered_test(img_request)) {
2224 		img_request_layered_clear(img_request);
2225 		rbd_dev_parent_put(img_request->rbd_dev);
2226 	}
2227 
2228 	if (img_request_write_test(img_request) ||
2229 		img_request_discard_test(img_request))
2230 		ceph_put_snap_context(img_request->snapc);
2231 
2232 	kmem_cache_free(rbd_img_request_cache, img_request);
2233 }
2234 
2235 static struct rbd_img_request *rbd_parent_request_create(
2236 					struct rbd_obj_request *obj_request,
2237 					u64 img_offset, u64 length)
2238 {
2239 	struct rbd_img_request *parent_request;
2240 	struct rbd_device *rbd_dev;
2241 
2242 	rbd_assert(obj_request->img_request);
2243 	rbd_dev = obj_request->img_request->rbd_dev;
2244 
2245 	parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2246 						length, OBJ_OP_READ, NULL);
2247 	if (!parent_request)
2248 		return NULL;
2249 
2250 	img_request_child_set(parent_request);
2251 	rbd_obj_request_get(obj_request);
2252 	parent_request->obj_request = obj_request;
2253 
2254 	return parent_request;
2255 }
2256 
2257 static void rbd_parent_request_destroy(struct kref *kref)
2258 {
2259 	struct rbd_img_request *parent_request;
2260 	struct rbd_obj_request *orig_request;
2261 
2262 	parent_request = container_of(kref, struct rbd_img_request, kref);
2263 	orig_request = parent_request->obj_request;
2264 
2265 	parent_request->obj_request = NULL;
2266 	rbd_obj_request_put(orig_request);
2267 	img_request_child_clear(parent_request);
2268 
2269 	rbd_img_request_destroy(kref);
2270 }
2271 
2272 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2273 {
2274 	struct rbd_img_request *img_request;
2275 	unsigned int xferred;
2276 	int result;
2277 	bool more;
2278 
2279 	rbd_assert(obj_request_img_data_test(obj_request));
2280 	img_request = obj_request->img_request;
2281 
2282 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2283 	xferred = (unsigned int)obj_request->xferred;
2284 	result = obj_request->result;
2285 	if (result) {
2286 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2287 		enum obj_operation_type op_type;
2288 
2289 		if (img_request_discard_test(img_request))
2290 			op_type = OBJ_OP_DISCARD;
2291 		else if (img_request_write_test(img_request))
2292 			op_type = OBJ_OP_WRITE;
2293 		else
2294 			op_type = OBJ_OP_READ;
2295 
2296 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2297 			obj_op_name(op_type), obj_request->length,
2298 			obj_request->img_offset, obj_request->offset);
2299 		rbd_warn(rbd_dev, "  result %d xferred %x",
2300 			result, xferred);
2301 		if (!img_request->result)
2302 			img_request->result = result;
2303 		/*
2304 		 * Need to end I/O on the entire obj_request worth of
2305 		 * bytes in case of error.
2306 		 */
2307 		xferred = obj_request->length;
2308 	}
2309 
2310 	/* Image object requests don't own their page array */
2311 
2312 	if (obj_request->type == OBJ_REQUEST_PAGES) {
2313 		obj_request->pages = NULL;
2314 		obj_request->page_count = 0;
2315 	}
2316 
2317 	if (img_request_child_test(img_request)) {
2318 		rbd_assert(img_request->obj_request != NULL);
2319 		more = obj_request->which < img_request->obj_request_count - 1;
2320 	} else {
2321 		rbd_assert(img_request->rq != NULL);
2322 
2323 		more = blk_update_request(img_request->rq, result, xferred);
2324 		if (!more)
2325 			__blk_mq_end_request(img_request->rq, result);
2326 	}
2327 
2328 	return more;
2329 }
2330 
2331 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2332 {
2333 	struct rbd_img_request *img_request;
2334 	u32 which = obj_request->which;
2335 	bool more = true;
2336 
2337 	rbd_assert(obj_request_img_data_test(obj_request));
2338 	img_request = obj_request->img_request;
2339 
2340 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2341 	rbd_assert(img_request != NULL);
2342 	rbd_assert(img_request->obj_request_count > 0);
2343 	rbd_assert(which != BAD_WHICH);
2344 	rbd_assert(which < img_request->obj_request_count);
2345 
2346 	spin_lock_irq(&img_request->completion_lock);
2347 	if (which != img_request->next_completion)
2348 		goto out;
2349 
2350 	for_each_obj_request_from(img_request, obj_request) {
2351 		rbd_assert(more);
2352 		rbd_assert(which < img_request->obj_request_count);
2353 
2354 		if (!obj_request_done_test(obj_request))
2355 			break;
2356 		more = rbd_img_obj_end_request(obj_request);
2357 		which++;
2358 	}
2359 
2360 	rbd_assert(more ^ (which == img_request->obj_request_count));
2361 	img_request->next_completion = which;
2362 out:
2363 	spin_unlock_irq(&img_request->completion_lock);
2364 	rbd_img_request_put(img_request);
2365 
2366 	if (!more)
2367 		rbd_img_request_complete(img_request);
2368 }
2369 
2370 /*
2371  * Add individual osd ops to the given ceph_osd_request and prepare
2372  * them for submission. num_ops is the current number of
2373  * osd operations already to the object request.
2374  */
2375 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2376 				struct ceph_osd_request *osd_request,
2377 				enum obj_operation_type op_type,
2378 				unsigned int num_ops)
2379 {
2380 	struct rbd_img_request *img_request = obj_request->img_request;
2381 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2382 	u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2383 	u64 offset = obj_request->offset;
2384 	u64 length = obj_request->length;
2385 	u64 img_end;
2386 	u16 opcode;
2387 
2388 	if (op_type == OBJ_OP_DISCARD) {
2389 		if (!offset && length == object_size &&
2390 		    (!img_request_layered_test(img_request) ||
2391 		     !obj_request_overlaps_parent(obj_request))) {
2392 			opcode = CEPH_OSD_OP_DELETE;
2393 		} else if ((offset + length == object_size)) {
2394 			opcode = CEPH_OSD_OP_TRUNCATE;
2395 		} else {
2396 			down_read(&rbd_dev->header_rwsem);
2397 			img_end = rbd_dev->header.image_size;
2398 			up_read(&rbd_dev->header_rwsem);
2399 
2400 			if (obj_request->img_offset + length == img_end)
2401 				opcode = CEPH_OSD_OP_TRUNCATE;
2402 			else
2403 				opcode = CEPH_OSD_OP_ZERO;
2404 		}
2405 	} else if (op_type == OBJ_OP_WRITE) {
2406 		if (!offset && length == object_size)
2407 			opcode = CEPH_OSD_OP_WRITEFULL;
2408 		else
2409 			opcode = CEPH_OSD_OP_WRITE;
2410 		osd_req_op_alloc_hint_init(osd_request, num_ops,
2411 					object_size, object_size);
2412 		num_ops++;
2413 	} else {
2414 		opcode = CEPH_OSD_OP_READ;
2415 	}
2416 
2417 	if (opcode == CEPH_OSD_OP_DELETE)
2418 		osd_req_op_init(osd_request, num_ops, opcode, 0);
2419 	else
2420 		osd_req_op_extent_init(osd_request, num_ops, opcode,
2421 				       offset, length, 0, 0);
2422 
2423 	if (obj_request->type == OBJ_REQUEST_BIO)
2424 		osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2425 					obj_request->bio_list, length);
2426 	else if (obj_request->type == OBJ_REQUEST_PAGES)
2427 		osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2428 					obj_request->pages, length,
2429 					offset & ~PAGE_MASK, false, false);
2430 
2431 	/* Discards are also writes */
2432 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2433 		rbd_osd_req_format_write(obj_request);
2434 	else
2435 		rbd_osd_req_format_read(obj_request);
2436 }
2437 
2438 /*
2439  * Split up an image request into one or more object requests, each
2440  * to a different object.  The "type" parameter indicates whether
2441  * "data_desc" is the pointer to the head of a list of bio
2442  * structures, or the base of a page array.  In either case this
2443  * function assumes data_desc describes memory sufficient to hold
2444  * all data described by the image request.
2445  */
2446 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2447 					enum obj_request_type type,
2448 					void *data_desc)
2449 {
2450 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2451 	struct rbd_obj_request *obj_request = NULL;
2452 	struct rbd_obj_request *next_obj_request;
2453 	struct bio *bio_list = NULL;
2454 	unsigned int bio_offset = 0;
2455 	struct page **pages = NULL;
2456 	enum obj_operation_type op_type;
2457 	u64 img_offset;
2458 	u64 resid;
2459 
2460 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2461 		(int)type, data_desc);
2462 
2463 	img_offset = img_request->offset;
2464 	resid = img_request->length;
2465 	rbd_assert(resid > 0);
2466 	op_type = rbd_img_request_op_type(img_request);
2467 
2468 	if (type == OBJ_REQUEST_BIO) {
2469 		bio_list = data_desc;
2470 		rbd_assert(img_offset ==
2471 			   bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2472 	} else if (type == OBJ_REQUEST_PAGES) {
2473 		pages = data_desc;
2474 	}
2475 
2476 	while (resid) {
2477 		struct ceph_osd_request *osd_req;
2478 		const char *object_name;
2479 		u64 offset;
2480 		u64 length;
2481 
2482 		object_name = rbd_segment_name(rbd_dev, img_offset);
2483 		if (!object_name)
2484 			goto out_unwind;
2485 		offset = rbd_segment_offset(rbd_dev, img_offset);
2486 		length = rbd_segment_length(rbd_dev, img_offset, resid);
2487 		obj_request = rbd_obj_request_create(object_name,
2488 						offset, length, type);
2489 		/* object request has its own copy of the object name */
2490 		rbd_segment_name_free(object_name);
2491 		if (!obj_request)
2492 			goto out_unwind;
2493 
2494 		/*
2495 		 * set obj_request->img_request before creating the
2496 		 * osd_request so that it gets the right snapc
2497 		 */
2498 		rbd_img_obj_request_add(img_request, obj_request);
2499 
2500 		if (type == OBJ_REQUEST_BIO) {
2501 			unsigned int clone_size;
2502 
2503 			rbd_assert(length <= (u64)UINT_MAX);
2504 			clone_size = (unsigned int)length;
2505 			obj_request->bio_list =
2506 					bio_chain_clone_range(&bio_list,
2507 								&bio_offset,
2508 								clone_size,
2509 								GFP_ATOMIC);
2510 			if (!obj_request->bio_list)
2511 				goto out_unwind;
2512 		} else if (type == OBJ_REQUEST_PAGES) {
2513 			unsigned int page_count;
2514 
2515 			obj_request->pages = pages;
2516 			page_count = (u32)calc_pages_for(offset, length);
2517 			obj_request->page_count = page_count;
2518 			if ((offset + length) & ~PAGE_MASK)
2519 				page_count--;	/* more on last page */
2520 			pages += page_count;
2521 		}
2522 
2523 		osd_req = rbd_osd_req_create(rbd_dev, op_type,
2524 					(op_type == OBJ_OP_WRITE) ? 2 : 1,
2525 					obj_request);
2526 		if (!osd_req)
2527 			goto out_unwind;
2528 
2529 		obj_request->osd_req = osd_req;
2530 		obj_request->callback = rbd_img_obj_callback;
2531 		obj_request->img_offset = img_offset;
2532 
2533 		rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2534 
2535 		rbd_img_request_get(img_request);
2536 
2537 		img_offset += length;
2538 		resid -= length;
2539 	}
2540 
2541 	return 0;
2542 
2543 out_unwind:
2544 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2545 		rbd_img_obj_request_del(img_request, obj_request);
2546 
2547 	return -ENOMEM;
2548 }
2549 
2550 static void
2551 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2552 {
2553 	struct rbd_img_request *img_request;
2554 	struct rbd_device *rbd_dev;
2555 	struct page **pages;
2556 	u32 page_count;
2557 
2558 	dout("%s: obj %p\n", __func__, obj_request);
2559 
2560 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2561 		obj_request->type == OBJ_REQUEST_NODATA);
2562 	rbd_assert(obj_request_img_data_test(obj_request));
2563 	img_request = obj_request->img_request;
2564 	rbd_assert(img_request);
2565 
2566 	rbd_dev = img_request->rbd_dev;
2567 	rbd_assert(rbd_dev);
2568 
2569 	pages = obj_request->copyup_pages;
2570 	rbd_assert(pages != NULL);
2571 	obj_request->copyup_pages = NULL;
2572 	page_count = obj_request->copyup_page_count;
2573 	rbd_assert(page_count);
2574 	obj_request->copyup_page_count = 0;
2575 	ceph_release_page_vector(pages, page_count);
2576 
2577 	/*
2578 	 * We want the transfer count to reflect the size of the
2579 	 * original write request.  There is no such thing as a
2580 	 * successful short write, so if the request was successful
2581 	 * we can just set it to the originally-requested length.
2582 	 */
2583 	if (!obj_request->result)
2584 		obj_request->xferred = obj_request->length;
2585 
2586 	obj_request_done_set(obj_request);
2587 }
2588 
2589 static void
2590 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2591 {
2592 	struct rbd_obj_request *orig_request;
2593 	struct ceph_osd_request *osd_req;
2594 	struct ceph_osd_client *osdc;
2595 	struct rbd_device *rbd_dev;
2596 	struct page **pages;
2597 	enum obj_operation_type op_type;
2598 	u32 page_count;
2599 	int img_result;
2600 	u64 parent_length;
2601 
2602 	rbd_assert(img_request_child_test(img_request));
2603 
2604 	/* First get what we need from the image request */
2605 
2606 	pages = img_request->copyup_pages;
2607 	rbd_assert(pages != NULL);
2608 	img_request->copyup_pages = NULL;
2609 	page_count = img_request->copyup_page_count;
2610 	rbd_assert(page_count);
2611 	img_request->copyup_page_count = 0;
2612 
2613 	orig_request = img_request->obj_request;
2614 	rbd_assert(orig_request != NULL);
2615 	rbd_assert(obj_request_type_valid(orig_request->type));
2616 	img_result = img_request->result;
2617 	parent_length = img_request->length;
2618 	rbd_assert(parent_length == img_request->xferred);
2619 	rbd_img_request_put(img_request);
2620 
2621 	rbd_assert(orig_request->img_request);
2622 	rbd_dev = orig_request->img_request->rbd_dev;
2623 	rbd_assert(rbd_dev);
2624 
2625 	/*
2626 	 * If the overlap has become 0 (most likely because the
2627 	 * image has been flattened) we need to free the pages
2628 	 * and re-submit the original write request.
2629 	 */
2630 	if (!rbd_dev->parent_overlap) {
2631 		struct ceph_osd_client *osdc;
2632 
2633 		ceph_release_page_vector(pages, page_count);
2634 		osdc = &rbd_dev->rbd_client->client->osdc;
2635 		img_result = rbd_obj_request_submit(osdc, orig_request);
2636 		if (!img_result)
2637 			return;
2638 	}
2639 
2640 	if (img_result)
2641 		goto out_err;
2642 
2643 	/*
2644 	 * The original osd request is of no use to use any more.
2645 	 * We need a new one that can hold the three ops in a copyup
2646 	 * request.  Allocate the new copyup osd request for the
2647 	 * original request, and release the old one.
2648 	 */
2649 	img_result = -ENOMEM;
2650 	osd_req = rbd_osd_req_create_copyup(orig_request);
2651 	if (!osd_req)
2652 		goto out_err;
2653 	rbd_osd_req_destroy(orig_request->osd_req);
2654 	orig_request->osd_req = osd_req;
2655 	orig_request->copyup_pages = pages;
2656 	orig_request->copyup_page_count = page_count;
2657 
2658 	/* Initialize the copyup op */
2659 
2660 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2661 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2662 						false, false);
2663 
2664 	/* Add the other op(s) */
2665 
2666 	op_type = rbd_img_request_op_type(orig_request->img_request);
2667 	rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2668 
2669 	/* All set, send it off. */
2670 
2671 	osdc = &rbd_dev->rbd_client->client->osdc;
2672 	img_result = rbd_obj_request_submit(osdc, orig_request);
2673 	if (!img_result)
2674 		return;
2675 out_err:
2676 	/* Record the error code and complete the request */
2677 
2678 	orig_request->result = img_result;
2679 	orig_request->xferred = 0;
2680 	obj_request_done_set(orig_request);
2681 	rbd_obj_request_complete(orig_request);
2682 }
2683 
2684 /*
2685  * Read from the parent image the range of data that covers the
2686  * entire target of the given object request.  This is used for
2687  * satisfying a layered image write request when the target of an
2688  * object request from the image request does not exist.
2689  *
2690  * A page array big enough to hold the returned data is allocated
2691  * and supplied to rbd_img_request_fill() as the "data descriptor."
2692  * When the read completes, this page array will be transferred to
2693  * the original object request for the copyup operation.
2694  *
2695  * If an error occurs, record it as the result of the original
2696  * object request and mark it done so it gets completed.
2697  */
2698 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2699 {
2700 	struct rbd_img_request *img_request = NULL;
2701 	struct rbd_img_request *parent_request = NULL;
2702 	struct rbd_device *rbd_dev;
2703 	u64 img_offset;
2704 	u64 length;
2705 	struct page **pages = NULL;
2706 	u32 page_count;
2707 	int result;
2708 
2709 	rbd_assert(obj_request_img_data_test(obj_request));
2710 	rbd_assert(obj_request_type_valid(obj_request->type));
2711 
2712 	img_request = obj_request->img_request;
2713 	rbd_assert(img_request != NULL);
2714 	rbd_dev = img_request->rbd_dev;
2715 	rbd_assert(rbd_dev->parent != NULL);
2716 
2717 	/*
2718 	 * Determine the byte range covered by the object in the
2719 	 * child image to which the original request was to be sent.
2720 	 */
2721 	img_offset = obj_request->img_offset - obj_request->offset;
2722 	length = (u64)1 << rbd_dev->header.obj_order;
2723 
2724 	/*
2725 	 * There is no defined parent data beyond the parent
2726 	 * overlap, so limit what we read at that boundary if
2727 	 * necessary.
2728 	 */
2729 	if (img_offset + length > rbd_dev->parent_overlap) {
2730 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2731 		length = rbd_dev->parent_overlap - img_offset;
2732 	}
2733 
2734 	/*
2735 	 * Allocate a page array big enough to receive the data read
2736 	 * from the parent.
2737 	 */
2738 	page_count = (u32)calc_pages_for(0, length);
2739 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2740 	if (IS_ERR(pages)) {
2741 		result = PTR_ERR(pages);
2742 		pages = NULL;
2743 		goto out_err;
2744 	}
2745 
2746 	result = -ENOMEM;
2747 	parent_request = rbd_parent_request_create(obj_request,
2748 						img_offset, length);
2749 	if (!parent_request)
2750 		goto out_err;
2751 
2752 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2753 	if (result)
2754 		goto out_err;
2755 	parent_request->copyup_pages = pages;
2756 	parent_request->copyup_page_count = page_count;
2757 
2758 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2759 	result = rbd_img_request_submit(parent_request);
2760 	if (!result)
2761 		return 0;
2762 
2763 	parent_request->copyup_pages = NULL;
2764 	parent_request->copyup_page_count = 0;
2765 	parent_request->obj_request = NULL;
2766 	rbd_obj_request_put(obj_request);
2767 out_err:
2768 	if (pages)
2769 		ceph_release_page_vector(pages, page_count);
2770 	if (parent_request)
2771 		rbd_img_request_put(parent_request);
2772 	obj_request->result = result;
2773 	obj_request->xferred = 0;
2774 	obj_request_done_set(obj_request);
2775 
2776 	return result;
2777 }
2778 
2779 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2780 {
2781 	struct rbd_obj_request *orig_request;
2782 	struct rbd_device *rbd_dev;
2783 	int result;
2784 
2785 	rbd_assert(!obj_request_img_data_test(obj_request));
2786 
2787 	/*
2788 	 * All we need from the object request is the original
2789 	 * request and the result of the STAT op.  Grab those, then
2790 	 * we're done with the request.
2791 	 */
2792 	orig_request = obj_request->obj_request;
2793 	obj_request->obj_request = NULL;
2794 	rbd_obj_request_put(orig_request);
2795 	rbd_assert(orig_request);
2796 	rbd_assert(orig_request->img_request);
2797 
2798 	result = obj_request->result;
2799 	obj_request->result = 0;
2800 
2801 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2802 		obj_request, orig_request, result,
2803 		obj_request->xferred, obj_request->length);
2804 	rbd_obj_request_put(obj_request);
2805 
2806 	/*
2807 	 * If the overlap has become 0 (most likely because the
2808 	 * image has been flattened) we need to free the pages
2809 	 * and re-submit the original write request.
2810 	 */
2811 	rbd_dev = orig_request->img_request->rbd_dev;
2812 	if (!rbd_dev->parent_overlap) {
2813 		struct ceph_osd_client *osdc;
2814 
2815 		osdc = &rbd_dev->rbd_client->client->osdc;
2816 		result = rbd_obj_request_submit(osdc, orig_request);
2817 		if (!result)
2818 			return;
2819 	}
2820 
2821 	/*
2822 	 * Our only purpose here is to determine whether the object
2823 	 * exists, and we don't want to treat the non-existence as
2824 	 * an error.  If something else comes back, transfer the
2825 	 * error to the original request and complete it now.
2826 	 */
2827 	if (!result) {
2828 		obj_request_existence_set(orig_request, true);
2829 	} else if (result == -ENOENT) {
2830 		obj_request_existence_set(orig_request, false);
2831 	} else if (result) {
2832 		orig_request->result = result;
2833 		goto out;
2834 	}
2835 
2836 	/*
2837 	 * Resubmit the original request now that we have recorded
2838 	 * whether the target object exists.
2839 	 */
2840 	orig_request->result = rbd_img_obj_request_submit(orig_request);
2841 out:
2842 	if (orig_request->result)
2843 		rbd_obj_request_complete(orig_request);
2844 }
2845 
2846 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2847 {
2848 	struct rbd_obj_request *stat_request;
2849 	struct rbd_device *rbd_dev;
2850 	struct ceph_osd_client *osdc;
2851 	struct page **pages = NULL;
2852 	u32 page_count;
2853 	size_t size;
2854 	int ret;
2855 
2856 	/*
2857 	 * The response data for a STAT call consists of:
2858 	 *     le64 length;
2859 	 *     struct {
2860 	 *         le32 tv_sec;
2861 	 *         le32 tv_nsec;
2862 	 *     } mtime;
2863 	 */
2864 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2865 	page_count = (u32)calc_pages_for(0, size);
2866 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2867 	if (IS_ERR(pages))
2868 		return PTR_ERR(pages);
2869 
2870 	ret = -ENOMEM;
2871 	stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2872 							OBJ_REQUEST_PAGES);
2873 	if (!stat_request)
2874 		goto out;
2875 
2876 	rbd_obj_request_get(obj_request);
2877 	stat_request->obj_request = obj_request;
2878 	stat_request->pages = pages;
2879 	stat_request->page_count = page_count;
2880 
2881 	rbd_assert(obj_request->img_request);
2882 	rbd_dev = obj_request->img_request->rbd_dev;
2883 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2884 						   stat_request);
2885 	if (!stat_request->osd_req)
2886 		goto out;
2887 	stat_request->callback = rbd_img_obj_exists_callback;
2888 
2889 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2890 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2891 					false, false);
2892 	rbd_osd_req_format_read(stat_request);
2893 
2894 	osdc = &rbd_dev->rbd_client->client->osdc;
2895 	ret = rbd_obj_request_submit(osdc, stat_request);
2896 out:
2897 	if (ret)
2898 		rbd_obj_request_put(obj_request);
2899 
2900 	return ret;
2901 }
2902 
2903 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2904 {
2905 	struct rbd_img_request *img_request;
2906 	struct rbd_device *rbd_dev;
2907 
2908 	rbd_assert(obj_request_img_data_test(obj_request));
2909 
2910 	img_request = obj_request->img_request;
2911 	rbd_assert(img_request);
2912 	rbd_dev = img_request->rbd_dev;
2913 
2914 	/* Reads */
2915 	if (!img_request_write_test(img_request) &&
2916 	    !img_request_discard_test(img_request))
2917 		return true;
2918 
2919 	/* Non-layered writes */
2920 	if (!img_request_layered_test(img_request))
2921 		return true;
2922 
2923 	/*
2924 	 * Layered writes outside of the parent overlap range don't
2925 	 * share any data with the parent.
2926 	 */
2927 	if (!obj_request_overlaps_parent(obj_request))
2928 		return true;
2929 
2930 	/*
2931 	 * Entire-object layered writes - we will overwrite whatever
2932 	 * parent data there is anyway.
2933 	 */
2934 	if (!obj_request->offset &&
2935 	    obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2936 		return true;
2937 
2938 	/*
2939 	 * If the object is known to already exist, its parent data has
2940 	 * already been copied.
2941 	 */
2942 	if (obj_request_known_test(obj_request) &&
2943 	    obj_request_exists_test(obj_request))
2944 		return true;
2945 
2946 	return false;
2947 }
2948 
2949 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2950 {
2951 	if (img_obj_request_simple(obj_request)) {
2952 		struct rbd_device *rbd_dev;
2953 		struct ceph_osd_client *osdc;
2954 
2955 		rbd_dev = obj_request->img_request->rbd_dev;
2956 		osdc = &rbd_dev->rbd_client->client->osdc;
2957 
2958 		return rbd_obj_request_submit(osdc, obj_request);
2959 	}
2960 
2961 	/*
2962 	 * It's a layered write.  The target object might exist but
2963 	 * we may not know that yet.  If we know it doesn't exist,
2964 	 * start by reading the data for the full target object from
2965 	 * the parent so we can use it for a copyup to the target.
2966 	 */
2967 	if (obj_request_known_test(obj_request))
2968 		return rbd_img_obj_parent_read_full(obj_request);
2969 
2970 	/* We don't know whether the target exists.  Go find out. */
2971 
2972 	return rbd_img_obj_exists_submit(obj_request);
2973 }
2974 
2975 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2976 {
2977 	struct rbd_obj_request *obj_request;
2978 	struct rbd_obj_request *next_obj_request;
2979 
2980 	dout("%s: img %p\n", __func__, img_request);
2981 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2982 		int ret;
2983 
2984 		ret = rbd_img_obj_request_submit(obj_request);
2985 		if (ret)
2986 			return ret;
2987 	}
2988 
2989 	return 0;
2990 }
2991 
2992 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2993 {
2994 	struct rbd_obj_request *obj_request;
2995 	struct rbd_device *rbd_dev;
2996 	u64 obj_end;
2997 	u64 img_xferred;
2998 	int img_result;
2999 
3000 	rbd_assert(img_request_child_test(img_request));
3001 
3002 	/* First get what we need from the image request and release it */
3003 
3004 	obj_request = img_request->obj_request;
3005 	img_xferred = img_request->xferred;
3006 	img_result = img_request->result;
3007 	rbd_img_request_put(img_request);
3008 
3009 	/*
3010 	 * If the overlap has become 0 (most likely because the
3011 	 * image has been flattened) we need to re-submit the
3012 	 * original request.
3013 	 */
3014 	rbd_assert(obj_request);
3015 	rbd_assert(obj_request->img_request);
3016 	rbd_dev = obj_request->img_request->rbd_dev;
3017 	if (!rbd_dev->parent_overlap) {
3018 		struct ceph_osd_client *osdc;
3019 
3020 		osdc = &rbd_dev->rbd_client->client->osdc;
3021 		img_result = rbd_obj_request_submit(osdc, obj_request);
3022 		if (!img_result)
3023 			return;
3024 	}
3025 
3026 	obj_request->result = img_result;
3027 	if (obj_request->result)
3028 		goto out;
3029 
3030 	/*
3031 	 * We need to zero anything beyond the parent overlap
3032 	 * boundary.  Since rbd_img_obj_request_read_callback()
3033 	 * will zero anything beyond the end of a short read, an
3034 	 * easy way to do this is to pretend the data from the
3035 	 * parent came up short--ending at the overlap boundary.
3036 	 */
3037 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3038 	obj_end = obj_request->img_offset + obj_request->length;
3039 	if (obj_end > rbd_dev->parent_overlap) {
3040 		u64 xferred = 0;
3041 
3042 		if (obj_request->img_offset < rbd_dev->parent_overlap)
3043 			xferred = rbd_dev->parent_overlap -
3044 					obj_request->img_offset;
3045 
3046 		obj_request->xferred = min(img_xferred, xferred);
3047 	} else {
3048 		obj_request->xferred = img_xferred;
3049 	}
3050 out:
3051 	rbd_img_obj_request_read_callback(obj_request);
3052 	rbd_obj_request_complete(obj_request);
3053 }
3054 
3055 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3056 {
3057 	struct rbd_img_request *img_request;
3058 	int result;
3059 
3060 	rbd_assert(obj_request_img_data_test(obj_request));
3061 	rbd_assert(obj_request->img_request != NULL);
3062 	rbd_assert(obj_request->result == (s32) -ENOENT);
3063 	rbd_assert(obj_request_type_valid(obj_request->type));
3064 
3065 	/* rbd_read_finish(obj_request, obj_request->length); */
3066 	img_request = rbd_parent_request_create(obj_request,
3067 						obj_request->img_offset,
3068 						obj_request->length);
3069 	result = -ENOMEM;
3070 	if (!img_request)
3071 		goto out_err;
3072 
3073 	if (obj_request->type == OBJ_REQUEST_BIO)
3074 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3075 						obj_request->bio_list);
3076 	else
3077 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3078 						obj_request->pages);
3079 	if (result)
3080 		goto out_err;
3081 
3082 	img_request->callback = rbd_img_parent_read_callback;
3083 	result = rbd_img_request_submit(img_request);
3084 	if (result)
3085 		goto out_err;
3086 
3087 	return;
3088 out_err:
3089 	if (img_request)
3090 		rbd_img_request_put(img_request);
3091 	obj_request->result = result;
3092 	obj_request->xferred = 0;
3093 	obj_request_done_set(obj_request);
3094 }
3095 
3096 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3097 {
3098 	struct rbd_obj_request *obj_request;
3099 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3100 	int ret;
3101 
3102 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3103 							OBJ_REQUEST_NODATA);
3104 	if (!obj_request)
3105 		return -ENOMEM;
3106 
3107 	ret = -ENOMEM;
3108 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3109 						  obj_request);
3110 	if (!obj_request->osd_req)
3111 		goto out;
3112 
3113 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3114 					notify_id, 0, 0);
3115 	rbd_osd_req_format_read(obj_request);
3116 
3117 	ret = rbd_obj_request_submit(osdc, obj_request);
3118 	if (ret)
3119 		goto out;
3120 	ret = rbd_obj_request_wait(obj_request);
3121 out:
3122 	rbd_obj_request_put(obj_request);
3123 
3124 	return ret;
3125 }
3126 
3127 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3128 {
3129 	struct rbd_device *rbd_dev = (struct rbd_device *)data;
3130 	int ret;
3131 
3132 	if (!rbd_dev)
3133 		return;
3134 
3135 	dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3136 		rbd_dev->header_name, (unsigned long long)notify_id,
3137 		(unsigned int)opcode);
3138 
3139 	/*
3140 	 * Until adequate refresh error handling is in place, there is
3141 	 * not much we can do here, except warn.
3142 	 *
3143 	 * See http://tracker.ceph.com/issues/5040
3144 	 */
3145 	ret = rbd_dev_refresh(rbd_dev);
3146 	if (ret)
3147 		rbd_warn(rbd_dev, "refresh failed: %d", ret);
3148 
3149 	ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3150 	if (ret)
3151 		rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3152 }
3153 
3154 /*
3155  * Send a (un)watch request and wait for the ack.  Return a request
3156  * with a ref held on success or error.
3157  */
3158 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3159 						struct rbd_device *rbd_dev,
3160 						bool watch)
3161 {
3162 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3163 	struct ceph_options *opts = osdc->client->options;
3164 	struct rbd_obj_request *obj_request;
3165 	int ret;
3166 
3167 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3168 					     OBJ_REQUEST_NODATA);
3169 	if (!obj_request)
3170 		return ERR_PTR(-ENOMEM);
3171 
3172 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3173 						  obj_request);
3174 	if (!obj_request->osd_req) {
3175 		ret = -ENOMEM;
3176 		goto out;
3177 	}
3178 
3179 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3180 			      rbd_dev->watch_event->cookie, 0, watch);
3181 	rbd_osd_req_format_write(obj_request);
3182 
3183 	if (watch)
3184 		ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3185 
3186 	ret = rbd_obj_request_submit(osdc, obj_request);
3187 	if (ret)
3188 		goto out;
3189 
3190 	ret = rbd_obj_request_wait_timeout(obj_request, opts->mount_timeout);
3191 	if (ret)
3192 		goto out;
3193 
3194 	ret = obj_request->result;
3195 	if (ret) {
3196 		if (watch)
3197 			rbd_obj_request_end(obj_request);
3198 		goto out;
3199 	}
3200 
3201 	return obj_request;
3202 
3203 out:
3204 	rbd_obj_request_put(obj_request);
3205 	return ERR_PTR(ret);
3206 }
3207 
3208 /*
3209  * Initiate a watch request, synchronously.
3210  */
3211 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3212 {
3213 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3214 	struct rbd_obj_request *obj_request;
3215 	int ret;
3216 
3217 	rbd_assert(!rbd_dev->watch_event);
3218 	rbd_assert(!rbd_dev->watch_request);
3219 
3220 	ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3221 				     &rbd_dev->watch_event);
3222 	if (ret < 0)
3223 		return ret;
3224 
3225 	obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3226 	if (IS_ERR(obj_request)) {
3227 		ceph_osdc_cancel_event(rbd_dev->watch_event);
3228 		rbd_dev->watch_event = NULL;
3229 		return PTR_ERR(obj_request);
3230 	}
3231 
3232 	/*
3233 	 * A watch request is set to linger, so the underlying osd
3234 	 * request won't go away until we unregister it.  We retain
3235 	 * a pointer to the object request during that time (in
3236 	 * rbd_dev->watch_request), so we'll keep a reference to it.
3237 	 * We'll drop that reference after we've unregistered it in
3238 	 * rbd_dev_header_unwatch_sync().
3239 	 */
3240 	rbd_dev->watch_request = obj_request;
3241 
3242 	return 0;
3243 }
3244 
3245 /*
3246  * Tear down a watch request, synchronously.
3247  */
3248 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3249 {
3250 	struct rbd_obj_request *obj_request;
3251 
3252 	rbd_assert(rbd_dev->watch_event);
3253 	rbd_assert(rbd_dev->watch_request);
3254 
3255 	rbd_obj_request_end(rbd_dev->watch_request);
3256 	rbd_obj_request_put(rbd_dev->watch_request);
3257 	rbd_dev->watch_request = NULL;
3258 
3259 	obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3260 	if (!IS_ERR(obj_request))
3261 		rbd_obj_request_put(obj_request);
3262 	else
3263 		rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3264 			 PTR_ERR(obj_request));
3265 
3266 	ceph_osdc_cancel_event(rbd_dev->watch_event);
3267 	rbd_dev->watch_event = NULL;
3268 }
3269 
3270 /*
3271  * Synchronous osd object method call.  Returns the number of bytes
3272  * returned in the outbound buffer, or a negative error code.
3273  */
3274 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3275 			     const char *object_name,
3276 			     const char *class_name,
3277 			     const char *method_name,
3278 			     const void *outbound,
3279 			     size_t outbound_size,
3280 			     void *inbound,
3281 			     size_t inbound_size)
3282 {
3283 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3284 	struct rbd_obj_request *obj_request;
3285 	struct page **pages;
3286 	u32 page_count;
3287 	int ret;
3288 
3289 	/*
3290 	 * Method calls are ultimately read operations.  The result
3291 	 * should placed into the inbound buffer provided.  They
3292 	 * also supply outbound data--parameters for the object
3293 	 * method.  Currently if this is present it will be a
3294 	 * snapshot id.
3295 	 */
3296 	page_count = (u32)calc_pages_for(0, inbound_size);
3297 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3298 	if (IS_ERR(pages))
3299 		return PTR_ERR(pages);
3300 
3301 	ret = -ENOMEM;
3302 	obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3303 							OBJ_REQUEST_PAGES);
3304 	if (!obj_request)
3305 		goto out;
3306 
3307 	obj_request->pages = pages;
3308 	obj_request->page_count = page_count;
3309 
3310 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3311 						  obj_request);
3312 	if (!obj_request->osd_req)
3313 		goto out;
3314 
3315 	osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3316 					class_name, method_name);
3317 	if (outbound_size) {
3318 		struct ceph_pagelist *pagelist;
3319 
3320 		pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3321 		if (!pagelist)
3322 			goto out;
3323 
3324 		ceph_pagelist_init(pagelist);
3325 		ceph_pagelist_append(pagelist, outbound, outbound_size);
3326 		osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3327 						pagelist);
3328 	}
3329 	osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3330 					obj_request->pages, inbound_size,
3331 					0, false, false);
3332 	rbd_osd_req_format_read(obj_request);
3333 
3334 	ret = rbd_obj_request_submit(osdc, obj_request);
3335 	if (ret)
3336 		goto out;
3337 	ret = rbd_obj_request_wait(obj_request);
3338 	if (ret)
3339 		goto out;
3340 
3341 	ret = obj_request->result;
3342 	if (ret < 0)
3343 		goto out;
3344 
3345 	rbd_assert(obj_request->xferred < (u64)INT_MAX);
3346 	ret = (int)obj_request->xferred;
3347 	ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3348 out:
3349 	if (obj_request)
3350 		rbd_obj_request_put(obj_request);
3351 	else
3352 		ceph_release_page_vector(pages, page_count);
3353 
3354 	return ret;
3355 }
3356 
3357 static void rbd_queue_workfn(struct work_struct *work)
3358 {
3359 	struct request *rq = blk_mq_rq_from_pdu(work);
3360 	struct rbd_device *rbd_dev = rq->q->queuedata;
3361 	struct rbd_img_request *img_request;
3362 	struct ceph_snap_context *snapc = NULL;
3363 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3364 	u64 length = blk_rq_bytes(rq);
3365 	enum obj_operation_type op_type;
3366 	u64 mapping_size;
3367 	int result;
3368 
3369 	if (rq->cmd_type != REQ_TYPE_FS) {
3370 		dout("%s: non-fs request type %d\n", __func__,
3371 			(int) rq->cmd_type);
3372 		result = -EIO;
3373 		goto err;
3374 	}
3375 
3376 	if (rq->cmd_flags & REQ_DISCARD)
3377 		op_type = OBJ_OP_DISCARD;
3378 	else if (rq->cmd_flags & REQ_WRITE)
3379 		op_type = OBJ_OP_WRITE;
3380 	else
3381 		op_type = OBJ_OP_READ;
3382 
3383 	/* Ignore/skip any zero-length requests */
3384 
3385 	if (!length) {
3386 		dout("%s: zero-length request\n", __func__);
3387 		result = 0;
3388 		goto err_rq;
3389 	}
3390 
3391 	/* Only reads are allowed to a read-only device */
3392 
3393 	if (op_type != OBJ_OP_READ) {
3394 		if (rbd_dev->mapping.read_only) {
3395 			result = -EROFS;
3396 			goto err_rq;
3397 		}
3398 		rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3399 	}
3400 
3401 	/*
3402 	 * Quit early if the mapped snapshot no longer exists.  It's
3403 	 * still possible the snapshot will have disappeared by the
3404 	 * time our request arrives at the osd, but there's no sense in
3405 	 * sending it if we already know.
3406 	 */
3407 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3408 		dout("request for non-existent snapshot");
3409 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3410 		result = -ENXIO;
3411 		goto err_rq;
3412 	}
3413 
3414 	if (offset && length > U64_MAX - offset + 1) {
3415 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3416 			 length);
3417 		result = -EINVAL;
3418 		goto err_rq;	/* Shouldn't happen */
3419 	}
3420 
3421 	blk_mq_start_request(rq);
3422 
3423 	down_read(&rbd_dev->header_rwsem);
3424 	mapping_size = rbd_dev->mapping.size;
3425 	if (op_type != OBJ_OP_READ) {
3426 		snapc = rbd_dev->header.snapc;
3427 		ceph_get_snap_context(snapc);
3428 	}
3429 	up_read(&rbd_dev->header_rwsem);
3430 
3431 	if (offset + length > mapping_size) {
3432 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3433 			 length, mapping_size);
3434 		result = -EIO;
3435 		goto err_rq;
3436 	}
3437 
3438 	img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3439 					     snapc);
3440 	if (!img_request) {
3441 		result = -ENOMEM;
3442 		goto err_rq;
3443 	}
3444 	img_request->rq = rq;
3445 
3446 	if (op_type == OBJ_OP_DISCARD)
3447 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3448 					      NULL);
3449 	else
3450 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3451 					      rq->bio);
3452 	if (result)
3453 		goto err_img_request;
3454 
3455 	result = rbd_img_request_submit(img_request);
3456 	if (result)
3457 		goto err_img_request;
3458 
3459 	return;
3460 
3461 err_img_request:
3462 	rbd_img_request_put(img_request);
3463 err_rq:
3464 	if (result)
3465 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3466 			 obj_op_name(op_type), length, offset, result);
3467 	ceph_put_snap_context(snapc);
3468 err:
3469 	blk_mq_end_request(rq, result);
3470 }
3471 
3472 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3473 		const struct blk_mq_queue_data *bd)
3474 {
3475 	struct request *rq = bd->rq;
3476 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3477 
3478 	queue_work(rbd_wq, work);
3479 	return BLK_MQ_RQ_QUEUE_OK;
3480 }
3481 
3482 static void rbd_free_disk(struct rbd_device *rbd_dev)
3483 {
3484 	struct gendisk *disk = rbd_dev->disk;
3485 
3486 	if (!disk)
3487 		return;
3488 
3489 	rbd_dev->disk = NULL;
3490 	if (disk->flags & GENHD_FL_UP) {
3491 		del_gendisk(disk);
3492 		if (disk->queue)
3493 			blk_cleanup_queue(disk->queue);
3494 		blk_mq_free_tag_set(&rbd_dev->tag_set);
3495 	}
3496 	put_disk(disk);
3497 }
3498 
3499 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3500 				const char *object_name,
3501 				u64 offset, u64 length, void *buf)
3502 
3503 {
3504 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3505 	struct rbd_obj_request *obj_request;
3506 	struct page **pages = NULL;
3507 	u32 page_count;
3508 	size_t size;
3509 	int ret;
3510 
3511 	page_count = (u32) calc_pages_for(offset, length);
3512 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3513 	if (IS_ERR(pages))
3514 		return PTR_ERR(pages);
3515 
3516 	ret = -ENOMEM;
3517 	obj_request = rbd_obj_request_create(object_name, offset, length,
3518 							OBJ_REQUEST_PAGES);
3519 	if (!obj_request)
3520 		goto out;
3521 
3522 	obj_request->pages = pages;
3523 	obj_request->page_count = page_count;
3524 
3525 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3526 						  obj_request);
3527 	if (!obj_request->osd_req)
3528 		goto out;
3529 
3530 	osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3531 					offset, length, 0, 0);
3532 	osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3533 					obj_request->pages,
3534 					obj_request->length,
3535 					obj_request->offset & ~PAGE_MASK,
3536 					false, false);
3537 	rbd_osd_req_format_read(obj_request);
3538 
3539 	ret = rbd_obj_request_submit(osdc, obj_request);
3540 	if (ret)
3541 		goto out;
3542 	ret = rbd_obj_request_wait(obj_request);
3543 	if (ret)
3544 		goto out;
3545 
3546 	ret = obj_request->result;
3547 	if (ret < 0)
3548 		goto out;
3549 
3550 	rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3551 	size = (size_t) obj_request->xferred;
3552 	ceph_copy_from_page_vector(pages, buf, 0, size);
3553 	rbd_assert(size <= (size_t)INT_MAX);
3554 	ret = (int)size;
3555 out:
3556 	if (obj_request)
3557 		rbd_obj_request_put(obj_request);
3558 	else
3559 		ceph_release_page_vector(pages, page_count);
3560 
3561 	return ret;
3562 }
3563 
3564 /*
3565  * Read the complete header for the given rbd device.  On successful
3566  * return, the rbd_dev->header field will contain up-to-date
3567  * information about the image.
3568  */
3569 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3570 {
3571 	struct rbd_image_header_ondisk *ondisk = NULL;
3572 	u32 snap_count = 0;
3573 	u64 names_size = 0;
3574 	u32 want_count;
3575 	int ret;
3576 
3577 	/*
3578 	 * The complete header will include an array of its 64-bit
3579 	 * snapshot ids, followed by the names of those snapshots as
3580 	 * a contiguous block of NUL-terminated strings.  Note that
3581 	 * the number of snapshots could change by the time we read
3582 	 * it in, in which case we re-read it.
3583 	 */
3584 	do {
3585 		size_t size;
3586 
3587 		kfree(ondisk);
3588 
3589 		size = sizeof (*ondisk);
3590 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3591 		size += names_size;
3592 		ondisk = kmalloc(size, GFP_KERNEL);
3593 		if (!ondisk)
3594 			return -ENOMEM;
3595 
3596 		ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3597 				       0, size, ondisk);
3598 		if (ret < 0)
3599 			goto out;
3600 		if ((size_t)ret < size) {
3601 			ret = -ENXIO;
3602 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3603 				size, ret);
3604 			goto out;
3605 		}
3606 		if (!rbd_dev_ondisk_valid(ondisk)) {
3607 			ret = -ENXIO;
3608 			rbd_warn(rbd_dev, "invalid header");
3609 			goto out;
3610 		}
3611 
3612 		names_size = le64_to_cpu(ondisk->snap_names_len);
3613 		want_count = snap_count;
3614 		snap_count = le32_to_cpu(ondisk->snap_count);
3615 	} while (snap_count != want_count);
3616 
3617 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3618 out:
3619 	kfree(ondisk);
3620 
3621 	return ret;
3622 }
3623 
3624 /*
3625  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3626  * has disappeared from the (just updated) snapshot context.
3627  */
3628 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3629 {
3630 	u64 snap_id;
3631 
3632 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3633 		return;
3634 
3635 	snap_id = rbd_dev->spec->snap_id;
3636 	if (snap_id == CEPH_NOSNAP)
3637 		return;
3638 
3639 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3640 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3641 }
3642 
3643 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3644 {
3645 	sector_t size;
3646 	bool removing;
3647 
3648 	/*
3649 	 * Don't hold the lock while doing disk operations,
3650 	 * or lock ordering will conflict with the bdev mutex via:
3651 	 * rbd_add() -> blkdev_get() -> rbd_open()
3652 	 */
3653 	spin_lock_irq(&rbd_dev->lock);
3654 	removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3655 	spin_unlock_irq(&rbd_dev->lock);
3656 	/*
3657 	 * If the device is being removed, rbd_dev->disk has
3658 	 * been destroyed, so don't try to update its size
3659 	 */
3660 	if (!removing) {
3661 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3662 		dout("setting size to %llu sectors", (unsigned long long)size);
3663 		set_capacity(rbd_dev->disk, size);
3664 		revalidate_disk(rbd_dev->disk);
3665 	}
3666 }
3667 
3668 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3669 {
3670 	u64 mapping_size;
3671 	int ret;
3672 
3673 	down_write(&rbd_dev->header_rwsem);
3674 	mapping_size = rbd_dev->mapping.size;
3675 
3676 	ret = rbd_dev_header_info(rbd_dev);
3677 	if (ret)
3678 		goto out;
3679 
3680 	/*
3681 	 * If there is a parent, see if it has disappeared due to the
3682 	 * mapped image getting flattened.
3683 	 */
3684 	if (rbd_dev->parent) {
3685 		ret = rbd_dev_v2_parent_info(rbd_dev);
3686 		if (ret)
3687 			goto out;
3688 	}
3689 
3690 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3691 		rbd_dev->mapping.size = rbd_dev->header.image_size;
3692 	} else {
3693 		/* validate mapped snapshot's EXISTS flag */
3694 		rbd_exists_validate(rbd_dev);
3695 	}
3696 
3697 out:
3698 	up_write(&rbd_dev->header_rwsem);
3699 	if (!ret && mapping_size != rbd_dev->mapping.size)
3700 		rbd_dev_update_size(rbd_dev);
3701 
3702 	return ret;
3703 }
3704 
3705 static int rbd_init_request(void *data, struct request *rq,
3706 		unsigned int hctx_idx, unsigned int request_idx,
3707 		unsigned int numa_node)
3708 {
3709 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3710 
3711 	INIT_WORK(work, rbd_queue_workfn);
3712 	return 0;
3713 }
3714 
3715 static struct blk_mq_ops rbd_mq_ops = {
3716 	.queue_rq	= rbd_queue_rq,
3717 	.map_queue	= blk_mq_map_queue,
3718 	.init_request	= rbd_init_request,
3719 };
3720 
3721 static int rbd_init_disk(struct rbd_device *rbd_dev)
3722 {
3723 	struct gendisk *disk;
3724 	struct request_queue *q;
3725 	u64 segment_size;
3726 	int err;
3727 
3728 	/* create gendisk info */
3729 	disk = alloc_disk(single_major ?
3730 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3731 			  RBD_MINORS_PER_MAJOR);
3732 	if (!disk)
3733 		return -ENOMEM;
3734 
3735 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3736 		 rbd_dev->dev_id);
3737 	disk->major = rbd_dev->major;
3738 	disk->first_minor = rbd_dev->minor;
3739 	if (single_major)
3740 		disk->flags |= GENHD_FL_EXT_DEVT;
3741 	disk->fops = &rbd_bd_ops;
3742 	disk->private_data = rbd_dev;
3743 
3744 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3745 	rbd_dev->tag_set.ops = &rbd_mq_ops;
3746 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3747 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3748 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3749 	rbd_dev->tag_set.nr_hw_queues = 1;
3750 	rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3751 
3752 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3753 	if (err)
3754 		goto out_disk;
3755 
3756 	q = blk_mq_init_queue(&rbd_dev->tag_set);
3757 	if (IS_ERR(q)) {
3758 		err = PTR_ERR(q);
3759 		goto out_tag_set;
3760 	}
3761 
3762 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3763 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3764 
3765 	/* set io sizes to object size */
3766 	segment_size = rbd_obj_bytes(&rbd_dev->header);
3767 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3768 	q->limits.max_sectors = queue_max_hw_sectors(q);
3769 	blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
3770 	blk_queue_max_segment_size(q, segment_size);
3771 	blk_queue_io_min(q, segment_size);
3772 	blk_queue_io_opt(q, segment_size);
3773 
3774 	/* enable the discard support */
3775 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3776 	q->limits.discard_granularity = segment_size;
3777 	q->limits.discard_alignment = segment_size;
3778 	blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
3779 	q->limits.discard_zeroes_data = 1;
3780 
3781 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
3782 		q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES;
3783 
3784 	disk->queue = q;
3785 
3786 	q->queuedata = rbd_dev;
3787 
3788 	rbd_dev->disk = disk;
3789 
3790 	return 0;
3791 out_tag_set:
3792 	blk_mq_free_tag_set(&rbd_dev->tag_set);
3793 out_disk:
3794 	put_disk(disk);
3795 	return err;
3796 }
3797 
3798 /*
3799   sysfs
3800 */
3801 
3802 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3803 {
3804 	return container_of(dev, struct rbd_device, dev);
3805 }
3806 
3807 static ssize_t rbd_size_show(struct device *dev,
3808 			     struct device_attribute *attr, char *buf)
3809 {
3810 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3811 
3812 	return sprintf(buf, "%llu\n",
3813 		(unsigned long long)rbd_dev->mapping.size);
3814 }
3815 
3816 /*
3817  * Note this shows the features for whatever's mapped, which is not
3818  * necessarily the base image.
3819  */
3820 static ssize_t rbd_features_show(struct device *dev,
3821 			     struct device_attribute *attr, char *buf)
3822 {
3823 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3824 
3825 	return sprintf(buf, "0x%016llx\n",
3826 			(unsigned long long)rbd_dev->mapping.features);
3827 }
3828 
3829 static ssize_t rbd_major_show(struct device *dev,
3830 			      struct device_attribute *attr, char *buf)
3831 {
3832 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3833 
3834 	if (rbd_dev->major)
3835 		return sprintf(buf, "%d\n", rbd_dev->major);
3836 
3837 	return sprintf(buf, "(none)\n");
3838 }
3839 
3840 static ssize_t rbd_minor_show(struct device *dev,
3841 			      struct device_attribute *attr, char *buf)
3842 {
3843 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3844 
3845 	return sprintf(buf, "%d\n", rbd_dev->minor);
3846 }
3847 
3848 static ssize_t rbd_client_id_show(struct device *dev,
3849 				  struct device_attribute *attr, char *buf)
3850 {
3851 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3852 
3853 	return sprintf(buf, "client%lld\n",
3854 			ceph_client_id(rbd_dev->rbd_client->client));
3855 }
3856 
3857 static ssize_t rbd_pool_show(struct device *dev,
3858 			     struct device_attribute *attr, char *buf)
3859 {
3860 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3861 
3862 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3863 }
3864 
3865 static ssize_t rbd_pool_id_show(struct device *dev,
3866 			     struct device_attribute *attr, char *buf)
3867 {
3868 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3869 
3870 	return sprintf(buf, "%llu\n",
3871 			(unsigned long long) rbd_dev->spec->pool_id);
3872 }
3873 
3874 static ssize_t rbd_name_show(struct device *dev,
3875 			     struct device_attribute *attr, char *buf)
3876 {
3877 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3878 
3879 	if (rbd_dev->spec->image_name)
3880 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3881 
3882 	return sprintf(buf, "(unknown)\n");
3883 }
3884 
3885 static ssize_t rbd_image_id_show(struct device *dev,
3886 			     struct device_attribute *attr, char *buf)
3887 {
3888 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3889 
3890 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3891 }
3892 
3893 /*
3894  * Shows the name of the currently-mapped snapshot (or
3895  * RBD_SNAP_HEAD_NAME for the base image).
3896  */
3897 static ssize_t rbd_snap_show(struct device *dev,
3898 			     struct device_attribute *attr,
3899 			     char *buf)
3900 {
3901 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3902 
3903 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3904 }
3905 
3906 /*
3907  * For a v2 image, shows the chain of parent images, separated by empty
3908  * lines.  For v1 images or if there is no parent, shows "(no parent
3909  * image)".
3910  */
3911 static ssize_t rbd_parent_show(struct device *dev,
3912 			       struct device_attribute *attr,
3913 			       char *buf)
3914 {
3915 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3916 	ssize_t count = 0;
3917 
3918 	if (!rbd_dev->parent)
3919 		return sprintf(buf, "(no parent image)\n");
3920 
3921 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3922 		struct rbd_spec *spec = rbd_dev->parent_spec;
3923 
3924 		count += sprintf(&buf[count], "%s"
3925 			    "pool_id %llu\npool_name %s\n"
3926 			    "image_id %s\nimage_name %s\n"
3927 			    "snap_id %llu\nsnap_name %s\n"
3928 			    "overlap %llu\n",
3929 			    !count ? "" : "\n", /* first? */
3930 			    spec->pool_id, spec->pool_name,
3931 			    spec->image_id, spec->image_name ?: "(unknown)",
3932 			    spec->snap_id, spec->snap_name,
3933 			    rbd_dev->parent_overlap);
3934 	}
3935 
3936 	return count;
3937 }
3938 
3939 static ssize_t rbd_image_refresh(struct device *dev,
3940 				 struct device_attribute *attr,
3941 				 const char *buf,
3942 				 size_t size)
3943 {
3944 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3945 	int ret;
3946 
3947 	ret = rbd_dev_refresh(rbd_dev);
3948 	if (ret)
3949 		return ret;
3950 
3951 	return size;
3952 }
3953 
3954 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3955 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3956 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3957 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3958 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3959 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3960 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3961 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3962 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3963 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3964 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3965 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3966 
3967 static struct attribute *rbd_attrs[] = {
3968 	&dev_attr_size.attr,
3969 	&dev_attr_features.attr,
3970 	&dev_attr_major.attr,
3971 	&dev_attr_minor.attr,
3972 	&dev_attr_client_id.attr,
3973 	&dev_attr_pool.attr,
3974 	&dev_attr_pool_id.attr,
3975 	&dev_attr_name.attr,
3976 	&dev_attr_image_id.attr,
3977 	&dev_attr_current_snap.attr,
3978 	&dev_attr_parent.attr,
3979 	&dev_attr_refresh.attr,
3980 	NULL
3981 };
3982 
3983 static struct attribute_group rbd_attr_group = {
3984 	.attrs = rbd_attrs,
3985 };
3986 
3987 static const struct attribute_group *rbd_attr_groups[] = {
3988 	&rbd_attr_group,
3989 	NULL
3990 };
3991 
3992 static void rbd_dev_release(struct device *dev);
3993 
3994 static struct device_type rbd_device_type = {
3995 	.name		= "rbd",
3996 	.groups		= rbd_attr_groups,
3997 	.release	= rbd_dev_release,
3998 };
3999 
4000 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4001 {
4002 	kref_get(&spec->kref);
4003 
4004 	return spec;
4005 }
4006 
4007 static void rbd_spec_free(struct kref *kref);
4008 static void rbd_spec_put(struct rbd_spec *spec)
4009 {
4010 	if (spec)
4011 		kref_put(&spec->kref, rbd_spec_free);
4012 }
4013 
4014 static struct rbd_spec *rbd_spec_alloc(void)
4015 {
4016 	struct rbd_spec *spec;
4017 
4018 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4019 	if (!spec)
4020 		return NULL;
4021 
4022 	spec->pool_id = CEPH_NOPOOL;
4023 	spec->snap_id = CEPH_NOSNAP;
4024 	kref_init(&spec->kref);
4025 
4026 	return spec;
4027 }
4028 
4029 static void rbd_spec_free(struct kref *kref)
4030 {
4031 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4032 
4033 	kfree(spec->pool_name);
4034 	kfree(spec->image_id);
4035 	kfree(spec->image_name);
4036 	kfree(spec->snap_name);
4037 	kfree(spec);
4038 }
4039 
4040 static void rbd_dev_release(struct device *dev)
4041 {
4042 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4043 	bool need_put = !!rbd_dev->opts;
4044 
4045 	rbd_put_client(rbd_dev->rbd_client);
4046 	rbd_spec_put(rbd_dev->spec);
4047 	kfree(rbd_dev->opts);
4048 	kfree(rbd_dev);
4049 
4050 	/*
4051 	 * This is racy, but way better than putting module outside of
4052 	 * the release callback.  The race window is pretty small, so
4053 	 * doing something similar to dm (dm-builtin.c) is overkill.
4054 	 */
4055 	if (need_put)
4056 		module_put(THIS_MODULE);
4057 }
4058 
4059 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4060 					 struct rbd_spec *spec,
4061 					 struct rbd_options *opts)
4062 {
4063 	struct rbd_device *rbd_dev;
4064 
4065 	rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4066 	if (!rbd_dev)
4067 		return NULL;
4068 
4069 	spin_lock_init(&rbd_dev->lock);
4070 	rbd_dev->flags = 0;
4071 	atomic_set(&rbd_dev->parent_ref, 0);
4072 	INIT_LIST_HEAD(&rbd_dev->node);
4073 	init_rwsem(&rbd_dev->header_rwsem);
4074 
4075 	rbd_dev->dev.bus = &rbd_bus_type;
4076 	rbd_dev->dev.type = &rbd_device_type;
4077 	rbd_dev->dev.parent = &rbd_root_dev;
4078 	device_initialize(&rbd_dev->dev);
4079 
4080 	rbd_dev->rbd_client = rbdc;
4081 	rbd_dev->spec = spec;
4082 	rbd_dev->opts = opts;
4083 
4084 	/* Initialize the layout used for all rbd requests */
4085 
4086 	rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4087 	rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4088 	rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4089 	rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4090 
4091 	/*
4092 	 * If this is a mapping rbd_dev (as opposed to a parent one),
4093 	 * pin our module.  We have a ref from do_rbd_add(), so use
4094 	 * __module_get().
4095 	 */
4096 	if (rbd_dev->opts)
4097 		__module_get(THIS_MODULE);
4098 
4099 	return rbd_dev;
4100 }
4101 
4102 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4103 {
4104 	if (rbd_dev)
4105 		put_device(&rbd_dev->dev);
4106 }
4107 
4108 /*
4109  * Get the size and object order for an image snapshot, or if
4110  * snap_id is CEPH_NOSNAP, gets this information for the base
4111  * image.
4112  */
4113 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4114 				u8 *order, u64 *snap_size)
4115 {
4116 	__le64 snapid = cpu_to_le64(snap_id);
4117 	int ret;
4118 	struct {
4119 		u8 order;
4120 		__le64 size;
4121 	} __attribute__ ((packed)) size_buf = { 0 };
4122 
4123 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4124 				"rbd", "get_size",
4125 				&snapid, sizeof (snapid),
4126 				&size_buf, sizeof (size_buf));
4127 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4128 	if (ret < 0)
4129 		return ret;
4130 	if (ret < sizeof (size_buf))
4131 		return -ERANGE;
4132 
4133 	if (order) {
4134 		*order = size_buf.order;
4135 		dout("  order %u", (unsigned int)*order);
4136 	}
4137 	*snap_size = le64_to_cpu(size_buf.size);
4138 
4139 	dout("  snap_id 0x%016llx snap_size = %llu\n",
4140 		(unsigned long long)snap_id,
4141 		(unsigned long long)*snap_size);
4142 
4143 	return 0;
4144 }
4145 
4146 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4147 {
4148 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4149 					&rbd_dev->header.obj_order,
4150 					&rbd_dev->header.image_size);
4151 }
4152 
4153 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4154 {
4155 	void *reply_buf;
4156 	int ret;
4157 	void *p;
4158 
4159 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4160 	if (!reply_buf)
4161 		return -ENOMEM;
4162 
4163 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4164 				"rbd", "get_object_prefix", NULL, 0,
4165 				reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4166 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4167 	if (ret < 0)
4168 		goto out;
4169 
4170 	p = reply_buf;
4171 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4172 						p + ret, NULL, GFP_NOIO);
4173 	ret = 0;
4174 
4175 	if (IS_ERR(rbd_dev->header.object_prefix)) {
4176 		ret = PTR_ERR(rbd_dev->header.object_prefix);
4177 		rbd_dev->header.object_prefix = NULL;
4178 	} else {
4179 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4180 	}
4181 out:
4182 	kfree(reply_buf);
4183 
4184 	return ret;
4185 }
4186 
4187 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4188 		u64 *snap_features)
4189 {
4190 	__le64 snapid = cpu_to_le64(snap_id);
4191 	struct {
4192 		__le64 features;
4193 		__le64 incompat;
4194 	} __attribute__ ((packed)) features_buf = { 0 };
4195 	u64 incompat;
4196 	int ret;
4197 
4198 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4199 				"rbd", "get_features",
4200 				&snapid, sizeof (snapid),
4201 				&features_buf, sizeof (features_buf));
4202 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4203 	if (ret < 0)
4204 		return ret;
4205 	if (ret < sizeof (features_buf))
4206 		return -ERANGE;
4207 
4208 	incompat = le64_to_cpu(features_buf.incompat);
4209 	if (incompat & ~RBD_FEATURES_SUPPORTED)
4210 		return -ENXIO;
4211 
4212 	*snap_features = le64_to_cpu(features_buf.features);
4213 
4214 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4215 		(unsigned long long)snap_id,
4216 		(unsigned long long)*snap_features,
4217 		(unsigned long long)le64_to_cpu(features_buf.incompat));
4218 
4219 	return 0;
4220 }
4221 
4222 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4223 {
4224 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4225 						&rbd_dev->header.features);
4226 }
4227 
4228 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4229 {
4230 	struct rbd_spec *parent_spec;
4231 	size_t size;
4232 	void *reply_buf = NULL;
4233 	__le64 snapid;
4234 	void *p;
4235 	void *end;
4236 	u64 pool_id;
4237 	char *image_id;
4238 	u64 snap_id;
4239 	u64 overlap;
4240 	int ret;
4241 
4242 	parent_spec = rbd_spec_alloc();
4243 	if (!parent_spec)
4244 		return -ENOMEM;
4245 
4246 	size = sizeof (__le64) +				/* pool_id */
4247 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
4248 		sizeof (__le64) +				/* snap_id */
4249 		sizeof (__le64);				/* overlap */
4250 	reply_buf = kmalloc(size, GFP_KERNEL);
4251 	if (!reply_buf) {
4252 		ret = -ENOMEM;
4253 		goto out_err;
4254 	}
4255 
4256 	snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4257 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4258 				"rbd", "get_parent",
4259 				&snapid, sizeof (snapid),
4260 				reply_buf, size);
4261 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4262 	if (ret < 0)
4263 		goto out_err;
4264 
4265 	p = reply_buf;
4266 	end = reply_buf + ret;
4267 	ret = -ERANGE;
4268 	ceph_decode_64_safe(&p, end, pool_id, out_err);
4269 	if (pool_id == CEPH_NOPOOL) {
4270 		/*
4271 		 * Either the parent never existed, or we have
4272 		 * record of it but the image got flattened so it no
4273 		 * longer has a parent.  When the parent of a
4274 		 * layered image disappears we immediately set the
4275 		 * overlap to 0.  The effect of this is that all new
4276 		 * requests will be treated as if the image had no
4277 		 * parent.
4278 		 */
4279 		if (rbd_dev->parent_overlap) {
4280 			rbd_dev->parent_overlap = 0;
4281 			rbd_dev_parent_put(rbd_dev);
4282 			pr_info("%s: clone image has been flattened\n",
4283 				rbd_dev->disk->disk_name);
4284 		}
4285 
4286 		goto out;	/* No parent?  No problem. */
4287 	}
4288 
4289 	/* The ceph file layout needs to fit pool id in 32 bits */
4290 
4291 	ret = -EIO;
4292 	if (pool_id > (u64)U32_MAX) {
4293 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4294 			(unsigned long long)pool_id, U32_MAX);
4295 		goto out_err;
4296 	}
4297 
4298 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4299 	if (IS_ERR(image_id)) {
4300 		ret = PTR_ERR(image_id);
4301 		goto out_err;
4302 	}
4303 	ceph_decode_64_safe(&p, end, snap_id, out_err);
4304 	ceph_decode_64_safe(&p, end, overlap, out_err);
4305 
4306 	/*
4307 	 * The parent won't change (except when the clone is
4308 	 * flattened, already handled that).  So we only need to
4309 	 * record the parent spec we have not already done so.
4310 	 */
4311 	if (!rbd_dev->parent_spec) {
4312 		parent_spec->pool_id = pool_id;
4313 		parent_spec->image_id = image_id;
4314 		parent_spec->snap_id = snap_id;
4315 		rbd_dev->parent_spec = parent_spec;
4316 		parent_spec = NULL;	/* rbd_dev now owns this */
4317 	} else {
4318 		kfree(image_id);
4319 	}
4320 
4321 	/*
4322 	 * We always update the parent overlap.  If it's zero we issue
4323 	 * a warning, as we will proceed as if there was no parent.
4324 	 */
4325 	if (!overlap) {
4326 		if (parent_spec) {
4327 			/* refresh, careful to warn just once */
4328 			if (rbd_dev->parent_overlap)
4329 				rbd_warn(rbd_dev,
4330 				    "clone now standalone (overlap became 0)");
4331 		} else {
4332 			/* initial probe */
4333 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4334 		}
4335 	}
4336 	rbd_dev->parent_overlap = overlap;
4337 
4338 out:
4339 	ret = 0;
4340 out_err:
4341 	kfree(reply_buf);
4342 	rbd_spec_put(parent_spec);
4343 
4344 	return ret;
4345 }
4346 
4347 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4348 {
4349 	struct {
4350 		__le64 stripe_unit;
4351 		__le64 stripe_count;
4352 	} __attribute__ ((packed)) striping_info_buf = { 0 };
4353 	size_t size = sizeof (striping_info_buf);
4354 	void *p;
4355 	u64 obj_size;
4356 	u64 stripe_unit;
4357 	u64 stripe_count;
4358 	int ret;
4359 
4360 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4361 				"rbd", "get_stripe_unit_count", NULL, 0,
4362 				(char *)&striping_info_buf, size);
4363 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4364 	if (ret < 0)
4365 		return ret;
4366 	if (ret < size)
4367 		return -ERANGE;
4368 
4369 	/*
4370 	 * We don't actually support the "fancy striping" feature
4371 	 * (STRIPINGV2) yet, but if the striping sizes are the
4372 	 * defaults the behavior is the same as before.  So find
4373 	 * out, and only fail if the image has non-default values.
4374 	 */
4375 	ret = -EINVAL;
4376 	obj_size = (u64)1 << rbd_dev->header.obj_order;
4377 	p = &striping_info_buf;
4378 	stripe_unit = ceph_decode_64(&p);
4379 	if (stripe_unit != obj_size) {
4380 		rbd_warn(rbd_dev, "unsupported stripe unit "
4381 				"(got %llu want %llu)",
4382 				stripe_unit, obj_size);
4383 		return -EINVAL;
4384 	}
4385 	stripe_count = ceph_decode_64(&p);
4386 	if (stripe_count != 1) {
4387 		rbd_warn(rbd_dev, "unsupported stripe count "
4388 				"(got %llu want 1)", stripe_count);
4389 		return -EINVAL;
4390 	}
4391 	rbd_dev->header.stripe_unit = stripe_unit;
4392 	rbd_dev->header.stripe_count = stripe_count;
4393 
4394 	return 0;
4395 }
4396 
4397 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4398 {
4399 	size_t image_id_size;
4400 	char *image_id;
4401 	void *p;
4402 	void *end;
4403 	size_t size;
4404 	void *reply_buf = NULL;
4405 	size_t len = 0;
4406 	char *image_name = NULL;
4407 	int ret;
4408 
4409 	rbd_assert(!rbd_dev->spec->image_name);
4410 
4411 	len = strlen(rbd_dev->spec->image_id);
4412 	image_id_size = sizeof (__le32) + len;
4413 	image_id = kmalloc(image_id_size, GFP_KERNEL);
4414 	if (!image_id)
4415 		return NULL;
4416 
4417 	p = image_id;
4418 	end = image_id + image_id_size;
4419 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4420 
4421 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4422 	reply_buf = kmalloc(size, GFP_KERNEL);
4423 	if (!reply_buf)
4424 		goto out;
4425 
4426 	ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4427 				"rbd", "dir_get_name",
4428 				image_id, image_id_size,
4429 				reply_buf, size);
4430 	if (ret < 0)
4431 		goto out;
4432 	p = reply_buf;
4433 	end = reply_buf + ret;
4434 
4435 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4436 	if (IS_ERR(image_name))
4437 		image_name = NULL;
4438 	else
4439 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4440 out:
4441 	kfree(reply_buf);
4442 	kfree(image_id);
4443 
4444 	return image_name;
4445 }
4446 
4447 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4448 {
4449 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4450 	const char *snap_name;
4451 	u32 which = 0;
4452 
4453 	/* Skip over names until we find the one we are looking for */
4454 
4455 	snap_name = rbd_dev->header.snap_names;
4456 	while (which < snapc->num_snaps) {
4457 		if (!strcmp(name, snap_name))
4458 			return snapc->snaps[which];
4459 		snap_name += strlen(snap_name) + 1;
4460 		which++;
4461 	}
4462 	return CEPH_NOSNAP;
4463 }
4464 
4465 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4466 {
4467 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4468 	u32 which;
4469 	bool found = false;
4470 	u64 snap_id;
4471 
4472 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4473 		const char *snap_name;
4474 
4475 		snap_id = snapc->snaps[which];
4476 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4477 		if (IS_ERR(snap_name)) {
4478 			/* ignore no-longer existing snapshots */
4479 			if (PTR_ERR(snap_name) == -ENOENT)
4480 				continue;
4481 			else
4482 				break;
4483 		}
4484 		found = !strcmp(name, snap_name);
4485 		kfree(snap_name);
4486 	}
4487 	return found ? snap_id : CEPH_NOSNAP;
4488 }
4489 
4490 /*
4491  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4492  * no snapshot by that name is found, or if an error occurs.
4493  */
4494 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4495 {
4496 	if (rbd_dev->image_format == 1)
4497 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4498 
4499 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4500 }
4501 
4502 /*
4503  * An image being mapped will have everything but the snap id.
4504  */
4505 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4506 {
4507 	struct rbd_spec *spec = rbd_dev->spec;
4508 
4509 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4510 	rbd_assert(spec->image_id && spec->image_name);
4511 	rbd_assert(spec->snap_name);
4512 
4513 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4514 		u64 snap_id;
4515 
4516 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4517 		if (snap_id == CEPH_NOSNAP)
4518 			return -ENOENT;
4519 
4520 		spec->snap_id = snap_id;
4521 	} else {
4522 		spec->snap_id = CEPH_NOSNAP;
4523 	}
4524 
4525 	return 0;
4526 }
4527 
4528 /*
4529  * A parent image will have all ids but none of the names.
4530  *
4531  * All names in an rbd spec are dynamically allocated.  It's OK if we
4532  * can't figure out the name for an image id.
4533  */
4534 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4535 {
4536 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4537 	struct rbd_spec *spec = rbd_dev->spec;
4538 	const char *pool_name;
4539 	const char *image_name;
4540 	const char *snap_name;
4541 	int ret;
4542 
4543 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
4544 	rbd_assert(spec->image_id);
4545 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
4546 
4547 	/* Get the pool name; we have to make our own copy of this */
4548 
4549 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4550 	if (!pool_name) {
4551 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4552 		return -EIO;
4553 	}
4554 	pool_name = kstrdup(pool_name, GFP_KERNEL);
4555 	if (!pool_name)
4556 		return -ENOMEM;
4557 
4558 	/* Fetch the image name; tolerate failure here */
4559 
4560 	image_name = rbd_dev_image_name(rbd_dev);
4561 	if (!image_name)
4562 		rbd_warn(rbd_dev, "unable to get image name");
4563 
4564 	/* Fetch the snapshot name */
4565 
4566 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4567 	if (IS_ERR(snap_name)) {
4568 		ret = PTR_ERR(snap_name);
4569 		goto out_err;
4570 	}
4571 
4572 	spec->pool_name = pool_name;
4573 	spec->image_name = image_name;
4574 	spec->snap_name = snap_name;
4575 
4576 	return 0;
4577 
4578 out_err:
4579 	kfree(image_name);
4580 	kfree(pool_name);
4581 	return ret;
4582 }
4583 
4584 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4585 {
4586 	size_t size;
4587 	int ret;
4588 	void *reply_buf;
4589 	void *p;
4590 	void *end;
4591 	u64 seq;
4592 	u32 snap_count;
4593 	struct ceph_snap_context *snapc;
4594 	u32 i;
4595 
4596 	/*
4597 	 * We'll need room for the seq value (maximum snapshot id),
4598 	 * snapshot count, and array of that many snapshot ids.
4599 	 * For now we have a fixed upper limit on the number we're
4600 	 * prepared to receive.
4601 	 */
4602 	size = sizeof (__le64) + sizeof (__le32) +
4603 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4604 	reply_buf = kzalloc(size, GFP_KERNEL);
4605 	if (!reply_buf)
4606 		return -ENOMEM;
4607 
4608 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4609 				"rbd", "get_snapcontext", NULL, 0,
4610 				reply_buf, size);
4611 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4612 	if (ret < 0)
4613 		goto out;
4614 
4615 	p = reply_buf;
4616 	end = reply_buf + ret;
4617 	ret = -ERANGE;
4618 	ceph_decode_64_safe(&p, end, seq, out);
4619 	ceph_decode_32_safe(&p, end, snap_count, out);
4620 
4621 	/*
4622 	 * Make sure the reported number of snapshot ids wouldn't go
4623 	 * beyond the end of our buffer.  But before checking that,
4624 	 * make sure the computed size of the snapshot context we
4625 	 * allocate is representable in a size_t.
4626 	 */
4627 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4628 				 / sizeof (u64)) {
4629 		ret = -EINVAL;
4630 		goto out;
4631 	}
4632 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4633 		goto out;
4634 	ret = 0;
4635 
4636 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4637 	if (!snapc) {
4638 		ret = -ENOMEM;
4639 		goto out;
4640 	}
4641 	snapc->seq = seq;
4642 	for (i = 0; i < snap_count; i++)
4643 		snapc->snaps[i] = ceph_decode_64(&p);
4644 
4645 	ceph_put_snap_context(rbd_dev->header.snapc);
4646 	rbd_dev->header.snapc = snapc;
4647 
4648 	dout("  snap context seq = %llu, snap_count = %u\n",
4649 		(unsigned long long)seq, (unsigned int)snap_count);
4650 out:
4651 	kfree(reply_buf);
4652 
4653 	return ret;
4654 }
4655 
4656 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4657 					u64 snap_id)
4658 {
4659 	size_t size;
4660 	void *reply_buf;
4661 	__le64 snapid;
4662 	int ret;
4663 	void *p;
4664 	void *end;
4665 	char *snap_name;
4666 
4667 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4668 	reply_buf = kmalloc(size, GFP_KERNEL);
4669 	if (!reply_buf)
4670 		return ERR_PTR(-ENOMEM);
4671 
4672 	snapid = cpu_to_le64(snap_id);
4673 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4674 				"rbd", "get_snapshot_name",
4675 				&snapid, sizeof (snapid),
4676 				reply_buf, size);
4677 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4678 	if (ret < 0) {
4679 		snap_name = ERR_PTR(ret);
4680 		goto out;
4681 	}
4682 
4683 	p = reply_buf;
4684 	end = reply_buf + ret;
4685 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4686 	if (IS_ERR(snap_name))
4687 		goto out;
4688 
4689 	dout("  snap_id 0x%016llx snap_name = %s\n",
4690 		(unsigned long long)snap_id, snap_name);
4691 out:
4692 	kfree(reply_buf);
4693 
4694 	return snap_name;
4695 }
4696 
4697 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4698 {
4699 	bool first_time = rbd_dev->header.object_prefix == NULL;
4700 	int ret;
4701 
4702 	ret = rbd_dev_v2_image_size(rbd_dev);
4703 	if (ret)
4704 		return ret;
4705 
4706 	if (first_time) {
4707 		ret = rbd_dev_v2_header_onetime(rbd_dev);
4708 		if (ret)
4709 			return ret;
4710 	}
4711 
4712 	ret = rbd_dev_v2_snap_context(rbd_dev);
4713 	if (ret && first_time) {
4714 		kfree(rbd_dev->header.object_prefix);
4715 		rbd_dev->header.object_prefix = NULL;
4716 	}
4717 
4718 	return ret;
4719 }
4720 
4721 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4722 {
4723 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4724 
4725 	if (rbd_dev->image_format == 1)
4726 		return rbd_dev_v1_header_info(rbd_dev);
4727 
4728 	return rbd_dev_v2_header_info(rbd_dev);
4729 }
4730 
4731 /*
4732  * Get a unique rbd identifier for the given new rbd_dev, and add
4733  * the rbd_dev to the global list.
4734  */
4735 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4736 {
4737 	int new_dev_id;
4738 
4739 	new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4740 				    0, minor_to_rbd_dev_id(1 << MINORBITS),
4741 				    GFP_KERNEL);
4742 	if (new_dev_id < 0)
4743 		return new_dev_id;
4744 
4745 	rbd_dev->dev_id = new_dev_id;
4746 
4747 	spin_lock(&rbd_dev_list_lock);
4748 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
4749 	spin_unlock(&rbd_dev_list_lock);
4750 
4751 	dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4752 
4753 	return 0;
4754 }
4755 
4756 /*
4757  * Remove an rbd_dev from the global list, and record that its
4758  * identifier is no longer in use.
4759  */
4760 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4761 {
4762 	spin_lock(&rbd_dev_list_lock);
4763 	list_del_init(&rbd_dev->node);
4764 	spin_unlock(&rbd_dev_list_lock);
4765 
4766 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4767 
4768 	dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4769 }
4770 
4771 /*
4772  * Skips over white space at *buf, and updates *buf to point to the
4773  * first found non-space character (if any). Returns the length of
4774  * the token (string of non-white space characters) found.  Note
4775  * that *buf must be terminated with '\0'.
4776  */
4777 static inline size_t next_token(const char **buf)
4778 {
4779         /*
4780         * These are the characters that produce nonzero for
4781         * isspace() in the "C" and "POSIX" locales.
4782         */
4783         const char *spaces = " \f\n\r\t\v";
4784 
4785         *buf += strspn(*buf, spaces);	/* Find start of token */
4786 
4787 	return strcspn(*buf, spaces);   /* Return token length */
4788 }
4789 
4790 /*
4791  * Finds the next token in *buf, dynamically allocates a buffer big
4792  * enough to hold a copy of it, and copies the token into the new
4793  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4794  * that a duplicate buffer is created even for a zero-length token.
4795  *
4796  * Returns a pointer to the newly-allocated duplicate, or a null
4797  * pointer if memory for the duplicate was not available.  If
4798  * the lenp argument is a non-null pointer, the length of the token
4799  * (not including the '\0') is returned in *lenp.
4800  *
4801  * If successful, the *buf pointer will be updated to point beyond
4802  * the end of the found token.
4803  *
4804  * Note: uses GFP_KERNEL for allocation.
4805  */
4806 static inline char *dup_token(const char **buf, size_t *lenp)
4807 {
4808 	char *dup;
4809 	size_t len;
4810 
4811 	len = next_token(buf);
4812 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4813 	if (!dup)
4814 		return NULL;
4815 	*(dup + len) = '\0';
4816 	*buf += len;
4817 
4818 	if (lenp)
4819 		*lenp = len;
4820 
4821 	return dup;
4822 }
4823 
4824 /*
4825  * Parse the options provided for an "rbd add" (i.e., rbd image
4826  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4827  * and the data written is passed here via a NUL-terminated buffer.
4828  * Returns 0 if successful or an error code otherwise.
4829  *
4830  * The information extracted from these options is recorded in
4831  * the other parameters which return dynamically-allocated
4832  * structures:
4833  *  ceph_opts
4834  *      The address of a pointer that will refer to a ceph options
4835  *      structure.  Caller must release the returned pointer using
4836  *      ceph_destroy_options() when it is no longer needed.
4837  *  rbd_opts
4838  *	Address of an rbd options pointer.  Fully initialized by
4839  *	this function; caller must release with kfree().
4840  *  spec
4841  *	Address of an rbd image specification pointer.  Fully
4842  *	initialized by this function based on parsed options.
4843  *	Caller must release with rbd_spec_put().
4844  *
4845  * The options passed take this form:
4846  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4847  * where:
4848  *  <mon_addrs>
4849  *      A comma-separated list of one or more monitor addresses.
4850  *      A monitor address is an ip address, optionally followed
4851  *      by a port number (separated by a colon).
4852  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4853  *  <options>
4854  *      A comma-separated list of ceph and/or rbd options.
4855  *  <pool_name>
4856  *      The name of the rados pool containing the rbd image.
4857  *  <image_name>
4858  *      The name of the image in that pool to map.
4859  *  <snap_id>
4860  *      An optional snapshot id.  If provided, the mapping will
4861  *      present data from the image at the time that snapshot was
4862  *      created.  The image head is used if no snapshot id is
4863  *      provided.  Snapshot mappings are always read-only.
4864  */
4865 static int rbd_add_parse_args(const char *buf,
4866 				struct ceph_options **ceph_opts,
4867 				struct rbd_options **opts,
4868 				struct rbd_spec **rbd_spec)
4869 {
4870 	size_t len;
4871 	char *options;
4872 	const char *mon_addrs;
4873 	char *snap_name;
4874 	size_t mon_addrs_size;
4875 	struct rbd_spec *spec = NULL;
4876 	struct rbd_options *rbd_opts = NULL;
4877 	struct ceph_options *copts;
4878 	int ret;
4879 
4880 	/* The first four tokens are required */
4881 
4882 	len = next_token(&buf);
4883 	if (!len) {
4884 		rbd_warn(NULL, "no monitor address(es) provided");
4885 		return -EINVAL;
4886 	}
4887 	mon_addrs = buf;
4888 	mon_addrs_size = len + 1;
4889 	buf += len;
4890 
4891 	ret = -EINVAL;
4892 	options = dup_token(&buf, NULL);
4893 	if (!options)
4894 		return -ENOMEM;
4895 	if (!*options) {
4896 		rbd_warn(NULL, "no options provided");
4897 		goto out_err;
4898 	}
4899 
4900 	spec = rbd_spec_alloc();
4901 	if (!spec)
4902 		goto out_mem;
4903 
4904 	spec->pool_name = dup_token(&buf, NULL);
4905 	if (!spec->pool_name)
4906 		goto out_mem;
4907 	if (!*spec->pool_name) {
4908 		rbd_warn(NULL, "no pool name provided");
4909 		goto out_err;
4910 	}
4911 
4912 	spec->image_name = dup_token(&buf, NULL);
4913 	if (!spec->image_name)
4914 		goto out_mem;
4915 	if (!*spec->image_name) {
4916 		rbd_warn(NULL, "no image name provided");
4917 		goto out_err;
4918 	}
4919 
4920 	/*
4921 	 * Snapshot name is optional; default is to use "-"
4922 	 * (indicating the head/no snapshot).
4923 	 */
4924 	len = next_token(&buf);
4925 	if (!len) {
4926 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4927 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4928 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
4929 		ret = -ENAMETOOLONG;
4930 		goto out_err;
4931 	}
4932 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4933 	if (!snap_name)
4934 		goto out_mem;
4935 	*(snap_name + len) = '\0';
4936 	spec->snap_name = snap_name;
4937 
4938 	/* Initialize all rbd options to the defaults */
4939 
4940 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4941 	if (!rbd_opts)
4942 		goto out_mem;
4943 
4944 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4945 	rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
4946 
4947 	copts = ceph_parse_options(options, mon_addrs,
4948 					mon_addrs + mon_addrs_size - 1,
4949 					parse_rbd_opts_token, rbd_opts);
4950 	if (IS_ERR(copts)) {
4951 		ret = PTR_ERR(copts);
4952 		goto out_err;
4953 	}
4954 	kfree(options);
4955 
4956 	*ceph_opts = copts;
4957 	*opts = rbd_opts;
4958 	*rbd_spec = spec;
4959 
4960 	return 0;
4961 out_mem:
4962 	ret = -ENOMEM;
4963 out_err:
4964 	kfree(rbd_opts);
4965 	rbd_spec_put(spec);
4966 	kfree(options);
4967 
4968 	return ret;
4969 }
4970 
4971 /*
4972  * Return pool id (>= 0) or a negative error code.
4973  */
4974 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4975 {
4976 	struct ceph_options *opts = rbdc->client->options;
4977 	u64 newest_epoch;
4978 	int tries = 0;
4979 	int ret;
4980 
4981 again:
4982 	ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4983 	if (ret == -ENOENT && tries++ < 1) {
4984 		ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4985 					       &newest_epoch);
4986 		if (ret < 0)
4987 			return ret;
4988 
4989 		if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4990 			ceph_monc_request_next_osdmap(&rbdc->client->monc);
4991 			(void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4992 						     newest_epoch,
4993 						     opts->mount_timeout);
4994 			goto again;
4995 		} else {
4996 			/* the osdmap we have is new enough */
4997 			return -ENOENT;
4998 		}
4999 	}
5000 
5001 	return ret;
5002 }
5003 
5004 /*
5005  * An rbd format 2 image has a unique identifier, distinct from the
5006  * name given to it by the user.  Internally, that identifier is
5007  * what's used to specify the names of objects related to the image.
5008  *
5009  * A special "rbd id" object is used to map an rbd image name to its
5010  * id.  If that object doesn't exist, then there is no v2 rbd image
5011  * with the supplied name.
5012  *
5013  * This function will record the given rbd_dev's image_id field if
5014  * it can be determined, and in that case will return 0.  If any
5015  * errors occur a negative errno will be returned and the rbd_dev's
5016  * image_id field will be unchanged (and should be NULL).
5017  */
5018 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5019 {
5020 	int ret;
5021 	size_t size;
5022 	char *object_name;
5023 	void *response;
5024 	char *image_id;
5025 
5026 	/*
5027 	 * When probing a parent image, the image id is already
5028 	 * known (and the image name likely is not).  There's no
5029 	 * need to fetch the image id again in this case.  We
5030 	 * do still need to set the image format though.
5031 	 */
5032 	if (rbd_dev->spec->image_id) {
5033 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5034 
5035 		return 0;
5036 	}
5037 
5038 	/*
5039 	 * First, see if the format 2 image id file exists, and if
5040 	 * so, get the image's persistent id from it.
5041 	 */
5042 	size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5043 	object_name = kmalloc(size, GFP_NOIO);
5044 	if (!object_name)
5045 		return -ENOMEM;
5046 	sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5047 	dout("rbd id object name is %s\n", object_name);
5048 
5049 	/* Response will be an encoded string, which includes a length */
5050 
5051 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5052 	response = kzalloc(size, GFP_NOIO);
5053 	if (!response) {
5054 		ret = -ENOMEM;
5055 		goto out;
5056 	}
5057 
5058 	/* If it doesn't exist we'll assume it's a format 1 image */
5059 
5060 	ret = rbd_obj_method_sync(rbd_dev, object_name,
5061 				"rbd", "get_id", NULL, 0,
5062 				response, RBD_IMAGE_ID_LEN_MAX);
5063 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5064 	if (ret == -ENOENT) {
5065 		image_id = kstrdup("", GFP_KERNEL);
5066 		ret = image_id ? 0 : -ENOMEM;
5067 		if (!ret)
5068 			rbd_dev->image_format = 1;
5069 	} else if (ret >= 0) {
5070 		void *p = response;
5071 
5072 		image_id = ceph_extract_encoded_string(&p, p + ret,
5073 						NULL, GFP_NOIO);
5074 		ret = PTR_ERR_OR_ZERO(image_id);
5075 		if (!ret)
5076 			rbd_dev->image_format = 2;
5077 	}
5078 
5079 	if (!ret) {
5080 		rbd_dev->spec->image_id = image_id;
5081 		dout("image_id is %s\n", image_id);
5082 	}
5083 out:
5084 	kfree(response);
5085 	kfree(object_name);
5086 
5087 	return ret;
5088 }
5089 
5090 /*
5091  * Undo whatever state changes are made by v1 or v2 header info
5092  * call.
5093  */
5094 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5095 {
5096 	struct rbd_image_header	*header;
5097 
5098 	rbd_dev_parent_put(rbd_dev);
5099 
5100 	/* Free dynamic fields from the header, then zero it out */
5101 
5102 	header = &rbd_dev->header;
5103 	ceph_put_snap_context(header->snapc);
5104 	kfree(header->snap_sizes);
5105 	kfree(header->snap_names);
5106 	kfree(header->object_prefix);
5107 	memset(header, 0, sizeof (*header));
5108 }
5109 
5110 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5111 {
5112 	int ret;
5113 
5114 	ret = rbd_dev_v2_object_prefix(rbd_dev);
5115 	if (ret)
5116 		goto out_err;
5117 
5118 	/*
5119 	 * Get the and check features for the image.  Currently the
5120 	 * features are assumed to never change.
5121 	 */
5122 	ret = rbd_dev_v2_features(rbd_dev);
5123 	if (ret)
5124 		goto out_err;
5125 
5126 	/* If the image supports fancy striping, get its parameters */
5127 
5128 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5129 		ret = rbd_dev_v2_striping_info(rbd_dev);
5130 		if (ret < 0)
5131 			goto out_err;
5132 	}
5133 	/* No support for crypto and compression type format 2 images */
5134 
5135 	return 0;
5136 out_err:
5137 	rbd_dev->header.features = 0;
5138 	kfree(rbd_dev->header.object_prefix);
5139 	rbd_dev->header.object_prefix = NULL;
5140 
5141 	return ret;
5142 }
5143 
5144 /*
5145  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5146  * rbd_dev_image_probe() recursion depth, which means it's also the
5147  * length of the already discovered part of the parent chain.
5148  */
5149 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5150 {
5151 	struct rbd_device *parent = NULL;
5152 	int ret;
5153 
5154 	if (!rbd_dev->parent_spec)
5155 		return 0;
5156 
5157 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5158 		pr_info("parent chain is too long (%d)\n", depth);
5159 		ret = -EINVAL;
5160 		goto out_err;
5161 	}
5162 
5163 	parent = rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec,
5164 				NULL);
5165 	if (!parent) {
5166 		ret = -ENOMEM;
5167 		goto out_err;
5168 	}
5169 
5170 	/*
5171 	 * Images related by parent/child relationships always share
5172 	 * rbd_client and spec/parent_spec, so bump their refcounts.
5173 	 */
5174 	__rbd_get_client(rbd_dev->rbd_client);
5175 	rbd_spec_get(rbd_dev->parent_spec);
5176 
5177 	ret = rbd_dev_image_probe(parent, depth);
5178 	if (ret < 0)
5179 		goto out_err;
5180 
5181 	rbd_dev->parent = parent;
5182 	atomic_set(&rbd_dev->parent_ref, 1);
5183 	return 0;
5184 
5185 out_err:
5186 	rbd_dev_unparent(rbd_dev);
5187 	if (parent)
5188 		rbd_dev_destroy(parent);
5189 	return ret;
5190 }
5191 
5192 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5193 {
5194 	int ret;
5195 
5196 	/* Get an id and fill in device name. */
5197 
5198 	ret = rbd_dev_id_get(rbd_dev);
5199 	if (ret)
5200 		return ret;
5201 
5202 	BUILD_BUG_ON(DEV_NAME_LEN
5203 			< sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5204 	sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5205 
5206 	/* Record our major and minor device numbers. */
5207 
5208 	if (!single_major) {
5209 		ret = register_blkdev(0, rbd_dev->name);
5210 		if (ret < 0)
5211 			goto err_out_id;
5212 
5213 		rbd_dev->major = ret;
5214 		rbd_dev->minor = 0;
5215 	} else {
5216 		rbd_dev->major = rbd_major;
5217 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5218 	}
5219 
5220 	/* Set up the blkdev mapping. */
5221 
5222 	ret = rbd_init_disk(rbd_dev);
5223 	if (ret)
5224 		goto err_out_blkdev;
5225 
5226 	ret = rbd_dev_mapping_set(rbd_dev);
5227 	if (ret)
5228 		goto err_out_disk;
5229 
5230 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5231 	set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5232 
5233 	dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5234 	ret = device_add(&rbd_dev->dev);
5235 	if (ret)
5236 		goto err_out_mapping;
5237 
5238 	/* Everything's ready.  Announce the disk to the world. */
5239 
5240 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5241 	add_disk(rbd_dev->disk);
5242 
5243 	pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5244 		(unsigned long long) rbd_dev->mapping.size);
5245 
5246 	return ret;
5247 
5248 err_out_mapping:
5249 	rbd_dev_mapping_clear(rbd_dev);
5250 err_out_disk:
5251 	rbd_free_disk(rbd_dev);
5252 err_out_blkdev:
5253 	if (!single_major)
5254 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5255 err_out_id:
5256 	rbd_dev_id_put(rbd_dev);
5257 	return ret;
5258 }
5259 
5260 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5261 {
5262 	struct rbd_spec *spec = rbd_dev->spec;
5263 	size_t size;
5264 
5265 	/* Record the header object name for this rbd image. */
5266 
5267 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5268 
5269 	if (rbd_dev->image_format == 1)
5270 		size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5271 	else
5272 		size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5273 
5274 	rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5275 	if (!rbd_dev->header_name)
5276 		return -ENOMEM;
5277 
5278 	if (rbd_dev->image_format == 1)
5279 		sprintf(rbd_dev->header_name, "%s%s",
5280 			spec->image_name, RBD_SUFFIX);
5281 	else
5282 		sprintf(rbd_dev->header_name, "%s%s",
5283 			RBD_HEADER_PREFIX, spec->image_id);
5284 	return 0;
5285 }
5286 
5287 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5288 {
5289 	rbd_dev_unprobe(rbd_dev);
5290 	kfree(rbd_dev->header_name);
5291 	rbd_dev->header_name = NULL;
5292 	rbd_dev->image_format = 0;
5293 	kfree(rbd_dev->spec->image_id);
5294 	rbd_dev->spec->image_id = NULL;
5295 
5296 	rbd_dev_destroy(rbd_dev);
5297 }
5298 
5299 /*
5300  * Probe for the existence of the header object for the given rbd
5301  * device.  If this image is the one being mapped (i.e., not a
5302  * parent), initiate a watch on its header object before using that
5303  * object to get detailed information about the rbd image.
5304  */
5305 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5306 {
5307 	int ret;
5308 
5309 	/*
5310 	 * Get the id from the image id object.  Unless there's an
5311 	 * error, rbd_dev->spec->image_id will be filled in with
5312 	 * a dynamically-allocated string, and rbd_dev->image_format
5313 	 * will be set to either 1 or 2.
5314 	 */
5315 	ret = rbd_dev_image_id(rbd_dev);
5316 	if (ret)
5317 		return ret;
5318 
5319 	ret = rbd_dev_header_name(rbd_dev);
5320 	if (ret)
5321 		goto err_out_format;
5322 
5323 	if (!depth) {
5324 		ret = rbd_dev_header_watch_sync(rbd_dev);
5325 		if (ret) {
5326 			if (ret == -ENOENT)
5327 				pr_info("image %s/%s does not exist\n",
5328 					rbd_dev->spec->pool_name,
5329 					rbd_dev->spec->image_name);
5330 			goto out_header_name;
5331 		}
5332 	}
5333 
5334 	ret = rbd_dev_header_info(rbd_dev);
5335 	if (ret)
5336 		goto err_out_watch;
5337 
5338 	/*
5339 	 * If this image is the one being mapped, we have pool name and
5340 	 * id, image name and id, and snap name - need to fill snap id.
5341 	 * Otherwise this is a parent image, identified by pool, image
5342 	 * and snap ids - need to fill in names for those ids.
5343 	 */
5344 	if (!depth)
5345 		ret = rbd_spec_fill_snap_id(rbd_dev);
5346 	else
5347 		ret = rbd_spec_fill_names(rbd_dev);
5348 	if (ret) {
5349 		if (ret == -ENOENT)
5350 			pr_info("snap %s/%s@%s does not exist\n",
5351 				rbd_dev->spec->pool_name,
5352 				rbd_dev->spec->image_name,
5353 				rbd_dev->spec->snap_name);
5354 		goto err_out_probe;
5355 	}
5356 
5357 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5358 		ret = rbd_dev_v2_parent_info(rbd_dev);
5359 		if (ret)
5360 			goto err_out_probe;
5361 
5362 		/*
5363 		 * Need to warn users if this image is the one being
5364 		 * mapped and has a parent.
5365 		 */
5366 		if (!depth && rbd_dev->parent_spec)
5367 			rbd_warn(rbd_dev,
5368 				 "WARNING: kernel layering is EXPERIMENTAL!");
5369 	}
5370 
5371 	ret = rbd_dev_probe_parent(rbd_dev, depth);
5372 	if (ret)
5373 		goto err_out_probe;
5374 
5375 	dout("discovered format %u image, header name is %s\n",
5376 		rbd_dev->image_format, rbd_dev->header_name);
5377 	return 0;
5378 
5379 err_out_probe:
5380 	rbd_dev_unprobe(rbd_dev);
5381 err_out_watch:
5382 	if (!depth)
5383 		rbd_dev_header_unwatch_sync(rbd_dev);
5384 out_header_name:
5385 	kfree(rbd_dev->header_name);
5386 	rbd_dev->header_name = NULL;
5387 err_out_format:
5388 	rbd_dev->image_format = 0;
5389 	kfree(rbd_dev->spec->image_id);
5390 	rbd_dev->spec->image_id = NULL;
5391 	return ret;
5392 }
5393 
5394 static ssize_t do_rbd_add(struct bus_type *bus,
5395 			  const char *buf,
5396 			  size_t count)
5397 {
5398 	struct rbd_device *rbd_dev = NULL;
5399 	struct ceph_options *ceph_opts = NULL;
5400 	struct rbd_options *rbd_opts = NULL;
5401 	struct rbd_spec *spec = NULL;
5402 	struct rbd_client *rbdc;
5403 	bool read_only;
5404 	int rc;
5405 
5406 	if (!try_module_get(THIS_MODULE))
5407 		return -ENODEV;
5408 
5409 	/* parse add command */
5410 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5411 	if (rc < 0)
5412 		goto out;
5413 
5414 	rbdc = rbd_get_client(ceph_opts);
5415 	if (IS_ERR(rbdc)) {
5416 		rc = PTR_ERR(rbdc);
5417 		goto err_out_args;
5418 	}
5419 
5420 	/* pick the pool */
5421 	rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5422 	if (rc < 0) {
5423 		if (rc == -ENOENT)
5424 			pr_info("pool %s does not exist\n", spec->pool_name);
5425 		goto err_out_client;
5426 	}
5427 	spec->pool_id = (u64)rc;
5428 
5429 	/* The ceph file layout needs to fit pool id in 32 bits */
5430 
5431 	if (spec->pool_id > (u64)U32_MAX) {
5432 		rbd_warn(NULL, "pool id too large (%llu > %u)",
5433 				(unsigned long long)spec->pool_id, U32_MAX);
5434 		rc = -EIO;
5435 		goto err_out_client;
5436 	}
5437 
5438 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5439 	if (!rbd_dev) {
5440 		rc = -ENOMEM;
5441 		goto err_out_client;
5442 	}
5443 	rbdc = NULL;		/* rbd_dev now owns this */
5444 	spec = NULL;		/* rbd_dev now owns this */
5445 	rbd_opts = NULL;	/* rbd_dev now owns this */
5446 
5447 	rc = rbd_dev_image_probe(rbd_dev, 0);
5448 	if (rc < 0)
5449 		goto err_out_rbd_dev;
5450 
5451 	/* If we are mapping a snapshot it must be marked read-only */
5452 
5453 	read_only = rbd_dev->opts->read_only;
5454 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5455 		read_only = true;
5456 	rbd_dev->mapping.read_only = read_only;
5457 
5458 	rc = rbd_dev_device_setup(rbd_dev);
5459 	if (rc) {
5460 		/*
5461 		 * rbd_dev_header_unwatch_sync() can't be moved into
5462 		 * rbd_dev_image_release() without refactoring, see
5463 		 * commit 1f3ef78861ac.
5464 		 */
5465 		rbd_dev_header_unwatch_sync(rbd_dev);
5466 		rbd_dev_image_release(rbd_dev);
5467 		goto out;
5468 	}
5469 
5470 	rc = count;
5471 out:
5472 	module_put(THIS_MODULE);
5473 	return rc;
5474 
5475 err_out_rbd_dev:
5476 	rbd_dev_destroy(rbd_dev);
5477 err_out_client:
5478 	rbd_put_client(rbdc);
5479 err_out_args:
5480 	rbd_spec_put(spec);
5481 	kfree(rbd_opts);
5482 	goto out;
5483 }
5484 
5485 static ssize_t rbd_add(struct bus_type *bus,
5486 		       const char *buf,
5487 		       size_t count)
5488 {
5489 	if (single_major)
5490 		return -EINVAL;
5491 
5492 	return do_rbd_add(bus, buf, count);
5493 }
5494 
5495 static ssize_t rbd_add_single_major(struct bus_type *bus,
5496 				    const char *buf,
5497 				    size_t count)
5498 {
5499 	return do_rbd_add(bus, buf, count);
5500 }
5501 
5502 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5503 {
5504 	rbd_free_disk(rbd_dev);
5505 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5506 	device_del(&rbd_dev->dev);
5507 	rbd_dev_mapping_clear(rbd_dev);
5508 	if (!single_major)
5509 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5510 	rbd_dev_id_put(rbd_dev);
5511 }
5512 
5513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5514 {
5515 	while (rbd_dev->parent) {
5516 		struct rbd_device *first = rbd_dev;
5517 		struct rbd_device *second = first->parent;
5518 		struct rbd_device *third;
5519 
5520 		/*
5521 		 * Follow to the parent with no grandparent and
5522 		 * remove it.
5523 		 */
5524 		while (second && (third = second->parent)) {
5525 			first = second;
5526 			second = third;
5527 		}
5528 		rbd_assert(second);
5529 		rbd_dev_image_release(second);
5530 		first->parent = NULL;
5531 		first->parent_overlap = 0;
5532 
5533 		rbd_assert(first->parent_spec);
5534 		rbd_spec_put(first->parent_spec);
5535 		first->parent_spec = NULL;
5536 	}
5537 }
5538 
5539 static ssize_t do_rbd_remove(struct bus_type *bus,
5540 			     const char *buf,
5541 			     size_t count)
5542 {
5543 	struct rbd_device *rbd_dev = NULL;
5544 	struct list_head *tmp;
5545 	int dev_id;
5546 	unsigned long ul;
5547 	bool already = false;
5548 	int ret;
5549 
5550 	ret = kstrtoul(buf, 10, &ul);
5551 	if (ret)
5552 		return ret;
5553 
5554 	/* convert to int; abort if we lost anything in the conversion */
5555 	dev_id = (int)ul;
5556 	if (dev_id != ul)
5557 		return -EINVAL;
5558 
5559 	ret = -ENOENT;
5560 	spin_lock(&rbd_dev_list_lock);
5561 	list_for_each(tmp, &rbd_dev_list) {
5562 		rbd_dev = list_entry(tmp, struct rbd_device, node);
5563 		if (rbd_dev->dev_id == dev_id) {
5564 			ret = 0;
5565 			break;
5566 		}
5567 	}
5568 	if (!ret) {
5569 		spin_lock_irq(&rbd_dev->lock);
5570 		if (rbd_dev->open_count)
5571 			ret = -EBUSY;
5572 		else
5573 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5574 							&rbd_dev->flags);
5575 		spin_unlock_irq(&rbd_dev->lock);
5576 	}
5577 	spin_unlock(&rbd_dev_list_lock);
5578 	if (ret < 0 || already)
5579 		return ret;
5580 
5581 	rbd_dev_header_unwatch_sync(rbd_dev);
5582 	/*
5583 	 * flush remaining watch callbacks - these must be complete
5584 	 * before the osd_client is shutdown
5585 	 */
5586 	dout("%s: flushing notifies", __func__);
5587 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5588 
5589 	/*
5590 	 * Don't free anything from rbd_dev->disk until after all
5591 	 * notifies are completely processed. Otherwise
5592 	 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5593 	 * in a potential use after free of rbd_dev->disk or rbd_dev.
5594 	 */
5595 	rbd_dev_device_release(rbd_dev);
5596 	rbd_dev_image_release(rbd_dev);
5597 
5598 	return count;
5599 }
5600 
5601 static ssize_t rbd_remove(struct bus_type *bus,
5602 			  const char *buf,
5603 			  size_t count)
5604 {
5605 	if (single_major)
5606 		return -EINVAL;
5607 
5608 	return do_rbd_remove(bus, buf, count);
5609 }
5610 
5611 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5612 				       const char *buf,
5613 				       size_t count)
5614 {
5615 	return do_rbd_remove(bus, buf, count);
5616 }
5617 
5618 /*
5619  * create control files in sysfs
5620  * /sys/bus/rbd/...
5621  */
5622 static int rbd_sysfs_init(void)
5623 {
5624 	int ret;
5625 
5626 	ret = device_register(&rbd_root_dev);
5627 	if (ret < 0)
5628 		return ret;
5629 
5630 	ret = bus_register(&rbd_bus_type);
5631 	if (ret < 0)
5632 		device_unregister(&rbd_root_dev);
5633 
5634 	return ret;
5635 }
5636 
5637 static void rbd_sysfs_cleanup(void)
5638 {
5639 	bus_unregister(&rbd_bus_type);
5640 	device_unregister(&rbd_root_dev);
5641 }
5642 
5643 static int rbd_slab_init(void)
5644 {
5645 	rbd_assert(!rbd_img_request_cache);
5646 	rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5647 					sizeof (struct rbd_img_request),
5648 					__alignof__(struct rbd_img_request),
5649 					0, NULL);
5650 	if (!rbd_img_request_cache)
5651 		return -ENOMEM;
5652 
5653 	rbd_assert(!rbd_obj_request_cache);
5654 	rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5655 					sizeof (struct rbd_obj_request),
5656 					__alignof__(struct rbd_obj_request),
5657 					0, NULL);
5658 	if (!rbd_obj_request_cache)
5659 		goto out_err;
5660 
5661 	rbd_assert(!rbd_segment_name_cache);
5662 	rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5663 					CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5664 	if (rbd_segment_name_cache)
5665 		return 0;
5666 out_err:
5667 	kmem_cache_destroy(rbd_obj_request_cache);
5668 	rbd_obj_request_cache = NULL;
5669 
5670 	kmem_cache_destroy(rbd_img_request_cache);
5671 	rbd_img_request_cache = NULL;
5672 
5673 	return -ENOMEM;
5674 }
5675 
5676 static void rbd_slab_exit(void)
5677 {
5678 	rbd_assert(rbd_segment_name_cache);
5679 	kmem_cache_destroy(rbd_segment_name_cache);
5680 	rbd_segment_name_cache = NULL;
5681 
5682 	rbd_assert(rbd_obj_request_cache);
5683 	kmem_cache_destroy(rbd_obj_request_cache);
5684 	rbd_obj_request_cache = NULL;
5685 
5686 	rbd_assert(rbd_img_request_cache);
5687 	kmem_cache_destroy(rbd_img_request_cache);
5688 	rbd_img_request_cache = NULL;
5689 }
5690 
5691 static int __init rbd_init(void)
5692 {
5693 	int rc;
5694 
5695 	if (!libceph_compatible(NULL)) {
5696 		rbd_warn(NULL, "libceph incompatibility (quitting)");
5697 		return -EINVAL;
5698 	}
5699 
5700 	rc = rbd_slab_init();
5701 	if (rc)
5702 		return rc;
5703 
5704 	/*
5705 	 * The number of active work items is limited by the number of
5706 	 * rbd devices * queue depth, so leave @max_active at default.
5707 	 */
5708 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5709 	if (!rbd_wq) {
5710 		rc = -ENOMEM;
5711 		goto err_out_slab;
5712 	}
5713 
5714 	if (single_major) {
5715 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
5716 		if (rbd_major < 0) {
5717 			rc = rbd_major;
5718 			goto err_out_wq;
5719 		}
5720 	}
5721 
5722 	rc = rbd_sysfs_init();
5723 	if (rc)
5724 		goto err_out_blkdev;
5725 
5726 	if (single_major)
5727 		pr_info("loaded (major %d)\n", rbd_major);
5728 	else
5729 		pr_info("loaded\n");
5730 
5731 	return 0;
5732 
5733 err_out_blkdev:
5734 	if (single_major)
5735 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5736 err_out_wq:
5737 	destroy_workqueue(rbd_wq);
5738 err_out_slab:
5739 	rbd_slab_exit();
5740 	return rc;
5741 }
5742 
5743 static void __exit rbd_exit(void)
5744 {
5745 	ida_destroy(&rbd_dev_id_ida);
5746 	rbd_sysfs_cleanup();
5747 	if (single_major)
5748 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5749 	destroy_workqueue(rbd_wq);
5750 	rbd_slab_exit();
5751 }
5752 
5753 module_init(rbd_init);
5754 module_exit(rbd_exit);
5755 
5756 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5757 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5758 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5759 /* following authorship retained from original osdblk.c */
5760 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5761 
5762 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5763 MODULE_LICENSE("GPL");
5764